

Practical performance of incremental
topological sorting and cycle detection
algorithms

Ragnar Lárus Sigurðsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Master’s thesis 2016

Practical performance of incremental topological
sorting and cycle detection algorithms

Ragnar Lárus Sigurðsson

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2016

Practical performance of incremental topological
sorting and cycle detection algorithms
Ragnar Lárus Sigurðsson

© Ragnar Lárus Sigurðsson, 2016.

Supervisor: Atze van der Ploeg, Department of Computer Science and Engineering
Examiner: Patrik Jansson, Department of Computer Science and Engineering

Master’s Thesis 2016
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover:

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Practical performance of incremental topological sorting
and cycle detection algorithms
Ragnar Lárus Sigurðsson
Department of Computer Science
Chalmers University of Technology

Abstract
Algorithms become more advanced and asymptotic time bounds get lower but there
is very little data on the actual performance of new algorithms. The aim of this
thesis is to do empirical testing of the most recent incremental topological sorting
and cycle detection algorithms in order to compare them and to provide an accessible
guide to where each algorithm performs best.
The algorithms are implemented as the articles describe them and compared on even
grounds by measuring their performance by adding edges to graphs.
For sparse graphs the HKMST-Sparse [7] algorithm performed best and HKMST-
Dense [7] for very dense graphs. The Pearce & Kelly [8] algorithm is a strong
contender as it is extremely simple and has acceptable performance across all graph
densities and performs best in the range 35-80% density.

Keywords: Topological sorting, Cycle detection, Algorithms, Data structures.

v

Contents

1 Introduction 1
1.1 Background . 2

2 Setup 5
2.1 Graph Generation . 5
2.2 Testing for Correctness . 5

3 Algorithms 7
3.1 Pearce & Kelly . 10
3.2 HKMST Sparse Algorithm O(m3/2 logn) . 11
3.3 HKMST Sparse Algorithm O(m3/2) . 12
3.4 BFGT Sparse O(min(m1/2, n2/3)m) . 12
3.5 HKMST Dense Algorithm O(n2 logn) . 13
3.6 BFGT Dense O(n2 logn) . 15

4 Supporting Algorithms and Data Structures 17
4.1 Order Maintenance Problem . 17

4.1.1 Implementation . 17
4.1.2 Scapegoat Tree . 18
4.1.3 Choosing α . 18
4.1.4 Binary Labeling . 19

4.2 Finding The Median . 21
4.2.1 Median of Medians . 21
4.2.2 Median of Medians With Random 22
4.2.3 QuickSelect . 22

5 Results 23
5.1 HKMST selection method . 24
5.2 Super sparse graphs . 25
5.3 Sparse graphs . 27
5.4 All-round . 28
5.5 Dense graphs . 29

6 Conclusion 31
6.1 Source code . 31

7 Discussion 33

Bibliography 35

vii

1
Introduction

Topological sorting and cycle detection in graphs are well known problems and the
algorithms to solve them give solutions to an abundance of theoretical and real
world challenges. This thesis focuses on testing algorithms that can perform this
incrementally, that is they work on a per edge addition basis and not on a complete
graph. All the algorithms for cycle detection have the following generic interface:

• void AddVertex(v); Adds a vertex to the graph

• bool AddEdge(v, w); Adds an edge between two vertices

This interface allows vertex and edge additions to a graph. When a new edge is
added to the graph the underlying algorithm will check if the edge addition creates
a cycle. If a cycle is detected AddEdge will report a failure, if no cycle is detected
the edge is added to the graph. We extend this interface to allow for topological
ordering and comparison of two vertices:

• void AddVertex(v); Adds a vertex to the graph

• bool AddEdge(v, w); Adds an edge between two vertices

• bool Compare(v, w); Compares the topological order of two vertices

• List Topology(); Returns a topological ordering/linear extension of the graph

A topological order of a directed acyclic graph is a linear order of its vertices such
that for every directed edge (v, w) from vertex v to vertex w, v comes before w in the
total order. More specifically a DAG uniquely determines a partially ordered set; we
view the vertices in the graph as our set of objects and define the inequality relation
as follows: v ≤ w if there exists a path from v to w or in other words w is reachable
from v. This relation is reflexive, antisymmetric and transitive making it a partial
ordering. A linear extension of the partial order is a total order that is compatible
with the partial order, more specifically, given any two partial orders ≤, ≤∗ on a
set X, ≤∗ is a linear extension of ≤ when ≤∗ is a total order and ∀(v, w) ∈ X, if
v ≤ w then v ≤∗ w. A topological order is then the same as a linear extension, and
an example of this can be seen in Figure 1.1.

1

1. Introduction

0

1 2

3

1 3 0 2

Figure 1.1: A topological order can be seen as aligning the vertices on a straight
line where all edges are from left to right. The possible topological orders for this
graph are [1,3,0,2] (as shown above) and [1,0,3,2].

Incremental cycle detection is a problem that is still being researched, our intention
is to compare the most modern of these algorithms in order to better understand
for which sizes and densities of graphs they are most suited.

