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Testing the Bell inequality for Higgs boson decay
With supervised learning Multi-Variate Analysis classifiers
AXEL PANTZARE
Department of Physics
Chalmers University of Technology

Abstract
The Higgs boson was discovered in the ATLAS and CMS detectors at LHC in 2012.
Since then, more and more have been learned about its properties including its
mass. Bell introduced a test to verify if particles behaved quantum mechanically or
classically. This was later modified to be able to test a three-level system such as the
Higgs boson decay to W bosons. The data from ATLAS open data was used to train
neural networks to classify these events and filter out the background on simulated
data and then use these to filter out the actual data. This was then tested in the
generalized Bell inequality for a three-level system. It was found that the actual
data filtered out by the network broke the inequality with over 4σ but was far away
from the expected value. This can be due to precision lower than for the training
and validation data because of differences between simulations and actual data but
also because the assumptions of the Higgs boson being at rest in the lab frame were
insufficient.

Keywords: Bell inequality, Supervised learning, Higgs boson decay, CGLMP in-
equality.
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Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

ATLAS A Toroidal LHC ApparatuS
CERN Conseil Européen pour la Recherche Nucléaire
CHSH Clauser-Horne-ShimonyHol
CGLMP Collins-Gisin-Linden-MassarPopescu
DNN Deep Neural Network
JVT Jet Vertex Tagging
LHC Large Hadron Collider
MC Monte Carlo
MVA Multi Variate Analysis
PCA Principal component analysis
SSP Spontanious Symmetry Breaking
t-SNE t-Distributed Stochastic Neighbor Embedding
QFT Quantum Field Theory
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Nomenclature

Below is the nomenclature of indices, particles, parameters, variables and groups
that have been used throughout this thesis.

Indices

i Index for the leptons
j Index for the jets
k Index for the different coordinate axis
l Index for the different layers.
m Index for the different neurons.

Particles

l Leptons
νl Neutrino of flavor l
µ Muon
e Electron
b Bottom quark
W W boson
g Gloun
τ Tauon
c Charm quark
Z Z boson
H Higgs boson

Parameters

xi



α Learning rate
Max η Maximum pseudorapidity of jet finder
r Cone radius of jet
Min pT Minimum transverse momentum for jet finder
nη Range of jet finder
nϕ Granularity of jet finder

Variables

L Weak isospinn
Y Weak hypercharge
Φ Scalar field
B B Boson
ν Constant for Higgs potential
λ Constant for Higgs potential
v Vacuum expectation value of Higgs potential
η Pseaudorapidity
θ Angle between the particle three momenta and the beam
S Value of bell inequality
a Detector settings at side a
b Detector settings at side b
ξ Cosine of azimuth angle of lepton.
I CGLMP Inequality value or contribution from term k
σ Standard deviation of data
σ̃ Standard deviation of mean
n Number of events selected
N Size of dataset
y Output from neuron
x Input to neuron
w Weight to input
b Bias for neuron
f(y) Activation function
p(y) Predicted value
µ Mean of data

xii



mLL Combined mass of leptons
goodjet Number of “goodjets”
MET Missing Transverse energy
ptLL Transverse momentum of
goodbjet Number of B jets
FP False positives
TP True positives
FN False negatives
TN True negatives
P Precision
BA Binary accuracy

Groups

U(1) Unitary group of dimension 1. This corresponds to rotations on the
unit circle.

SU(2) Special Unitary group of dimension 2. The group is represented by
2 by 2 unitary matrices with determinant 1.

SU(3) Special Unitary group of dimension 3. The group is represented by
3 by 3 unitary matrices with determinant 1.
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1
Introduction

The Higgs boson was proposed in 1964 to explain how all other particles in the
standard model acquired their mass [5]. This was later discovered in 2012 by the
ATLAS and CMS detectors at LHC in Cern [6]. What laws of physics affect this
particle’s decay has been a question no one has been able to answer. The answer to
this question of the Higgs boson decay would test the theories of quantum mechanics
at higher energies than probed before.

1.1 Background
One of the natural consequences of quantum mechanics is the property of entan-
glement. This means that two particles that are apart from each other and in a
superposition of states can “feel” when the other particle is being measured and
the superposition collapses into a single state. This has long been known to violate
the inequalities formed by Bell [7]. This follows naturally from quantum physics
but goes against the realist approach and classical physics where the two particles
should be isolated from each other:

These theories have been tested in multiple different experiments for different two-
level systems and it has been proven to violate the Bell inequality in for example
superconduction, ions, photons, and nitrogen-vacancy centers. In addition, also
some three-level systems using photons [8]. In this thesis, the aim is to test the
Bell inequality for Higgs boson decay to two W bosons which will be at the highest
energy this far.

Last year the Bell inequality was tested for the decay from Higgs to two W bosons
for simulated data. It was concluded that this data pointed towards that this decay
violates the inequality which means that it decays quantum mechanically, this is
expected but has never been tested at these energies in real experiments before [8].
In the article, the author proposes that this should be possible to investigate with
the data already available from the Large Hadron Collider (LHC). Earlier this year
it was also shown analytically with quantum corrections that this should be the case
[9].
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1. Introduction

1.2 Purpose and goals
This thesis aims to use experimental data to decide if Higgs boson decay to WW
bosons breaks the Bell inequality or not with a reasonable confidence level. The
decay mode to WW bosons is chosen since the decay products are heavier than
for example the mode to two bottoms or gluon, which might mean that it requires
higher energies. The WW mode was chosen over the ZZ mode since the branching
ratio is much higher for WW which will give more data to analyze.

