

Graphics processing on HPC virtual
applications
Graphics performance of Windows applications
running on Unix systems
Master of Science Thesis
Compurer Systems and Networks

Roi Costas Fiel

Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden, September 2014

The Author grants to Chalmers University of Technology and University of
Gothenburg the non-exclusive right to publish the Work electronically and in a
non-commercial purpose make it accessible on the Internet. The Author warrants that
he/she is the author to the Work, and warrants that the Work does not contain text,
pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
If the Author has signed a copyright agreement with a third party regarding the Work,
the Author warrants hereby that he/she has obtained any necessary permission from
this third party to let Chalmers University of Technology and University of
Gothenburg store the Work electronically and make it accessible on the Internet.

Graphics processing on HPC virtual applications
Graphics performance of Windows applications running on Unix systems

Roi Costas Fiel

Examiner: Marina Papatriantafilou

Department of Computer Science and Engineering
Chalmers University of Technology
SE4412 96 Göteborg
Sweden
Telephone + 46 (0)314772 1000

Abstract

Simulation, graphic design and other applications with high graphic processing needs
have been taking advantage of high performance computing systems in order to deal
with complex computations and massive volumes of data. These systems are usually
built on top of a single operating system and rely on virtualization in order to run appli-
cations compiled for different ones. However graphics processing on virtual applications
has performance and capability problems that are accentuated when these applications
are run remotely. Therefore combination of virtualization and remote execution may
produce important yield loss in graphics processing which is inappropriate for high per-
formance computing. Furthermore this overhead can also produce big delays in screen
updates which cannot be accepted in interactive applications. System designers need
to choose the most appropriate architecture in order to gain the desired behavior and
performance for their applications. Thus, this thesis performs an analysis on graphics
processing performance with different operating systems, virtualization and remote desk-
top technologies that reveals their bottlenecks and limitations when working together.
Moreover it analyses which technologies are more suitable for different scenarios based
in applications needs and architecture constraints.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Short problem statement . 3
1.3 Goal . 3
1.4 Limitations . 4
1.5 Description of remaining sections . 4

2 Background 5
2.1 Virtualization . 5
2.2 GPU Virtualization . 7

2.2.1 GPU virtualization problem . 8
2.2.2 GPU virtualization analysis . 8

2.3 Remote 3D rendering . 10
2.4 State of the art . 14

2.4.1 3D graphics on Virtualization . 14
2.4.2 3D graphics on Remote Desktop Protocols 17

2.5 Previous and related work . 18

3 Method 20
3.1 Problem Analysis . 20
3.2 Technology selection . 21

3.2.1 Virtualization technologies and virtual GPUs 21
3.2.2 Remote display protocols . 22

3.3 Evaluation criteria . 24
3.4 Test methodology . 28
3.5 Benchmarking . 29

4 Case studies 32
4.1 Introduction . 32

4.1.1 Test systems . 32

i

CONTENTS

4.2 Baseline . 33
4.2.1 Linux . 33
4.2.2 Windows . 34
4.2.3 Comparison between Windows and Linux results 35

4.3 WINE . 37
4.4 Hosted hypervisors on Linux . 39
4.5 XEN . 41

4.5.1 Quadro 600 tests . 41
4.5.2 Quadro 4000 tests . 43

4.6 Kernel based Virtual Machine . 45
4.6.1 Quadro 600 tests . 46
4.6.2 Quadro 4000 tests . 46

4.7 Virtual machine deployment tool . 47
4.8 VMware ESXi . 49

4.8.1 Software graphics GPU and API remoting GPU 49
4.8.2 PCI pass-through and virtual Dedicated Graphics Acceleration . . 50

5 Conclusion 53
5.1 Future work . 56

Appendices 57

A VM deployment tool pseudo-code 58
A.1 run vm . 58
A.2 start vm . 58
A.3 destroy vm . 63

B Test Results 65
B.1 Linux . 65
B.2 Windows . 66
B.3 WINE . 67
B.4 Virtual machine monitors . 68
B.5 XEN . 69
B.6 KVM . 70
B.7 VMware ESX . 71

Bibliography 77

ii

1
Introduction

1.1 Motivation

Over the past decade, organizations and companies have abruptly increased their com-
putation requirements either to process massive volumes of data generated by their
applications or to resolve complex calculations and simulations. This phenomena, also
known as the “Big Data” problem, requires powerful and expensive equipment in order
to process all data in reasonable time. To overcome this issue, High Performance Com-
puting (HPC) providers offer on-demand supercomputing power which saves huge costs
of capital and equipment maintenance to their customers.

HPC systems are composed of hundreds or thousands of computation nodes usu-
ally built on top of a single operating system (OS) in order to save maintenance costs.
However there are multiple applications that are only available (or vendor supported)
for a single operating system which may be different than the one deployed in the HPC
cluster. A simple solution to support an application from a different OS is to install
and maintain also the new required OS. However it is not desirable at all to maintain
a new operating system alongside the existing infrastructure. Besides the extra main-
tenance costs (extra equipment, services, licences, specialist workers ...) and the desire
of maintaining an uniform cluster (security, available resources, maintainability ...), the
new OS may lack important features or be unable to take advantage of the main OS
resources. Moreover the number of non supported applications may be minimum till
some exceptions.

Within this context, open source Linux-based operating systems have become popu-
lar to host HPC systems due to its zero prize, large ecosystem, good hardware support,
good performance and reliability. Moreover Linux provides support for parallel file sys-
tems and computing infrastructures that are common in HPC but may not be supported

1

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

by other operating systems like Windows, Solaris or other Unix like OSes. On the other
hand, Windows is the most commonly used operating system for desktop environments
and there are some applications that need to take advantage of HPC that only work in
this operating system. For simplicity sake, from now on Linux is taken as reference of
host OS for HPC systems whereas Windows applications are the ones which need to be
introduced in the HPC ecosystem. However the same reasoning is valid for other OS
combinations.

Windows applications cannot run directly on Linux. These OSes provide different
system libraries, APIs, system calls etc. which are not compatible between each other.
However these applications may work in Linux adding an abstraction layer between
Linux OS and Windows applications that mimics Windows runtime environment. This
layer is provided by a technology called virtualization that emulates in software the be-
havior of different computer resources like CPUs or system libraries. This technology
is available for multiple OSes, in fact Linux applications may also run in Windows in
the same fashion. The main problem with virtualization is that it may introduce an
important overhead and lack some features of the original OS.

Traditionally HPC services consisted in the scheduling of jobs that ran in the back-
ground in the underlying HPC infrastructure. Nonetheless graphical applications also
started to take advantage of this service allowing users to interact with their applica-
tions remotely. Nowadays typical HPC users are scientists and engineers in fields such as
bio-sciences, energy exploration and mechanical design [41] who use CAD/CAM/CAE
(Computer Aided Design/Manufacturing/Engineering) applications as part of their daily
work-flow. These applications are meant to create three dimensional, i.e. 3D, models
and simulations. 3D models are composed of simpler ones in a recursive manner till be
reduced to basic 3D objects or surfaces like triangles or squares. In the end a 3D model
is composed of millions of simple 3D objects that during simulations suffer 3D operations
(operations performed over a 3D object in a 3D space) like translations (move an object
from one position to another) or rotations (rotate an object a certain angle within a
reference edge). In other to process all these objects in real time, there exists a special
hardware device called graphics processing unit (GPU), composed of millions of parallel
CPU cores able to perform 3D operations. This way a GPU can process millions of 3D
operations simultaneously. CAD applications rely on heavily 3D computing in order to
perform simulations over 3D models and they only achieve acceptable performance with
hardware-accelerated 3D graphics i.e. if 3D operations are processed in hardware by a
3D graphics accelerator or GPU.

CAD applications like AutoCAD, Solid Edge, Femap and Hexagon among others
only have a Windows version. Thus in order to run these applications in a HPC system
built on Linux, the following challenges must be addressed: (a) running Windows appli-
cations on Linux, (b) provide hardware accelerated 3D graphics to virtual applications
and (c) interact with these applications remotely in real time. Virtualization, 3D virtual-

2

1.2. SHORT PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

ization aware drivers and remote desktop protocols respectively resolve these problems.
However the integration of such heterogeneous technologies in the same system may
severally degrade its performance and bring important drawbacks. Here virtualization
plays a major role because all other technologies in some way rely on it and it is also
the one that brings more constraints to the system. On the other hand support of 3D
graphics on virtual applications is still experimental and may crash or cause damage in
the underlying system in some cases. Moreover, remote desktop protocols heavily rely
on the OS to provide hardware accelerated 3D graphics and may produce big overheads,
accentuated due to virtualization, in applications that produce multiple screen updates
per second. Thus, organizations that want to take advantage of HPC in such environ-
ment have been constrained by their inability to run remote 3D accelerated applications
on virtual environments.

1.2 Short problem statement

Running virtual applications with 3D graphics and remotely is a complex task that in-
volves the integration of multiple heterogeneous technologies. From the application that
issues a 3D call to the final user that sees the rendered 3D frame, the control flow goes
through the virtualization layer, one or more 3D drivers, the operating system and the
remote visualization application, which may also require extra technologies to process
3D calls. Each one of these technologies adds new constraints and limitations mak-
ing the resulting system difficult to study and analyze. Moreover HPC systems require
maximum performance due to small overheads have a multiplier effect with enormous
amounts of data or operations. Further, users require instant feedback from interactive
applications. However both remote desktop applications [9] and virtualization [17] are
known to produce performance overheads due to the extra computations required to
overcome their tasks. Further, this overhead is accentuated with 3D graphics because
extra layers are needed in order to mediate accesses to the GPU between virtual appli-
cations and remote desktop applications.

This thesis deals with the problems of running remote virtual applications with 3D
graphics and performs an in-depth analysis of the technologies required for providing
this service. Further the problems of running 3D graphics both in virtualization and
in remote desktop applications are investigated in order to find their bottlenecks and
limitations.

1.3 Goal

This thesis investigates how to build a system able to run virtual applications with 3D
graphics remotely. In other to accomplish this task, it is necessary to study what tech-
nologies can be used, what are their constraints and limitations and how they can be
combined with each other. Other questions which should be answered are how much

3

1.4. LIMITATIONS CHAPTER 1. INTRODUCTION

overhead is introduced by each technology and what are the consequences of maintain-
ing such setup.

To support the analysis of such system, an experimental study on Windows appli-
cations running on Unix-like OSes (Linux and VMware) is carried out. This study is
composed of several case studies which test different technology combinations which are
analysed and compared with each other. It is focused on HPC applications so the main
evaluation criteria in case studies is graphics performance, i.e. the speed graphics oper-
ations are processed, although other factors are also taken into account. This work also
aims to be a guideline for system engineers and developers to deploy and research respec-
tively on providing an efficient and high quality infrastructure in this area. Moreover
this thesis explores the boundaries and limitations of the actual technology and tries to
address new research lines in this field.

1.4 Limitations

There are some constraints which bound this work. The most relevant ones are due to
hardware resources and time limits. Time constraints the number of technologies that
can be studied and the precision of the conclusions obtained from them. Thus this the-
sis presents more detailed analysis on the most representative and evolved technologies
whereas others may be briefly mentioned and left for future research. On the other hand,
hardware constraints what architectures, devices and technology can be included in case
studies.

This thesis tests several technologies that are in an unstable state or beta version so
failures or software bugs are expected to appear. Upon such events occur, this thesis
makes an effort to work around these problems within time limits. Thus for known issues,
existing or experimental workarounds are applied whereas unknown ones are reported
to their developers in order to fix them.

Technologies that require licensing and do not provide a free or trial period are not
included in case studies.

1.5 Description of remaining sections

Section 2 introduces and analyses technologies needed to setup a system able to run
remote virtual applications with 3D graphics and studies their state of the art. Section
3 selects relevant implementations of technologies introduced on section 2, explains how
they can be evaluated and introduces how case studies are performed. Section 4 presents
case studies and discusses their results. Finally section 5 summarizes this thesis and
presents final conclusions.

4

2
Background

This section investigates how a system able to run virtual applications remotely with 3D
graphics can be built. It starts analysing how applications compiled for one operating
system can be run on another operating system and take advantage of the GPU in order
to process 3D graphics. After that, section 2.3 studies ways of performing 3D calls when
running applications remotely. For simplicity these sections refer to Linux as host OS
and Windows as target application’s OS however this analysis can be applied to other
OSes. Finally the state of the art of virtualization and remote desktop applications is
reviewed in section 2.4 where all introduced technologies are bound together. At the end
of the chapter, related work in this matter is presented and discussed.

2.1 Virtualization

Regular applications cannot usually run in different operating systems if they weren’t
specifically designed for it. This is due to operating systems have specific application
programming interfaces (APIs) and different system calls, systems libraries, protocols,
file paths etc. Moreover libraries with the same API may have divergent behaviors even
among versions of the same OS. Using cross-platform programming environments like
Java and avoiding any OS specific feature allows applications to be compiled for different
OSes. However sometimes this may not be possible or too expensive. In these cases,
virtualization is needed in order to run a compiled application in a different OS. However
this technology may introduce some limitations and make the application lack features
of the original one. This section introduces some virtualization basics needed to follow
this thesis.

In order to run a Windows application on Linux, an abstraction layer (the virtual-
ization layer) which mimics Windows execution environment is introduced between the
application and Linux OS. There are different kinds of virtualization depending on where

5

2.1. VIRTUALIZATION CHAPTER 2. BACKGROUND

this virtualization layer is introduced and what computer resources are emulated. For
example, Java Virtual Machine operates at the application level creating an application
run-time environment independent from the underlying OS while a hardware virtual
machine emulates hardware resources that can be controlled by another operating sys-
tem. This thesis focuses on hardware virtualization and application level virtualization
because they are the only virtualization types that support running unmodified appli-
cations among different OSes. Figure 2.1 shows hardware and application virtualization
architecture.

Figure 2.1: Hardware and application virtualization architecture

With hardware virtualization, hardware resources like a CPU, memory or a GPU
are emulated and an unmodified instance of an operating system or guest OS runs on
top of them. Guest accesses to real hardware resources are mediated by a special appli-
cation called virtual machine monitor (VVM) or hypervisor. If the hypervisor runs on
directly on hardware or in the host OS kernel it is called bare metal hypervisor however
if it runs as a regular application on the host OS then it is known as hosted hypervisor.
Bare metal hypervisors provide their own drivers and control CPU and memory directly
thus providing good performance and advanced features to virtual machines. Further
usually no application runs directly on the host thus providing better security and high
availability. On the other side, hosted hypervisors are better integrated with other host
applications as they run as one. However they rely on the host to access and control
hardware limiting features and performance for virtual machines.

There are two main classes of hardware virtualization: paravirtualization and hard-
ware assisted virtualization. In paravirtualization, the guest OS is adapted for virtual-
ization and no special hardware is needed. Here, the guest communicates with the host
through an special API avoiding the need of wrapping accesses to real resources. Due
to guest OS needs to be modified, not all OSes can take advantage of paravirtualiza-
tion, for example there is no paravirtual version of Windows whereas Linux has several
ones. One of the most extended paravirtual hypervisors is XEN [5] and it is currently

6

2.2. GPU VIRTUALIZATION CHAPTER 2. BACKGROUND

supported for Linux and FreeBSD as host OSes. On the other hand, hardware assisted
virtualization relies in hardware extensions to perform virtualization and guest OSes do
not have to be modified. This technology relies in hardware to intercept guest’s privi-
leged calls and send them to the hypervisor that mediates access to resources, generating
some overhead of system calls. Some of this overhead is reduced with paravirtual drivers
(virtualization aware drivers) installed in the guest but, in general, paravirtual OSes
provide slightly better performance because they are customized for virtualization. The
most well known open source solutions are KVM (Kernel based Virtual Machine) [38]
which is only available for Linux and XEN which can also take advantage of hardware
extensions. Other hardware virtualization solutions are HyperV that works on Windows
or VMware ESX which is itself an OS.

Hardware virtualization is known to produce some performance overhead [17] [40] [42]
compared with a system running directly on hardware so performance of guest OS should
be upper limited by the performance of the native implementation i.e the OS runs di-
rectly on hardware. However under certain circumstances, an application may perform
better in a virtual environment than in a native one. This phenomena appears when for
example guest drivers are much slower than host drivers (for example, Windows drivers
are way slower than Linux drivers). In this case, the guest OS instead of using its slow
driver, relies on a fast virtual device to communicate with the host OS which is the one
that access the real device through its fast driver.

Application virtualization relies on emulation and on alternative implementations of
system libraries to execute applications from different OSes. This approach requires less
resources because it does not need to run another complete operating system. However it
is more complex to implement because while hardware virtualization emulates resources
with easier and well known APIs like a CPU or a memory controller, application level
virtualization has to emulate the behavior and implement the libraries of a complete OS.
Thus if it is not perfectly done applications may fail or produce unexpected behaviors.
Further, extra layers added to wrap or emulate system libraries may produce important
performance leaks. The most well known Windows application virtualization solution is
WINE [7], and it works on Linux, FreeBSD, MAC and Solaris.

2.2 GPU Virtualization

Section 2.1 introduced hardware virtualization and application level virtualization and
some of their advantages and disadvantages. It also mentioned that, in general, it is
easier to emulate simple hardware resources than system libraries however regarding 3D
graphics this is not true. While application virtualization only needs to redirect (or
pass-through) OpenGL calls (standard API for 3D graphics) or emulate DirectX calls
(specific Windows API for 3D graphics), hardware virtualization needs to provide to the
guest OS a virtual GPU, which is way more complex. This section explains the problems
of virtualizing the GPU and analyses different technologies that deal with them.

7

2.2. GPU VIRTUALIZATION CHAPTER 2. BACKGROUND

2.2.1 GPU virtualization problem

I/O virtualization has always been a big challenge for virtual environments because guest
I/O drivers have to be modified or need special hardware support in order to isolate ac-
cesses among virtual machines. Therefore these drivers may have to run with several
limitations (for example remove privileged functions or work with limited bandwidth)
and could create security problems [36]. Moreover the display system (the GPU) com-
pared to other I/O subsystems is really hard to multiplex in a way that is both efficient
and safe. This is evidenced by the fact that all major operating systems provide ‘direct’
avenues of programming the graphics card i.e. direct rendering, largely without operat-
ing system involvement, but at the danger of being able to crash the graphics adapter
or lock up the entire machine [15]. Furthermore GPUs present a challenging mixture
of broad complexity, high performance, rapid change and limited documentation for a
number of reasons: (a) GPU hardware interface is proprietary and non public, (b) there
is no standard GPU interface like IDE or SCSI in disk drives and (c) GPU drivers usu-
ally come in a closed-source device driver and it is unusable for more than one operating
system.

