
Network Intrusion Detection in Embed-
ded/IoT Devices using GPGPU
Increasing throughput while reducing power consumption with an in-
tegrated GPU
Master’s thesis in Computer Systems and Networks

SIMON KINDSTRÖM

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2018

Master’s thesis 2018

Network Intrusion Detection in Embedded/IoT
Devices using GPGPU

Increasing throughput while reducing power consumption with an
integrated GPU

SIMON KINDSTRÖM

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Network Intrusion Detection in Embedded/IoT Devices using GPGPU
Increasing throughput while reducing power consumption with an integrated GPU
SIMON KINDSTRÖM

© SIMON KINDSTRÖM, 2018.

Supervisor: Magnus Almgren, Department of Computer Science and Engineering
Supervisor: Charalampos Stylianopoulos, Department of Computer Science and En-
gineering
Examiner: Marina Papatriantafilou, Department of Computer Science and Engi-
neering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Network Intrusion Detection in Embedded/IoT Devices using GPGPU
Increasing throughput while reducing power consumption with an integrated GPU
SIMON KINDSTRÖM
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Internet of Things (IoT) devices are low-powered and network connected embed-
ded computers that collect sensor data and perform computations at the edge of a
network. These Internet-connected devices often lack sufficient security, with the
Mirai botnet being the most highlighted incident to date. To detect attacks, a
Network Intrusion Detection System (NIDS) may be used. Intrusion detection is
often performed with the costly method of pattern matching, where predefined pat-
terns are matched against observed network traffic, requiring up to 70% of a NIDS’s
computational power.

This thesis evaluates the suitability of using an embedded device with an integrated
GPU as an NIDS. Direct Filter Classification, a state of the art pattern matching
algorithm, is improved by moving part of the execution to a GPU. This implemen-
tation is then optimized, keeping the quirks of embedded systems in mind. Sur-
prisingly, some optimizations that would intuitively result in an improved execution
time, instead increases it. Further attempts at optimizations are performed in the
heterogeneous design domain where the CPU and GPU cooperate extensively.

Evaluation is performed by comparing the throughput of network traffic possible to
analyze per second, and energy consumption of the algorithm in its different forms:
CPU-only, GPU-only and a heterogeneous variant. These are later compared to
another state of the art pattern matching algorithm.

By utilizing a GPU, the throughput was increased by more than 2 × while reducing
the total energy consumption by more than 50%, compared to a CPU-only variant
of DFC. The GPGPU variant of DFC was able to improve the throughput of the
widely used pattern matching algorithm Aho-Corasick by more than 50% while only
requiring 50% of the energy.

Keywords: Pattern matching, NIDS, Network Intrusion Detection System, IoT,
GPU, GPGPU, OpenCL, Heterogeneous design

v

Acknowledgements
I would like to acknowledge the support I have received by thanking my two su-
pervisors: Charalampos Stylianopoulos and Magnus Almgren. Further thanks are
extended to Sam Halali, Fredrik Rahn and Margot Brunet for their support and in-
sights. Also, thank you to my parents, Heléne and Sören Kindström, for supporting
me on my journey thus far. The final gratitude is extended to my grandma, Birgitta
Skeppstedt, for her delicious half past four cinnamon buns.

Simon Kindström, Gothenburg, June 2018

vii

Contents

Acronyms xiii

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Problem background . 1
1.2 Goals . 2
1.3 Motivation . 2
1.4 Limitations and Scope . 3
1.5 Report structure . 3

2 Background 5
2.1 Internet of Things . 5
2.2 Network Intrusion Detection Systems 5

2.2.1 Detection techniques . 6
2.2.2 Application Example: Snort 6

2.3 Pattern matching . 7
2.3.1 Single string matching . 7
2.3.2 Multiple string matching . 9

2.4 Graphics Processing Units in intrusion detection 10
2.4.1 Programming Graphics Processing Units 10
2.4.2 Integrated Graphics Processing Units 12

2.5 Heterogeneous design . 12

3 Related work 15
3.1 Cache-efficient pattern matching . 15

3.1.1 Feed-Forward Bloom Filter . 15
3.1.2 Direct Filter Classification . 16

3.2 Pattern matching with Graphics Processing Units 17
3.2.1 Work segmentation . 17
3.2.2 General-Purpose computing on Graphics Processing Units in

embedded systems . 18
3.3 Pattern matching applications . 18

3.3.1 Network Intrusion Detection System 18
3.3.2 Malware detection . 19

ix

4 Design & Implementation 21
4.1 Hardware platform . 21
4.2 The algorithm: Direct Filter Classification 23

4.2.1 Motivation . 23
4.2.2 Implementation . 23

4.3 Optimizations . 26
4.3.1 Reducing memory transfers 26
4.3.2 Increasing work per thread . 26
4.3.3 Altering OpenCL workgroup size 27
4.3.4 Utilizing local memory . 27
4.3.5 Storing Direct Filters in texture memory 27
4.3.6 Vectorized design . 28
4.3.7 Overlapping execution . 29

5 Evaluation 31
5.1 Evaluation method . 31

5.1.1 Metrics & Challenges . 31
5.1.2 Other algorithms . 31
5.1.3 Data sets . 32
5.1.4 Hardware setup . 32
5.1.5 Experiments . 33

5.2 Results . 35
5.2.1 Effect of optimizations . 35
5.2.2 Comparison of Direct Filter Classification variants 39
5.2.3 Direct Filter Classification compared to Aho-Corasick 39

6 Discussion 43
6.1 Effect of optimizations . 43

6.1.1 Graphics Processing Unit version 44
6.1.2 Heterogeneous version . 45

6.2 Comparison of Direct Filter Classification variants 45
6.3 Direct Filter Classification compared to Aho-Corasick 46
6.4 Ethics & Sustainability . 47
6.5 Future Work . 47

7 Conclusion 49

Bibliography 55

A Summary of configuration impact I

x

xi

xii

Acronyms

AC Aho-Corasick.

APU Accelerated Processing Unit.

CPU Central Processing Unit.

DDoS Distributed Denial of Service.

DF Direct Filter.

DFC Direct Filter Classification.

FFBF Feed-Forward Bloom Filter.

FSA Finite State Automata.

GPGPU General-Purpose computing on Graphics Processing Units.

GPU Graphics Processing Unit.

IoT Internet of Things.

NIDS Network Intrusion Detection System.

OpenCL Open Computing Language.

PFAC Parallel Failureless-AC.

RAM Random Access Memory.

xiii

SIMD Single Instruction, Multiple Data.

SIMT Single Instruction, Multiple Threads.

xiv

List of Figures

2.1 Example of the bad character heuristic. As the e of the pattern does
not match the a of the input, hop to the next a of the pattern 8

2.2 Example of the good suffix heuristic. As the b in the pattern does
not match the a of the input, hop to the suffix equal to whatever was
already matched (ab) . 8

2.3 Aho-Corasick state machine for the patterns AC, ACFE, CF, FKL . . 9

3.1 A naive work segmentation among threads as seen in [1] © 2013 IEEE 17
3.2 Work segmentation in PFAC as seen in [1] © 2013 IEEE 18

4.1 Block diagram of the ODROID-XU3 from hardkernel.com 22
4.2 Labeled ODROID-XU3 board from hardkernel.com 22
4.3 The filter design used. HT is the abbreviation of hash table as seen

in [2] © 2017 IEEE . 24

5.1 Distribution of pattern lengths. Red line signifies 64 characters 33
5.2 Effect of overlapping execution . 38
5.3 Phases of energy consumption for DFC 39
5.4 Comparison of DFC variants: Snort HTTP patterns (2k) 40
5.5 Comparison of DFC variants: emergingthreats.net HTTP patterns

(9k) . 40
5.6 Comparison of DFC variants: All emergingthreats.net patterns (21k) 41
5.7 DFC compared to AC: Snort HTTP patterns (2k) 41
5.8 DFC compared to AC: emergingthreats.net HTTP patterns (9k) . 41

xv

emergingthreats.net
emergingthreats.net
emergingthreats.net

xvi

List of Tables

5.1 Impact of mapping memory for the GPU variant 35
5.2 Impact of mapping memory for the heterogeneous variant 35
5.3 Impact of thread granularity for the GPU variant 35
5.4 Impact of thread granularity for the heterogeneous variant 35
5.5 Impact of local and texture memory for the GPU variant 36
5.6 Impact of local and texture memory for the heterogeneous variant . . 36
5.7 Impact of vectorized design for the GPU variant 36
5.8 Impact of vectorized design for the heterogeneous variant 36
5.9 Impact of workgroup size for the GPU variant 36
5.10 Impact of workgroup size for the heterogeneous variant 36
5.11 Impact of read chunk size for the GPU variant 37
5.12 Impact of read chunk size for the heterogeneous variant 37

A.1 Summarized configuration impact for GPU version of DFC II
A.2 Summarized configuration impact for heterogeneous version of DFC . III

xvii

xviii

1
Introduction

This chapter introduces an existing problem to grant the reader insight in why this
thesis holds importance. It then presents the goal of the thesis and clarifies the
motivation behind the goals. The chapter later limits the scope of the thesis and
concludes by describing the structure of this report.

1.1 Problem background

Internet of Things (IoT) devices are also called smart devices. IoT devices are
considered smart because they are connected to the Internet and often perform
mundane tasks, but with some added functionality and remote control. Some com-
mercial examples are a smart lock for home owners allowing remote unlock and
alerts when certain key codes are used [3], and a smart thermostat that tracks your
location through your phone allowing the heat to be turned off when the user is not
home [4].