1.3 Limitations
The scope of this thesis is only 30 ECTS credits which roughly corresponds to
working 20 weeks full-time. The limitation in terms of data is that it is only the 13
TeV open data set that is accessible. This is relatively small and might give large
uncertainties of the calculated numbers.

1.4 Problem formulation
Does the Higgs boson decay into two W bosons break the Bell inequality? How can
one filter out the H to WW events from the background?

1.5 Ethics
During this project, ethics have been taken into account by crediting the people
and projects this thesis builds on. I have also been clear about what drawbacks
this research has to not mislead anyone. Furthermore, the code is also uploaded to
GitHub for others to see and continue building on. Since this research is not directly
applicable to any industry or in other way human-facing no extra caution has been
taken in the research design in terms of ethics.
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2
Theory

In this chapter, first, the particle physics involved is introduced in section 2.1 and
especially discusses the Standard Model, The Higgs boson, how it is formed and
decays, and the Bell inequality in section 2.1.5. Furthermore, the ATLAS detector
is explained in section 2.2. Lastly, the data in is presented section 2.3, and the theory
behind the multi-variate analysis (MVA) classifiers is presented in section 2.4.

2.1 Particle physics
All things we interact with are built up of atoms. These atoms are in turn built up by
protons, neutrons, and electrons. The protons and neutrons are built up by quarks.
Electrons and quarks are examples of elementary particles. It is the elementary
particles that build up most matter we know. The theoretical model that describes
these fundamental particles and their properties is called the Standard Model. To
validate and test this model multiple particle colliders have been built and the largest
one which generates the highest energies in collisions is the Large Hadron Collider
(LHC) in Cern [10].

2.1.1 Standard model
The Standard Model builds on experimental observations and mathematical deriva-
tions for which particles are needed to build up our world. The Standard Model
builds on quantum field theory (QFT) and gauge invariance to explain all of these
particles and also the forces (except gravity) that makes them interact. The parti-
cles can be divided into two classes, half-integer spin particles known as fermions,
and integer spin particles known as bosons. These play different roles where the
fermions build up all matter and the bosons are the force-carrying particles that
give rise to the fundamental forces.

QFT is the theoretical study of particle physics which combine quantum mechan-
ics, special relativity, and classical field theory. This theory treats particles as an
excitation of their respective field.

The Standard Model is based on the symmetry group SU(3) ×SU(2) ×U(1), where
SU(3) describes the strong force between quarks, SU(2) describes the electroweak
force, and U(1) describes the electromagnetic force [11]. Each of these groups is
associated with a set of gauge fields or gauge bosons, which mediate the interactions

3



2. Theory

between particles.

The most relevant particles for this thesis are the electron and muon neutrino, the
electron, the muon, and the W and H bosons.

Figure 2.1: The Standard Model as a visual representation with the 12 fermions
and 5 bosons. Note the spin, mass, and charges of the H, W, e, and µ. Creative
Commons Attribution 3.0 Unported license [1].

2.1.2 Higgs boson
In the beginning, all particles were massless, but a fraction after the big bang some
acquired mass. This troubled physicists for a long time before Peter Higgs proposed
that spontaneous symmetry breaking (SSP) and a new quantum field would solve
this problem [5]. SSP can be seen as that the universe was initially in a symmetric
unstable state but was then spontaneously moved into an asymmetrical state which
made some but not all particles acquire mass while the equations were unchanged.
The new quantum field was what we now know as the Higgs field and explains why
some but not all particles have mass.

The Higgs field is a scalar field that is coupled to the gauge bosons of the electroweak
force. The gauge symmetry group associated with the electroweak force is SU(2)L ×
U(1)Y , where SU(2)L describes the weak isospin symmetry and U(1)Y describes the
weak hypercharge symmetry. A visual representation of the group SU(2) is rotations
on the surface of a 3D sphere and for U(1) the visual representation is rotations on
the unit circle. The electroweak gauge bosons consist of three SU(2)L gauge bosons,
W+,W−, Z0.

4



2. Theory

The Higgs field is a doublet of SU(2)L and has weak hypercharge Y = 1, and can
be written as:

Φ =
(
Φ+ Φ0

)
(2.1)

where Φ+ and Φ0 are complex scalar fields.
The Higgs potential is the potential energy in the Higgs field and is given by:

V (Φ) = ν2Φ†Φ + λ(Φ†Φ)2 (2.2)
where ν2 < 0 and λ > 0 are constants that determine the shape of the potential
[12], ν2 having an inpact of the center of the potential and λ impacting the edges.
The Higgs potential has a "Mexican hat" shape, with the minimum of the potential
occurring at a non-zero value of the Higgs field, breaking the electroweak symmetry
and giving mass to the electroweak gauge bosons and fermions. The minimum of
the Higgs potential occurs when the potential fulfills:

|Φ| = v√
2

=
√

− ν2

2λ (2.3)

where v is the vacuum expectation value (VEV) of the Higgs field, a non-zero value
that determines the masses of the gauge bosons and fermions [13].

