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Report for the project Kuggorm: Design and Construction of a Snake-Like Robot

Fredrik Bjersing, David Ekström, Herman Hörnstein, Jakob Bramstång, Anton Öqvist,
Viktor Johansson
Department of Signals and Systems
Chalmers University of Technology

Abstract

The project presented in this report aims to explore and mimic the movement of a snake
in order to gain its advantages, both in theory and in practice. The purpose of this is to
investigate how the motion of snakes can be used for robotic movement.

The project was conducted at the Department of Signals and Systems at Chalmers Uni-
versity of Technology during the spring of 2015. The report includes the mathematical
model and simulations made on the most common movement pattern of the snakes, lateral
undulation, together with the choice of hardware and software development based on this
model. This work resulted in a robot that resembled both the appearance and characteris-
tics of a real snake. The result provides an insight into the possibilities and significance of
snake-like robotic movement. The movement pattern of the robot did not surpass already
existing robots but proved to have great potential for further development. Due to the
time limit of four months the movement of the robot is limited to only lateral undulation
on flat surfaces and in slopes with an inclination between zero and ten degrees.

Keywords: lateral, undulation, lateral undulation, snake, robot, snake-like.
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1
Introduction

The project presented in this report revolves around the studying of the snake movement
and the implementation of that very movement into a snake-like robot. This chapter of
the report introduce some of the greatest difficulties concerning the implementation while
also explaining why the snake’s motion is interesting to examine.

1.1 Background

Ever since humans started building robots, the problem of robotic movement has been an
issue. A robot must often be able to move a certain distance and sometimes through a
suboptimal environment. The conventional method of transporting a robot from one loca-
tion to the other often involves wheels as the tool for generating propulsion. These types
of robots, despite their several benefits, struggle in narrow and debris filled environments.
Therefore, investigating a different kind of movement could be valuable.

Finding a new method of moving might be difficult, whereas observing an already existing
one could potentially be more rational and less time consuming. One could then replicate
the movement and build a robot focusing on that very motion. This could cause the robot
to gain the same benefits. One type of movement, which does not struggle with the ability
to manoeuvre through different environments and narrow spaces is the locomotion of the
snake and is therefore an interesting movement pattern to observe.

1.1.1 The snake

The snake is a limbless reptile that is commonly noticed by its particular way of moving,
where it moves forward by performing different kinds of side-to-side motions. Where the
most common one is called lateral undulation, [1, p. 8].

According to Encyclopedia Britannica, [2], the existence of the snake dates back several
million years, where the oldest fossil ever found has been calculated to be around 167
million years old. The evolution of snakes proves that its behaviour and its way of moving
is somehow advantageous, otherwise it would probably not exist today.

1



1. Introduction

1.1.2 Lateral undulation

Lateral undulation, also known as serpentine crawling, is the most common movement
amongst the snake species. As described in [1, p. 8], the muscles around the spine of the
snakes make up a wavelike motion which propagates backward along the body of the snake.
The sides of the snakes body pushes against irregularities on the ground and exerting a
force perpendicular to its current position. This motion can be observed in the figure 1.1
where the arrows illustrate the force exerted to the sides that produces the resulting force
forward.

Figure 1.1: The most common snake movement called lateral undulation. The picture
describes the propulsion generated by the ground contact forces.

1.1.3 Practical applications

Several earlier projects have been carried out to investigate the movement of the snake
and implementing it into a robot, but few projects have resulted in a practical application.
Finding a constructive function for a snake-like robot is however a task that does not
come naturally, since today’s infrastructure promotes wheel driven robots and/or flying
robots to a major extent. Often robots operate in known closed environments, the robot
can then be designed for that specific surrounding. However in some situations there
might not be an optimal surface to move around on and thusly other methods of moving
becomes more attractive. There have also been several research projects conducted on
practical applications for snake-like robots, where the focus was not solely based on the
movement. In the article SnakeFighter - Development of a Water Hydraulic Fire Fighting
Snake Robot [3] the concept of having snake-like robots extinguishing fires is studied. The
article discuss the potential of equipping a snake-like robot with a water hose and sending
it into dangerous areas. The shape of the robot resembles one of a water hose, which can
be utilised when putting out fires.

Another area where a snake-like robot could potentially serve, where other robots might
not be as optimal, is in search and rescue missions in areas where earthquakes are frequent.

2



1. Introduction

[1] describes these types of missions as optimal for snake-like robots, since the robot could
use small narrow paths in the demolished buildings to find trapped humans. The con-
ventional method for such rescue missions often involves removing debris and potentially
harming trapped humans in the process. A snake-like robot could then perform the task
with less risk of hurting humans.

1.2 Purpose

The purpose of this project is to build a snake-like robot and investigate how the movement
of snakes can be used for robotic movement. The goal is to build a robot that mimics the
movement and appearance of a real snake in order to gain its advantages.

1.3 Problem description

The definition of a snake-like robot is indistinct and depends on which properties of the
snake that is prioritised to be replicated. In this project the movement pattern called
lateral undulation is to be transferred into a robot, while the focus on other properties
have lower priority. In this section the definition of snake-like in the sense of this project
will be clarified.

1.3.1 Task

The task of this project is to build a robot which inherits the properties of a real snake.
Which implies that the robot should be snake-like in the sense that its movement and
appearance will represent a snake as much as possible. This means that it must be pin-
jointed and move solely by a slithering motion produced by torque actuators between each
segment in the robot. Moreover, it should move and make its own decisions without any
human interference. More detailed demands of the robot’s performance can be seen in the
following section 1.3.2.

1.3.2 Demands

The robot must meet the following demands:

1. Have the visual representation of a snake.

2. Move forward using the same technique of propulsion as a snake, i.e. lateral undu-
lation.

3. Produce its propelling force solely by twisting the segments.

4. Move through a predefined course by itself without any human control using wall
detection and collision avoidance.

5. Manage to climb up and down slopes with 10◦ inclination.

3



1. Introduction

6. Be possible to build within a time limit of 4 month period and a budget of 5000
SEK.

To verify that these demands are fulfilled the robot must pass a series of tests described
in appendix A.1.

1.3.3 Problem formulation

In order to replicate the movement of a real snake a great deal of understanding in the
lateral undulation is needed. The muscular body wave that a real snake produces must
be imitated by a mechanical wave in the robot. This requires hardware and design that
can manage the slithering motion but also a controller with an algorithm that manage to
create a propagating wave through the segments of the robot.

Moreover the algorithm for the autonomous steering must be developed and tested while
suitable visual input for obstacle detection must be found and implemented in the robot.

1.3.4 Subproblems

The problems above can be broken down into three major subproblems that explore the
above problem formulation in more details. Each subproblem has its own chapter in the
report.

The first subproblem is to create a mathematical model that can be used to simulate the
lateral undulation of a robot in a simulation environment so the motion can be studied in
detail. See chapter 2.

Another subproblem is to choose the hardware and components to use in the construction
as well as creating a design so that the robot meets the demands on the slithering motion
and visual representation. See chapter 3.

Lastly, the design of electrical circuits for the hardware communication and development
of the software for control of both the lateral undulation and autonomous steering, is a
subproblem on its own. See chapter 4.

1.3.5 Boundaries

The project should be conducted during a four month period where the resources are lim-
ited. The project has a budget consisting of 5000 SEK which is to be distributed towards
components, material and production costs. The project also has access to materials which
resided in the Prototype lab managed by Chalmers University of Technology. In this lab,
materials can be acquired up to a sum of 2000 SEK.

Due to the time and budget limitations, the spectrum of the project is limited. The snake-
like robot should only be designed to achieve the demands presented in 1.3.2. Therefor,
any other type of snake-like movement than lateral undulation will not be in the spectrum
of this project.
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1. Introduction

1.4 Method

The project has been conducted through an iterative method. The objective of this pro-
cess is to successively develop the product and bring the desired result nearer with each
iteration. The first step in this process is to understand the lateral undulation through
simulations and mathematical modelling of the problem. The results of this is then used
as inspiration and guidelines to the design prototypes and control algorithms that was con-
tinuously developed along with further simulations and testing during the project. This
iteration process eventually result in a final product that can be built and tested.

5
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2
Modelling and simulation

The general purpose of the mathematical modelling and simulation is to create deeper
understanding of how the lateral undulation works and how the motion forward is created
and controlled. By creating a kinematic and dynamic model of the robot, complete simu-
lations of the movement are possible and changes in the movement and properties of the
robot can thoroughly be tested before the implementation. The knowledge from this tests
is useful throughout the project when constructing the robot, choosing the components
and programming the controller.

Moreover, the simulations is used to run different algorithms for the autonomous steering.

2.1 Demands

The modelling and simulation should fulfil the following demands:

1. Allow simulations of the movement, so that different settings in the robot control
structure and in the reference signal can be tested and evaluated before testings on
the actual robot.

2. Answer questions about different design and hardware demands, like how strong the
motors must be and how properties like weight is affecting the movement.

3. Simulating the autonomous steering so that different algorithms for the autonomous
steering can be tested.

2.2 Construction of mathematical modelling and simulation

The mathematical model for the planar snake movement used in this project is the same
as in [1], both when it comes to design and notation. The authors of [1] have likewise
used earlier work from two different authors in order to develop their model, so the actual
dynamic model dates back to 2001. The corrections of the model for movement in a slope
is however solely the work of this project.

All the calculations for the simulation are made using matlab and the visual presentations
of the simulations are made either by the plotting tool in matlab or in a separate display
tool written in C++ by the project group.

7



2. Modelling and simulation

2.2.1 Notation

A summary of the notations used in the model can be seen in table 2.1. Each segment (link)
in the robot, is viewed as a rod of length 2l with a centre of mass located in the middle
of the rod and one angle actuator located in the front. The head lacks the angle actuator
in the front but is otherwise a replication of the other links. All links are oriented with
an angle towards the global x-axis of the room called link angle θ = (θ1, θ2, ..., θN )T ∈ RN
where N is the number of links in the robot and link one is the tail, therefore having the
angle θ1. The angle actuators give each link control of its angular orientation in relation
to the link in the front of it, also called joint angle φ = (φ1, φ2, ..., φN−1)T ∈ RN−1. Note
that since the head does not have a servo the head lack the angle φN and φ therefore is N-1
elements long. Moreover the model uses two different coordinate systems as can be seen
in figure 2.1, the global, and the link fixed system. The centre of mass for each segment is
located at (xi, yi) in the global frame and the centre of mass for the whole robot is located
in (px, py) which will also be expressed with the vectors X = (x1, x2, ..., xN )T ∈ RN ,
Y = (y1, y2, ..., yN )T ∈ RN and p = (px, py)T ∈ R2.

