CHALMERS | @®%) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Distributed Viewshed Analysis

An Evaluation of Distribution Frameworks
for Geospatial Information Systems

EMIL JOHANSSON
JACOB LUNDBERG

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

MASTER’S THESIS 2016

Distributed Viewshed Analysis

An Evaluation of Distribution Frameworks
for Geospatial Information Systems

EMIL JOHANSSON
JACOB LUNDBERG

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Distributed Viewshed Analysis

An Evaluation of Distribution Frameworks
for Geospatial Information Systems

EMIL JOHANSSON

JACOB LUNDBERG

© 2016 EMIL JOHANSSON, JACOB LUNDBERG.

Academic supervisors: Birgit Grohe
Department of Computer Science and Engineering
K.V.S Prasad
Department of Computer Science and Engineering
Industry supervisor: Calle Hanson
Carmenta AB
Examiner: Graham Kemp

Department of Computer Science and Engineering

Master’s Thesis 2016 Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: A viewshed analysis over an area at Lake Tahoe, CA, USA. The eye denotes
the position of the observer and the areas visible are marked in blue.

Gothenburg, Sweden 2016

il

Distributed Viewshed Analysis

An Evaluation of Distribution Frameworks

for Geospatial Information Systems

EMIL JOHANSSON

JACOB LUNDBERG

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

Viewshed analysis is the process of computing what areas of a terrain are visible from
a certain observation point. In this thesis we evaluated the performance of these
computations on cloud clusters using the distribution framework Apache Spark.
We implemented three commonly used viewshed algorithms; R3 which is slow but
highly accurate as well as R2 and van Kreveld which are faster but less accurate.
Two versions of each algorithm were implemented, one to run on a single multi-core
machine and one to run on a server cluster using Spark. We compared the accuracy
and running time of the different algorithms in order to determine when to use the
different algorithms. Our results show that viewshed analysis does not perform well
when implemented using Spark if real-time results are required. In fact the faster
algorithms performed consistently worse on the cluster, even for very large input
data. For the highly accurate, but slow, R3 algorithm we were able to achieve a
1.6x speedup using the distribution framework.

Keywords: viewshed, GIS, distributed, cluster, line-of-sight, Apache Spark

iv

Acknowledgements

We would like to thank our supervisors from Chalmers, Birgit Grohe and K.V.S
Prasad for their feedback and fruitful meetings. We would also like to thank Car-
menta and the people working there for making us feel welcome and for supporting
us trough our project, with a special thanks to our industry supervisor Calle Hanson.

Emil Johansson, Jacob Lundberg, Gothenburg, June 2016

vi

Contents

List of Figures
List of Tables

1 Introduction

1.1 Background
1.2 Problem Description L.
1.3 Previous Work
1.4 Goals. e
1.5 Limitations
1.6 Overview of Thesis
2 Theory
2.1 Digital Elevation Model o000
2.2 Lineof Sight
2.3 Viewshed Analysis
2.4 Viewshed Algorithms
241 R3 ..
242 R2 ...
243 Van Kreveld
2.5 Framework: Apache Spark
3 Implementation
3.1 R3 .
3.2 R2 . e
3.3 Van Kreveld
4 Results
4.1 Correctness e
4.2 Accuracy Tests
4.3 Timing Tests
4.3.1 Locally
4.3.2 Distributed oo

5 Discussion
5.1 Conclusion

Contents

5.2 Future Work
Bibliography

A Definitions

iX

1.1

2.1

2.2

2.3

24

2.5

2.6

2.7
2.8

List of Figures

A viewshed analysis over an area at Lake Tahoe, CA, USA. The eye
denotes the position of the observer and the visible areas are marked

A raster is a two-dimensional matrix, that divides a map in cells. A
sample map (a) is overlayed with a raster (b), creating a rasterized
map (c). The higher the resolution in the raster, the more rows and
columns in the matrix resulting in more and smaller cells, as shown
in (d). Every cell in the matrix represents a subarea of the map and
the height information for this subarea is stored in the corresponding
cell in theraster.
Side view of a LoS between observer O and points A, B and C. Point
A is visible as there is no part of the terrain between O and A that
obstructs the ray from O to point A, the same is true for point C.
Point B is not visible as the ray between O and B is obstructed by
the hill located between the points.
The elevations contained in a raster-based DEM do not consider the
curvature of the earth. When performing viewshed analysis, a cor-
rection value, 0 F, needs to be subtracted from each elevation value
inthe DEM.
Viewshed: A LoS is calculated from the observer O to all the points
inthearea.
The impact of DEM raster resolution on viewsheds calculated from
the center of an area of interest, marked by an eye. The darker
areas represent rectangular prisms placed on a flat surface and the
diagonally striped cells are considered visible.
A LoS from (0,0) to (4,2), the dot is the target point for which to cal-
culate visibility. The circles mark the x-crossings where height values
will be sampled to use in calculation of the target point’s visibility.
An area-of-interest divided into eight octants.
The R2 algorithm calculates a LoS to points A and B, and stores LoS
height information on all x-crossings. Point C’s LoS height will be
determined by the LoS that pass closest to point C. In this example

the LoS to point A will determine the LoS height of point C, as ds < dg. 12

List of Figures

2.9 van Krevelds algorithm uses a sweep line, that rotates around the
observer and calculates the visibility of a cell when it passes over the
cell’'scenter.

2.10 An example binary search three that is used in the van Kreveld-
algorithm. « is the angle between the cell and the observer and a4,
is the highest angle on any cell that are positioned between the cell
and the observer.

2.11 Three different events for a point, where a sweep-line rotates counter-
clockwise around the observer. Line A shows the sweep-line where it
enters the point, line B shows the position of the sweep-line during
the center-event, and the last line, line C, shows the exit-event.

2.12 The area contained between the two angles, A; and A,, represents
one part of the whole viewshed-analysis in the parallelized van Krev-
eld algorithm. This part can be calculated independently, therefore
making it possible to parallelize the algorithm.

2.13 A sample configuration of a Spark cluster with five nodes.

2.14 The components of a Spark application.

3.1 Interpolation to get an approximation of the height of a theoretical
point that lies between point y; and yo.
3.2 The visibility of point (1,1), denoted by the dot, will be calculated by
several LoS. The circles denote the points along the LoS which will
approximate (1,1)
3.3 While an approximation of the height of point (1,1) will be calculated
by LoS(2,3) it will not determine the visibility of point (1,1) since
LoS(3,3)iscloser.
3.4 A raster where the gray area represents the cells on the edge of the
area~of-interest.o

4.1 Comparison between our implementation of the R3 algorithm and the
algorithm used at Carmenta.

4.2 Differences when comparing the R2 and Kreveld algorithms to the R3
algorithm on a 2001x2001 raster DEM representing the city of Paris,
France. A negative value indicates that the R3 algorithm reports a
higher LoS height than the other algorithms, and vice versa. Values
close to zero means that the two compared algorithms agree on the

4.3 Running time when calculating a viewshed with the R2 algorithm
locally, on a raster of size 16001 x 16001, with different number of

threads.
4.4 Comparison when running the R3 algorithm with different number of

threads.
4.5 Comparison when running the R2 algorithm with different number of

threads.