Figure 2.2: The Higgs potential with a red dot at the local maxima and a purple
dot at the local minima. Since the local minima is rotationally symmetric this shows
the concept of spontaneous symmetry breaking.

Spontaneous symmetry breaking can be seen when the ball moves from the top of
the potential (in a symmetric unstable state), red ball to the valley of the potential
(stable asymmetric state), purple ball, and thereby breaks the symmetry. With this
shift in the Higgs field the gauge bosons gain mass. The field that gives the potential
is called the Higgs field and is therefore needed for the Higgs mechanism. Since an
excitation of a field is regarded as a particle this gives rise to the Higgs boson.

In summary, the Higgs mechanism is a key component of the Standard Model and
is responsible for giving mass to the particles of the electroweak force. The math-
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2. Theory

ematical framework behind the Higgs mechanism relies on the symmetry group
SU(2)L × U(1)Y , the Higgs field, and the Higgs potential. In summary, the Higgs
field is a scalar field that is coupled to the gauge bosons of the electroweak force, and
the Higgs potential has a “Mexican hat” shape with a non-zero vacuum expectation
value that breaks the electroweak symmetry and gives mass to the particles.

2.1.3 Higgs Decay
The Higgs boson can decay in multiple ways. The most common is two bottom
quarks followed by two W bosons. Some less common is to two gluons, touons,
charms, and Z bosons, all major decay modes are displayed in table 2.1.

Table 2.1: Branching ratios for the Higgs bosons decay into lighter products [3].
There are also a few other decay routes that are neglected here since their contri-
butions are minor.

Decay products Branching ratio [%]
bb̄ 57
WW 22
gg 9
ττ 6
cc̄ 3
ZZ 3

Since the W boson is about 20 times heavier than the bottom quark it means that
it should couple stronger to the Higgs field and thereby make it easier to investigate
the Higgs boson. The downside might be the limitation in statistics since it should
be about a third as many events of that kind. But since it is about 10 more common
than the Z boson decay it should be the best option to evaluate the Higgs bosons
properties.

When the W+ boson decays it sends out a lepton in the direction of its spin and
when the W− boson decays it sends out a lepton in the opposite direction of its
spin [14]. This means that the directions of the leptons in the final state should
indicate the spin of the W boson and therefore it should be possible to detect if the
W bosons were entangled or not.

Since one H is lighter than two W, one of the W has to be off-shell which means
that this breaks the energy-momentum conservation for a short period of time and
therefore can be viewed as a virtual particle. The full decay from the Higgs to the
detected products is H−→WW−→ e + µ + νe + νµ. We only want to use the decay
into e and µ since H→ ττ has a significant contribution without decaying into WW
first and we want them to have different type to eliminate contributions from pair
production. Since the ATLAS detector can not detect neutrinos are they ignored
and replaced by a “missing energy” term. If we symbolize the off-shell boson with
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2. Theory

an ∗ the decay can be written as

H −→ WW∗ −→ e± + µ∓ + ME. (2.4)

Since the Higgs is a zero spin particle and the W has ±1 and charge they have to
have opposite charges which gives the leptons opposite charges.

2.1.4 Jets
When the two protons collide a hot and dense medium is formed, which is called a
quark-gluon plasma. This is characterized by emerging quarks and gluons. Some-
times these fragment into highly collimated particle streams called jets. These jets
carry some of the energy and momentum from the collision so lighter particles can
form.

The jets can be classified in different ways, for example, jets over 60 GeV need to
be restricted. Too many of them carries away too much energy, which makes it
impossible to form a Higgs boson, therefore this kind of jet is called a good jet in
this report. Jets have bad directional accuracy which makes it hard to determine
from which collision vertex a single jet originates. To solve this, Jet Vertex Tagging
(JVT) is used to determine how much energy from one track that is from every
vertex [15].

One special type of jet that is called a b-jet is extra interesting since it is generally
more energetic than other jets. The difference between a b-jet and other jets is that
it contains one or more bottom quarks. To classify this ATLAS uses an algorithm
called MV2c10 which uses multi-variate analysis to calculate the likelihood of a jet
containing a bottom quark. This algorithm has shown great accuracy which has
made it the main algorithm for b-tagging at ATLAS. In this report, a value over
0.17 is considered a b-jet and means that the threshold is relatively low which is
important in this analysis since too many b-jets would mean we can not get any
Higgs in the decay [16].

2.1.5 Bell inequality and CHSH
When the field of quantum mechanics started to gain traction a kind of test was
needed to prove that systems behaved quantum mechanically. One such test became
the Bell test to prove non-locality or as it is more commonly known now: entangle-
ment [7]. Entanglement is a phenomenon that means that measuring one particle
instantaneously (independent of distance) affects another particle. This would not
be allowed in classical theories since nothing can travel faster than the speed of
light. This means that the state of two entangled particles can not be described
individually but have to be described together. The usual formulation of the Bell
inequality for a two-level system is called the CHSH inequality and reads [17],

S = E(a, b) − E(a, b′) + E(a′, b) + E(a′, b′) ≤ 2, (2.5)

where E is the quantum correlation expectation value of measurement outcomes
of different particles with different states. Detector a and b are different sides of

7



2. Theory

the same experiment with the primed coordinates being different detector settings.
These detector settings can, for example, be the polarization of two entangled pho-
tons [17].