Each link are subject to two forces, the friction force from the centre of mass of the link
fR,i and the constraining force hi and hi−1 that arises due to the fact that the link is
connected to the leading and preceding link. Moreover each link is affected by the torques
ui and ui−1 from the leading and preceding links. The forces will also be expressed in
vector form as fR,x = (fR,x,1, fR,x,2, ..., fR,x,N )T ,fR,y = (fR,y,1, fR,y,2, ..., fR,y,N )T ∈ RN

and hx = (hx,1, hx,2, ..., hx,N−1)T ,hy = (hy,1, hy,2, ..., hy,N−1)T ∈ RN−1, note that the head
link lacks the constraint force from a leading link and the tail link lacks the constraint force
of a preceding link. The vectors h is therefore N − 1 long. The torque will be expressed
as the vector u = (u1, u2, ..., uN−1)T ∈ RN−1. The forces and torque on each link will be
explained in more detail in 2.2.4.

2.2.2 Kinematic model

The movement of the snake-like robot can be expressed by deriving the kinematic equa-
tions.

Since the snake moves in two directions and has N number of link angles, θ ∈ RN , it has
N + 2 degrees of freedom. Because of the constant twisting of the links it is hard to tell
the actual direction of the robot. However, the orientation of the robot can be defined as

θheading = 1
N

N∑
i=1

θi, (2.1)

which is the average link angle.

The position for the centre of mass of the robot is dependent on all the link positions and
their masses according to

p =
(
px
py

)
= 1
N

N∑
i=0

(
xi
yi

)
= 1
N

(
eTX
eTY

)
(2.2)

where e = (1, 1, ..., 1)T ∈ RN and therefore works as a summation operator.

8



2. Modelling and simulation

Table 2.1: Parameters and variables that will be used to describe the model.

Symbol Description
N Number of links in robot
l Half the length of links
m Mass of links
J Moment of inertia for each link
θ = (θ1, θ2, ..., θN )T ∈ RN Angle from each link to the global x-axis
φ = (φ1, φ2, ..., φN−1)T ∈ RN−1 Angle of each link to the link in front of it
X = (x1, x2, ..., xN )T ∈ RN Position of each link in global x-direction
Y = (y1, y2, ..., yN )T ∈ RN Position of each link in global y-direction
p = (px, py)T ∈ R2 Position of centre of mass for the whole robot
u = (u1, u2, ..., uN−1)T ∈ RN−1 Torque on each link

ui exerted on link i from link i+ 1 and
ui−1 is exerted on link i from link i− 1

fR,x = (fR,x,1, fR,x,2, ..., fR,x,N )T ∈ RN Friction force in global x-direction on each link
fR,y = (fR,y,1, fR,y,2, ..., fR,y,N )T ∈ RN Friction force in global y-direction on each link
hx = (hx,1, hx,2, ..., hx,N−1)T ∈ RN−1 Constraint force on each link in the global

x-direction hi exerted on link i from
link i+ 1 and hi−1 is exerted on
link i from link i− 1

hy = (hy,1, hy,2, ..., hy,N−1)T ∈ RN−1 Constraint force on each link in the global
y-direction hi exerted on link i from
link i+ 1 and hi−1 is exerted on
link i from link i− 1

fdrag,x = fdrag,x,1, ..., fdrag,x,N )t ∈ RN Force exerted by gravity that drags
each segment in x-direction while in a slope

fdrag,y = (fdrag,y,1, ..., fdrag,y,N )T ∈ RN Force exerted by gravity that drags
each segment in y-direction while in a slope

Since the links are connected to each other the positions of the links must obey the
following constraints

xi−1 − xi = lcosθi + lcosθi+1 (2.3)
yi−1 − yi = lsinθi + lsinθi+1. (2.4)

This can be written in matrix-form as

DX = −lAcosθ (2.5)
DY = −lAsinθ (2.6)

where sinθ = (sinθ1, sinθ2, ..., sinθN )T and cosθ = (cosθ1, cosθ2, ..., cosθN )T and D =
1 −1

. .
. .

1 −1

 ∈ R(N−1)×N works as a differential operator that subtracts pairs
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2. Modelling and simulation

Snakerobot with N links

Tail

(x1, y1)
θ1

φ1
(x2, y2) θ2

φ2 (x3, y3)θ3

(xN−1, yN−1)
θN−1

φN−1
(xN , yN )

Head

θN

(px, py)

Frames
yglobal

xglobal

ylink

xlink

2l

Forces acting on each link

(xi, yi)
θi fR,i

hx,i

hy,i

ui

hx,i

hy,i

ui−1

Figure 2.1: A schematic view of the model. The links is numbered by 1 to N where
the 1:th is the tail, N is the number of links and the N:th link is the head link. The two
different frames can be seen in the small picture in the bottom left corner and the forces
on each link can be seen in the bottom right corner.

of neighbouring links and A =


1 1

. .
. .

1 1

 ∈ R(N−1)×N as a summation operator

that sums pairs of neighbouring links.

The position of the centre of mass can now be expressed as the function of the position of
each link as

(
D

1
N e

T

)
X =

(
−lAcosθ

px

)
(2.7)(

D
1
N e

T

)
Y =

(
−lAsinθ

py

)
. (2.8)

It can be shown that
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2. Modelling and simulation

(
D

1
N e

T

)−1

=
(
D(DDT )−1 e

)
(2.9)

which gives us the very useful equation that describes the position of each link as a function
of the centre of mass

X =
(
D

1
N e

T

)−1(
−lAcosθ

px

)
= −lKT cosθ + epx (2.10)

Y =
(
D

1
N e

T

)−1(
−lAsinθ

py

)
= −lKT sinθ + epy. (2.11)

Here K = AT (DDT )−1D ∈ RN×N . In the following section it will be shown that the
friction force is dependent on the velocity of each segment. The velocity can be found by
differentiating (2.10) and (2.11) with respect to time which is

Ẋ = lKTSθθ̇ + eṗx (2.12)
Ẏ = lKTCθθ̇ + eṗy (2.13)

where Sθ = diag(sinθ) ∈ RN×N and Cθ = diag(cosθ) ∈ RN×N is square matrices of zeros
with sinθ and cosθ on the diagonal.

2.2.3 Friction model

The snake’s movement is fundamentally dependent on ground friction. To produce the
forward force necessary to move the snake, the friction of each link needs to be anisotropic
[1, s. 45], meaning that the friction constant in the snake’s tangential direction needs to
be small relative to the friction in the normal direction of the snake. In the model, we
assume that the friction acts on the centre of mass of each link and is denoted by

fR,i = fglobalR,i =
(
fR,x,i
fR,y,i

)
∈ R2, (2.14)

which can then be written in matrix form as

fR =
(
fR,x
fR,y

)
∈ R2N . (2.15)

Here fR,x = (fR,x,1, ..., fR,x,N )T ∈ RN and fR,y = (fR,y,1, ..., fR,y,N )T ∈ RN are column
vectors containing the friction forces on each link in x and y directions. In the model
the Coulomb’s law of friction is used in order to obtain a realistic image of the actual
snake’s movement. Coulomb’s law of friction takes into account both the velocity of the
snake and the normal force acting on each link. The tangential and normal friction is here
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2. Modelling and simulation

respectively denoted by µt and µn. The Coulomb friction force acting on link i can now
be defined as

f link,iR,i = −mg
(
µt 0
0 µn

)
sgn(vlink,ii ), (2.16)

where vlink,ii ∈ R2 represent the link velocity expressed in the local frame and g represent
the gravitational acceleration constant. To express the global frame Coulomb friction on
link i in the form of (2.14) we create the rotation matrix Rglobal

link,i as

Rglobal
link,i =

(
cosθi −sinθi
sinθi cosθi

)
. (2.17)

This rotation matrix is used to translate the global frame to the frame of link i. We can
now write the global frame Coulomb friction force on link i in the form of (2.14) as

fR,i = fglobalR,i = Rglobal
link,if

link,i
R,i (2.18)

= −mgRglobal
link,i

(
µt 0
0 µn

)
sgn(vlink,ii ) (2.19)

= −mgRglobal
link,i

(
µt 0
0 µn

)
sgn

(
(Rglobal

link,i )
T

(
ẋi
ẏi

))
. (2.20)

By carrying out these matrix multiplications and then writing the forces on all links in
matrix form, we can write the global frame Coulomb friction forces on the links in the
form of (2.15) as

fR =
(
fR,x
fR,y

)
= −mg

(
µtCθ −µnSθ
µtSθ µnCθ

)
sgn

((
Cθ Sθ
−Sθ Cθ

)(
Ẋ

Ẏ

))
∈ R2N . (2.21)

2.2.4 Dynamic model

In order to understand how the acting forces affects the robot’s movement, the dynamic
equations must be added to the model. The forces will here be presented as a function of
the acceleration of the angles, θ̈, and the robot’s centre of mass, p̈. As presented in figure
2.1 there are two sources of force acting on each link, the ground friction force, fR,i, and
the joint constraint forces, −hx,i−1, −hy,i−1, hx,i and hy,i. The force balance can now be
presented as

mẍi = fR,x,i + hx,i − hx,i−1 (2.22)
mÿi = fR,y,i + hy,i − hy,i−1. (2.23)

Which can then be written in matrix form as

mẌ = fR,x +DThx (2.24)
mŸ = fR,y +DThy, (2.25)

where hx = (hx,1, .., hx,N−1)T ∈ RN−1 and similar for hy. Another equation for the link
acceleration is found by differentiating (2.5) and (2.6) twice with respect to time, giving

DẌ = lA
(
Cθθ̇

2 + Sθθ̈
)

(2.26)

DŸ = lA
(
Sθθ̇

2 +Cθθ̈
)
. (2.27)

12



2. Modelling and simulation

To find the acceleration of the centre of mass we need to differentiate (2.2) twice with
respect to time and insert the equations for the force balance, this now gives(

p̈x
p̈y

)
= 1
N

(
eT Ẍ

eT Ÿ

)
= 1
Nm

(
eTfR,x
eTfR,u

)
= 1
Nm

ETfR. (2.28)