IoT devices are also used in factories where they monitor production lines [5, 6].
The many machines in the factory are monitored by IoT devices, which collect data
about the machines’ usage. Solutions by companies such as Microsoft and IBM offer
promises of optimizing equipment performance, accurate views into product quality
and increased efficiency by insights from data analytics [5, 6]. By utilizing analytics
early in the process, machines can be serviced before they break and product quality
can be tracked and kept consistent.

Internet connected deploy-and-forget devices have proven themselves to be harmful.
The most notable example is the Mirai worm that infected enough devices to build
the world’s (at the time) largest botnet [7]. The Mirai worm spread during 2016 by
taking advantage of the weak default credentials of IoT devices, by simply connecting
remotely using common credentials such as admin and password. Once many devices
had been infected, multiple Distributed Denial of Service (DDoS) were launched.
Notable targets of the DDoS attacks include Twitter, Netflix, Reddit and many
others. The author of Mirai later published the source code online, presumably to
evade identification. This caused many variants of the worm to continue plaguing
the internet, one of them causing 900.000 home routers to be put out of service [8].

1

Malware such as Mirai are prevalent because many IoT devices have no way of being
updated. If they do possess the possibility of being updated, it is often a complicated
and fragile process. One example is when an over-the-air update to a smart lock
rendered 500 people no longer able to unlock their door through their device [9].

A Network Intrusion Detection System (NIDS) is a common way of protecting net-
work connected systems. an NIDS analyzes all network traffic and may send alerts
if it detects malicious network traffic. Some NIDS use pattern matching between
a predefined corpora of patterns against observed network traffic to determine if a
network packet is malicious or not [10]. Pattern matching is computationally expen-
sive, accounting for more than 70% of the load in an NIDS [11]. With an increase
in network traffic, the importance of efficient pattern matching also increases.

Graphics Processing Units (GPUs) trade processing power through higher core and
thread count with simplified control logic and less memory per core. The tradeoff
allows GPUs to execute in a highly parallel fashion.

The increased parallelism offered by GPUs has been used for pattern matching,
where they allowed the analysis of gigabits of network traffic per second [12, 13, 14].
GPUs have also shown to decrease both execution time and energy consumption
when performing pattern matching in embedded systems [15, 16].

1.2 Goals
This thesis will evaluate what effects a cache-efficient, vectorizable, pattern matching
algorithm has upon the suitability of using an IoT device with a GPU as a Network
Intrusion Detection System. The impact of optimizations and how they differ be-
tween embedded systems and their more powerful counterparts will additionally
be looked at. Lastly, the effects of heterogeneous computing through cooperation
between CPU and GPU will be shown.

To evaluate the suitability, the throughput of network traffic that is possible to
analyze per second and the required energy consumption will be compared to another
state of the art algorithm.

1.3 Motivation
The lack of security and issues with updates in IoT requires a solution. To help secure
these devices, one could deploy a Network Intrusion Detection System (NIDS). The
defacto intrusion detection systems, such as Snort [17], are less mobile and energy
efficient than the common IoT device, making the deployment of an NIDS unwieldy.
Instead of a discrete server performing intrusion detection, an IoT device could
perform it. It could either be a discrete IoT device deployed in the network, solely
for the purpose of being an NIDS or the NIDS could be introduced on a device
already part of the network with computational power to spare.

2

1.4 Limitations and Scope
Some limitations are necessary to reduce the scope of the project. There are numer-
ous embedded devices being manufactured, not all equally fitted for the suggested
workload. In this thesis, the ODROID-XU3 [18] will be used when performing
experiments. The XU3 is a reasonable choice as it consists of an ARM processor
(commonly used in embedded devices) and a GPU supporting general purpose com-
puting. It also has a high speed Ethernet interface, making it viable for inspecting
network traffic.

In this thesis, only the detection phase of an NIDS will be considered, using pattern
matching. an NIDS has many phases, most notably packet acquisition followed by
a detection phase. Packet acquisition is also important for the performance in an
NIDS [13, 14] but is not equally important in embedded systems where a CPU and
GPU share memory, reducing the need for costly copies and memory transfers [19].
Therefore it is reasonable to focus only on the performance and energy consumption
of the pattern matching phase in this thesis.

Regular expressions will not be considered, instead only fixed string matching will
be looked at. Regular expressions increase the complexity, and as this thesis is more
interested in the impact GPGPU has, there is no need to increase the complexity
needlessly.

1.5 Report structure
After this introductory chapter, Chapter 2 starts by giving the reader an introduc-
tion to the required background information including NIDS and pattern matching,
among others. Related works are then presented, to give the reader a better under-
standing of recent advances within the field, found in Chapter 3. Once all prelimi-
nary information has been granted, Chapter 4 introduces the design of the algorithm
implemented in this thesis and all modifications and optimizations are explained.
How experiments are performed and evaluated, and their results are then presented
in Chapter 5. A discussion regarding the results is held in Chapter 6 and Chapter 7
then presents brief concluding remarks.

3

4

2
Background

This thesis touches upon multiple topics: Internet of Things, Network Intrusion
Detection Systems, pattern matching and GPU-programming. The purpose of this
chapter is to familiarize the reader with these topics. To give the reader a bet-
ter understanding of the environment the thesis relates to, the chapter starts with
introducing IoT. The purpose of a Network Intrusion Detection Systems, how it
works and a defacto NIDS application is presented. Pattern matching, the core of
an NIDS, is then explained. The chapter finishes by describing how GPU program-
ming is performed using OpenCL.

2.1 Internet of Things
As described in Section 1.1, the Internet of Things are Internet-connected embedded
devices. These devices often add remote control to previously mundane tasks in
homes, such as door locks [3] and thermostats [4]. IoT devices are also being deployed
in factories, where the offerings promise increased efficiency and quality tracking [5,
6].

The amount of Internet of Things devices are increasing at a rapid rate, and are
forecasted to reach 29 billion devices by the year 2022 [20]. In 2016 there existed 0.4
billion IoT devices, resulting in 72.5 × more IoT devices in merely six years. The
increase is forecasted to mainly come from new use cases for IoT devices, which fits
well with the idea that IoT devices are previously dumb devices turned smart. The
rapid increase of smart devices furthers the importance of finding ways of keeping
them secure.

2.2 Network Intrusion Detection Systems
A Network Intrusion Detection System (NIDS) is used to detect network infiltra-
tions and attacks in a network. This section will introduce the reader to the two
approaches to network intrusion detection, signature detection and anomaly de-
tection [10]. Signature detection uses pattern matching for detection, and is the
detection method used in this thesis. To give the reader a better understanding
of what features an NIDS offers, the popular open source NIDS Snort [17] will be
briefly introduced.

5

2.2.1 Detection techniques

Signature detection uses pattern matching to match a set of patterns against incom-
ing network packets [10]. Signature detection have two different modes: white-listing
and black-listing [21].

White-listing is when an administrator defines what network traffic is allowed, based
on packet content, IP address, and others. Any network packet that does not match
at least one pattern in the white-list is blocked. Such configurations are prone to false
positives as an application may edit how their network packets look at a whim, but
will be able to stop most new attacks. Considering the many applications used inside
a modern network, white-listing is only feasible for highly specific networks. Such a
network could for example be the interior network of a car, where the manufacturer
would be able to know exactly what messages are supposed to be sent.

Black-listing is when a user defines patterns to be blocked [21]. Any network packet
that matches a pattern in the black-list will be blocked. Black-listing has fewer
false-positives, but has an increased risk for false-negatives. Fewer false-positives is
important for the system administrators to not see an NIDS as the boy who cried
wolf. Black-listing has little to no effect without an extensive corpora of malicious
patterns. That is why popular NIDS applications include many patterns by default,
exemplified with Snort [17].

In contrast to signature detection, anomaly detection does not use a predefined set
of allowed (or denied) patterns. Instead it learns what the common behavior of the
system is [10]. During operation the NIDS would then flag any behavior outside of
the norm. Anomaly detection may be performed using statistics, machine learning
and other similar techniques.

Anomaly detection is good at learning a common network traffic pattern such as
an administrator logging into a remote system. However, learning uncommon but
benign patterns is much harder. Another issue would be if the network is under
attack during learning, where the attack pattern would then be deemed the norm.

2.2.2 Application Example: Snort

Snort [17] is an open source Network Intrusion Detection System, using signature
based detection. It uses a custom language for defining rules, as can be seen in
Listing 2.1. The rule will send an alert with the message We’re under attack when
all the following properties are true:

• A message is received from any IP, from the port 1025

• The message destination is the IP 12.13.14.10 at port 8096

• The message contains the content You’re under attack

6

The example in Listing 2.1 raises an alert, while other actions include logging and
dropping the offending packet [22]. In addition to such simple string patterns,
Snort allows for many other rule configurations. Such configurations include regular
expressions, decryption of SSL/TLS connections, base64 decoding and others [22].
a l e r t tcp any 1025 −> 12 . 1 3 . 1 4 . 1 0 8096 \
(msg : "We’ re under attack ! " ; content : "You ’ re under attack ! ")
Listing 2.1: A simple Snort rule. When a message with a source port of 1025 is
sent to the 12.13.14.10:8096, and contains the sentence "You’re under attack", an
alarm with the message "We’re under attack" will be raised

2.3 Pattern matching
Pattern matching is the process of determining the position of one or more patterns
in an input text. There are many applications for pattern matching, many of them
related to computer security. Antivirus, firewalls, network intrusion detection, all of
these may use pattern matching to detect malicious activity.