For a fully entangled state, this inequality should take the value
√

8 ≈ 2.8 which
exceeds the limit 2 set by classical theories which means that quantum mechanical
systems break the CHSH inequality [18].

2.1.6 3 level system and CGLMP inequality

Since the Higgs boson has zero spin and is decaying to two W bosons that can have
integer spin between -1 and 1 this can be described as a 3-level system. The system
can therefore be described as

|ψs⟩ = 1√
3

(|−⟩ |+⟩ + |0⟩ |0⟩ + |+⟩ |−⟩). (2.6)

The W bosons will then decay into a lepton and a neutrino where these leptons will
be emitted in the direction of the spin for the W+ and in the opposite direction of
the spin for the W− to maximally violate chirality since this is a weak decay [14].
This makes it possible to measure the direction of the spin by measuring the lepton’s
directions. The leptons l± ∈ {e±,µ±} since we are excluding the τ to get higher
sensitivity of the search [6]. The leptons will be of different charges since the Higgs
is neutral.

The optimal test of the Bell inequality for a three-level system is the CGLMP
inequality [8] which is a generalization of the CHSH inequality which expectation
value can be computed by

I = 3√
8

⟨ξ+
x ξ

−
x +ξ+

y ξ
−
y ⟩+25⟨

(
(ξ+

x )2 −(ξ+
y )2

)(
(ξ−

x )2 −(ξ−
y )2

)
⟩+100⟨ξ+

x ξ
+
y ξ

−
x ξ

−
y ⟩ (2.7)

where ξn
k is the cosine for the angle of the lepton with charge n with respect to the

axis k [8] in the rest frame of the Higgs. However, since the Higgs is about 100 times
heavier than the protons collided most of the energy will go into mass and it can
therefore be assumed that it is nearly at rest in the lab frame [19]. The only axis
used is x and y since that is the only direction that has full resolution because of how
the ATLAS detector is built. By plotting the CGLMP value for 5000 different pairs
of random angles we get a general idea of the dependence on the angle difference.
We see that if the angle difference is small or close to π we get high values of the
inequality and if there is a more open angle between the leptons we get a lower
value.
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Figure 2.3: CGLMP value as a function of ∆ϕ. Smaller angle differences between
the leptons give a larger value while a more open angle gives a smaller value. Since
the quantity depends on both angles and not just the difference it is two lines instead
of one.

The statistical uncertainty can be calculated as the sum of the variances for the
three different averages and the sum of their covariance.

σ2 =
(

3√
8

)2

var(I1) + 252var(I2) + 1002var(I3)+

3√
8

· 25cov(I1, I2) + 3√
8

· 100cov(I1, I3) + 25 · 100cov(I2, I3)
(2.8)

Since these are all mean values the error of means will be used which means that
we divide by the square root of the number of samples one more time.

σ̃ = σ√
n

(2.9)

The maximum value for this quantity for a classical system should be 2 and for a
fully entangled system should be ≈ 2.9 [8].

2.2 ATLAS detector
The ATLAS detector is the largest detector at LHC and includes of six different
detection subsystems in multiple layers with calorimeters that detect the energy of
particles. By applying a magnetic field, the charge, and mass can be calculated by
measuring how they deposit energy over the detectors calorimeters.
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Figure 2.4: Visualisation of the reconstruction of jets and particles in ATLAS. The
yellow beams are the jets, the green cones are the area around the jets that take a
group of particles and combine into one jet and the blue rays are each individual
particle. Creative Commons NonCommercial-ShareAlike 2.0 license [2].

The coordinate system at ATLAS has the x-axis pointing towards the middle of the
beam ring, the y-axis pointing up from the ground and the z-axis pointing along
the beam direction to form a right-handed system. Instead of measuring the angle θ
that the decay product deflects from the beam the pseudo rapidity η is used which
is calculated through

η = − ln [tan
(
θ

2

)
]. (2.10)

2.3 Data

The data is composed of 49 different data channels such as the lepton’s/jet’s mo-
mentum and directions. A full list of the data channels can be viewed in table 2.2.
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Table 2.2: Variables used for the classification data along with descriptions for
what they mean [4]. They are grouped together in three groups, attributes that
describe the whole event, lepton attributes for both leptons and jet attributes for
the three most energetic jets.

