
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 200 400 600 800 1000 1200 1400

12
00

10
00

80
0

60
0

40
0

20
0

0

Round Number: 220

x

y

Bringing Order to Chaos

Clustering in Wireless Sensor Networks

Master’s thesis in Computer Systems and Networks

Mattias Nilsen
André Samuelsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Bringing Order to Chaos

Clustering in Wireless Sensor Networks

Mattias Nilsen
André Samuelsson

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Bringing Order to Chaos
Clustering in Wireless Sensor Networks
Mattias Nilsen
André Samuelsson

© Mattias Nilsen, 2018.
© André Samuelsson, 2018.

Supervisor: Olaf Landsiedel, Computer Science and Engineering
Examiner: Marina Papatriantafilou, Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: An example of a network with 200 nodes, clustered by the process presented
in this thesis. Each colour represents a different cluster and the large nodes are
cluster heads.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Bringing Order to Chaos
Clustering in Wireless Sensor Networks
Mattias Nilsen
André Samuelsson
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Wireless Sensor Networks are becoming more and more popular with the decrease
in cost to manufacture sensor nodes and the increased popularity of cyber-physical
systems. One of the most significant challenges for Wireless Sensor Networks is
to minimise the energy consumption of the nodes, as their battery capacity is often
limited, and they are expected to work without human intervention for several years
at a time. Another challenge for Wireless Sensor Networks is scalability since they
may scale to thousands of nodes. Clustering is a widely used technique to both de-
crease energy consumption and increase scalability. In this thesis, we aim to increase
the network lifetime and the scalability of the A2 system, by integrating clustering
with it. Our starting point, A2, is a system which brings distributed consensus to
multi-hop networks implemented on ContikiOS. Our work consists of designing and
implementing a clustering scheme, based on the HEED clustering algorithm, to par-
tition the network and create a hierarchical communication medium. We evaluate
our work in the Cooja simulator and on the Flocklab testbed, and compare it to the
original implementation of A2 using the metrics stability, reliability, latency, and
energy usage. Our evaluation shows that we achieve similar reliability to the A2

system but lower stability. However, for the largest network we evaluated, with 200
nodes, we achieve both better latency and lower energy consumption.

Keywords: Wireless Sensor Networks, Scalability, Clustering, HEED, Chaos, A2

Synchrotron

v

Acknowledgements
We would like to thank our supervisor Olaf Landsiedel for his invaluable support
and continuous feedback during the project. We would also like to thank Beshr Al
Nahas for answering our technical questions regarding A2. Furthermore, we thank
our examiner Marina Papatriantafilou for her feedback on the report.

Mattias Nilsen & André Samuelsson, Gothenburg, August 2018

vii

Contents

List of Figures xiii

List of Tables xv

List of Algorithms xvii

1 Introduction 1
1.1 Problem and Aim . 2
1.2 Limitations . 2
1.3 Contributions . 3
1.4 Thesis Outline . 3

2 Background 5
2.1 Wireless Sensor Networks . 5
2.2 Chaos . 6

2.2.1 Synchronous Transmission . 6
2.2.2 The Initiator . 7
2.2.3 Association . 7
2.2.4 Flags Field . 8
2.2.5 Completion Flooding . 8
2.2.6 Timeout Mechanism . 8

2.3 Agreement in the Air . 8
2.3.1 The Scheduler . 9
2.3.2 Dynamic Group Membership 9
2.3.3 Frequency Agility . 10

2.4 Gossiping . 11
2.5 Clustering . 12

2.5.1 HEED . 12
2.6 Clustering Objectives . 13

2.6.1 Primary Clustering Objectives 13
2.6.2 Secondary Clustering Objectives 14

2.7 Clustering Technology Properties . 15
2.7.1 Cluster Properties . 15
2.7.2 Cluster Head Properties . 16
2.7.3 Clustering Process Properties 16

ix

Contents

3 Related Work 19
3.1 UHEED . 19
3.2 BCDCP . 19
3.3 LEACH . 20
3.4 Extreme Chaos . 21

3.4.1 Estimation Vector . 21
3.4.2 Flow Control . 22

3.5 Discussion . 22

4 Design of the Clustering Process 25
4.1 Clustering Process Overview . 25
4.2 The Clustering Service . 26

4.2.1 Designing for Scalability . 26
4.2.2 Transmission Policy with Gossiping 26
4.2.3 Election of Cluster Heads . 26
4.2.4 The Final Phase . 28
4.2.5 Configuration Parameters . 29

4.3 Joining Clusters . 30
4.4 Demotion of Cluster Heads . 30
4.5 Communication . 31

4.5.1 Intra-cluster . 31
4.5.2 Inter-cluster . 31

4.6 Clustering Objectives and Properties 32
4.7 Discussion . 33

4.7.1 Comparing the Clustering Service’s Communication to Gos-
siping . 34

4.7.2 Limiting the Number of Cluster Heads 34
4.7.3 The Final Phase . 35
4.7.4 The Cost Function . 35
4.7.5 Separating Cluster Communication 36
4.7.6 Clustering Risks A2’s Fault Tolerance 36

5 Implementing Clustering in A2 37
5.1 Modifications to A2 . 37

5.1.1 Flags Field for Cluster Heads 37
5.1.2 Separating Communication Between Clusters 38
5.1.3 Forwarders During Cluster Head Rounds 38
5.1.4 Initiating Communication in a Clustered Network 39
5.1.5 Interaction Between Services 40

5.2 The Clustering Service . 40
5.2.1 The Clustering Service Packet Payload 41
5.2.2 The Catch-up Mechanism . 41
5.2.3 The Demote Service . 43

5.3 Discussion . 43
5.3.1 Destructive Interference During CH Rounds 43
5.3.2 Forwarders during CH rounds 44
5.3.3 Fault Tolerance for Dynamic Initiators 44

x

Contents

5.3.4 Clustering Without Completion Flags 45
5.3.5 Completion Flags during Cluster Head Rounds 45

6 Evaluation 47
6.1 Evaluation Setup . 47

6.1.1 The Cooja Simulator . 47
6.1.2 The Flocklab Testbed . 48
6.1.3 Metrics . 48
6.1.4 Limitations . 50

6.2 Clustering Parameters . 51
6.2.1 Round Re-synchronisation Threshold 51
6.2.2 Competition Radius . 53
6.2.3 Minimum Cluster Size . 54
6.2.4 Nodes per Cluster Ratio . 55

6.3 Comparing A2 with Clustered A2 . 56
6.3.1 Reliability and Stability . 57
6.3.2 Latency . 57
6.3.3 Energy . 58
6.3.4 Flocklab . 59

6.4 Discussion . 60
6.4.1 Stability and Fault Tolerance 60
6.4.2 Clustering Parameters . 62
6.4.3 Running Other Applications in a Clustered Network 63
6.4.4 Achieving Better Scalability 64

7 Conclusion 67
7.1 Future Work . 67

7.1.1 Sleep Schemes . 67
7.1.2 Transmission Power . 68
7.1.3 Fault Tolerance . 68
7.1.4 Measuring Throughput . 68
7.1.5 Using Other Clustering Algorithms 68

Bibliography 69

A Appendix 1 I
A.1 Re-synchronization Latency Results I
A.2 Parameter Latency Plots . II

B Appendix 2 III
B.1 Parameter Values for the A2 Comparison III

xi

Contents

xii

List of Figures

2.1 An example of a Chaos round were three nodes reach consensus on
the maximum of three proposed values [3]. 7

2.2 The original A2 architecture [4]. 9
2.3 The Join service exemplified using three nodes [4]. 10

5.1 Layered system architecture of A2 [4]. Shows the placement of
the Cluster and Demote services. The Cluster module in Synchrotron
handles per-cluster channel hopping and dynamic assignment of ini-
tiators. The Clustering and Demote services in A2 contains the logic
for electing and demoting cluster heads respectively. 38

5.2 The network on the right has elected the cluster heads in the CH list.
Shown here is how Node 6 uses the flags field during CH and cluster
rounds. The symbol ’x’ represents the index which Node 6 uses as
its flag, and the symbol ’-’ represents flag indices which are in use by
other nodes. An empty box indicates that the index is not used. In
the CH-round CHs uses the index from the CH-List. During a cluster
round each CH will be an initiator and use index 0. 39

5.3 An example network and its application map. Showing which appli-
cations the network executed, and which nodes are initiators during
the different phases. 40
a The first 50 rounds for a network with 10 nodes, and which

application each node is running. Node 1 is the initiator and
thus runs the Clustering service in round 1 while the rest of
the nodes associates with it. 40

b Locations of the ten nodes showing three different initiator
setups. Node 1 is initiator rounds 1-20 and 25-30. Nodes 5
and 9 are initiators in rounds 21-24, 31-36 and every cluster
(odd) round in the interval 37-50. Node 5 is the initiator in
every CH (even) round in the interval 37-50. 40

6.1 Resynchronisation threshold tests for different values of Competition
radius. Both reliability and stability increases as the re-sync threshold
increases. 53
a Re-synchronisation threshold 1. 53
b Re-synchronisation threshold 2. 53
c Re-synchronisation threshold 3. 53

xiii

List of Figures

6.2 The reliability and stability for different network sizes. Each network
size has been tested with competition radius 1, 2, and 3. 54

6.3 The reliability and stability for different network sizes. Each network
has been tested with minimum cluster size values off, 2, and 4. 55

6.4 Shows the number of CHs after the clustering process has finished,
and the number of demoted CHs. 55

6.5 The reliability and stability for different network sizes. Each network
size has been tested with max node count off, 5, 10, and 15. 56

6.6 The number of elected CHs before the Demote service runs, and the
number of demoted CHs. 56

6.7 Reliability and stability comparison between A2 with clustering and
original A2. 58
a Networks with 50 nodes. 58
b Networks with 200 nodes. 58

6.8 Latency comparison between A2 with clustering and original A2. . . . 59
a Networks with 50 nodes. 59
b Networks with 200 nodes. 59

6.9 Energy comparison between A2 with clustering and original A2. . . . 59
a Networks with 50 nodes. 59
b Networks with 200 nodes. 59

6.10 The results of running A2 and our clustering implementation on the
Flocklab testbed. We show the mean and min/max for stability and
reliability, and the mean and standard deviation for latency and en-
ergy consumption. 60
a Reliability. 60
b Stability. 60
c Latency. 60
d Energy. 60

6.11 Example of what happens when a node requests the Join service to
be scheduled, blue is the correct application, green is the Join ser-
vice, and yellow is the Clustering service. The first cluster repeatedly
schedules the Join service without any effect. 61

A.1 Competition radii tests for different values of resynchronisation thresh-
old. I
a Re-synchronisation threshold 1. I
b Re-synchronisation threshold 2. I
c Re-synchronisation threshold 3. I

A.2 The latency results for the parameter tests. II
a Competition radius. II
b Minimum cluster size. II
c Nodes per cluster ratio. II

xiv

List of Tables

2.1 An overview of primary and secondary clustering objectives [5]. . . . 13
2.2 Cluster properties and their options. 15
2.3 Cluster head properties and their options. 16
2.4 Clustering process properties and their options. 17

4.1 Our primary and secondary clustering objectives. 32
4.2 Our properties related to clusters, cluster heads and the clustering

process. 32

5.1 The parameters and their sizes in the Clustering service packet payload. 41
5.2 Probability that a node has announced itself as CH in a specific round

without the Catch-up mechanism. 42
5.3 Probability that a node has announced itself as CH in a specific round

with the Catch-up mechanism. 42

6.1 The parameters we evaluate and their default values 50

B.1 List of topologies with 50 nodes and the competition radius used for
each topology. III

B.2 List of topologies with 200 nodes and the nodes per cluster ratio used
for each topology. III

xv

List of Tables

xvi

List of Algorithms

1 The repeat phase adaptation of the HEED algorithm. It shows how
a node elects to announce itself as cluster head. The algorithm is
adapted for A2 in two ways. We utilise our parameter nodesPerClusterRatio
at Line 3 and set the announcement slot at Line 15. 28

2 The final phase of the clustering algorithm. The only edit from the
original HEED final phase is the usage of pickBestCH, which is our
definition of the cost function that the HEED algorithm requires. . . 29

3 Our cost function for picking the best cluster head. 30

xvii

List of Algorithms

xviii

1
Introduction

The technology of Wireless Sensor Networks (WSNs) is an active research area [1, 2];
it enables small low-powered computer nodes to work in cooperation. The first
application of Wireless Sensor Networks was for different military applications such
as target tracking and troop movements [1]. However, WSNs have quickly expanded
to many other fields, such as natural disaster tracking and weather monitoring.
The nodes are battery powered, with limited processing and storage capabilities.
Equipped with a low-power radio, they can communicate with other nearby nodes.
They also use sensors to collect data about the environment around them. This
data is then used as input into some computation and either forwarded to a base
station or disseminated throughout the network.

One advantage of WSNs is the ability to deploy nodes in the network in an ad
hoc manner. Furthermore, the nodes’ low powered nature make them inexpensive
to manufacture. However, there are multiple challenges which require thorough
consideration when implementing protocols for a WSN [1]. Since nodes are battery
powered, they should restrict the time they spend sending, receiving, and processing
data. Another difficulty is maintaining high message propagation speed while not
congesting the network. Additionally, scaling is a challenge and restrictions on the
number of nodes that can participate in a WSN appear in many forms. For example,
the maximum size of the transmitted packets, the communication protocol, and the
network topology, can all impact the scalability of a WSN.

The Chaos protocol [3], presented in 2013, is the first protocol built for WSNs to
have native support for all-to-all data sharing. Chaos builds on two core mecha-
nisms: synchronous transmissions and user-defined merge operators. Synchronous
transmissions mean that the nodes in a network follow a global schedule that tells
them when to wake up and either transmit or receive data. User-defined merge op-
erators consist of some code that defines how a node processes and merges received
data. For example, calculating the maximum value over a set of proposed values. By
using these two mechanisms, a node running the Chaos protocol can independently
decide what action to perform in the next slot: sending data or receiving data. Ad-
ditionally, the nodes perform all processing (the execution of a merge operator) as
part of the network protocol after they transmit or receive data.

Further development of the Chaos protocol resulted in A2 [4]. A2 addresses some
shortcomings of the Chaos protocol and also introduces the A2 Synchrotron, a syn-

1

1. Introduction

chronous transmission kernel which has several features: frequency hopping, high
precision time synchronisation, and the ability to schedule multiple applications to
run in the network at different intervals. On top of Synchrotron, A2 implements dis-
tributed consensus protocols such as two- and three-phase commit. Due to the new
communication model in Chaos and the new features in the A2 system, both Chaos
and A2 shows significant improvement in performance and reliability compared to
similar protocols [3, 4].

A typical way to improve the network lifetime and scalability in WSNs is to use
clustering [5, 6]. Clustering is the practice of electing a set of nodes as Cluster Heads
(CH) and assigning each remaining node to one of these CHs. Nodes selecting the
same CH belong to the same cluster and will only communicate within that subset
of the network. The benefit of clustering is primarily reducing the number of packet
transmissions and consequently the amount of data the network has to handle.
Since each CH only has to communicate with a subset of the network, the number
of packet transmissions in each cluster is reduced by a factor approximately equal
to the number of CHs in the network. Furthermore, the CHs can aggregate and
filter out redundant data from within their clusters, before forwarding it to a base
station, or disseminating the aggregate to the network.

1.1 Problem and Aim

Building on A2 Synchrotron, we aim to increase network lifetime and improve scala-
bility while maintaining A2’s high probability of reaching consensus, which is higher
than 99%. To achieve these goals, we extend A2’s design with a clustering mecha-
nism. We evaluate the implementation of the new design and compare it to the A2

Synchrotron using the following metrics:

• Reliability measures the success rate of an application running on the network.

• Stability measures the number of topology changes that occur for the network.

• Latency measures how quick a network executes an application and terminates.

• Energy usage measures the energy consumed by the radio and CPU of a node.

1.2 Limitations

We impose several limitations on the design and implementation of our clustering
algorithm. We will not design a new clustering algorithm specifically for the A2

system. We will consider an existing clustering algorithm and only make minor
modifications to implement the algorithm on the A2 system. Furthermore, we will
only provide a reference implementation for the Clustering service, and not imple-
ment features such as fault tolerance for crashing nodes or corrupted data.

2

1. Introduction

1.3 Contributions

In this thesis, we make the following contributions.

• We design a clustering scheme for the A2 system, based on the HEED algo-
rithm [7].

• We provide an implementation of the clustering scheme in Contiki OS [8].

• We evaluate our reference implementation in Cooja [9], the simulator for Con-
tiki OS, and on the Flocklab testbed [10].

1.4 Thesis Outline

We organise the rest of this thesis as follows. In Chapter 2 we introduce WSNs,
Chaos and the A2 system, as well as the areas of clustering and gossiping. In Chap-
ter 3 we present research on clustering and another thesis attempting to increase
the scalability of Chaos. In Chapter 4 we present our design of the clustering imple-
mented on top of A2. In Chapter 5 we talk about the implementation specific details
and issues encountered while implementing clustering on top of A2 in Contiki. In
Chapter 6, we present our evaluation of the clustering algorithm and comparison to
the existing A2 system. Finally, in Chapter 7, we conclude and list future work.

3

1. Introduction

4

2
Background

In this chapter, we introduce the technology of Wireless Sensor Networks, the Chaos
protocol, the A2 system, and gossiping protocols. Furthermore, we explain what
clustering is and provide insight into different objectives when clustering to a net-
work. Finally, we present a categorisation of properties for clustering algorithms.