There are two major classes of pattern matching algorithms: single pattern matching
and multiple pattern matching [23]. As the name suggests, the former matches only
a single pattern at a time, while the latter matches multiple at a time. With single
string matching, the input must be traversed once per pattern. This may be done
in sublinear time, not having to compare each character of the input [23]. However,
with a large corpus of patterns, the overhead of traversing the input many times
may become unreasonable. For that reason, multiple pattern matching algorithms
are used in applications when the amount of patterns are large, such as Network
Intrusion Detection Systems.

2.3.1 Single string matching
Single string matching matches a single string against an input. The Boyer-Moore [23]
is a common single string matching algorithm. It provides sublinear time complexity
through three key observation.

The first out of three observations is that comparisons can be performed starting
at the end of the pattern instead of at the beginning. This observation enables
large time savings when the input and the pattern share a long common prefix. An
example of this is when a pattern shares a common path but different parameters,
as can be seen in Listing 2.2. If one would start searching from the beginning of the
string, 24 characters would have to be compared before a mismatch occurred. In
this biased example, only a single comparison would have to be made at position 25
before noticing that they are different.
/ cg i−bin /admin?username=admin
/ cg i−bin /admin?username=user

Listing 2.2: Two strings with a common path but different parameters

7

The second observation is called the bad character heuristic. This observation notes
that if there is a mismatch, it is possible to skip to the next matching character in
the pattern. If a mismatch occurs at position i in the pattern P , and at position j
in the input I, then it is possible to skip until Pk = Ij where k is the first position
of Ij in P . If there is no k where Pk = Ij, the entire length of the pattern may be
skipped. An example of the bad character heuristic may be found in Figure 2.1.

(a) When a mismatch occurs move
to the next character

(b) Result after bad character hop

Figure 2.1: Example of the bad character heuristic. As the e of the pattern does
not match the a of the input, hop to the next a of the pattern

The final observation is called the good suffix heuristic. The good suffix heuristic
states that when there is a mismatch between a pattern and the input, there should
be some suffix in the pattern that has already matched the input. The heuristic
notes that one may then jump to the next occurrence of that suffix in the pattern.
An example of the good suffix heuristic may be found in Figure 2.2.

As previously mentioned, single string matching is not fit for applications where a
large amount of patterns are needed, such as Network Intrusion Detection Systems.
Single string matching is included for completeness of the description of pattern
matching techniques. The observations mentioned here have also been used to im-
prove multiple string matching algorithms [24].

(a) When a mismatch oc-
curs move to the next equal
suffix

(b) Result after good suf-
fix hop

Figure 2.2: Example of the good suffix heuristic. As the b in the pattern does not
match the a of the input, hop to the suffix equal to whatever was already matched
(ab)

8

2.3.2 Multiple string matching
Multiple string matching, in contrast to single string matching, is able to match
multiple patterns with only a single iteration over the input. This is a valuable
property when there are many patterns and a long input. There are many ways
of performing multiple pattern matching [25, 24, 26, 27, 28, 29]. One of the most
common algorithms is Aho-Corasick (AC) [25], and a variant of AC is also used in
Snort.

Aho-Corasick has a preprocessing stage where it builds a Finite State Automata
(FSA), in other words a state machine, with all patterns. However the FSA differs
from a normal FSA as failure transitions are also added. These failure transitions
occur when there is a mismatch between the input and the state machine, and points
to the state sharing the longest common prefix to current state. During processing,
the input is traversed one character at a time and a corresponding state transition
occurs. If there is no common prefix, the state machine starts over. An example of
how a state machine for AC might look may be found in Figure 2.3. The arrows
between each branch is a failure transition.

Figure 2.3: Aho-Corasick state machine for the patterns AC, ACFE, CF, FKL

Aho-Corasick is a simple and efficient way of performing multiple pattern match-
ing. However, storing all the states and their transitions requires significant memory
space [30, 29]. Because of the large memory requirements, many cache misses oc-

9

cur during state transitions [29]. AC has for that reason been improved since its
inception, partly through reduced storage [30].

2.4 Graphics Processing Units in intrusion detec-
tion

Graphics Processing Units (GPUs) were initially introduced to handle computa-
tions related to displaying pixels on a screen. These computations often have to be
performed for each pixel, and are often independent of each other. Such tasks are
sometimes referred to as being embarrassingly parallel [31]. Embarrassingly parallel
tasks are computations that can be converted from a serial computation to many
parallel computation with little to no effort.

The importance of GPUs has increased, as GPUs become more powerful and ad-
vances in General-Purpose computing on Graphics Processing Units (GPGPU) are
made. As the name suggests, GPGPU allows for general purpose programs on GPUs
instead of only graphics computations. GPGPU has had a big impact in many areas,
such as deep learning [32], weather forecasting [33] and Network Intrusion Detection
Systems [34, 12, 35, 19, 14, 13]. GPGPU is often performed through the heteroge-
neous computing framework Open Computing Language (OpenCL) [36], described
in detail in Section 2.4.1.

The GPU in an embedded system compared to a GPU in a PC or a server is different.
The differences will be explained in Section 2.4.2.

2.4.1 Programming Graphics Processing Units
There are two popular GPGPU frameworks, CUDA [37] and Open Computing Lan-
guage (OpenCL) [36]. CUDA is developed by NVIDIA and only works on their
GPUs. OpenCL is a specificiation by the Khronos Group, allowing for heterogeneous
computing on both GPUs and CPUs. As OpenCL is more portable, supporting both
NVIDIA, ARM and AMD GPUs, it will be used in this thesis.

This section introduces the concepts of OpenCL for discrete GPUs, and the differ-
ences compared to integrated GPUs are discussed in the following section.

In OpenCL, there exists a single host that may have multiple (or no) devices. An
OpenCL compliant CPU or GPU may be used as a device. Within a device there
are multiple compute units divided into one or more processing elements. These
concepts are physical, and rarely affects the programmer using OpenCL. Instead
the OpenCL programmer is concerned with work-groups consisting of work-items.
Work-items within the same work-group are able to synchronize through barriers
and memory fences, but any cross work-group synchronization is not possible.

Each work-item executes a kernel. A kernel is simply a function that is executed with

10

OpenCL. Kernels are written in a language derived from C99, with some restrictions
and additional types. Some of these restrictions are that no function pointers, no
recursion and no variable length arrays and structures are allowed. Some of the
additional data types are vector and image types.

OpenCL has a fine grained memory model. The first layer, separated from the
device, is called host memory and is the memory used by a CPU. On the device there
are at least three layers of memory: global, local and private. Global memory may be
read from any work-item, but requires the largest number of cycles to access. Access
to the global memory should therefore be minimized. Local memory is shared among
work-items in the same work-group. Each work-item then has private memory which
it may access very quickly. However, as the access speed increases the size of the
corresponding memory type decreases. While the global memory may be measured
in gigabytes, the private memory is measured in bytes. In addition to the mentioned
memory hierarchy, there is image memory. Image memory is faster than global
memory but has some additional constraints, such as having to represent the memory
as a vector during execution. Image memory has been used in pattern matching to
store read-only data used in pattern matching, such as the state transition table of
Aho-Corasick [1] or a commonly accessed Bloom-filter [29].

Desktop GPUs gather threads (work-items) into groups, sometimes called warps, and
each thread within the thread group execute in lock-step. When there is conditional
code, such as if this . . . then that . . . , some threads have to pause as the others
execute their branch. Instead of using conditionals, one may instead use clever tricks
as can be seen in Listing 2.3, where bit operations were used to get the absolute
value of an integer instead of a more straight-forward branch.

__kernel
void abso lute_diverg ing (__global int ∗ input ,

__global int ∗ abso lute_value) {
i f (∗ input < 0) {

∗ abso lute_value = −1 ∗ input ;
} else {

∗ abso lute_value = input ;
}

}

__kernel
void abso lu t e (__global int ∗ input ,

__global int ∗ abso lute_value) {
int const mask = ∗ input >> 32 − 1 ;

∗ abso lute_value = (∗ input + mask) ^ mask ;
}

Listing 2.3: Two OpenCL kernels for calculating absolute values. The first one
results in divergent execution, as it contains a conditional execution. The second
one does not, as it instead uses bit operations

11

2.4.2 Integrated Graphics Processing Units
Section 2.4.1 presents OpenCL concepts from the point of view of a discrete desk-
top or server GPU. However, embedded systems often have an integrated GPU,
where the CPU and GPU share memory. This architectural change may lead to
several differences when compared to discrete GPUs, most notably in the memory
architecture.

With a discrete GPUs, the CPU does not share memory with the GPUs. However,
an integrated GPU share memory between the host (CPU) and the device (GPU).
The shared memory reduces the need for memory transfers, which is often the bot-
tleneck of GPU computations instead of the actual processing power [19]. However,
it also means that the device will share the slower memory of the host and memory
congestion might occur. Furthermore, accessing off-chip memory, such as global
memory, is a costly operation in terms of energy [38, 39, 40], increasing the im-
portance of reducing memory accesses e.g. through high utilization of the available
caches.

Integrated GPUs may not have local or private memory. What OpenCL believes to
be local and private memory are instead stored in global memory, with the same
high access cost as global memory accesses has [41]. The lack of memory hierarchy
removes many potential optimizations related to storing frequently accessed data in
local memory and influences the design decisions explained in Chapter 4.

2.5 Heterogeneous design
Merriam Webster’s dictionary defines heterogenity as ‘the quality or state of con-
sisting of dissimilar or diverse elements‘ [42]. The two important words to note here
are dissimilar and diverse. In this thesis, and in many other works [43, 44, 45], the
diverse elements are a CPU and GPU. Further mentions of heterogeneous design in
this thesis refers to the cooperation between a CPU and GPU.