4.6 Comparison when running the van Kreveld algorithm with different
number of threads.
4.7 Comparison of memory consumption of the three algorithms

el

14

List of Figures

4.8

4.9

4.10

4.11

Comparison of running times of the R2 algorithm on a 16001x16001
raster using Spark with varying amounts of executors per worker node. 30
Comparison of running times of the R3 algorithm, between a single

multi-core CPU and a cluster using Spark 31
Comparison of running times of the R2 algorithm, between a single
multi-core CPU and a cluster using Spark. 32
Comparison of running times of the van Kreveld algorithm, between
a single multi-core CPU and a cluster using Spark. 32

xii

4.1

4.2

4.3

List of Tables

Occurrences of differences in reported LoS height values when com-
pared to the R3 algorithm.
Point-by-point comparisons of the visibility results of the R2 and
van Kreveld algorithms to R3’s results. The matching points are the
number of points where the algorithms agree with R3 on visibility. . .
Error statistics when comparing the results of the R2 and van Kreveld
algorithms to R3’s results using a 2001x2001 raster.

xiil

1

Introduction

1.1 Background

Geospatial Information Systems (GIS) are used to capture, analyze and present
data with geographic or spatial components. With the trend of mobile and web ap-
plications becoming more prevalent, the underlying hardware (e.g. mobile phones,
tablets, light-weight web servers) used to access these systems might not provide suf-
ficient computational capabilities required by GIS. It can therefore be advantageous
to be able to distribute the more computationally heavy procedures to a machine
with more capable hardware or to a distributed cluster of servers.

One such computationally heavy procedure is viewshed analysis, the goal of which
is to calculate visible subareas for a particular area of terrain using elevation data.
The set of visible points is called a viewshed. Figure 1.1 shows a viewshed analysis
over an area at Lake Tahoe, CA, USA.

In this thesis we perform an evaluation on the feasibility of distributing GIS com-
putations by distributing viewshed analysis from a single server to a server cluster.
This evaluation is performed on behalf of Carmenta!, a company specializing in
GIS. The server cluster is built using existing frameworks and hosted on a cloud-
computing service. Distributing computations in this manner is not new in and of
itself, which is why we use existing frameworks rather than designing something
completely new.

1.2 Problem Description

The aim of this thesis is two-fold. The first part consists of implementing different
algorithms for calculating viewsheds in a distributed environment. The algorithms
used are described in Section 2.4. The idea is to examine the feasibility of running

Thttp://www.carmenta.com

1. Introduction

Figure 1.1: A viewshed analysis over an area at Lake Tahoe, CA, USA.
The eye denotes the position of the observer and the visible areas are marked
in blue.

viewshed analysis on a cluster by using existing frameworks. Some questions we an-
swer are what kind of speed-up, if any, one can expect; how the cluster size (number
of nodes) affects the running-time of the viewshed analysis and what changes one
might need to make, in order to reduce potential overhead incurred by a distributed
solution. The second part is focused on the overall usability of distribution and the
chosen frameworks. What would be a suitable application for using a cluster? What
determines whether an application is suitable for distribution? What are some of
the aspects one should take into consideration when deciding to use distribution on
clusters? To answer these questions we need to run timing tests to be able to inves-
tigate the feasibility of using distribution, as well as gather information regarding
the suitable size of a cluster. We also need to run tests comparing the visibility
results of the different algorithms, in order to compare their accuracy.

1.3 Previous Work

Ware, Kidner and Rallings [1] anticipated that the demand for parallel processing
when performing geospatial analysis would increase. This idea has been confirmed
by more recent work, for instance by Thai and Olasz [2] and Abdul, Potbar and
Chahaun [3]. They all agree that this form of distribution is a worthwhile method
for increasing the performance of GIS calculations.

According to Tabik et al. [4], performing viewshed analysis is highly useful in a
large number of applications, civilian as well as military. It is also well suited for
parallelisation as lines-of-sight can be evaluated independently inside an area-of-

1. Introduction

interest [5]. Furthermore, since changes in terrain happen slowly, elevation data is
fairly static. This means that replicating the elevation data to several distributed
nodes is straightforward and does not incur the high messaging overhead commonly
found in distributed applications. This makes viewshed analysis a good candidate
for distribution.

Axell and Fridén [6] describe in their Master’s thesis (also performed at Carmenta)
how they were able to obtain faster computations for performing viewshed analysis
by utilising GPU parallelisation, compared to a multi-core CPU.

Our thesis examines potential increases in performance when using distributed
frameworks and cluster computing. These performance increases are especially use-
ful when concurrently performing multiple viewshed analyses on the same view since
even a small reduction in execution time will be amplified over multiple executions.
Example use cases where this is applicable is calculating a route that is the least
visible from a number of predetermined observation positions or finding the place-
ment of a given number of observers that yields the optimal visibility coverage of a
particular area.

1.4 Goals

Our goals with this thesis are to implement algorithms for viewshed analysis with
the distribution framework Apache Spark. We also need to measure the accuracy
of the implemented algorithms, making sure that they achieve adequate results. In
order to compare our distributed solution to an implementation on a multi-core
CPU, we need to measure the computation times of running viewshed analyses on
both solutions. The last step is to draw conclusions regarding the measured overhead
incurred by the distribution framework as well as the size of the cluster and also more
general conclusions on the usability of distribution frameworks in GIS applications.

1.5 Limitations

The height data used in all benchmarking will be a raster representation of a Digital
Elevation Model (DEM) [7]. A raster is a grid of cells, like a matrix, with elevation
data stored in each cell. Other formats for storing the height data are not considered
in this thesis.

There are several different algorithms for performing viewshed analysis, in this thesis
we consider three of the most commonly used ones: R2, R3 and van Kreveld. An-
other widely used algorithm is the Xdraw algorithm described by Franklin et al. [8].
Xdraw is among the faster viewshed algorithms but is too inaccurate. According

1. Introduction

to Franklin et al. it suffers from a problem where points could influence visibility
results even though they should not [8]. Therefore, we choose to not consider it in
this thesis in favour of algorithms with higher degrees of accuracy.

Viewshed analysis can be used for applications other than human sight, such as
determining where a radio signal emitted from a certain point can be received.
These other applications might introduce new considerations for the analysis. In
the radio example, the analysis needs to take into account the diffraction of the
radio waves. In this thesis we will only consider viewshed analysis in the context of
human sight.

We will not investigate either security or fault tolerance in this thesis.

1.6 Overview of Thesis

The structure of this report is as follows: Chapter 2 contains theory about viewshed
analysis, as well as a review of the selected algorithms that will be used in this
thesis. A detailed description on how we implemented the different algorithms can
be found in Chapter 3. Chapter 4 contains the results we gathered, both in terms
of accuracy and execution time. Benchmarking was done both locally and on the
cluster, to be able to compare the results. These results are then discussed and
analysed in Chapter 5, which also contains conclusions regarding the feasibility of
using clusters when performing viewshed analysis.

2

Theory

This Chapter presents the theory behind viewshed analysis and the different al-
gorithms that have been used in this thesis. Information about the distribution
framework is also be provided.

2.1 Digital Elevation Model

A topographic map containing elevation data of an area is called a Digital Elevation
Model (DEM), which is a 2.5-dimensional representation of an area. A DEM can
be represented with either vector or raster data, with raster-based DEMs being the
most common way to represent elevation data [9)].