2.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) consists of many small low powered computer
nodes equipped with sensors, cooperatively working towards a goal. Typical applica-
tions include target tracking for the military, monitoring the weather, and tracking
natural disasters [1]. There are several characteristics of a WSN that introduces
challenges. However, they are also at the core of what makes WSNs useful. Ex-
amples of these characteristics are the low power nature and ad hoc deployment of
the nodes. A typical node consists of four hardware units: sensors, processor, radio,
and power [11], there can also be additional units for generating power or sensing
its location.

One of the primary objectives of a node is to preserve as much battery power as
possible. Therefore, the hardware often has limited capabilities, restricting both the
radio communication range and the processing power [12]. An example of a node
that we use in this thesis is TMote Sky [13], which has a CPU speed of 8MHz, 10KB
RAM, and 48KB of flash storage. There are several ways to measure the lifetime of
a WSN, and a typical measurement is the time until the first node has used up all its
energy reserves and powers down. However, other measurements include the time
until at least one node loses connection with the network, time until the network
loses connection with a base station, or when a percentage of nodes have powered
down.

Since the nodes are deployed in an ad hoc manner and use restricting hardware, an
essential aspect of any protocol running on a WSN is fault tolerance. The protocol
has to be able to handle a variety of failures such as packet loss due to interference
or transmission error, node failures due to battery depletion, or other transient
faults [2]. Moreover, in multi-hop networks that require forwarders, packets pass
through several nodes, increasing the probability for these failures to occur before

5

2. Background

reaching the intended destination. There are two primary categories for achieving
fault tolerance in WSN protocols: retransmission and redundancy [2]. In a protocol
based on retransmission, each node waits for an acknowledgement of each packet it
sends; if it receives none, the node will retransmit the packet. A protocol based on
redundancy, on the other hand, includes extra bits in the packet which are used to
detect, and sometimes even correct, faulty bits in any packets received.

2.2 Chaos

The Chaos protocol is the first WSN protocol that supports native all-to-all com-
munication without sequential phases for collection, processing, and dissemination
of information [3]. Traditionally, every node in the network schedules these phases
at the same time, even if some nodes do not require it. In Chaos, on the other
hand, every node independently decides what action to perform (transmit or receive
data). However, all nodes perform one of these actions at the same time to enable
them to communicate with each other without a central coordinator; this is called
synchronous transmissions.

The smallest time component in the Chaos protocol is a slot, in which every node
performs one of two actions: transmit or receive. At the end of a slot, every node
decides what their action will be in the next slot. A node will transmit in the
subsequent slot if it receives a packet with less or more information than itself. In
the first case, it tries to spread its information to the node which sent a packet with
less information. In the other case, a node merges the new information with its local
data and then transmit in the next slot. A node will listen in the next slot if one
of three scenarios happened in the previous slot: if it was transmitting, if it did not
receive a packet, or if it received a packet but the packet did not contain any new
information.

Next, Chaos combines multiple consecutive slots to create a round. During one
round, Chaos executes one application. For example, the Max application in which
all nodes spread their ID across the network and the merge operator executed on
packet reception returns the maximum between the received number and a nodes
local state. The number of slots in a round depends on the network size, a network
with more nodes requires more slots.

2.2.1 Synchronous Transmission

Synchronous transmissions mean that all nodes execute rounds and slots at the
same time. In Fig. 2.1 time progresses towards the right, and we see that all slots
are aligned. This transmission scheme enables Chaos to benefit from two physical
phenomena:

The capture effect occurs when packets are colliding (received at the same time
by one node). If one signal is at least 3dBm stronger and the timing between the

6

2. Background

Figure 2.1: An example of a Chaos round were three nodes reach consensus on the
maximum of three proposed values [3].

packets are within a certain threshold, a node will correctly decode the stronger
signal, and ignore the weaker one [14]. Due to this effect, if a node receives two
transmissions at the same time, one of them will, with high probability, be decoded
correctly.

Constructive interference occurs when multiple nodes are transmitting the same
packet at the same time. If that happens, the resulting signal strength is increased,
which increases the probability that the packet will be received correctly by listening
nodes.

2.2.2 The Initiator

In Chaos, a preconfigured node called the initiator needs to be present, node A in
Fig. 2.1. The initiator is the node which initiates communication in a round. It also
determines parameters such as what application to run and timing parameters for
slots and rounds. All other nodes exclusively listen for packets until one is received
which has propagated from the initiator. Both when the network boots up, and at
the beginning of every round.

2.2.3 Association

When the network is booting, the nodes perform a process called association. Dur-
ing this time all nodes, except for the initiator, constantly listens while randomly
choosing the radio channel, until they receive a packet with which they can synchro-
nise. From this packet, a node learns timing parameters, the next application, slot,
and round number. A node will also enter association when it has not received a
valid packet for a configurable number of rounds, depending on the application that
is running in the network.

7

2. Background

2.2.4 Flags Field

The flags field is used by a node to keep track of which nodes have contributed
during a round. It is a list of boolean values and can be seen in Fig. 2.1, marked
as flags. Each node in the network corresponds to an index in the list. At the start
of a round, the initiator sets the value at its index to true. As packets propagate
through the network, other nodes also set the value of their indices to true. Once a
node has merged a received packet which sets all values in the flags field to true it
knows that all nodes in the network have participated and the information it has is
a complete view from the network.

The Chaos protocol has a limitation to its scalability due to the flags field. Since
every node requires a 1-bit space in the flags field, if there is an upper limit on the
packet size imposed by either the link-layer protocol or the nodes, the number of
nodes in the network is limited by the maximum size of the packet.

2.2.5 Completion Flooding

Completion flooding is executed at the end of a round if a node notices that all
flags in the packet are set to true. Once in this phase, the node broadcasts its
completed packet every other slot for a configurable number of slots. Aggressively
transmitting the packet causes neighbouring nodes to reach completion which causes
them to enter the completion phase. Since all nodes in this phase broadcast the same
packet, the signal benefits from constructive interference which makes the signal of
the complete packet stronger causing the capture effect to apply more often.

2.2.6 Timeout Mechanism

To prevent premature termination a timeout mechanism triggers if a node has not
received a packet for some number of slots. Premature termination is when some
nodes do not have all the information, but the communication has stopped. The
number of slots is selected randomly by each node from an interval. When a node
reaches that timeout, the node transmits a packet. If nearby nodes see that a node
near them has less information than they do, they will transmit in the next slot,
and thus communication is restarted.

2.3 Agreement in the Air

As the original implementation of Chaos has much potential, further research con-
ducted by Al Nahas et al. [4] resulted in the A2 Synchrotron. A2 is a layer that
provides services to the application layer, as seen in Fig. 2.2. The Synchrotron
kernel is a further development of Chaos. In this section we, First, describe the

8

2. Background

Radio Device Driver / HW A Radio Device Driver / HW B

VHT & Slotted
Design

Crypto.
Functions Scheduler Parallell

Channels
Channel
Hopping

Synchrotron

2-PC

A2

3-PC Join Leave Key
Rollout

Hopping
Seq. Rollout

Collection Dissemination Voting Aggregation

Applications

Figure 2.2: The original A2 architecture [4].

scheduler in Synchrotron. Second, we cover the dynamic group membership pro-
vided by A2’s Join and Leave services. Last, we explain how Synchrotron achieves
frequency agility with parallel channels and channel hopping. The remaining archi-
tecture description shown in Fig. 2.2 is explained in [4].

2.3.1 The Scheduler

The scheduler in A2 allows the initiator to schedule multiple applications dynami-
cally. During each round, the initiator sets a next app field in the packet to instruct
the rest of the network which app should run in the next round. With the scheduler,
a network can run multiple applications or services at different intervals, without
any interference between applications. The scheduler also facilitates the scheduling
of the dynamic group membership, scheduling the Join and Leave services as needed
when nodes either request to join or disappear from the network.

2.3.2 Dynamic Group Membership

Dynamic Group Membership is implemented using the Join service, which allows the
network to assign indices for nodes in the flags field dynamically. A node wanting to
join the network sets the join flag in the packet header. Once the initiator receives a
packet with a join flag, in say round r, it will in round r+1 tell all nodes to schedule
the Join service for round r + 2. The join round runs in two phases, collect and
disseminate. We show an example of the Join service with three nodes in Fig. 2.3.

The Collect Phase is the first phase, where the network constructs a list in which
nodes that want to join the network adds their node ID. The initiator will switch to
the second phase (Slot 5 in Fig. 2.3) when it notices full participation of the network
and does not record any changes to the join list for a couple of slots, or if the list is
full.

9

2. Background

Figure 2.3: The Join service exemplified using three nodes [4].

The Disseminate Phase is the second phase, where the initiator assigns each new
node an index in the flags field. The initiator then disseminates the join list with
updated information about the joining nodes flag indices. Each joining node can
now set the flag in their index as an acknowledgement (C sets its flag in Slot 7).
In case a node misses the dissemination, it will request another join round and be
assigned the same flag index again.

The Leave service removes nodes from the flags field if they do not participate for
a set number of rounds. When it triggers, a join round is scheduled to disseminate
the information about what nodes are present. The Leave service ensures that
disappearing nodes does not hinder the completion phase.

2.3.3 Frequency Agility

In the presence of interference, the performance of A2 degrades. Al Nahas et
al. solves this by introducing frequency hopping and parallel channels.

Frequency hopping consists of each node switching which radio channel they use
to transmit and receive data in unison in every slot. By switching channels, using
the default hopping sequence from the IEEE 802.15.4e standard [15], the network
avoids interference from other network traffic, which might occupy a single channel,
allowing A2 to exist side-by-side with other wireless systems.

Parallel Channels alleviates the issues caused by having a dense network with
many nodes transmitting simultaneously in the same area. Many simultaneous
transmissions on the same frequency cause interference, which damages the proba-
bility of packet capture. Synchrotron allows for a configurable number of channels
from which nodes pick randomly in each slot to use for reception or transmission.
The number of parallel channels require configuration and could damage the perfor-
mance of a network if it is set too high or low.

10

2. Background

2.4 Gossiping

Gossiping, presented by Demers et al. [16] in 1987, is an effective and straight-
forward method for disseminating updates throughout a large distributed system.
Gossip algorithms are also called epidemic algorithms since they work similarly to
how diseases spread, thus, gossiping borrows some terminology from epidemiology.
For example, a node with new information is infective, and a node unaware of that
update is susceptible to that node. Gossip algorithms spread updates using ele-
mentary actions called push and pull. One common problem is that nodes cannot
know when the network has reached consensus; however, networks that use gossip
protocols have eventual consistency.

During one gossiping round, a node either pushes or pulls updates from a uniformly
random selected node. Both actions are required to infect all nodes effectively; the
argument for this is intuitive: Consider a network with n number of nodes. A new
update originating at node u is hard to find for all other nodes since the probability
to select u is 1

(n−1) . However, if u decides to use the push action, it is sure to infect
another node. Moreover, as the number of infected nodes grows to more than n

2 , the
push action has less than 50% probability of infecting a susceptible node. However,
the susceptible nodes have greater than 50% probability of selecting an infected node
when they use the pull action.

Using a push and pull scheme to spread updates throughout a distributed system
is effective. However, if the nodes in the system communicate using direct com-
munication in every round, a gossiping algorithm cannot achieve both time- and
communication-optimality [17], that is, completing in only O(log n) rounds using
only O(n) messages. Karp et al. [17] investigate this problem, and they show that
every algorithm that spreads a rumour in O(ln n) rounds needs ω(n) transmissions,
where n is the number of nodes in the system.

In further developments of gossiping protocols, it is possible for nodes to only have
a partial view of the network, called a group, as described by Eugster et al. [18].
Every message sent is piggybacked with information about what nodes the transmit-
ter knows about, allowing a receiver to update its membership group dynamically,
replacing some nodes in its group with some of the newly received ones to maintain
an average group size. When a new node wants to join the network, it contacts
either an arbitrary or dedicated node, which is called the bootstrapping node. The
bootstrapping node first decides if it should save the new node to its group and then
forwards the information about the new node to its group members. Each member
then repeats the same process recursively up to a configured depth, which depends
on the size of the group. The new node initialises its group with the bootstrapping
node and then add nodes to its group dynamically using the information that is
piggybacked in every packet.

Only maintaining a partial view of the network improves scalability as it, in larger
networks, becomes infeasible for a node to maintain information about all nodes. In
exchange for scalability, the algorithm loses reliability. The reason for this is that

11

2. Background

the larger the view of the network a node has, the less the risk is for partitioning to
occur [18].

2.5 Clustering

Clustering is the task of partitioning a network and electing nodes, called Cluster
Heads (CH), which are responsible for a network-wide communication overlay [6].
All other nodes only communicate within their cluster. Each CH retains information
from its cluster and forwards that to other CHs or a base station. A base station
is not a sensor node; it is not battery powered and usually only collects data from
other nodes. In some networks, there is no base station; the aim is instead to inform
all nodes in the network of the calculated values. In either case, it is the job of the
CH to make sure that the relevant parties get the final value.

A phenomenon that can occur when nodes or CHs are using a many-to-one commu-
nication pattern, such as when aggregating data to a base station, is the hot spot
problem [19]. Nodes that are closer to the base station will need to handle more
network traffic, and this can lead to them depleting their energy earlier than other
nodes in the network. In the worst case, this can cause the network to become cut
off from the base station entirely, completely disabling the network.

Clustering can be beneficial in several aspects; we list some objectives of clustering in
Section 2.6. One of the most critical components of a WSN is its energy consumption
and using the radio to transmit and receive data is generally the most expensive
operation of a node [20]. Clustering has been shown to decrease the amount of
communication, making clustering an excellent candidate to preserve energy in a
WSN.

2.5.1 HEED

In this thesis, we base our work on the HEED algorithm [7], a probabilistic algorithm
with the primary objective of saving energy. To this end, HEED uses residual node
energy as its main parameter to elect CHs and intra-cluster communication cost as its
second parameter. An example of intra-cluster communication cost is the number of
nodes that have already joined a cluster. In HEED, the clustering algorithm executes
at regular intervals ranging from seconds to hours depending on the application the
network is running and how significant the increase in energy consumption is for
CHs.

At the start of the clustering algorithm, each node sets an initial probability to, for
example, Cprob = 5%. Then, the node applies its proportion of residual energy as
weight according to

CHprob = Cprob ∗
Eresidual

Emax

12

2. Background

to calculate its probability of becoming CH. Where Eresidual and Emax is the residual
energy and the maximum possible energy respectively. The value of CHprob is limited
by a carefully selected lower bound, inversely proportional to the value of Emax to
ensure that the algorithm terminates in O(1) time. At the end of every iteration of
the algorithm, this probability is doubled, until the algorithm terminates or CHprob

reaches 1.

Furthermore, there are two stages for any node announcing itself as CH; a node
first becomes a tentative CH until it either resigns or becomes a final CH. A node
announces itself as a tentative CH with probability CHprob if it has not heard from
any other CH and becomes a final CH if CHprob = 1. A CH resigns from being
tentative if it finds another CH to join with lower cost than itself. Last, if a node
reaches the end of the algorithm without hearing a final CH, it will announce itself
as a final CH to ensure that CHs cover the whole network.

2.6 Clustering Objectives

There are two categories of clustering objectives, primary and secondary, and when
designing a clustering algorithm achieving one or more of the primary objectives
is often the goal. In contrast, the secondary objectives are usually not targeted
explicitly in the algorithm design, but instead often indirectly achieved when clus-
tering the network [5]. We list some common primary and secondary objectives in
Table 2.1.

2.6.1 Primary Clustering Objectives

All the primary objectives are usually desired when implementing a clustering algo-
rithm. However, it can be difficult to achieve all of them at the same time. There
are often trade-offs between the objectives, and instead, it is common to only target
a few of them.

Scalability is a consequence of clustering since the network is partitioned, making
the network artificially less dense. Factors that need to be considered when designing

Table 2.1: An overview of primary and secondary clustering objectives [5].

Clustering Objectives
Primary Secondary
Scalability Increased connectivity

Fault-tolerance Reduced routing delay
Data aggregation/fusion Collision avoidance

Load balancing Using sleep schemes
Stabilised network topology
Maximal network lifetime

13

2. Background

for scalability include network density and routing delays.

Fault tolerance is often a requirement for mission-critical applications. A clus-
tering algorithm can be fault tolerant by periodically reclustering the network. If
a node dies and some part of the network loses connectivity, a reclustering can
reconnect the network again.

Data aggregation/fusion is the act of filtering out redundant data at some point
before it reaches its destination. If the application a WSN is running is only inter-
ested in the average, or otherwise redundant data is sent, the CH can filter out that
data and decrease the number of packets transmitted.

Load balancing is achieved by periodically changing the nodes that are CHs. As-
suming that being a CH requires more battery, load balancing will increase the total
lifetime of the network since the CH role is distributed among all nodes.

Stabilised network topology concerns the mobility of nodes. If a node moves and
switches cluster, the CH can register this change and keep the network topology up
to date.

Maximal network lifetime is a common objective often, in part or entirely, caused
by the other objectives. For example, proper load balancing means avoiding early
node deaths, and data aggregation means the network can filter unnecessary traffic.
Both of these properties work towards an energy efficient cluster which implies an
extended network lifetime.

2.6.2 Secondary Clustering Objectives

The secondary objectives are not usually a target when implementing clustering
algorithms but rather achieved indirectly by targeting the primary objectives.