Heterogeneous design has been the topic of some research with a focus on embed-
ded systems. Utilizing a heterogeneous design has been shown to reduce execution
time [43, 44, 45] and energy consumption [43, 44]. The most notable heterogenous
design implementation, a heterogeneous implementation of a computer vision algo-
rithm, resulted in a speedup of nearly 12× with energy savings of 3.25× compared to
a CPU-only implementation. The same implementation compared with a GPU-only
implementation showed a slight speedup but with a 22% energy reduction.

Having multiple phases is crucial in a heterogeneous design, as otherwise the work
can not be distributed among the devices. Both Huang et al. [43] and Rister et
al. [44] implemented the computer vision algorithm SIFT, and divided SIFT into
eight and five stages respectively. These many stages allow for many opportunities
at which the control may be given to either CPU and GPU, whichever is the best
suited for the task at hand. By measuring the execution time of each stage when

12

executed on a CPU and a GPU respectively, they could make an informed decision
about which stages should be executed on what computing device. It is worth noting
is that a stage may become faster when executed on a GPU while still requiring more
power [43].

Only one of the previously mentioned heterogeneous designs implemented a pattern
matching algorithm, and in that work the heterogeneous design was simply used
to improve the preprocessing phase of a pattern matching algorithm [45]. In this
work, the heterogeneity will be utilized in the main execution path of the pattern
matching.

13

14

3
Related work

This chapter brings forth related work within the field of pattern matching and its
applications. Each work will be shortly described and related to the work in this
thesis. The chapter starts by presenting recent advances in pattern matching using
cache-efficient data structures, later followed by advancements in pattern matching
using GPGPU. The chapter concludes by discussing recent applications of pattern
matching and relates it to IoT.

3.1 Cache-efficient pattern matching
The pattern matching algorithms presented in Section 2.3, Boyer-Moore [23] and
Aho-Corasick [25], use data structures with unpredictable memory access patterns,
causing frequent cache misses and stalls. IoT devices are resource constrained, fur-
ther increasing the importance of using a resource-friendly pattern matching algo-
rithm. Two recent memory-efficient pattern matching algorithms are Feed-Forward
Bloom Filter (FFBF) [29] and Direct Filter Classification (DFC) [28]. Both of these
algorithms have an initial approximate matching phase that discards most data and
patterns, and does so efficiently. This initial phase uses a cache-efficient data struc-
ture for quick lookups. This thesis implements a resource friendly algorithm to gain
as much performance as possible from a resource constrained IoT device.

3.1.1 Feed-Forward Bloom Filter
Feed-Forward Bloom Filter, like the original Bloom filter [46], creates a bit vector
indexed by more than one hash function [29]. If the bit referenced by an index
equals 0, the input is guaranteed to not exist in the original pattern corpus. If the
position referenced by an index equals 1, the input may exist in the pattern corpus.
As such, accuracy is exchanged for space, where FFBF is able to reduce the memory
consumption by 50 × compared to GNU grep which uses an improved version of
Aho-Corasick [24].

Bloom filters have an inherent false positive rate. To remove the error rate of the
Bloom filter, FFBF uses a multi-stage approach to pattern matching. In the first
stage, designed to be highly efficient, a sliding window rolls over the input and
checks if a bit in the bit vector, indexed by a hash of the input, is equal to 1. If it

15

is, the input is saved for later processing, otherwise it is discarded. The next stage
fetches the full patterns that matched in the previous stage. In the final, and most
computationally expensive, stage exact matching is performed between the matched
input from stage one and the full patterns from stage 2, using any exact pattern
matching algorithm e.g. Aho-Corasick [25] as described in Section 2.3.2. Such multi
stage pattern matching results in great improvements if most input gets filtered in
the first stage.

There are two major drawbacks with Feed-Forward Bloom Filters. The first draw-
back is that FFBF require all patterns to be of the same length, where any shorter
patterns must be matched separately. The second drawback is that computationally
expensive hash computations are required for each sliding window [29].

3.1.2 Direct Filter Classification

DFC is a memory and cache efficient pattern matching algorithm, using Direct
Filters (DFs) [28]. A Direct Filter is a bitmap that summarizes some consecutive
bytes from the pattern, and are small enough to be cache resident. A 2 byte DF
will use 2 consecutive bytes from a pattern, e.g. the first or last two bytes, to index
a bit in the bitmap.

Like FFBF, DFC performs matching in multiple phases: filtering and verification.
In the filtering phase, a window of two bytes is slid over the input, summarized and
matched to the filter. If the window matches, additional DFs requiring more bytes
for indexing may be used to check that it really is a match. The verification phase
performs exact matching using a compact hash table with efficient indexing.

DFC does not have the same constraints that FFBF does. First of all, it may
match patterns of any length. This is crucial for an NIDS, as one may otherwise
not be able to detect some attacks. Secondly, 2.5 × fewer instructions are required
for the indexing used in DFC compared to the indexing by hash functions used in
FFBF [28]. The reduced instruction count results in a 2.4 × overall speedup [28].

GPUs offer similar vectorization as CPUs, but with better memory latency hiding,
potentially allowing even greater speedups on GPUs [2]. Since its inception, DFC’s
throughput has been increased through CPU vector instructions [2]. The vectorized
version of DFC increased the throughput with 3.6 × compared to the original DFC
algorithm. Vectorization is enabled by separating the filtering and verification phase
of DFC. Instead of instantly verifying any window that got a hit in the DFs, matches
during the filtering phase are stored for later verification. Such distinct phases also
allow for better cache locality during each phase.

16

3.2 Pattern matching with Graphics Processing
Units

In this thesis a GPU on an embedded system is utilized to both improve the through-
put and decrease the energy consumption compared to a CPU-only implementation.
However, GPUs offer performance improvements only when the many cores and
threads of the GPU are utilized. Therefore one must carefully design an algorithm
to be run on a GPU. Naive pattern matching is usually a sequential operation, com-
paring one character at a time to one or more patterns. As character comparisons
have to be performed even in more advanced pattern matching algorithms such
as Aho-Corasick [25], how to fully utilize the parallelism of GPUs is not obvious.
What, if any, considerations have to be made when performing pattern matching on
embedded systems will be presented later in the section.

3.2.1 Work segmentation
Feed-Forward Bloom Filter (FFBF) [29], described in Section 3.1.1, perform match-
ing on GPUs by letting each thread hash a n-gram of characters and then match
it to the Bloom-filter in the matching phase. A similar procedure is done in the
pattern filtering phase of FFBF, where each thread filters the patterns matching a
single n-gram. This results in each byte of the input, on average, being processed n
times.

Parallel Failureless-AC (PFAC) is an implementation of Aho-Corasick with focus
on GPUs [1]. PFAC improves upon the previous designs by assigning each thread
a unique starting point. Previous GPU-implementations of AC assigned a fixed
amount of characters equal to the length of the longest pattern per GPU-thread,
simplifying the division of work, as seen in Figure 3.1. In PFAC, each thread will
traverse the input starting from its starting point, until no match is found, and
then immediately terminate. PFAC removes any failure transitions and self-loop
transitions to simplify the state machine, also because these states are no longer
needed. While there are many threads spun up, most will quickly terminate due
to the lack of a next state. Figure 3.2 illustrates how PFAC assigns each input
character its own thread and state automata.

Figure 3.1: A naive work segmentation among threads as seen in [1] © 2013 IEEE

17

Figure 3.2: Work segmentation in PFAC as seen in [1] © 2013 IEEE

3.2.2 General-Purpose computing on Graphics Processing
Units in embedded systems

GPUs have been shown to decrease energy consumption in embedded systems [15].
The improvements may not be gained for all applications, but rather for tasks well-
suited for the parallelization that GPUs offer. Pattern matching is one such applica-
tion, where energy consumption was 3× larger when executing on a CPU compared
to an embedded GPU [15].

Care has to be taken when performing optimizations aimed to improve the execution
time and energy consumption in embedded GPUs [15, 16]. The software optimiza-
tions common for more powerful GPUs may instead cause performance degradation.
The degradation is caused by the differences in the set of available features as well
as hardware differences. Differences include shared memory between the CPU and
GPU, and limited or lack of L2 cache, among others [19]. Having shared memory
between the two devices is a double-edged sword. It removes the need for trans-
ferring data between the CPU and GPU, but results in the GPU using the slower
DRAM instead of the GDDR memory used in high-end GPUs [19]. Shared memory
also results in contention on the shared memory bus and controller.

3.3 Pattern matching applications
This section will reveal how pattern matching is currently used in some recent works.
At first it will briefly discuss how GPUs have been used in Network Intrusion Detec-
tion System and what impact integrated GPUs may have. The section later explores
SplitScreen [47], a malware detection tool that utilizes a client-server architecture
to enable malware detection on resource constrained devices. While SplitScreen’s
methods are not in the same direction as explored in this thesis, it is a technique
worth mentioning.

3.3.1 Network Intrusion Detection System
Using GPUs for pattern matching in an NIDS is nothing new [34, 35, 14, 13, 19].
More recent solutions are focused on powerful machines using multiple graphics
cards [14, 13]. The authors of Kargus [14] show that even if GPUs are extremely
powerful, they are not always superior to the CPU. There is an overhead involved

18

with transferring packets and executing kernels on the GPU, that is more costly
than what is gained when packets are small.