1.1 Background

Incremental cycle detection is an advanced problem in Computer Science and many
well known researchers have developed algorithms to solve this problem, such as
Pearce and Kelly [8], and Robert Tarjan [3].
Topological sorting and cycle detection have many practical applications where or-
dering is important and cycles are not allowed. A few well known uses are: pointer
analysis [9], circuit evaluation [1], deadlock detection systems [2] and functional re-
active programming [10]. Incremental cycle detection is of great use in all of these
examples. For some of these cases it can be difficult to envision the link to topo-
logical sorting and cycle detection. If we take deadlock detection as an example, we
imagine that resources are represented in a resource allocation graph, if the pointers
pointing between the resources create a cycle, there is a possible deadlock. The same
logic transfers into locking mechanisms in database control systems where transac-
tions use table locks to maintain data integrity. Multiple transactions can thus cause
deadlocks when locking tables. As an example, transaction T1 wants to read from
table A and write to table B, transaction T2 wants to read from table B and write
to table A. If T1 has a read lock on table A and T2 has a read lock on table B,
they are stuck in a deadlock. In database concurrency control mechanism a wait-for
graph is used to deal with these situations.

2

1. Introduction

+

A +

B ∗

D 3

Figure 1.2: Expression: A+ (B +D ∗ 3). Topological order: [+, A,+, B, ∗, D, 3]

Incremental topological sorting and cycle detection is also crucial in functional re-
active programming. If we examine the expression in Figure 1.2, we see that the
reverse topological order of the expression tree gives us the evaluation order. In
FRP these expression trees can change during runtime, as the changes are most
likely affecting a small part of the graph we can limit the number of nodes that
have to be re-evaluated. This means there is a lot to gain from performing this task
incrementally.

3

1. Introduction

4

2
Setup

In this chapter we go over the modules needed to test the performance of the algo-
rithms. To be able to compare the running time of the algorithms we need a variety
of randomly generated graphs. In addition to that, we also need to make sure the
algorithms are all correctly implemented, in the sense that they give valid outputs.

2.1 Graph Generation
The graph generation module creates random directed acyclic graphs by randomly
adding edges to a graph. If a newly added edge creates a cycle it is removed.
When generating graphs we take as input the number of nodes n and a value p.
The variable p is the percentage of edges, where p = 1 is a fully connected graph.
In our case we do not allow self looping edges or cycles, this means that with
n = 1000 and p = 0.5 we can expect the generated graph to have approximately
n∗(n−1)

2 ∗ p = 1000∗(1000−1)
2 ∗ 0.5 = 249.750 edges.

2.2 Testing for Correctness
To ensure the algorithms give valid outputs, we check them for correctness. That
is, we check if they detect cycles when cycles are added and we make sure the
topological order they output is a valid order.
As topological orders are not necessarily unique for a given graph, we cannot simply
compare an algorithms output to a correct order. As an example, a graph of 3
vertices where only 2 are connected, can have 3 valid topological orders as shown in
Figure 2.1.

A

BC

Figure 2.1: In a topological order of this graph, C can appear in any position of
the order, since it is unconnected.

5

2. Setup

In order to test the correctness of the topological order of an algorithm, we generate
a reachability matrix using the Floyd-Warshall algorithm. The reachability matrix
tells us if there is a path from v to w. If there is a path between two nodes, then we
know that they should appear in the same order as in the algorithm’s topological
order.

6

3
Algorithms

In this chapter, we describe the different techniques used in the algorithms for
incremental topological sorting and cycle detection. In the next chapter, we quantify
the difference in performance between these techniques and reason about when one
should be preferred over the other.
To introduce our terminology and to illustrate the inner workings of such algorithms,
let us consider these two naive example algorithms: one which only detects cycles
incrementally, and one slightly less naive algorithm that does incremental topological
sort in addition to cycle detection. Our incremental cycle detection algorithms must
support the following operations:

• void AddVertex(v): Creates a new vertex in the graph
• bool AddEdge(v, w): Adds a new edge between v and w in the DAG. If the

new edge would create a cycle, the algorithms reports it and the edge is not
added to the graph

Our first naive example algorithm which only detects cycles, works as follows: each
vertex stores a list of references to vertices it has edges from, along with boolean
variables V isited and Cycle, both initially false. When a new edge (v, w) is added,
the algorithm tries to detect a cycle by finding a path from w to v. This is done
by recursively traversing edges backwards from v, and labeling the vertices visited
using the V isited variable. If a vertex has already been visited, its edges are not
traversed again. We continue the search until either w is found using the Cycle
variable, in which case there is a cycle, or until all edges reachable from v have been
traversed, in which case the graph remains acyclic.
AddEdge (v , w)

n o d e s V i s i t e d = []
w. Cycle = t r u e ;
hasCycle = V i s i t (v , w, r e f n o d e s V i s i t e d) ;

w. Cycle = f a l s e ;
f o r e a c h (node i n n o d e s V i s i t e d)

node . V i s i t e d = f a l s e ;

r e t u r n hasCycle ;

V i s i t (parent , c h i l d , r e f n o d e s V i s i t e d)
parent . V i s i t e d = t r u e ;
n o d e s V i s i t e d . Add(parent) ;
i f (parent . Cycle)

r e t u r n t r u e ; // Stop and r e p o r t c y c l e
f o r e a c h (inEdge i n parent . incoming)

i f (! inEdge . V i s i t e d)
i f (V i s i t (inEdge , parent , r e f n o d e s V i s i t e d)) // parent becomes c h i l d

r e t u r n t r u e ; // c y c l e
r e t u r n f a l s e ;

In this naive depth first algorithm, choosing which edge to traverse next and travers-
ing that edge is called a search step. Due to the simplicity of this algorithm, in

7

3. Algorithms

A

B

C D E

Figure 3.1: When the edge (D,E) is added, both A and B have to be visited to
maintain a higher level than C.

the worst case the entire graph has to be traversed, depth first, in order to conclude
that no cycle exists. More advanced algorithms limit the search space by using ad-
ditional information, such as the current topological ordering. Choosing the next
edge to traverse then becomes more complicated and some implementations utilize
techniques such as priority queues and median finding.