2.2.2 GPU virtualization analysis

Regarding performance, while the CPU overhead generated by the virtualization layer
was minimized until close to native performance [1], I/O virtualization is still a hot
topic between researchers. Specifically, GPU virtualization is quite complex and brings
several performance and feature set constraints although, virtual GPUs may also provide
some virtualization related features. Both limitations and added features depend mainly
on whether the GPU driver runs on the host OS i.e. front end virtualization or on the
guest OS i.e. back end virtualization. Figure 2.2 shows the different types of virtual
GPUs where the GPU driver is colored in red.

In front end virtualization, access to the physical GPU is entirely mediated through
GPU vendor provided APIs and drivers on the host while the guest only interacts with
software. This solution’s performance relies highly in guest’s driver implementation and
there are different techniques on a continuum between two extremes : API remoting and
device emulation. API remoting GPUs blindly forward 3D API calls from the guest to
the external graphics stack via remote procedure call. However with device emulation a
virtual GPU is emulated in software (software GPU) and the emulation processes graph-
ics operations in response to actions by the guest device drivers. It is clear that emulated
GPUs will not perform well because 3D calls are processed by the CPU instead of the
GPU. Thus it is possible that some applications do not work at all with these virtual
GPUs. On the other hand, API Remoting may achieve good performance because 3D
operations are processed by the GPU. However the extra processing made by the vir-
tualization layer and the exchange of 3D data and commands between both operating
systems (guest and host) increase the CPU load and create delays in the application.

8

2.2. GPU VIRTUALIZATION CHAPTER 2. BACKGROUND

Figure 2.2: virtual GPU types

Thus the overhead produced by this technology may be bigger than the one created by
application virtualization but still way better than software GPUs. There are several
implementations of both approaches like VMware SVGA software GPU which works
mainly in VMware products or VMGL (API remoting GPU) that works in XEN and
KVM. Both of them are introduced in section 2.4.

On the other hand, the GPU driver can run in the guest OS instead of the host
OS. This way, since the VM interacts directly with hardware resources, its execution
state is bound to the specific GPU vendor (possibly the exact GPU model in use).
This technique is called PCI pass-through and consists in the permanent association of
a virtual machine with full exclusive access to a physical PCI (Peripheral Component
Interconnect) device i.e. a device like a GPU attached to the virtual machine. Thus PCI
pass-through performance is really high and close to native OS one (performance in the
guest OS running directly on hardware) due to the native driver is the one that controls
the device. Thus graphic applications performance may be limited by other factors like
CPU, memory or disk I/O which introduce certain virtualization overhead rather than
PCI pass-through itself. However this technology has a big inconvenience and it is that
only one virtual machine can take advantage of a GPU at a time. Another factor should
be taken into account is that the GPU driver may have a different versions for guest and
host OS. Thus GPU performance, features or behavior may differ between guest and
host OS. Therefore it is possible that some applications work better in the virtual OS
than in the host one. This way it is expected that this technique performs close to the
native guest OS and differs in some way with the host OS.

There is one extension of PCI pass-through called mediated pass-through. GPUs
support multiple application independent contexts and mediated pass-through proposes
dedicating just a context, or set of contexts, to a virtual machine rather than an entire
GPU. In this approach, high-bandwidth operations (command buffer submission, ver-

9

2.3. REMOTE 3D RENDERING CHAPTER 2. BACKGROUND

tex and texture direct memory access (DMA)) are performed using memory resources
mapped directly to the physical GPU, thus these operations perform at a similar speed
as simple pass-through. On the other hand, low-bandwidth operations (resource allo-
cation, legacy features) are implemented using software virtualization with almost no
performance penalty. This allows that multiple virtual machines can work directly with
the same physical GPU, but incurs additional costs: (a) the GPU hardware must imple-
ment multiple isolated contexts in a way that they can be mapped to different virtual
machines efficiently and securely, (b) the host/hypervisor driver must allocate and man-
age GPU resources such as memory and (c) contexts and logical GPUs which appear
in each VM may not have the same hardware interface which would be exposed by an
equivalent physical GPU. This means that mediated pass-through may require changes
into guest device drivers. There are some examples of GPUs that support mediated
pass-through like Nvidia Grid GPU family where different Nvidia drivers run in the
guest and in the host. There are also some Intel integrated cards that can be passed to
multiple XEN VMs.

It is clear that the best solution for performance sake is simple PCI pass-through but
at the cost of dedicating one GPU per virtual machine. Mediated pass-through solves
this problem by sharing a GPU with multiple virtual machines. However its complexity
makes that only some expensive GPUs can support this feature and they may carry
several limitations like low memory limits per virtual machine. On the other hand, API
remoting techniques solve the problem of sharing the GPU between virtual machines
without requiring special hardware but with some performance overhead due to extra
software layers and computations. Finally, pure software GPUs will probably fail to
achieve enough 3D graphics performance for most 3D applications. Besides performance
and multiplexing (the number of users/instances that can take advantage of a GPU)
there are other virtual GPU features that may be important to take into account. Here
an important feature is the OpenGL version supported by the GPU because multiple
applications require specific OpenGL versions to work. This problem appears in front
end virtualization where GPU features are implemented in software whereas with back
end virtualization few features may be lost as the driver that controls the GPU is the
original one or a modified version. Other interesting features which may be important
are the ones added by the virtualization layer. The most important feature regarding
GPU virtualization is the support of virtual machine live migrations (move a VM from
one host to another without shutting the VM down) that is only supported by software
GPUs due to pass-through ones are bound to the physical assigned GPU.

2.3 Remote 3D rendering

HPC systems are hosted in computer clusters so in order to interact with them graph-
ically it is necessary to use remote desktop software which allows an user to control
a computer remotely. Most well known general purpose remote desktop protocols are
remote desktop protocol (RDP) and virtual network computing (VNC). Both have imple-

10

2.3. REMOTE 3D RENDERING CHAPTER 2. BACKGROUND

mentations, also known as remote desktop applications for multiple OSes. However not
all of them provide 3D graphics to applications running through them. This happens
because the only display (or session) that supports 3D graphics is the display directly
connected to the GPU, called local display or local session. Thus virtual displays created
by RDP and VNC cannot issue 3D calls to the GPU. The following paragraphs study
which implementations support 3D graphics and techniques for providing 3D graphics
for the others if possible.

Figure 2.3: 2D remote desktop application

Remote desktop applications rely on the OS windowing system in order to get the
screen image that should be sent to the client. These applications monitor the virtual
display for events (such as window expose events) that might cause the pixels to change.
As such events occur, they read back affected regions of the display, compress them and
send compressed images to all connected clients. This is the approach used by most 2D
remote display packages like Windows RDP implementation and multiple Unix VNC
ones. Due to only the local display can take advantage of 3D graphics, a simple solution
is to monitor this display instead of creating a virtual one. However this is not enough
for providing 3D graphics. The reason is that 3D applications use direct rendering to
send OpenGL commands directly to the 3D hardware bypassing the windowing system.
OpenGL rendered pixels go straight to the frame buffer, the buffer with the display pixel
information, so neither the windowing system nor the remote desktop application knows
when a 3D application has finished rendering a frame. This can be seen in figure 2.3
where a remote desktop client cannot see the rendered car image due to it has been ren-
dered directly into the frame buffer. This problem can be solved following two different
approaches, (a) polling the frame buffer to check for screen updates (screen scraping)
and (b) wrapping 3D APIs and redirecting 3D calls to the main display (API intercep-
tion).

11

2.3. REMOTE 3D RENDERING CHAPTER 2. BACKGROUND

Figure 2.4: Screen scraping

Windows VNC implementation and x11VNC in Linux follow the screen scraping
approach shown in figure 2.4. They asynchronously read back the entire framebuffer
on a periodic basis, compare the current screen snapshot against the last, and send
differences to all connected clients. This configuration has several drawbacks:

• It consumes a lot of CPU polling the framebuffer in order to get constant screen
updates which is required in interactive applications

• It does not get instant updates and it is likely to produce lags in user interaction.
Once a 3D image is rendered, it may take some time for the polling processes to
query the frame buffer. Further in a contention scenario a polling process is likely
to consume its CPU time fast and be constantly enqueued. This produces lags in
user interaction.

• Only one user can interact with a work station at a time

An improvement to this solution that avoids polling constantly the framebuffer is to
monitor the application for certain 3D function calls that indicate that the application
has finished drawing a frame. Then a read back trigger is sent, along with coordinates
of the region to be read back, to the screen scraper. There are several Windows VNC
implementations with a special driver which provides this functionality and consider-
ably improve user experience with more updates per second and less CPU consumption.
However this is also at the expense of some graphic performance due to extra required
layers for wrapping rendering calls. A further improvement for this technique is get-
ting video streaming updates directly from the GPU that notifies the screen scraper.
An example of this is VMware PCoIP (PC over IP) that uses Nvidia proprietary APIs
to retrieve the video signal. The architecture of both improvements is shown in figure 2.5.

12

2.3. REMOTE 3D RENDERING CHAPTER 2. BACKGROUND

Figure 2.5: Screen scraping using a GPU driver

On the other hand, implementations that follow API interception approach intercept
3D calls, redirect them to 3D hardware and compose the final image that is sent to the
client. Besides OpenGL, windowing systems usually provide special APIs for integrat-
ing OpenGL calls with windowing system calls like GLX (OpenGL extension to the X
windows system) , WGL (OpenGL extensions for Windows windowing system) or CGL
(core OpenGL in OS X). Thus 3D wrappers should intercept these APIs too. Using win-
dowing system APIs instead of OpenGL directly is called indirect rendering as 3D calls
go through the windowing system before going to the 3D hardware. API interception
has a similar architecture than the XVNC (3D VNC implementation for Linux) server
in which each user has an independent virtual display but in this case, XVNC supports
also GLX extensions. In this case XVNC wraps GLX calls issued by applications and
re-routes them inside GLX commands to Linux windowing system which then executes
OpenGL commands directly in the graphic card. At the end of every frame, the X
proxy reads back rendered images directly from the 3D hardware and composites them
into the appropriate window. The main problem of this solution besides the overhead
of wrapping all 3D calls is that the XVNC has to handle OpenGL commands and ex-
tensions (probably also GPU vendor specific extensions). Thus it has to be updated
when OpenGL API changes, that in fact usually happens more quickly than other 3D
APIs like GLX. This may be one of the reasons why there is no free version of RDP
or VNC on Windows that use this technology and there is no good support for 3D XVNC.

There is an independent technology called VirtualGL [10] that follows a similar
approach than API interception for providing 3D graphics for remote desktop appli-
cations. VirtualGL consists of a wrapper that intercepts GLX commands that create
OpenGL contexts and ensures that these contexts are allocated in the 3D server. These
OpenGL contexts are rendered in PBuffers (invisible Pixel buffers) instead of windows
so a mapping between PBuffers and windows is needed. However this is more simple
that maintaining a complete OpenGL implementation. Once an OpenGL context is
established, the application is free to issue OpenGL commands directly to the graphic
card. Thus after a frame is rendered (detected after certain calls as glXSwapBuffers()
or glFinish()) the GLX wrapper reads back the rendered pixels and displays them into
the appropriate window using standard image drawing commands. Combining this tech-
nique with a remote desktop application, multiple client sessions can enjoy 3D graphics
simultaneously. However this technology only works with GLX extensions so it only

13

2.4. STATE OF THE ART CHAPTER 2. BACKGROUND

Figure 2.6: 3D graphics with API remoting

works with the X windowing system, present by default in Unix-like OSes. There are
also implementations of the X windowing system for other OSes like Windows but ap-
plications have to be modified to work with X windowing system instead of Windows
native one.

2.4 State of the art

Sections 2.2 and 2.3 have introduced issues encountered when processing 3D graphics in
virtualization and remote desktop protocols respectively as well as available techniques
which deal with those problems. This section takes a look at the state of the art to find
actual technology implementations which use these techniques.

2.4.1 3D graphics on Virtualization

Virtualization and GPU virtualization technologies need to be bound together in order
to compose systems able to provide 3D graphics to virtual applications. Moreover win-
dowing systems are also taken into account because some GPU virtualization techniques
rely on them to function. This limits which operating systems are compatible too be-
cause an OS usually only supports a single windowing system.

There have been several research projects that have worked on providing 3D graphics
for virtual machines. Blink [20] and VMGL [27] use a Chromium-like [24] approach to
redirect OpenGL calls to the GPU in Linux and other UNIX-like guests. Blink imple-
ments an OpenGL wrapper for each VM which communicates via shared memory to a
server running on top of XEN than mediates accesses to the proprietary GPU driver. On
the other hand VMGL similarly achieves 3D graphics but sending OpenGL commands
via loop-back network to a VMGL daemon running in an independent process per VM.
This way mediation and address space conflicts are handled by the GPU driver instead
of VMGL itself. Loop-back communications are slower than shared memory ones due to

14

2.4. STATE OF THE ART CHAPTER 2. BACKGROUND

TCP/IP stack overhead so Blink is expected to perform better. However this architec-
ture design makes VMGL cross-platform (it works in XEN, VMware or KVM) whereas
Blink is only available for XEN. Unfortunately, both projects work only with X11 servers
(server for X windowing system) so Windows OS for example is not supported.

Figure 2.7: Blink (left) vs VMGL (right) approach

While these solutions use API interception to redirect OpenGL calls, Dowty et al.
[14] from VMware propose an emulated virtual GPU (software 3D) named SVGA with
support for basic 3D graphics (3D Windowing System and basic 3D applications). This
virtual GPU is also based in Gallium3D [32] architecture, showed in figure 2.8, and
therefore it works with any virtualization platform with a Gallium3D back-end architec-
ture like the ones supported in Linux (XEN or KVM). The main advantage of SVGA
is that it can achieve basic 3D graphics without hardware support, being useful in the
absence of a graphic card. However its graphic performance is quite low. More recently
in 2012, VMware released virtual Shared Graphic Acceleration (vSGA) [6] vGPU using
API interception for both Direct3D and OpenGL. This virtual GPU is based on a spe-
cial driver developed by Nvidia for VMware hypervisor that mediates accesses between
virtual machines. Thus this implementation requires VMware proprietary software and
Nvidia cards.

On the counterpart, VirtualBox is a free open source virtual machine monitor with
implementations for multiple OSes. It provides 3D graphics both via API interception
and PCI pass-through. In the API interception approach, the remote 3D application may
run both inside the guest OS or in the host OS because guest OS graphics are projected
in the host OS through VirtualBox. In this case 3D graphics are processed using direct
rendering. On the other hand support for PCI pass-through requires running the remote
desktop application in the guest because the host has no control at all of OpenGL calls
issued to the pass-through GPU. However this technology is quite experimental and it is
in an early development state that may only work with basic PCI devices such as USBs
or network cards.

There are other proposals that aim to provide 3D acceleration for KVM virtual ma-
chines. Virgil3D [3], still under development, implements a Gallium3D-like driver to
support OpenGL hardware acceleration and eventually Direct3D on KVM virtual ma-
chines. Also spice project [21] is working in a new WinQXL [13] driver but is still far

15

2.4. STATE OF THE ART CHAPTER 2. BACKGROUND

Figure 2.8: Gallium3D architecture

from getting a working version that supports 3D graphics.

All previous solutions use front-end virtualization however there are also some back-
end virtualization approaches that can provide direct access to the GPU with some
hardware support. VMware, KVM and XEN support GPU pass-through. In KVM there
are two drivers that provide this functionality, the original driver for PCI pass-through
named pci-stub and a more advanced feature called VFIO [43] that takes advantage of
new MMIO (Memory Mapped IO) hardware functions. However this last driver is still
experimental for GPUs and only works with some graphic cards and with new versions of
the Linux kernel (>3.9). Meanwhile in XEN, VGA pass-through has been available since
XEN 4.0 release in 2010 so it is more mature than in KVM but only high end graphic
cards are supported. Furthermore XEN recently has released a experimental technology
called XenGT [19] capable for mediated pass-through with at most 4 virtual machines
accessing a single Intel integrated GPU. XenGT allows all virtual machines native pass-
through to the graphic card trapping and emulating only privileged operations. However
this technology only works with Intel integrated graphic cards that usually provide poor
3D graphics performance (compared to dedicated graphics cards).

A mediated pass-through implementation has been proposed by Nvidia [22] which
introduces the GRID technology. It consists on a hardware virtual GPU where the GPU
itself implements a Memory Management Unit (MMU) which maps guest’s virtual ad-
dresses to physical ones and isolates each host on its own address space. This allows

16

2.4. STATE OF THE ART CHAPTER 2. BACKGROUND

each virtual machine to work as it had an assigned hardware GPU. Further GPU re-
sources mediation is handled completely in hardware by the GPU itself and not by the
hypervisor. Unfortunately this technology is currently only supported for proprietary
solutions like VMware or Windows Hyper-V (Windows hypervisor).

Another approach for running virtual applications is using a program that translates
OS specific calls into another OS ones. Regarding graphic APIs, there are only two main
ones: OpenGL which is standard for almost all OSes and DirectX which is Windows spe-
cific. DirectX library is required to run any Windows application that works with this
API like many games. WINE provides DirectX support translating DirectX to OpenGL.

Finally, there are some software renders like SwiftShader [39] especially designed for
computers with no graphic hardware that with enough CPU power may provide basic
3D performance.

2.4.2 3D graphics on Remote Desktop Protocols

As it was explained in section 2.3, remote desktop protocols also rely on the OS win-
dowing system for providing 3D graphics. There are two main windowing systems which
have implementations from almost all remote desktop protocols which are the X Win-
dowing System available in almost all Unix like OSes and the Desktop Window Manager
used in Windows OS. Many different remote desktop protocols support these windowing
systems so here only the ones most widely used and related to the technologies used in
this project are mentioned.

• X forwarding: this protocol is only available for the X Windowing System and
consists in forwarding X applications windows across the network. One of the
implementations of this protocol is through a SSH (Secure Shell) remote connection
which encapsulates the X forwarding session. This protocol creates a virtual session
and uses API remoting through VirtualGL in order to process 3D graphics.

• VNC (Virtual Network computing): this is a open source and multi-platform re-
mote desktop protocol that uses the Remote Frame Buffer protocol (RFB) to
remotely control another computer. It has many implementations for both win-
dowing systems like turboVNC in X windows, ultraVNC in Windows or tightVNC
which works in both of them. All Windows implementations use screen scraping
technique while Linux has implementations using both techniques like turboVNC
with API remoting (virtualGL) and X11VNC with screen scraping.

• RDP (Remote Desktop Protocol): it is a proprietary protocol developed by Mi-
crosoft, which provides a Windows virtual desktop independent of the local user
session. However there are also open source implementations and servers for both
Windows and Linux. This protocol is more advanced than VNC and provides more
features like file transfers and sound. Windows provides an official RDP version for
Windows desktops however it does not support 3D graphics. There are other free

17

2.5. PREVIOUS AND RELATED WORK CHAPTER 2. BACKGROUND

implementations like XRDP which work with X windows and provide 3D graphics
through VirtualGL.