Since the robot’s movement is based on the torque from the servos, we will need to set up
a torque balance. The torque balance for link i is given by

Jθ̈i = ui − ui−1 − lsinθi(hx,i + hx,i−1) + lcosθi(hy,i + hy,i−1), (2.29)

where ui and ui−1 represent the torque acting on link i from the servos on link i+ 1 and
on link i− 1. These equations may now be written in matrix form as

J θ̈ = DTu− lSθAThx + lCθA
Thy. (2.30)

In order to remove the joint constraint forces from this equation, we premultiply (2.24) and
(2.25) with D and solve for hx and hy, by now inserting (2.26) and (2.27) the following
expression for the joint constraint forces are received

hx =
(
DDT

)−1 (
mlA

(
Cθθ̇

2 + Sθθ̈
)
−DfR,x

)
(2.31)

hy =
(
DDT

)−1 (
mlA

(
Sθθ̇

2 −Cθθ̈
)
−DfR,y

)
. (2.32)

By using these equations, the joint constraint forces can be removed from (2.30) and finally
the dynamics of the model can be expressed as

M θθ̈ +Wθ̇
2 − lSθKfR,x + lCθKfR,y = DTu (2.33)

Nmp̈ = Nm

(
p̈x
p̈y

)
= ETfR, (2.34)

where M θ, W , V and K are created to make the model more compact. These matrices
are given by

V = AT
(
DDT

)−1
A (2.35)

K = AT
(
DDT

)−1
D (2.36)

W = ml2SθV Cθ −ml2CθV Sθ (2.37)
M θ = JIN +ml2SθV Sθ +ml2CθV Cθ. (2.38)

Note that the friction force fR defined in (2.21) is dependent on the velocities of each
segment, which is dependent on the velocity of the centre of mass for the whole robot, p
and the the velocity of the link angles θ. This makes the equation (2.33) a second order
differential equation and (2.34) a first order differential equation.

2.2.5 Compensation for movement in slope

The following compensation for movement in a slope is valid if the whole robot is located
in the slope and not while it is entering the slope or leaving it.
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β

×
ŷ

x̂

ẑ

Figure 2.2: The global coordinate system is tilted with angle β so that the global x-axis
points straight up the slope and the z-axis is normal to the slope.

If the global coordinate system is tilted with the slope so that the z-axis and x-axis points
in normal direction to the slope and up the slope respectively, see figure 2.2 for clarification.

In the tilted global xy-plane the kinematics is the same as earlier but the dynamics change
since the normal force exerts less force in the z-direction which results in less friction and
a new force that drags the links down the slope in negative x-direction. See figure 2.2.

The force exerted by the slope on the links in the normal z-direction is

fnormal,z = mgcosβ, (2.39)
where β is the angle of the slope.

This results in a scaling of the friction force by a factor cosβ

fR =
(
fR,x
fR,y

)
= −mgcosβ

(
µtCθ −µnSθ
µtSθ µnCθ

)
sgn

((
Cθ Sθ
−Sθ Cθ

)(
Ẋ

Ẏ

))
∈ R2N .

(2.40)

The new dragging force down the slope in link system is

f link,idrag = mgsinβ

(
−cosθi
sinθi

)
(2.41)

which in global tilted coordinates is

fdrag = Rglobal
link,if

link,i
drag = mgsinβ

(
cosθi −sinθi
sinθi cosθi

)(
−cosθi
sinθi

)
(2.42)

= mgsinβ

(
−cos2β − sin2β

0

)
= −mgsinβ

(
1
0

)
. (2.43)

The force balance is now

mẌ = fR,x +DThx + fdrag,x (2.44)
mŸ = fR,y +DThy + fdrag,y = fR,y +DThy, (2.45)
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since fdrag,y = 0. This gives the following acceleration of the centre of mass

(
p̈x
p̈y

)
= 1
N

(
eT Ẍ

eT Ÿ

)
= 1
Nm

(
eTfR,x + eTfdrag,x

eTfR,u

)
= 1
Nm

ET (fR + fdrag) (2.46)

because eTDT = 0.

The torque balance is still

J θ̈ = DTu− lSθAThx + lCθA
Thy (2.47)

but the constraint forces h is affected by the change in friction and the new dragging force.
If the constraint forces is substituted from (2.44) and (2.45) and inserted into (2.47) the
following dynamic model is withheld

M θθ̈ +Wθ̇
2 − lSθK(fR,x + fdrag,x) + lCθKfR,y = DTu (2.48)

Nmp̈ = Nm

(
p̈x
p̈y

)
= ET (fR + fdrag). (2.49)

The constant matrices is the same as before in (2.35)-(2.38). Note that if the slope angle
β = 0 the drag force fdrag = −mgsinβ = 0 and the scaling of the friction is cosβ = 1.
This results in the exact same model as before in a horizontal plane.

We can now define the model on state space form with the state vector x = (x1,x2,x3,x4)T =
(θ,p, θ̇, ṗ)T as

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4

 = F (u,x) (2.50)

where f(u,x) is the nonlinear equation system of (2.48) and (2.49) and the ẋ can be found
by solving the equations for each element. The control signal u is the torque exerted by
each link actuated by the angular actuators.

2.2.6 Separation of actuated and unactuated degrees of freedom

To better understand how to control the robot the actuated and unactuated degrees of
freedom can be separated. The actuated degrees of freedom is only the N − 1 joint angles
φ since this is all that can be controlled with the angular actuators between the links.
The heads link angle θN and the position of the centre of mass p is unactuated since this
is states that can not directly be controlled by any control signal.

As can be seen in figure 2.1, θ can be added up from the link angle of the head with the
joint angles of the links behind θi = θN + φN−1 + φN−2 + ... + φi. If a new angle vector
φ̄ = (φ1, ..., φN−1, θN )T that builds up by φ and link angle of the head link θN is defined
it is possible to transform φ̄ to θ and back with the following invertible N ×N matrix H
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2. Modelling and simulation

θ = Hφ̄ =


1 1 1 ... 1
0 1 1 ... 1
...

...
0 0 0 ... 1

 φ̄. (2.51)

The dynamic model can now be rewritten with θ = Hφ̄, θ̇2 = diag(θ̇)θ̇ = diag(H ˙̄φ)H ˙̄φ
which results in

M θH
¨̄φ+W diag(H ˙̄φ)H ˙̄φ− lSθK(fR,x + fdrag,x) + lCθKfR,y = DTu (2.52)

Nmp̈ = Nm

(
p̈x
p̈y

)
= ET (fR + fdrag). (2.53)

The system (2.52) is N rows since φ̄ is N long but only the first N-1 lines depends on the

actuated degree of freedom


φ1
φ2
...

φN−1

 and the last line together with the two lines of (2.53)

depends on the unactuated degree of freedom

θNpx
py

.
If (2.52) is premultiplied with HT and the variables are changed to the actuated and

unactuated variables qa = φ and qu =
(
θN
p

)
the following system is withheld

M̄11q̈a + M̄12q̈u + W̄ 1 + Ḡ1fR = u (2.54)
M̄21q̈a + M̄22q̈u + W̄ 2 + Ḡ2fR = 03x1. (2.55)

Here M̄11 ∈ R(N−1)×(N−1) is the first N-1 rows columns of M̄ , M̄12 ∈ R(N−1)×3 is the
first N-1 rows and the last 3 columns, M̄21 ∈ R3×(N−1) is the last 3 rows and first N-1
columns and lastly M̄22 ∈ R3×3 is the last 3 rows and columns. M̄ is built up by

M̄ =
(
HTMH 0N×2

02×N NmI2

)
. (2.56)

W̄m, Ḡm are on the same way parts of the matrices W̄ and Ḡ where W̄ 1 ∈ R(N−1) is
the first N-1 rows, W̄ 2 ∈ R3 is the last 3 rows, Ḡ1 ∈ R(N−1)×2N is the first N-1 rows and
2N columns and Ḡ2 ∈ R3×2N is the last 3 rows and 2N columns. W̄ and Ḡ are
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W̄ =
(
HTW diag(H ˙̄φ)H ˙̄φ

02×1

)
(2.57)

Ḡ =

−lH
TSHφ̄K lHTCHφ̄K

−eT 01×N
01×N −eT

 (2.58)

where SHφ̄ = Sφ and CHφ̄ = Cφ.

We can now instead introduce the state vector x = (x1,x2,x3,x4)T = (qa, qu, q̇a, q̇u)T ∈
R2N+4 and the state space form is now

ẋ =


q̇a
q̇u
q̈a
q̈u

 = F (u,x) (2.59)

where F (u,x) is the system of nonlinear differential equations in (2.54) and (2.55).

2.2.7 Controller design and reference signal

In order to test how the model works the following simple PD-controller have been used
to change the control signal

u = kp(φref − φ) + kdφ̇. (2.60)

Where φref is a joint angle vector that corresponds to a proper lateral undulation and φ
and φ̇ is the actual joint angle and joint angle velocity.

As described in 1.1.2 the snake produce its propelling motion by a muscular wave that
propagates backwards along its body. This means that the reference joint angle will be
time varying and all links must have a angular phase shift with regards to each other.
According to [1, s. 81] the reference φref can be shown to be

φref,i = αsin(ωt+ (i− 1)δ) + Φ0. (2.61)

Here α is the amplitude of the angle, ω the frequency of angle oscillation and δ the phase
shift between neighbouring links i. Φ0 is a constant offset for all links that can be used to
turn the direction of travel for the whole robot.

2.2.8 Simulating the visual input

The autonomous steering of the robot needs some kind of visual input in order to take
decision of the steering. This is implemented in the real robot with sensors on the head that
can measure distance to objects, which can be seen later in section 3.2.2. The sensors has a
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maximum and a minimum distance between where they can measure distance properly. In
the simulation these sensors are modelled by line segments that starts at a point located
at the minimum distance from the head and ends at a point located at the maximum
distance from the head. See figure 2.3.

Head

Obstacle line segment

Sensor line segment

Intersection

0 dmin dobs dmax

Figure 2.3: The sensor line segment starts at its minimum range dmin from the head
and ends at its maximum range dmax. The measured distance dobs is simply the distance
from the head to the intersection point.

Obstacles that the robot must avoid can be modelled with polygons located in the room.
If the sensor beams intersects with one of the line segments in the polygon it means that
the sensor can see the object and the distance from the head to the point of intersection
can be calculated.