Our second example algorithm also maintains a topological ordering of the graph
in addition to cycle detection. We use a simple numbering scheme to achieve this
by extending the previous algorithm, adding a Level variable, initially 0, to each
vertex. This will ultimately give us a topological ordering of the graph by ordering
the vertices by level in ascending order.
AddEdge (v , w)

n o d e s V i s i t e d = []
w. Cycle = t r u e ;
hasCycle = V i s i t (v , w, r e f n o d e s V i s i t e d) ;

w. Cycle = f a l s e ;
f o r e a c h (node i n n o d e s V i s i t e d)

node . V i s i t e d = f a l s e ;

r e t u r n hasCycle ;

V i s i t (parent , c h i l d , r e f n o d e s V i s i t e d)
parent . V i s i t e d = t r u e ;
n o d e s V i s i t e d . Add(parent) ;
i f (parent . Cycle)

r e t u r n t r u e ; // Stop and r e p o r t c y c l e
i f (parent . Level <= c h i l d . Level)
{

parent . Level = c h i l d . Level + 1 ;
f o r e a c h (inEdge i n parent . incoming)

i f (! inEdge . V i s i t e d)
i f (V i s i t (inEdge , parent , r e f n o d e s V i s i t e d)) // parent becomes c h i l d

r e t u r n t r u e ; // c y c l e
}
r e t u r n f a l s e ;

Extending the algorithm further, recall that the search is traversing backwards. Each
time a vertex is visited, we compare its level to the level of the vertex traversed
before it (we call that a child vertex). As the code sample shows, a vertices successor
always has a lower level than its predecessor. This method of maintaining the
topological order causes two problems: we can theoretically run out of numbers as
the level can only increase. This could be solved by a more advanced numbering
scheme. Secondly and more importantly, it is hard to limit our search space since we
depend on traversing all vertices higher in the topology, which is in fact the worst
case. An example of this behavior is shown in Figure 3.1
Our naive example algorithm has a decent performance on graphs that are very
sparse. The denser the graphs (longer paths) become, the more vertices have to
be traversed. This results in poor performance. The advanced algorithms we want
to measure are generally designed for either sparse or dense graphs, since different

8

3. Algorithms

methods of traversal are better suited for different graph densities. An example of a
different traversal method is traversing the topological order of the graph instead of
the edges. For this reason, each article describes a dense and a sparse algorithm. In
the Table 3.1 we list the asymptotic time complexities of each one, where our naive
example algorithm is called Simple Incremental.

Time per step Time per edge Time per m edges
Static Tarjan O(nm)
Static Kahn O(nm)
Simple Incremental O(1) O(m) O(m2)
HKMST Two-Way O(log n) O(

√
m log n) O(m3/2 log n)

HKMST Soft-Threshold O(1) O(
√
m) O(m3/2)

HKMST Dense - - O(n2 log n)
BFGT Sparse - - O(min(m1/2, n2/3)m)
BFGT Dense - - O(n2 log n)
Pearce & Kelly - - -

Table 3.1: Time complexity of the algorithms where n and m stand for vertices
and edges respectively. Cells are left empty if the articles did not provide complexity
numbers. In the case of Pearce & Kelly, they use a different system to measure the
efficiency of their algorithm which is not comparable.

The time complexities listed in the table are split into three columns: time per
step, time per edge and time per m edges. Time per step is the time complexity
of traversing one step, which can be an edge or a vertex. This is where the ad-
vanced algorithms limit their search by intelligently choosing which edge or vertex
to traverse and which edges or vertices can be skipped for the current step. Time
per edge is how long it takes to add one edge to the graph. For our naive example
algorithm this is O(m) since it can potentially have to traverse every edge in the
graph. Finally time per m edges, is how long it takes to add m edges or an entire
graph. This complexity can thus be compared to the time complexities of static
graph algorithms such as Tarjan or Kahn.
All the algorithms share one common method of pruning the search. If the vertices
of the edge being added are already in order, no search has to be done and the edge
can be added. An example of this can be seen in Figure 3.2.

A B C

Figure 3.2: No search has to be performed to add the edge (A, C) as the vertices
are already in order.

In the following sections we cover each algorithm in more detail, specifically how it
limits the search space and if it uses any supporting algorithms.

9

3. Algorithms

3.1 Pearce & Kelly

In 2006 Pearce & Kelly [8] proposed an algorithm that had worse time bounds than
its counterparts at the time but performed better in practice. Their claim was
backed up by experiments they performed against other algorithms. They claim
that the simplicity of the algorithm along with its use of basic data structures yields
an over all better practical performance. It is interesting to see if simplicity still has
the upper hand.
The algorithm uses a two-way depth first traversal and stores a total topological
ordering in an array of size |V |. This means that each vertex is assigned to a unique
number in the total order from 1 to |V |. We examine Figure 3.3 which shows the
edge (J,A) being added. We refer to the vertices between A and J in the topological
order as the affected region. The algorithm searches forward from A and backwards
from J traversing only edges leading to vertices within the affected region. There is
no need to traverse out of the affected region as the order of those vertices remains
the same and they can not lead to a cycle.

A H C D E J G

Figure 3.3: PK prune the search by only traversing edges leading to vertices
between A and J , G will not be traversed.