Increased connectivity is achieved since in a clustered network only the CHs
need to be connected to each other. All other nodes only have to be connected
to their cluster, which relaxes the requirement for a network to be considered fully
connected.

Reduced routing delay is desired for some applications, packets need to arrive
within a specified time limit; this can be a challenge in a widespread WSN. With
clustering, the communication within a cluster can arrive faster since the clusters
are smaller and closer together than the network as a whole.

Collision avoidance is achieved since transmission collisions may cause packet loss,
which is energy wasted on doing nothing. To minimise packet loss, clusters can split
their communication between different radio channels or different time slots.

Using sleep schemes can be beneficial since in some applications there is no need
for the whole network to be active all the time. For example, some nodes might only

14

2. Background

Table 2.2: Cluster properties and their options.

Cluster Properties
Property Options

Cluster size Equal
Unequal

Cluster count Constant (preset)
Variable

Intra-cluster communication Single-hop
Multi-hop

Inter-cluster communication Single-hop
Multi-hop

provide routing paths. In this case, all paths need not always be active. Letting
some nodes sleep prolongs the network lifetime.

2.7 Clustering Technology Properties

There exist several ways of categorising the properties that define clustering algo-
rithms. Afsar et al. [5] describe three main categories: Cluster properties, Cluster
Head properties and Clustering process properties. Here, we summarise each cate-
gory and list the properties within each of them.

2.7.1 Cluster Properties

The cluster properties summarised in Table 2.2 describe properties of the clusters
the algorithm creates.

The size of clusters can be tailored to be either equal or unequal. In an equal
clustering algorithm the algorithm will enforce an equal size on all clusters while in
an unequal algorithm the clusters will vary in size according to some criteria, for
example, distance to a base station; if a cluster is closer to a base station, the cluster
size will be smaller.

The number of clusters can be either fixed or variable. When it is variable, it
could be due to a probabilistic CH election process. A fixed number of clusters is
usually a property that centralised algorithms have.

The communication distance can be either single-hop or multi-hop for both
intra-cluster and inter-cluster communication. Inter-cluster requires multi-hop com-
munication when the number of CHs are few and spread out since they will need
help with forwarding to reach the other CHs. Intra-cluster communication needs to
be multi-hop when there is a bound on the number of CHs since every node might
not be able to reach a CH in a single hop.

15

2. Background

Table 2.3: Cluster head properties and their options.

CH Properties
Property Options

Mobility Mobile
Stationary

Node types Homogeneous
Heterogeneous

Role Relay
Aggregation/Fusion

2.7.2 Cluster Head Properties

The cluster head properties listed in Table 2.3 define different behaviours for the
cluster heads.

The mobility of a node is either mobile or stable. A mobile CH could induce
frequent topology changes, which adds overhead.

The node type is either homogeneous or heterogeneous. A network with heteroge-
neous nodes means some nodes have additional resources. The additional resources
could be a higher energy reservoir, increased computing power or increased trans-
mitting range, which could make the node more suitable to be CH.

The role of a CH is either only to relay messages or to both relay messages and
perform the same operations regular nodes do, such as collecting and aggregating
data.

2.7.3 Clustering Process Properties

The clustering process describes the properties used to create a cluster, these prop-
erties are often more high level and describe the process as a whole. The clustering
process properties are summarised in table Table 2.4.

The method used for clustering can either be distributed or centralised. A dis-
tributed algorithm has the potential to create clusters faster since each node can
make local decisions. However, a centralised approach can create more optimised
clusters since it has a global view of the network.

CH election can either be preset, random or attribute based. Preset is when the
clustering is configured before the network is deployed. The opposite of a preset
approach is a random approach, letting the nodes become cluster heads with a
certain probability. Last, nodes may select CHs with a more complicated process
using attributes such as remaining energy or the number of neighbours.

The algorithm complexity is either constant or variable. A constant complexity
means setup time is not dependent on network size while a variable time algorithm

16

2. Background

could converge on better choices for cluster heads.

The nature of the clustering process can either be proactive or reactive. Proactive
means that it does not consider what application will run on it. In contrast, it can
also be reactive meaning it tries to optimise the cluster for a specific application and
the data flow required by it.

The dynamism of the algorithm can be either dynamic or static. In a dynamic
approach, CHs are elected based on the current conditions of the network while
a static approach would yield the same result regardless of when the algorithm is
executed.

Table 2.4: Clustering process properties and their options.

Clustering Process
Property Options

Method Distributed
Centralised

CH election
Preset
Random
Attribute based

Algorithm Complexity Constant
Variable

Nature Proactive
Reactive

Dynamism Dynamic
Static

Objectives See table 2.1

17

2. Background

18

3
Related Work

There is a variety of research on how to increase scalability and energy efficiency in
Wireless Sensor Networks. In this section, we present a few clustering algorithms to
highlight their key ideas, similarities, and differences. We also present research that
improves the scalability of the Chaos protocol using estimation vectors. Finally, we
end with a discussion and comparison to our clustering process.

3.1 UHEED

In Section 2.5.1, we present HEED, a probabilistic, equal clustering algorithm. Un-
equal HEED (UHEED) [21], presented in 2012, builds on HEED and makes the
algorithm unequal to solve the hot spot problem. This is the only difference to the
HEED algorithm.

UHEED creates smaller clusters closer to the base station to mitigate the hot spot
problem. The idea is that CHs that are closer to the base station will need to route
more traffic from other clusters and thus have a higher energy consumption than a
CH further away from the base station.

The clusters get progressively smaller by defining a competition radius, which is the
area a node considers when choosing CH. UHEED uses a formula to calculate the
competition radius, developed by Lie et al. [22], that uses the maximum distance
between nodes and the distance to the base station as parameters. Evaluations of
UHEED showed that it has an equal or better performance in virtually every case
when compared to state of the art clustering algorithms [21].

3.2 BCDCP

Base-station Controlled Dynamic Clustering Protocol [23] is a centralised and dy-
namic clustering protocol presented in 2005. The clusters are created by a base
station, with much higher energy levels and better computational power than the
nodes, which enables the algorithm to leverage global properties of the network to
create efficient clusters.

19

3. Related Work

BCDCP uses a four-step process, executed iteratively until the target number of
clusters is reached. The process begins by collecting a set S of nodes with higher
than average energy levels, which are candidate CHs. Then execute the following
steps.

1. Choose two nodes s1 and s2 from S that have a maximum separation distance.

2. Group all remaining nodes in the current cluster (this includes all nodes in the
first iteration) with s1 or s2, depending on which is closest.

3. Balance the two groups so that they are approximately equal; this forms the
two subclusters.

4. Split S into subsets S1 and S2 according to the subcluster groupings created
in step 3.

Performing these steps produces a set of clusters which are distributed uniformly
throughout the network, where the communication cost within a cluster is minimised
[23].

BCDCP is evaluated by simulations conducted in Matlab, and compared to several
other clustering algorithms. From these simulations, Muruganathan et al. conclude
that BCDCP achieves better performance regarding energy usage, and first node
death compared to other state of the art clustering algorithms. However, they note
that BCDCP is most effective for networks spread over a considerable distance, and
the benefit of using BCDCP is less for smaller networks.

3.3 LEACH

A reactive clustering protocol developed in 2002 is Low-Energy Adaptive Clustering
Hierarchy (LEACH) [24]. Heinzelman et al. designed LEACH for applications that
measure something in the environment where the interesting results are not the
individual values but some computation using those values. The clustering algorithm
in LEACH is distributed and probabilistic with the primary objective of saving
energy.

The LEACH algorithm is divided into rounds. Rounds in LEACH are conceptually
different to rounds in Chaos. Each round begins with a setup phase that forms
the clusters, followed by a steady state phase where nodes collect data and CHs
aggregate and forward that data to the base station. In the setup phase, each node
i has a probability Pi(t) at time t to announce themselves as CH. This probability
depends on a number k, which is the target number of clusters. In a network that
contains N nodes, the probability Pi(t) is chosen so that the following formula holds:

E[#CH] =
N∑

i=1
Pi(t) ∗ 1 = k

20

3. Related Work

Also, to maximise network lifetime, each node takes on equal responsibility of be-
coming a CH. Thus, if there are N nodes in the network, each node will, on average,
be CH every N/k rounds.

The nodes which have elected themselves as CH need to inform the rest of the
network of this decision. They do this by sending out an advertisement message
containing their ID. All other nodes will listen for these messages and map each CH
with the energy required to transmit a packet to it. The node then picks the CH
that requires the lowest transmission energy.

Leach is evaluated and compared to other clustering algorithms in simulations. The
results show that LEACH achieves better energy usage and data throughput when
compared to other distributed clustering algorithms as well as static clustering of
the network. However, it is outperformed by LEACH-C, a centralised version of
LEACH.

3.4 Extreme Chaos

Chronopoulos [25] address the scaling bound on the number of participating nodes
described in Section 2.3, and introduce flow control to limit the high number of initial
transmitters in a Chaos round. The flags field requires at least one bit per node,
but together with the additional information required in the packet (synchronisation,
error-detection and payload), the number of possible participating nodes is less than
a thousand [3]. Chronopoulos also discuss how the flags field affects the latency of
transmissions. They note that increasing the network size by a factor of 10 increases
the delay in the network by a factor of 100 [25]. Last, they note that the flags field
also imposes an overhead on the energy consumption when it is transmitted.

3.4.1 Estimation Vector

To replace the flags field, Chronopoulos propose to use an estimation vector, which
is the most prominent part of the new protocol. Just as the flags field, the estimation
vector is used for keeping track of how much of the network has contributed to the
aggregate. Chronopoulos argue that extreme values spread quickly throughout the
network and therefore nodes do not need to make sure they have communicated
with every other node. As such nodes only need to set a percentage of the flags.
However, this does not reduce the size of the flags field. The new vector estimates
the number of nodes which has contributed to the aggregate, and by also estimating
the network size the nodes infer the contribution ratio.

21

3. Related Work

3.4.2 Flow Control

An additional issue addressed by Chronopoulos is the high number of transmitters at
the beginning of a round, which is caused by the transmission policy of Chaos. Nodes
only transmit when they receive new information, however, at the beginning of a
round, there is a high probability that most nodes will receive new information. Too
many transmitters cause interference and slow packet propagation since nodes need
to retransmit packets. The mechanism to counter this flooding is called flow control,
and its purpose is to prevent congestion from occurring by applying an exponentially
decaying back-off probability [25]. The back-off is a node deciding, according to some
probability, to not send during a slot in which it intended to send. The exponential
decay is referring to the probability decreasing at an exponential rate throughout
the round. Decreasing the congestion in early slots will speed up the progress of an
aggregate process which enables a round to finish earlier.

To not have adverse effects the parameters used for calculating the next probabil-
ity for back-off requires careful testing. Having a too low probability of back-off
would mean the initial flooding is not constrained enough. In contrast, a too high
probability means dropping later transmissions which would hinder the aggregation
process. Additionally, flow control can affect large and small networks differently.
In a large and sparse network, an extended period with initial high flooding can
occur. Chronopoulos argue that this is because nodes far from the initiator join the
network in later slots. However, Chronopoulos does not consider large multi-hop
networks since their primary focus is to optimise Chaos for local neighbourhoods.

3.5 Discussion

In this chapter, we presented three different clustering algorithms and Extreme
Chaos. We discuss and compare the clustering algorithms to the HEED algorithm,
and contrast the work on estimation vectors and flow control to clustering.

The clustering algorithms presented here all exhibit different characteristics, and
restrict the network in different ways to accomplish their goals or solve specific
problems. UHEED, which is further work on the HEED algorithm, primarily tries
to solve the hot spot problem. However, since the A2 system does not currently
have any concept of base stations for any of its applications, the hot spot problem
does not apply in this thesis.

LEACH, on the other hand, is similar to HEED since it is also probabilistic and
wants to maximise network lifetime. However, it assumes that the data the applica-
tion running on the network transmits can be efficiently aggregated. LEACH also
evenly distributes the CH role between all nodes in the network, which can be an
undesirable property since, for example, nodes at the edges of the network might be
unsuitable CHs.

Furthermore, BCDCP is a centralised algorithm, and as such, it can leverage both

22

3. Related Work

a global view of the network and use more resources, since it is assumed that the
node responsible for the clustering has more computational power. No such node
is assumed to exist by the A2 system, which makes this and other centralised algo-
rithms unsuitable. It could be feasible to employ this protocol on a typical node,
however, in that case, there is a high risk that the network would not scale well.

Last, Extreme Chaos also addresses the scalability issues that the A2 system ex-
hibits. However, the approach is fundamentally different to clustering. Both the
estimation vector and flow control are probabilistic mechanisms that affect Chaos in
every round. A probabilistic clustering algorithm, on the other hand, only exhibits
uncertainties during the clustering process, then, during normal operation of the
Chaos protocol, the process is strictly deterministic.

23

3. Related Work

24

4
Design of the Clustering Process

In this chapter, we explain the design behind our clustering implementation and put
its objectives and properties into context. First, we provide an overview of the clus-
tering process. Second, we go into detail about the Clustering service, explain how
we design for scalability, and explain the CH election algorithm. Third, we explain
of how nodes pick cluster heads from the elected set of CHs. Fourth, we describe a
Demote service which runs after the Clustering service to remove suboptimal clus-
ters. Fifth, we explain how communication works between CHs and how clusters
avoid interfering with each other’s communication. Last, we discuss decisions we
make regarding the design and the effect of those decisions.

4.1 Clustering Process Overview

To increase the scalability and lower the energy consumption of A2, we design and
implement a clustering process based on the HEED clustering algorithm [7]. The
process is responsible for clustering the network, appointing nodes as CHs, and
letting nodes join clusters.

Our clustering process consists of four distinct phases. First, the Clustering service
runs, and every node does three things simultaneously: While (i) learning about
the network topology by collecting statistics about received packets, they also (ii)
try to become CH, and if they hear another node announcing itself as CH within
the configured competition radius they (iii) select an appropriate cluster to join.
Second, each elected CH runs the Join service from A2 inside their cluster. Third,
all clusters which deem themselves too small disband, and all nodes in these clusters
select other clusters. Fourth, each CH rerun the Join service to determine the final
set of nodes in their cluster. This process is repeated at a certain round interval to
accommodate for changing battery levels for nodes in the network.

When the clustering process is complete, the network executes some application, in
our case, the Max application. At this point, we split the rounds in A2 into cluster
and cluster head rounds. In cluster rounds, each cluster will separately execute an
application to completion. In CH rounds, the CHs execute the same application
again, but they remember the information they got in the previous cluster round.
What that information is, depends on the application; in the Max application’s case,

25

4. Design of the Clustering Process

it is the maximal value found in each cluster. The process of alternating between
cluster and cluster head repeats until the clustering process starts again.

4.2 The Clustering Service

The Clustering service is responsible for clustering the network, and it needs to run
first to enable a clustered communication medium. In this section, we describe the
design of the Clustering service, how we design for scalability, how the clusters are
formed, and the parameters that control the Clustering service.

4.2.1 Designing for Scalability

Because our primary goal is to increase the scalability of the A2 system, a challenge
is the packet size restriction of 127 bytes, imposed by the 802.4.15 standard [15].
If an application adds data to the packet and if that data grows linearly with the
number of nodes in the network, then the application will quickly reach the packet
size restriction. Because the flags field is part of all packets and does grow linearly,
we want to prevent it from growing too large. Consequently, we need to cluster the
network before running the Join service. Therefore, we design the Clustering service
to run without completion flags. Running the Join service after the Clustering ser-
vice puts the scaling restriction of the flags field locally in each cluster. However, the
network cannot perform completion flooding or early turnoff during the Clustering
service, as completion is calculated from the flags field. Nonetheless, it is vital that
all nodes learn of all CHs since nodes use that information to maintain a flags field
for CH rounds.

4.2.2 Transmission Policy with Gossiping

Without completion flags, nodes cannot determine when consistency has been reached.
Therefore, we inspire the transmission policy of the Clustering service from gossiping
protocols, to benefit from the high probability of gossiping to disseminate updates
successfully. The transmission policy for the Clustering service is that a node should
transmit in the next slot if it received a list that contains a CH which the node did
not know about, or the list is missing a CH the node does know about; otherwise a
node will try to receive data.

4.2.3 Election of Cluster Heads

The CH election algorithm is based on the HEED algorithm [7], it is probabilistic
and attribute based. The Clustering service is executed over several rounds, and
the algorithm is divided into two phases: the main phase, shown in Algorithm 1,

26

4. Design of the Clustering Process

and the final phase, shown in Algorithm 2. The main phase probabilistically elects
a set of CHs based on their residual energy, nodes with more residual energy has a
higher chance of becoming a CH. In this phase, every node also chooses a cluster to
join. The final phase ensures that CHs cover the whole network.

In every round, all nodes have set a probability to announce themselves as CH, and
they double that probability at the end of every round until it reaches 1; at that
point, each node has either heard another CH they can join or elected themselves to
be CH. The algorithm ensures that a stable set of CHs is elected in constant time
[7].

Nodes calculate their initial probability (CHprob), to announce itself as CH, accord-
ing to

CHprob = Cprob ∗
Eresidual

Emax

(4.1)

taken from HEED [7]. Cprob is an initial probability which is used to get the pro-
cess started; it does not have any impact on the final number of cluster heads [7].
Eresidual is the residual energy of the node and Emax is the maximum energy of the
node. Furthermore, CHprob is bounded by pmin, a constant lower bound inversely
proportional to Emax, which ensures that CHprob reaches 1 in constant time.