Vector data is visualized with a Triangulated Irregular Network (TIN) [7], which
has irregularly positioned triangles that represents a surface. The irregularity comes
from the size and positions of the triangles. In an area with little or no difference
in elevation, few triangles are needed to represent this area. Conversely, for an area
with large differences in elevation, more triangles are needed to sufficiently represent
that area.

A raster is a grid of squares, where every cell in the grid represents a small subarea
of the map, which is visualized in Figure 2.1. The value stored in a cell is the height
information for that subarea. The higher the resolution of the raster, the smaller a
subarea represented by a cell will be. This means that a higher resolution will give
a more accurate representation of the area. The downside is that the raster will
require more memory to store, as the raster will contain more data points. Since
the value stored in a cell represents the height of a small subarea it will not be an
exact value for every physical point in a terrain (of which there are infinitely many).
There are different methods to sample the terrain in order to decide the elevation
for a cell. For example, one could use the elevation of the point in the center of a
cell, an average over the whole subarea, the minimum elevation in the subarea, the
maximum elevation in the subarea or the elevation of the subarea’s center. When
performing viewshed analysis one needs to consider the sampling method used by

2. Theory

different input data sets since different methods will provide different results.

(a) | Har‘rtl-pl

T

/ﬁ

e
(c) Resolution

Figure 2.1: A raster is a two-dimensional matrix, that divides a map in
cells. A sample map (a) is overlayed with a raster (b), creating a rasterized
map (c). The higher the resolution in the raster, the more rows and columns
in the matrix resulting in more and smaller cells, as shown in (d). Every cell
in the matrix represents a subarea of the map and the height information
for this subarea is stored in the corresponding cell in the raster.

2.2 Line of Sight

Line-of-Sight (LoS) is a procedure where the goal is to calculate the visibility from
one point to another point. An example of LoS can be seen in Figure 2.2. The
procedure can be visualized by creating a ray in one direction from the observer to

!Sample map taken from the public domain USGS Digital Raster Graphic file 044072d6.tif for
the Stowe quadrangle, VT, USA

2. Theory

its closest point, this point is always visible, as there are no points that can influence
its visibility. Another ray is created from the observer to the next closest point, if
this ray is obstructed by any points that are closer to the observer the second point
is deemed not visible, otherwise the second point is visible. In Figure 2.2, point A
is visible as the ray created between that point and the observer is not obstructed
by any points closer to the observer. Point B is not visible as its ray is obstructed.
Point C is visible as its ray is not obstructed by any points between point C and
the observer.

Figure 2.2: Side view of a LoS between observer O and points A, B and
C. Point A is visible as there is no part of the terrain between O and A that
obstructs the ray from O to point A, the same is true for point C. Point B
is not visible as the ray between O and B is obstructed by the hill located
between the points.

The check for obstructing rays gives a result in the form of a Boolean, either the
cell is visible or not. By calculating the difference in height between a non-visible
point and the lowest height needed for that point to be visible, one can calculate
the necessary increase in height needed to make something located on that point
visible. This can for example be used for determining if an aircraft flying at a certain
altitude above the terrain is visible from the observer.

The curvature of the earth needs to be considered when performing LoS calculations
using raster DEMs since the rasters contain elevations that are relative to some fixed
level, typically sea level, and treats this fixed level as if it were flat. This problem
is exemplified in Figure 2.3, which shows how the target point of a LoS calculation
is lowered relative to the observation point because of earth’s curvature. In order
to address this, the elevation of each point in the raster needs to be corrected by
subtracting a correction value based on the respective point’s distance from the
observer. A simple approximation of the correction value, d F, that works well for

2. Theory

distances significantly smaller than earth’s radius is
Dp

0E =
2REg

(2.1)

where Dy is the distance from the observation to the target point and Rp is earth’s
effective radius [8]. For areas-of-interest with maximum distances of a few hun-
dred meters this correction can be omitted, since the difference in elevation will be
insignificant.

O

Figure 2.3: The elevations contained in a raster-based DEM do not con-
sider the curvature of the earth. When performing viewshed analysis, a

correction value, 0 F, needs to be subtracted from each elevation value in
the DEM.

2.3 Viewshed Analysis

A viewshed analysis calculates the visibility for all points in an area-of-interest. One
way to perform this analysis is to calculate multiple LoS from a specific observation
point, to all other points in the region of interest. The idea is visualized in Figure 2.4.
A LoS is created between the observer and all other points in the region. All points
are calculated independently to determine which points, in a specific area, are visible.
This is a naive method, described further in Section 2.4.1.

The resolution of a raster DEM used to model an area of terrain will have an impact
on any viewshed analysis performed on the DEM. The most obvious impact comes
from the generation of the raster, since each cell can only contain one height value.
The value will be an approximation of the area the cell covers. A higher resolution
raster DEM will be able to provide a closer approximation to the physical terrain
since each cell represents a smaller area.

Higher resolutions will also have an impact on the viewshed analysis even if each cell
is simply split into a number of smaller cells with the same elevation as the original
cell. This can be seen in Figure 2.5, which shows viewsheds calculated with different
raster resolutions for an area of interest consisting of a surface with a number of
rectangular prisms of equal height capable of obstructing sight. As the resolution
increases and each cell becomes smaller, the resulting viewshed is altered. Some
areas that were not considered visible are now deemed visible and vice versa.

2. Theory

Figure 2.4: Viewshed: A LoS is calculated from the observer O to all the
points in the area.

2.4 Viewshed Algorithms

There exist several different algorithms for performing viewshed analysis, each with
their own trade-offs. This section aims to give a general idea of how the algorithms
used in this thesis work and a brief look at their respective strengths and weaknesses.

2.4.1 R3

The R3 algorithm, described by Franklin et al. [8], is straightforward and highly
accurate with relatively low performance, as it scales poorly with the size of the
raster. The time complexity is O(R?), where R is the side length of the area-of-
interest measured in number of points. The idea of the algorithm is to calculate a
LoS from the observation point to every other point in the region of interest. Each
LoS is traversed from the observation point toward the target point, this concept
is visualized in Figure 2.6. How the algorithm traverses a LoS is determined by
the position of the target point relative to the observation point. Consider the
partitioning of an area-of-interest in Figure 2.7, if the target point is in octant I, IV,
V or VIII the elevation is sampled at every whole step along the x-axis, called an
x-crossing. For target points in octants II, III, VI and VII the elevation is sampled
at every whole step along the y-axis, called a y-crossing. At each step, the slope of
a line from the observation point is calculated and the maximum slope encountered
thus far along the LoS, s,.4., is stored. When the LoS reaches the target point,
the slope of a line from the observation point to the target point, s;, is calculated
and is compared to $,,... The target point is visible from the observation point iff
St > Smag-

Since the x-crossings or y-crossings of a LoS will often not fall directly on points in

2. Theory

(a) Area of interest (b) 3D View

vY,
2

(c) 5x5 raster, 75% visibility (d) 15x15 raster, 68% visibility

A
%%

(e) 25x25 raster, 65% visibility — (f) 45x45 raster, 62% visibility

Figure 2.5: The impact of DEM raster resolution on viewsheds calculated
from the center of an area of interest, marked by an eye. The darker areas
represent rectangular prisms placed on a flat surface and the diagonally
striped cells are considered visible.

the raster, the elevation at the crossings needs to be estimated based on the heights
of the points on the intersected line closest to the intersection. There are a number
of different ways these heights can be estimated with each being useful in different
use cases. For instance, if it is important to avoid false positives for visibility, i.e.
that a point is marked as visible when it actually is not, an appropriate estimate is
to use the maximum height of the two neighboring points.