• NX: This technology optimizes and encapsulates in a SSH session a remote desktop
connection in different operating systems. In Unix it handles remote X windows
connections while in Windows it encapsulates Windows terminal sessions (RDP
protocol). Thus its support for 3D graphics relies on the protocols used underneath.

• Virtualization specific protocols: several virtualization platforms provide a specific
remote desktop protocols like ICA protocol in Citrix-XEN, PCoIP in VMware or
SPICE (Simple Protocol for Independent Computing Environments) in KVM and
XEN. This protocols are meant for connecting to Virtual Desktops (Virtual Ma-
chines with a Desktop OS installed) and have implementations for both Windows
and Linux. However they only work in their respective virtual platforms and do
not work in a non virtual desktop. By now SPICE does not provide yet 3D graphics
however ICA and PCoIP do.

2.5 Previous and related work

This section introduces the most relevant works related to this thesis and also similar
studies on this matter.

Performance overhead of virtualization has been examined for various I/O devices in
different open source virtualization platforms. Jiuxing Liu [30] studies the virtualiza-
tion overhead of network cards whereas Jim Salter [33] focuses on disk I/O performance.
These studies analyse different virtualization I/O approaches and highlight I/O virtu-
alization bottlenecks for their respective devices. This contrasts with this thesis which
focuses on graphic cards besides other technologies like virtualization and remote desktop
protocols. Moreover all these I/O devices have quite different bottlenecks, performance
metrics and problems: a) NICs suffer for IRQ (interruption) affinity and balancing across
CPUs to process packets, b) disks rely on file systems, cache modes and storage formats
to increase reads and writes throughput and c) GPUs suffer from memory bandwidth
and CPU performance to process more 3D operations per second.

Other papers focus on concrete virtualization I/O problems. Specifically A. Gordon
et al. [18] analyze the virtualization overhead of interruption calls in I/O operations
while the bottleneck for pass-through devices created by the I/O memory management
unit (IOMMU) TLB is closely analyzed in [4]. These works cover concrete I/O virtu-
alization problems but do not focus on any concrete I/O device. This thesis does not
study such low level problems of I/O virtualization but relies on them and other factors
to explain GPU performance overheads on virtualization.

Closer to this thesis topic, Ryan Shea et al. [34] perform an experimental study on
GPU pass-through performance for both KVM and XEN virtualization platforms. This

18

2.5. PREVIOUS AND RELATED WORK CHAPTER 2. BACKGROUND

study is focused on GPU pass-through techniques on Linux for cloud gaming, leaving
out the analysis of other important factors in 3D graphics performance like the remote
desktop application required for playing remotely. Further it does not consider other
alternative virtualization types like application virtualization which is an interesting al-
ternative to hardware virtualization because it does not require to install and support
a different operating system. Moreover it uses Linux for both host and guest OS which
is an OS that is quite coupled with both XEN and KVM and may not suffer the same
overheads and problems than other OSes like Windows. On the other hand, this thesis
studies different GPU virtualization techniques besides GPU pass-through like API-
remoting and pure software GPUs. Moreover it covers a wider range of virtualization
platforms (VMware and VirtualBox), virtualization types (application virtualization)
and operating systems (Windows).

Jarschel et al. [26] perform QoE (quality of experience) study of a gaming service
using graphic performance and response time as quality metrics. In contrast to [34], this
work does take into account remote desktop applications in their study. However they
perform a user side analysis, without paying any attention to the underlying gaming
system neither their architecture and involved technologies which are actually the main
topic of this thesis.

GPU virtualization performance and utilization of determined GPU APIs is also dis-
cussed in several papers. More specifically, over the last years there have been multiple
works focused on supporting GPGPU APIs (usually CUDA) [35] [44] on virtual ma-
chines. These papers cover specific GPGPU operations whereas this thesis is focused
on OpenGL API (API for 3D graphics). GPGPU applications are quite different from
OpenGL ones due to GPGPU applications are not interactive so they do not have re-
sponse time requirements neither the problems of remote graphic rendering. Therefore
some of these papers propose redirecting CUDA calls to be processed in other hosts,
which would be unfeasible for OpenGL. Thus their solutions and conclusions greatly
differ with this thesis although both address similar problems.

On the other hand, WINE performance is studied in [28], which compares native
Windows and WINE performance. This work uses games to benchmark WINE and na-
tive Windows 7 (on a local machine) but it does not compare its results with any other
virtualization solution neither performs further studies on its performance overheads and
limitations.

19

3
Method

3.1 Problem Analysis

The problem introduced in section 1.2 is complex and should be divided into subprob-
lems to be properly analysed. Section 2 introduced different technologies that address
distinct aspects of this problem and allow to divide it in several parts. Thus the fol-
lowing sub-problems can be identified alongside the technologies that cover them: (a)
running applications of one OS in another one (virtualization), (b) providing 3D graph-
ics to virtual applications (virtual GPU) and (c) providing remote interaction with the
application (remote desktop protocol).

Virtualization and virtual GPUs are quite related because each virtualization plat-
form implements its own set of virtual GPUs if any, which usually are incompatible with
others. However section 2.2 showed that in virtualization there are huge differences be-
tween different types of virtual GPUs which condition important aspects of the GPU like
performance or GPU features. These aspects are really important for 3D applications
and condition other architectural decisions like the selected virtualization platform itself.
Further there may be big differences between implementations of the same virtual GPU
between different virtualization platforms. Thus virtual GPUs are addressed separately
for each virtualization platform.

On the other hand, remote desktop protocols do not rely directly on the virtual GPU
nor in the virtualization technology for processing 3D operations but on the OS where
applications run. This is due to remote desktop protocols rely on the OS display system
to retrieve the image that is sent to the client. Thus there is a different implementation
of almost all remote desktop protocols for each OS family. In fact, the OS where the
remote desktop application runs may be another entity to be considered. However its
analysis is done alongside the remote desktop application because this one is already

20

3.2. TECHNOLOGY SELECTION CHAPTER 3. METHOD

integrated with the OS display system which is the main component that affects 3D
graphics besides the GPU driver. Further almost all remote desktop protocols have more
than one implementation for the same OS. Regarding this variability, this thesis avoids
comparisons between implementations of the same protocol in the same OS due to it is
out of the scope of this thesis. Moreover there are already studies that compare them [8].

3.2 Technology selection

For each sub-problem introduced in section 3.1 there are several technology implemen-
tations or solutions that cover it and a representative set of them should be selected for
further analysis. Here it is important to include differentiated technology implementa-
tions which provide a diverse set of features to choose from. Thus not only enterprise
wise solutions but also research projects which may bring new features and contributions
are considered.

Motivation section (section 1.1) encourages the case of running Windows applications
on Unix-like systems for HPC. This case is quite representative for this thesis problem
because more than 80% of desktop market share are Windows desktops whereas more
than 95% of mainframe market share are Unix-like OSes [12]. Other interesting con-
figuration is the opposite, running Unix applications on Windows. However this is not
a common combination in HPC due to higher Windows Server licensing costs. Testing
both scenarios would be too time consuming so this thesis focuses on virtualizing Win-
dows applications on Unix-like OSes and leaves other possible scenarios for future work.

3.2.1 Virtualization technologies and virtual GPUs

Virtualization technologies hardly rely in the host OS because they tightly need to con-
trol system resources and in some cases, they even consist of their own OS (e.g. VMware
ESX). This way host OSes are determined by the virtualization technologies that sup-
port them although it is also important to narrow the number of host OSes included in
case studies. This reduces the variability of case studies and eases the comparison and
study of the technologies running on them. Further it requires less time to study and
deploy case studies. On the other hand each virtualization solution should also provide
at least one 3D capable virtual GPU. Section 2.2 introduced different types of virtual
GPUs which are interesting to cover in order to provide a wider range of alternatives for
virtual applications and system architects.

Section 2.4 introduced multiple virtualization solutions and this thesis have consid-
ered the following: XEN, KVM, VMware ESX, WINE and two virtual machine moni-
tors, VMware Workstation and VirtualBox. XEN and KVM are both open source, wide
used and both provide at least one technology (PCI pass-through) for 3D support with

21

3.2. TECHNOLOGY SELECTION CHAPTER 3. METHOD

Windows virtual machines. Both solutions offer also software virtual GPUs for virtual
machines like VMGL but they do not work on Windows because this OS does not sup-
port the X windowing system required by VMGL and other likewise virtual GPUs. It is
interesting to differentiate between XEN and KVM because they have different virtual
GPUs for PCI pass-through and also use different kernels to control the CPU and handle
PCI interrupts. XEN is supported for different Unix-like OSes like BSD or Linux and it
also has an enterprise distribution called ‘XENSever’. On the other hand KVM is only
available in Linux and it has also an enterprise version promoted by Red Hat. This way
Linux is at this point a good candidate for host OS because it supports both XEN and
KVM.

Although VMware ESX is a proprietary solution, it was by the time of writing the
most used technology for server virtualization. Further, it supports three different al-
ternative technologies for 3D graphics on virtual machines and it provides a trial licence
which is enough for performing a case study. Besides these hardware virtualization al-
ternatives, WINE is an interesting choice for running Windows applications on Unix like
systems without the need of executing a complete instance of the Windows OS. However
the main problem of WINE is that some applications may not work correctly because
its alternative implementation of Windows dlls (Windows system libraries) may fail to
behave exactly as expected. Moreover the behavior of Unix OSes is different than the
Windows one so there could be unexpected behaviors in the application which may lead
to application failures. Taking this into account and that bare metal hypervisors (XEN,
KVM and VMware ESX) imply a big infrastructure change (architecture, hardware,
complexity etc), VirtualBox and VMware workstation become interesting solutions to
avoid these problems. On the one hand they do not require an OS or infrastructure
change as they can be installed in for example a Linux desktop and on the other they
do not have WINE problem for supporting Windows applications. However these two
solutions may introduce big performance leaks and feature loss than the other alterna-
tives because they run as an application on top of other OS. Due to Linux is the only
OS than supports all proposed virtualization technologies but VMware that is itseft its
own OS, it is selected as host OS.

3.2.2 Remote display protocols

There are big differences between Windows and Linux windowing systems which drive
the implementation of the different remote desktop protocols and they support for 3D
graphics. Linux X windowing system is implemented using a client server architecture
that makes it really easy to adapt for remote control. Further it supports an API re-
moting technique, VirtualGL which provides 3D graphics to all protocols which create
a virtual session. Thus many protocols support 3D graphics in Linux like SSH with X
forwarding, VNC, RDP or NX although it also supports a screen scraping implementa-
tion with VNC. All this protocols are quite interesting because they have quite different
implementations and features.

22

3.2. TECHNOLOGY SELECTION CHAPTER 3. METHOD

X forwarding consists in forwarding desktop application windows (the rendered ap-
plication display) across the network where the client sends display commands to the
server and this one replies with screen updates. SSH just encapsulates the X forwarding
session in a ssh one providing a direct connection with the X server with almost no fur-
ther computation besides encryption. This protocol used alongside VirtualGL differs 2D
rendering to the ssh client alleviating the server for some computation which may lead
to some performance gain. Specifically it uses a VirtualGL feature called VGL transport
where the server responses with special VirtualGL commands to the VGL client which
renders the final image. Another difference between X forwarding and any other remote
desktop protocol is that with X forwarding a single application is forwarded whereas
remote desktops control and render an entire desktop session so it is a little bit more
lightweight.

VNC is a quite simple protocol that just reads back either the local display frame
buffer (screen scraping) or the virtual display one and streams it to the client. Although
different VNC implementations may provide extra features like encryption, different
compression algorithms ... VNC is the only protocol which provides 3D graphics for
both Windows and Linux so it is interesting to compare the overhead generated by it in
both OSes. There are two different types of VNC implementations on Linux, one grabs
the local display like in Windows and the other creates a virtual desktop. There are
many VNC implementations for Linux which create a virtual desktop however there is
one called turboVNC, developed by the same people than VirtualGL, which is optimized
for working with 3D graphics. Thus it seems to be the most appropriate choice for this
use case. On the other side the only VNC screen scraping implementation in X11VNC.

Other protocols that create a virtual desktop are RDP and NX. RDP is quite more
complex than VNC because it deals with windowing commands to detect changes, trans-
mits sound, adapts the compression algorithm depending on the available bandwidth etc.
This benefits user experience in low bandwidth/ high latency scenarios but it requires
extra CPU processing which may degrade application performance with some extra la-
tency in Windowing Operations and in situations with high CPU contention. There is
a free implementation for Linux called XRDP. The same reasoning applies to the NX
protocol which has an open source implementation called FreeNX.

In contrast to Linux, Windows display model has fewer places to insert hooks to
monitor display updates. Furthermore it has a not clearly defined model for multi-
user operation that complicates implementing multi-user sessions. Thus there are not
many protocols which provide 3D graphics. Further there is no free API remoting li-
brary for Windows so virtual desktop cannot issue 3D commands to the GPU. Windows
uses RDP protocol by default for providing remote access to its desktops however RDP
creates a virtual session with no 3D support. Moreover other protocols like Windows
NX version are based in RDP, thus they bear the same problem. On the other hand

23

3.3. EVALUATION CRITERIA CHAPTER 3. METHOD

VNC implementations do provide 3D graphics through screen scraping thus these solu-
tions are not ’multi-user’. VNC for Windows has many different implementations like
tightVNC, ultraVNC, realVNC ... It is not the purpose of these thesis to compare be-
tween different VNC implementations so only tightVNC is considered for case studies.
There is no VNC version specially designed for 3D applications so tightVNC was cho-
sen because it is source of almost all other VNC applications and all its code is open
source. TightVNC provides a video driver to improve response times so both versions
are included for tests. There are other third party commercial protocols which provides
Windows desktops with 3D graphics with multi-user support like ThinAnywhere 3D,
Desktop Cloud Virtualization (DCV) [2] or HP Remote Graphics Software [23]. How-
ever these protocols are no free to use or are only designed for specific software platforms.

In all case studies Windows OS is vitalized so virtualization specific protocols can
also be included. VMware provides PCoIP (PC over IP) which is an interesting imple-
mentation because it relies on the graphic card proprietary API to retrieve the video
signal. This may greatly improve performance of applications avoiding polling the frame
buffer and adding a further video driver. However this protocol works only with VMware
virtualization. On the other hand KVM provides SPICE protocol but it still does not
support 3D graphics in Windows so it is not eligible.

3.3 Evaluation criteria

This section introduces the evaluation criteria that governs case studies. The problem
solved with proposed technologies is to provide graphic processing to virtual applica-
tions. Thus we aim to evaluate graphic processing quality of each case study but also
the consequences of deploying all involved technologies. By graphic processing quality
we mean a set of characteristics directly provided by the graphic card like graphic per-
formance or graphic card features. On the other hand, it is also important to consider in
any technology deployment the consequences associated with their setup. Although this
study comprehends many heterogeneous technologies which have different characteristics
and provide wide variability of features, only attributes that differ from a system with no
virtualization are considered. This is done to avoid comparisons between virtualization
technologies, which are already well known, and to emphasise the side effects of using
virtualization as a solution for this concrete problem. Figure 3.1 shows the evaluation
criteria used in this thesis which is introduced in the following paragraphs.

The main reason for using virtualization is due to the maintenance cost of running
a new operating system directly in hardware so it is important to evaluate the conse-
quences of maintaining all technologies included in each different setup. Besides the
maintenance of the added technologies like the virtualization technology itself it is also
important to consider the virtual resources (virtual hardware and emulated libraries),
extra applications (virtualGL or extra remote desktop applications), if an architecture

24

3.3. EVALUATION CRITERIA CHAPTER 3. METHOD

Figure 3.1: Evaluation criteria

change is required, integration with the underlying infrastructure etc.

The main evaluation criteria on case studies is graphic performance which means
speed of operation of the graphic card. Graphic performance may greatly differ between
a virtual and a not virtual system and it is affected by all technologies included in this
thesis. Further, 3D demanding applications require a minimum performance to func-
tion so it is important to bound the expected performance loss for each of the proposed
technologies regarding a non virtual system. Graphic performance can be measured in
operations per second although it is usually measured in frames per second (FPS). Op-
erations per second is mainly used in micro-benchmarks which use a single operation
for stressing the GPU. For example LuxMark benchmark measures the number of rays
per second generated by a ray tracing technique. On the other side, when a graphic
application is used for benchmarking, graphic performance is measured in the number of
frames that the graphic card renders per second (FPS). Micro-benchmarks are used to
tests only a concrete component of the system, here the GPU, however their results are
usually not representative for real applications. This is due to applications have different
workloads, are limited also by other resources like CPU or memory and use a wider range
of operations. Further, besides the virtual GPU, other components of the system also
consume resources and produce performance overhead that may be negligible in micro-
benchmarks which only use the GPU but not on applications. Taking into account that
this thesis is motivated by 3D demanding applications like CADs, benchmarks which
use these kind of applications seem to be more suitable for our purposes.

25

3.3. EVALUATION CRITERIA CHAPTER 3. METHOD

Using applications for testing is also interesting for validating that virtualization is
working correctly. Some virtualization technologies like WINE provide an alternative
implementation of Windows libraries and may lack some features of the original library
or behave differently. On the other hand, hardware virtualization technologies may also
fail to run applications due to problems on emulating hardware components or just be-
cause performance is too low. These factors can make an application crash or behave
unexpectedly. It is not possible to test all applications neither to prove that given some
conditions all applications of some kind will run with no problems. However it is possible
to study how likely is that a kind of application works and also study the limitations
of some technologies to see which applications may not work correctly. Here a special
case arises when an application is unable to behave correctly because of performance
limitations. This is likely to happen with software emulated GPUs or poor virtual GPU
implementations. These exceptions are penalised in their evaluation because they are
not suitable for target applications of this thesis but still taken into account because
they could be useful in other less demanding scenarios.

Besides applications work correctly, other important requirement is a good user ex-
perience when interacting with remote applications, i.e. small lags in screen updates.
Zeldovich et al. [31] proposed that response time is the most accurate way to measure
user experience for remote desktops. Thus in order to evaluate user experience, the
response time of an application running remotely in the target system is used. However
analysing response time of applications is not in the scope of this thesis, it is just a mean
to evaluate if a setup is good enough to be used interactively by a user. Thus this work
uses a threshold response time from which a solution is considered not usable. ETSI
[16] specifies that for an instantaneous experience, response time should be less than 100
milliseconds while for an uninterrupted experience it should be less than one second.
Moreover ITU-T [25] (Telecommunication standardization sector of ITU) recommends
that the one-way-delay (response time unit) for video transmissions should be below 150
ms and fixes an upper bound in 400 ms. This metric does not take into account the time
a user takes to process a new computer interaction but it just specifies the maximum
delay for instantaneous user interaction. Thus it is feasible to use it for delimiting sys-
tem’s delay. Combining both metrics and taking into account that this thesis tests are
performed on a LAN environment it is reasonable to set 100 ms as an upper limit for
response time.