During the search the algorithm keep tracks of the vertices traversed by the forward
and backward searches separately in the sets F and B respectively. To restore topo-
logical order, the vertices in B have to be placed in front of the vertices in F while
maintaining the original internal order of the sets. This is done by repositioning
the vertices in F and B. Only vertices that were traversed will have their ordering
altered. As seen in Figure 3.4, vertices C and D remain in the same position in the
total order.

E J C D A H G

Figure 3.4: Topological order has been restored, vertices C and D were not af-
fected.

10

3. Algorithms

3.2 HKMST Sparse Algorithm O(m3/2 log n)
HKMST Sparse [7] improves the previous best bound on sparse graphs (m/n =
O(1)) by a logarithmic factor [1]. This increase in performance is not achieved by
limiting the search space further then its preceding algorithms, but by changing the
underlying data structures for more efficient ones. The algorithm requires a special
data structure for its reordering procedure. This advanced data structure solves a
problem referred to as the order maintenance problem, is covered in detail in section
4.1. The data structure allows us to maintain the topological order of our vertices
by giving us access to the following methods that run in constant amortized time.

• bool Query(x, y): Given references to x and y, returns true if x appears before
y in the total order.

• Item Insert(x, y): Given a reference to x, inserts y right after it in the total
order and returns a reference to the inserted item.

• void Delete(x): Given a reference to x, removes it from the order.

We start by explaining an earlier algorithm the article uses to improve on. This
algorithm uses the same underlying data structures, but utilizes priority queues to
select edges to traverse. We then continue to show how taking advantage of certain
properties of the data structure achieves a lower time complexity.
The algorithm uses a two-way vertex guided search. When the edge (v, w) is added,
the area between v and w in the topological order is the affected region. We can say
that the backward search starts on the right side of the affected region and the for-
ward search starts on the left side. The algorithm traverses edges from compatible
vertices. We say that a pair of vertices is compatible when a forward vertex is left of
a backward vertex. Candidate vertices for a search step are the incoming/outgoing
edges from previously traversed vertices for the backward and forward search re-
spectively. When no compatible pair can be found the searches have crossed and no
more edges need to be traversed. Cycles are detected by the forward search travers-
ing a vertex visited by the backward search, or vice versa. We examine Figure 3.5
and note that w and v are compatible vertices, the forward search will traverse into
A and the backward search into E. In the next search step we traverse A,C and
E,H. Finally we find that C and H are not compatible and stop the search.

w A H E v C B D

Figure 3.5: The forward search traverses w,A and the backward search v, E, in
the next step A and E are compatible vertices and are traversed. The search ends
since H and C are not compatible.

To restore the topological order we find a vertex t which is the leftmost vertex in

11

3. Algorithms

{v ∪ FA}, where FA are forward vertices with untraversed edges. If we use Figure
3.5 as an example then t = min(v, C) = v. As the search traverses edges out of
compatible vertices, FA can contain vertices outside of the affected region as is the
case with C. We then proceed to find F< of forward vertices left of t and B> of
backward vertices right of t. Since t = v, B> is empty and we can proceed to insert
all vertices in F< just after t. Alternatively if t 6= v we insert all vertices in F< just
before t and all vertices in B> before the vertices in F<. We can see the restored
topological order in Figure 3.6.

H E v w A C B D

Figure 3.6: w,A,C were inserted just after v in the topological order.

3.3 HKMST Sparse Algorithm O(m3/2)
The algorithm described in the previous section uses priority queues or min/max
queues to find compatible vertices. This improved algorithm is the same as the
previous one except it uses a different method to find compatible vertices. They call
this method soft-threshold search and with it they eliminate the need for priority
queues reducing the time complexity by log n.
The search maintains 3 sets for each search direction, one with vertices that have
already been traversed and vertices that have been considered and eliminated, we
call these vertices dead. Additionally we keep track of passive vertices that are
candidates for future traversal steps and finally active vertices which are considered
for the current search step. Soft-threshold search makes additional vertices dead in
comparison to the vertex guided search reducing the number of vertices it has to
traverse. A vertex s is selected to be the soft-threshold, initially v. When either
of the active sets becomes empty, we pick a new s from the relevant passive set.
This is done either uniformly at random or with a median selection method which
is covered in Section 4.2. We then proceed to move vertices in the relevant passive
set to the active set if they are ≤ or ≥ compared to s for forward and backward sets
respectively.

3.4 BFGT Sparse O(min(m1/2, n2/3)m)
BFGT is our third sparse algorithm. The benefits of this algorithm over HKMST
Sparse are mostly in its use of simple data structure and that it does not use selec-
tion methods to pick edges to traverse. BFGT is also a two-way search algorithm,
however the searches have different purposes. The algorithm uses two ways to bound
its search. Each vertex has a level, k(v), initially 0. The backward search can only
search within one level and is stopped if it traverses ∆ = min(m1/2, n2/3) edges, an
example of this is seen in Figure 3.7. The forward search only traverses edges whose
level increases, more specifically if we have an edge (x, y) it will only be traversed if
k(x) > k(y), subsequently we increase the level of y to the level of x. This behavior

12

3. Algorithms

A B

∆

C

D

A B

∆

C

D

level 0 level 0 level 1

Figure 3.7: Backward search traverses (D,C) and stops since ∆ = 1. This causes
C to be raised to a level above D. The forward search then has no edges to traverse,
since k(C) > k(D).

is shown in Figure 3.8. This makes the upper bound on all forward searches the
number of vertex level increases.