10

2. Theory

(0,0)

Figure 2.6: A LoS from (0,0) to (4,2), the dot is the target point for which
to calculate visibility. The circles mark the x-crossings where height values
will be sampled to use in calculation of the target point’s visibility.

III IT

IAY I

\Y VIII

VI VII

Figure 2.7: An area-of-interest divided into eight octants.
2.4.2 R2

In an effort to reduce the complexity of the R3 algorithm Franklin et al. developed
another algorithm, called R2 [8]. The R2 algorithm aims to provide a way to calcu-
late a viewshed in quadratic complexity, O(R?), where R is the side length of the
area-of-interest measured in number of points. The algorithm will calculate a LoS
to points that are on the edge of the viewshed, e.g. point A and B in Figure 2.8,
while also calculating the LoS height information for every x-crossing, or y-crossing
depending on which quadrant the edge point belongs to, between the observer and
the target point. This height information will be used to calculate the visibility of

11

2. Theory

intermediate points, i.e. point C in Figure 2.8, but only if the distance from the
LoS to point C is smaller than the distance of the neighboring LoS to point C. If
two LoS have the same distance from a crossing to a point to be calculated, both
LoS will calculate the visibility of that point. These conflicts can be handled in dif-
ferent ways, for example to calculate the average or letting each consecutive result
overwrite the previous.

y axis
___ A
.. dA B
s &7
(0,0) " x axis

Figure 2.8: The R2 algorithm calculates a LoS to points A and B, and
stores LoS height information on all x-crossings. Point C’s LoS height will
be determined by the LoS that pass closest to point C. In this example the
LoS to point A will determine the LoS height of point C, as d4 < dp.

2.4.3 Van Kreveld

The algorithm introduced by van Kreveld [10] uses a line that sweeps over an area
where a viewshed is to be calculated, as can be seen in Figure 2.9. This is combined
with a self-balancing binary search tree (BST) used to keep track of which cells the
sweep line currently intersects. The BST (which can be of any type, such as AVL
or Red-Black), is sorted by the horizontal distance between a cell and the observer.
An example of a BST used by the van Kreveld algorithm can be seen in Figure 2.10.
By sorting in this manner, the cell in the left-most leaf in the tree is closest to
the observer (smallest distance) and the right-most cell is furthest away (largest
distance). All cells have three specific events connected to them: an enter-event,
which is when the sweep line first enters a cell; a center-event, which is when the
sweep-line intersects the center of the cell; and an exit-event, which is when the
sweep line exits the cell. These events are visualized in Figure 2.11. When the
sweep line encounters an enter-event it will insert the corresponding cell into to the

12

2. Theory

Sweep line

Figure 2.9: van Krevelds algorithm uses a sweep line, that rotates around
the observer and calculates the visibility of a cell when it passes over the
cell’s center.

BST, if the BST is empty the new cell will become the root node. If the event is an
exit-event the cell will be removed from the BST.

The last event, the center-event, is when the sweep-line is on the center of a cell
and this is the event where the actual visibility computation occurs. Every node
in the tree also stores information regarding the maximum angle that any node has
calculated from its subtree. The angle for the current cell will be calculated and
compared with the maximum value, retrieved from the tree, from nodes that have a
lower distance to the observer than the current cell, i.e. the cells that lie between the
observer and the current cell. If the current cell’s angle is higher than the maximum
value from the tree, the cell is deemed visible, otherwise it is not. If the cell is not
deemed visible, a calculation is performed to gather how much higher the cell needs
to be, to be considered visible. Pseudocode for how the algorithm works can be seen
in Listing 2.1.

Listing 2.1: Van Kreveld-algorithm

// Calculate angle for enter/center/exit—events
// For all points add events to priorityQueue

While (pQ not empty):
take head of queue
check event:
Enter: add point to tree
Exit: remove point from tree
Center: Check if point is visible

13

2. Theory

Closer to obs Further from obs

oz = 1.3

a=1.3

Figure 2.10: An example binary search three that is used in the van
Kreveld-algorithm. « is the angle between the cell and the observer and
Qmae 1S the highest angle on any cell that are positioned between the cell
and the observer.

Figure 2.11: Three different events for a point, where a sweep-line rotates
counter-clockwise around the observer. Line A shows the sweep-line where
it enters the point, line B shows the position of the sweep-line during the
center-event, and the last line, line C, shows the exit-event.

Ferreira et al. describe in their paper how to parallelize the van Kreveld algo-
rithm [11]. After creating a representation of the cells with calculated values for
the different events, one can divide the list of all enter events and parallelize the
calculation on different threads. As can be seen in Figure 2.12, a part of the raster is
contained between the two angles A; and A,. Cells whose enter-event or exit-event
are between these two angles will be considered one part of the algorithm and can
be calculated independently. The list of these cells will be computed by one thread,
creating a separate priority queue and binary search tree for that part.

14

2. Theory

y axis

(0,0)

Figure 2.12: The area contained between the two angles, A; and As,
represents one part of the whole viewshed-analysis in the parallelized van
Kreveld algorithm. This part can be calculated independently, therefore
making it possible to parallelize the algorithm.

2.5 Framework: Apache Spark

To distribute the calculations of the different viewshed algorithms we used the dis-
tribution framework Apache Spark. Spark is described as a "fast and general en-
gine for large-scale data processing" [12]. Spark uses Resilient Distributed Datasets
(RDDs) [13] which is an immutable dataset, that Spark distributes to the worker-
nodes. Spark can perform two types of operations on an RDD, transformations
and actions. Transformations are when functions are applied to each element in an
RDD. Due to the partitioning feature of the RDDs, transformations can be applied
in parallel. The other operation that Spark can perform on RDDs are called actions.
Actions on RDDs will return a value, for instance the count action will return the
number of entries that exist in a RDD. Spark uses lazy evaluation, meaning that
transformations will not be performed until an action is triggered. Transformations
and actions are combined to create a Spark job.

One can achieve better performance from Spark by utilizing its configuration options,
as well as optimizing how and where data is stored. Spark provides APIs for four
different programming languages: Java, Scala, Python and R.

A cluster is needed to perform distributed computations using Spark, Figure 2.13
shows an example of a Spark cluster configuration. Nodes in a Spark cluster can have
two different roles: cluster managers and workers. A cluster manager is responsible
for managing the resources of the cluster, i.e. worker nodes, and can either be
Spark’s built-in standalone manager, or YARN or Mesos. The latter two are general
cluster managers that also support other distribution frameworks. The standalone

15

2. Theory

manager is suitable for simpler applications where advanced resource scheduling is
not needed. If one wants to run different distribution frameworks alongside Spark
on the same cluster, one needs to use YARN or Mesos. Worker nodes are responsible
for performing the computations, i.e. the transformations and actions on the RDDs.

Cluster Manager

Worker Worker Worker Worker

Figure 2.13: A sample configuration of a Spark cluster with five nodes.