Although graphic performance is important for applications which are performance
limited by the GPU, other applications do not require the exclusive use of the GPU and
it can be shared with others. This way although graphics performance of an application
was quite worse in a virtual GPU, two applications running in two different virtual GPUs
(but the same physical GPU) may provide similar performance than two applications
in the non virtual system. However, taking into account that for a single user only an
application is displayed at a time because it is the only one rendered (the GPU only

26

3.3. EVALUATION CRITERIA CHAPTER 3. METHOD

renders visible surfaces to avoid extra computations), it is better in this case to measure
the number of users that can take advantage of a single GPU. This differentiation is im-
portant because an user can run concurrently many applications in any of the proposed
solutions however the number of users that can access the GPU is limited in several
virtual GPUs and also in some remote desktop protocols. In this thesis we refer to this
characteristic as GPU multiplexing and it is categorized in three categories depending
on how many users can take advantage of the same physical GPU at a time: single user,
limited multi-user (limited number of users per device) and unlimited multi-user (user
limitations are not fixed or predefined).

Virtual GPUs may also restrict features of the real GPU to the application. Dowty
et al. [14] introduce this phenomena as fidelity which represents how close in features is
a virtual GPU to the real one. While performance gives quantitative values to compare
between different proposals, fidelity cannot be measured in that way. There are many
different features that may be valuable or not in different scenario. Thus the presence or
not of a feature may be critical for some cases (CUDA for example for GPGPU process-
ing) or not important at all (any 3D graphics application that does not need CUDA).
Furthermore there could be a lot of different features and they may variate between
vendors and GPUs. This way in order to be able to compare between virtual GPUs,
three different categories for describing the fidelity of a virtual GPU are created. These
categories are based in classifications made by virtualization vendors like VMware or
Citrix of their virtual GPUs and their feature set. Native feature set category, implies
that the virtual GPU provides the same features as the native GPU driver. Here there
is a special case for pass-through implementations where the OS and consequently the
GPU driver changes between the host and the guest (Linux and Windows for example)
and their features may change too. In this particular case it is considered that all fea-
tures are present because it is a native driver (guest OS) the one that controls the GPU.
Basic feature set defines a set of features that at least provide hardware 3D accelera-
tion and support OpenGL but lack other features that the native driver supports like
for example cooling or rendering quality control. This class describes a set of virtual
GPUs that support some compute intensive 3D applications but do not require special
GPU features to work. Finally Incomplete feature set includes virtual devices that do
not provide essential features for 3D acceleration like OpenGL support or provide it via
software acceleration. This last feature set will generally fail to run any application with
minimum 3D requirements.

On the other hand, virtualization provides also extra features that the non virtual
system lacks. Focusing only in features related to virtual GPUs, it is important to men-
tion live migration (moving a virtual machine/application to other host without power it
off/close it) and machine/hardware independence. This characteristics should be taken
into account because some technologies bound the application to a specific machine
which may be a big drawback in diverse scenarios.

27

3.4. TEST METHODOLOGY CHAPTER 3. METHOD

3.4 Test methodology

This section explains how all technologies introduced above are analysed and tested. As
it was explained in section 3.3, analysis is focus on graphic performance which is actually
the only evaluation criteria which is not known beforehand besides response time. Fur-
thermore this factor is quite affected by the aggregation of many technologies working
together and also between different technology implementations. Given the three vari-
able components of the architecture introduced before: virtualization platform, virtual
GPUs and remote desktop protocols, it is easy to see that the virtualization platform
is the core of the architecture which conditions all the other components. This way it
defines which host OS is required, what virtual GPUs are available and in which OS the
remote desktop protocol runs (in the host OS too or in a guest OS). Therefore there is a
case study for each selected virtualization solution that includes tests for all supported
virtual GPUs. Regarding remote desktop protocols, there could be many available pro-
tocols (like in Linux) so in order to save time, one protocol is selected to perform tests
with all virtual GPUs. Then the others are tested with one of the virtual GPUs and
compared against the base display protocol.

Further a good analysis should include a reference system to compare with. In this
case, due to target applications are Windows ones, it is reasonable to compare results of
virtual applications with native Windows ones. However technologies that run directly
on top of Linux are limited by the maximum performance of this OS which may be quite
different from Windows one. Thus it is interesting to include both OSes as reference
systems.

Remote desktop protocols allow remote access to applications but at the expense of
some performance overhead. This overhead comes from the actual application that is
interposed between the user and the computer system and also from additional features
provided by the display application like compression or encryption. Thus in order to
identify which overhead comes from virtualization and which comes from remote display
protocols, tests with and without remote protocols are performed. This also allows to
see which virtual GPU is most affected by the display protocol and to select it for further
analysis with the other available display protocols.

Case studies of this thesis follow this work flow:

1. Technology analysis: Initial study of target technologies. Here it is interesting to
check the state of its last release (it is not required to be stable), expected results,
differences with other alternatives, compatibility with the underlying system etc.
At this early state this thesis avoids discarding any interesting technology. However
if expectations are not good and it would involve a big effort to test, a technology
may be discarded.

2. Installation and configuration: This thesis follows general configurations and rec-
ommendations from official guidelines without too much tuning in order to make

28

3.5. BENCHMARKING CHAPTER 3. METHOD

fair tests between all technologies and do not expend too much time in reading
long advance administration and configuration guides. At this point and taking
into account that some of the tested technologies are still unsupported and under
active development, some effort is made in order to report bugs and get a working
solution for the testing system.

3. Profiling and testing in local machine: tests are performed in the local machine,
i.e. without a remote application. This way it is expected to get maximum per-
formance of the virtual system. At this point, the virtual system is compared to
the non virtual one and its bottlenecks are analysed for all virtual GPUs. Further
comparisons with other virtualization platforms are included.

4. Remote desktop protocol tests: remote desktop protocols are evaluated. First one
desktop protocol is evaluated with all virtual GPUs. Then one virtual GPU is
selected for being tested with all the other remote desktop protocols. This virtual
GPU is selected based on the biggest variability between results with and without
a remote desktop protocol. Here it is interesting to test the overhead added by the
remote protocol but also the overhead created by the combination of virtualization
and remote desktop applications. Further differences between desktop protocols are
also interesting because there could be big differences between them, for example
in terms of CPU consumption, which may affect the entire system.

5. Results analysis and conclusions: Each case study concludes with an analysis and
a little summary of the obtained results. Previous results of other case studies are
used for comparison.

3.5 Benchmarking

Benchmarking remote graphic processing applications is a complex procedure due to
the big amount of factors involved in providing this service and, in this case, the huge
differences between the included technologies. Hardware, operating system, hypervisor,
virtual GPUs or remote desktop protocol can play a major role in graphic performance.
Furthermore benchmarking tools should be carefully selected in order to provide a stable
performance for each setup avoiding as much as possible any transient phenomenon
that may occur. Further they also should mimic real user workloads for them to be
representative.

SPEC viewperf 11 benchmark

The selected benchmark suite is SPEC viewperf 11 [11], from now on viewperf, a graph-
ics performance evaluation software that does not use games but scientific, 3D design
and CAD applications to stress the GPU. This benchmark is interesting because it uses
exactly the kind of applications targeted by this thesis. Benchmarks based on games may
be equally good however games have quite different workloads and requirements than sci-
entific applications and they also address different ranges of graphic cards. On the other

29

3.5. BENCHMARKING CHAPTER 3. METHOD

side, micro-benchmarks are useful to compare graphic processing power between GPUs
however they are not representative for applications. This is due to they are based on
the repetition of basic operations which do not represent applications workloads and are
usually not affected by any other factors like CPU or memory. Thus using target applica-
tions for evaluating performance is the most representative solution. However for more
detailed conclusions, Furmark, OpenCL memory bandwidth benchmark and 3dmark03
benchmarks are also used. The reason for using these additional benchmarks is for fur-
ther analysis and for testing technologies that are not able to run the main benchmark
but could also provide reasonable graphic performance for less demanding applications.
Furmark is a GPU micro-benchmark which uses fur rendering algorithms to measure
the performance of the graphics card. It is used for virtual GPUs that are unable to
run SPEC viewperf benchmark due to memory or GPU feature set incompatibilities.
On the other side, OpenCL memory bandwidth benchmark is used to detect memory
bandwidth bottlenecks between GPU and CPU. 3dmark03 is a game based benchmark
with low GPU requirements, only 128MB of video memory and DirectX9, an old version
of DirectX library. It is used as complement of Furmark because it is an application
benchmark and there was no other benchmark found which used scientific applications
with such low requirements.

SPEC viewperf is composed of 8 viewsets of different scientific and 3D design applica-
tions. Each viewset is composed of several independent tests which run for a predefined
period (between 12 and 30 seconds) and record the number of frames per second pro-
cessed during that time. Once all tests of a viewset have finished, the weighted geometric
mean of all tests is performed which is the final score of this viewset and the application
it represents. There is a predefined weight for each viewperf test. SPEC viewperf has a
version for Windows and another for Linux which is really interesting because it allows
to use both Linux and Windows as base systems. The screen resolution for the tests is
set to 1600x1200 pixels, resolution of the available monitor. It is important that resolu-
tion fits the monitor because if the resolution is bigger, all non displayed areas are not
rendered so the final result is unfair. Here a short explanation of how tests are for each
application of SPEC viewperf is given:

• catia-03: uses traces of graphics workloads generated by the CATIA V5 and CATIA
V6 applications. This viewset is composed of eight tests of 12 seconds each that
mainly simulate car and submarine 3D models, ranging in size from 6.3 to 25
million vertices which use a variety of common CATIA graphics modes.

• ensight-04: represents engineering and scientific visualization workloads created
from traces of CEI’s EnSight 8.2 application. Five models ranging from 36 to
45 million vertices are included in this viewset using display list paths through
OpenGL. Each test last 30 seconds.

• lightwave-01: created from traces of graphics workloads generated by the SPECapc
for Lightwave 9.6 benchmark. Models for this viewset range in size from 2.5 to

30

3.5. BENCHMARKING CHAPTER 3. METHOD

6 million vertices, with heavy use of vertex buffer objects (VBOs) mixed with
immediate mode. It is composed of 5 tests of 30 seconds each.

• maya-03: 11 tests of 12 seconds that go from detailed 3D models of objects or
characters till complete scenarios that are replicated multiple times and rotated or
translated. The models used in tests range in size from 6 to 66 million vertices,
and are tested with and without vertex and fragment shaders.

• proe-05: composed of 6 simulations of cars and engines that are rotated and trans-
lated. Models are created from traces of the graphics workload generated by the
Pro/ENGINEER WildfireTM 5.0 application from PTC. Model sizes range from 7
to 13 million vertices and run for 12 seconds each.

• sw-02: 5 test with a GTX car and 5 with an Suzuki engine that perform different 3D
operations and render them with different detail using both solid surfaces and 3D
models. This viewset is created from traces of the graphics workload generated by
the Solidworks 2004 application. Each test last 12 seconds and renders a maximum
of 3.13 million vertices.

• tcvis-02: based on traces of the Siemens Teamcenter Visualization Mockup appli-
cation (also known as VisMockup) used for visual simulation. Models range from
10 to 22 million vertices and incorporate vertex arrays and fixed-function lighting.
It is composed of 5 tests of 12 seconds in which two models of the same car are
rotated from different perspectives and with different levels of detail from solid
surfaces till components and engine structure.

• snx-01: based on traces of the Siemens NX 7 application. Traces represent very
large models containing between 11 and 62 million vertices, which are rendered in
different modes available in Siemens NX 7. Composed of 13 tests of 30 seconds
each with 3D models of car and engine designs. Instead of solid surfaces, all models
show structure and components of the car and its engine with different detail and
textures.

31

4
Case studies

4.1 Introduction

This section presents case studies of Windows applications running on Unix-like systems
(VMware and Linux) for all technologies selected in section 3.2. Following the evaluation
criteria introduced in section 3.3, tests start with the analysis of both Windows and
Linux OSes with no virtualization in order to get a baseline to compare with. It is
expected that Linux and Windows behave differently so a little comparison between them
is done. There are no native VMware tests due to this operating system is made only for
virtualization and does not provide graphic libraries for running user applications. Then
it comes WINE, the only application virtualization technology in the test set. After
two hosted hypervisors, VirtualBox and VMware Workstation come into picture and are
compared against WINE. These technologies are the least intrusive ones and also the
ones that are expected to produce the worst performance results. Tests continue with
XEN and KVM and conclude with VMware ESX. Finally results and conclusions of case
studies are summarized in section 5.

4.1.1 Test systems

Two different machines are used for case studies. One machine is an IBM System x3550
M3 equipped with two Intel Xeon X5675 (12MB cache, 6 cores, 3.06 GHz, max turbo
3.46 GHz) and 72.5 GB of RAM at 800 MHz. The graphic processor is a Nvidia Quadro
600 with 1GB DDR3 RAM. The other machine is an IBM System x3650 M4 with two
Intel Xeon E5-2667 v2 processors (25MB cache, 8 cores, 3.3 GHz, max turbo 4 GHz)
and 256 GB of RAM at 1600 MHz. The GPU this time is a Nvidia Quadro 4000 with
2GB DDR5 RAM.

32

4.2. BASELINE CHAPTER 4. CASE STUDIES

4.2 Baseline

This section describes tests which are run in bare metal systems i.e. the operating
system runs directly on the machine with no virtualization. Thus results obtained from
these tests are the reference for all the following case studies. Both Linux and Windows
operating systems are tested because applications run on top of one of these operating
systems. Due to these OSes are non-virtual only one GPU driver type is available i.e the
GPU is assigned to the OS driver which is equivalent to PCI pass-through in hardware
virtualization. There may be different implementations/versions of drivers of the same
GPU for both OSes however it is out of the scope of this thesis to compare different
native drivers. Thus the latest version of one of them is selected for both bare metal and
virtual systems (PCI pass-through case).

4.2.1 Linux

Linux is the base system for all case studies where the GPU driver runs in the host OS.
Therefore WINE, VirtualBox (API interception case) and VMware workstation should
be limited by Linux maximum performance. This is due to these virtualization technolo-
gies run like any other Linux application and an application running directly on Linux
shouldn’t be outperformed by its Windows virtual version. However this is not necessar-
ily true due to Windows and Linux versions of the same application may be completely
different, and consequently their performance may greatly differ between them. This
is not a common scenario because applications with versions for both OSes are usually
based in the same source code and use simple directives or cross-platform tools to adapt
the code to the OS APIs if they differ. Regarding this thesis, due to OpenGL API is the
same for both OSes and the target API of SPEC viewperf benchmark, it is reasonable to
say that Windows and Linux versions are similar and that the main factor which drives
graphic performance is the GPU driver. Thus the reference system for case studies is the
one that controls the GPU driver which in Linux is the proprietary Nvidia driver. This
driver is well known for achieving the best performance over open source implementa-
tions [29] and it is beyond this project to compare drivers for Nvidia GPUs. Figure 4.1
shows the speedup of all previously selected remote display protocols compared to Linux
running in a local session (no remote desktop application).

Although the version with no VNC was supposed to achieve the highest frame rates
due to it is free of the extra computations needed to handle remote connections, figure
4.1 shows that this is not always true. X forwarding and RDP protocols achieve in
several benchmarks better results than the bare metal implementation. Furthermore X
forwarding has in average better performance than Linux. As it was explained before,
X forwarding uses VGL transport in order to exchange rendered 3D images with the
client. This images are combined at the client side with 2D elements of the application’s
GUI that are sent over the network using standard remote X windows protocol. This
way the 2D (X11) rendering is performed in the client side releasing the server for this
duty and saving CPU time. Moreover X forwarding doesn’t create a virtual desktop,

33

4.2. BASELINE CHAPTER 4. CASE STUDIES

Figure 4.1: Remote desktop application speedup on native Linux

using seamless windows instead, thus avoiding to render a entire desktop and further,
it does not perform any compression. On the other side XRDP has also shown that
it can achieve almost as good marks as Linux. This protocol does create a virtual
desktop but like ’VGL transport’ it can leverage the 2D rendering to the RDP client. It
also avoids compressing the data if there is enough bandwidth, like in this environment
(LAN). Moving to VNC implementations, it was expected that both implementations
suffer some performance overhead because everything (2D rendering and compression)
is done in the server. Between x11VNC and turboVNC also was expected that x11VNC
achieved higher scores because it doesn’t have to deal with a virtual desktop neither uses
VirtualGL. However results have shown that this is not always true. X11VNC in fact is
always below Linux however TurboVNC is able to score higher rates in some cases like
tcvis. Finally FreeNX results are not good, barely a 55% of bare metal Linux in average.
It may be due to it is based in a legacy version of the original NoMachine NX server
version 3 which is quite old and may be quite inefficient.

4.2.2 Windows

Windows is the base system for all bare metal hypervisors like XEN, KVM and VMware
with PCI pass-through due to it is the Windows Nvidia driver the one that controls the
GPU. Figure 4.2 shows SPEC viewperf results with VNC and VNC driver compared to
bare metal Windows.

Whereas VNC basic implementation achieves almost the same frame rates than the
bare metal one, the VNC driver shows important performance leaks in all tests. This
is because whereas the basic VNC just queries repeatedly the frame buffer in order to

34

4.2. BASELINE CHAPTER 4. CASE STUDIES

Figure 4.2: VNC performance on Windows

get the display, the driver wraps the video signal and notifies VNC server with screen
changes saving CPU time and intensive screen blitting1. However the extra layer added
by the driver in the display stack delays the execution of rendering calls so graphics
performance is expected to be lower than in the basic version. It is easy to see that the
VNC driver is always below the other implementations. Performance leaks due to this
driver go up to a 35% in lightwave benchmark.

On the other side, VNC without mirror version produces big lags in user interaction.
Tests have shown that the basic VNC version does not provide good enough response
times for an interactive session so it cannot be used for this workload. However this driver
can be activated and deactivated dynamically allowing the user to choose whether to
use it or not. Furthermore if the user starts a program and closes the VNC connections,
the VNC server stops queueing the framebuffer because it doesn’t receive any update
request. Thus performance only suffers VNC overhead in interactive workloads, that in
general are less intensive than the batch ones.

4.2.3 Comparison between Windows and Linux results

It is not always interesting or fair to compare Windows and Linux results however it is in
this case because we aim to evaluate and compare technologies that run applications on
top on of these OSes. This way some technologies like WINE issue 3D graphics through

1Movement and modification of data within a computer’s memory, usually movement of a bitmap,
such as windows and fonts in a graphical user interface or sprites and backgrounds on a 2D computer
game.