Embedded devices often use integrated GPUs. APUNet [19] is a more recent work
that utilizes an integrated GPU in contrast to a discrete GPU. Integrated GPUs
share memory with the CPU, eliminating the memory transfer overhead. The au-
thors of APUNet show that while the throughput is lower on an Accelerated Pro-
cessing Unit (APU), the performance-per-dollar is significantly higher than discrete
GPUs when used for pattern matching. IoT devices with GPUs often use an inte-
grated GPU, and APUNet shows that these devices might be highly cost-effective.
APUNet also includes optimizations that is used in this thesis.

3.3.2 Malware detection
Malware detection is similar to intrusion detection as it also performs pattern match-
ing. Instead of matching network traffic, malware detection matches file content to
patterns. By having a client-server architecture, SplitScreen [47] is able to perform
malware detection on the iPhone 3GS. SplitScreen uses FFBF, see Section 3.1.1, and
a client only stores the bloom filters from FFBF, reducing the memory requirements.

The client in SplitScreen performs pattern matching between its local files and the
compressed patterns. In this stage, up to 90% of false-positives files and 99% of
signatures are discarded [47]. Once a potential match has been detected, the client
requests the full version of the matched pattern from the server, to later use the
full pattern for exact matching. As the files never leave the device, the cost of the
network transfers is low and confidentiality can be kept.

Utilizing a client-server architecture is an attractive choice as it offloads some of
the burden from the client to the server. SplitScreen managed to reduce the size of
the pattern corpus that the client holds from 9.9MB to 0.77MB. These techniques
allowed the authors to perform malware detection with millions of patterns using
an iPhone 3GS. Similar techniques could be used for network intrusion detection
on IoT devices as well, trading lower memory requirements for increased latency.
While a client-server architecture is not used in this thesis, a similar multi-phase
architecture where the initial filtering requires little memory is used, and could
utilize a client-server architecture in some future work.

19

20

4
Design & Implementation

In this thesis an ODROID-XU3 [18] is used to execute all tests. To be able to
motivate some of the optimizations presented in this chapter, the choice of hardware
will first be motivated and its specifications will be presented. Once the reader
is familiar with the device, the algorithm best suited for the evaluation will be
presented, followed by the motivation behind the selection and how the algorithm is
implemented. Finally, optimization performed upon the algorithm are introduced.

4.1 Hardware platform

The hardware to be used in this thesis requires a GPU, preferably an integrated
GPU as these are common in embedded systems. The GPU must also support
general purpose programming.

In this thesis the ODROID-XU3 [18] is used to execute all tests. The XU3 uses
the Exynos 5 Octa (5422) [48] chip that has a quad-core ARM Cortex-A15 [49], a
quad-core ARM Cortex-A7 [50] and an ARM Mali-T628 GPU [51]. The XU3 also
has 2GB of Random Access Memory (RAM). A figure of the XU3’s architecture and
its ports is shown in Figures 4.1 and 4.2. The Exynos 5422 is used in one variant of
the 4 year old Samsung Galaxy S5, showing that the XU3 is a reasonable choice for
a more powerful IoT device today. The most important reason as to why the XU3
is used it because it possesses a GPU that allows General-Purpose computing on
Graphics Processing Units (GPGPU). Further reasons are that it has a high speed
ethernet port, allowing for high speed network sniffing.

The XU3’s variant of the GPU is a Mali-T628 MP6 that has 6 cores. These shader
cores may be programmed using OpenCL as described in Section 2.4.1. The cores
are divided into two separate OpenCL devices, one device with four cores and one
device with two cores. The GPU does not have any OpenCL shared or local memory,
instead placing these in the global memory that in turn is stored in the RAM shared
with the CPU [41]. Each core has L1 and L2 memory caches to remedy the cost of
always accessing the global memory. These caches have a 64-byte cache line. There
are two 16kB L1 caches for each core, one used for generic memory accesses and one
for texture memory.

21

Figure 4.1: Block diagram of the ODROID-XU3 from hardkernel.com

Figure 4.2: Labeled ODROID-XU3 board from hardkernel.com

Divergent execution, when the code contains conditional statements, is not a prob-
lem with the GPU in XU3 [41]. Desktop GPUs gather threads into groups, some-
times called warps. All threads in a warp execute the same instruction in lock-step,
meaning that if diverging code occurs only some threads may continue while others
are stalled. However, each thread in a Mali GPU has an individual program counter,
meaning that diverging code does not stall threads. This is an important property as
it allows for more complex kernel code without worries of stalling threads. However
it may negatively affect data locality causing more frequent cache misses.

ODROID-XU3 is a relatively powerful embedded device in both memory and pro-
cessing power, more so when compared to devices used in sensor networks. GPUs are
rarely used in today’s IoT devices, but are common in smartphones. Even if GPUs
are uncommon in IoT devices today, it does not exclude it from being common in
future devices if it is shown that utilizing GPGPU may reduce energy consumption
and improve execution time.

22

4.2 The algorithm: Direct Filter Classification
This section describes why Direct Filter Classification (DFC) [28], see Section 3.1.2,
was chosen as the most fitting algorithm for the use case and how DFC was imple-
mented and customized.

4.2.1 Motivation
Improving cache hit rate is important in IoT devices, as access to off-chip memory
is a costly operation in terms of energy [38, 39, 40]. DFC is a memory and cache
efficient pattern matching algorithm, using Direct Filters (DFs) [28]. DFC is a
good choice for a pattern matching algorithm in IoT devices because the majority
of the pattern matching may be performed with few cache misses, reducing the
number of accesses to off-chip memory. That is also the reason why some other
GPU optimized algorithms such as PFAC [1] might not be a wise choice, as PFAC
has many unpredictable memory accesses. Feed-Forward Bloom Filter (FFBF) [29],
described in Section 3.1.1, is another cache friendly pattern matching algorithm,
but may only be used for patterns of the same size and requires a costly hash
function [28].

An additional reason why DFC was chosen as the most suitable algorithm is that
DFC has been shown to be vectorizable on a CPU. GPUs offer similar vectorization
as CPUs, but with better memory latency hiding, potentially allowing even greater
speedups on GPUs [2]. Furthermore, GPUs in embedded systems have shown to
reduce power consumption for pattern matching [16, 15]. Combining these two
properties might result in an improved execution time and energy consumption.

4.2.2 Implementation
This thesis uses a different filter setup compared to the one used in the initial DFC
publication by Choi et al. [28]. Instead the thesis utilizes the same filter setup used
in the CPU vectorized version by Stylianopoulos et al. [2]. What follows is a brief
description of that filter design, and is shown in Figure 4.3.

In the altered Direct Filter setup there are three filters. Filter 1 summarizes patterns
of length one, two and three characters and is indexed by two bytes. A filter indexed
by two bytes is of size 8kB, which easily fits in the 16kB L1 cache of the XU3’s
GPU. Filter 2 is an intermediate filter to match any patterns with a length longer
than three characters. Filter 2 allows for an efficient way of checking if the input
matches any patterns longer than three characters, by simply using the same index
as calculated for filter 1. Filter 3 however does not use the same indexing technique
as the first two filters, but keeps the same size of the DF. Filter 3 uses a multiplicative
hash function to index a bit in its bitmap. The use of a hash function allows the
use of more characters for filtering without increasing the size of the filter, allowing
it to be cache resident. A 3B indexed filter would require 2MB, much larger than
any cache available on the XU3, making a filter indexed by 4B impossible without

23

a hash function.

Figure 4.3: The filter design used. HT is the abbreviation of hash table as seen
in [2] © 2017 IEEE

Due to memory limitations, all network traffic can not be processed at once. There-
fore, the input has to be split into chunks. However, naively splitting the input may
lead to missing some patterns due to part of the pattern existing in the first chunk,
and the remainder in the second chunk. To remove any such omissions, each chunk
will overlap with the previous chunk by the size of the longest pattern. While such
an overlap results in no misses, it may cause extra matches detected by DFC.

What follows are more in-depth details regarding how the GPU is utilized when
implementing DFC with GPGPU.

Graphics Processing Unit variant

What in this thesis is called the GPU variant of DFC, is a version of DFC that
executes the entire algorithm on the GPU. It works just like the CPU version would,
where exact matching is performed right as a hit is found in a DF. The gains to be
had from using a GPU in this fashion is simply that it allows the many cores of a
GPU to work simultaneously.

The CPU is still required to some degree, even in the GPU variant of DFC. It per-
forms all preprocessing where the DFs and compact tables are set up and transferred
to the device. The GPU then perform the matching. Once matches are found, the
CPU has to process the matches by calling a user-defined callback function for each
match.

There is a problem related to tracking matches on the GPU, to later be processed
by the CPU. When a CPU performs matching, the callback is called as soon as a
match was found, without having to store any matches. As a GPU can not call a
function on the host, nor are function pointers allowed at all in OpenCL, matches
have to be stored for later processing. Kernels in OpenCL may not dynamically
allocate memory either, instead requiring one large static allocation used to host all
potential matches before any matching takes place.

Further issues regarding matches found on the GPU are related to the parallelism
in which the matching occurs. One could use a shared variable among all threads to

24

index a vector containing the results, where the index gets atomically incremented
when a match occurs. By doing so, a reasonable upper bound for maximum number
of matches may be set, the result vector will be ordered and the CPU will have an
exact count of amount of matches. However, using atomic function in OpenCL may
lead to drastic slowdowns [52].

Because of the potential problems with atomic operations, the implementation in
this thesis allocates enough memory to track matches occurring for each input char-
acter, e.g. if there was a match at input location X, the match would be stored in
a result vector at index X. However, there may be many matching patterns for a
certain location in the input. To ensure reasonable memory constraints, the choice
was made to to only store at most two matches per input location, but counting
all matches. If more matches occurred than the ones stored, a warning message is
printed.