2.2.9 Simulation environment

The simulations is made by solving the equation (2.50) with the ode solver ode15s [4].
Each time step in ode15s the control signal u is fetched from a controller function that
holds the equation (2.60), the control function also fetch the reference from a reference
function that holds the equation (2.61). In the reference function the Φ0 can be changed
during different time intervals in order to make the robot turn. This is done by a steering
function that read the values from the sensors on the head as described in 2.2.8 and
with this input take decisions about changing Φ0 to steer accordingly. By changing this
function, different algorithms for the autonomous steering can therefore be tested in the
simulation environment with different obstacles.

When ode15s is done with its calculations it returns a list of all state variables and torques
(control signals) during each time step. This can then be used to plot the movement and
torques either in matlab or in the display tool developed by the project group. A flowchart
of the simulation can be seen in figure 2.4.

The display tool was developed in C++ as a supplement to matlab. In order to show how
all variables in the simulation interrelate it displays the robot in 2D, all its segments, the
forces generated and the applied torque. The variables are saved in a file from the matlab
program and then loaded by the display tool. An example figure can be seen in appendix
B.4.
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x0,u0
ode15s

x,u

t,φ, φ̇
Controller

u

Referencet

φref

Steering
φ0

Plot

Figure 2.4: A flowchart of how the simulation is made. ode15s holds the equation (2.50)
or (2.59), the controller is the controller in (2.60) and the reference is the reference signal
in (2.61). The autonomous steering is done by the steering function that simulates the
visual input to the robot and changes the reference signal in order to turn the robot.

2.3 Simulation results

Table 2.2: List of parameters used in the simulation.

Parameter Value
N 8
l 55 cm
m 100 g
J 1

3ml
2

µn 0.7
µt 0.1
kp 50
kd 10
α 40◦

ω 80◦ s−1

δ 360◦

N = 45◦

The following simulations are made with the parameters in table 2.2. These parameters
all have a unique effect on the motion of the robot. The amplitude α denotes how wide
the robot slithers which is directly linked to the force that drives the robot forward. An
increasing amplitude will create higher force forward but also decrease the speed of the
forward motion. This means a greater amplitude will make the robot able to climb greater
slopes but in a slower velocity. In order to increase the speed of the forward motion, the
joint angle frequency ω needs to be increased since the robot then moves its segments
faster. To achieve a desired speed and forward force, these parameters must then be
selected with each other in mind. The phase shift δ is directly linked to the shape of the
robot since this denotes how much each joint angle differs from the one in front and back.
If δ = 360◦

N the robot’s segments together make up one sine wave period and if δ = 720◦

N
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they make two periods and so on. The effect of δ is not influenced by the amplitude or
the joint angular frequency.

The simulation later runs for 30 seconds and during the time interval 11 < t < 14 the robot
turns by shifting the Φ0 in the reference signal by ten degrees (Φ0 = 10◦). This simulation
produce the movement that can be seen in figure 2.5 which clearly is a snake-like lateral
undulation. As it can be seen in the simulation, a positive joint angular offset causes the
robot to turn right while a negative offset causes it to turn left. A change in this offset
should be considered as a rotational movement rather than a turning movement according
to [1, s. 96], as the entire robot rotates instead of continuously turning one segment at a
time. The magnitude of the offset is not a measurement of how many degrees the robot
will rotate, it is instead a measurement of how fast the robot will rotate. As visualised
in 2.5 a 90◦ turn can be achieved by setting the joint angular offset to φ0 = 15◦ for three
seconds in this particular case. This however, depends on what position the robot and its
segments has when the rotation begins and a specific φ0 = 15◦ for a set amount of time
does therefore not always result in the same turn. Moreover the φ0 = 15◦ has different
effect on the turning dependent on the other settings in the movement like α, ω and δ.

x-position in global frame (m)
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Lateral undulation of robot

position of tail link
position of head link
position of centre of mass
position of each link in t=30

Figure 2.5: A simulation of the lateral undulation during 30 seconds. Between 11 < t <
14 the robot turns by shifting its offset angle Φ0 by ten degrees.

During the simulation, each angular actuator produces the torques that can be seen in
figure 2.6. It is interesting to see that the turning of the robot makes the actuator produce
more torque than the straight line motion.

To measure the robot’s ability to deal with various slopes, the simulation seen in 2.7
have been produced, where the plane is tilted 10◦ after 10 seconds in to the simulation.
This simulation does not take the phase where the robot is moving onto the slope into
consideration, instead the plane on which the robot moves on is tilted 10◦ after 10 seconds
in to the simulation.

It can be observed that the torque requirements on each angular actuator is significantly
increased when the plane is tilted. Through further simulation it can also be observed that
the robot’s ability to handle even greater slopes is limited by the ground friction rather
than by the torque, since the torques never get much higher than in figure 2.7 even if the
slope is steeper.
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The values obtained from these simulations can now be used to support the choice of
angular actuators.
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Figure 2.6: The variations of the torques by the angular actuators during the simulation.
During the time interval 11 < t < 14 (between the dashed lines) the torques increase due
to the turning of the robot.
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Figure 2.7: Variations of the torques when moving in 10◦ slope compared to horizontal
plane. After 10 seconds the horizontal plane is tilted to a 10◦ slope.
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3
Design of the robot

Designing the snake-like robot requires a transfer of the muscular movement of the snake
into a robot. As explained in 1.1.2 the movement of the snake is made up of muscular
contractions around joints in the spine, causing a wave-like motion. The design of the
robot is represented in the same fashion. Segments make up the space in between the
spinal joints while angular actuators makes up the muscular contractions around these
joints. This representation can be directly transferred from the modelling and simulations
made in section 2.3.

This chapter presents the process of designing the snake-like robot based on this segment
approach and these simulations. The chapter is divided into several parts explaining both
hardware choices as well as design choices which will be considered individually.

3.1 Demands

Demands for designing the robot are derived from the global demands and expanded to
include specific demands for the design as well as requirements set by the simulation.

1. The robot must be autonomous, which implies that some kind of visual input is
necessary to detect walls and obstacles.

2. The friction between the robot and the ground must be anisotropic enough for the
lateral undulation to be effective.

3. The source of propulsion must counter the weight of the robot and torque demands
withheld in the simulations in section 2.3.

4. The angular actuators must have the ability to perform a periodic and precise move-
ment.

5. The energy source has to deliver enough energy to drive the angular actuators.

6. Microcontroller must be able to handle the control algorithm and communicate with
the hardware.

7. The design should be flexible in three dimensions and be able to move in different
angles, just like a snake.

8. The structure and material of the robot should be strong and stable enough to endure
the stress that will occur during the movement of the robot.

23



3. Design of the robot

9. The robot should look like a real snake.

3.2 Hardware choices

In order to choose a proper set of hardware, each demand is put into a Morphological
matrix [5]. The matrix represents all of the different demands on each row together with
all of the possible solutions in each column. From this matrix several solutions is obtained,
together with a elimination matrix and a decision matrix, the best solution is then derived
based on the requirements of the robot, the complexity of the solution and the price of
that very solution. The process of choosing the best solutions revolves around examining
each demand separately and finding the best solution for that very demand. The created
morphological matrix can be found in A.1 and the result of each demand is presented
below.

3.2.1 Angular actuators

As presented in chapter 2 the robot moves by changing each joint angle continuously
over time. The angular actuator makes sure that the desired joint angle is achieved. It
is implied that each angular actuator, according to (2.61) should retain a specific angle
at each time step, mimicking the motion of a sine wave. If the desired position is not
accomplished with an adequate precision it can result in a suboptimal robot movement.
Therefore the ability of retaining the desired angle with high precision is an important
aspect when choosing the device.

The chosen angular actuator, the DC servo Dynamixel AX12+ [6] is equipped with a
control circuit which regulates the position based on user input and a PID regulator inside
of the servo. The servo contains a position sensor which continuously sends feedback to the
integrated control circuit, regulating the position. Due to this, the servo has an angular
resolution of 0.29◦, which is relevant to the precision control of the robot. The integrated
control circuit also has the functionality of providing valuable information to the user,
such as the current angular position of the servo, the current load applied to the servo and
the current angular speed. More information regarding the properties of the servo can be
found in Appendix A.2.

The Dynamixel AX12+ servo utilises a packet based protocol for communication through
the UART protocol [7, p. 553]. Each servo has an unique identifier included in the package,
making it possible to connect several servos onto a buss for individual communication.
The standard communication rate for the Dynamixel AX12+ servos is at 1Mbit/s, which
remains unchanged during the project.

As it can be seen in the data sheet for the Dynamixel servo A.2 the chosen servo has a
maximum stall torque of 1.5Nm together with a stable maximum motion torque of 0.3Nm.
The demand presented in 3.1 states that the angular actuator must be able to counter the
weight of the robot. The simulation made in 2.7 presents the torques produced by each
segment while the robot is moving in a 10◦ incline. The weight of each of the simulated
segments is 100 g and as can be observed in the simulation, the maximum torque achieved
is 0.23Nm, meaning that weight of a segment could be increased to 100 g without having
problems generating the motion.
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3. Design of the robot

3.2.2 Visual input

In order to make the robot autonomous, it must be aware of its surroundings. This can
be achieved through multiple choices of visual inputs, such as global positioning systems
and integrated sensors. In this project the robot uses range detecting IR-sensors.

The robot is equipped with three Sharp GP2Y0A21YK0F [8] IR-sensors for detecting
objects close to the current position of the robot’s head. These IR-sensors are optimised
for detecting objects within the range of 10-80 cm and delivers an analog output signal.
Each sensor has three pins where the output pin delivers a voltage proportional to the
length of a detectable object. A graph showing the range-to-voltage relation can be viewed
in [8, p. 5]. The sensors are relatively cheap while still maintaining a precise enough
measurement for this project.

Due to the sensors measuring distance between 10-80 cm, the sensors deliver unstable
output-voltage between 0-10 cm. Looking at the graph in [8, p. 5], the output in the
interval 0-10 cm can be interpreted as the sensor detecting objects further away.

3.2.3 Microcontroller

To handle the movement and the sensor input a Arduino Uno[9] microcontroller is used.
The Arduino card is equipped with a Atmega328 processor running on 16MHZ clock
frequency. It has 5 analog inputs, 13 digital I/O pins. Three of the analog inputs are used
for monitoring the sensors. The board is able to communicate at speeds up to 2Mbit/s,
which works well with the chosen Dynamixel servo.