A B C

D

EF

level 0

level 1

A B C

D

E

F

level 0 level 1

Figure 3.8: There are no backwards edges out of C within level 1, the backward
search does nothing. Since k(E) < k(C), E is moved to the level of C. The forward
search then traverses (E,F) raising the level of F to its own.

For cycle detection the algorithm keeps track of vertices traversed by each search,
keeping their order. The backward search detects cycles by traversing into v, while
the forward search looks for vertices already traversed in the backward search. If no
cycle is detected, the algorithm then assigns new unique identifiers to the vertices
that were traversed.

3.5 HKMST Dense Algorithm O(n2 log n)
HKMST Dense is the first algorithm we look at that is specifically designed for
dense graphs. According to the article, the soft-threshold search used in their sparse
algorithms becomes less efficient as the graph grows denser. For this reason they

13

3. Algorithms

designed an algorithm which traverses the topological order of the graph instead of
its edges. They claim that this approach is faster for sufficiently dense graphs.
The algorithm maintains the graph as an adjacency matrix indicating whether there
is an edge between two vertices, along with an array representing the topological
order of the graph.
The algorithm uses two-way topological traversal.

When a new edge (v, w) is added we perform the search if the vertices are out
of order, or w < v. The algorithm alternates between searching backwards and
forwards. The forward search starts at the topological position of w, we call this
i. The search then increments i until a vertex is found at position i that has an
edge from a vertex in F , initially F = w. This vertex is then added to F and the
algorithm proceeds to search backwards in a similar fashion from j. This is repeated
until the searches meet or i = j.

i = w. Topo l og i c a lPo s i t i on ;
j = v . Topo l og i c a lPo s i t i on ;

F = [] ; F . Push (i) ;
B = [] ; B. Push (j) ;

while (t rue)
i++;
while (i<j & no ver tex in F has an edge to ver tex i)

i++;
i f (i == j)

break ;
F . Push (i) ;
j−−;
while (i < j & no ver tex in B has an edge from vertex j)

j−−;
i f (i == j)

break ;
B. Push (j) ;

After the traversal we move on to the second phase of the algorithm, cycle detection.
Checking for a cycle is done by looking for an edge (u, z) such that u is in F and
z is in B, if no such edge exists, we do not have a cycle. The remaining task is to
reorder the affected area. We know that vertices before w and after v in the order
are not affected by adding this edge and all vertices that need to be reordered are
now contained in either F or B.

14

3. Algorithms

A w C D v L G H

Figure 3.9: Reordering only affects edges [w,C,D, v]. C and D will not be in-
cluded in F or B as they are not connected, however they will be shifted during the
reordering phase.

The re-ordering is done by putting all vertices in F after the vertices in B. Some
vertices might have to be moved to make room for the insertion as shown in Figure
3.9. Vertices C and D will be moved, but were not contained in F or B. This is
trivial and is done by adding them to the back of the relevant list, so that they will
be re-inserted last.

3.6 BFGT Dense O(n2 log n)
As the graphs grow denser, the two-way search method used in BFGT Sparse be-
comes less efficient. The algorithm uses a similar level strategy as its sparse counter-
part but utilizes sophisticated methods to decide what edge to traverse. Each vertex
stores an incoming edge (u, x) in a priority queue using the level of u as the key.
This is done so that each traversal is more likely to increase the level of a vertex.
Additionally the algorithm counts certain span traversals in the graph and uses this
information to increase vertex levels more aggressively. The article proves that this
maintains correctness of the algorithm. As the algorithm only searches forward,
cycles are detected when the algorithm traverses into v. Additionally, the algorithm
does not require a reordering phase as the traversal updates the topological order.

15

3. Algorithms

16

4
Supporting Algorithms and Data

Structures

In this chapter we describe the detailed inner workings of the supported algorithms
mentioned in the previous chapter. These supporting algorithms are either in the
form of data structures or used to assist with pruning the search tree.

4.1 Order Maintenance Problem
The HKMST Sparse algorithm requires a data structure that can perform insert,
delete and compare the order of two items in constant amortized time. This data
structure developed for the Order Maintenance Problem achieves those bounds.
These are the requirements of the problem listed explicitly:

• Query(x, y): Given references to x and y, returns true if x appears before y in
the total order.

• Insert(x, y): Given a reference to x, inserts y right after it in the total order
and returns a reference to the inserted item.

• Delete(x): Given a reference to x, removes it from the order.

Why is this difficult? It is easy to see that an array will not work efficiently, since
every time an element is inserted into the middle of the list, all the items right of it
have to be shifted. Another possibility would be to use a linked list to implement
this. This would solve the problem of shifting elements, however the list would have
to be traversed to answer the question if x > y.

4.1.1 Implementation
P. Dietz and D. Sleator released a paper in 1987 [5] with a solution to this problem.
Our implementation follows their guidelines with a few changes to better fit our
problem. In essence we are assigning comparison labels to objects, while maintaining
a range of unused labels for new inserts between two existing objects. The structure
we implement is simply a binary tree, whose nodes are labeled for comparison. The
labels are distributed in such a way that there is approximately an equal amount
of empty labels between them in order to reduce the need for relabeling on inserts,
and for this we use binary numbers as labels. Each level of the tree splits the binary
range in half, thus the depth of the tree is limited to the number of bits used for

17

4. Supporting Algorithms and Data Structures

the labels, and this is covered in more detail in Section 4.1.4. A way to counteract
this is to use a self balancing binary tree, however most balanced tree structures
use rotation of sub-trees in order to rebalance itself. This does not work well with
the labeling scheme since all the nodes in the rotated subtree would have to be
relabeled. To reduce relabeling we choose to use a Scapegoat tree, which does not
use rotations.