Spark applications consist of two components: a driver program and at least one
executor, Figure 2.14 illustrates the architecture of these components. The driver
manages the connection to the Spark cluster and all work done before distribution,
such as setting up common resources shared by all executors. The driver program
does not need to be run on the cluster as long as full two-way communication is
possible. However, since a lot of communication takes place between the driver and
the cluster, it is advantageous to place the driver as close as possible to the cluster
physically to minimize latency introduced by network communication. An executor
is a process running on a worker node that performs the actual transformations
and actions of a Spark job. Each executor is unique to a certain application and
exists only during the lifetime of the application. However, it is possible for several
different applications to run its own executors on the same worker. A Spark job is
divided into tasks which consist of particular transformations or actions performed
on partitions of an RDD. An executor can be configured to use more than one CPU
core on the worker node on which it resides, if this is the case an executor can
perform multiple tasks concurrently.

16

2. Theory

Driver

Worker
Executor Executor
| Task | | Task |
| Task | | Task |
Worker
Executor Executor
| Task | | Task |
| Task | | Task |

Figure 2.14: The components of a Spark application.

17

3

Implementation

The viewshed algorithms addressed in this thesis are described in general in Chap-
ter 2, but there are many ways in which each algorithm can be implemented. These
implementations can have different characteristics with regards to e.g. computation
time and memory requirements. This chapter describes the implementations we
made as part of this thesis, describing how they differ from the base algorithms and
motivations for the design choices we made.

One thing all our implementations have in common is that they do not only return
a Boolean result whether a point is visible or not, they will also report how much a
point needs to be raised in order to be considered visible. For example, a value of
zero corresponds to a visible point and a value of one corresponds to the number of
meters (in this case, one meter) that a points needs to be elevated to be visible from
the observation point. All implementations created in this thesis were made in the
programming language Java, both for the local implementations and our distributed
solutions.

3.1 R3

The R3 algorithm, described in Section 2.4.1, is a rather naive approach to viewshed
analysis. In order to handle a LoS that does not fall directly on a point when it
intersects an x or a y-crossing, our algorithm interpolates the height from the two
points closest to the intersecting point, y; and y,. The code for this calculation can
be seen in Listing 3.1, and a descriptive figure can be seen in Figure 3.1

18

3. Implementation

Listing 3.1: Interpolation, for LoS intersection on a x-crossing.

// v = y—coordinate for LoS on crossing

// y1 = closest integer <y

// hi = height information for coordinate (x,y1)
// y2 = closest integer <y

// ha = height information for coordinate (x,y2)

intersectHeight = abs(x—y1) * ho +
abs(x—y2) *

y axis
___ i mA
(y—w)|
... (v —12)
I
(0,0) " x axis

Figure 3.1: Interpolation to get an approximation of the height of a the-
oretical point that lies between point y; and y,.

The y value is the exact position of the intersection in an x-crossing, ¥ is the y value
rounded up to the closest integer, to get the height information from that point in
the raster. y, is the y value rounded down. The value we get from taking abs (y-y;)
is the distance between y and y,, which is a value between zero and one. This value
is then multiplied with the height value from the other point (y2) and then added
to the same calculation for y,. This way the point that is closest to the intersecting
point will have the most influence on the resulting height value.

Interpolation is the preferable choice of approximation when the most accurate result
is needed [8]. The downside is that it is a more expensive computation compared
to for example taking the minimum or maximum value. Maximum and minimum
is used when one wants to obtain results that are more conservative towards either
visibility or non-visibility. For example, by taking the maximum the LoS-results
will probably be higher than the correct result, which would mean that a point
that is deemed visible, is visible with a high probability. In contrast, by taking the
minimum, a point that is deemed not visible, is not visible with a high probability.

19

3. Implementation

Our implementation of the R3 algorithm in Spark consists of a main function that
will read a raster and transform it into a list of points, for all of the cells in the raster.
These are later used as keys in a key-value lookup to get the result corresponding
to each cell. This list is transformed into an RDD. To calculate the viewshed we
created a function that takes a coordinate as input and returns a key-value pair. The
value is the visibility height for that cell. The algorithm was then run by applying
this function to every element in the RDD, effectively performing a LoS calculation
for every point in the raster. The result is a key-value map with a point as the key,
and the value is either zero for a visible cell, or a positive decimal value for how
much higher a specific cell needs to be elevated, to be considered visible.

3.2 R2

The R2 algorithm calculates visibility for all points on the grid a LoS passes and
not only those it actually intersects. This fact, combined with the fact that each
LoS is being calculated independently from all other LoS, means that many cells
will have their visibility calculated several times. This is illustrated in Figure 3.2.
The highest number of visibility calculations for all nodes can be calculated with the
formula 4R? —12R+8, where R is the side length of the area-of-interest measured in
number of points. Each point can only have one visibility value so the results of the
different calculations need to be merged. In a distributed setting this merge can be
very costly in terms of computation time since conflicts can occur on different nodes.
This means that all results have to be aggregated on a single node for the merge to
complete successfully, which causes a lot of overhead in the form of communication
and data transfer between nodes.

In order to address the problem of duplicates, we modified the R2 algorithm so
that each LoS keeps track of the destination of its’ neighboring LoS. When a LoS
calculates the height of a point, it uses the information about the neighboring LoS
to compute the distance from the point to each line. Only if none of the neighboring
lines are closer to the point, the current LoS will calculate the visibility for that
point. This way the number of duplicates is greatly reduced and since each line
needs no information about the actual results of its neighboring lines, each LoS can
still be calculated in parallel. Figure 3.3 provides an example of this modification.

The implementation of R2 in Spark is similar to that of R3, with two exceptions.
Instead of creating a list with all coordinates we only used coordinates for the cells
on the edge of the area-of-interest, visualized in Figure 3.4. The visibility function
for R2 takes a coordinate as input and returns a list of key-value pairs as a result.
This list corresponds to the result of all cells that are on the LoS from the observer
to the edge cell. To remove duplicates we also applied a combining function on
the result. As the algorithm only saves results from a calculation if the active
LoS is the one that is closest to the cell that is to be calculated, we know that any
duplicates have the same distance between the calculated cell and the LoS, therefore

20

3. Implementation

y axis

N

(0,0) " x axis

Figure 3.2: The visibility of point (1,1), denoted by the dot, will be cal-
culated by several LoS. The circles denote the points along the LoS which
will approximate (1,1)

y axis (2,3) (3,3)

AT

(0,0) " x axis

Figure 3.3: While an approximation of the height of point (1,1) will be
calculated by LoS(2,3) it will not determine the visibility of point (1,1) since
LoS(3,3) is closer.

the combining-function takes the average of the two reported results.

21

3. Implementation

Figure 3.4: A raster where the gray area represents the cells on the edge
of the area-of-interest.

3.3 Van Kreveld

Our implementation of the van Kreveld algorithm in Spark uses a different approach
for parallelization than described in 2.4.3. Rather than partitioning the raster based
on the angles of individual points in the raster, our implementation uses the co-
ordinates of the points. The function we implemented takes a start and an end
coordinate as input, these coordinates represent the part of the raster that should
be calculated. The function then creates its own priority list of events, as well as a
binary search tree. The algorithm would then be computed, but only between the
designated start and end coordinate. The reason for using coordinates instead of
angles, as shown in Figure 2.12, is that there is no need to calculate the angles for
all cells before dividing the raster, which makes it possible to calculate the angles
in parallel as this is done after the partitioning. The result from running the algo-
rithm is a list of key-value pairs of all the cells in this part of the raster, with the
key corresponding to the coordinate of the cell and the value corresponding to the
height-information calculated by the algorithm.