Chanel name Chanel description
mll Invariant or total mass of the final products
ptll Total transverse momentum of leptons
∆ϕll Angle difference in the xy-plane between leptons
∆ϕllMET Angle difference in the xy-plane between the lepton center of mass and the missing energy
MET Missing energy
mT Dilepton transverse mass
jetn Number of jets
goodjetn Number of jets with pt over 60 GeV and η larger than 2.4
goodbjetn Number of jets with pt over 60 GeV, η between 2.4 and 2.5 and MV2C10 value over 0.176 (85%)
pti transverse momentum for lepton i
ηi pseudorapidity momentum for lepton i
Ei Energy for lepton i
ϕi angle in the xy-plane for lepton i
lep_chargei Charge for lepton i
lep_typei Type for lepton i (µ = 13, e = 11)
lep_trackd0pvunbiasedi d0 of track associated with lepton at point of closest approach
lep_tracksigd0pvunbiasedi d0 Significance of the track associated at the point of closest approach
lep_z0i z-coordinate of the track associated with the lepton wrt. primary vertex
lep_ptcone30i Scalar sum of track pt in a cone of R = 0.3 around lepton used for tracking isolation
lep_etcone20i Scalar sum of track Et in a cone of R = 0.2 around lepton used for calorimeter isolation
jetptj Transverse momentum of jet
jetηj Pseudorapidity of jet
jetEj Energy of jet
jetϕj Angle of the jet in the xy-plane
jet_MV 2c10j Output from the multivariate b-tagging algorithm of the jet
jet_jvtj Jet vertex discriminant of jet

The training data for this project was a combination of the Monte Carlo (MC) data
available as open source through ATLAS Open Data and additional data that had
been simulated with Pythia [20] to closely resemble the actual data. It is building
on the Standard Model with next-to-leading order (NLO) corrections. The jets
have been simulated with Fastjet [21] with the standard settings. This is the same
software that was used for the same type of events as in the open data.

The data set from the collider has the same data channels as the MC data but these
have been reconstructed from the detector data. The data is taken during run 2
which lasted between 2015 to 2018 and the Center of Mass (CM) energy was 13 TeV
[22].

2.4 MVA Classifier
Since the signal (H→WW) and the background are very similar an MVA classifier
is needed to select the parts that are most likely to be signal. There are multiple
different options for MVA classifiers but the ones discussed here are Dense Neural
Networks (DNN), Principal Component Analysis (PCA), and 1D convolutional net-
works. There are indefinitely many ways of using these but some general background
is presented.
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2.4.1 PCA
Since some of the features are correlated this will give rise to multicollinearity. To
avoid this PCA has been used. PCA means that an N-dimensional hyperplane is
fitted to the data to explain as much of the variance as possible. This will reduce
the number of features and decrease the correlation between features [23].

2.4.2 DNN
A deep neural network is a machine learning process that is, simply put, made to
learn in a similar way as the brain. It uses layers of neurons that transform the
input data to closely resemble the output data of the training examples [24].

2.4.2.1 Single neuron

A single neuron is the smallest element that the neural network is built up of. It
takes in the output of the previous layer (or the features in the first) and transforms
it with a linear function applying weights wm to all input data and a bias bm such
as

yl
m =

∑
wmxm + bm, (2.11)

for neuron m in layer l. An non-linear activation function is then used on yl
m to get

the output [24].

2.4.2.2 Activation function

To make sure the output after each neuron signals either on or off or a probability of
it the activation function is used to map yl

m to [0,1]. There are several different but
the most common ones are “ReLu”, “Softmax” and “Sigmoid” [25]. The sigmoid is
defined as

f(y) = 1
1 + e−y

(2.12)

ReLu is a combination of a linear activation and a binary activation [25]. It stays
at zero until the input is 0 and then increases linearly

f(y) =
{

0 y ≤ 0
y 0 ≤ y.

The upside of this is that all neurons are not activated at the same time which
makes it suitable for use in hidden layers. The softmax activation function is a
mathematical function that takes a vector of real-valued inputs and produces a
vector of values that represent the probabilities of each class. It exponentiates the
input values and normalizes them in such a way that they range from 0 to 1 and sum
up to 1, effectively transforming them into probabilities. This transformation enables
the interpretation of the output as a probability distribution over multiple classes,
facilitating the assignment of a single class label among the available options. This
makes it especially good for multiple-class classification whereas a single sigmoid
works better for binary classification [25].

12



2. Theory

2.4.2.3 Structure

The DNN is built up of multiple layers with a dropout between each layer which
sets a portion of the data to 0 and then re-normalizes the sum. This prevents the
model from overfitting. The last layer has only one neuron to project the data to
one number which is compared to the label to evaluate if the model did a successful
classification or not [26].

2.4.3 1D convolutional network
A 1D convolutional network exhibits both similarities and differences when com-
pared to a traditional DNN. While both architectures are used for learning patterns
in data, a 1D convolutional network introduces unique characteristics that make it
particularly suitable for processing sequential data [26].

One notable distinction lies in the connectivity pattern between layers. In a DNN,
every node in a layer is connected to every node in the subsequent layer, forming
a fully connected structure. In contrast, a 1D convolutional network employs local
connectivity, where each node in a layer is only connected to a subset of nodes in
the next layer [26]. This design mimics the way information flows in the human
brain and allows the network to capture local patterns and interactions effectively.
By reducing the number of connections, 1D convolutional networks can be more
computationally efficient, making them advantageous in scenarios with large input
sizes or limited computational resources [26].