The number of consecutive Clustering service rounds required to form stable clusters
differs between networks. It depends on the network topology, the diameter of the
network, and the lower bound on the initial probability. For example, a sparse
network requires more rounds than a dense network.

There are two states for a CH in the HEED algorithm: tentative and final. A CH is
tentative until its probability of becoming CH reaches 1, then it becomes final. This
distinction is made to prune out nodes which have lower residual energy. Since the
Clustering service runs for a fixed number of rounds, if a CH is still tentative when
the Clustering service begins the final phase and it can find another cluster to join,
it will be demoted and join that cluster.

Furthermore, we control the number of nodes that can become CHs in two ways. As
can be seen in Algorithm 1 at Line 3, a node is only allowed to announce itself as CH
with probability CHprob if either of two things holds. First, taken from HEED, a node
must not have seen another CH within their competition radius (measured in hops).
Second, further defined by us, a node may still elect itself if the neighbourRatio,
that is, the number of neighbours divided by the number of CHs within a nodes
competition radius, is larger than the parameter nodes per cluster ratio. We explain
this parameter in more detail in Section 6.2, but its primary purpose is to make
dense networks sparser, thus decreasing interference.

However, if two nodes decide to become CH in the same round, then both of them
will begin to announce themselves at the start of the next round. This may cause
two nodes within each others competition radii to become CHs; to decrease the risk
of this, nodes will wait until a random slot during the first half of the next round

27

4. Design of the Clustering Process

Algorithm 1 The repeat phase adaptation of the HEED algorithm. It shows how
a node elects to announce itself as cluster head. The algorithm is adapted for A2 in
two ways. We utilise our parameter nodesPerClusterRatio at Line 3 and set the
announcement slot at Line 15.

1: procedure heed_repeat
2: if prevCHprob ≤ 1 then
3: if validCHList 6= ∅ or neighbourRatio > nodesPerClusterRatio then
4: myCH ← pickBestCH(validCHList)
5: if myCH = myNodeID then
6: if CHprob = 1.0 then
7: CHState← FINAL
8: else
9: CHState← TENTATIVE

10: end if
11: end if
12: else if CHprob = 1 then
13: CHState← FINAL
14: else if random(0, 1) ≥ CHprob then
15: announcementSlot← random(1, maxAnnouncementSlot)
16: end if
17: prevCHprob ← CHprob

18: CHprob ← min(2CHprob, 1)
19: end if
20: end procedure

before they begin to announce themselves. This gives another newly elected CH
a chance to hear another nearby CH, which they can join before they announce
themselves. We limit this random back off to the first half of a round to ensure that
the CHs do not announce themselves too late not to be noticed by other CHs.

4.2.4 The Final Phase

HEED’s final phase executes during the last three rounds of the Clustering service.
It performs two important functions, it demotes tentative CHs and ensures that
CHs cover the whole network. We show the pseudo code for the final phase in
Algorithm 2.

The final phase serves the same purpose in both our algorithm and HEED, but CHs
are tentative for different reasons. In HEED, the only reason a CH is tentative in the
final phase is if it announced itself as CH and then found another CH with a lower
cost to join, according to a cost function. In HEED, the cost function is based on
the communication cost between nodes and the CHs [7]. However, in our algorithm,
a CH is tentative in the final phase if it does not have enough energy to reach a
probability of 1.0 before the final phase begins. Additionally, the final phase ensures
that the whole network is covered. As can be seen in Algorithm 2, if a node does

28

4. Design of the Clustering Process

Algorithm 2 The final phase of the clustering algorithm. The only edit from the
original HEED final phase is the usage of pickBestCH, which is our definition of
the cost function that the HEED algorithm requires.

1: procedure heed_final_phase
2: if CHState 6= FINAL then
3: if CHList 6= ∅ then
4: myCH ← pickBestCH(CHList)
5: CHState← NOT_CLUSTER_HEAD
6: else
7: CHState← FINAL
8: end if
9: end if

10: end procedure

not consider any CH to be valid, i.e. exist within the competition radius, it will
announce itself as CH; this guarantees that cluster heads cover the whole network.

4.2.5 Configuration Parameters

In this section, we describe the parameters that change the behaviour of the Cluster-
ing service: competition radius, minimum cluster size, and nodes per cluster ratio.
We evaluate the effect of changing these parameters for different network topologies
in Chapter 6.

Competition radius, measured in hop count, is a measurement of how far away a
node can be from a CH and still join that CH. In a small and dense network, a small
competition radius will make the network less dense by partitioning it into many
clusters and thus lowering the number of packet collisions. On the other hand, in a
large and sparse network, a high competition radius will keep the number of cluster
heads low to ensure that the clusters do not get too small.

Minimum cluster size is the number of nodes, including the CH that has to be a
part of the cluster for it to be considered valid. If a cluster has few nodes, one of the
three following scenarios is likely to have occurred. First, the network could have
been small or sparse, clustering such a network makes it even more sparse which
could damage reliability and stability. Second, the CH could be poorly located, for
example, close to the edge of the network or far away from other nodes. Third,
the CH could be close to another CH that most of the nodes around them chose to
join instead. In both the second and the third case our algorithm elected a bad CH
which can be pruned relatively easily when the clustering process is complete. In
the first scenario, it is hard for small and sparse networks to benefit from clustering.

Nodes per cluster ratio, tries to enforce a maximum cluster size to make a dense
network artificially sparser. It is not a strict limit on the number of nodes in a
cluster. Instead, it is a limit on the number of CHs that can announce themselves

29

4. Design of the Clustering Process

depending on the number of neighbours they have. A node with more neighbours
than nodes per cluster ratio will still be able to announce itself even if it has heard
from another CH within its competition radius, dividing the neighbours between
itself and other CHs, which makes the network less dense.

4.3 Joining Clusters

The primary objective of a node is to choose a cluster head that requires the least
cost to join. To do this, we define a function that tries to find the CH that is
closest to that node. Since a typical WSN is an ad hoc network, we have to gather
information about the network while our Clustering service is running. Each node
keeps track of two metrics to estimate how close other nodes are: The number of
packets they receive from their neighbours (nodes that can be reached in a single
hop) and the number of hops required to reach each CH. A node only considers CHs
that have a hop count smaller than the competition radius and then chose the CH
that they received the most packets from if there exist several valid CHs. We show
the pseudo code for this process in Algorithm 3.

Algorithm 3 Our cost function for picking the best cluster head.
1: procedure pickBestCH
2: for all CH ∈ CHList do
3: if CH.hopCount ≤ competitionRadius then
4: if CH.receivedPackets = max(CHList.receivedPackets) then
5: chosenCH ← CH
6: end if
7: end if
8: end for
9: return chosenCH

10: end procedure

4.4 Demotion of Cluster Heads

When a cluster head is demoted it becomes a normal node and all other nodes
that have joined its cluster, including itself, joins another cluster. There are two
ways a CH can be demoted: CHs are automatically demoted at the beginning of
the Clustering service and if a node announces itself as CH, but fewer nodes than
minimum cluster size join its cluster, it will also demote itself.

The Clustering service is designed to be executed periodically by the network to
adapt to changes, such as nodes dying or nodes depleting their energy faster than
others. To facilitate this, all previous CHs are demoted when the Clustering service
starts. The Clustering service does not take into account previous clusterings of

30

4. Design of the Clustering Process

the network and does not rely on data collected when the network is executing
applications.

Additionally, the demote service is designed to be run after the consistent group
membership protocol, provided by A2 [4], has converged on a result for each cluster.
The purpose of the demote service is to enforce a minimum cluster size. At this
point, each CH knows how many nodes have joined their cluster. If the number
of nodes in a cluster falls below the threshold minimum cluster size the CH will
announce itself as demoted.

4.5 Communication

There are two separate instances of communication happening in a clustered net-
work: intra-cluster and inter-cluster communication. The communication works
similarly to the original A2 design with some modifications.

4.5.1 Intra-cluster

The intra-cluster communication happens within a cluster, during this phase, the
CH acts as the initiator for its cluster. We use the channel hopping functionality
provided by the A2 Synchrotron [4] to make all nodes jump between radio channels
in a sequence to minimise foreign interference. However, we also split all clusters
into different channels to minimise interference between clusters. To accomplish this,
each cluster applies a unique offset to their channel hopping sequence. The number
of clusters that we can split in this way is limited by the number of available radio
channels, which currently is 16. If there exist more clusters than channels, the
clusters will overlap. However, the communication will still work since clusters
ignore packets from other clusters.

4.5.2 Inter-cluster

The inter-cluster communication takes place during CH rounds in which the CHs
propose the aggregate value that its cluster agreed upon in a previous cluster round.
All non-CH nodes act as forwarders and do not propose any values of their own,
they only forward packets according to the transmission policy. Their participation
is not counted when the completion of the network is calculated. Forwarders are
required since our process can only guarantee an upper bound of 2 on the hop count
between cluster heads with the lowest competition radius.

31

4. Design of the Clustering Process

Table 4.1: Our primary and secondary clustering objectives.

Clustering Objectives
Scalability
Maximal network lifetime
Load balancing
Collision avoidance
Increased connectivity

Table 4.2: Our properties related to clusters, cluster heads and the clustering pro-
cess.

Cluster Properties Cluster Head Properties
Unequal cluster size Stationary nodes
Variable cluster count Homogeneous nodes
Single/multi-hop intra-cluster communication CH takes on normal duties
Multi-hop inter-cluster communication

Clustering Process Properties
Distributed clustering process Proactive nature
Attribute based CH election Dynamic clustering
Constant algorithm complexity

4.6 Clustering Objectives and Properties

In this section, we list the clustering objectives we design for and motivate why we
make those choices. We also classify our algorithm according to the cluster, cluster
head, and clustering process properties presented in Section 2.7.

In Table 4.1 we list the primary and secondary objectives for our clustering design.
Scalability is the first objective since both Chaos and A2 have a restriction on the
maximum number of nodes that can participate in the network [3]. Clustering
improves scalability by partitioning the network into smaller subsets. Our second
primary objective is maximal network lifetime, which is a common challenge in
WSNs [5, 12] and clustering increases the efficiency of a network which directly
affects its lifetime. Finally, load balancing is our last primary objective. Load
balancing is achieved by moving the CH role between different nodes, which increases
the time until the first node death. Prolonging the time until the first node death
directly increases the lifetime of the network.

Additionally, we have two secondary objectives: Collision avoidance and increased
connectivity. Collision avoidance occurs because the clusters communicate on dif-
ferent radio channels, which reduces interference. Furthermore, we gain increased
connectivity since the requirement for the network to be considered connected is
weakened. That is, each node only needs to have a connection with its cluster, and
a CH only requires a connection with its cluster and the other CHs.

32

4. Design of the Clustering Process

Furthermore, our clustering design fulfils several properties, listed in Table 4.2.
First, we have unequal cluster sizes; we do not enforce that all clusters need to
be equal in size. However, we enforce a minimum cluster size by demoting CHs
if they have less than a certain number of followers. We also enforce a ratio for
the number of nodes per cluster, but this parameter depends on network density.
The second parameter is variable cluster count, the number of clusters depends on
many variables such as network topology and competition radius, also we use a
probabilistic approach. Third, if the intra-cluster communication is single or multi-
hop depends on the competition radius. If the competition radius is one, nodes
have a single-hop communication with their cluster head. However, it is possible
for two nodes in the same cluster to have multi-hop communication. For example,
two nodes might require the CH to route communication between them. Finally,
inter-cluster communication is multi-hop. CHs communicate normally but require
non-CH nodes to forward their messages during CH rounds.

Moreover, we have cluster head properties. First, our design focus on stationary
nodes. Second, all nodes are homogeneous. However, if we deploy a node with more
resources (such as an improved battery) with our process, it will have an advantage
in the election process since nodes with a higher energy level are more likely to
become CHs. Finally, the role of a CH is to perform the same work as ordinary
nodes in addition to the work required by a CH.

Finally, we have clustering process properties. First, each node executes the cluster-
ing process in a distributed fashion; this leads to a more scalable network compared
to a centralised process. Second, our election process is attribute based and takes
into account the residual energy of nodes to elect CHs, to work towards maximising
the network lifetime. Third, the complexity of the election algorithm is constant; this
is because we use local decisions to elect CHs. Fourth, the nature of the clustering
process is proactive to accommodate A2’s ability to schedule multiple applications
in the network. Lastly, our clustering process is dynamic since it is attribute based;
the process takes into account the current condition of the network, such as the
residual energy of the nodes.

4.7 Discussion

In this section, we present our discussion on the design we describe in this chapter.
We discuss how the transmission policy of our clustering process is similar to a
gossiping protocol, as well as some decisions we make regarding the design, and the
impact of these decisions.

33

4. Design of the Clustering Process

4.7.1 Comparing the Clustering Service’s Communication
to Gossiping

Because the Clustering service does not have a flags field, nodes cannot know when
they have a complete picture of the CH list. However, we argue that our design of
the transmission policy of the Clustering service is sufficiently similar to a gossiping
protocol to benefit from the high success rate and eventual consistency which gossip-
ing protocols posses. To compare with a gossiping protocol, we argue for similarities
between our transmission policy and the push and pull actions.

Every transmission from a node is always a push action, but it could simultaneously
be a pull action if the node is susceptible to one or more of its neighbours. It is a
push action since a node includes all of the CHs it knows in each packet it sends.
However, there is no guarantee that the node is infective to any of the receiving nodes
since they might already know all of its information. Furthermore, the transmission
could also be a pull action since a receiving node might have knowledge which the
transmitter does not have. The receiver will then in the next slot perform a push
action, and the previous transmitter will attempt to receive the push.

However, a difference to traditional gossiping is that the push and pull actions
are not targeted at a single node. Instead, a transmission is often received by many
neighbouring nodes, because of the wireless communication medium. The concept of
pushing updates to multiple nodes at the same time is called multi-casting, and only
being able to push updates to a subgroup, such as the neighbours of a node, is called
subgroup gossiping. While subgroup gossiping can be restricting since updates need
to propagate through the network via neighbouring nodes, multi-casting is beneficial
compared to peer-to-peer updates since it could allow an update to spread faster.
Furthermore, research into multi-cast subgroup gossiping has shown that there exist
good lower bounds on message propagation, which depend on the underlying graph
[26].

Consequently, since we can enforce that there always exists at least one update which
only the initiator knows about at the start of every round. Then the transmission
policy will ensure that the update triggers communication throughout the network
and nodes with updates of their own will have an opportunity to push their infor-
mation which propagates throughout the network due to the transmission policy.
From these arguments, we conclude that the Clustering service is very similar to a
gossip protocol. This ensures that the Clustering service benefits from a gossip pro-
tocols high chance of disseminating updates to the network and that it has eventual
consistency, even without completion flags.

4.7.2 Limiting the Number of Cluster Heads

In our design, we randomise the slot in which a node starts announcing itself as
CH to limit the number of CHs that are neighbours to each other. Because nodes
double the probability to announce themselves as CH every round, we can go from

34

4. Design of the Clustering Process

a relatively low probability to a high probability in the span of one round. For
example, a node which has CHP rob = 35% in a round, will have CHP rob = 70% in
the next round, which could lead to many nodes announcing themselves at the same
time.

We cannot guarantee that this mechanism fixes the problem, it relies on two things
to work; that the two nodes that announced themselves in the same round ran-
domised two numbers sufficiently far apart from each other and that successful
communication happens between the nodes between those two slots. Additionally,
the Clustering service does not take into consideration which node would be a better
CH, which means that this mechanism could cancel election of nodes better suited
to be CHs. However, since this mechanism is only used for nodes which are neigh-
bours or close to neighbours, depending on the competition radius, the CHs that
are removed should be relatively similar.

4.7.3 The Final Phase

The final phase of the clustering process almost identical to the final phase in HEED.
However, there is one difference, CHs are tentative if they have too low residual
energy. This is because we do not model the cost for a node to be CH, which means
a node cannot tell if it would be better for it to demote itself and join another CH
instead.

Furthermore, there is a drawback to the final phase which can happen if either
the parameters to the Clustering service are poorly configured, or we are applying
clustering to a network not suited for clustering, such as very sparse networks. For
example, if the Clustering service is not scheduled for enough rounds, such that
no CH can reach CHprob = 1.0, then every node in the network will consider itself
uncovered in the final phase, and announce themselves as CHs. Having a network
where all nodes are CHs is comparable to having a network with no clustering, which
will only waste energy and time since the network will still interleave CH rounds
with cluster rounds.

4.7.4 The Cost Function

Our cost function tries to find the closest CH by counting the number of packets
received from all nodes. All nodes will choose the CH they have received the most
packets from.

We argue that the number of received packets from a node is a reasonable approx-
imation of the distance to that node, due to the capture effect [14]. The signal
strength decreases as the distance increases, and a difference in signal strength is
integral for the capture effect to apply. Consequently, nodes that are closer to each
other will more often correctly decode each other’s packets than nodes that are far
away.

35

4. Design of the Clustering Process

However, since we can only count packets from neighbours, this cost function does
not work when the competition radius is higher than one. Since no direct transmit
can be made from a node that has a hop count two or higher, nodes which do
not have a CH as their neighbour will have to choose a CH at random from the
closest CHs in the network. If the node has a bad connection to that cluster, it will
eventually trigger a resynchronisation and drop out of it.