3.2.4 Energy source

A common energy source for the Arduino, IR-sensors and the servos has been used. Both
the microcontroller and IR-sensors needs 5V to function while the servos use a voltage
around 9-12V. The Arduino has an on board voltage regulator that provides 5V output
when supplied with a 7-12V input. It is used for driving both the microcontroller and the
IR-sensors. A 11,1V LiPo battery capable of 800mAh [10] is used for its high performance
to weight ratio.

3.2.5 Ground friction

The ground friction is provided by a set of passive LEGO-wheels placed between the
segments. The anisotropic friction is achieved by having some of the wheels slide to the
sides with high friction while others roll forward with ease as the segments rotate. The
wheels used can be seen in figure 3.1.
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Figure 3.1: Picture of one of the wheels.

3.3 Design

The design is made with respect to the selected hardware in section 3.2. It is also designed
to fulfil the demands in 3.1, such as to be movable in all directions and to match the
physical requirements that is critical for the robot’s movement. It is strong and stable
enough to endure the stress that occurs during the robot movement, however the weight
was to be kept low according to section 2.3.

Figure 3.2: Assembled view of one section of the robot that is controllable in the hori-
zontal plane and is flexible in the vertical direction.

The design procedure is based on module segments according to chapter 3, which means
that identical sections are connected to each other to create the whole robot. All segments
except for the head and the tail are identical and contains a servo, a wheel and space for
cables. The microcontroller and the sensors are located in the head, while the battery is
placed in the tail in order to compensate for its low weight, since the simulation in section
2.3 is based on equal weight for each segment.

The segments are not only controllable in the horizontal plane but also flexible in the third
dimension, this enables it to go up and down a hill.
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3. Design of the robot

Figure 3.3: Exploded view of one module segment, the parts are from the left, the flexible
arm, the base, the servo and the propulsion arm.

3.3.1 The module segments

The task for each segment is to generate a forward force so that the segments together can
drive the robot, this propulsion comes from seven DC servos 3.2.1, one in each segment.
The segment consist of three designed parts and one servo, which also can be seen in figure
3.3.

• Base

• Flexible arm

• Propulsion arm

The base, the second part from the left in figure 3.3, works as a centre for each segment
and is the holder for the servo. It is designed to embrace the servo and its holes match the
servo’s screw holes for easy mounting. On both sides there is a 6mm hole and an open
track between the hole and the front end. The hole matches the flexible arm and the track
is made so that a rubber band can be fastened between the track and the flexible arm.
This solves the flexibility in the vertical plane since this setup act as a spring.

The flexible arm, the first part from the left in figure 3.3, is the key to the robot’s manoeu-
vrability in the vertical plane. The arm embrace the base and matches the 6mm holes
on the side of the base. It is long enough to rotate freely around the servo, but is held in
place by the rubber band. This also ensures that the cables will fit.

The flat side seen in figure 3.4 of the flexible arm has a big hole for cables in the middle,
it also has four holes for screws to make it easy to build together with any other part. In
the bottom under the central cable hole there is room for a wheel and its axis. This flat
side that is described here is of the same kind in all parts, except for the base.

The function for the propulsion arm, the first part to the right in figure 3.3, is to transmit
the movement created by the servo. It is a strong arm with the same flat side on the end
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3. Design of the robot

Figure 3.4: The flat side that constitute the connection between each designed part,
except the base. With four screw holes, cable hole and a hole for a wheel in the bottom.

as the flexible arm for connections with other segments, seen in figure 3.4.

The result of this design can be seen in figure 3.2 where the produced parts are put together,
embracing the chosen servo. The segment has a ± 90◦ of freedom in the horizontal plane.
Several segments are then supposed to be connected together, creating the body of the
robot.

3.3.2 Head

Figure 3.5: The head of the robot, with room for the micro-controller, sensors, and all
the electronics

The head is the larges part of the robot and can be seen in figure 3.5. All the electronics,
except the battery, are placed in the head which have an open design that enables easy
modifying of the electronics. It has three tracks for each circuit board to fit and has a 90◦

front. The three eyes, IR-sensors, of the robot is positioned on each side of the 90◦ front
and one on the top. Underneath the head there are two bumps to lift up the head and
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3. Design of the robot

keep it in a horizontal position. The back of the head also has the flat side which makes
it easy to attach and detach the head as it matches all other segments.
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3. Design of the robot

3.3.3 Tail

Figure 3.6: The tail of the robot, works as a battery holder

The primary function of the tail is to host the batteries and to give a proper weight for the
last wheel, so that it can produce enough friction. The tail also serves a aesthetic function
for the visual impression of the robot. Like all other parts it has the standard flat side for
easy connection with the snake and has room for the LiPo battery selected in 3.2.4. The
designed can be seen in figure 3.6.

3.3.4 Assembly of the whole robot

Figure 3.7: The whole robot, with seven segment a tail and a head.

With all seven segments and parts assembled, the complete design of the robot is obtained.
The design can be observed in figure 3.7 where all of design pieces are connected together.
In order to make a more snake-like appearance of the robot the designed parts are all
printed in black ABS plastics. Further information about the design development and all
the exact drawings on the designed and printed parts are located in appendix B.1 and
appendix B.2.
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Implementation and testing

In order to finalise the implementation of lateral undulation and to make the robot au-
tonomous, the hardware has to be connected and implemented together with the micro-
controller. The microcontroller has to be able to communicate with the servo while also
periodically sample values through the sensors. In this part of the report, the implemen-
tation of the robot is described together with the final testing of the complete robot.

4.1 Communication between microcontroller and servos

As mentioned in section 3.2.1, the communication between the ATmega328 microcon-
troller (Arduino) and the Dynamixel 12+ servo is done with the UART protocol. The
servos are connected in a daisy-chain [7, p. 134] with one wire handling both reading and
transmitting. This can not be done simultaneously, either a message is sent from a servo
to the Arduino or vice versa, this is called half-duplex communication [7, p. 239]. To allow
communication both ways a converter is placed before the servos.

Figure 4.1: Converter from full-duplex to half-duplex to enable communication between
Arduino and Servos
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Using the SN74HC241DW [11] tri-state buffer and line driver integrated circuit configured
as seen in figure 4.1, allows control over whether to send or receive data. When the level
on DATA CTRL pin is high the signal on TXD pin is transmitted to the bus, if the level
is low any signals on the bus is transmitted to the Arduino through the RXD pin.

4.2 Communication with sensors and sensor filtering

The chosen IR-sensors gives an approximate answer of how far away an object is, see
section 3.2.2. The analogue output of the sensor is converted into a digital signal using an
A/D converter inside of the microcontroller, making it possible to sample and interpret
the sensor signal. The sensor values can then be used to control the robot. In order to
make sure the sensors give the appropriate value, they were tested.

The tests were conducted using an Arduino board, the Sharp GP2Y0A21YK0F sensor
[8] and a blank sheet of white paper. The sensor was placed in clear view and sampled
through the Arduino with a 10ms delay in between samples. The blank sheet of paper was
inserted at 32 cm away from the sensor shortly after the sampling started. The unfiltered
result of the test is shown in the left most graph in figure 4.2. As it can be seen the sampled
data is widely spread, sampling points varying from 0.7 to 1.16V after the insertion of the
blank sheet of the paper. By looking at the graph in datasheet [8, p. 5] the distance of
32 cm should be interpreted as roughly 0.83V, meaning that there is a variation of −0.13
to +0.33 in the worst case.

Having this kind of spread in the sensor input could potentially cause the robot to make
decisions based on false information. To avoid the spread of sampled inputs, the sampled
values are put into a moving average filter. The moving average filter is defined by the
following equation:

y(k) = 1
n

(x(k) + x(k − 1) + ...+ x(k − (n− 1))) (4.1)

where k denotes a discrete sample, y(k) is the filtered sample value, x(k) is the sampled
value and n is the number of samples. The second graph to the right in 4.2 shows the
same test performed together with an moving average filter working with n = 20 samples.
As can be seen in that very graph, the resulting values are closer to the actual values
with only ±0.01 V variation. The payoff however is that the rise time is higher, taking
approximately 800ms to achieve the appropriate value.
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Figure 4.2: The graphs show the plotting of sampled sensor values during the test
described in 4.2. The test was conducted with a sample interval of 10ms where a blank
sheet of paper was inserted after a set amount of time. The insertion of the paper can
be seen as the black step function. The left graph shows the sampled unfiltered values.
The right graph shows filtered values using a moving average moving filter with n = 20
samples.

4.3 Software

To move and steer the robot autonomously, a given software must run via the microcon-
troller. This software must set the servos to the desired positions for the robot to gain
propulsion. The current implementation makes use of the filtered sensor input to check
what kind of situation it has to deal with. Depending on the situation, decisions about
the steering is made. This process is described by the flowchart of figure 4.3.

4.3.1 Steering states

The software implementation makes use of two states, forward mode or obstacle avoidance
mode. If q is the state of the robot and S is the set of states then,

S = {q0, q1}, q ∈ S (4.2)

where q0 is the state when the robot should go straight and q1 is the state when the robot
should change its course to avoid observed obstacles.

At appropriate times, steering should be applied so that an object can be avoided. The
condition for when this should happen is a function of the input. The function can be
called C(d), where d is the angle-to-distance mapping which is derived from the IR-sensor
input. The implementation of this function will be described in more detail later on, see
algorithm 1.
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Figure 4.3: The flowchart of the controller of the snake-like robot. Note that the input
and state does not need to be updated in the same iteration. An iteration can pass without
either being updated at all.
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4.3.2 Forward mode

When in state q0, that is, when the robot is supposed to steer forward, the positions of the
servos only consists of a part that is the reference angular position. The theory behind
how this results in forward motion was discussed in section 2.2.7. Using the formula (2.61)
with Φ0 set to 0 yields,

φref,i = αsin(ωt+ (i− 1)δ), (4.3)

where i is the number for each servo in order.

4.3.3 The input data

Since the robot only have three sensors, one in the front of the head and the two others
directed to the left and right by 45◦ each, see figure 4.4. It is only possible to have
knowledge of the surroundings consisting of three discrete points around the robot at any
instant. This is not enough. For example, it is easy to imagine an obstacle that is within
a radius of the robot that is considered too close, but is not intersected by any of the
sensors.