OpenCL does not allow for variable sized arrays, and therefore memory allocated
for the text representation of a pattern must be equal for all patterns. This means
that every representation of a pattern used in OpenCL require an equal amount
of characters to the longest pattern in the data set. Therefore a significant mem-
ory overhead exists if there is a single long pattern and many more much smaller
patterns. That is why a reasonable upper bound for pattern length must be used.
Further restrictions of OpenCL can be found in Section 2.4.1.

Heterogenous variant

To enable a heterogeneous design where the CPU and GPU cooperate extensively,
it is important for an algorithm to be performed in more than one stage. If it is not,
there is simply no work that may be cooperated upon. More information regarding
heterogeneous design may be found in Section 2.5.

The heterogeneous design of DFC in this thesis will perform the filtering on a GPU,
to later perform exact matching on a CPU. The reasoning for this is that the highly
specified application of filtering is well-fitting for the simplified control logic of a
GPU. While branching is a minor problem for the GPU used for the tests in this
thesis, they are not in more powerful GPUs. Furthermore, the amount of instructions
required for exact matching is significant, causing evictions in the instruction cache.

As the tasks required of the GPU is simplified in the heterogeneous variant, there
are fewer issues surfaced by the use of OpenCL. First of, patterns does not have to
be stored on the GPU, as no exact matching is performed. Secondly, less memory
is required to track the result from the GPU. The reason is that the heterogeneous
variant only has to set a bit if a certain location of the input caused a hit in the
Direct Filters, requiring only as many bytes as the input. In this thesis, the GPU
sets the first bit if a hit was found in the first filter, and sets the second bit if a
found in both the second and third filter.

25

4.3 Optimizations
Simply translating a CPU version of Direct Filter Classification to OpenCL will
not result in optimal throughput or energy consumption. Instead it is important to
consider both the specifications of the hardware platform and the possibilities of the
algorithm. This section introduces optimizations techniques that will be used to try
to improve the throughput of both the GPU and heterogeneous variant of DFC.

4.3.1 Reducing memory transfers
Memory transfers between a OpenCL host (CPU) and OpenCL device (GPU) is
often the bottleneck in GPGPU applications [19]. This overhead can be reduced
by minimizing the data transferred between the two units. There are two ways of
reducing memory transfers. The first is to compress the data, and then performing
extra computations on the GPU to decompress it [53]. This may cause an overall
slowdown because of the additional computations required.

The second way is only available in the case where the host and device shares
memory, such as the case of an integrated GPU, which is used in this thesis. In
such cases, OpenCL allows for a buffer to be created on a GPU, to be shared with
a CPU [19, 16]. This is called memory mapping. Memory mapping removes most of
the transfer overhead, leaving some work for OpenCL to handle the memory still.

In this thesis, only memory mapping will be used to reduce memory transfers.

4.3.2 Increasing work per thread
In most GPUs, all threads in a warp (collection of threads), execute in lockstep.
Even if one of the threads in a warp finished executing, the others will continue,
and the finished one will idle until all threads are done. In the case of DFC, this is
likely to happen if one thread finds a match in a Direct Filter and has to perform
exact matching, while the others does not. To relieve this problem, each thread may
perform matching on multiple locations.

Another issue with having each thread handle a single character, is that a lot of
threads are spawned. This is not a free operation, costing some time and energy.
By having each thread perform more work, less threads are needed. By performing
more work on each thread, each thread may reuse previously fetched data and gain
better cache locality.

The XU3 in this thesis does not have the issue where threads execute in lockstep,
as each thread has a separate program counter. However, divergent execution may
still disturb the cache, having a negative impact on performance.

A side-effect of having each thread handle multiple input locations is that instead
of allocating a buffer to handle the matches found at each position of the input,

26

the buffer can instead be used to track the number of matches found per thread.
While this does not change the memory requirements, it affects how the CPU later
processes the matches. Instead of the CPU having to loop an equal amount of times
to the bytes in the input, it may now instead only loop through the amount of GPU
threads spawned. Lets consider an example to make the impact clearer. Imagine
that each GPU thread handles 8 characters of the input, and only a single match was
found. Instead of the CPU having to access 7 memory locations without a match,
and one with, the CPU now only has to handle the one match without having to
perform any work for the 7 misses as the information for this is now stored in the
same location. The heterogeneous version does not utilize this method of storing
multiple matches per thread, and instead stores it per location.

4.3.3 Altering OpenCL workgroup size
Another variable is the size of the OpenCL workgroup. Pattern matching has no
natural workgroup size, compared to e.g. image down scaling. That is why it makes
sense to configure it to whatever works best for the device. Fewer workgroups should
result in a lower overhead for maintaining them. The size of a workgroup is usually
a maximum of 256, as is the case on the ODROID-XU3.

4.3.4 Utilizing local memory
Local memory is shared between each work-item in a workgroup, and is often used
to improve the execution time by reducing the amount of accesses to global memory.
The memory model of OpenCL is described in detail in Section 2.4.1. As described
in Section 2.4.2, more constrained GPU devices may not have local memory. As
such, neither does the XU3 used in this thesis.

In this thesis, a local memory approach is implemented, to showcase how a tradi-
tional optimization approach may not be fit for embedded systems. The local mem-
ory version of DFC stores all three Direct Filters in local memory, which should be
the memory area accessed the most often.

4.3.5 Storing Direct Filters in texture memory
An additional optimization strategy used in this thesis is to utilize the texture
memory. As there is a separate L1 cache for textures in the XU3, one may increase
the cache hits further by storing one or more DF as a texture. It is worth noting that
any access to the texture memory requires vector loads, loading at least 16 bytes
at a time. This results in the need for some additional registers and computations
to retrieve the one bit of interest, potentially reducing the gain from better cache
locality.

In this thesis, the two first Direct Filters will be stored in texture memory. The
reason is that each DF is 8kB, fitting nicely in the 16kB L1 cache, theoretically
resulting in a 100% cache hit rate.

27

4.3.6 Vectorized design
Normally a GPU works in lockstep, where multiple threads execute the same in-
struction. Such a design is sometimes called Single Instruction, Multiple Threads
(SIMT). SIMT can be likened to Single Instruction, Multiple Data (SIMD), where
instead only a single thread processes multiple data. In both cases, execution is
vectorized.

The Mali GPU of the XU3 uses SIMD instructions instead of SIMT. As mentioned
before, this allows for branching code without large penalties, while still allowing
vectorized execution.

DFC has been improved through the usage of SIMD instructions on a CPU [2]. This
version uses two different SIMD instructions: shuffle and gather. shuffle is used to
change the order of bytes in a vector register. gather fetches data from multiple,
non-adjacent locations, with a single instruction.

In the vectorized version of DFC, shuffle is used to massage the input into the correct
format, on which the bit operations are then performed to calculate the bitmask and
the index to the Direct Filters. These indices are used by the gather instruction to
fetch the relevant bytes of the DF. That means that a gather instruction has to be
performed for each lookup in a DF, namely two or three times per input location.

Sadly, gather is not supported in OpenCL. Instead one is forced to perform a loop,
fetching the data one-by-one, without any vectorization. One may try to improve
the effectiveness of the data loading through coalescing fetches located in adjacent
memory to reduce the amount of fetches and reduce cache trashing [54]. Such an
optimizations may lead to performance improvements of up to 7 × [54]. However,
as the Direct Filters are expected to be cache resident, any such coalescing will have
a minor, or no, impact.

The vectorized version of DFC on the GPU used in this thesis is similar to the one
on the CPU [2]. As previously discussed, the gather instruction is however replaced
with a sequence of scalar fetches. In the vectorized version, all filtering is done and
temporarily stored before exact matching is performed. This is done in an attempt
to reduce the interleaving of vector and scalar instructions, which may remove much
of the benefits had from SIMD instructions [2]. Psuedo code of the vectorized version
may be seen in Listing 4.1.

28

input : Data to be matched aga in s t
DfSmall : DF f o r shor t pat t e rns
DfLarge : DF f o r l onge r pat t e rn s
THREAD_GRANULARITY: The amount o f cha ra c t e r s to be

checked per GPU thread
matchesSmall [THREAD_GRANULARITY] : temporary array f o r

matches in DF f o r shor t pat t e rn s
matchesLarge [THREAD_GRANULARITY] : temporary array f o r

matches in DF f o r l onge r pat t e rns

f o r i < (THREAD_GRANULARITY / 8) ; ++i {
input = vector_load (input , i)
s h u f f l e d = s h u f f l e (input , SHUFFLE_MASK)

// abs t rac t ed away . These are a l s o v e c t o r i z ed
i n d i c e s = get_ind i c e s (s h u f f l e d)
masks = get_masks (s h u f f l e d)

vectorDfSmal l [8] ;
vectorDfLarge [8] ;
// s c a l a r " gather " i n s t r u c t i o n
f o r (k < 8 ; ++k) {

vectorDfSmal l [k] = DfSmall [i n d i c e s [k]]
vectorDfLarge [k] = DfLarge [i n d i c e s [k]]

}

// vec to r i n s t r u c t i o n s once more
matchesSmall [i] = vectorDfSmal l & masks
matchesLarge [i] = vectorDfLarge & masks

}

// exact matching on matchesSmall and matchesLarge us ing
s c a l a r i n s t r u c t i o n s

. . .
Listing 4.1: Psuedo code of a GPU vectorized DFC

4.3.7 Overlapping execution
In the original implementation, the CPU will stall until result has been produced by
the GPU, process the matches and then start a new round of matching on the GPU.
When overlapping execution, the CPU and GPU will instead work simultaneously.
Overlapping execution is granted by having one extra buffer for input and result
respectively, that may be processed on the CPU while the GPU process the next
batch.