The van Kreveld algorithm differs somewhat from the R2 and R3 algorithms when
calculating visibility heights of points. The R3 and the R2 algorithms use interpola-
tion, as shown in Listing 3.1, whereas the van Kreveld algorithm uses the maximum
height of obstructing points. The effect of this is that points that the van Kreveld
algorithm deems visible, will most certainly be visible. Furthermore, van Kreveld
might report points as not visible that the two other algorithms will report as visible.

22

4

Results

This chapter describes the results we gathered from running tests on our implemen-
tations. The results include accuracy and time complexity and are used to compare
the algorithms as well as comparing local computations with running them on a
cluster. The hardware used locally was a computer with 16 GB RAM, running an
Intel i7 870 at 2.93 GHz [14], the JVM was set to use 10 GB of RAM. The Spark
tests were performed on the Google Cloud Engine platform [15] using a cluster con-
sisting of five n1-highmem-/ instances [16], with one instance acting as the cluster
manager, using YARN, and the rest as workers.

4.1 Correctness

To gather results and to test our implementations of the R2 algorithm and the van
Kreveld algorithm we compared the results between them and the R3 algorithm.
The reason for this is that the R3 algorithm, as previously stated, calculates an
individual LoS to every cell in the raster, meaning that approximation errors are
kept to a minimum. To be able to use results from the R3 algorithm we first
needed to assure that it would give accurate results. To do this we compared it to
the algorithm used by Carmenta, which we used as a base case. The comparison is
visualized in Figure 4.1, where points visible only according to Carmenta’s algorithm
are coloured red, points deemed visible only by our R3 are coloured light blue. The
darker area denotes points where both algorithms agree are visible. The reason for
the large amount of points visible only to our algorithm is that the algorithm used
by Carmenta only calculates viewshed for a circular area and not the entire area-of-
interest. There are some points inside the circle that the algorithm used by Carmenta
deems visible, which the R3 algorithm does not. This is probably because of some of
the optimisations that are implemented in the Carmenta algorithm. Overall the two
algorithms agree on a vast majority of points, which means that our implementation
can be considered correct and accurate.

23

4. Results

Points deemed
visible only by

the R3 algorithm.

Points deemed
. visible only by

the algorithm
used by Carmenta.

Points deemed
. visible by both
algorithms.

Figure 4.1: Comparison between our implementation of the R3 algorithm
and the algorithm used at Carmenta.

4.2 Accuracy Tests

In Figure 4.2 the graph visualizes the comparison between the R2 and Kreveld
algorithms to the R3 algorithm, the same data can be viewed in Table 4.1. Desirable
values are zero, or close to zero, as this means that there are little to no difference
in the reported results from the algorithms. For R2, the vast majority of the values
are concentrated around zero which means that we have achieved high accuracy in
our implementation of the R2 algorithm. The van Kreveld algorithm also have most
values concentrated around zero, although slightly more spread out than for R2.
An interesting result is that the van Kreveld comparison does not display the same
symmetric behaviour as R2. This can likely be attributed to the different ways the
algorithms estimate the height of obstructing points that lie between real points in
the raster. Van Kreveld uses the maximum height of the two closest real points
whereas R2 and R3 both use interpolation.

Table 4.2 shows a comparison on how many points the algorithms agree are visible
or not. Our results show that both the R2 and van Kreveld algorithms have a high
degree of agreement compared to R3, around 99%, but R2 has a slight edge.

Table 4.3 shows error metrics when comparing the R3 algorithm to both the R2
algorithm and the van Kreveld algorithm. The error metrics of the R2 algorithm
are comparable to the values presented in the paper by Franklin et al. [8]. When
evaluating the results from our tests, we can gather that both algorithms have
sufficient accuracy, though R2 reports somewhat better results than the van Kreveld
algorithm.

24

4. Results

3500000 A
SO0

2500000

el

Occurences

1500000

KEreveld
1O

500000

O T T T T T T T
<=5 -4 -3 -2 -1 0O 1 2 3 4 =5

Difference [m)

Figure 4.2: Differences when comparing the R2 and Kreveld algorithms
to the R3 algorithm on a 2001x2001 raster DEM representing the city of
Paris, France. A negative value indicates that the R3 algorithm reports a
higher LoS height than the other algorithms, and vice versa. Values close
to zero means that the two compared algorithms agree on the results.

R2 Kreveld
<5 4232 1419
-4 4300 2046
-3 8877 4475
-2 22096 11292
-1 106401 45741
0 3717201 3100835
1 103539 515917
2 21061 144766
3 8113 63221
4 4107 37520
>5 4073 76768

Table 4.1: Occurrences of differences in reported LoS height values when
compared to the R3 algorithm.

25

4. Results

R2 Kreveld

Total Points 4004000 4004000

Matching Points | 3977861 (99.3%) | 3953654 (98.7%)

Table 4.2: Point-by-point comparisons of the visibility results of the R2
and van Kreveld algorithms to R3’s results. The matching points are the
number of points where the algorithms agree with R3 on visibility.

R2 Kreveld
Mean error -0.0026 meters | 0.4455 meters
Min error -13.88 meters -11.01 meters
Max error 13.05 meters | 45.89 meters
Std deviation 0.49 meters 1.50 meters

Table 4.3: Error statistics when comparing the results of the R2 and van
Kreveld algorithms to R3’s results using a 2001x2001 raster.

4.3 Timing Tests

To be able to draw conclusions on the performance between the different algorithms
and the different implementations we performed timing tests. The recorded times
exclude the time it takes to read and parse the raster.

During the initial timing tests we faced a problem where we did not have enough
RAM for storing each LoS result. To solve this problem, and to ensure that the
times we reported were the running time of the actual algorithm, we chose to save
the result from every individual LoS in the same variable. Thereby reducing the
memory problem, while still running the whole algorithm. The downside of this
solution is that the result from a previously computed LoS will be overwritten by
the next.

4.3.1 Locally

The results from running the R2 algorithm on our local implementation are shown
in Figure 4.3. The times are an average over ten runs performed on the multi-core
CPU described previously. As can be seen, the execution time gets lower and lower
depending on the number of threads the algorithm executes on.

The results from running the R3 algorithm with different numbers of threads can

26

4. Results

40.00
35.00 \

30.00

25.00 \

20.00 —

15.00

Running time (3)

10.00

5.00

0.00 . . ,
0 2 4 & 8

MNumber of threads

Figure 4.3: Running time when calculating a viewshed with the R2 algo-
rithm locally, on a raster of size 16001 x 16001, with different number of
threads.

be seen in Figure 4.4. It is easy to see the difference in complexity between the two
algorithms. The time it takes to run the R3 algorithm on a raster with size 2001 x
2001 is comparable to running the R2 algorithm on a raster with size 16001 x 16001,
a raster of almost 64 times the size.

All three algorithms were implemented so that they could be run in parallel. The
running time when executing the algorithms with different numbers of threads are
shown in Figure 4.4, Figure 4.5 and Figure 4.6. The results show that running an
algorithm with more threads will decrease the overall running time, which in turn
implies that we have succeeded in our parallel implementation of the algorithms. The
R2 algorithm receives a smaller speed-up when using multiple threads compared to
both the R3 and van Kreveld algorithms. This is probably due to that the running
time of the algorithm is so short that the overhead incurred by running the algorithm
in multiple threads have a measurable impact on the total running time.