Furthermore, the organization of data in a 1D convolutional network differs from
a DNN. In the context of time series data, the input is typically represented as a
sequence or series of values along a single dimension. This temporal aspect is cap-
tured by organizing the data into different vectors or channels, where each channel
represents a distinct aspect or feature of the time series. For example, in sensor data
analysis, different channels can represent various sensor measurements. By scanning
over these multiple channels, the 1D convolutional network can detect correlations,
similarities, and differences across different aspects of the time series, enabling it to
extract meaningful temporal features and patterns. [26].

2.4.4 Loss function
The purpose of the loss function is to tell the network how far away from the right
answer the output is. There are multiple different methods for this but in the case
of binary classification as this, the most relevant one is binary cross-entropy. This
builds on calculating how far away every predicted label is from the actual one and
uses the same equation as entropy in statistical mechanics which can be written as

BCE = − 1
N

N∑
i=1

yi log(p(yi)) + (1 − yi) log(1 − p(yi)) (2.13)

where yi is the real lable and p(yi) is the probability that yi is signal [27].
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2.4.5 Optimization
To optimize the network multiple different optimizers can be used. The most com-
mon one is adaptive moment estimation (Adam) which is an extension of stochastic
gradient descent. This calculates the first and second moments of the gradient to
adapt the learning rate (step size) for each weight [28].
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The method used to investigate the CGLMP inequality is built on first filtering out
as large a proportion of the H → WW events as possible and then making the
calculation of the CGLMP inequality. To do this the theoretical selection criteria
described in section 2.1.3 were first used together with criteria to ensure the quality
of the data. After this, two MVA classifiers was trained on the simulated data and
then tuned by the expected number of events and used on the real collider data
from Cern. The data used was the 13 TeV ATLAS open dataset produced at LHC
together with extra simulated data from Pythia [20] and Fastjet [21]. The ALTAS
open dataset includes both simulation and experimental data [29].

3.1 Approximation of number of Higgs events

The events that give the main contributions to the data are from five different cat-
egories. By fitting the simulated spectra of these different categories to the spectra
of the measured data the number of Higgs events in the data can be calculated with
the MC weights and detector fractions. With the criteria described below this came
out as 425 Higgs to WW events out of the total 21000 events. An example of one
spectrum used to approximate the number of Higgs events can be seen in fig. 3.1.
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Figure 3.1: The distribution of data for ∆ϕ(ll). Both data and the five different
sub-processes are visible. The distribution from the sub-processes is from the simu-
lation and then fitted to the actual data.

3.2 Simulation
The training data is comprised of two sets of simulation data. The first is the ATLAS
13 TeV open data simulated with Pythia at Cern [30]. The second was simulated
with Pythia and Fastjet for this thesis work. This was only H→WW since the
dataset was quite unbalanced. The settings used were only one production mode
which was gluon-gluon fusion to Higgs with CM energy 13 TeV. The only decay
mode activated for the Higgs was two W bosons, for the W bosons the decay modes
that were activated were only to electron/positron and their respective neutrino and
muon/anti-muon with their respective neutrino. For the jets, the standard settings
of Max η = 4, r = 0.7, Min pT = 10, excluding neutrinos and other particles that
can not be detected, and the range and granularity of the jet finder were set to
nη = 80 and nϕ = 64 were used. Before merging the two sets it was checked that
all the features looked similar.

3.3 Preprocessing
To filter out a high concentration of H→ WW a multi-step approach was used.
First, all the data was filtered with the theoretical selection criteria described in
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section 2.1.3 and with criteria to ensure the quality of the data as well as some
criteria to filter out the worst background using for example the number of b-jets.
Then some extra manipulations of the orientation of the coordinate system were
added to the training data to ensure the generativity of the MVA. Lastly, the data
were transformed to be of a similar structure for all features.

3.3.1 Selection criteria
As the first filtering, a cut-based selection was made. This consisted of theoretical
constraints such as only using events with exactly two differently flavored leptons
with opposite charges.

We also want to be sure that it is isolated leptons we are looking at and we can
therefore add the criteria that each lepton needs to have transverse momentum over
15 GeV and ptcone30/pt under 0.1 and etcone20/pt under 0.1 and η under 2.5,
this means that the particles have some space around it without any other particle
which means that we are sure that we can track each lepton individually [4]. Lastly,
selection criteria to filter out most of the background were added

85 GeV > mLL > 5 GeV
goodjet ≤ 1

MET > 10 GeV
ptLL > 10 GeV
goodbjet < 2.

(3.1)

This is significantly looser than the standard criteria employed for H → WW search
at cern and therefore letting through more background and signal than before [29].

This left 1.4 million MC events for training events where 760 000 were Higgs.

3.3.2 Extra data manipulations
Since the detector and experiment are symmetric around the beam in the xy-plane
the data should be symmetric in the same way. Therefore a random rotation was
made to the data and then added to the rest of the training data. The z-axis was
also flipped in this example of the data. This should lead to a more general MVA
classifier since this should make the choice of the coordinate system more arbitrary.

3.3.3 Transformation
As the last part, a neural network was trained to filter out even more of the back-
ground signals. The network was trained on simulation data which have been sim-
ulated with detector effects as well which means it should be fairly similar to the
experimental data. Before the data is fed into the neural network it is first rescaled
with

x− µ

σ
(3.2)

17



3. Methods

where µ is the mean of the variable, σ is the standard deviation and x is an array
of the variable.