4.7.5 Separating Cluster Communication

Our design separates intra- and inter-cluster communication with cluster and CH
rounds respectively; this is convenient as it enables scheduling of cluster rounds more
often than CH rounds. A usage of this is to let the CHs aggregate data from its
cluster during multiple rounds before a single CH round is scheduled in which all the
aggregated data could be forwarded to other CHs or a base station. Another reason
for having CH rounds and cluster rounds is to only have one type of communication
for each cluster during a single round, either inter- or intra-cluster.

In contrast, it could be possible to switch between intra- and inter-cluster commu-
nication within a single round. However, doing so bring the challenge of keeping the
network synchronised when we switch from many initiators to one; this is a chal-
lenge since each cluster may require differently long before switching to inter-cluster
communication, and would thus require that some clusters sleep until they reach a
predetermined slot.

4.7.6 Clustering Risks A2’s Fault Tolerance

Since clustering partitions the network, it interferes with some existing fault tol-
erance features built into the A2 system. The A2 system depends on redundant
messages and generating constructive interference to make all nodes reach consensus
during a round. Clustering, as a technique, does not involve redundant messages,
constructive interference or the capture effect. A risk when clustering a network
is to make it too sparse for the A2 system to succeed. However, as observed by
Chronopoulos [25], the number of messages sent in the A2 system can be too high,
especially at the start of a round. Chronopoulos implemented a flow control feature,
which, like clustering, will lower the number of messages sent by A2. Flow control
produced good results but adds two additional parameters: the percentage of mes-
sages that should not be sent, and how fast this percentage decreases in a round.
Similarly, not all networks produce good results when they are clustered; the results
depend on the number of nodes in the network and the density of the network.

36

5
Implementing Clustering in A2

In this section, we describe problems we encounter and implementation specific con-
siderations we make when implementing our design in A2. We begin by outlining the
modifications we make to the A2 system to accommodate the clustering implemen-
tation. Next, we explain implementation specific details regarding the Clustering
and Demote services. Last, we discuss the consequences of some implementation
details, and how they affect performance and fault tolerance.

5.1 Modifications to A2

Wemake several changes to the architecture of the A2 system, in Fig. 5.1 we highlight
the architectural additions we have made to the A2 system in Fig. 5.1; we have added
a Cluster module in the Synchrotron kernel and the Demote and Clustering services
in the A2 layer. The bottom layer, device drivers, is not part of this thesis. However,
we modified and added code in the other layers to implement clustering.

The Cluster module of the Synchrotron layer handles the low-level details of channel
hopping and dynamic assignment of initiators. Also, we implement the Clustering
service which elects the CHs, announces them to the network, and lets every regular
node select a CH to join using the Join service from the A2 layer. We also implement
the Demote service which runs after all clusters have run the Join service, it demotes
CHs that have fewer nodes than the parameter minimum cluster size. Finally, we
make some slight modifications to the application layer to implement forwarding
during CH rounds.

5.1.1 Flags Field for Cluster Heads

To separate CH rounds from cluster rounds the nodes switch back and forth between
intra- and inter-cluster communication every other round. Doing this means CHs
are switching back and forth between different indices in the flags field as displayed
in Fig. 5.2. The Clustering service sets the flag indices used by CHs during CH
rounds, and the Join service sets the flag indices used during cluster rounds. During
CH rounds the CHs use the same procedure for calculating completion as during

37

5. Implementing Clustering in A2

Radio Device Driver / HW A Radio Device Driver / HW B

VHT & Slotted
Design

Crypto.
Functions Scheduler Parallell

Channels
Channel
Hopping

Synchrotron

Cluster

2-PC

A2

3-PC Join Leave Key
Rollout

Hopping
Seq. Rollout

Collection Dissemination Voting Aggregation

Applications

Clustering Demote

Figure 5.1: Layered system architecture of A2 [4]. Shows the placement
of the Cluster and Demote services. The Cluster module in Synchrotron handles
per-cluster channel hopping and dynamic assignment of initiators. The Clustering
and Demote services in A2 contains the logic for electing and demoting cluster heads
respectively.

cluster rounds. However, their index in the flags field corresponds to their index in
the CH list, and the length of the CH list determines the length of the flags field.

5.1.2 Separating Communication Between Clusters

We separate the clusters in two different ways. First, we use a modified version
of the channel hopping in A2. The original A2 implementation hops between radio
channels in two different ways as outlined in Section 2.3.3. In our implementation,
we separate the clusters into different channels. A2’s parallel channels functionality
is deactivated since one cluster should not be large enough to interfere with its
communication. The nodes still follow the original hopping sequence but offset
the channel number by the cluster-index, determined during the Clustering service.
The cluster-index is unique, deterministic and since it is an index the numbers are
sequential which makes it ideal to use for this purpose.

Second, each node includes its cluster ID in the packet header; if a node receives a
packet from another cluster, the node discards that packet; nodes do not check this
condition during CH rounds. Consequently, since all packets are slightly different in
CH rounds, the constructive interference used by A2 in the completion phase does
not work during CH rounds.

5.1.3 Forwarders During Cluster Head Rounds

Since the HEED algorithm aims to elect non-overlapping cluster-heads, the cluster
heads require assistance to communicate. Therefore, during CH-rounds all non-CH
nodes act as forwarders. We implement the forwarders by letting all nodes run the

38

5. Implementing Clustering in A2

CH round

Cluster round

- x -

x - - -

CH list 2 6 9 2

6

9

 3

7

 8

4

1

 5

10
...

...

Size of flags field

Figure 5.2: The network on the right has elected the cluster heads in the CH list.
Shown here is how Node 6 uses the flags field during CH and cluster rounds. The
symbol ’x’ represents the index which Node 6 uses as its flag, and the symbol ’-’
represents flag indices which are in use by other nodes. An empty box indicates
that the index is not used. In the CH-round CHs uses the index from the CH-List.
During a cluster round each CH will be an initiator and use index 0.

Max application as usual but with the modification that non-CH nodes suggest 0
as their maximum value which is always overwritten by the CHs max value.

5.1.4 Initiating Communication in a Clustered Network

In our implementation, there are three different types of communication in which
the initiator is different, as shown in Fig. 5.3b. First, when either the Clustering
service or the Demote service is running, the network is using a single preconfigured
node as the initiator. Second, during cluster rounds, each CH acts as the initiator
in its cluster. Third, during CH rounds the first CH in the CH list is the initiator.

Switching the initiator between different nodes introduce problems. Namely, the
network can end up in a state where none of the nodes considers themselves initia-
tor, which means every node in the network is stuck associating indefinitely. Two
scenarios can occur.

First, if the CH with the lowest ID loses connection to the network, there will be no
initiator during CH rounds. If that happens, no CH rounds will be executed by the
network until after it has performed a re-clustering.

Second, a scenario which can occur that makes all nodes associate indefinitely.

1. The preconfigured initiator node, p loses connection with the network during
a cluster round, when it does not consider itself initiator.

2. The next scheduling of the Clustering service happens before p can associate
with the network again.

3. In the Clustering service all nodes wait for packets from p, but since p is
associating they never receive any packets.

39

5. Implementing Clustering in A2

1

5

10

1 6 11 17 22 28 33 39 44 50

Round
N

od
e

ID

Application Names

Association

Cluster Service

Join Service

Demote Service

Max

(a) The first 50 rounds for a network with 10 nodes, and which application each node is
running. Node 1 is the initiator and thus runs the Clustering service in round 1 while the
rest of the nodes associates with it.

1

3

2

4

10

9

8

7

6

5

1

3

2

4

10

9

8

7

6

5

1

3

2

4

10

9

8

7

6

5

(b) Locations of the ten nodes showing three different initiator setups. Node 1 is initiator
rounds 1-20 and 25-30. Nodes 5 and 9 are initiators in rounds 21-24, 31-36 and every
cluster (odd) round in the interval 37-50. Node 5 is the initiator in every CH (even) round
in the interval 37-50.

Figure 5.3: An example network and its application map. Showing which appli-
cations the network executed, and which nodes are initiators during the different
phases.

5.1.5 Interaction Between Services

In this thesis, we implement two different services: the Clustering service and the
Demote service. Furthermore, we use the Join service, provided by A2, within the
clusters to get a consistent membership. However, for the clustering process to
succeed, they have to be run in a specific order. First, the Clustering service needs
to be run and converge on a set of CHs. Following that, the network executes the
Join service within each cluster, allowing each CH to learn how many nodes have
decided to join its cluster. Then the Demote service executes, during which CHs
demote themselves if they have too few nodes in their cluster. When the network
has completed the Demote service, it reruns the Join service since some clusters
might have demoted themselves; the network needs to make sure that any node that
changed cluster is picked up by a new cluster. At this point the clustering process
is complete, and the intended operation of the network can continue.

5.2 The Clustering Service

In this section, we explain implementation specific details that are related to the
Clustering service. We go into detail about the packet payload and what information
we transmit from a node and why; we also describe challenges we face due to not
having completion flags. Finally, we explain a Catch-up mechanism we implement

40

5. Implementing Clustering in A2

Table 5.1: The parameters and their sizes in the Clustering service packet payload.

Name Size(bytes)
Source ID 1
Consecutive cluster rounds 1
Cluster head count 1
Cluster head list 3 ∗ 30 = 90
Total 93

in the Clustering service to handle nodes joining the network during the clustering
process.

5.2.1 The Clustering Service Packet Payload

As mentioned in the design chapter, nodes running the Clustering service exchanges
information to inform the network of how many CHs have announced themselves.
In this section, we describe the payload of the Clustering service packet.

The content of the Clustering service packet payload is summarised in Table 5.1.
The transmitting node’s ID is used in the Clustering service to count the number
of packets received from a node. The consecutive cluster rounds is a counter of
how many rounds has elapsed since the Clustering service started to run; we use
this parameter in the Catch-up mechanism, which we explain in Section 5.2.2. The
last entry is the CH list, which uses three bytes of space per entry. The list has
a maximum size of 90 bytes, allowing a maximum of 30 CHs. Each entry in the
CH list contains the CH’s ID; the hop count to it; and its status, which is either
Tentative or Final.

The packet’s payload size is restricted by the maximum packet size of the IEEE
802.15.4 standard, which is 127 bytes [15]. It is restricted further by the A2 header
size and data added in the link layer, giving us a maximum of 112 bytes for the
payload size. As can be seen in Table 5.1, we leave 19 bytes in the packet since
some features which we are not using in A2 take up space in the packet header, we
do not want the Clustering service to break when other features of the A2 system
are activated.

5.2.2 The Catch-up Mechanism

The last action a node performs in a round is to double their probability to announce
itself as tentative CH. However, a problem can occur if a node associates with the
network during the execution of the Clustering service. Specifically, its probability
to announce itself as CH, CHprob, will have fallen behind compared to other nodes;
this is most noticeable when the network has recently started, during the initial
association of all nodes. For example, nodes associating with the initiator in round

41

5. Implementing Clustering in A2

Table 5.2: Probability that a node has announced itself as CH in a specific round
without the Catch-up mechanism.

Round(r) CHP rob Cumulative probability starting at round r
1 0.005 0.005
2 0.010 0.015 0.005
3 0.020 0.035 0.015 0.005
4 0.040 0.073 0.035 0.015 0.005
5 0.080 0.147 0.73 0.035 0.015 0.005
6 0.160 0.284 0.147 0.073 0.035 0.015 0.005
7 0.320 0.513 0.284 0.147 0.073 0.035 0.015 0.005

Table 5.3: Probability that a node has announced itself as CH in a specific round
with the Catch-up mechanism.

Round(r) CHP rob Cumulative probability starting at round r
1 0.005 0.005
2 0.010 0.015 0.010
3 0.020 0.035 0.030 0.020
4 0.040 0.073 0.069 0.060 0.040
5 0.080 0.147 0.143 0.134 0.117 0.080
6 0.160 0.284 0.280 0.273 0.258 0.227 0.160
7 0.320 0.513 0.511 0.506 0.496 0.474 0.429 0.320

one randomises their initial CHprob in round two. However, in round two the initiator
has already doubled its own CHprob once.

As a remedy, we implemented a Catch-up mechanism. In the Clustering service’s
packet payload, we attach the number of rounds the Clustering service has executed,
which a node saves once received. At the beginning of a round, all nodes that have
received a value for this variable increments it. The counter describes the number of
times each node’s initial CHprob should have doubled since the start of the Clustering
service. An advantage remains for nodes already part of the network or the ones
which join earlier in the service, since they have had more chances to announce
themselves as CH. However, as Table 5.2 and Table 5.3 show, this advantage is very
small.

To motivate the usefulness of the Catch-up mechanism, we present the probability
that a node has announced itself as CH at round r without the Catch-up mechanism
in Table 5.2 and with the Catch-up mechanism in Table 5.3. For example, if we want
to see the probability that a node which associated with the network round 3 has
announced itself as CH in round 6 with the Catch-up mechanism. We look at
Table 5.3 for the column that has its first value in round 3 and in that column look
at the value for round 6, which is 0.273.

Since the probability of a node announcing itself as CH in any round is indepen-
dent, we can describe a function P (r) for a node’s cumulative probability to have
announced itself as CH at round r, shown in Eq. (5.1). Let CHprob be the starting

42

5. Implementing Clustering in A2

probability of a node and b the round where a node n associates with the network
and starts to run the Clustering service.

P (r) = 1−
r∏

i=b

(1− 2i ∗ CHP rob). (5.1)

Looking at Table 5.2 and Table 5.3, where we set CHprob = 0.005 as the initial
probability, the most interesting data points are the two bottom rows, emphasised
in bold. Without the Catch-up mechanism, there is a significant difference in the
cumulative probability that a node has announced itself as CH. However, with the
Catch-up mechanism, the difference is minimal except for in the most extreme case
when a node starts at round seven, compared to a node that started at round
one. A specific example shows that when we do not use the Catch-up mechanism
a node that starts the Clustering service at round three will at round seven have
a 0.513 − 0.147 ≈ 38 percentage points less chance of having announced itself as
CH compared to a node that started at round one. However, with the Catch-up
mechanism the difference is only 0.513 − 0.506 ≈ 0.7 percentage points. The same
pattern can be seen for other starting points as well, giving a clear motivation that
the Catch-up mechanism is useful.

5.2.3 The Demote Service

The Demote service is responsible for removing CHs that are considered suboptimal.
It demotes all CHs which have fewer nodes in their cluster than the parameter
minimum cluster size.

The Demote service behaves similarly to the Clustering service; each CH decides to
demote itself locally. The service is then run for some number of rounds to ensure
that the information spreads to the whole network. At the end of the last Demote
service round, all demoted CHs and all nodes that joined their clusters select a new
CH from the CHs that remain.

5.3 Discussion

In this section, we discuss the consequences of implementing clustering in A2, we
motivate our choices and propose solutions to problems that arise from the imple-
mentation.

5.3.1 Destructive Interference During CH Rounds

Since we include the cluster ID in every packet, there is no constructive interference
during CH rounds. One prominent feature in Chaos is the completion flooding,

43

5. Implementing Clustering in A2

which relies on constructive interference to achieve both high reliability and early
turnoff [3]. In our implementation, nodes will still perform completion flooding, but
they will not have constructive interference.

Gauging the impact of this is hard. However, we argue that it is not significant.
The purpose of the completion flooding is to get a significant portion of the nodes
to agree on the final value quickly. In CH rounds, the number of nodes that propose
values and need to agree on the final value is small, compared to the total number
of nodes in the network. Therefore, the completion flooding has less of an impact
on the completion of the network.

5.3.2 Forwarders during CH rounds

In our implementation, the forwarders execute the same code as CHs during CH
rounds, with the difference that they do not propose any value of their own. How-
ever, a more general implementation is possible. A forwarder should only require
the knowledge of how to merge two packets for an application. However, an applica-
tion’s merge operator is not abstracted to a separate function. If applications would
provide their merge operation through an interface, a more general implementation
in A2 could use an applications knowledge of how to merge packets without actually
running the application. This would make the clustering implementation easier to
adapt to new applications, and the nodes could be more effective since they only
have to run the code that merges the flags and not the entire application.

5.3.3 Fault Tolerance for Dynamic Initiators

As we describe in Section 5.1.4, switching initiators between cluster and cluster head
rounds caused some problems. In this section, we discuss two different solutions to
these problems.

The first solution could be to always use the preconfigured initiator during CH
rounds, regardless of the state of the network. However, this would create an even
higher dependency on this node, increasing its energy usage, which would reduce
the lifetime of that node and therefore the network. Furthermore, we would have
to handle the cluster the preconfigured node joins as a special case to avoid having
two initiators in that cluster.

Another solution could be to use a fallback error handling scheme. If the preconfig-
ured initiator thinks that the network has not made any progress for some time, it
could assign itself as initiator and restart the network. However, the problem is that
it is hard to detect that this has happened accurately. First, the initiator could use
a timeout counted in rounds; if it does not receive any packet before the timeout
reaches a certain threshold, it assumes that the whole network is stuck associating
and assign itself as the initiator. Second, since the length of a round is preconfig-
ured, it could calculate the time until it should take over as the initiator (since the
Clustering service is statically scheduled) and assign itself as initiator at that point.

44

5. Implementing Clustering in A2

However, both of these solutions require that the preconfigured initiator can accu-
rately keep track of the time, even in the presence of faults. If its clock drifts too
much, or other transient faults cause the clock to be out of sync with the rest of the
network, the node could assign itself as the initiator at the wrong time and start
to broadcast erroneous packets. In that case, the network could break down since
it would have multiple initiators telling them different things regarding the next
application to schedule and the timing of the rounds.