One problem with the van Kreveld algorithm is that it uses a lot of RAM. Memory
usage is visualized in Figure 4.7. For a raster with a side length of 5001 cells,
the van Kreveld algorithm uses more than three times the RAM compared to the
other algorithms. Due to restrictions on our testing hardware, the largest raster
we were able to run the van Kreveld algorithm on had a side length of 6001. By
comparison, on our cluster we were able to run a viewshed analysis with the van
Kreveld algorithm on a raster with side length of 10001 cells. This implies that by
using a cluster’s ability to scale, one could successfully perform calculations on large
rasters that would otherwise not be possible on a single machine.

27

4. Results

1000
900
/

700 /
% 500
._E / =p==1 Thread
W 500
E / / =fl=2 Threads
=
E 400 / / = Threads

- / // g B Thresds

= / /

100

o 4 T T T 1
1001 2001 3001 4001 So01
Side length of raster

Figure 4.4: Comparison when running the R3 algorithm with different

number of threads.

3,5
3 /f
2.5 ,
z ///‘
g =z
'E w1 Thread
Eu / =il 2 Threads
S 15
= ///‘/ =le=4 Threads
1 =8 Threads
0s //a//
o T T T T 1
1001 2001 3001 4001

5001
Side length of raster

Figure 4.5: Comparison when running the R2 algorithm with different

number of threads.

4.3.2 Distributed

In order to evaluate how the configuration of the Spark cluster impacts the run-
ning time of viewshed analysis we ran a series of tests of the R2 algorithm using a
16001x16001 raster with varying number of CPU cores per executor, which deter-
mines how many executors can run on a single worker node, and number of cores in
total. The results of these tests are displayed in Figure 4.8. We found that all the

28

4. Results

160

0 /

= 100

o

_E / / =—tp=—1 Thread
w S0

£ / / =—2 Threads
=

E 50 P =ae—4 Threads

////(—~—3 Threads

5001

Side length of raster

Figure 4.6: Comparison when running the van Kreveld algorithm with
different number of threads.

. e

/ ——R2
== R3
/ === Kreveld
2000

L

Memory used (MB)

:

Q

T T
1001 2001 3001 4001 5001
Side length of raster

Figure 4.7: Comparison of memory consumption of the three algorithms

tested variations of cores per executor behaved similarly with regards to the run-
ning time. Using two cores per executor, resulting in two executors on each worker,

yielded slightly better results and was therefore used in all subsequent timing tests
performed on the Spark cluster.

Even though the R3 algorithm has a higher complexity than the R2 algorithm, we

still wanted to gather results from running it. The reason for this is that we wanted
to compare running times on a more complex algorithm between the local imple-

29

4. Results

1200

SR\

800 \\\\
600 == 4 coresfexecutor
== cores/executor
1 coresfexscutor
400

200 — 3

Running time (s)

0 T T T 1

Number of cores

Figure 4.8: Comparison of running times of the R2 algorithm on a
16001x16001 raster using Spark with varying amounts of executors per
worker node.

mentation and the Spark implementation, to be able to draw conclusions whether
other, more demanding, computations can benefit from being run on a cluster. The
results of this comparison can be viewed in Figure 4.9. According to the results,
Spark calculates the viewshed faster when compared to the local implementation.
What one has to keep in mind when comparing the running times is that in this
instance Spark was run on a cluster with a total of 16 virtual cores and the local
implementation was run with 8 threads on a CPU with 8 virtual cores. Even though
the hardware differs, it is still interesting to consider that Spark outperforms the
R3 local implementation. We did the same comparison for the R2 algorithm, which
can be viewed in Figure 4.10. It is apparent that the local implementation outper-
forms our distributed solution, and there is nothing that points towards a theoretical
break-point for larger rasters where the distributed solution would perform better
than the local one.

Figure 4.11 shows a comparison between the van Kreveld algorithm run locally and
on the cluster. The two implementations have comparable performance, the reason
that the measuring points for the local implementation stop at 6001 cells is that the
algorithm demanded too much internal memory, and was unable to calculate rasters
of greater size.

30

4. Results

300
250 /
= 200
g /
=, 150 2
=
E 100 / =f=R3 Local
50
ﬂ T T T T 1
1001 2001 3001 4001 5001
Raster Side Length (number of cells)

(a) Measurements of running times of the R3 algorithm, between a single multi-core
CPU and a cluster using Spark.

12000
10000 4
= /
o S000
£
= sooo ra
g
‘= m—R3 Spark
S 4000
= // PR3 Local
2000
ﬂ 1 1 1 T T T T T T T T T T 1
— — — — — — i — — — — — — — — —
= = = = O =] = D (=]] [T o | =] =] =]
L} = = = 0 = = [R = | = = [= (= L=}
— ™ (K] = un [a] [~ o (=] = — [} m = L uw
— — — — — — —
Raster Side Length ([number of cells)

(b) Polynomial regression based on the findings presented in Figure 4.9a.

Figure 4.9: Comparison of running times of the R3 algorithm, between a
single multi-core CPU and a cluster using Spark

31

4. Results

Running time (s)

160

140

120

100

20

—f—R2 Spark
=@—=R2 Local

1»
L 3

T
1001 2001 3001 4001 5001 6001 7001 8001 9001 10001 11001 12001 13001 14001 15001 16001
Raster side length (number of cells)

Figure 4.10: Comparison of running times of the R2 algorithm, between
a single multi-core CPU and a cluster using Spark.

Running time ()

450

350

8

%]
un
[=]

8

=
un
=]

/ == kreveld Spark

/ == Kreveld Local

1001 2001 3001 4001 5001 6001 7001 8001 9001 10001
Raster side length {(number of cells)

Figure 4.11: Comparison of running times of the van Kreveld algorithm,
between a single multi-core CPU and a cluster using Spark.

32

O

Discussion

Comparing our findings with those from Axell and Fridén [6] shows that it is not
probable to achieve better, or even equal, performance when doing viewshed analyses
on a cluster compared to on a GPU, at least not when using raster with side length
up to 16001 cells. This can be attributed to the fact that the computational power
of modern-day GPUs are exceedingly high and the speed of networks has not had
the same evolution as GPUs.

Considering that running a viewshed analysis on a GPU is so much faster compared
to running the same analysis on multiple CPUs, we think that to utilize the power
of a distributed solution one needs to use it for specific, and suitable, use cases. One
of these use cases would, for example, be finding a subset of points that has the
highest visibility, so called visibility index. First, to gather this result one has to
run (exponentially) more computations, as this is equivalent to running viewshed
analyses regarding all points in the area as observers. Secondly, as the result only
consists of a subset of points there is no need to aggregate the whole result to one
single node, thereby correctly utilizing the distributed aspect of this system.

We think that Spark works best when the total number of calculations that the
application performs are very large, which is one difference between the R2 and the
R3 algorithm. This is highlighted in Figure 4.9 where a comparison between the local
and the distributed implementation of the R3 algorithm is shown. As previously
mentioned in Chapter 4 there is a difference in hardware when computing the results,
but one also has to consider that it is usually both cheaper and easier to rent the
computational power of 16 virtual cores than it is to buy the hardware yourself.