35

4.2. BASELINE CHAPTER 4. CASE STUDIES

Figure 4.3: Linux vs Windows performance with and without VNC

Linux graphic stack and others like virtual machines with PCI pass-through work with
Windows display model. Figure 4.3 shows Linux speedup compared to Windows. It is
easy to see that Linux bare metal performance is worse than Windows one in almost
all workloads, being Linux speedup close to 90% of Windows performance in average.
Further, analysing profiling results of different spec viewperf applications, it can be seen
that the ones with more GPU usage are Catia, Ensight, Tcvis and Snx that also are
the ones that achieve the worst results in Linux. On the other side, Proe is one of the
applications with less GPU usage and best results on Linux.

In order to get more detailed results a memory bandwidth test was performed in
both systems. It consisted on benchmarking the memory bandwidth between the GPU
and the host using OpenCL (Open Computing Language) memory transfers. Here host-
to-device, device-to-host and device-to-device memory tests are performed and results
show that in average memory transfers between the host and the GPU are 5% worse
in Linux than in Windows. These results are far from being the only reason for Linux
performance loss but actually the application with less memory consumption i.e. proe
(also the one with less GPU consumption) is the one that works better on Linux. On the
other side, comparing VNC results, Linux is the one that gets higher scores. In fact this
is not a surprise because as it was explained in section 2.3 VNC performs better in Linux
due to the implementation of the X server, designed for easing remote connections. This
can be seen also in the speedup of VNC in both OSes which in Windows is about 80%
in average while is close to 90% in Linux. Thus for the remote user, Linux may perform
better than Windows even though in local session it doesn’t.

36

4.3. WINE CHAPTER 4. CASE STUDIES

4.3 WINE

WINE is a compatibility layer capable of running Windows applications on several
POSIX-compliant operating systems, such as Linux, Mac OSX and BSD. Instead of
simulating internal Windows logic like a virtual machine or emulator, WINE translates
Windows API calls into POSIX (Portable operating system Interface, implemented in
Linux) calls on-the-fly. This eliminates performance and memory penalties of other
methods and allows to cleanly integrate Windows applications into Unix-like operating
systems. API translation is done by providing alternative implementations of Windows
DLLs (Windows system libraries), and a process to substitute Windows kernel. This way
interpretation and recompilation of software is avoided. Therefore Windows applications
running on top of WINE in theory should run close to Windows speed. However this is
not always true and WINE’s performance highly depends on the application. Further,
widely used applications (without Linux version) tend to work better because extra test-
ing and effort is done to improve them. However, WINE is in active development and
many applications that do not work correctly are still being reported. Moreover there
are big differences between WINE versions, where usually the higher WINE version, the
higher performance and number of applications that work without problems. Regarding
3D graphics, WINE as a Linux application uses the Gallium3D driver model. While Gal-
lium3D implementations of modern versions of Direct3D like DirectX10 or DirectX11
may have performance issues and present some problems, OpenGL should work without
several performance issues (compared to Linux) because it uses Linux libraries directly.
DirectX is a concern regarding game compatibility but since most scientific applications
are written using OpenGL this thesis does not concern on DirectX performance.

SPEC viewperf11 executes 8 different applications so it is possible that not all ap-
plications can successfully run all tests. Actually the first tests made with WINE 1.6
version, the stable version at that time, failed to run some programs. However WINE 1.7
development version worked without problems. WINE as a Linux application is limited
in performance by the Linux graphic stack (X windowing system and Nvidia driver) so
Linux is its reference system. The first two columns in figure 4.4 reflect Windows version
of viewperf11 performance running in WINE compared with native Linux implementa-
tion (with and without TurboVNC). The followings ones show VNC speedup for both
Linux ([Linux + VNC] vs Linux) and WINE ([WINE + VNC] vs WINE) to compare
performance loss caused by VNC.

As it was mentioned before, WINE performance has a high dependency on the run-
ning application. This way some applications keep scores close to their native version
like Ensight or Snx but others like Tcvis or Proe experience important performance loss,
up to the 70%. OpenGL functions are processed directly by the Linux driver so the
only things WINE has to care about regarding 3D graphics is to emulate Windows win-
dowing system (WGL), translating it to GLX, and to handle calls to OpenGL functions
(the call itself, not the OpenGL function; concretely stdcall from Windows to cdecl in

37

4.3. WINE CHAPTER 4. CASE STUDIES

Figure 4.4: WINE speedups

Linux). Thus WINE OpenGL implementation is not likely to be the reason of its perfor-
mance drops but the implementation of other Windows libraries. Actually, performing
an OpenCL bandwidth test as in section 4.2 showed that memory transfers with WINE
have no performance leaks.

Another interesting fact that appears in figure 4.4 is that for Maya, WINE speedup
drops from 0.807 without VNC to 0.495 with VNC. This is about a 30% difference be-
tween the speedup of WINE with and without VNC whereas in the other applications
is less than a 10%. This fact can be due different factors taking into account that af-
ter WINE layer comes VirtualGL wrapper and TurboVNC. It is uncertain why Maya
has such big performance drops because CPU, GPU and memory stats do not show
significant changes. This behavior was shown in other study [9] where VirtualGL was
identified as the limitation factor in Maya tests.

One of the advantages of WINE besides it is easily integrated in a Linux desktop is
that several WINE sessions can be run concurrently by different users. Figure 4.5 shows
how viewperf11 scales from two concurrent sessions to eight sessions. It is easy to see
that both Ensight and Snx that got the best speedup with one session are the ones that
scale the less while Proe, that was one of the worst, is one of the programs that scales
better. Ensight and Snx have almost a 95% of GPU usage with one process so with
more than one session multiple processes are disputing the GPU time. Thus it is not a
surprise that performance drops more than half with the double of concurrent sessions.
In the case of Proe, the GPU usage is about a 60% in average so multiple sessions can
interleave GPU operations with other ones. Thus it scales better.

38

4.4. HOSTED HYPERVISORS ON LINUX CHAPTER 4. CASE STUDIES

Figure 4.5: WINE multi-session speedup

4.4 Hosted hypervisors on Linux

In this section a Windows OS is installed in a virtual machine managed by a hosted
hypervisor running in a Linux desktop. This kind of hypervisors (also known as hy-
pervisors of type 2) run like a common program and leverage hardware and resource
management on the host operating system. In order to run it remotely and get 3D
graphics it is necessary to launch the virtual machines using VirtualGL as any other
application. There is also the possibility of running the remote desktop application in-
side Windows OS however it has shown that remote desktop protocols work better on
Linux and that virtual applications suffer some virtualization overhead. Thus remote
desktop protocols are only run on Linux. Two hosted hypervisors are tried: VMware
Workstation and VirtualBox.

VMware workstation for Linux only provides a virtual graphic card with support for
DirectX (translated to OpenGL) and OpenGL that performs 3D operations redirecting
them to the host GPU driver. On the other side, VirtualBox provides several modules
for 3D graphics. It has a virtual graphic card that performs API interception only for
OpenGL calls and redirects them to the host GPU providing this way 3D graphics. It
also has two more experimental drivers for both DirectX and OpenGL. Further, it sup-
ports an experimental module for PCI pass-through which has been proven to work with
basic PCI devices like USBs or network cards which may also work for passing graphic
adapters.

39

4.4. HOSTED HYPERVISORS ON LINUX CHAPTER 4. CASE STUDIES

Figure 4.6: VMware workstation perfomance on Linux

Figure 4.6 shows only VMware workstation performance compared to Linux because
VirtualBox ones were unsuccessful. VMware Workstation achieved really bad perfor-
mance and Catia and Ensight tests didn’t work because both applications ran out of
memory. Furthermore VirtualBox with the OpenGL driver was unable to ran any SPEC
viewperf11 application. VirtualBox uses an implementation of the chromium driver in
order to redirect OpenGL calls. This driver supports up to OpenGL 2.0 whereas view-
perf11 requires OpenGL 1.5, so they should have been compatible. However application
logs showed that the chromium driver does not implement some NVIDIA extensions that
are needed for running viewperf applications. Concretely log files report some non im-
plemented functions and other OpenGL errors like invalid operations. On the other side
VirtualBox crashes when trying to pass-through the graphic card. PCI pass-through
worked successfully with USBs and the sound device of the graphic card however it
crashes before loading the operating system when it tries to map the registers of the
graphic device. Both DirectX modules failed to work too.

The main advantage of VirtualBox and VMware workstation is that an user has an
entire dedicated Windows desktop allowing him to run any Windows application out of
the box while he works normally in his Linux desktop. Other advantage is that multiple
users and virtual machines can take advantage of one single GPU. However tests have
shown that these technologies are far from providing decent 3D graphics.

40

4.5. XEN CHAPTER 4. CASE STUDIES

4.5 XEN

XEN is an open source paravirtual hypervisor that consists on a XEN micro-kernel run-
ning in a privileged CPU state. This kernel controls among other things CPU scheduling
and memory management. There is a special virtual machine called dom0 (domain 0),
where the host OS runs, which has direct access to hardware and controls the hypervisor
(XEN micro-kernel) and the other unprivileged virtual machines, also called ‘domUs’.
The only available method in XEN for providing 3D graphics to virtual machines is PCI
pass-through which is done through xen-pciback driver which exposes the PCI device in
user space allowing it to be controlled directly by a virtual machine.

4.5.1 Quadro 600 tests

As it was explained in section 1, graphic cards are more complex than other PCI de-
vices and it is more difficult to assign them to virtual machines. There are some high
end graphic cards with special hardware for PCI pass-through, for example, in Nvidia
cards this feature is called multi-OS. Unfortunately the first GPU available for testing,
Nvidia Quadro 600, doesn’t have this feature. However several experiments with other
Nvidia cards and new patches in Linux PCI drivers have shown that with the appropri-
ate patches and customizations any graphic card may be used for pass-through.

Depending on the GPU, GPU architecture and GPU driver, OS kernel, XEN version
etc different problems may arise including problems in interrupt handling, in PCI config-
uration and in the device memory mappings. Although making this concrete GPU work
with PCI pass-through is not the main objective of this thesis, it allows to analyse the
limitations of PCI pass-through and also the treats which this technology may bring to
the system. Thus several tests with different XEN patches and kernels were performed
in order to make Quadro 600 work in a PCI pass-through configuration. However, de-
spite in some of then the card was recognised by the guest operating system and Nvidia
drivers, the GPU was never able to function.

One of the reasons graphic cards are not able to function with PCI pass-through
is XEN inability to correctly configure GPU memory mappings in the virtual machine
when passing through the GPU. In order to work around this problem, several authors
have proposed to manually assign GPU memory mappings in XEN code. Specifically,
this thesis follows some fixes for XEN recollected and maintained by David Techer [37].
The proposed solution consists in modifying the code of XEN HVM (hardware virtual
machine) loader and hard-code memory-mappings and I/O port addresses of the graph-
ics’s card configuration registers i.e. GPU base address registers (BARs). When a device
is initialized, its driver requests to the operating system the size of memory needed. Then
the operating system maps the device memory to the system memory and writes these
memory mappings to the device’s BARs. These address mappings remain valid till the
system is turned off and are the ones passed to the virtual machine loader so it knows

41

4.5. XEN CHAPTER 4. CASE STUDIES

exactly where the pass-through device is mapped. Listing 4.1 shows Quadro 600 memory
BARs where the first three memory ranges are highlighted in bold. These are the ones
David Techer proposes to hard-code in XEN HVM configuration.

[0 . 6 8 5 4 7 0] PCI 0000 :1 f : 0 0 . 0 : reg 10 : [mem 0x97000000-0x97ffffff]
[0 . 6 8 5 4 7 9] PCI 0000 :1 f : 0 0 . 0 : reg 14 : [mem 0xf0000000-0xf7ffffff]
[0 . 6 8 5 4 8 8] PCI 0000 :1 f : 0 0 . 0 : reg 1c : [mem 0xf8000000-0xf9ffffff]
[0 . 6 8 5 4 9 4] PCI 0000 :1 f : 0 0 . 0 : reg 24 : [i o 0x2000−0x207f]
[0 . 6 8 5 5 0 0] PCI 0000 :1 f : 0 0 . 0 : reg 30 : [mem 0 x f f f 80000 −0 x f f f f f f f f]

Listing 4.1: Quadro 600 MMIO BARs

These ranges were hard coded in the DSDT2 of the ACPI3 implementation of XEN’s
HVM loader. Listing 4.2 shows the one to one memory mappings between the virtual
machine loader and the graphic card. In each memory range (here DWordMemory) can
be seen highlighted in bold the minimum, maximum and the size of each range respec-
tively.

DWordMemory(
ResourceProducer , PosDecode , MinFixed , MaxFixed ,
Cacheable , ReadWrite ,
0x00000000 ,
0x97000000 ,
0x97ffffff ,
0x00000000 ,
0x01000000)

DWordMemory(
ResourceProducer , PosDecode , MinFixed , MaxFixed ,
NonCacheable , ReadWrite ,
0x00000000 ,
0xf0000000 ,
0xf7ffffff ,
0x00000000 ,
0x08000000)

DWordMemory(
ResourceProducer , PosDecode , MinFixed , MaxFixed ,
Cacheable , ReadWrite ,
0x00000000 ,
0xf8000000 ,
0xf9ffffff ,
0x00000000 ,
0x02000000)

Listing 4.2: Reserve MMIO BARs of q600 for 1:1 mapping

2The Differentiated System Description Table (DSDT) is the main table in the ACPI implementation
of a computer’s BIOS.

3The Advanced Configuration and Power Interface (ACPI) defines the interface between an ACPI-
compliant operating system and the system firmware.

42

4.5. XEN CHAPTER 4. CASE STUDIES

The original patch only specifies three memory ranges but more ranges can be as-
signed. Up to five memory ranges with different XEN versions have been tried but all
of them were unable to make the graphic card work although the GPU was actually
recognised by the Nvidia driver. It is uncertain why the driver was unable to function
but due to its complexity and time limits this thesis has finally left this case for further
research.

4.5.2 Quadro 4000 tests

Nvidia Quadro 4000 card worked out of the box without any patch or source modi-
fication. Figure 4.7 shows the speedup of a XEN Windows virtual machine which is
in average almost 90% of the native Windows performance. It is easy to see that the
speedup oscillates among applications being almost 100% in applications like Ensight
or Tcvis and close to 75% in other applications like Maya, Lightwave and Proe. De-
spite CPU utilization for these applications can be quite high is the GPU utilization the
one that makes the difference between the other applications. Here applications with
more GPU time are the ones which perform better. This is because it is the native
Nvidia driver the one that controls the GPU so GPU operations are performed with no
overhead whereas CPU operations and memory transfers do. Therefore OpenCL tests
were performed in order to check if memory transfers are affected by the virtualization
layer. Results have shown that memory transfers between the GPU and the CPU are a
25% slower in XEN than in native Windows. Thus the overhead of memory transfers is
one of the main factors that limits GPU performance on XEN Windows virtual machines.

Moving to VNC tests, basic VNC achieves similar results than the raw (local display)
version however the driver one generally produces lower scores. Last column shows that
while basic VNC achieved about a 90% of Windows performance, the driver version only
gets an 80%. This is produced by the extra CPU time needed to wrap the video signal
(about a 5% of CPU time) that is accentuated in the virtual machine. However perfor-
mance loss compared to basic VNC version is quite big (a 10%) so in order to corroborate
that performance leaks were due to the video driver wrapper a different version of VNC
have been tested along tightVNC: UltraVNC. However results showed that there is no
big difference between both VNC versions.

XEN as a paravirtual hypervisor is able to reduce virtualization overhead for par-
avirtual OSes so it is interesting to see if a paravirtual OS is able to perform better
than Windows. Linux has a paravirtual version for XEN but it does not support PCI
pass-through directly. However in its non-paravirtual version is also able to run extra
paravirtual drivers for handling interrupts, timers and extended page tables. Thus it is
also interesting to see if a Linux virtual machine with paravirtual extensions (also called
PVHVM, paravirtual on hardware virtual machine) is able to get better results than
its Windows counterpart. Figure 4.8 shows that in fact Linux achieves better scores
achieving a 90% of bare metal results with both x11VNC and turboVNC against 80%

43

4.5. XEN CHAPTER 4. CASE STUDIES

Figure 4.7: Windows-XEN speedup

of VNC driver in Windows. Here Ensight and Tcvis are still the applications that per-
form better while Lightwave, Maya and Proe continue having the worst results compared
with bare metal Linux. Looking at GPU performance, again these applications have less
GPU intensive workloads and are more dependent on memory transfers and I/O per-
formance than the other applications. One interesting thing regarding Linux viewperf
implementation is that in general all applications require more RAM in the GPU than
their Windows versions. These can imply less GPU performance due to more memory
transfers between CPU and GPU have shown to be slower than in bare metal.

Finally it is important to mention some problems occurred during PCI pass-through
tests. PCI devices were unable to function after they were used by a virtual machine.
This happens because xen-pciback driver is unable to re-initialize the device after it
was used by a virtual machine so the device became useless. A temporal solution to
this problem is to eject the device before the virtual machine was shutdown but an
abrupt shutdown still makes the device unable to function. The second and biggest
problem was that PCI pass-though produced system crashes in the host (not only in
the virtual machine) in several scenarios which is a big concern in virtualization. These
crashes happened mainly due to (a) a bad initialization of the device because it was
previously used by other virtual machine or the driver was not well installed and (b)
it also crashed sometimes during system shutdown while installing drivers. However
once the device is functional in a virtual machine, no other problems have appeared.

44

4.6. KERNEL BASED VIRTUAL MACHINE CHAPTER 4. CASE STUDIES

Figure 4.8: Linux XEN speedup

Although it does not mean that an application able to crash the GPU driver in the
virtual machine couldn’t break also the entire host. XEN project security team explains
in [36] security problems regarding direct assignment of PCI devices. Here they mention
that non standard methods of PCI configuration space accesses may produce system DoS
(Denial of Service) and crashes. This explains system crashes after a device was used
by other virtual machine or while installing drivers. However it is difficult to conclude
if the crash is due to a bad device configuration, due to other device back-doors (non
documented behaviors) or due to a xen-pciback bug. At this point we leave further
research PCI pass-through security concerns for future work.

4.6 Kernel based Virtual Machine

KVM (kernel-based Virtual Machine) is a full virtualization solution for x86 hardware
with virtualization extensions (Intel VT or AMD-V). It consists of a loadable kernel
module (kvm.ko) for Linux kernel that allows user space programs to take advantage of
hardware virtualization features. However it requires a modified version of QEMU emu-
lator for running virtual machines. KVM is part of mainline Linux kernel since version
2.6.20.

Like in XEN, the only solution for providing 3D graphics in KVM to virtual machines
is to pass through the graphic card. KVM supports two different drivers for this purpose,
pci-stub and VFIO. Pci-stub is the legacy KVM pci driver and the one used by Shea and

45

4.6. KERNEL BASED VIRTUAL MACHINE CHAPTER 4. CASE STUDIES

Liu [34] in their tests. Although this driver is being replaced by VFIO, it is still functional
and has being improved since it was tested by them thus results and conclusions may be
different. However due to both systems, implementations and benchmarks are different,
it is not possible to make a direct comparison with their results and the ones obtained
in this case study.