The CGLMP inequality will thereafter be calculated with eq. (2.7) for the filtered
events to see if it violates the classical limit.

3.4 MVA

To make a classifier that is as accurate as possible multiple methods were tested.
Both a DNN using PCA data as well as a 1D convolutional network were trained
and tested individually and together.

3.4.1 Development of MVA

First, the number of neurons and layers was tested to find at what number the
model could overfit the data to 100% after 200 epochs. When this level was found
a dropout was added between each layer and slowly increased until the validation
and training scores behaved similarly indicating no overfit.

Different activation functions were also tested, the activation function that gave the
highest accuracy was ReLu for the hidden layers and Sigmoid for the output layer.

Binary cross-entropy, calculated as eq. (2.13) was used as a loss function for both
networks together with Adam optimizer and learning rate α = 0.00005. This value
is a bit lower than the standard which seemed a bit high since the network’s training
scores fluctuated heavily. Only the step with the lowest validation loss was saved
and later used.

3.4.2 PCA

To decrease multicollinearity and reduce the number of features as far as possible a
PCA was used. However, this seemed to only be able to reduce the data from 49 to
45 features which makes the training of the network slightly easier.
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Figure 3.2: The explained variance ratio for the PCA. We see that all the variance
is explained by 45 variables. Adding more variables will therefore not give any more
information.

3.4.3 DNN
Different structures were tested but it was concluded after testing that 8 layers of
1000 neurons per layer could capture most of the complexity of the problem since
it could overfit to around 95%, adding more neurons and layers did not increase
the performance but after some point lowered it instead. To counter the overfit a
dropout was added between each layer and was set to 0.01. The DNN was used on
the PCA data.

3.4.4 1D convolutional
The 49 features were organized into five channels with 10 features in each. The
channels were organized as shown in table 3.1. The order of each feature was tested
to not have a significant effect as well as permuting elements from the different
channels.

Table 3.1: The channels of the 1D convolutional model were made up of 49 features
and a 0 element. They were organized so that information that might be related
would be in the same channel.

1 2 3 4 5
Scalars and Zero element Lepton 1 Lepton 2 Jets
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With two layers of convolution with 128 and 256 neurons with kernel size 3 and
then one dense layer of 128 neurons it seems like the model could capture all of the
complexity of the model since it could overfit the training data to 100%. A dropout
of 0.2 was added to prevent this overfit. One layer of max pooling was added after
the last convolutional layer to prevent overfit and increase the generalizability of the
model.

3.5 Output
The output from the networks can be seen as a predicted probability of an event is
either the labeled H → WW (1) or something else (0). The output of both MVA
classifiers respectively when applied on the detector data can be seen in fig. 3.3,
note that the 1D convolutional network gives more of a spectrum than the DNN. If
applied on the training data a structure like fig. 3.3a would be expected while when
using it on new data a structure more similar to fig. 3.3b is expected.

(a) DNN (b) 1D convolutional network.

Figure 3.3: Output on the real data from the respective network. Note that the
convolutional network gave more spectra that can be viewed as a probability of
being either 0 och 1 while the DNN gave more of a labeling.

The metrics used to evaluate the models is the binary accuracy and precision on the
training and validation sets which are both simulated data. They are defined as

BA = TP + TN

FP + FN + TP + TN
, P = TP

FP + TP
(3.3)

where TP is the number of correctly predicted positives (1), TN is the number of
correctly predicted negatives (0), FP is the number of incorrectly predicted positives
and FN is the number of incorrectly predicted negatives.

The training and validation scores can be seen for each epoch in fig. 3.4. Worth not-
ing is that the precision stays more or less constant while the accuracy is improving
over the epochs. The model was saved for classification after the epoch with the
lowest validation loss.
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(a) DNN (b) 1D convolutional network

Figure 3.4: Training and validation plots. Both networks converge quickly and
fluctuate a little, the fact that the validation score fluctuates significantly more is
reasonable since the model is only trained on the training data and the validation
data tests how general the model is. Note that the network was saved at the lowest
validation loss for both.
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4
Results

The results are divided into three parts. First the predicted results of the simulated
data, then how well the neural networks could filter the data, and lastly the value
of the CGLMP inequality.

4.1 Predicted results of simulated data
Based on the simulated data the inequality was calculated for only H→ WW and for
random parts of the background with different proportions of Higgs and background.
This shows that most of the background has a significantly lower value than the H
→ WW decay. The errorbars are the standard deviation scaled as it will be with
425 (the predicted number from section 3.1) events. The blue stripe is the predicted
value by Barr and Fabbrichi et al. [8, 9].

Figure 4.1: Bell value for different precisions. Events were picked randomly. The
error bars are based on 425 events.

23



4. Results

4.2 Performance of MVA

The DNN and 1D convolutional neural networks had a binary accuracy of 87% and
precision of 90 and 91% each, by combining the two it rose to 87 and 92%. When
the point where an event was classified as H→WW was changed to fit in with the
number of predicted events the precision rose to 100% and the accuracy fell to 82%.
The number of events passed were around 13000 for the DNN in both cases, for the
1D convolutional network decreased from 8000 to 800 and for the combination it
decreased from 3500 to 425. A visualization of this can be seen in fig. 4.2.