Head

Segments

Obstacle

45◦

45◦

IR beams

Figure 4.4: The sensors are mounted so that one points straight forward from the head
and two points 45◦ to the left and right.

Therefore the robot scans its surroundings and saves the three data points in an angles-
to-distance mapping d. The angles are relative to the robot’s direction, which means that
as the head moves around, it sweeps an angular interval and saves the distances in the
map. Each half period the distances of the whole interval has been refreshed. This means
that the quality of the distance at some angles are worse than the updated ones.

4.3.4 The state transition function

The condition C(d) is currently implemented as seen in algorithm 1.

If C(d) = 1, the robot will have to turn, and if C(d) = 0 the robot can continue straight
ahead. These transitions can be seen in the state chart of figure 4.5.

35



4. Implementation and testing

Input: d
Output: b ∈ {0, 1}
n← mapToIndex(−90◦);
b← 0;
while n ≤ mapToIndex(90◦) do

if getDistance(d, n) < tooCloseLimit then
b← 1;
stop;

end
n← n+ 1;

end

Algorithm 1: mapToIndex(ϕ) is the method of getting the index of the underlying
distance-storage array where the distance at angle ϕ can be found. tooCloseLimit is the
distance limit for obstacles. To summarize, if b = 0, the robot will not have to turn. If
there exists any distance in the angle-to-distance mapping between −90◦ and 90◦, then
b = 1, which means that the robot should turn.

q0start q1

C(d)
¬C(d)

¬C(d)

C(d)

Figure 4.5: q0 is the state when the robot should go straight and q1 is the state when the
robot must turn. The transitions from state q0 to q1 happens when the collision detection
condition C(d) evaluates to 1 and transitions the other way when it evaluates to 0.
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4.3.5 Object avoidance mode

When in the steering state, q = q1, a new suitable course for the robot is needed in order
to avoid observed obstacles. The current implementation searches for a course offset, θ̂,
which is the smallest suitable offset in relation to the current course of the robot. If
θheading in (2.1), is the general direction of the robot, and θ is the general suitable course,
then,

θ̂ = θ − θheading. (4.4)

The condition for a suitable course is that the distance at the angle can be observed to be
larger than a certain limit, d0. It is still possible that such an angle can not be found. In
that case, the most suitable angle offset is the angle with the largest distance found.

This function, θ̂(d), takes as input the known angle-to-distance mapping d, and returns
the best course offset θ̂.

The course offset function is found and can be combined with the robot state q to form
the general steering function,

Φ0(θ̂, q) =
{

0, q = q0

F (θ̂), q = q1
, (4.5)

where F (θ̂) is currently implemented as a control function of the following form,

F (θ̂) = Kpθ̂. (4.6)

4.3.6 Controlling the robot

The last step in each iteration is to always send the most recently calculated angular
position to each servo. This angular position for servo i, is the combination of (4.3) and
(4.5), which results in,

φref,i(t, θ̂, q) = αsin(ωt+ (i− 1)δ) + Φ0(θ̂, q). (4.7)

When a servo receives the new command from the controller, it will independently control
the angular position with its own microcontroller. With all the servos working simultane-
ously, snake-like propulsion and steering of the robot is achieved.

4.4 Final product

In order to finalise the product, the design and hardware is combined with the control
circuit to achieve the ability to move. The filtered sensors is connected with the micro-
controller in order to gain the needed visual input. All of this is then combined with the
software demonstrated in section 4.3 which completes the final product.

The final product consists of seven segments connected with each other. The head is
mounted in the front of the robot and contains the sensors, the microcontroller and the
control circuit. The robot is also equipped with a tail, holding the battery. All of the
specifications of the robot can be viewed in the table 4.1.
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Table 4.1: The specifications of the final robot.

Weight : 928g
Length : 85 cm
Nr. of segments : 7 + head + tail
Segment weight : 102g
Segment length :
Tail weight : 125g
Tail length :
Head weight : 89g
Head length :
Microcontroller : Arduino™ Uno
Angular actuators : 7 Dynamixel AX12+ DC servos
Power source : 11.1V LiPo battery
Ground friction : LEGO wheels
Sensors : 3 Sharp GP2Y0A21YK0F IR-sensors

4.5 Verification of final product

To verify if the robot meet the demands in section 1.3.2 and that the hardware and software
were correctly implemented, three verification tests that each examine a specific demand
were conducted on the robot. A complete description of each test can be seen in A.1.

4.5.1 Straight line lateral undulation

In the test for straight line lateral undulation, A.1.1, the robot simply had to move at
least twice its length in a straight line without stops using only lateral undulation.

This test was successful 10 out of 10 times during the official testings. The angular
frequency, amplitude and phase shift could easily be changed in the control code to change
the properties of the movement according to the simulations in section 2.3. Moreover the
robot looked very much like a snake when it moved. One smaller problem were that the
wheels seamed to slide a bit in the movement, and this raised a concern that the weight
of the segments might be to low in order to get enough friction for the hill climbing.

4.5.2 Turning and autonomous steering

To test the turning and autonomous steering the robot had to pass a narrow corridor with
a 90◦ turn without hitting the walls, A.1.2.

During this test the following parameters was used α = 40◦, ω = 22.9◦ s−1 and δ = 360◦

N =
51.4◦.

The robot managed to navigate through the course 6 out of 10 times during the official
testing in a left turn course, see table 4.2. The tests were successful if the robot cleared
the course without hitting the wall. One exception was made when only the tip of the tail
hit the wall and the rest of the robot was clear. The robot seemed to make fairly correct
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decisions about where and how much to turn and the most common reason why the test
failed were that the robot came too close to the walls and then touched the walls either
with its head or tail. Often it seamed that the robot came closer than the minimum range
of the sensor and was then either unable to increase the distance or turned in the wrong
direction into the wall. One problem is also that the turns were rough and not particularly
smooth which resulted in a twitching motion through the course.

When the tests were conducted in a right turn the results were however really bad. The
robot seamed to always turn in the wrong direction and the tests where never successful.

Table 4.2: Results from the official tests in a left turn. Distance between walls were
70 cm wide.

Test nr. Result Comment
1 approved clean run without wall hits
2 rejected managed the course but hit the left wall after the bend
3 approved clean run without wall hits
4 approved the tip of the tail hit the inner corner when passing
5 rejected came close to left wall, made wrong turn into it
6 rejected came close to right wall, turned to slow in the bend
7 approved clean run without hits
8 approved clean run but very close to inner corner
9 rejected came too close to left wall and hit it
10 approved clean run without hits

4.5.3 Hill climbing

The hill climbing was tested with a 10◦ slope that the robot had to climb up and down,
see A.1.3 for more detail.

During this test the α was increased to 50◦ and ω was increased to 34.4◦ s−1 in order to
generate more propelling force and speed. The δ was unchanged.

Here the low friction became a problem despite that the slope was covered in a plaid rug
that offer high friction against rubber. The robot slided a lot when climbing which not
only resulted in a slow ascend, but also in an involuntary turning since the head slided
downwards when it moved out to the side in the sine wave. To increase the friction a
rubber rug was used in the ascend and the same plaid rug on the other parts. The test
was then successful 9 out of 10 times, see table 4.3.

When external weights was mounted over the wheels in the segments to increase the
weight and hopefully the friction force, the test was successful 9 out of 10 times without
the rubber rug, see table 4.3.

The reason why the test did not always work were that the involuntary steering made
the robot hit the walls on the sides of the hill and could not leave that position by itself.
During the test the autonomous steering was shut off because it did not work properly in
the descend. The slope was 70 cm wide.
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Table 4.3: Results from official testings of the hill climbing. The robot where tested both
without extra weights and with 10 g weights in each segment. Different rugs where used
to generate enough friction.

No weights, rubber rug
Test nr. Result Comment
1 approved hit the wall a few times to the left
2 approved hit the left wall on the plateau
3 rejected stuck alongside the left wall while climbing
4 approved hit the left wall in the plateau once
5 barely approved hit the wall a lot but managed by its own
6 approved clean run without hitting the wall
7 approved hit the right wall on the way up
8 approved hit the right wall a bit on the way up
9 barely approved hit the left wall hard
10 approved lightly touched the right wall on the way down

10 g weights, plaid rug
Test nr. Result Comment
1 approved hit the left wall a lot
2 approved clean run without hitting the wall
3 approved hit the left wall a little on the way down
4 barely approved moved alongside the left wall the whole run
5 approved hit the left wall a little
6 rejected stuck alongside the left wall
7 barely approved hit the left wall a lot
8 approved hit the left wall a bit
9 approved only touched the left wall once
10 approved clean run without hits

Figure 4.6: The robot climbing up the 10◦ inclination in the verification test.
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5
Discussion

The following chapter brings up discussions regarding the outcome of the project and
how well this outcome fulfilled the set demands. Choices made during the project are
questioned, evaluated and motivated. The chapter ends with a discussion of how to further
develop the robot and finally a conclusion.

5.1 Evaluation of final product

The verification tests of the final robot shows that most, but not all, of the demands are
fulfilled.

Most vital is that the robot moves like a snake using lateral undulation. The first test
shows that this is very well achieved since it moves forward in a controlled manner and
all properties of the movement can be changed with the same effect as in the simulation.
The low friction is however a bit frustrating. While it does not affect the motion in the
horizontal plane it becomes a problem in the slope. The fact that the surface had to be
changed to a rubber rug in order for the robot to successfully climb the slope is bad. But
since the external weights solved this issue and the test thereby is successful even without
the rubber rug, the demand for the hill climbing should be considered fulfilled by the final
robot.

The demand for autonomous steering is clearly not fulfilled since the robot only passes
the test in a left turn. The fact that it can pass the test in a left turn is however proof
that the robot can both turn in the horizontal plane and detect walls, it only fails in
the collision avoidance. This is considered a software problem rather than a design and
hardware problem and the project group judge that the robot would absolutely manage
the test without reconstruction, if the software problems were corrected. Unfortunately
the time limitation of the project was not enough.

The budget for the project was also held as can be seen in appendix A.3, but the time
schedule was unsuccessful since the software for the autonomous steering was not finished
in time.
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5.2 Evaluation of decisions and solutions

During the project a lot of the decisions and solutions regarding specific parts of the
project have been made. The line of thought and motivation for each decision is further
explained and discussed below.