4.6.1 Quadro 600 tests

As with XEN (section 4.5.1) several attempts were performed in order to get Quadro
600 working with PCI pass-trough. Unlike XEN that only works with high end Nvidia
graphic cards, KVM is making efforts in supporting all kind of PCI devices. Several
attempts were made with different kernels and packages from different distributions but
all failed to work. Further, different patched versions of the Linux kernel, seabios (bios
emulator) and QEMU emulator proposed by different authors were unsuccessfully tried.
All tests were performed using both pci-stub and VFIO drivers.

4.6.2 Quadro 4000 tests

Quadro 4000 worked out of the box with KVM. Figure 4.9 shows results of different
KVM configurations compared with their bare metal counterparts. Columns one to four
of each viewperf application show Windows speedups with KVM while the last column
shows the results of running SPEC viewperf on a Linux KVM virtual machine. Looking
into KVM Windows results, the first two columns show the ones of the new VFIO driver
while the following two show pci-stub driver ones. Although the main objective of VFIO
wasn’t performance but security and feature support, results show that it performs also
better than pci-stub, about a 5% better in average. Comparing KVM Windows results
with XEN (Section 4.5), in general, they are slightly better in KVM, about a 1% higher
in average. Further, there is no difference in OpenCL tests between both hypervisors.
Thus it is safe to say that both technologies (VFIO and xen-pciback) are equivalent in
performance terms.

Looking at Linux results, KVM also outperforms XEN by about a 5% in average
where KVM gets a 96% of native Linux scores in average. This improvement does not
seem to be due to PCI driver implementation because both KVM and XEN Linux virtual
machines use the same driver, i.e. Linux Nvidia driver, whereas the host driver is the
same one that runs with Windows virtual machines. However disk and network drivers,
interruption and memory controllers etc change between both technologies.

Regarding VNC, KVM achieves similar speedups than the non-VNC version com-
pared to native Windows. This means that there is almost no performance overhead
in VNC due to virtualization. This contrasts with XEN, which in VNC suffers a 10%
extra loss. VNC adds extra computations to process mainly display changes and packet
transfers which increase the CPU time required to draw a frame. This means that KVM

46

4.7. VIRTUAL MACHINE DEPLOYMENT TOOL CHAPTER 4. CASE STUDIES

Figure 4.9: KVM speedup

CPU processing causes less overhead than in XEN which can also be seen in non-VNC
results where KVM always outperforms XEN.

Like in XEN, KVM also produced system failures with both drivers. However VFIO
is able to restart the device after the virtual machine is shutdown but it crashes when
resetting GPU’s audio device. Stack traces suggest that this problem may be due to
a bad assignment of device interrupts.However it is beyond the scope of this thesis to
study the concrete reasons why this crashes occur.

4.7 Virtual machine deployment tool

PCI pass-through is still experimental for graphic cards and in some platforms they are
not easy to configure in a flexible way. This is due to a custom virtual machine config-
uration has to be done for each machine and graphic card. Further, in order to access
remotely, it is necessary to customize the network configuration. Thus either the virtual
machine is configured for remote access (with a public IP) or host ports have to be redi-
rected to virtual machine ones. Moreover failures and system crashes are common during
testing and deployment phase so all this configurations have to be done repeatedly. Thus
in order to automate these steps and ease PCI pass-through testing and deployment a
tool has been developed. This tool is focused on XEN and KVM due to the inability
of VirtualBox and VMware Workstation to work with this feature. On the other side
VMware ESX already has tools for doing this and WINE does not require it.

The objective of this tool is to setup a Windows (or other OS) virtual machine from a
virtual machine template with some configuration customizations through the command
line. In order to be flexible, instead of providing physical port of PCI pass-through

47

4.7. VIRTUAL MACHINE DEPLOYMENT TOOL CHAPTER 4. CASE STUDIES

devices, it is enough to provide any keyword that identifies the required device, e.g.
Nvidia or quadro 4000, and the tool selects and configures (if not already in use) the
device that matches those keywords. This way the same virtual machine works in any
host with GPUs with compatible drivers. Further not only graphic cards but any PCI
device works with this feature. Besides this, other important feature for graphic card
pass-through is to access the virtual machine remotely. In order to do that, virtual ma-
chine and host network is configured to accept connections to the remote desktop server
port from the outside. In order to perform all this customizations, this tool follows these
phases:

1. Configuration and customization: here parameters are parsed and virtual machine
is customized. Only a small set of arguments are considered to fulfill a configuration
request. Here are included a virtual machine template (configuration file and image
path or the name of a registered virtual machine), GPUs to pass-through (and
optionally other PCI devices), network configuration, virtual CPUs and memory.
For GPU configuration, in order to be ‘independent’ of the PCI port or physical
GPU, this tool allows to specify GPU characteristics (driver version, GPU model
or brand) instead of PCI port. This way the only requirement for this tool to
work in different machines or physical GPUs is for the GPUs to work with the
same driver. Furthermore it only looks for free GPUs (not used for other virtual
machines or the host) and fails if all are in use. At this point, differences between
hypervisors like network options and devices configuration are handled.

2. Host configuration: the system is configured to run and connect to the virtual
machine. Here PCI devices (included graphic cards) are assigned to pass-through
drivers, network ports from the virtual machine are allocated in the host firewall
for remote connections, network interfaces are configured and the virtual machine
template is soft-cloned. Assigning PCI devices to pass-through drivers has shown to
be quite tricky because it could lead to system crashes. However, what has shown
to fail is to release the PCI device after execution or to reuse an unreleased PCI
device. In order to avoid system crashes this tool follows the next considerations:

• Bind all devices with the same IOMMU group to the pass-through driver:
a physical device may have more than one functionality or virtual functions
and some PCI pass-through drivers require that all of them were assigned to
the pass-trough driver. Some GPUs consist of the GPU itself and an audio
device.

• Pass-through only the GPU: some system crashes were experimented with
some drivers when both devices (GPU and audio device) were pass-through
to the virtual machine when working with the audio device.

• Try to reset the GPU: after the guest is shutdown the GPU has to be reset.
Some drivers fail to do this and the GPU remains in an unstable state and
cannot be used again. In order to avoid this the following solution also worked.

48

4.8. VMWARE ESXI CHAPTER 4. CASE STUDIES

• Eject or disable the GPU before shutdown and enable it at start up. The
GPUs after being used by a guest host are in a unstable state. In order to
force it to be reset, this task hast to be performed on the guest host with the
help of some scripts.

3. Virtual machine image customization for different purposes like setting network
configuration (hostname, IPs ...) on the guest or setting custom VNC configura-
tions (port and password). In order to accomplish this it is necessary to mount
the guest file system in the host and then perform the customization. In Windows
case it is also necessary to manage Windows registry to change VNC passwords
for example.

4. Run the virtual machine: the last part of the process is to power on the created
virtual machine, wait till it is on and connect to it. When the virtual machine is
powered off all system changes performed before are undone.

Regarding development design, the selected programing language is python. The
main reason is that it is a scripting language with bindings for libvirt (the administra-
tion tool for KVM and XEN) and it also allows to issue bash commands and parse its
outputs in a really straightforward way. The tool pseudo-code can be found in appendix
A

4.8 VMware ESXi

VMware ESXi is a bare metal hypervisor developed by VMware for deploying and serv-
ing virtual machines. It provides its own kernel called vmkernel which handles CPU and
memory among other hardware resources.

VMware provides several virtual GPUs depending on user needs. Between these
virtual GPUs are included a basic software 3D GPU and a direct assigned GPU (PCI
pass-through) like in XEN and KVM. However it also offers API remoting virtual GPU
able to provide 3D graphics for multiple virtual machines. PCI pass-through and soft-
ware 3D technologies do not require any license at all and can be used with the free
version of this hypervisor but the API remoting GPU does require a license. However
it comes with a free trial period. Here both free and non-free technologies with trial
licenses are analysed. The main motivation for including technologies with licence is to
encompass more types of virtual GPUs not available in free technologies.

4.8.1 Software graphics GPU and API remoting GPU

VMware provides a software virtual GPU with support for basic 3D graphics (no OpenGL
redirection to the GPU) designed for 3D desktop effects and basic video rendering. It’s

49

4.8. VMWARE ESXI CHAPTER 4. CASE STUDIES

well known that this virtual graphic card provides poor results for 3D demanding appli-
cations but it is interesting to compare it to the API remoting GPU called virtual Shared
Graphics Acceleration GPU (vSGA). This card uses the same driver as the SVGA in the
guest OS, supporting only DirectX 9.0c and OpenGL 2.1, but it provides hardware ac-
celerated 3D graphics. This is done redirecting OpenGL and DirectX calls to the GPU
which is controlled by a special Nvidia driver for VMware ESXi.

Tests performed with both cards have revealed that both are too limited to run 3D
demanding applications. This is not surprising for the software GPU cause this graphic
card is not made for dealing with complex textures or calculations but it was not ex-
pected for vSGA GPU. Actually, the software GPU successfully ran all tests although
results were not good at all. In fact, it scored 0 frames per second in several viewperf
test cases. However vSGA failed to run several viewperf applications due to they ran
out of GPU memory. VMware only designates a maximum of 512 MB of RAM of the
virtual machine to this graphic card, exactly the minimum amount of memory recom-
mended for running viewperf11. However VMware specifies that from those 512 MB, half
are reserved in the GPU and the other half from the virtual machine’s RAM. This ex-
plains why some applications couldn’t work properly with only 256 MB of GPU memory.

In order to properly evaluate vSGA, further tests with viewperf were performed with
a smaller screen resolution (800x600) which requires less GPU memory. Figure 4.10
shows that with this resolution vSGA outperforms up to 2.86 times the software vGPU.
On the other hand, with the original resolution, i.e. 1600x1200, this behavior changes
in favor to the software render that outperforms vSGA results up to twice its perfor-
mance. The reason of this results is due to the overhead of memory transfers between
CPU and GPU due to bigger textures and pictures. Performance drops between both
resolutions, taking into account that one has the double of pixels than the other, with
the software card are quite small (20% in average) compared to the vSGA (close to 70%).

Even though vSGA results with a smaller resolution already revealed the memory
limitations in the original tests, they didn’t showed the real difference in terms of compu-
tation power between both virtual GPUs. Thus two more benchmarks with less memory
requirements were performed: 3Dmark3D, an application benchmark for OpenGL and
DirectX with a maximum of 128 MB of memory and Furmark, an OpenGL micro-
benchmark. Table 4.1 shows that without memory limitations the hardware renderer
greatly outperforms the software one.

4.8.2 PCI pass-through and virtual Dedicated Graphics Acceleration

PCI pass-through does not require any licence in VMware ESX but as with KVM and
XEN to access the graphic card output, a display protocol like VNC is needed. How-
ever VMware provides another solution using its proprietary protocol PCoIP (PC over
IP). This solution, also known as virtual Dedicated Graphics Acceleration (vDGA), gets
graphic card’s output through a special API provided by Nvidia (thus it only works with

50

4.8. VMWARE ESXI CHAPTER 4. CASE STUDIES

Figure 4.10: Speedup of vSGA over Software 3D GPU

Benchmark Soft 3D vSGA Speedup

3Dmark2003

1024x768
544 36267 66

Furmark points

1600x1200
11 1019 92

Furmark FPS

1600x1200
0 19 -

Table 4.1: 3DMark and Furmark with soft3D and vSGA

a limited number of Nvidia cards) and uses PCoIP to interact with the virtual machine.
Nvidia API allows to query directly the display driver avoiding continuously checking
the framebuffer or adding an extra layer to wrap the video signal. Table 4.11 shows the
results after executing SPEC viewperf11 with both technologies.

vDGA solution outperforms PCI pass-through with VNC in all applications but in
tcvis-02 and especially in proe-05 where results are worse. Proe-05 is characterized by a
high CPU consumption during all test set whereas VNC CPU time is close to 0. This
low CPU consumption by VNC is due to proe generates low frame rates which provoke
small screen changes. Workloads in both programs are mainly objects that are moving
in a uniform background. This favors a simple protocol like VNC that just works with
the entire image while PCoIP deeply analyses the display looking for text, buttons, im-
ages, videos etc in order to save bandwidth or choose the best compression algorithm.
In average, PCoIP achieves an 8% better performance than VNC. Furthermore, PCoIP

51

4.8. VMWARE ESXI CHAPTER 4. CASE STUDIES

Figure 4.11: VMware Esx speedup over Windows

Figure 4.12: PCoIP vs VNC

generally outperforms KVM and XEN with VNC. Figure 4.12 shows a comparison be-
tween these three technologies with VNC over PCoIP in ESX. Here KVM is the closest to
PCoIP which achieves a 96% of its performance, improving VMware results with VNC.

52

5
Conclusion

This thesis has investigated 3D graphics performance problems on remote virtual ap-
plications and studied the constraints and limitations produced by virtualization and
remote desktop technologies when working together. This study is conducted through
several case studies performed on Windows applications running on Unix-like systems
which covered a wide range of the latest technology implementations in this field. The
following paragraphs summarize these findings and aim to serve as a guideline for system
engineers to build a high quality infrastructure for HPC users. Here some boundaries and
limitations of the actual technology are highlighted in order to address new research lines
in this area. This work also included the implementation of a tool for on-demand vir-
tual machine setup with automatic handling of PCI devices for XEN and KVM. It allows
to create fast dynamic configurations of virtual machines with PCI pass-through devices.

Case studies results have shown that there is no universal solution for providing 3D
graphics to remote virtual applications where the application itself is the main factor
which drives design and technology selection for the whole infrastructure. Thus, support-
ing any application or making a bad estimation of application requirements leads to an
inefficient or nonperforming system which highly increases service costs. This is due to
the performance overhead and the problems of sharing a physical graphic card between
multiple users when running remote virtual applications. Both graphic performance
and GPU sharing limitations are provoked by many components but the virtual GPU
technology and the remote desktop technology have shown to play a mayor role on them.

Results have shown that virtual GPUs are the ones which drive graphics perfor-
mance and GPU sharing capabilities of virtual instances. This way XEN, KVM and
VMware ESX scored similar results with PCI pass-through, the only virtual GPU for
Windows supported by KVM and open source XEN, which showed that the virtualiza-
tion technology itself is not an important factor in graphic performance. This type of

53

CHAPTER 5. CONCLUSION

virtual GPU achieved the best performance results, a 90% overall of native performance
but at the expense of maintaining another operating system and dedicating one graphic
card per virtual machine. Individual application scores highlighted that applications
with more GPU consumption were the ones that achieved better grades which showed
that the main bottleneck was not in the virtual GPU itself. However OpenCL memory
bandwidth test determined that PCI pass-through suffers a 25% overhead in CPU-GPU
memory transfers compared with a native OS which reveals one of the main bottlenecks
of this technology. Again all three hypervisors scored similar values in memory trans-
fers. However results of these hypervisors considerably change when applications are
run remotely. Figure 5.1 shows the speedup of all solutions which were able to run spec
viewperf benchmark including XEN and KVM with VNC+driver and ESX with PCoIP.
Results differences have shown to be both due to the virtualization technology and re-
mote desktop protocol. Whereas XEN with VNC performs an 10% worse than KVM
and ESX which suffer almost no overhead due to the remote desktop protocol with the
same VNC implementation than XEN. On the other hand ESX with PCoIP outperforms
VNC version by a 7% achieving a 97% of native Windows VNC performance which is
quite impressive.

Figure 5.1: Speedup over native Windows with VNC driver

Any other form of virtual GPU in virtual machines showed to be impractical for HPC,
either limited by memory (vSGA) or 3D performance (software 3D). However VMware
vSGA was able to take advantage of hardware acceleration but it did not perform well
due to graphic memory limitations (256 MB). Thus an improvement in terms of memory
can make it a better alternative than PCI pass-through for several reasons: (a) it allows

54

CHAPTER 5. CONCLUSION

sharing the GPU between virtual machines, (b) it does not bind a virtual machine to
a physical GPU so the GPU may be changed for another one, (c) it allows the virtual
machine to be migrated and (d) it does not have PCI pass-through security problems.
Other hardware accelerated virtual GPUs that allow to share the GPU between virtual
machines and haven’t been evaluated like VMGL could also have been a good solution for
OSes with X display system. However their study has been left for future work because
Windows does not support them. On the other hand, hosted hypervisors like VirtualBox
and VMware Workstation which are less intrusive than bare metal hypervisors, lack of
PCI pass-through (due to malfunction or absence) and any other 3D graphics alternative.

Although PCI pass-through achieved the best results, it came with several mainte-
nance drawbacks. It is a quite intrusive technology where no application usually runs
with the hypervisor and everything is virtualized, even the host OS applications which
run on a virtual instance of the host OS. Further it is necessary to maintain the virtual
instances of the guest OSes. However it is way easier to maintain a virtual OS than a
bare metal one because in a virtual OS almost all important tasks carried our by an
OS like hardware maintenance, drivers, users, permissions, file systems etc are handled
by the host OS or the hypervisor. Another big drawback was the security implications
of PCI pass-through technology that in XEN and KVM lead to system crashes when
booting or powering-off the virtual machine. Regarding this thesis, it considered that
this issue, although important, should not be a major technology discriminant but a
factor to take into account when building and managing PCI pass-through instances.

In contrast to hardware virtualization, application virtualization showed to be a good
alternative in several scenarios. WINE, the only application virtualization technology
tested, showed to perform well with several applications but it did quite worse with oth-
ers. OpenCL tests showed that there is no memory overhead compared to native Linux
and OpenGL calls go directly to the graphic card so WINE overhead seems to be due
to its implementation of Windows libraries. This made WINE too much application de-
pendant and to be infeasible for any scenario where target applications cannot be tested
beforehand. Moreover it may not even work with some applications. Thus a further
virtualization solution may have to be maintained besides WINE in other to support
any application, which can be a big drawback. In this scenario, KVM or XEN can be
good choices because they use Linux as host OS like WINE. However WINE seems to be
the best choice for any application with which it performs well enough because it allows
to share the graphic card between multiple users increasing GPU usage and saving hard-
ware costs. Further it is the least intrusive solution, integrating Windows applications
seamlessly with Linux ones.

In a similar way than virtual GPUs, remote desktop applications also constraint
graphics performance and GPU sharing between users although their implementation
is highly dependant on the operating system they run. In Windows, these protocols
fixed to one the number of users that could take advantage of a virtual machine and in

55

5.1. FUTURE WORK CHAPTER 5. CONCLUSION

Linux they required a further processing layer in order to share the GPU, this time an
OpenGL wrapper (VirtualGL). Moreover, remote desktop applications introduced im-
portant yield losses that have shown to be application and technology dependant where
the biggest overhead was shown in WINE, up to 50% in maya application with VNC.
This overhead was bigger in Windows than in Linux due to Linux client-server display
model avoided the need to poll the framebuffer but the display server directly. Some
VNC Windows overhead have been mitigated by VMware PCoIP taking advantage of
Nvidia API instead of wrapping the video signal. Although it didn’t improve perfor-
mance in all applications, it has shown to perform a 5% better in average. On the other
hand SSH in Linux achieved even better results remotely than in local session due to it
is able to lever 2D rendering to the SSH client.