The benefit of overlapping execution between the two execution devices is that, in

29

theory, the total execution time should become the maximum of the CPU’s and
GPU’s execution time, instead of the sum of them.

The downside is that extra memory has to be allocated, and extra bookkeeping is
required for OpenCL as there are now multiple commands with different buffers
being executed.

30

5
Evaluation

How the experiments were performed and their results will be presented in this
chapter.

5.1 Evaluation method
Evaluating whether the algorithm implemented in this thesis is a good candidate
for intrusion detection in IoT, its execution time and energy consumption must be
compared to another state of the art pattern matching algorithm. The impact of
each optimization method is evaluated through the act of trying to reach the best
possible configuration, where each optimization is configured for maximum through-
put. Once the best configuration has been found for DFC, it will then be matched
against another pattern matching algorithm, namely Aho-Corasick (AC) [25]. When
evaluating the algorithms, three different pattern data sets will be matched against
four different traffic data sets.

5.1.1 Metrics & Challenges
Execution time, and therefore throughput, can easily be measured and evaluated.
Energy consumption is however not as straightforward. Luckily, the ODROID-XU3
has energy sensors measuring voltage, current and energy consumption for the two
CPUs, the GPU and the memory. These energy sensors can be seen in Figure 4.2.
A deeper understanding of the energy consumption may be realized by separating
the algorithm into multiple phases, having a timeout between each phase. Such a
division will allow patterns in the current draw to be mapped to each phase.

5.1.2 Other algorithms
DFC [28] will be matched up against Aho-Corasick (AC) [25], which is used by
default in the popular NIDS application Snort. In this thesis, a version of AC
extracted from the Snort source code is used, and is therefore highly optimized,
and is to be executed on a CPU. There are variants of Aho-Corasick with tradeoffs
between search speed and memory efficiency [30], but may come at an increased
search cost. The experiments will be performed with the full version of AC.

31

5.1.3 Data sets

Two different type of data sets are required for evaluating the algorithms. These
two types are patterns to be matched against network traffic. To enable a discussion
regarding how data affect the execution time and energy consumption of DFC, it is
important to test different data sets for both patterns and network traffic.

Four traffic data sets are used in the experiments. The first data set contains 300MB
of network traffic from the DARPA 2000 network capture. There are concerns
regarding the suitability of using the DARPA 2000 capture to measure the detection
performance of an NIDS [55], but since this thesis is only concerned with throughput
and energy consumption, it does not invalidate the data set. The next two are part
of the ISCX 2012 data set [56], where approximately 1GB of network traffic is
extracted from day 2 and day 6 respectively. The final traffic data set is 1GB of
randomly generated data.

Accompanying the traffic data sets are three pattern data sets. The first data set is
one containing patterns from Snort [17], containing approximately 2, 500 HTTP re-
lated patterns. The second data set is downloaded from emergingthreats.net and
contains 20, 000 patterns. Thirdly, the set of patterns from emergingthreats.net
will be culled to only contain patterns related to HTTP traffic, leaving approximately
9, 500 patterns. Only filtering on HTTP traffic makes sense because in NIDS sys-
tems, like Snort, traffic is grouped by protocol before being matched against only
related patterns. As the data sets used contain mostly HTTP traffic, filtering using
only HTTP patterns is reasonable and will reflect the usage in a real application.

Finally, any patterns longer than 64 characters are removed. This is due to the
restriction in OpenCL where any struct may not contain pointers, instead arrays
must have their size defined at compile time. That means that each pattern must
allocate enough data to host the largest pattern in a corpus of patterns. In the case
of the patterns from emergingthreats.net, the longest pattern is 513 characters,
while most are much much shorter than that. Removing any pattern longer than
64 characters removes approximately 80 and 500 from the first and second pattern
data set respectively. The distribution of pattern lengths in the first and second
pattern data set may be seen in Figure 5.1a and 5.1b respectively.

5.1.4 Hardware setup

An ODROID-XU3 will be used for any experiment measuring execution time. The
motivation behind this choice and the specifications of the XU3 is described in de-
tail in Section 4.1. In short, an XU3 is a reasonable choice for running experiments
because it has an integrated GPU that may be programmed with OpenCL. Fur-
thermore, an ODROID-XU3 allows for easy energy measurements as it has energy
sensors for the CPUs, GPU and memory.

32

emergingthreats.net
emergingthreats.net
emergingthreats.net

0 50 100 150 200 250 300
Pattern length

0

20

40

60

80

100

120

140

160
Pa

tte
rn

 c
ou

nt

(a) Snort HTTP patterns

0 100 200 300 400 500
Pattern length

0

200

400

600

800

1000

Pa
tte

rn
 c

ou
nt

(b) All patterns from emergingthreats.net

Figure 5.1: Distribution of pattern lengths. Red line signifies 64 characters

5.1.5 Experiments

Many DFC executions are performed to find the optimal configuration for the two
variants of DFC. There are many optimization parameters implemented, and ex-
ploring all permutations is not possible. The final configuration will therefore be
found greedily, where a single configuration parameter is optimized before moving
onto the next one.

When exploring the effect of optimizations, the average value from five runs of
matching Snort’s HTTP related patterns against the DARPA network traffic dump
is used.

The initial configuration, before any optimizations were performed, did not map
memory, had a thread granularity of one, did not use local or texture memory, did
not use vector instructions, had a workgroup size of 128 and a read chunk size of
10MB.

The first optimization performed is mapping memory, where the CPU and GPU
share memory. Mapping memory should reduce need for memory transfers between
CPU and GPU, and therefore decrease the total execution time.

The second parameter to configure is the work per thread, called thread granularity
in this thesis. An increased granularity increases the work per thread, therefore re-
ducing the total amount of threads. A side-effect of increasing the thread granularity
is that the work performed by the CPU reduced, see details in Section 4.3.2.

The third optimization is trying to use a different form of memory other than the
normal (global) memory. The two mutually exclusive options are local and texture
memory. An improvement is not expected while using local memory, as the XU3
does not have local memory. Using texture memory the cache hit rate should be
increased, resulting in a reduced execution time.

33

emergingthreats.net

Vectorization is the fourth optimization. By vectorizing the filtering part of DFC
an improvement of up to 8 × is theoretically possible for this phase, as it is possible
to operate on 8 input locations with a single instruction. Vectorized instructions
should be better for the SIMD cores of the XU3.

The fifth configuration parameter is the OpenCL workgroup size. The impact of
workgroup size is highly dependant on the device, but a larger workgroup size should
result in fewer workgroups, and therefore less overhead.

The second to last configuration parameter is the amount of input that is processed
at once by the GPU. A larger chunk results in more threads and a fewer number of
executions of the kernel. However, there is also a memory limit and more memory
may be more costly.

The very final optimization tested is overlapping the execution of GPU and CPU.
As the execution time of the different sections of the algorithm can no longer be
fairly separated, it is not displayed in the same fashion as the previous optimization
parameters. When evaluating the effects of overlapping execution, a test with Snort’s
HTTP patterns are matched against all traffic data sets. A decreased execution
time, and therefore also a reduced total energy consumption, is expected to come of
overlapping the execution.

To better understand the difference in energy consumption between the CPU, GPU
and heterogeneous version of DFC, each version was executed with a one second sleep
between major phase of the execution. The phases are input validation and environ-
ment setup, reading patterns from file and storing them intermediately, compiling
patterns into direct filters and compact tables, matching, and finally environment
teardown. The GPU and heterogeneous variant is also displayed when the work be-
tween the CPU and GPU overlap. The overlapping execution should require more
instantaneous energy, but have a lower execution time.

Once the best configuration for both the GPU and heterogeneous variant has been
greedily found, all three variants of DFC will be compared against one another.
The comparison will use all traffic and pattern data sets, to see how different data
impact the variants. Once more, five iterations are executed. The variants will then
be compared to Aho-Corasick, where all data sets are once more used.

The latency of when some input starts to get analyzed and when it finishes, as well
as the impact this latency has upon potential packet drops, is not tested. While
the latency is easy to test, it is not of interest in this thesis where the focus is on
the throughput and energy consumption. Such latency is mostly a balancing act
between the amount of data analyzed at once, and throughput. If a large number
of bytes are analyzed at once, some time is required to fill up the buffer, therefore
increasing latency. However, with smaller buffers the full potential of the GPU may
not be utilized, resulting in a poor throughput.

34

5.2 Results
This section presents the results of all tests.

5.2.1 Effect of optimizations
Tables 5.1 and 5.2 shows the effect mapping memory had on the GPU and heteroge-
neous variant respectively. EXE and ENE are the abbreviations for execution time
and energy consumption, respectively. The required time for reading from the GPU
decreased to 20% and 13% of the original, for the GPU and heterogeneous version
respectively, showing a tremendous speedup for a single configuration.