5.3.4 Clustering Without Completion Flags

Because we do not have completion flags in the Clustering service, the network
cannot know when all nodes have participated. Instead, we artificially increase the
communication that occurs during a round to increase the probability for consensus.
Below, we explain a scenario where, even in the presence of an update in the network,
the update is not propagated throughout the network, and then how we circumvent
that scenario.

Even if a node is infective, it will only transmit after it has received a packet orig-
inating from the initiator. An example would be a network topology with a single
path, where the initiator is at one end, and a node with an update is at the other.
The nodes in between will receive a packet from the initiator, but if the initiator
does not have an update, they will not transmit in the next slot. The only way that
communication progresses on the path, in that case, is if a node in between triggers
a retransmit timeout.

To counter scenarios where nodes with updates have a hard time receiving a packet,
we enforce the initiator to always have an update at the start of each round. This is
done by letting each node maintain two versions of the CH list. Each node merges
received updates to a multi-round persistent copy. However, to always have an
update in each round, all nodes maintain another copy of the CH list which is reset
every round. The initiator initiates communication using the copy that is reset every
round and includes an update in the form of incrementing the consecutive cluster
round count. The update propagates throughout the network and nodes with new
updates add that information to the packet once they receive the first update.

5.3.5 Completion Flags during Cluster Head Rounds

Since we use the CH list to assign flag indices during CH rounds, the list has to be
consistent across all nodes, which means that we can never have more CHs in the
network than the maximum size of this list. It is not possible for nodes to discard
CHs from their list that, for example, are outside of their competition radius since in
that case, some parts of the network would not consider that CH when calculating
the progress of a round.

This problem is a limitation on our implementation. It should be entirely possible
to modify the Join service so that it can run for the CHs, eliminating the need for

45

5. Implementing Clustering in A2

the CH list to be consistent across all nodes. Nodes could then filter out the CHs
that are outside of their competition radius. However, due to time limitations, we
have not explored this solution any further.

46

6
Evaluation

In this chapter, we evaluate our clustering implementation. We begin by defining the
topologies and the metrics we use. We continue with an evaluation of our clustering
parameters, where we determine what configurations of the parameters yield the
most reliable and stable network, for different topologies. Next, we compare our
clustering implementation to the A2 system. We end this chapter with a discussion
on the evaluation results, how our limitation on fault tolerance affected our results,
and running different applications in a clustered network.

6.1 Evaluation Setup

We run several different tests to evaluate our clustering implementation. In this
section, we describe our test setup, the network topologies we run our tests on, and
the metrics we use.

6.1.1 The Cooja Simulator

Cooja [9] is a simulator for ContikiOS [8], the operating system that Chaos and A2

are implemented on [3, 4]. In Cooja, we create networks with 50 and 200 nodes
placed randomly in topologies of different sizes, to get both dense and sparse net-
works. We start with 50 nodes in a 100x100 m2 area and increase the side of the
square in steps of 300 meters up to 2500x2500 m2. We do the same for 200 nodes
but only up to 1300x1300 m2. We only have one network topology per area and
number of nodes. We simulate each test for 30 minutes, which gives us 600 rounds
of data.

We run most of our tests using 50 nodes for two reasons. First, 50 nodes are enough
to see that the Clustering service creates several clusters. Second, running these
simulations takes a significant amount of time, and it does not scale well when
increasing the number of nodes. Simulating 30 minutes with 50 nodes takes 2-3
hours, and 200 nodes takes 30-50 hours on our hardware. However, when comparing
our clustering process to the A2 system, we also simulate 200 nodes to see the effects
of scaling up the network. Moreover, we chose the different sizes from the fact that

47

6. Evaluation

in Cooja, a network with an area of 100x100 m2 ensures that is is a 1-hop network
and at 2500x2500 m2 the network is at least a 7-hop network.

6.1.2 The Flocklab Testbed

The Flocklab testbed [10] consists of 27 nodes deployed both indoors and outdoors
at ETH Zurich. Flocklab provides several services that make it easy to measure and
evaluate the code that is running on the nodes. Our tests log data to the serial port
of an observer node, Flocklab aggregates the data and sends it to us at the end of
each test.

6.1.3 Metrics

To define the metrics we use, we make a distinction between rounds which execute
coordination and rounds which execute applications. Coordination is rounds in
which the network is set up to enable applications to run; coordination includes
the Cluster, Join, and Demote services. We also differentiate between static and
dynamic coordination. Static coordination is scheduled at fixed round intervals
to, for example, cluster the network. Dynamic coordination, on the other hand,
is scheduled by nodes as needed during the application phase, to handle faults in
the network or new nodes. Applications are programs that run with the goal of
providing some value or perform some calculation; Some examples of applications
are finding the maximum or mean of all values proposed by nodes in the network,
or performing a two-phase commit.

We consider four metrics when evaluating clustering on A2: stability, reliability,
latency, and energy usage. Reliability is previously defined by Landsiedel et al. [3] as
"the percentage of rounds in which all nodes reach completion". However, in our case,
clusters may reach completion independent from each other. Therefore, we measure
reliability in a way which reflects that some clusters can succeed while others fail
during a round. Furthermore, we introduce the metric stability, since we want to
measure how much time is spent by the network running dynamic coordination.
The amount of dynamic coordination in a network should be kept to a minimum.
Moreover, both latency and energy usage is measured in previous work conducted
by Landsiedel et al. [3]. We define all metrics for one execution of a network, that
is, one simulation in Cooja or one run on the Flocklab testbed.

Stability is a measurement of how often topology changes occur. We say that a
node is stable if it is executing an application and unstable if it is executing dynamic
coordination. Stability during one round is the proportion of nodes that are stable.
We give the following definition for the stability for one test.

48

6. Evaluation

Definition

Let si be the set of stable nodes in round i, n the set of all nodes, and R the
set of all rounds which do not execute static coordination.

Stability =

∑
i∈R
|si|

|n| ∗ |R|

Reliability is a measurement of how well an application runs on the network; thus,
it is only measured during application rounds. Reliability during one round is the
proportion of stable nodes that successfully execute an application. We give the
following definition for the reliability for one test.

Definition

Let ai, ai ⊂ si, be the set of stable nodes that succeeds with an application in
round i, and Ra the set of all rounds in which an application is executed.

Reliability =

∑
i∈Ra

|ai|∑
i∈Ra

|si|

Latency is a measurement of how long it takes for an application to terminate. For
a stable node in one round, latency is the number of slots from the start of the round
until the node powers down. We give the following definition for the latency for one
test.

Definition

Let lij be the latency for node j in round i.

Latency =

∑
i∈Ra

∑
j∈si

lij∑
i∈Ra

|si|

Energy usage is a measurement of the average amount of energy used by a node per
Energest time unit. Energest is the built-in energy estimation module in Contiki and
we measure energy usage in all rounds, both during coordination and applications.
We give the following definition for the energy usage for one test.

49

6. Evaluation

Table 6.1: The parameters we evaluate and their default values

Parameter Value
Competition Radius 1

Minimum cluster size 4
Nodes per cluster ratio 10

Round re-synchronisation threshold 3

Definition

Let ei be the energy used by node i in one test, and let T be the running time
of the test in Energest time units.

Energy usage =

∑
i∈n

ei

T ∗ n

6.1.4 Limitations

Due to time constraints we impose several limitations on the evaluation of our
clustering implementation. We only run tests in the Cooja simulator and on the
Flocklab testbed. Running simulations gives us the freedom to choose topologies,
but the simulations do not model the network perfectly. Flocklab, on the other
hand, contains real nodes but is relatively small with only 27 nodes in a static
configuration. We only compare our implementation to A2, and do not consider any
other WSN protocols.

Furthermore, we only simulate two different network sizes, 50 nodes and 200 nodes.
We only simulate 50 nodes when searching for parameter values, and include net-
works with 200 nodes when we compare our clustering process to A2.

To limit the scope of our parameter evaluation, we use the values listed in Table 6.1
for the parameters that we are not currently evaluating.

Lastly, we only evaluate clustering using the Max application. The Max application
is the most straightforward application currently implemented in the A2 system.
We discuss how to apply different applications and the implications of doing so in
Section 6.4.3.

50

6. Evaluation

6.2 Clustering Parameters

In this section, we experimentally search for optimal values to the parameters in
our clustering algorithm. The parameters are round re-synchronisation threshold,
competition radius, minimum cluster size, and nodes per cluster ratio. We run each
parameter configuration three or six times and plot the reliability and stability of
each test for each network topology.

We only look at the reliability and stability of these tests since the purpose is to find
which parameters yield the best results, in terms of running the application. How-
ever, we include the latency results in Appendix A for completeness; we note that
there are no significant differences in latency for different values of these parameters,
and will not comment on these results any further.

We use a different number of topologies depending on which parameter we evaluate.
When evaluating competition radius, we test on all network topologies we describe
in Section 6.1.1 since this parameter is dependent on the density of the network.
However, when we test the parameters minimum cluster size and nodes per cluster
ratio, we use topologies from 100x100 m2 to 1300x1300 m2, using competition radius
1. We argue that increasing the competition radius while simultaneously increasing
the area of the networks will not give any new results. By excluding the network
topologies with a larger area, we could repeat each configuration for these tests a
total of six times, instead of three.

6.2.1 Round Re-synchronisation Threshold

The round re-sync threshold parameter is not directly related to the clustering pro-
cess. Rather, it is a setting that controls a fundamental part of the A2 system.
Round re-sync threshold is a numeric parameter that determines how many rounds
a node will spend receiving no packets before associating with the network again.

We evaluate three different values of the round re-sync threshold (1, 2, and 3), for
each value of re-sync threshold we evaluate three different values of competition
radius (1, 2, and 3), which gives us a total of 9 test configurations. We use different
values of competition radius for these tests because we do not want a suboptimal
competition radius to affect the results regarding the re-sync threshold, especially
for sparser networks.

We make two observations from the round re-sync threshold results, shown in
Fig. 6.1. First, the reliability is drastically increased when the re-sync threshold
is greater than 1. Second, the stability increases as the re-sync threshold increases.

The reason reliability is low when the re-sync threshold is 1 (Fig. 6.1a), is that a
clustered network is not compatible with such a low threshold. The cause of this
problem is that the network has a single initiator during CH rounds, which is the
CH with the lowest ID. Furthermore, we allow clusters to schedule and run the Join

51

6. Evaluation

service during CH rounds, meaning those clusters will not participate with their
value, neither will they forward packets during CH rounds.

The problem, which often occurs, is that the cluster with the lowest ID runs the
Join service during a CH round, in that case, there is no initiator present for the CH
round. Without an initiator, all other clusters that participate in the CH round,
will increase their resynchronisation counter by one, reach the resynchronisation
threshold, and start associating. Furthermore, as we discuss in Section 6.4, our
limitation regarding fault tolerance further exacerbates this problem.

Usually, these scenarios only affect the stability of the network. However, in this
case, the reliability is also affected since the network never has a chance to continue
normal execution. Since the re-sync threshold is set too low, there is a high proba-
bility that every round has some portion of nodes associating, and some portion of
nodes running the max application but failing since the only initiator is running the
Join service.

Furthermore, the stability increases with the re-sync threshold. The increase in
stability when increasing the parameter from 1 to 2 follows from the same reasoning
as for the reliability. However, the stability continues to increase when going from 2
to 3 as well. With an increase in the re-sync threshold, there is a lower chance that
a node will re-associate with the network since it has a higher chance of receiving
at least one valid packet before it reaches the threshold.

From this evaluation, we conclude that out of the values we tested, using a re-sync
threshold of 3 gives the best results. Even though Fig. 6.1 imply a trend of higher
stability with an increasing re-sync threshold. However, we did not test greater
values of this parameter due to time constraints, we discuss implications of increasing
it more in Section 6.4.2. All further evaluation of our clustering implementation uses
a re-synchronisation threshold of 3.

52

6. Evaluation

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

R
el

ia
bi

lit
y

(M
ea

n
&

 M
in

/M
ax

)

Competition Radius (hops)

1 2 3

●

●

●

●

●

● ●
●

●

●●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

S
ta

bi
lit

y
(M

ea
n

&
 M

in
/M

ax
) Competition Radius (hops)

1 2 3

(a) Re-synchronisation threshold 1.
●●● ●●● ●●● ●●

●

●●

●

●
●
●

●
●

●

●
●

●

●
●

●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

R
el

ia
bi

lit
y

(M
ea

n
&

 M
in

/M
ax

)

Competition Radius (hops)

1 2 3

●●

●

●

●● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

S
ta

bi
lit

y
(M

ea
n

&
 M

in
/M

ax
)

Competition Radius (hops)

1 2 3

(b) Re-synchronisation threshold 2.
●●● ●●● ●●● ●●● ●●

●

●●

● ●

●

●
●
●●

●
●●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

R
el

ia
bi

lit
y

(M
ea

n
&

 M
in

/M
ax

)

Competition Radius (hops)

1 2 3

●●
●

●

●

●

●
●● ●

●

●

●●
●

●●

●

●

●

●

●●

● ●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

S
ta

bi
lit

y
(M

ea
n

&
 M

in
/M

ax
)

Competition Radius (hops)

1 2 3

(c) Re-synchronisation threshold 3.

Figure 6.1: Resynchronisation threshold tests for different values of Competition
radius. Both reliability and stability increases as the re-sync threshold increases.

6.2.2 Competition Radius

Competition radius determines the distance, in hops, from which a node can choose
a CH. For this parameter, we evaluate the values 1, 2 and 3, which ensures that
we test the minimum value of 1 but also not get too sparse clusters. We show the
average, minimum, and maximum reliability and stability for each network size and
each competition radius in Fig. 6.2. Note that this figure is the same as Fig. 6.1c
because we set the re-synchronisation threshold to 3 for all tests. Consequently,

53

6. Evaluation

●●● ●●● ●●● ●●● ●●

●

●●

● ●

●

●
●
●●

●
●●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

R
el

ia
bi

lit
y

(M
ea

n
&

 M
in

/M
ax

)

Competition Radius (hops)

1 2 3

●●
●

●

●

●

●
●● ●

●

●

●●
●

●●

●

●

●

●

●●

● ●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

S
ta

bi
lit

y
(M

ea
n

&
 M

in
/M

ax
)

Competition Radius (hops)

1 2 3

Figure 6.2: The reliability and stability for different network sizes. Each network
size has been tested with competition radius 1, 2, and 3.

both of these tests use the same parameter values, so we did not rerun the test.

We see that both reliability and stability decreases as the size of the networks in-
crease. We expect to see this decrease since clustering sparse networks will make
them even sparser, which hinders communication. However, we see that higher
values of competition radius are better for these networks since larger clusters are
created, which does not impact communication as much as small clusters. Further-
more, the differences in stability and reliability for the denser networks (100x100,
400x400, and 700x700) is noise. These networks are 1-hop networks, and thus the
competition radius value does not affect the clustering.

6.2.3 Minimum Cluster Size

Minimum cluster size determines the smallest cluster that is allowed to exist after
the clustering process has converged on a set of clusters. All clusters with fewer
nodes are removed, and the affected nodes join other clusters. We evaluate this
parameter using three different values, 2, 4, and off; off means that no clusters are
considered too small. We did not test any larger values for this parameter since we
only use 50 nodes for the parameter tests, and a value larger than 4 would mean
that more than 10% of the nodes in the network could be in a cluster and it would
be removed, which we consider too aggressive. We show the reliability and stability
for these tests in Fig. 6.3.

When we look at the reliability for this parameter, we see that there is no significant
difference for any topology or parameter value. However, we see a small variance
in stability for larger networks. Looking at the data on how many cluster heads
were created and demoted for these tests, which we can see in Fig. 6.4, we see two
interesting results. First, using higher values of this parameter show no significant
difference in the number of CHs created by the clustering process. Second, there
was one test which demoted many more CHs than the others, the value 2 for the
100x100 m2 topology. The high number of demoted CHs resulted in the CH count
being close to the average. In that test, 32 CHs were demoted while normally 1-2
CHs are demoted. This recovery demonstrates that using this parameter can help

54

6. Evaluation

●●● ●●● ●●● ●●● ●●
●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

R
el

ia
bi

lit
y

(M
ea

n
&

 M
in

/M
ax

)

Minimum Cluster Size

Off 2 4

●●

●
●●
● ●●

●
●
●

●
●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

S
ta

bi
lit

y
(M

ea
n

&
 M

in
/M

ax
)

Minimum Cluster Size

Off 2 4

Figure 6.3: The reliability and stability for different network sizes. Each network
has been tested with minimum cluster size values off, 2, and 4.

●
●

●

●●
●

●
●●

●

●

●

●
●

●

0

2

4

6

8

10

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

C
re

at
ed

 C
H

s
(M

ea
n

&
 M

in
/M

ax
)

Minimum Cluster Size

Off 2 4
●
●

● ●●●
●●●

●●● ●●●0

4

8

12

16

20

24

28

32

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

D
em

ot
ed

 C
H

s
(M

ea
n

&
 M

in
/M

ax
)

Minimum Cluster Size

Off 2 4

Figure 6.4: Shows the number of CHs after the clustering process has finished, and
the number of demoted CHs.

the clustering process handle faults in the Clustering service.