4.1.2 Scapegoat Tree

A Scapegoat tree is a self-balancing binary tree that does not use rotations for
balancing operations. This is crucial for the algorithm to minimize the number of
elements that have to be relabeled after rebalancing the tree. The Scapegoat tree
is not strictly balanced, that is, it does not have half the elements to the left of the
root and half to the right of the root. Instead it holds a more relaxed balancing
criteria consisting of two limitations:

• size(left) ≤ α ∗ size(node) & size(right) ≤ α ∗ size(node)
• height(tree) ≤ log1/αNodeCount+ 1

We say that the tree is α balanced, referring to the variable limiting the imbal-
ance that can occur between the left and right children of each node and the over-
all tree height. With these properties the Scapegoat tree is not guaranteed to be
α -weight-balanced at all times but is always α -height-balanced. This is because
during inserts we always make sure the tree is α -height-balanced by triggering a re-
build if the invariant is broken. However, a preceding node can become unbalanced.
When the tree needs to rebalance to maintain its height, we traverse up the tree
looking for a scapegoat, or a node which is not balanced. The tree rooted at the
scapegoat is then rebuilt completely, making it perfectly balanced. This can be done
in O(n) time, since the nodes are already in sorted order. We traverse the subtree
and recursively use the median node as the root of a new subtree.

4.1.3 Choosing α

A low alpha value makes the tree balance more strictly. When α = 0, 5, the tree
balances like a regular binary tree. The way we are using the data structure, we
never search the tree. The only operations we perform on the tree are insert and
delete. A higher α value slows down uniformly distributed inserts [6], however we
will mostly be doing sequential inserts and deletes. Figure 4.1 shows how a higher
α value gives better results with sequential inserts. This means that we want to
pick a high α value without exceeding depth equal to the number of bits used for
the binary labeling. The number of bits used depends on the size of the graph the
algorithm will run on. Choosing the α value following these guidelines will give us
the best performance as it reduces the number of times the tree will be rebalanced.

18

4. Supporting Algorithms and Data Structures

Figure 4.1: A more balanced tree (low alpha) causes sequential inserts to be more
expensive.

α 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016

0,5 13 16 19 23 26 29 33 36 39 43 46 49 53
0,55 15 19 23 26 30 34 38 42 46 50 53 57 61
0,6 18 22 27 31 36 40 45 49 54 58 63
0,65 21 26 32 37 42 48 53 58 64
0,7 25 32 38 45 51 58
0,75 32 40 48 56
0,8 41 51 61
0,85 56

Table 4.1: Maximal depth of the tree in relation to α and number of items

4.1.4 Binary Labeling

To answer the question if x appears before y in the total order, we use a strategy
that consists of giving each node in the tree a binary label. The root element is
positioned in the middle of the total order, thus we give it the label int.max/2 + 1
or 1000..0 (where the number of bits depends on the integer type used). From there
it is simple to build labels for new nodes with two operations we call PathLeft and
PathRight. Both operations find the least significant bit that is already set to 1 in
the given label. PathLeft shifts the bit to the right and PathRight copies the bit to
the right. This creates a new label that is smaller or bigger respectively and is in
the middle of the range of labels we have to choose from.

19

4. Supporting Algorithms and Data Structures

A

1000

B

0100

C

1100

D

pathLeft(1100) = 1010

Figure 4.2: A new label is generated for an inserted node from its parent label
using bit operators.

These labels are created with minimal work by utilizing bitwise operations. We take
advantage of a property of Two’s Complement to find the least significant bit that is
set to 1. In Two’s Complement the most significant bit is the sign bit and negative
numbers count backwards from 1...111.

Decimal Two’s Complement
2 0010
1 0001
0 0000
−1 1111
−2 1110

Table 4.2: Example of Two’s Complement binary representation of a 4-bit number.

Since zero is represented with the positive numbers, positive and negative numbers
are off by one bit. This allows us to use the AND operator on a positive and a
negative number to isolate the bit we need. The bit can be either shifted or copied
to the right to create a smaller or bigger label respectively.

// l e a s t s i g n i f i c a n t b i t moved r i g h t
pr i va t e long pathLeft (long l a b e l)
{

long l a s tB i t = (l a b e l AND − l a b e l) ;
return (l a b e l XOR l a s tB i t) | (l a s tB i t >> 1) ;

}

The number of bits puts a constraint on the maximum depth we can allow the
Scapegoat tree to reach. This is not a problem since we can use the α value in the
scapegoat tree to control how many elements have to be inserted before reaching
the maximum depth.

20

4. Supporting Algorithms and Data Structures

4.2 Finding The Median
HKMST-Sparse uses median finding in order to minimize its worst case. A linear
time algorithm is required to not increase the time complexity of the algorithm. In
1973 [4] it was realized that this could be done in linear time. Up until then it was
assumed that the set had to be ordered to find the absolute median, or the i-th
largest element. There are a few algorithms that accomplish this task with similar
methods, such as the Median of Medians (Median of Fives) algorithm which does
this in linear time. Another popular solution is QuickSelect, which is used in the
well known QuickSort algorithm. QuickSelect is a randomized algorithm resulting
in a worse time complexity if compared to Median of Medians. However it has been
shown to give better performance in practice.