5.2.1 Model

The demands for the model were that it should be possible to simulate the movement
and see how different settings in the reference signal affects the motion, as well as answer
the question of how much torque the servos must exert. Moreover the algorithm for the
autonomous steering should be able to be tested in the simulation.

The simulation in section 2.3 shows that the first two demands are fulfilled since the
real robot’s movements is affected the same way as in the simulations when the reference
signal is changed. The torque plot in figure 2.6 and 2.7 can not really be confirmed to
be absolutely true but the choice of servo that was based on these results worked very
well. The last demand was also fulfilled and the algorithm for the autonomous steering
was possible to test in the simulation.

As mentioned earlier, the model for planar movement has been used before in similar
projects and can not really be developed further. The only missing element is that all
segments must have the same mass and length. Since the head and tail of the actual robot
has a different shape and weight than the other segments, see table 4.1 for more detail,
the simulations may therefore differ a bit from the real result. This is because the friction,
dragging and constraint forces as well as the torque will be different for these segments
and the one closest to them. During the designing of the robot this has however been
taken into consideration and the electronics has been distributed so that the weight of the
head and tail should match the other segments as much as possible.

The compensation for movement in a slope is not a complete model of snake movement
in three dimensions but it works within the limits of this project. The problem is that
the model can not describe the critical part when the robot enters or leaves the slope
when some but not all the segment are tilted. During this time the segments can jam
a bit which can create high torques and the simulated torques in figure 2.7 is not really
accurate in that matter. The simulation is true when all segments is in the slope and
the maximum torques in figure 2.7 should not differ all to much from a complete model.
The maximum torques was the most interesting information behind the choice of servos
and the final choice was highly over-dimensioned, therefore the slightly increased torques
while entering the slope was never considered a problem. A complete model for 3D-
motion would probably be necessary if the robot were to climb for example steps and
would need to lift itself upwards or make similar complex moves. But since the design
of the robot only involves a flexible vertical movement and such complicated movements
never are performed, a complete 3D-model would not contribute with anything of value
to this project.
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5.2.2 3D-movement

A big choice that the project group had to take in the planning phase were whether to
have a product that could actually move itself in the vertical direction or just be flexible.
If the robot where to climb more complex obstacles like stairs it would need the ability to
bend itself vertically in order to lift itself up. The robot could also lift parts of its body
to increase the friction in the critical anchor points that produce constructive propelling
force, and reduce the friction where the resulting friction is slowing down the motion. This
method is used by many biological snakes to create a more efficient and fast motion, for
example when they sprint or crawl on smooth or slippery surfaces [12].

The plan for achieving a controlled vertical movement was to use two servos in each
segment and flip one of them 90◦ so that it could bend the connection in the vertical
plane. This however created a great deal of problems for the designing of the segments
since twice the amount of servos means that each segment must be almost twice as big. If
the segments were longer, the simulations show that the movement look less smooth and
authentic and the performance is generally worse than for short segments. If on the other
hand the segments were wider or higher the robot would be short and fat and look less
like a snake. The biggest problem though was how the robot should manage slopes and
irregularities on the ground. If the servos are given a command to take a specific angle it
holds it until you give it another. This means that the robot must detect all irregularities
and move the vertical servos according to the ground so that the segments could follow
the ground smoothly, otherwise they would be stiff and some would loose contact with
the ground. In order to solve this problems the robot would need more sensors to read its
surrounding and a lot of effort would be put into making the movement smooth. Moreover
the cost of the robot would be significantly higher since the servos is without competition
the most expensive part of the construction and twice as many would be used.

Since the goal for the 3D-motion was simply to manage a 10◦ slope the full movement
in the vertical plane was not really necessary since the robot does not need to lift itself
upwards at all, it can simply push itself up using the exact same motion as on a horizontal
plane. So to save the money and trouble, the simpler solution with the flexible vertical
motion were chosen. As expected it worked well and probably better than it would have
with the more complex solution.

5.2.3 Source of friction

One of the greatest discussions during the project revolved around solving the problem
regarding the source of friction with the task of providing the robot with the necessary
anisotropic friction. This problem was solved by simply placing one passive wheel under
each segment, forcing the segments to roll forward or slide sideways. By using passive
wheels, the area which the friction acts on is relatively small, causing the robot to have
difficulties when moving across uneven terrain as the wheels can easily get stuck or lose
contact with the ground. A wheel losing contact with the ground becomes problematic as
it can cause the robot to involuntarily slow down, turn or even stop as the force balance
alters.

This problem can be reduced or eliminated with a different source of friction, such as rails
or scales, which was two solutions that was discussed during the project. The area of which
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the friction acts on is larger for these solutions providing the robot with a more stable
movement. However, these solutions entails difficulties regarding the anisotropic friction
as the coefficient of friction is very similar in both the tangential and normal direction.
Biological snakes solve this by lifting certain parts of their body to use their friction in a
more efficient way. Experimenting with this seemed to be more time consuming than it
would be necessary and these two solutions was therefore rejected as solutions.

5.2.4 Sensors

As presented in 3.2.2 the task of making sure the robot received visual input about its sur-
roundings was done by equipping the robot with IR-sensors. Even though the verification
test for the autonomous steering was not successful, the fact that the algorithm worked
in a left oriented course and the robot tried to move away from the walls shows that the
sensors work and provide this visual input.

Due to the sensors having an unstable output in the interval 0 cm to 10 cm, they might
limit the robot’s ability to move in narrow places. One reason why the robot sometimes
hits the wall seams to be that it came to close to the wall and the sensors provided the
microcontroller with wrong values. Two of the sensors used were placed 45◦ to the sides
of the forward sensor on the head of the robot. The fact that the placement of these
sensors were on the outer brim of the head give these sensors a high risk of picking up
false samples when the robot moves in narrow places. This problem could be solved or
at least reduced by simply replacing the existing sensors with ones capable of handling a
smaller interval, or locating the sensors further inside the head.

5.2.5 Servo motors

The Dynamixel AX12+ servo chosen for this project has proven very useful in the final
solution. The demands on the servos where that they should deliver an angular position
based on the control signals sent from the Arduino, while managing to maintain the stress
torque from the motion during operation. In the simulations the torque demand was
set to 0.23Nm while the servos has a stable motion torque of 0.3Nm. This proved to
be enough during the tests since the servos never seemed to fail at delivering the right
angular position. Moreover the servos was easily programmable and the documentation
around them was easy to understand which was very useful during the construction of the
robot.

A limiting factor concerning the servos, is the fact that the regulation is in a closed-loop
system, which cannot be changed unless physically modified. This puts a restriction on the
regulation, and the user can only control the desired position through the communication
interface. For this project however, this simplified regulation was a blessing because no
work had to be put on the regulation of the angular actuator more than sending correct
angles.

While a DC servo solution worked well for this project, it was not the only choice considered
for angular actuators. The two most discussed choices in this project was having DC
servos or stepper motors, which both presented a solution for the actuator demands while
still managing to remain within the budget price range. However, the servo solution
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was chosen over the stepper motor mainly because it often contains a gearbox and a
controller, whereas the stepper motors generally are sold without them. Because of the
internal gearbox inside of the servo, it can reach higher torque values for a lower price and
since the project required seven of the same motor, the cheaper alternative was preferable.
Therefore, the DC servo solution was chosen.

5.2.6 Steering algorithm

The purpose of the steering algorithm was to fulfil the demand set in section 1.3.2; moving
through a predefined course by itself without any human interference using wall detection
and collision avoidance. The current implementation did not entirely fulfil this demand.
The problem was that the wall detection and path decision making did not work as ex-
pected. It was hard to identify the cause of this and more time would have been needed
to test and troubleshoot the autonomous steering. One thing that could have been done
differently, was to simulate the steering algorithm, which would probably have given more
detailed feedback on this matter. It was decided not to develop a version of the steering
algorithm for the already existing simulation environment due to the time constraint. The
simulation environment was previously used with success while developing the first steer-
ing algorithm. The conclusion in hindsight is that the development would probably have
benefited from the simulation even considering the time constraint.

The robot steering algorithm could have made use of more states in order for the robot to
be able to deal with more situations. It was initially designed with more states than only
going straight or avoiding an object. But for troubleshooting purposes these states were
disabled and there were not enough time to enable and test them later on. An additional
state that would have improved the robot, would be to identify the situation when the
robot could not find any suitable course to take to avoid an obstacle. The robot could then
assume a state to perform a U-turn. While in this state it would take a sharp turn and
always search for a suitable course to take. If a course was found, it would then transition
back into the normal steering state. To make the path more predictable, it should have
assumed a wall following state. The robot could identify this state when it steered away
from a wall, but still being close enough to steer back to and follow the wall. This would
make the robot alternate between this state and the steering state until the wall eventually
is lost.

The algorithm also had limits defined by the sensors and microcontroller. There was no
position feedback apart from the IR-sensors. This makes it harder to map the surround-
ing accurately, since it’s harder to really know how the saved observed data relates to
new positions after moving forward and turning. The microcontroller put limits on soft-
ware size. This was not really a problem in our implementation, but if more detailed
information about the surrounding was needed, the 2kB read-write memory of the chosen
microcontroller could have been too low.

5.3 Future work

Besides working on the demands the robot failed to meet, the robot could easily be de-
veloped further with future work. While designing and constructing the robot there has
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always been a thought of keeping the construction simple so that everything is easy to
change and improve during future work with the robot. Each segment is therefore inde-
pendent of the others and are easily connected mechanically with a few standard bolts
and electrically with a contact. If one segment breaks down it could just be removed
and the robot works without problem. The head is also easy to replace with a new one
if for example more sensors is to be used for development of more complex manoeuvres.
Besides improving the steering code and make configurations for the already existing abil-
ities the following features could be implemented in the robot during future work without
reconstruction of the whole robot.

More segments could be installed in so that the segments could make up more than one
period of a wave or have smoother shape since the angular offset δ can be smaller. This
could result in a more snake-like motion as well as a stronger robot because more propelling
force could be generated.

Due to restrictions set early in the project, no other movement than lateral undulation have
been examined. This could be a potential area of expansion for future project. Movements
like side winding [1, p. 8], where the snake moves sideways could be implemented. The
robot is absolutely capable of performing this manoeuvre but due to the time limit of
the project, there was not enough time to develop a mathematical model and proper
controlling code for this kind of movement. If the robot were to be developed further this
could be a great place to start.