(a) With rounding at 0.5 (b) With rounding at 0.9

Figure 4.2: Accuracy, precision, and the predicted number of events for both
models separately as well as combined for two different points of rounding. Note
that the precision is close to 100% when the rounding is adjusted so that the models
predict the correct number of events.

4.3 Bell value

Using the models described above to select the events predicted to be H → WW
to calculate the CGLMP inequality we get the values 10.66 ± 0.12, 3.29 ± 0.2 and
5.34 ± 0.28 if we round at 0.5 and 10.66 ± 0.12, 4.81 ± 0.52 and 5.03 ± 0.75 if we
round at 0.9 for the DNN, 1D convolutional and the both combined. As shown in
figure fig. 2.3 can values between -20 and 30 be achieved and values over 2 break the
classical limit where 2.9 means maximum entanglement for events from a three-level
system as discussed in section 2.1.6.
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(a) With rounding at 0.5 (b) With rounding at 0.9

Figure 4.3: The value for the CGLMP inequality calculated from eq. (2.7) with
the error bar being calculated with eq. (2.8) and then scaled to be an error of the
mean by eq. (2.9) for each model predicted events as well as the events predicted of
both models combined.
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5
Conclusion

Finally, I discuss the interpretation of these results and the probable causes of it. I
also present some of the possible improvements and discuss how this could be done
in future projects.

5.1 Discussion

By looking at the results in section 4.2 it seems like the 1D convolutional network
alone can filter out the right amount of events that have almost only Higgs for the
training data. The DNN seems to be less efficient with this since it does not give
a spectrum of probabilities but labels to the data which means that for this type
of network is the simulated and real detector data not any different. If they were
just slightly different this should result in some uncertainty of the classifier where it
gives a spectrum of probabilities of an event being either signal or background just
as we see the 1D convolutional do. The combination of the two of them gives an
even higher precision than the 1D convolutional alone even if the difference is slim
and could be achieved by increasing the rounding point further.

When the CGLMP inequality is calculated in section 4.3 it seems like it is higher
than the expected 2.8 which means maximum entanglement. It is 4.3σ over the
classical limit 2 but also 3σ over the expected value. This might be because the
neural networks do not perfectly select the Higgs events as it does on the training
data and the background in all other variables looks similar but is not Higgs and
just happens to give a high CGLMP value. Since many of the events do not come
from the three-level system that characterizes the H→WW decay can these take
values in a wide range between -20 and 30 which do not have to mean anything in
terms of entanglement.

The assumption that the CM frame and the lab frame are the same or close to the
same is also something that could be causing a distortion of the value. If there is a
significant difference the angles would be more open and the CGLMP value would
decrease as seen in fig. 2.3 and thereby come closer to the expected value. This
might be the reason for the discrepancy between the simulation results I obtained
and what has been previously seen.
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5.2 Selection bias
Since the Higgs signal in the training data has angles that give the CGLMP inequal-
ity a value clearly over two, the MVA classifiers trained on this data will probably
select data that has similar attributes such as angles. Therefore, this method will
probably return values of the CGLMP inequality that has similar values to the train-
ing data. This means that if the simulated data is breaking the CGLMP inequality
the MVA classifier will probably label the data that also breaks the CGLMP in-
equality since that is what it is trained on. It would therefore be good to exclude
the angles from the data for the selection to leave the MVA more unbiased from that
part of the data. It may also be reasonable to investigate how the results may change
if the dimensions were reduced further. This will sacrifice some of the information
but leave a simpler problem by using fewer dimensions.

5.3 Possible improvements
This thesis has used relatively simple methods as MVA classifiers. This seems to have
worked to some extent but more advanced methods might be needed to reach the
desired results. Some suggestions of these is to use t-Distributed Stochastic Neighbor
Embedding (t-SNE) instead of PCA which is a more robust way of decreasing the
dimension of the data [31]. One of the main differences between PCA and t-SNE is
that t-SNE preserves small differences while PCA preserves large differences between
pairs of data points.

It would also be possible to do feature testing by setting one feature to random
values at a time to see how much the results changed and thereby determine the
less important features to the classification task and then ignore them to decrease
the dimensionality of the data [32].

A more advanced method for a MVA classifier that has worked well in Higgs classi-
fication earlier is boosted trees. This builds on decision trees and gradient boosting
which has been proven successful for a few applications where Higgs classification
was one [33].

5.4 Outlook
Already looking at the first part of the result we see that the data from the collider
that is in the dataset just is not enough to get a result with much more than
1σ significance, to get to a 5σ level of significance around five times more data is
needed. Some of this might already exist outside of the open dataset and more of it
is currently produced at the LHC in run 3.

From this thesis report, it is apparent to me that the 49 variables that were used
might not be enough to classify H−→WW∗ which means that more information
from the detector is needed to solve this task. This might be because of how the
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open dataset is structured and the simplifications that have been made to make it
easier to use. It might also be because the detector just is not good enough in run
2 where the data was taken.
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