5.1 Future work

WINE’s performance have shown to be too application dependant. Thus a better char-
acterization of WINE libraries may show which library implementations produce more
overhead. Further, OpenGL library calls may perform differently so a custom implemen-
tation of some OpenGL functions for WINE may greatly improve graphics performance.

Another bottleneck found in case studies was the overhead of memory transfers be-
tween the CPU and the GPU in virtual machines. There are different techniques like
shared memory, zero-copy or other technologies like RDMA in network cards which avoid
unnecessary memory copies and avoid user-space to kernel-space copies which are really
expensive. Studying how to apply these concepts on graphic cards or virtual GPUs may
considerably improve pass-through performance.

56

Appendices

57

A
VM deployment tool pseudo-code

This tool consist of three scripts. The main script is run-vm which connects to a remote
host, starts the virtual machine with the script start-vm, connects to it through VNC
and after the VNC session is closed, it destroys the virtual machine with the script
destroy-vm.

A.1 run vm

Star t v i r t u a l machine
args = getArgs ()
remoteHost = args [1]
connect (remoteHost)
vm name , ip , port = c a l l (”startVM ” , args [2 . .N])
d i s connec t ()

Connect to v i r t u a l machine
c a l l (”vncviewer ” , concat (ip , ”: ” , port))

Free v i r t u a l machine r e s o u r c e s
connect (remoteHost)
c a l l (”destoryVM ” , vm name , ip , port)
d i s connec t ()

Listing A.1: run virtual machine

A.2 start vm

Create par s e r and add opt ions
par s e r = createOpt ionParser ()
addOption(”−−master ” , ”Master/ parent v i r t u a l machine ”)
addOption(”−−conf− f i l e ” , ”Conf igurat ion f i l e ”)
addOption(”−−vm−image ” , ”V i r tua l machine image ”)

58

A.2. START VM APPENDIX A. VM DEPLOYMENT TOOL PSEUDO-CODE

addOption(”−− r e d i r ” , ”Port r e d i r e c t i o n ”)
addOption(”−−gpu ” , ”GPU name , model or c h a r a c t e r i s t i c ”)
addOption(”−−pci−dev i ce ” , ”Comma separated l i s t o f PCI dev i c e s ”)
addOption(”−−vcpus ” , ”Number o f v i r t u a l GPUs”)
addOption(”−−memory ” , ”Memory in MBs”)
addOption(”−−net ” , ”Network type : nat | br idge=<bridge−name> | net=<network−name>”)

Parse opt ions through OptionParser
opt ions = parseOptions (par s e r)

Get c o n f i g u r a t i o n f i l e
i f getOption (opt ions , ”master ”) then

master = getOption (opt ions , ”master ”)
c o n f f i l e = getVMConfig (master)
xml tree = openXML(c o n f i g f i l e)

e l s e
c o n f f i l e =getOption (opt ions , ”conf− f i l e ”)
xml tree = openXML(c o n f i g f i l e)
master = xmlGetXpath (xml tree , ’/ domain/name ’)

e n d i f
Domain extra c o n f i g u r a t i o n opt ions
c o n f i g = ””

Get v i r t u a l machine image
i f not getOption (opt ions , ”vm−image ”) then

Get image form c o n f i g u r a t i o n f i l e
vm image = xmlGetXpath (xml tree , ”/ domain/ de v i c e s / d i sk [@device=’ disk ’] / source ”)

e n d i f

Get v i r t u a l i z a t i o n technology i . e v i r t u a l i z a t i o n d r i v e r
d r i v e r= xmlGetXpath (xml tree , ”/ domain/ type ”)

Get network c o n f i g u r a t i o n
i f getOptions (opt ions , ”net ”) == then

vnc net = getOptions
e l s e

vnc net = xmlGetXpath (xml tree , ”/ domain/ de v i c e s / i n t e r f a c e ”)
e n d i f

Get PCI dev i c e s to pass−through
devs = getOption (opt ions , ”p c i d e v i c e ”)

Get PCI dev i c e s in use
vms = getVMs ()
f o r vm in vms do

dev i c e s = getDev ice s (vm)
add (used dev ice s , d ev i c e s)

endfor

Check PCI dev i c e s not in use
f o r dev in devs do

i f dev in us ed dev i c e s then
pr in t (” e r r o r dev i c e in use ”)

59

A.2. START VM APPENDIX A. VM DEPLOYMENT TOOL PSEUDO-CODE

e x i t ()
e n d i f

endfor

Find GPUs
found = f a l s e
i f getOption (opt ions , gpu) in gpu

gpus = f i l t e r (ge tA l lPc iDev i c e s () , ”VGA”)
f o r gpu in gpus :

i f gpu not in us ed dev i c e s then
iommu devices = f i l t e r (ge tA l lPc iDev i c e s () , getIommuGroup (gpu))
add (devs , gpu)
add (iommu devs , iommu devices)
found = true
break

e n d i f
endfor

e n d i f

i f getOption (opt ions , gpu) AND not found then
pr in t ”Error , f r e e GPU not found ”
e x i t ()

e n d i f

Add PCI dev ices , GPUs and GPU iommu dev i c e s to pc i d r i v e r
f o r dev in j o i n (devs , iommu devs) do

detatchDev iceDr iver (dev)
i f d r i v e r == KVM then

bind−v f i o (dev)
e l s e

bind−xen−pciback (dev)
e n d i f

endfor

Add de v i c e s to c o n f i g u r a t i o n
i f devs then

c o n f i g = concat (con f i g , ”−−pci−dev i ce ” , arrayToStr ing (devs))
e n d i f

Conf igure networking and port r e d i r e c t i o n

vm mac = getRandomMAC()
net = getOption (opt ions , net)
i f not net then

net = getXpath (xml tree , ”/ domain/ de v i c e s / i n t e r f a c e / type ”)
e n d i f

i f net == ”nat ” OR startsWith (net , ”net ”) then
i f getOption (opt ions , r e d i r p o r t) then

vnc port = getOption (opt ions , r e d i r p o r t)
e l s e

vnc port = getFreeHostPort ()
e n d i f

60

A.2. START VM APPENDIX A. VM DEPLOYMENT TOOL PSEUDO-CODE

No −−r e d i r opt ion f o r XEN
i f net == ”nat ” AND d r i v e r == ”KVM” then

c o n f i g = concat (con f i g , ”−− r e d i r ” , vnc port)
e l s e

vnc network = getIndex (s p l i t (net , ”=”) , 2)
i f not vnc network then

vnc network = ”d e f a u l t ”
net=”net=d e f a u l t ”

e n d i f
Get the system br idge name from the v i r t u a l network name
vnc br idge = getBridgeFromNetwork (vnc network)

e n d i f
c o n f i g = concat (con f i g , ”−−net ” , net)

e l s e
vnc br idge = s p l i t (net , ”= ”) [2]
c o n f i g = concat (con f i g , ”−−net br idge =”, ”vnc br idge ”)

e n d i f

Conf igure other port r e d i r e c t i o n s
i f getOption (option , r e d i r) then

c o n f i g = concat (con f i g , ”−− r e d i r ” , getOption (option , r e d i r))
e n d i f

Generate vm name
vm name = concat (master , ”−”, vm mac)

Clone hard d i sk
i f getOption (opt ions , ”vm−image ”) then

new image = getOption (opt ions , ”vm−image ”)
e l s e

new image = concat (vm image , ”−”, vm mac)
e n d i f

i f d r i v e r == KVM then
clone kvm (vm image , new image)

e l s e
i f format (vm image) == ”vhd ” them

c lone xen (vm image , new image)
e l s e

copy (vm image , new image)
e n d i f

e n d i f

Mount windows image with guestmount
guestmount (new image , ”mount fo lder ”)

Customize t i g h t vnc password in windows r e g i s t r y
v n c f i l e=open (”. vnc/passwd ”)
hex passwd=readLine (v n c f i l e)
r e g f i l e=open (”vnc pass . reg ”)
wr i t eL ine (r e g f i l e , ’ [HKEY LOCAL MACHINE\SOFTWARE\TightVNC\ Server] ’)
wr i t eL ine (r e g f i l e , concat (’ ”Password”=hex (3) : ’ , hex passwd))

61

A.2. START VM APPENDIX A. VM DEPLOYMENT TOOL PSEUDO-CODE

Merge windows r e g i s t r y with h i v e x r e g e d i t
h ivexreged i tMerge (”mount fo lder ” , r e g f i l e)

Customize machine hostname in windows r e g i s t r y (more complex)
changeWindowsHostname (”mount fo lder ” , vm name) sh

Umount windows image
guestunmount (”mount fo lder ”)

Generate new c o n f i g u r a t i o n f i l e
i f getOption (opt ions , ”vcpu ”) then

c o n f i g = concat (con f i g , ”−−vgpu ” , getOption (opt ions , ”vcpu ”))
e n d i f

i f getOption (opt ions , ”memory ”) then
c o n f i g = concat (con f i g , ”−−memory ” , getOption (opt ions , ”memory ”))

e n d i f

n e w c o n f f i l e = concat (c o n f f i l e , ”−”, vm mac)
modifyDomain (c o n f f i l e , n e w c o n f f i l e , c o n f i g)

Star t and connect to the v i r t u a l machine
startVM (n e w c o n f f i l e)

Wait f o r machine to s t a r t to get IP
max count = 15
i f s tartsWith (net , ”br idge ”) OR startsWith (net , ”net ”) then

b r i d g e i p = getBridgeIP (vnc br idge)
f o r count=0 to max count do

Get a l l a c t i v e IPs in br idge network
i p s = ge tA l l IPs (b r i d g e i p)
f o r ip in i p s do

i f getMac (ip) == vm mac then
vm ip = ip

i f s tartsWith (net , ”br idge ”) then
VM ip i s pub l i c
conn port = 5000
conn ip = vm ip

e l s e
Conf igure f i r e w a l l to r e d i r e c t port to p r i v a t e network
conn port = vnc port
conn ip = getHostname ()
vm port = 5000
i f f i r e w a l l == f i r e w a l l d then

f i r e w a l l d a d d f o r w a r d p o r t (conn port , vm ip , vm port)
e l s e

y a s t f i r e w a l l m a s q r e d i r e c t (conn port , vm ip , vm port)
e n d i f

e n d i f
break

e n d i f

62

A.3. DESTROY VM APPENDIX A. VM DEPLOYMENT TOOL PSEUDO-CODE

endfor
s l e e p (1)

endfor
e l s e

f o r count=0 to max count do
i f isPortOpen (vnc port) then

break
e l s e

s l e e p (1)
e n d i f

endfor
conn port = vnc port
conn ip = getHostname ()

e n d i f

Print vm c o n f i g u r a t i o n
p r i n t f (”% s %s %s \n ” , vm name , conn ip , conn port)

Listing A.2: start virtual machine

A.3 destroy vm

Parse args
vm name=args [1]
ip=args [2]
port=args [3]

c o n f i g = getVMConfig (vm)

Remove f i r e w a l l r u l e s
net = getConf ig (con f i g , ”network ”)
i f s tartsWith (net , ”net ”) then

vm ip = getVMIP ()
i f f i r e w a l l == f i r e w a l l d then

f i r ewa l l d r emove f o rward po r t (port , vm ip , 5000)
e l s e

y a s t f i r e w a l l r e m o v e m a s q r e d i r e c t (port , vm ip , 5000)
e n d i f

e n d i f

Shutdown v i r t u a l machine
s t a t u s=getStatus (vm name)
i f s t a t u s == ”running ” then

shutdown (vm name)
timeout = 15
f o r t = 0 to timeout do

s t a t u s = getStatus (vm name)
i f s t a t u s == shutdown then

break
e n d i f

endfor
des t roy (vm name)

e n d i f

63

A.3. DESTROY VM APPENDIX A. VM DEPLOYMENT TOOL PSEUDO-CODE

Detach PCI de v i c e s
f o r dev in getConf ig (con f i g , ”pci−dev i c e s ”) do

detatchDev iceDr iver (dev)
endfor

Remove v i r t u a l machine image and
vm image = getConf ig (con f i g , ”d i sk ”)
r e m o v e f i l e (vm image)
removeVM(vm name)

Listing A.3: destroy virtual machine

64

B
Test Results

This appendix shows the actual results for all graphs in this thesis. These results are
displayed in tables that are organized in sections. There is one section for each evaluated
virtualization platform and there are also sections for native Windows and native Linux.
Moreover, tables may display more information that the one showed in the graphs due
to graphs are meant to display relevant information and should be easy to understand
whereas these tables show all results for further reference.

B.1 Linux

Table B.1 shows the speedups of remote desktop protocols compared to native Linux.

x11vnc turboVNC ssh xrdp nx

catia-03 0.943 0.959 1.013 1.023 0.583

ensight-04 0.899 0.943 0.9947 0.959 0.550

lightwave-01 0.958 0.726 0.842 0.805 0.532

maya-03 0.934 0.775 1.156 1.015 0.457

proe-05 0.919 0.861 0.856 0.863 0.649

sw-02 0.943 0.861 0.992 0.936 0.490

tcvis-02 0.949 1.079 1.237 1.191 0.641

snx-01 0.920 0.987 1.113 1.041 0.558

AVG 0.933 0.899 1.025 0.979 0.558

Table B.1: Remote desktop application performance on Linux (Figure 4.1)

65

B.2. WINDOWS APPENDIX B. TEST RESULTS

B.2 Windows

Table B.2 shows raw (without VNC), VNC and VNC with VNC driver results for Win-
dows. Speedups of VNC and VNC-driver are compared to raw results. Average results
are only displayed for the speedups because frame-rates averages for different applica-
tions do not provide valuable information. On the other side, table B.3 compares Linux
(L) and Windows (W) results. Each speedup (SP) column is calculated dividing the two
previous columns (Linux column/ Windows column) but the last one which is calculated
dividing TurboVNC (Linux) between W-VNC.

Windows Raw VNC Speedup VNC-driver Speedup

catia-03 40.04 40.01 0.999 35.54 0.887

ensight-04 30.07 30.01 0.998 23.93 0.796

lightwave-01 48.11 48.10 1.000 30.42 0.632

maya-03 60.55 60.49 0.999 44.47 0.735

proe-05 9.38 9.46 1.008 8.63 0.920

sw-02 38.68 38.67 1.000 32.15 0.831

tcvis-02 34.49 34.38 0.997 26.67 0.773

snx-01 32.35 32.26 0.997 28.12 0.869

Average 1.000 0.806

Table B.2: Windows performance (Figure 4.2)

W L SP W-VNC L-VNC SP TurboVNC SP

catia-03 40.04 34.07 0.85 35.54 32.15 0.90 32.68 0.92

ensight-04 30.07 24.59 0.82 23.93 22.11 0.92 23.21 0.97

lightwave-01 48.11 42.74 0.89 30.42 40.98 1.35 31.04 1.02

maya-03 60.55 52.66 0.87 44.47 49.23 1.11 40.84 0.92

proe-05 9.38 11.29 1.20 8.63 10.39 1.20 9.73 1.13

sw-02 38.68 35.17 0.91 32.15 33.19 1.03 30.31 0.94

tcvis-02 34.49 27.12 0.79 26.67 25.74 0.96 29.29 1.10

snx-01 32.35 26.29 0.81 28.12 24.21 0.86 25.96 0.92

AVG 0.89 1.04 0.99

Table B.3: Linux vs Windows performance (Figure 4.3)

66

B.3. WINE APPENDIX B. TEST RESULTS

B.3 WINE

Table B.4 compares Linux (L) and WINE (W) results where SP is the speedup between
last WINE result and the last Linux result. Last two columns represent Linux VNC
speedup (L/L-VNC) and WINE VNC speedup (W/W-VNC) respectively. On the other
hand table B.5 shows WINE results without VNC (Raw) and with multiple turboVNC
sessions from 1 to 8. Further table B.6 shows different WINE speedup results for multi-
session tests where the ‘X’ that goes with ‘vncX’ is the number of concurrent turboVNC
sessions.

Linux WINE Sp L-VNC W-VNC Sp L-VNC SP W-VNC SP

catia-03 34.070 17.045 0.500 32.675 15.040 0.460 0.959 0.882

ensight-04 24.587 24.195 0.984 23.205 20.570 0.886 0.944 0.850

lightwave-01 42.743 25.530 0.597 31.035 17.385 0.560 0.726 0.681

maya-03 52.660 42.490 0.807 40.835 20.195 0.495 0.775 0.475

proe-05 11.290 4.635 0.411 9.730 4.310 0.443 0.862 0.930

sw-02 35.173 23.575 0.670 30.305 18.130 0.598 0.862 0.769

tcvis-02 27.117 10.010 0.369 29.285 9.300 0.318 1.080 0.929

snx-01 26.287 24.930 0.948 25.960 23.005 0.886 0.988 0.923

Averange 0.661 0.581 0.899 0.805

Table B.4: WINE performance (Figure 4.4)

Raw Turbo x1 Turbo x2 Turbo x4 Turbo x8

catia-03 17.045 15.040 12.955 9.755 4.376

ensight-04 24.195 20.570 11.245 1.773 0.638

lightwave-01 25.530 17.385 16.345 13.473 9.841

maya-03 42.490 20.195 18.820 11.040 4.363

proe-05 4.635 4.310 3.755 3.258 2.251

sw-02 23.575 18.130 16.120 11.785 6.541

tcvis-02 10.010 9.300 8.060 6.433 1.574

snx-01 24.930 23.005 13.505 4.470 1.068

Table B.5: WINE multi-session performance

67

B.4. VIRTUAL MACHINE MONITORS APPENDIX B. TEST RESULTS

vnc1 vnc2/vnc1 vnc4/vnc1 vnc8/vnc1 vnc4/vnc2 vnc8/vnc4

catia-03 1 0.861 0.649 0.291 0.753 0.449

ensight-04 1 0.547 0.086 0.031 0.158 0.360

lightwave-01 1 0.940 0.775 0.566 0.824 0.730

maya-03 1 0.932 0.547 0.216 0.587 0.395

proe-05 1 0.871 0.756 0.522 0.868 0.691

sw-02 1 0.889 0.650 0.361 0.731 0.555

tcvis-02 1 0.867 0.692 0.169 0.798 0.245

snx-01 1 0.587 0.194 0.046 0.331 0.239

Table B.6: WINE multi-session speedup (Figure 4.5)

B.4 Virtual machine monitors

Table B.7 shows results of VMware workstation, VirtualBox and Linux.