Greater than

Smaller than

La
rg
er

el
em

en
ts

w
ith

in
gr
ou

ps

Larger medians

Figure 4.3: Each bucket contains a median shown as a gray node, buckets are
sorted by medians.

4.2.1 Median of Medians
The median of medians algorithm is relatively simple in its design. We have a list
of items and want to find the item at a certain rank or position. We split the
list of items into buckets containing 5 elements each; these buckets are then sorted

21

4. Supporting Algorithms and Data Structures

internally to find the median of each bucket. As we see in Figure 4.3, the buckets
are then sorted by the medians. Now we can compare the rank or position of the
median of medians with the rank we are looking for. If the item we are looking for is
smaller than the current median of medians, we repeat the process on the relevant
items, "Smaller than" box in Figure 4.3. If the item is larger we perform the same
operation on the "Greater than" box. Finally, if the item we are looking for is the
median of medians, we have now found its rank in the list.
It should be noted that Figure 4.3 only shows 5 buckets, in practice there are n/5
buckets for the first iteration. Without diving into the detailed analysis of the
algorithm, the main requirement is that we reduce the search space in each iteration.
We examine that the median of medians is larger than half of the two top rows, or
2n/10, additionally it is also larger than half of the medians or 1n/10. This shows
that each iteration reduces the search space to 3n/10.

4.2.2 Median of Medians With Random
The biggest drawback of using Median of Medians is the increase of constant factors
it introduces. This is the reason most practical implementation use a random pivot
strategy. As an experiment and proof of concept we made a hybrid version of the
algorithm which picks a pivot from the group of medians, or the middle row in Figure
4.3. As expected, this performed slightly better than the original implementation
as seen in the results in Section 5 .

4.2.3 QuickSelect
QuickSelect is a randomized algorithm widely used for this type of problems in
practice. In essence, it selects an item at random and pivots the list around it,
repeating this process on the relevant side of the pivoted list until the i-th largest
item is found. As expected, this method proved to be quite a lot quicker in practice.
However its worse case, is quadratic, this can occur when the random pivot only
eliminates one element at a time.

22

5
Results

The results show that the choice of algorithm is very dependent on the density of
the graph. In most real world scenarios imaginable, graphs are most likely super
sparse, in the 0 − 2% density range. As the results below highlight, BFGT-Sparse
and HKMST-Sparse seem to be the fastest algorithms for this particular range. The
graphs below are of two types: the first type shows the time it takes to add the edges
in the density range between the data points; the second one shows the percentage
of edges added within a specific amount of time per edge. The latter can be helpful
to see which algorithms are more suited to specific time limits per edge addition.
It should be noted that in the following graphs HKMSTV1 is the basic version of
HKMST-Sparse, using priority queues instead of soft-threshold search.

23

5. Results

5.1 HKMST selection method
One of the methods used by HKMST-Sparse to reduce its worst case is a median se-
lection algorithm to select compatible edges for traversal. According to our findings,
selecting this edge at random gives the best results, as seen in Figure 5.1. However,
the difference is relatively small, which adds value to the median selection method.

Figure 5.1: HKMST-Sparse selection methods on super sparse graphs. The Ran-
dom method (yellow triangles) is the fastest for super sparse graphs

24

5. Results

5.2 Super sparse graphs

BFGT-Sparse and HKMST-Sparse seem to be the fastest algorithms for super-sparse
graphs. However HKMST-Sparse seems to pull ahead as the graphs become larger.
BFGT-Sparse is still a good choice as its implementation is a lot simpler than that
of HKMST-Sparse. It comes as a surprise that HKMSTV1 seems to perform better
in this range than HKMST-Sparse as the latter is supposed to be an improvement
of the former. This shows that, as with many other algorithms, lower theoretical
time complexity does not always produce better results in practice.

Figure 5.2: Performance on graphs of density varying from 0-2%.

25

5. Results

Figure 5.3: Performance on graphs of density varying from 0-2%.

We see how the simplicity of Simple Incremental makes it extremely fast for the
majority of edges or around 98%, however the remaining 2% are very slow resulting
in terrible performance. The other algorithms are very even, as expected from the
previous graph.

26

5. Results

5.3 Sparse graphs
The trends seen in the super sparse graphs continue in the sparse graphs. We see
that HKMSTV1 increases its gap as the density grows. Additionally, we see that
the Pearce and Kelly algorithm was not a contender for the super-sparse graphs but
it starts performing better in relation to the other algorithms as the graphs grow
denser.

Figure 5.4: Performance on graphs of density varying from 0-23%.

Figure 5.5: Performance on graphs of density varying from 0-23%.

We see that the Pearce and Kelly algorithm falls in line with the other sparse

27

5. Results

algorithms, this shows that it doesn’t have a higher number of bad cases but an
overall slower performance on sparse graphs. This is particularly interesting as its
performance gets better on medium density graphs.

5.4 All-round

Figure 5.6: Performance on graphs of density varying from 0-99%.

The best performing algorithm on medium density graphs is the Pearce and Kelly
algorithm. HKMSTV1 is also a good all-round algorithm, as it is not much slower
than Pearce and Kelly’s on medium density graphs but performs quite a lot better
on the sparse graphs.

28

5. Results

5.5 Dense graphs

The Pearce and Kelly algorithm proves to be quite fast on all densities of graphs,
however HKMST-Dense proves to be faster as the graphs become both bigger and
extremely dense. We see that once the number of nodes is increased to 2000,
HKMST-Dense becomes faster around 83% density as opposed to 90% for 1000
nodes. It should be noted that the results of BFGT Dense are not included as we
could not get the algorithm to perform within expected limits. It performed about
20 times slower than the other algorithms, but by a constant factor. It is uncertain
whether it is a fault in the implementation or an error in the article.