5.1 Conclusion

This thesis has examined the feasibility of using a distributed system to perform
viewshed analysis. As can be seen in Chapter 4 our implementation of the R2-
algorithm achieved high accuracy, but the results of the running-time speak against
using distribution for these kinds of computations. The reason for this seems to be

33

5. Discussion

the overhead incurred by sending data over a network, which compared to internal
communication, with for example a GPU, is a rather slow medium.

We can also conclude that the idea of using distribution in GIS is a sound one,
though one has to carefully select appropriate use cases for a distributed solution, in
an effort to properly utilize the power of distribution and to minimize any overhead
introduced by the distributed solution, e.g. transmission overhead.

5.2 Future Work

As previously mentioned it is important to examine the use cases when distributing
GIS computations. We think that the process of finding a subset of points with
the highest reach, i.e. the points where an observer would cover as big an area as
possible, would be a suitable use case for distribution. It would be interesting to
see the performance one could achieve on a medium sized cluster, while performing
these calculations.

According to the results we gathered, performing viewshed analysis on a cloud cluster
will not perform better than using a GPU. What would be interesting to examine is
to perform analyses on rasters larger than 16001x16001 cells. To be able to do this,
one either needs to have more capable hardware in terms of available RAM, or to
optimise the algorithms with respect to how much memory they use.

34

[1]

[7]

8]

Bibliography

J. A. Ware, D. B. Kidner, and P. J. Rallings, “Parallel distributed viewshed
analysis,” in Proceedings of the 6th ACM international symposium on Advances
in geographic information systems. ACM, 1998, pp. 151-156.

B. N. Thai and A. Olasz, “Raster data partitioning for supporting distributed
GIS processing,” The International Archives of Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, vol. 40, no. 3, pp. 543-551, 2015.

J. Abdul, M. Potdar, and P. Chauhan, “Parallel and distributed GIS for process-
ing geo-data: An overview,” International Journal of Computer Applications,
vol. 106, no. 16, pp. 9-16, 2014.

S. Tabik, A. R. Cervilla, E. Zapata, and L. F. Romero, “Efficient data structure
and highly scalable algorithm for total-viewshed computation,” Selected Topics

in Applied Earth Observations and Remote Sensing, IEEE Journal of, vol. 8,
no. 1, pp. 304-310, 2015.

L. Lu, B. Paulovicks, M. Perrone, and V. Sheinin, “High performance comput-
ing of line of sight viewshed,” in Multimedia and Expo (ICME), 2011 IEEE
International Conference on. IEEE, 2011, pp. 1-6.

T. Axell and M. Fridén, “Comparison between GPU and parallel CPU optimiza-
tions in viewshed analysis,” Master’s thesis, Chalmers University of Technology,
2015,

Summary: The authors make a comparison between running viewshed anal-
ysis on a multi-core CPU and a GPU, and concludes that the latter is more
efficient. They manage to observe a speed-up of 3.1z on a GPU compared to a
CPU. We used the results from this paper to compare our distributed solution
to the one run on a GPU.

S. Mayhew, A dictionary of geography. Oxford University Press, USA, 2015.
W. R. Franklin, C. K. Ray, and S. Mehta, “Geometric algorithms for siting of

air defense missile batteries,” A Research Project for Battle, no. 2756, 1994,
Summary: A paper that describes what a viewshed is, and what algorithms

35

Bibliography

[15]

[16]

are used to calculate a viewshed. The problem they aim to solve is to develop an
algorithm for viewshed analysis that has less complexity than O(R?). The result
of this is the R2 algorithm. We used this paper to deduce how to implement
the R3 and the R2 algorithm, and also for general understanding of viewshed
analysis.

J. Albrecht, Key concepts and techniques in GIS. Sage, 2007, ch. 9.3.

M. van Kreveld, “Variations on sweep algorithms: Efficient computation of ex-
tended viewsheds and classifications,” in Proceedings of 7th International Sym-
posium on Spatial Data Handling, vol. 13, 1996, pp. 13A.15-13A.27,
Summary: A paper that aims to calculate viewsheds with the use of plane
sweep algorithm. The author, Marc van Kreveld, is the source of both the algo-
rithm and the name of the algorithm; the van Kreveld algorithm. We used this
paper as a quide when implementing the van Kreveld algorithm.

C. Ferreira, M. V. Andrade, S. V. Magalhaes, W. R. Franklin, and G. C. Pena,
“A parallel sweep line algorithm for visibility computation.” in Proceedings of
X1V GEOINFO, 2013, pp. 85-96,

Summary: The authors developed a parallelized version of the iterative van
Kreveld algorithm. This is done by dividing the viewshed area into partitions,
and calculate every partition in parallel. Their solution is used in our imple-
mentation of the van Kreveld algorithm.

Apache Spark. Apache Spark home page. (Visited on 2016-05-04). [Online].
Available: http://spark.apache.org/

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in Proceedings of the
9th USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 2012, pp. 2-2.

Intel Corporation. Ark. Intel® Core™ i7-870 Processor. (Visited on
2016-05-09). [Online]. Available: http://ark.intel.com/products/41315/
Intel-Core-i17-870-Processor-8M-Cache-2 93-GHz

Google Cloud Platform. (Visited on 2016-05-09). [Online]. Available:
https://cloud.google.com/

Machine Types. (Visited on 2016-05-31). [Online]. Available: https://cloud.
google.com/compute/docs/machine-types#predefined__machine_types

36

http://spark.apache.org/
http://ark.intel.com/products/41315/Intel-Core-i7-870-Processor-8M-Cache-2_93-GHz
http://ark.intel.com/products/41315/Intel-Core-i7-870-Processor-8M-Cache-2_93-GHz
https://cloud.google.com/
https://cloud.google.com/compute/docs/machine-types#predefined_machine_types
https://cloud.google.com/compute/docs/machine-types#predefined_machine_types

A

Definitions

GIS - Geospatial Information Systems - Information systems that analyze and
present geographic or spatial data.

DEM - Digital Elevation Model - A digital representation of terrain with elevation
information.

TIN - Triangulated Irregular Network - A digital data structure that represents a
DEM with the use of triangles.

Raster - Used to represent a DEM and is a grid of squares, where every cell in the
grid represents a small subarea.

LoS - Line of sight - The process of calculating whether a target point is visible
from an observer’s point of view.

Viewshed - A representation of an area that shows which points are visible, and
which are not.

Apache Spark - An open-source distribution framework maintained by the Apache
Software Foundation.

RDD - Resilient Distributed Dataset - Dataset used by Spark.

Carmenta - The company where this thesis was performed, Carmenta specializes
in GIS. www.carmenta.com

http://www.carmenta.com

	List of Figures
	List of Tables
	Introduction
	Background
	Problem Description
	Previous Work
	Goals
	Limitations
	Overview of Thesis

	Theory
	Digital Elevation Model
	Line of Sight
	Viewshed Analysis
	Viewshed Algorithms
	R3
	R2
	Van Kreveld

	Framework: Apache Spark

	Implementation
	R3
	R2
	Van Kreveld

	Results
	Correctness
	Accuracy Tests
	Timing Tests
	Locally
	Distributed

	Discussion
	Conclusion
	Future Work

	Bibliography
	Definitions