VMWARE VirtualBox LINUX

catia-03 0.29 0 32.86

ensight-04 0.21 0 24.45

lightwave-01 4.87 0 37.54

maya-03 0.99 0 51.26

proe-05 0.09 0 9.5

sw-02 0.93 0 29.69

tcvis-02 0.05 0 26.24

snx-01 0.38 0 26.24

Table B.7: VMware workstation and Virtual Box perfomance on Linux (Figure 4.6)

68

B.5. XEN APPENDIX B. TEST RESULTS

B.5 XEN

Table B.8 shows speedups of Windows virtual machines running in XEN compared to
native Windows while table B.9 displays Linux speedups of XEN virtual machines com-
pared with native Linux.

No VNC SP VNC SP VNC-driver SP

catia-03 0.945 0.944 0.812

ensight-04 0.990 0.987 0.866

lightwave-01 0.833 0.826 0.798

maya-03 0.774 0.765 0.722

proe-05 0.785 0.795 0.791

sw-02 0.903 0.900 0.844

tcvis-02 0.996 0.992 0.847

snx-01 0.967 0.968 0.851

AVG 0.899 0.897 0.816

Table B.8: Xen performance (Figure 4.7)

x11vnc turboVNC

catia-03 0.941 0.899

ensight-04 1.004 0.981

lightwave-01 0.847 0.901

maya-03 0.856 0.818

proe-05 0.776 0.828

sw-02 0.859 0.933

tcvis-02 0.963 0.952

snx-01 0.961 0.949

AVG 0.901 0.908

Table B.9: Linux XEN speedup (Figure 4.8)

69

B.6. KVM APPENDIX B. TEST RESULTS

B.6 KVM

Table B.10 shows speedups of vfio and pcistub drivers in KVM with and without VNC
compared with its native Windows counterpart. Further, last column displays vfio Linux
X11vnc speedup compared to native Linux.

vfio-raw vfio-vnc pcistub-raw pcistub-vnc Linux-x11vnc

catia-03 0.933 0.863 0.922 0.788 1.003

ensight-04 0.966 0.933 0.947 0.865 0.986

lightwave-01 0.832 1.033 0.832 0.879 0.913

maya-03 0.816 0.847 0.813 0.791 0.952

proe-05 0.829 0.896 0.788 0.739 0.963

sw-02 0.944 0.896 0.925 0.857 0.933

tcvis-02 0.992 0.954 0.912 0.864 0.999

snx-01 0.961 0.907 0.955 0.845 0.950

AVG 0.909 0.916 0.887 0.828 0.962

Table B.10: KVM speedup (Figure 4.9)

70

B.7. VMWARE ESX APPENDIX B. TEST RESULTS

B.7 VMware ESX

Table B.11 shows results of software 3D virtual GPU in VMware ESX compared to vSGA
virtual GPU. The speedup is calculated dividing vSGA results by Software 3D results.
On the other hand, table B.12 compares VMware ESX results with vDGA virtual GPU
results. Speedup is calculated dividing vDGA results by pass-through ones. Finally
table B.13 displays speedups of XEN, VMware ESX and KVM with VNC compared to
VMware ESX with PCoIP.

Resolution 800x600 1600x1200

vGPU Soft 3D vSGA SP Soft 3D vSGA SP

proe-05 0.095 2.21 2.21 0.095 0.84 0.84

sw-02 0.36 2.86 2.86 0.19 0.78 0.78

tcvis-02 0.09 1.66 1.66 0.09 0.77 0.77

snx-01 0.06 2.16 2.16 0.04 0.5 0.5

Table B.11: Software 3D vs vSGA (Figure 4.10)

Pass-through vDGA Speedup

catia-03 28.86 32.8 1.13

ensight-04 21.68 26.905 1.24

lightwave-01 30.135 34.22 1.13

maya-03 38.695 43.58 1.12

proe-05 7.71 6.465 0.83

sw-02 29.14 29.17 1

tcvis-02 24.685 24.315 0.98

snx-01 23.955 29.355 1.22

Table B.12: Esx speedup (4.11)

71

B.7. VMWARE ESX APPENDIX B. TEST RESULTS

XEN ESX KVM

catia-03 0.880 0.880 0.934

ensight-04 0.770 0.806 0.830

lightwave-01 0.709 0.881 0.918

maya-03 0.737 0.888 0.864

proe-05 1.056 1.193 1.196

sw-02 0.930 0.999 0.988

tcvis-02 0.929 1.015 1.046

snx-01 0.815 0.816 0.869

AVG 0.853 0.935 0.956

Table B.13: PCoIP vs VNC (Figure 4.12)

72

Bibliography

[1] Keith Adams and Ole Agesen. A comparison of software and hardware techniques
for x86 virtualization. SIGARCH Comput. Archit. News, 34(5):2–13, October 2006.
ISSN 0163-5964. doi: 10.1145/1168919.1168860. URL http://doi.acm.org/10.

1145/1168919.1168860.

[2] Christopher G. Willard Addison Snell. IBM deep computing visualization. Tech-
nical report, IDC, January 2005. URL http://www-06.ibm.com/systems/jp/

deepcomputing/pdf/idc_white_paper.pdf.

[3] David Airlie. Virgil3d - a virtio based 3D GPU. Technical report, Red Hat, 2013.

[4] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. IOMMU: Strategies for
mitigating the IOTLB bottleneck. In Proceedings of the 2010 International Confer-
ence on Computer Architecture, ISCA 10, pages 256–274, Berlin, Heidelberg, 2012.
Springer-Verlag. ISBN 978-3-642-24321-9. doi: 10.1007/978-3-642-24322-6 22.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. XEN and the art of virtualization.
SIGOPS Oper. Syst. Rev., 37(5):164–177, October 2003. ISSN 0163-5980. doi:
10.1145/1165389.945462. URL http://doi.acm.org/10.1145/1165389.945462.

[6] Aaron Blasius, Pat Lee, Warren Ponder, Joel Lindberg, Rasmus Jensen,
Josh Spencer, Tommy Walker, and Vincent Wu. Virtual machine graphic
acceleration deployment guide. Technical report, VMware, 2013. URL
https://www.vmware.com/files/pdf/techpaper/vmware-horizon-view-

graphics-acceleration-deployment.pdf.

[7] Yu-Ling Chang, Denis Yuen, and kah kuen. Wine software architecture. Master’s
thesis, University of Waterloo, 2009.

[8] Darrell Commander. From tight to turbo and back again: Designing a better
encoding method for turboVNC, 2014. URL http://www.turbovnc.org/pmwiki/

uploads/About/tighttoturbo.pdf.

73

http://doi.acm.org/10.1145/1168919.1168860
http://doi.acm.org/10.1145/1168919.1168860
http://www-06.ibm.com/systems/jp/deepcomputing/pdf/idc_white_paper.pdf
http://www-06.ibm.com/systems/jp/deepcomputing/pdf/idc_white_paper.pdf
http://doi.acm.org/10.1145/1165389.945462
https://www.vmware.com/files/pdf/techpaper/vmware-horizon-view-graphics-acceleration-deployment.pdf
https://www.vmware.com/files/pdf/techpaper/vmware-horizon-view-graphics-acceleration-deployment.pdf
http://www.turbovnc.org/pmwiki/uploads/About/tighttoturbo.pdf
http://www.turbovnc.org/pmwiki/uploads/About/tighttoturbo.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[9] Darrell Commander. A study of the performance of virtualGL 2.1 and turboVNC
0.4, 2014. URL http://www.virtualgl.org/pmwiki/uploads/About/vglperf21.

pdf.

[10] Darrell Commander. Virtualgl in-depth background, 2014. URL http://www.

virtualgl.org/About/Background.

[11] Standard Performance Evaluation Corporation. Spec viewperf11, 2010. URL
https://www.spec.org/gwpg/gpc.static/vp11info.html.

[12] Stats counter. Desktop operating systems share, 2015. URL http://gs.

statcounter.com/#desktop-os-ww-monthly-201411-201510-bar.

[13] Erlon R. Cruz, Sandro Rigo, Fabiano Fidêncio, and Breno Leitao. Virtioqxl: a
virtio video device for KVM guests, 2014.

[14] Micah Dowty and Jeremy Sugerman. GPU virtualization on VMware’s hosted I/O
architecture. SIGOPS Oper. Syst. Rev., 43(3):73–82, July 2009. ISSN 0163-5980.
doi: 10.1145/1618525.1618534. URL http://doi.acm.org/10.1145/1618525.

1618534.

[15] M. Anton Ertl and David Gregg. Optimizing indirect branch prediction accuracy
in virtual machine interpreters, 2003.

[16] ETSI. Telecommunications and internet converged services and protocols
for advanced networking (TISPAN); review of available material on QoS
requirements of multimedia services. Technical report, ETSI, February
2006. URL http://www.etsi.org/deliver/etsi_tr/102400_102499/102479/

01.01.01_60/tr_102479v010101p.pdf.

[17] Matheus Santos Virgilio Almeida Jussara Almeida Fabricio Benevenuto, Cesar Fer-
nandes. A quantitative analysis of the XEN virtualization overhead. Technical
report, Federal University of Minas Gerais, Brazil, 2010.

[18] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf
Schuster, and Dan Tsafrir. ELI: Bare-metal performance for I/O virtualization. In
Proceedings of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XVII, pages 411–422,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-0759-8. doi: 10.1145/2150976.
2151020. URL http://doi.acm.org/10.1145/2150976.2151020.

[19] Eddie Dong Haitao Shan, Kevin Tian. XenGT: a software based Intel graphics
virtualization solution. Technical report, Intel, October 2013.

[20] Jacob Gorm Hansen. Blink: Advanced display multiplexing for virtualized applica-
tions, 2007.

74

http://www.virtualgl.org/pmwiki/uploads/About/vglperf21.pdf
http://www.virtualgl.org/pmwiki/uploads/About/vglperf21.pdf
http://www.virtualgl.org/About/Background
http://www.virtualgl.org/About/Background
https://www.spec.org/gwpg/gpc.static/vp11info.html
http://gs.statcounter.com/#desktop-os-ww-monthly-201411-201510-bar
http://gs.statcounter.com/#desktop-os-ww-monthly-201411-201510-bar
http://doi.acm.org/10.1145/1618525.1618534
http://doi.acm.org/10.1145/1618525.1618534
http://www.etsi.org/deliver/etsi_tr/102400_102499/102479/01.01.01_60/tr_102479v010101p.pdf
http://www.etsi.org/deliver/etsi_tr/102400_102499/102479/01.01.01_60/tr_102479v010101p.pdf
http://doi.acm.org/10.1145/2150976.2151020

BIBLIOGRAPHY BIBLIOGRAPHY

[21] Red Hat. Spice remote computing protocol definition. Technical report, Red Hat,
2009.

[22] Alex Herrera. NVIDIA GRID: graphics accelerated vdi with the visual performance
of a workstation. Technical report, nvidia, 12 2013. URL http://www.nvidia.com/

content/grid/vdi-whitepaper.pdf.

[23] HP. Advantages and implementation of HP remote graphics software. Technical
report, HP, May 2007. URL http://h20331.www2.hp.com/Hpsub/downloads/hp_

remotegraphics.pdf.

[24] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean Ahern, Peter D.
Kirchner, and James T. Klosowski. Chromium: A stream-processing framework
for interactive rendering on clusters. In Proceedings of the 29th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’02, pages 693–
702, New York, NY, USA, 2002. ACM. ISBN 1-58113-521-1. doi: 10.1145/566570.
566639. URL http://doi.acm.org/10.1145/566570.566639.

[25] ITU-T. Series g: Transmission systems and media, digital systems and networks;
international telephone connections and circuits – general recommendations on the
transmission quality for an entire international telephone connection. Technical
report, ITU-T, May 2003.

[26] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hossfeld. An evaluation of QoE in
cloud gaming based on subjective tests. In Innovative Mobile and Internet Services
in Ubiquitous Computing (IMIS), 2011 Fifth International Conference on, pages
330–335, June 2011. doi: 10.1109/IMIS.2011.92.

[27] H. Andrés Lagar-cavilla and M. Satyanarayanan. Vmm-independent graphics ac-
celeration. In In Proceedings of VEE 2007. ACM Press, 2007.

[28] Michael Larabel. Linux gaming: Native vs. WINE vs. Windows 7 performance.
Technical report, Phoronix, Dec 2010. URL http://www.phoronix.com/scan.php?

page=article&item=wine_win7_2010&num=1.

[29] Michael Larabel. NVIDIA vs. Nouveau drivers with Linux 3.18 + Mesa 10.4-devel.
Technical report, Phoronix, November 2014.

[30] Jiuxing Liu. Evaluating standard-based self-virtualizing devices: A performance
study on 10 GbE NICs with SR-IOV support. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, pages 1–12, April 2010. doi:
10.1109/IPDPS.2010.5470365.

[31] Ramesh Chandra Nickolai Zeldovich. Interactive performance measurement with
VNCplay. In USENIX 2005 Annual Technical Conference. Computer Science De-
partment, Stanford University, April 2005. URL http://suif.stanford.edu/

vncplay/freenix05-html/.

75

http://www.nvidia.com/content/grid/vdi-whitepaper.pdf
http://www.nvidia.com/content/grid/vdi-whitepaper.pdf
http://h20331.www2.hp.com/Hpsub/downloads/hp_remotegraphics.pdf
http://h20331.www2.hp.com/Hpsub/downloads/hp_remotegraphics.pdf
http://doi.acm.org/10.1145/566570.566639
http://www.phoronix.com/scan.php?page=article&item=wine_win7_2010&num=1
http://www.phoronix.com/scan.php?page=article&item=wine_win7_2010&num=1
http://suif.stanford.edu/vncplay/freenix05-html/
http://suif.stanford.edu/vncplay/freenix05-html/

BIBLIOGRAPHY BIBLIOGRAPHY

[32] Zack Rusin. Gallium3d - graphics done right. Technical report, Tungsten Graphics,
2008.

[33] Jim Salter. Benchmarking Windows guests on KVM:I/O performance. Technical
report, JRS Systems, May 2013. URL http://jrs-s.net/2013/05/17/kvm-io-

benchmarking.

[34] R. Shea and Jiangchuan Liu. On GPU pass-through performance for cloud gaming:
Experiments and analysis. In Network and Systems Support for Games (NetGames),
2013 12th Annual Workshop on, pages 1–6, Dec 2013. doi: 10.1109/NetGames.2013.
6820614.

[35] Claudio Tanci. GPU computing on virtual machines a feasibility study, April 2011.

[36] Xen Project Security Team. Non-standard PCI device functionality may render
pass-through insecure. Technical report, XEN, 2015. URL http://xenbits.xen.

org/xsa/advisory-124.html.

[37] Jean David techer. XEN 4.2.unstable: Patches/notes for VGA pass through and
NVIDIA, 2011. URL http://www.davidgis.fr/blog/index.php?2011/12/07/

860-xen-%2042unstable-patches-for-vga-pass-through.

[38] Hirt Timo. KVM - the kernel-based virtual machine, 2010.

[39] TRANSGAMING. Swiftshader: Why the future of 3D graphics is in software.
Technical report, TRANSGAMING, January 2013.

[40] Peter Senna Tschudin. Performance overhead and comparative performance of 4
virtualization solutions, 2012.

[41] Christian Vecchiola, Suraj Pandey, and Rajkumar Buyya. High-performance cloud
computing: A view of scientific applications. In Proceedings of the 2009 10th Inter-
national Symposium on Pervasive Systems, Algorithms, and Networks, ISPAN ’09,
pages 4–16, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-
7695-3908-9. doi: 10.1109/I-SPAN.2009.150. URL http://dx.doi.org/10.1109/

I-SPAN.2009.150.

[42] Ram Rajamony Juan Rubio Wes Felter, Alexandre Ferreira. An updated perfor-
mance comparison of virtual machines and linux containers. Technical report, IBM
Research, Austin, TX, July 2014.

[43] Alex Williamson. VGA assigmnet using VFIO. Technical report, Red Hat, Oc-
tober 2013. URL http://www.linux-kvm.org/wiki/images/e/ed/Kvm-forum-

2013-VFIO-VGA.pdf.

[44] Chao-Tung Yang, Hsien-Yi Wang, and Yu-Tso Liu. Using PCI pass-through for
GPU virtualization with CUDA. In JamesJ. Park, Albert Zomaya, Sang-Soo Yeo,
and Sartaj Sahni, editors, Network and Parallel Computing, volume 7513 of Lecture

76

http://jrs-s.net/2013/05/17/kvm-io-benchmarking
http://jrs-s.net/2013/05/17/kvm-io-benchmarking
http://xenbits.xen.org/xsa/advisory-124.html
http://xenbits.xen.org/xsa/advisory-124.html
http://www.davidgis.fr/blog/index.php?2011/12/07/860-xen-%2042unstable-patches-for-vga-pass-through
http://www.davidgis.fr/blog/index.php?2011/12/07/860-xen-%2042unstable-patches-for-vga-pass-through
http://dx.doi.org/10.1109/I-SPAN.2009.150
http://dx.doi.org/10.1109/I-SPAN.2009.150
http://www.linux-kvm.org/wiki/images/e/ed/Kvm-forum-2013-VFIO-VGA.pdf
http://www.linux-kvm.org/wiki/images/e/ed/Kvm-forum-2013-VFIO-VGA.pdf

BIBLIOGRAPHY

Notes in Computer Science, pages 445–452. Springer Berlin Heidelberg, 2012. ISBN
978-3-642-35605-6. doi: 10.1007/978-3-642-35606-3 53. URL http://dx.doi.org/

10.1007/978-3-642-35606-3_53.

77

http://dx.doi.org/10.1007/978-3-642-35606-3_53
http://dx.doi.org/10.1007/978-3-642-35606-3_53

	Introduction
	Motivation
	Short problem statement
	Goal
	Limitations
	Description of remaining sections

	Background
	Virtualization
	GPU Virtualization
	GPU virtualization problem
	GPU virtualization analysis

	Remote 3D rendering
	State of the art
	3D graphics on Virtualization
	3D graphics on Remote Desktop Protocols

	Previous and related work

	Method
	Problem Analysis
	Technology selection
	Virtualization technologies and virtual GPUs
	Remote display protocols

	Evaluation criteria
	Test methodology
	Benchmarking

	Case studies
	Introduction
	Test systems

	Baseline
	Linux
	Windows
	Comparison between Windows and Linux results

	WINE
	Hosted hypervisors on Linux
	XEN
	Quadro 600 tests
	Quadro 4000 tests

	Kernel based Virtual Machine
	Quadro 600 tests
	Quadro 4000 tests

	Virtual machine deployment tool
	VMware ESXi
	Software graphics GPU and API remoting GPU
	PCI pass-through and virtual Dedicated Graphics Acceleration

	Conclusion
	Future work

	Appendices
	VM deployment tool pseudo-code
	run vm
	start vm
	destroy vm

	Test Results
	Linux
	Windows
	WINE
	Virtual machine monitors
	XEN
	KVM
	VMware ESX

	 Bibliography