Figure 5.7: Performance on graphs of density varying from 75-99%.

29

5. Results

Figure 5.8: Performance on graphs of density varying from 75-99%.

We see that for HKMST-Dense no edge takes more than 4 ticks to add. The Pearce
and Kelly algorithm begins to struggle when the graphs are almost complete, but
remains the quickest, except for HKMST-Dense.

30

6
Conclusion

Very little data exists on the practical performance of new algorithms, therefore it
is important to perform tests of this kind. In my opinion the Pearce & Kelly [8]
algorithm stands out for its overall good performance over a wide variety of graph
densities and exceptional simplicity. As Pearce & Kelly stated in their article, the
algorithm does not have the best asymptotic time bound as they designed it for prac-
tical performance. This claim proves to be quite accurate, according to the results.
HKMST-Sparse is the fastest algorithm for super sparse graphs in the range 0−2%,
BFGT-Sparse is a strong contender and in my opinion much simpler to implement
as it does not require a sophisticated data structure and supporting algorithms. For
average to high density graphs, PK is the fastest algorithm. However, when graphs
become extremely dense or around 80-85%, HKMST-Dense takes the lead. We hope
the this thesis can serve as a guide to selecting the right algorithm for the job.

Density Algorithm
Super sparse HKMST-Sparse
Sparse HKMST-Sparse
Dense HKMST-Dense
Allround Pearce & Kelly

Table 6.1: Choice of algorithm by density

6.1 Source code
The algorithms were all implemented and tested in C# 6.0. The source code is avail-
able at the url below and can be used to repeat the experiments.

Source code:
http://github.com/ragnarls08/EmpiricalTester

31

6. Conclusion

32

7
Discussion

Due to time constraints on the project, some aspects could not be explored, mainly
parallelism and distributed processing. For the most part, the algorithms we cov-
ered are not designed for distributed processing. In the case of HKMST Dense, the
re-ordering phase can be run in parallel as the backward and forward sets are com-
pletely independent. This could give a small performance increase if the algorithm
is running on sufficiently large graphs to cover the overhead cost of parallelism.
As the rise in processing speed has started leveling out in recent years with multi-core
processing and distributed systems becoming the way forward, this is an interesting
factor for future research in the field.

33

7. Discussion

34

Bibliography

[1] Alpern, B., Hoover, R., Rosen, B. K., Sweeney, P. F., and Zadeck,
F. K. Incremental evaluation of computational circuits. In Proceedings of the
First Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia,
PA, USA, 1990), SODA ’90, Society for Industrial and Applied Mathematics,
pp. 32–42.

[2] Belik, F. An efficient deadlock avoidance technique. IEEE Transactions on
Computers 39, 7 (1990), 882–888.

[3] Bender, M. A., Fineman, J. T., Gilbert, S., and Tarjan, R. E. A
new approach to incremental cycle detection and related problems. ACM Trans.
Algorithms 12, 2 (Dec. 2015), 14:1–14:22.

[4] Blum, M., Floyd, R. W., Pratt, V., Rivest, R. L., and Tarjan,
R. E. Time bounds for selection. Journal of Computer and System Sciences
7, 4 (1973), 448–461.

[5] Dietz, P., and Sleator, D. Two algorithms for maintaining order in a
list. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing (New York, NY, USA, 1987), STOC ’87, ACM, pp. 365–372.

[6] Galperin, I., and Rivest, R. L. Scapegoat trees. In Proceedings of the
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia,
PA, USA, 1993), SODA ’93, Society for Industrial and Applied Mathematics,
pp. 165–174.

[7] Haeupler, B., Kavitha, T., Mathew, R., Sen, S., and Tarjan, R. E.
Incremental cycle detection, topological ordering, and strong component main-
tenance. ACM Trans. Algorithms 8, 1 (Jan. 2012), 3:1–3:33.

[8] Pearce, D. J., and Kelly, P. H. J. A dynamic topological sort algorithm
for directed acyclic graphs. J. Exp. Algorithmics 11 (Feb. 2007).

[9] Pearce, D. J., Kelly, P. H. J., and Hankin, C. Online cycle detection
and difference propagation for pointer analysis. IEEE, pp. 3–12.

[10] Ploeg, A. v. d., and Claessen, K. Practical principled frp: Forget the
past, change the future, frpnow! SIGPLAN Not. 50, 9 (Aug. 2015), 302–314.

35

	Introduction
	Background

	Setup
	Graph Generation
	Testing for Correctness

	Algorithms
	Pearce & Kelly
	HKMST Sparse Algorithm O(m3/2 logn)
	HKMST Sparse Algorithm O(m3/2)
	BFGT Sparse O(min(m1/2, n2/3)m)
	HKMST Dense Algorithm O(n2 logn)
	BFGT Dense O(n2 logn)

	Supporting Algorithms and Data Structures
	Order Maintenance Problem
	Implementation
	Scapegoat Tree
	Choosing
	Binary Labeling

	Finding The Median
	Median of Medians
	Median of Medians With Random
	QuickSelect

	Results
	HKMST selection method
	Super sparse graphs
	Sparse graphs
	All-round
	Dense graphs

	Conclusion
	Source code

	Discussion
	Bibliography