5.4 Conclusion

To summarise, a snake-like robot was made. The robot had the ability of moving forward
using the movement lateral undulation and succeeded to meet almost all of the demands.
Even though one of the demands were not fulfilled, the project in its entirety can be con-
sidered as a success regarding the time limit and the budget. The final product emulated
the movement and appearance of a biological snake in a satisfactory way. The robot could
however not really inherit enough properties from the snake to be better than wheel- or
caterpillar band-driven robots but it was never really expected by the project. In order to
make the snakes movement lateral undulation meaningful and suitable, a different source
of friction other than wheels would be necessary to make the robot handle uneven terrain
in a more efficient way. The resulting robot is however a great step in the right direction
and has lot of room for further development.
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A
Appendix

A.1 Verification tests

To verify if the demands have been fulfilled the robot will have to pass a series of tests
that are all designed to test a specific feature of the robot.

A.1.1 Lateral undulation on flat plane

First of all the robot must be able to move on a flat horizontal plane using the lateral
undulation. This will be tested by simply letting the snake move forward so that the head
has moved twice the length of the robot. In order for the robot to pass the test it have to
move the hole distance in a smooth motion without any stops. Properties of the motion
like speed and amplitude should also be changeable During this test the deviation from a
straight line could also be measured in order to verify if the robot is really moving in a
straight line or not.

A.1.2 Steering on flat plane

Another important demand of the robot is the ability to turn on a horizontal plane and
avoid obstacles. This will be tested with a course that the robot should navigate through.
The course is simply a 90◦ bend with walls on either side and the robot will have to pass
the course without crashing into the walls. The width of the course will be decreased to
test the capacity of the robot in narrow spaces. A more detailed view of the course can
be seen in figure A.1.

A.1.3 Hill climbing

The robot should also be able to climb up and down smaller hills. This will be tested
with another course that consist of two tilted planes that together with another horizontal
make up a plateau. The slope of the plateau should be at least 10◦ and the robot need to
pass over it in a smooth motion in order for it to pass the test. If this demand is fulfilled a
steeper slope can be used to specify the robots limits. A more detailed view of the course
can be seen in figure A.2
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d

d

walls

Figure A.1: The course of verification for turning on the flat plane. The robot has to
detect the walls and manage to turn in the 90◦ bend without crashing into the walls on
either side. The width, d, of the corridor should be as low as possible.

L

L L L

L

α α

L = length of robot
α ≥ 10◦

Figure A.2: The verification course for the hill climbing. In order to pass the test the
robot has to climb up the hill, over the plateau and down the hill on the other side. The
angle of the slope should be at least 10◦.
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A.2 Morphological matrix

Table A.1: The morphological matrix containing the possible solutions to the hardware
specific demands. The highlighted green cells represents the choices made concerning the
robot.

Demand Option
1

Option
2

Option
3

Option 4 Option
5

Option
6

Sensor Gyroscope Ultrasonic Touch Accelerometer Camera IR
Ground
friction

Wheels Scales Caterpillar
band

Rails

Source of
Propul-
sion

DC servo AC servo Stepper
motor

Pneumatics Hydraulics

Energy
source

Electric
battery

Electricity
by wire

Accumulator

Material Metal Plastic Wood Carbon fiber Glass
fiber

LEGO

Processor Atmega328 Raspberry
pi
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A.3 Dynamixel AX12+ Datasheet

Table A.2: Datasheet of the Dynamixel AX12+ sensor taken from [6].

Weight : 53.5g AX-12+
Dimension : 32mm * 50mm * 40mm
Resolution : 0.29°
Gear Reduction Ratio : 254 : 1
Stall Torque : 1.5N.m (at 12.0V, 1.5A)
Stable Motion Torque: 0.3N.m
No load speed : 59rpm (at 12V)
Running Degree 0° - 300°/Endless turn
Running Temperature : -5℃ -+70℃
Voltage : 9 - 12V (Recommended Voltage 11.1V)
Command Signal : Digital Packet
Protocol Type : Half duplex Asynchronous Serial Communication (8bit,1stop,No Parity)
Link (Physical) : TTL Level Multi Drop (daisy chain type Connector)
ID : 254 ID (0-253)
Communication Speed : 7343bps - 1 Mbps
Feedback : Position, Temperature, Load, Input Voltage, etc.
Material : Engineering Plastic
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A.4 Budget

The budget presented is cost of making the robot. The budget does not include the actual
cost of the entire project.

Table A.3: The budget for the hardware of the robot.

Component Amount Cost(SEK)
Dynamixel AX-12+ 7 2455
LiPo Battery 11,1V 800mAh 1 179
Arduino™Uno 1 279
Sharp GP2Y0A21YK0F 3 240
SN74HC241DW 1 7
Molex 50-37-5033 30 23
Molex 08-70-1040 100 139
LEGO Wheels 8 80
Total cost 3402
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B.1 The design development

Figure B.1: The very first ideas for the structure

It all started with trying to merge the basic ideas for the fundamental function of the
design. As can be seen in figure B.1 the first sketches are quite similar to the final design.
Each part went through a development process that made it change with aspects on new
demands and requirements but also some wishes.

Figure B.2: Exploded view of one segment, the parts are from the left, the flexible arm
for the 3D motion, the base, the servo and the propulsion arm.

The principle of the design has not changed much during the time of the development.
As seen in the figure B.2 the design of the section consist of three designed parts and a
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servo. At the beginning of the project, the aim was to have two servos in each segment
for complete 3D manoeuvrability. But since that idea was discarded, the principle for the
design started to take form and have not been changed much since then.

One of the biggest difference is the strength of the parts. The final parts are much stronger
and thicker than the first ones. The first printed parts worked as experiment to see what
the printed plastic parts could endure.

The most challenging design problems was to solve the 3D flexibility demanded according
to 3.1. Since the manufacturing method was to use a 3D-printer, the part seen in figure
B.1 had to be designed in separate parts.

Figure B.3: The development of the flexible arm

The first and easiest solution was to let the joint between the flexible arm and the base be
free, but this resulted in that every module segment tilted and made the robot’s movement
harder to control. Something that makes the joints more stable was now needed. After
some thought the solution was to use rubber bands to add a rotational resistance on each
joint, rubber bands were chosen because they are easy to apply to the design. In the figure
B.3 a track can be seen on the right parts arm. It is created for the band to be stable,
and not move around.

Figure B.4: The developmet of the section base

The solution to the flexibility also made an impact on the section base. Figure B.4 shows
the development of the base and the biggest difference between the two latest ones is
related to the flexibility solution.
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B.3 The first iteration of the autonomous steering algo-
rithm

The current implementation is the second algorithm that was tried. The first one, which
is presented below, did not include enough functionalities. For example, it steers by only
taking decisions of when the front sensor is directed forwards, which only happens two
times per period. This can result in too slow decision making. Another problem was that
when it tried to avoid an object, it applied steering for a certain period of time without
any feedback. This would cause both under- and over-steering.

The autonomous steering is basically designed to pass the second verification test, namely
to move in a narrow corridor that turns 90◦. This is made with three IR-sensors located
on the head as in figure B.5. One is facing straight forward in the same direction as the
head and the other two is pointing forward but angled 45◦ from the direction of the head,
one to the left and one to the right. The general idea is that the forward pointing sensor
can detect distance to walls in front of the robot and the side pointing sensors can detect
the distance to the walls on the sides.

Head

Segments

Obstacle

45◦

45◦

IR beams

Figure B.5: The sensors are mounted so that one points straight forward from the head
and two points 45◦ to the left and right.

In order to beat the second verification test, the robot must be able to correct its course
according to the corridor so that it moves straight without hitting the walls, but also
detect when the 90◦ turn comes and make make corrections to its course accordingly.
The microcontroller does this by splitting all possible readings from the sensors into three
different cases in which three different actions are to be done. The cases are

1. The forward sensor and some or both of the side sensors all detects walls - this
means that the robot should make a 90◦ turn since this is most likely the corner
of the corridor. The direction of the turn is chosen so that it moves away from the
closest of tho walls to the sides.

2. Only the forward sensor detects a wall - this still means that the robot must do a
90◦ turn since but the direction is unknown and should be randomised.

3. Some or both of the side sensors detects walls but not the forward sensor - this means

XIV



B. Appendix

that the robot is heading towards one of the sidewalls and need to make a little turn
away from it. The direction of the turn is away from the wall that is closest.

The problem now is that the head is constantly turning from side to side together with the
rest of the segments so that in a small corridor the forward sensor will all to often detect
walls that are really to the sides and not in front of the robot. This is solved by always
reading the sensors when the joint angle of the head φN−1 is the same as the general
direction of the robot θheading which happens two times during each period of the joint
angles (2.61). Since only the joint angles φ is known to the robot and not the link angles
θ the microcontroller must calculate if the following condition is fulfilled for it to know
that the head is facing forward

θN = θheading = 1
N

∑
i

θi = 1
N

∑
i

(Hφ̄)i

= 1
N

((φ1 + φ2 + ...+ φN−1 + θN ) + (φ2 + φ3 + ...+ φN−1 + θN ) + ...+ (θN ))

= 1
N
φ1 + 2

N
φ2 + ...+ N − 1

N
φN−1 + θN

⇒ φN−1 = 1
1−N φ1 + 2

1−N φ2 + ...+ N − 2
1−N φN−2.

(B.1)

If the above condition is fulfilled with a certain tolerance the head is facing forward and
the microcontroller can read the sensors. The joint angle offset Φ0 is thereafter changed
according to

Φ0 = Φbig/smallsign(dright − dleft) (B.2)

where dright/left is the distance to the left and right wall, Φbig = 15◦ and Φsmall = 2◦ is
the changes in Φ0 that corresponds to a big and small turn. The sign function determines
the direction of the turn since a positive Φ0 means that the robot turns to the right.
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B. Appendix

B.4 Simulation display tool

Figure B.6: A view of the robot simulation, 1.5 seconds after it has initiated a turn to its
left relative to the direction of its velocity , displayed by a tool written in C++. The tool
displays forces (yellow arrows), velocities (blue arrows) and torques (red bars). The blue
and yellow arrows outside of the robot shows the velocity and the resulting force acting
on the robot’s centre of mass, respectively. By default the simulation will be presented in
real time, but the option exists to view the run in slower or higher speeds. It’s easy to
view any part of the simulation by just dragging the bar to any desired point in time.
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