6.2.4 Nodes per Cluster Ratio

The nodes per cluster ratio parameter determines if nodes may become CHs even
if they have heard from another CH within the competition radius. The parameter
describes a ratio of how many neighbours a node needs to have relative to the number
of CHs the node has heard. We test the values 5, 10, 15, and off for this parameter.
The value off means a CH will never announce itself if it has heard from another
CH within the network’s competition radius. The results can be seen in Fig. 6.5.

The most significant results for the nodes per cluster ratio parameter is the decrease
in stability and reliability in the 1000x1000 and 1300x1300 m2 networks. With more
clusters in networks with a larger area, we see more clusters failing with communi-
cation, causing nodes to try and re-synchronise, which is worsened by our limitation
on fault tolerance. Furthermore, the two deviations in stability for 100x100 m2 in
the case of 10 and 15 nodes per cluster ratio are both due to noise.

Additionally, we see a small but constant decrease in reliability for the parameter
value 5. This decrease is because the Clustering service creates too many clusters

55

6. Evaluation

●●●●
●●●
●

●●●
●

●●●●
●●
●

●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

R
el

ia
bi

lit
y

(M
ea

n
&

 M
in

/M
ax

)

Nodes per Cluster Ratio

5 10 15 Off

●

●●
● ●

●

●●
●●●● ●

●●

●

●
●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

S
ta

bi
lit

y
(M

ea
n

&
 M

in
/M

ax
)

Nodes per Cluster Ratio

5 10 15 Off

Figure 6.5: The reliability and stability for different network sizes. Each network
size has been tested with max node count off, 5, 10, and 15.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

2

4

6

8

10

12

14

16

18

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

P
ro

m
ot

ed
 C

H
s

(M
ea

n
&

 M
in

/M
ax

)

Nodes per Cluster Ratio

5 10 15 Off

●
●
●

●

●
●
●

●

●●

●

●

●
●
●

●

●●
●

●

0

2

4

6

8

10

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

D
em

ot
ed

 C
H

s
(M

ea
n

&
 M

in
/M

ax
)

Nodes per Cluster Ratio

5 10 15 Off

Figure 6.6: The number of elected CHs before the Demote service runs, and the
number of demoted CHs.

which are only demoted or otherwise removed, as can be seen in Fig. 6.6. Since
demoting a CH may cause a fault, increasing the number of demotions will increase
the probability of a fault to occur. Usually, these scenarios only affect the stability
of the network, but in this case, the reliability is also affected since the CHs could
not agree on which CHs was demoted and thus never agree on the correct maximum
value in the CH rounds.

Nonetheless, we noticed that more nodes announced themselves as CH with a smaller
nodes per cluster ratio value as seen in Fig. 6.6; this shows that the parameter works
as intended but requires careful consideration when configured, and needs to be
adapted to the network topology.

6.3 Comparing A2 with Clustered A2

In this section, we show the results of evaluating our implementation of clustered
A2 and compare with the results from our evaluation of the original A2 system.
We show results for stability, reliability, latency, and estimated energy usage for all
tests we run. We use different parameter values for some network topologies during
this comparison. The most significant change is that we increase the competition

56

6. Evaluation

radius as the network sizes increases. We list all parameter values for these tests in
Appendix B.1.

6.3.1 Reliability and Stability

We show reliability and stability for the evaluations with 50 nodes in Fig. 6.7a and
for 200 nodes in Fig. 6.7b. Looking at the reliability for both of these, we see almost
no difference for most network topologies, except with 50 nodes for 2200x2200 and
2500x2500 m2, where the reliability drops when using clustering. The reason it drops
is presented in detail Section 6.2.2, but essentially, too small clusters are created for
these sparse networks.

However, the stability results have a higher variance. In the networks with 50 nodes,
the clustered networks have lower stability, there are some tests which achieve similar
levels of stability, but on average it is lower or much lower. In networks with 200
nodes, on the other hand, clustering achieves better results, the average stability
is still lower than for the A2 system, but there are some tests where clustering
outperforms A2 slightly.

The reason A2 drops in stability for 200 nodes, is that when one node loses connection
with the network, the whole network has to spend on average, two or three rounds
running the Join service. The clustering implementation, on the other hand, should
only have to run the Join service locally in the affected cluster, which impacts
stability less. However, since the clustering implementation lacks fault tolerance
(discussed in Section 6.4), the stability results for clustering are worse than they
could be.

Furthermore, the stability has a decreasing trend in the 50 node networks while it is
increasing in the 200 node networks. The reason the stability has an increasing trend
in 200 node networks is that the small networks are dense and therefore generate
more interference, which increases the number of faults that occur. However, we have
not tested larger networks than 1300x1300 m2 using 200 nodes, and it is possible
that the stability will show a similar trend as the 50 nodes network when the area
of the networks is increased further.

6.3.2 Latency

We show the mean latency and standard deviation for each test we run in Fig. 6.8.
Looking at the tests using 50 nodes (Fig. 6.8a) the latency for the clustering imple-
mentation is on average a little lower for network topologies smaller than 2200x2200m2,
after that the A2 system outperforms our implementation. However, for all network
topologies our clustering implementation has a higher standard deviation. We see
a similar trend for 200 nodes (Fig. 6.8b), the standard deviation is still high; how-
ever, our clustering implementation consistently has a lower mean latency for all
topologies tested.

57

6. Evaluation

●● ●● ●● ●● ●● ●● ●
●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

R
el

ia
bi

lit
y

(M
ea

n
&

 M
in

/M
ax

)

Clustering

A2

●● ●●
●
●

●● ●

●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

S
ta

bi
lit

y
(M

ea
n

&
 M

in
/M

ax
)

Clustering

A2

(a) Networks with 50 nodes.
●● ●● ●● ●● ●●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

R
el

ia
bi

lit
y

(M
ea

n
&

 M
in

/M
ax

)

Clustering

A2

●

●

●
●

●

●

●

●

●
●

0.0

0.2

0.4

0.6

0.8

1.0

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

S
ta

bi
lit

y
(M

ea
n

&
 M

in
/M

ax
)

Clustering

A2

(b) Networks with 200 nodes.

Figure 6.7: Reliability and stability comparison between A2 with clustering and
original A2.

If we compare the latency between 50 nodes and 200 nodes, we see that it increases
as the number of nodes increases. Consequently, we get lower latency when applying
clustering since each cluster only contains a proportion of all nodes in the network.

6.3.3 Energy

In Fig. 6.9, we show the mean energy usage per node per Energest time unit. We
observe in Fig. 6.9a that energy usage for clustering increases with network area.
We also observe that stability (Fig. 6.7b) has an inverse relationship to energy
usage, because an unstable node consumes more energy than a stable node. Both
associating with the network and running the Join service requires more energy than
the max application. They take more energy since the Join service takes longer time
than the max application, and when a node associates it does not sleep.

Comparing 50 to 200 nodes we notice a higher energy usage on average for 200
nodes, which we expect to see since more nodes require more communication and
longer rounds, which leads to higher energy consumption. Clustering shows a small
advantage with 200 nodes Fig. 6.9b, compared to A2; each cluster can reach con-
sensus in fewer slots than the whole network can, which is why the average energy
usage is lower on all topologies.

Finally, the energy usage differs from the other metrics in that it is measured during

58

6. Evaluation

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

0

20

40

60

80

100

120

140

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

La
te

nc
y

(M
ea

n
&

 S
T

D
E

V
) Clustering

A2

(a) Networks with 50 nodes.

●

●

●

●

●

●

●

●

●

●

0

20

40

60

80

100

120

140

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

La
te

nc
y

(M
ea

n
&

 S
T

D
E

V
) Clustering

A2

(b) Networks with 200 nodes.

Figure 6.8: Latency comparison between A2 with clustering and original A2.

●
● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

120

130

140

150

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

E
ne

rg
y

(M
ea

n
&

 S
T

D
E

V
)

Clustering

A2

(a) Networks with 50 nodes.

●

●

●

● ●

●

●

●

●

●

120

130

140

150

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

E
ne

rg
y

(M
ea

n
&

 S
T

D
E

V
)

Clustering

A2

(b) Networks with 200 nodes.

Figure 6.9: Energy comparison between A2 with clustering and original A2.

both the coordination and application phase. It is measured in all rounds because
the energy results for only the applications could be misleading since the energy
usage by the clustering process could outweigh the benefit of clustering the network.

6.3.4 Flocklab

We present the results from our tests on the Flocklab testbed in Fig. 6.10, which we
get by running our clustering implementation and the A2 system four times each.
We see that A2 outperforms our implementation in all metrics, achieving higher
reliability and stability, lower latency, and lower energy consumption.

Flocklab is a small and relatively sparse network with only 27 nodes, and it is also
affected by external interference, which the simulations do not model. All of these
factors contribute to lower stability, for both A2 and the clustering implementation.

When clustering the Flocklab network what often happens is that some node loses
connection and need to associate with the network, to handle this the Join service is
scheduled. Because no test run created more than two CHs, approximately half of
the nodes begins to run the Join service, this makes it even harder for the other nodes
to communicate, forcing more nodes to associate, creating a compounding effect

59

6. Evaluation

●

●

0.0

0.2

0.4

0.6

0.8

1.0

Flocklab
Network

R
el

ia
bi

lit
y

(M
ea

n
&

 M
in

/M
ax

)

Clustering

A2

(a) Reliability.

●

●

0.0

0.2

0.4

0.6

0.8

1.0

Flocklab
Network

S
ta

bi
lit

y
(M

ea
n

&
 M

in
/M

ax
)

(b) Stability.

●

●

0

30

60

90

120

150

180

210

240

270

300

Flocklab
Network

La
te

nc
y

(M
ea

n
&

 S
T

D
E

V
)

(c) Latency.

●

●

125

135

145

155

165

175

Flocklab
Network

E
ne

rg
y

(M
ea

n
&

 S
T

D
E

V
)

(d) Energy.

Figure 6.10: The results of running A2 and our clustering implementation on the
Flocklab testbed. We show the mean and min/max for stability and reliability, and
the mean and standard deviation for latency and energy consumption.

of more and more nodes associating with the network. Nonetheless, running the
clustering implementation on the Flocklab testbed demonstrates that the clustering
process works when running on real nodes.

6.4 Discussion

In this section, we discuss insights from our results. Furthermore, we discuss how our
limitation on fault tolerance affected the stability of the networks. We also discuss
running other applications in a clustered network, and end with some comments
regarding the scalability and energy efficiency of a clustered network.

6.4.1 Stability and Fault Tolerance

From the results we get from comparing A2 to our implementation, we see that our
clustering implementation achieves similar reliability in almost all cases. However,
the stability has high variance and is, in some cases, much lower. The primary reason
for these stability results is that we did not consider fault tolerance for our clustering
implementation. In this section, we will describe and discuss what scenarios lead to
lower stability and how they relate to fault tolerance.

One of the most common fault tolerance issues is that a node loses connection to
the network and has to re-associate with it. For a node, this process should look as
follows.

1. A node does not receive any packet for some rounds equal to round re-synchronisation
threshold.

60

6. Evaluation

1

5

10

15

20

25

30

260 276 292 308 324 340 356 372 388 405

Round

N
od

e
ID

Application Names

Association

Cluster Service

Join Service

Max

Figure 6.11: Example of what happens when a node requests the Join service to
be scheduled, blue is the correct application, green is the Join service, and yellow is
the Clustering service. The first cluster repeatedly schedules the Join service without
any effect.

2. The node switches to association, listening for a packet with which it can
synchronise.

3. The node sets the join flag in outgoing packet headers, requesting that the
initiator schedule the Join service.

4. The current initiator schedules the Join service for its cluster.

By analysing the tests from the comparison of our implementation to the A2 system,
we see that stability issues always occur in step 4 of this process. We performed this
analysis by looking at the outcomes of tests in the simulator; we do not attach any
details of this here since it is too extensive.

Properly scheduling the Join service is complicated since we change both which node
is the initiator and which nodes communicate while switching between cluster and
cluster head rounds. The most common scenario, exemplified in Fig. 6.11, is that a
node, in this case node 17, sets its join flag during a CH round, this happens first in
round 270 in the example, and forces the first CH to schedule the Join service. The
problem is that it does not matter which cluster node 17 has joined, it is always
the first cluster that schedules the Join service. Consequently, since node 17 never
gets the chance to join, because the wrong cluster is running the Join service, this
scenario continues until a reclustering is scheduled.

Furthermore, if a CH loses connection to the network and has to associate, additional
problems can occur. What happens depends on which CH associates. First, if the
CH with the lowest ID associates, the network cannot continue normal execution,
since that CH is the initiator during CH rounds. Causes and solutions to this
problem are discussed more thoroughly in Section 5.3.3. Second, if another CH
associates, the network will continue to execute the application. However, that
node neither contributes its value nor sets its flag during CH rounds, which means
the other nodes will never know that they have reached completion and cannot shut

61

6. Evaluation

down early during CH rounds. This scenario does not impact the stability of the
application, but it increases the latency and energy usage.

Finally, that our clustering implementation works in the absence of faults is sup-
ported by the reliability and stability results in Fig. 6.7. Since the reliability metric
does not include scenarios which require fault tolerance, it expresses the fact that
clustering achieves good results during normal operation of the network. Addition-
ally, from the stability results for 200 nodes, Fig. 6.7b, we see that there are some
tests which achieve better stability than A2, demonstrating that our clustering im-
plementation has the potential to achieve better stability than the A2 system in
larger networks.

6.4.2 Clustering Parameters

The results we see in the parameter evaluation varies greatly, both when looking at
a single test but also when looking at the different evaluations of the parameters
combined. From the parameter evaluation, we can give some general remarks about
each of the parameters.

As we see in the resynchronisation threshold evaluation (Section 6.2.1), both the sta-
bility and reliability increase significantly as the re-sync threshold increases. These
results suggest that we should increase the re-sync threshold indefinitely. We did
not evaluate this parameter further due to time constraints.

However, there are other reasons why indefinitely increasing this parameter will not
yield the desired results. Re-sync threshold controls the number of rounds a node
will wait while receiving no packets until it re-synchronises with the network again.
Thus this parameter only fixes the symptom and not the cause of the problem, which
is that a node has a bad connection to its cluster. For example, with a high re-sync
threshold a node might stay in a suboptimal cluster since it receives enough packets
to reset the re-sync threshold but not enough packets to complete the application
running in the cluster, which will affect reliability.

For competition radius, we see that it is a parameter useful for creating reliable
clusters since it had the most significant impact on the stability of a test for larger
network areas.

For minimum cluster size, the results we got suggest that this parameter has a small
impact on the overall stability. However, we see no correlation between the overall
number of CHs and the stability, suggesting that these results either have some
other underlying cause or the difference is due to noise. However, this parameter
should be used, since it prevents clusters with only one node to form.

Last, the nodes per cluster ratio parameter worked as we expected. With a lower
value of this parameter, we saw that the clustering process created more CHs. How-
ever, this parameter requires careful consideration since it can cause too many CHs
to be created for sparse networks, as we see in Section 6.2.4.

62

6. Evaluation

6.4.3 Running Other Applications in a Clustered Network

Throughout this thesis, we limit our evaluation to the Max application because our
focus was to implement clustering on the A2 system. However, other applications
might benefit from clustering in different ways, but in some cases, they might not
be able to fully utilise the hierarchical communication medium. Additionally, more
complex applications might require more adaptions to run in a clustered network.
Consequently, the reliability of a clustered network depends on the application that
is executing. In this section, we discuss how other applications run in a hierarchical
network to highlight some issues that they possess, and to show that clustering is not
limited to only the Max application. A typical application for a WSN is to perform
data aggregation in the form of calculating a sum, mean or median, or agreeing on
a common value using, for example, a 2 or 3 phase commit protocol.

Different applications have different requirements on the aggregation function, and
there exist multiple categories for the approach and aggregation function used, as
defined by Fasolo et al. [27]. The approach to aggregating data is either with or
without size reduction. With size reduction, a node can merge data from packets
it receives and then transmits the combined data. Without size reduction, the data
points are either unrelated or cannot be combined in a meaningful way; however,
a node can still combine the data points into a single packet to reduce overhead.
Furthermore, Fasolo et al. classified aggregation functions into duplicate sensitive
and duplicate insensitive functions. Duplicate sensitive aggregation functions change
the result if some information is considered multiple times; in a duplicate insensitive
aggregation function, duplication of information does not affect the result.

Calculating a sum in a clustered network requires few adaptations for an implemen-
tation for a non-clustered network, and it can take advantage of the hierarchical
communication. Each CH would be able to calculate its cluster’s sum of proposed
values using a size reduction approach. CHs then repeat the same process during
the CH round sharing the aggregated packet with all other CHs. However, one dif-
ference when calculating a sum compared to a maximal value is that a CH needs
to maintain a list of all contributed values and which node contributed with what
value since it is duplicate sensitive. If the nodes were to add values together, then
the same value could be added to the sum multiple times. Since A2 has a restriction
on the packet size, the number of nodes that can propose values is limited. Clus-
tering the network would directly help with this since smaller parts of the network
calculate separate sums, which means the list of proposed values is smaller.

Furthermore, calculating the median in a clustered network require more resources
than calculating a sum, since all values have to be known to at least one node.
Clustering affects the size of the required list in each cluster in the same way as when
calculating the sum. However, the CH cannot perform a size reducing intermediary
calculation as in the sum application. The CHs will instead share the lists between
each other, merging all lists from all clusters, which would result in a list with a
length equal to the number of nodes in the network. Therefore, calculating the
median in a clustered network compared to a non-clustered network does not scale

63

6. Evaluation

better with regards to packet size. However, an approach based on aggregation
without size reduction would still reduce the overhead required to calculate the
median.

However, calculating the mean can make efficient use of a clustered network, since
a size reduction approach can be used. A mean calculation requires two things:
the sum of all proposed values, and the number of proposed values. Because a CH
already knows the size of its cluster, they can perform a mean calculation in the
same way as the sum calculation, with the extension that the CHs calculate the
sum of the cluster sizes. At the end of the CH round, all CHs know the sum of all
proposed values and the sum of all cluster sizes and can, therefore, calculate the
mean.

Two other applications, which are more complicated than mean, sum and median,
are two and three phase commit. Adapting these to run on a clustered network is
not as straightforward. These applications can take advantage of clustering in all
phases, running some of the collection and dissemination in parallel in every cluster.
However, coordination is required between the CHs when switching between phases.
The complexity lies in switching which node is the initiator when switching between
inter- and intra-cluster communication; especially if we were to implement a solution
which executes the whole commit protocol in one round. We discuss the problems
with switching between initiators in a round in Section 5.3.3.

In conclusion, clustering should increase the performance and scalability for many
applications running on a WSN. Even applications which require a global view of the
network can benefit from hierarchical communication. However, further work is re-
quired to implement these applications to evaluate the effectiveness of our clustering
implementation.

6.4.4 Achieving Better Scalability

One of the primary goals of this thesis is to increase the scalability of the A2 system.
We do not have a metric for measuring scalability directly, however, using the com-
bined information from all metrics we argue that we achieved our goal. From the
latency and energy usage results, we saw that our solution achieved a lower latency
and energy usage for networks with 200 nodes. Additionally, since we cluster the
network before running the Join service, the restriction caused by the flags field is
not applied until after the clusters are created. Thus, we increase the theoretical
maximum number of nodes in the network, and the restriction is now local to every
cluster.

However, there are some caveats to achieving better scalability. First, we measure
the latency results per round. We do not take into account that a clustered network
requires two complete rounds to agree on a global maximum value, while A2 only
requires one round. A clustered network requires two rounds because we schedule
the inter- and intra-cluster communication in separate rounds. Second, even though
our implementation has lower stability than A2 in almost all cases, we achieve better

64

6. Evaluation

latency and lower energy usage; this is good since we achieve those results even in
the presence of more faults.

Furthermore, low stability could imply less scalability as well. Our results suggest
that the stability decreases as the number of nodes increase, however, we have
shown that this is caused by our limitation on fault tolerance and is not inherent to
clustering the network.

Despite these caveats, we argue that the results are promising. From the discus-
sion on fault tolerance we conclude that the lower stability for A2 with clustering
can primarily be attributed to limitations on our implementation since some fault
tolerance measures present in the A2 system are not enabled when clustering the
network. If future work target this limitation and implement these fault tolerance
measures, our clustering implementation has a high probability of achieving equal
or better stability while running more scalable and energy efficient networks.

65

6. Evaluation

66

7
Conclusion

Improving scalability and decreasing energy usage in protocols for Wireless Sensor
Networks is a research question with much focus. A typical way to accomplish this is
to cluster the network. By partitioning the network into separate clusters, the net-
work spends less energy on communication and can, therefore, scale to more nodes.
In this thesis, we have introduced clustering to A2, a system that enables distributed
consensus in low powered wireless networks. The clustering implementation is based
on the HEED algorithm, which maximises network lifetime by taking into account
the residual energy of nodes when electing cluster heads. We have implemented a
clustering scheme in the A2 Synchrotron.

We have evaluated our implementation in the Cooja simulator and on the Flocklab
testbed using the metrics stability, reliability, latency, and energy consumption. The
results showed that our clustering implementation achieved similar reliability but
with higher variance in stability. However, for the larger networks we evaluated,
with 200 nodes, our clustering implementation achieved both lower latency and
better energy consumption than the A2 system. We determined that the variance
in stability for our clustering implementation was due to our limitation regarding
fault tolerance. Future work should, among other things, investigate and implement
fault tolerance mechanisms.

7.1 Future Work

In this section, we list and discuss possible goals for future work. With a focus
on implementing fault tolerance measures, which we specified as a limitation, and
further evaluation to reveal how clustering affects the A2 system more thoroughly.

7.1.1 Sleep Schemes

Sleep schemes control which nodes wake up each round and which nodes do not.
Since forwarders only route packets during CH rounds, sleep schemes are applicable
for those nodes. Furthermore, since we showed in Chapter 6 that a clustered network
requires less energy than a normal network, sleeping nodes would further decrease
the energy consumption of the network proportional to the percentage of nodes put

67

7. Conclusion

to sleep; this, however, could be in exchange for reliability. Further work would
research ways of determining which nodes can be put to sleep without affecting the
stability or reliability of the network.

7.1.2 Transmission Power

In this thesis, all nodes have used the same transmission power. It is conceivable to
use a stronger transmission power for CHs that increases with a greater competition
radius, enabling all other nodes to sleep during CH rounds. However, it would
put a high requirement on dynamic clustering since when normal nodes sleep, CHs
will continue to use energy. Dynamic clustering would enable CHs to schedule the
Clustering service which should elect new CHs and evenly distribute the energy
required by the network.

7.1.3 Fault Tolerance

As we discussed in Section 6.4.1 and specified in our limitation, we did not consider
fault tolerance for our implementation. As such, there are several faulty scenarios
which our implementation cannot handle. The most important one is the schedul-
ing of the Join service. To properly schedule the Join service locally in each cluster,
without affecting the other nodes during CH rounds, would increase stability signif-
icantly.

7.1.4 Measuring Throughput

In addition to the metrics we used in this thesis, it would be interesting to measure
the throughput the network can handle, and if there is any difference when clustering
is applied. Furthermore, performing these evaluations would give us data on how
the clustering performs when the packet size is increased. The max application only
used a small amount of the maximum packet size, which could affect the results.

7.1.5 Using Other Clustering Algorithms

In our work, we based our clustering implementation on the HEED algorithm. How-
ever, we have not analysed the effectiveness of the algorithm itself, and it is possible
that another algorithm would produce better results when applied to the A2 system.
Further work could investigate what happens using a different clustering algorithm,
with a focus on different classes of algorithms, such as deterministic or centralised
algorithms.

68

Bibliography

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Com-
puter Networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[2] M. A. Mahmood, W. K. G. Seah, and I. Welch, “Reliability in wireless sen-
sor networks: A survey and challenges ahead,” Computer Networks, vol. 79,
no. December, pp. 166–187, 2015.

[3] O. Landsiedel, F. Ferrari, and M. Zimmerling, “Chaos: versatile and efficient
all-to-all data sharing and in-network processing at scale,” Proceedings of the
11th ACM Conference on Embedded Netwoked Sensor Systems - SenSys ’13r,
pp. 1–14, 2013.

[4] B. A. Nahas, S. Duquennoy, and O. Landsiedel, “Network-wide Consensus
Utilizing the Capture Effect in Low-power Wireless Networks,” ACM SenSys,
pp. 1–14, 2017.

[5] M. M. Afsar and M. H. Tayarani-N, “Clustering in sensor networks: A literature
survey,” Journal of Network and Computer Applications, vol. 46, pp. 198–226,
2014.

[6] O. Younis, M. Krunz, and S. Ramasubramanian, “Node clustering in wireless
sensor networks: Recent developments and deployment challenges,” IEEE Net-
work, vol. 20, no. 3, pp. 20–25, 2006.

[7] O. Younis and S. Fahmy, “HEED: A Hybrid, Energy-Efficient, Distributed clus-
tering approach for ad hoc sensor networks,” IEEE Transactions on Mobile
Computing, vol. 3, no. 4, pp. 366–379, 2004.

[8] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - A lightweight and flexible
operating system for tiny networked sensors,” Proceedings - Conference on Local
Computer Networks, LCN, pp. 455–462, 2004.

[9] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level
sensor network simulation with COOJA,” Proceedings - Conference on Local
Computer Networks, LCN, pp. 641–648, 2006.

[10] R. Lim, F. Ferrari, and M. Zimmerling, “FlockLab: A testbed for distributed,
synchronized tracing and profiling of wireless embedded systems,” Proceedings
of the 12th . . . , pp. 153–165, 2013.

69

Bibliography

[11] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor
networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, 2002.

[12] D. D. V. Nikolaos A. Pantaziz, “A Survey On Power Control Issues In Wireless
Sensor Networks,” IEEE Communications Surveys and Tutorials, vol. 9, no. 4,
pp. 86–107, 2007.

[13] Moteiv, TMote Sky: Ultra low power IEEE 802.15.4 compliant wireless sensor
module, 2 2006. Rev. 1.0.2.

[14] J. Lee, W. Kim, S.-j. Lee, D. Jo, J. Ryu, T. Kwon, and Y. Choi, “An Ex-
perimental Study on the Capture Effect in 802.11a Networks,” Proceedings of
the ACM International Workshop on Wireless Network Testbeds, Experimental
Evaluation and Characterization (WinTECH), p. 19, 2007.

[15] I. X. S. (e-book collection) and I. X. (e-book collection), IEEE Std 802.15.4f-
2012 (Amendment to IEEE Std 802.15.4-2011): IEEE Standard for Local
and metropolitan area networks– Part 15.4: Low-Rate Wireless Personal Area
Networks (LR-WPANs) Amendment 2: Active Radio Frequency Identification
(RFID) System Physical. S.l.: IEEE, 2012.

[16] A. Demers, D. Greene, C. Hauser, W. Irish, and J. Larson, “Epidemic algo-
rithms for replicated database maintenance,” Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing - PODC ’87, pp. 1–
12, 1987.

[17] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, “Randomized rumor
spreading,” Proceedings 41st Annual Symposium on Foundations of Computer
Science, pp. 565–574, 2000.

[18] P. T. Eugster, R. Guerraoui, A. M. Kermarrec, and L. Massoulie, “Epidemic
information dissemination in distributed systems,” Computer, vol. 37, no. 5,
pp. 60–67, 2004.

[19] M. Perillo, Z. Cheng, and W. Heinzelman, “An analysis of strategies for mitigat-
ing the sensor network hot spot problem,” MobiQuitous 2005: Second Annual
International Conference on Mobile and Ubiquitous Systems -Networking and
Services, pp. 474–478, 2005.

[20] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conser-
vation in wireless sensor networks: A survey,” Ad Hoc Networks, vol. 7, no. 3,
pp. 537–568, 2009.

[21] E. Ever, R. Luchmun, L. Mostarda, A. Navarra, and P. Shah, “UHEED - an
unequal clustering algorithm for wireless sensor networks,” Sensornets 2012,
2012.

[22] C. Li, M. Ye, G. Chen, and J. Wu, “An energy-efficient unequal clustering
mechanism for wireless sensor networks,” 2nd IEEE International Conference
on Mobile Ad-hoc and Sensor Systems, MASS 2005, vol. 2005, pp. 597–604,
2005.

70

Bibliography

[23] S. D. Muruganathan, D. Ma C.F, I. Rolly, Bhasin, and A. O. Fapojuwo, “A
Centralized Energy-Efficient Routing Protocol for Wireless Sensor Networks,”
IEEE Radio Communicatins, no. March, pp. 8–13, 2005.

[24] W. B. Heinzelman, A. P. Chandrakasan, S. Member, and H. Balakrishnan, “An
Application-Specific Protocol Architecture for Wireless Microsensor Networks,”
IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 660–670,
2002.

[25] D. Chronopoulos, Extreme Chaos : Flexible and Efficient All-to-All Data Aggre-
gation for Wireless Sensor Networks. M.s thesis, Delft University of Tehcnology,
2016.

[26] A. L. Liestman and D. Richards, “Toward optimal gossiping schemes with con-
ference calls,” Discrete Applied Mathematics, vol. 7, no. 2, pp. 183–189, 1984.

[27] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network aggregation tech-
niques for wireless sensor networks: a survey,” IEEE Wireless Communications,
vol. 14, no. 2, pp. 70–87, 2007.

71

Bibliography

72

A
Appendix 1

A.1 Re-synchronization Latency Results

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

0

20

40

60

80

100

120

140

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

La
te

nc
y

(M
ea

n
&

 S
T

D
E

V
) Competition Radius (hops)

1 2 3

(a) Re-synchronisation threshold 1.

●●

●

●●
●

●

●●

●
●
● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

0

20

40

60

80

100

120

140

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

La
te

nc
y

(M
ea

n
&

 S
T

D
E

V
) Competition Radius (hops)

1 2 3

(b) Re-synchronisation threshold 2.

●●

●

●
●
●

●
●
● ●

●

● ●●

●

●●

●
●
●

●

●

●

●

●●

●

0

20

40

60

80

100

120

140

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

La
te

nc
y

(M
ea

n
&

 S
T

D
E

V
) Competition Radius (hops)

1 2 3

(c) Re-synchronisation threshold 3.

Figure A.1: Competition radii tests for different values of resynchronisation thresh-
old.

I

A. Appendix 1

A.2 Parameter Latency Plots

●●

●

●
●
●

●
●
● ●

●

● ●●

●

●●

●
●
●

●

●

●

●

●●

●

0

20

40

60

80

100

120

140

100x100
400x400

700x700

1000x1000

1300x1300

1600x1600

1900x1900

2200x2200

2500x2500

Network Size (m2)

La
te

nc
y

(M
ea

n
&

 S
T

D
E

V
) Competition Radius (hops)

1 2 3

(a) Competition radius.

●

●

●

●

●●

●
●
● ●

●

●

●

●

●

0

20

40

60

80

100

120

140

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

La
te

nc
y

(M
ea

n
&

 S
T

D
E

V
) Minimum Cluster Size

Off 2 4

(b) Minimum cluster size.

●●
●
●

●●
●

●

●●●
●

●

●

●

●

●
●

●

●

0

20

40

60

80

100

120

140

100x100
400x400

700x700

1000x1000

1300x1300

Network Size (m2)

La
te

nc
y

(M
ea

n
&

 S
T

D
E

V
) Nodes per Cluster Ratio

5 10 15 Off

(c) Nodes per cluster ratio.

Figure A.2: The latency results for the parameter tests.

II

B
Appendix 2

B.1 Parameter Values for the A2 Comparison

Table B.1: List of topologies with 50 nodes and the competition radius used for
each topology.

Competition Radius Topologies
2 700x700, 1300x1300, 2200x2200
3 100x100, 400x400, 1000x1000, 1600x1600, 1900x1900, 2500x2500

Table B.2: List of topologies with 200 nodes and the nodes per cluster ratio used
for each topology.

Nodes Per Cluster Ratio Topologies
10 100x100, 400x400
30 700x700, 1000x1000, 1300x1300

III

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem and Aim
	Limitations
	Contributions
	Thesis Outline

	Background
	Wireless Sensor Networks
	Chaos
	Synchronous Transmission
	The Initiator
	Association
	Flags Field
	Completion Flooding
	Timeout Mechanism

	Agreement in the Air
	The Scheduler
	Dynamic Group Membership
	Frequency Agility

	Gossiping
	Clustering
	HEED

	Clustering Objectives
	Primary Clustering Objectives
	Secondary Clustering Objectives

	Clustering Technology Properties
	Cluster Properties
	Cluster Head Properties
	Clustering Process Properties

	Related Work
	UHEED
	BCDCP
	LEACH
	Extreme Chaos
	Estimation Vector
	Flow Control

	Discussion

	Design of the Clustering Process
	Clustering Process Overview
	The Clustering Service
	Designing for Scalability
	Transmission Policy with Gossiping
	Election of Cluster Heads
	The Final Phase
	Configuration Parameters

	Joining Clusters
	Demotion of Cluster Heads
	Communication
	Intra-cluster
	Inter-cluster

	Clustering Objectives and Properties
	Discussion
	Comparing the Clustering Service's Communication to Gossiping
	Limiting the Number of Cluster Heads
	The Final Phase
	The Cost Function
	Separating Cluster Communication
	Clustering Risks A2's Fault Tolerance

	Implementing Clustering in A2
	Modifications to A2
	Flags Field for Cluster Heads
	Separating Communication Between Clusters
	Forwarders During Cluster Head Rounds
	Initiating Communication in a Clustered Network
	Interaction Between Services

	The Clustering Service
	The Clustering Service Packet Payload
	The Catch-up Mechanism
	The Demote Service

	Discussion
	Destructive Interference During CH Rounds
	Forwarders during CH rounds
	Fault Tolerance for Dynamic Initiators
	Clustering Without Completion Flags
	Completion Flags during Cluster Head Rounds

	Evaluation
	Evaluation Setup
	The Cooja Simulator
	The Flocklab Testbed
	Metrics
	Limitations

	Clustering Parameters
	Round Re-synchronisation Threshold
	Competition Radius
	Minimum Cluster Size
	Nodes per Cluster Ratio

	Comparing A2 with Clustered A2
	Reliability and Stability
	Latency
	Energy
	Flocklab

	Discussion
	Stability and Fault Tolerance
	Clustering Parameters
	Running Other Applications in a Clustered Network
	Achieving Better Scalability

	Conclusion
	Future Work
	Sleep Schemes
	Transmission Power
	Fault Tolerance
	Measuring Throughput
	Using Other Clustering Algorithms

	Bibliography
	Appendix 1
	Re-synchronization Latency Results
	Parameter Latency Plots

	Appendix 2
	Parameter Values for the A2 Comparison