Configurations Results Improvement
MAP MEMORY WRITE (ms) READ (ms) KERNEL (ms) CPU (ms) TOTAL (ms) ENERGY (J) EXE ENE

NO 431 4870 2596 2730 11170 2867 1 1
YES 198 945 2750 2661 6787 1806 1.65 1.59

Table 5.1: Impact of mapping memory for the GPU variant

Configurations Results Improvement
MAP MEMORY WRITE (ms) READ (ms) KERNEL (ms) CPU (ms) TOTAL (ms) ENERGY (J) EXE ENE

NO 436 1313 646 2509 5195 1438 1 1
YES 183 165 807 2475 3858 1192 1.35 1.21

Table 5.2: Impact of mapping memory for the heterogeneous variant

The results from increasing the thread granularity is shown in Tables 5.3 and 5.3.
The GPU variant improves execution time by almost 2 × and reduces energy con-
sumption by even more. Both the CPU and kernel execution time is reduced by
about 400ms, equalling approximately 30% and 20% respectively. In the heteroge-
neous variant, the kernel execution time is just barely improved.
Configurations Results Improvement
THR GRAN WRITE (ms) READ (ms) KERNEL (ms) CPU (ms) TOTAL (ms) ENERGY (J) EXE ENE

1 198 945 2750 2661 6787 1806 1.00 1.00
8 195 678 1829 1191 4118 991 1.65 1.82
16 195 654 1599 1119 3790 923 1.79 1.96
24 196 653 1488 1108 3670 875 1.85 2.06
32 194 644 1427 963 3451 854 1.97 2.11
40 196 648 1406 899 3440 845 1.97 2.14
48 196 647 1412 764 3464 845 1.96 2.14

Table 5.3: Impact of thread granularity for the GPU variant

Configurations Results Improvement
THR GRAN WRITE (ms) READ (ms) KERNEL (ms) CPU (ms) TOTAL (ms) ENERGY (J) EXE ENE

1 183 165 807 2475 3858 1192 1.00 1.00
8 181 163 763 2482 3815 1200 1.01 0.99
16 185 167 1027 2902 4509 1277 0.86 0.93

Table 5.4: Impact of thread granularity for the heterogeneous variant

Using local or texture memory results in great slowdowns, seen in Tables 5.5 and 5.6.
The use of local memory, not surprisingly, causes the greatest slowdown. Texture
memory also causes a slowdown, but not as great as local memory.

35

Configurations Results Improvement
MEM TYPE WRITE (ms) READ (ms) KERNEL (ms) CPU (ms) TOTAL (ms) ENERGY (J) EXE ENE
NORMAL 196 648 1406 899 3440 845 1.00 1.00
LOCAL 194 643 6267 900 8411 2238 0.41 0.38

TEXTURE 197 646 1777 899 3897 996 0.88 0.85

Table 5.5: Impact of local and texture memory for the GPU variant

Configurations Results Improvement
MEM TYPE WRITE (ms) READ (ms) KERNEL (ms) CPU (ms) TOTAL (ms) ENERGY (J) EXE ENE
NORMAL 181 163 763 2482 3815 1200 1.00 1.00
LOCAL 183 165 22274 3016 25866 8138 0.15 0.15

TEXTURE 185 166 1070 2903 4548 1320 0.84 0.91

Table 5.6: Impact of local and texture memory for the heterogeneous variant

Vectorization, expected to have a large positive impact, instead had a negative one,
displayed in Tables 5.7 and 5.8. The kernel execution time increased significantly in
both the GPU and heterogeneous variant.

Configurations Results Improvement
VECTORIZED WRITE (ms) READ (ms) KERNEL (ms) CPU (ms) TOTAL (ms) ENERGY (J) EXE ENE

NO 196 648 1406 899 3440 845 1.00 1.00
YES 191 637 2065 876 4172 1095 0.82 0.77

Table 5.7: Impact of vectorized design for the GPU variant

Configurations Results Improvement
VECTORIZED WRITE (ms) READ (ms) KERNEL (ms) CPU (ms) TOTAL (ms) ENERGY (J) EXE ENE

NO 181 163 763 2482 3815 1200 1.00 1.00
YES 183 164 1084 2940 4594 1285 0.83 0.93

Table 5.8: Impact of vectorized design for the heterogeneous variant

Workgroup size was not expected to have a large impact, and did not, seen in
Tables 5.9 and 5.10.

Configurations Results Improvement
WORKGROUP WRITE (ms) READ (ms) KERNEL (ms) CPU (ms) TOTAL (ms) ENERGY (J) EXE ENE

128 196 648 1406 899 3440 845 1.00 1.00
64 196 645 1674 892 3784 905 0.91 0.93
256 196 645 1435 892 3501 870 0.98 0.97

Table 5.9: Impact of workgroup size for the GPU variant

Configurations Results Improvement
WORKGROUP WRITE (ms) READ (ms) KERNEL (ms) CPU (ms) TOTAL (ms) ENERGY (J) EXE ENE

128 181 163 763 2482 3815 1200 1.00 1.00
64 185 167 783 2465 3828 1186 1.00 1.01
256 183 165 763 2500 3839 1202 0.99 1.00

Table 5.10: Impact of workgroup size for the heterogeneous variant

As the number of bytes processed at once increases, the GPU variant becomes faster
but requires some extra energy, seen in Table 5.11. However, Tables 5.12 shows how

36

the heterogeneous variant becomes slower both when increasing and decreasing the
number of bytes processed at once. The reason why a larger data processing chunk
was not tested for the GPU variant, was because the memory could not be allocated
and the program crashed.

Configurations Results Improvement
CHUNK (MB) WRITE (ms) READ (ms) KERNEL (ms) CPU (ms) TOTAL (ms) ENERGY (J) EXE ENE

10 196 648 1406 899 3440 845 1.00 1.00
20 246 604 1399 693 3212 871 1.07 0.97
25 286 580 1394 641 3187 872 1.08 0.97

Table 5.11: Impact of read chunk size for the GPU variant

Configurations Results Improvement
CHUNK (MB) WRITE (ms) READ (ms) KERNEL (ms) CPU (ms) TOTAL (ms) ENERGY (J) EXE ENE

10 181 163 763 2482 3815 1200 1.00 1.00
5 187 173 781 2494 3857 1189 0.99 1.01
20 201 163 765 2709 4080 1207 0.94 0.99

Table 5.12: Impact of read chunk size for the heterogeneous variant

A summary of all optimizations performed and their impact are displayed in Ap-
pendix A.

In the end, the optimizations performed so far onto the GPU and heterogeneous
version of DFC resulted in a speedup of 3.5 × and 1.36 × respectively.

The final optimization performed is using overlapping execution between the CPU
and GPU. As the execution becomes overlapped, it is no longer possible to easily
count the required time for the different components, and instead the total through-
put and energy is used to measure the effectiveness. Figure 5.2 shows how over-
lapping execution is better both in terms of execution time and energy, for both
variants of DFC. The throughput of the GPU variant is improved by an additional
1.26 × on real network traffic, whereas the throughput of the heterogeneous variant
is improved by an additional 1.35 × on the same data set.

The energy consumption for the different phases of DFC for the CPU, GPU and
heterogeneous version can be seen in Figure 5.3a, 5.3b and 5.3c respectively. The
plotted values are the energy consumptions for the two CPUs, A15 and A7, the
GPU, the RAM and finally the total consumption, when comparing Snort’s HTTP
patterns against the DARPA network dump.

The two versions using the GPU has a large spike at the start for a short duration,
as the OpenCL environment is initialized. Only the GPU version has a large spike
during the compilation phase, where the patterns are compiled into the Direct Filters
(DFs) and compact tables used for exact matching. The reason is that in this phase,
these compiled data structures are also transferred to the GPU in preparation for the
matching phase. A small spike can be seen at the same time for the heterogeneous
version. The spike is much smaller as there is no need to store the memory intensive
compact tables, nor a large result vector, causing less overhead for OpenCL.

37

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

B/
s)

1.00 1.00 1.00
1.00

1.26
1.25 1.22

1.31

http_related_rules_64
DFC (GPU)
DFC (GPU, Overlapping)

(a) GPU: Throughput

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

1

2

3

4

5

En
er

gy
 (k

J)

1.00

1.00

1.00

1.00

1.04

0.90

0.92

0.86

http_related_rules_64
DFC (GPU)
DFC (GPU, Overlapping)

(b) GPU: Energy consumption

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

B/
s)

1.00
1.00 1.00

1.00
1.35

1.30 1.28

1.55

http_related_rules_64
DFC (HET)
DFC (HET, Overlapping)

(c) Heterogeneous: Throughput

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

2

4

6

8

10

12

En
er

gy
 (k

J)

1.00

1.00

1.00

1.00

0.88

0.90

0.91

0.83

http_related_rules_64
DFC (HET)
DFC (HET, Overlapping)

(d) Heterogeneous: Energy consumption

Figure 5.2: Effect of overlapping execution

Following the compilation phase is the matching phase. As expected, the CPU only
version increases the energy consumption solely of the CPU, while the two others
offloads some of the processing, and with it the energy consumption, to the GPU.

Both version using OpenCL has a spike at the end, where the GPU version requires
more energy than the heterogeneous version. Once again, this is because there are
fewer allocations required for the heterogeneous variant.

The spikes within the the matching phase that exists within the GPU and heteroge-
neous version of DFC comes from the multiple executions switching between kernel
execution and CPU execution. The spikes are smaller in the heterogeneous version
as the chunk size used is smaller, requiring less time for each execution.

While the memory has a barely noticeable increase in power usage in the CPU
version, it is more apparent in the two version using the GPU, especially in the
GPU heavy version, and even more so when overlapping the execution. Even when
the memory is mapped between the CPU and GPU to reduce memory transfers,
some extra power is shown to be required.

It can be seen how both the GPU and heterogeneous version of DFC without overlap-
ping execution requires less energy than the CPU one. However, the configurations
using overlapping execution has a larger instantaneous energy consumption than the

38

others, as both the GPU and CPU gets utilized more.

200 300 400 500 600 700 800 900
Time (10ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
at

t

A15
A7
GPU
MEM
SUM

(a) CPU version

200 300 400 500 600 700 800 900 1000
Time (10ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
at

t

A15
A7
GPU
MEM
SUM

(b) GPU version

200 300 400 500 600 700 800 900
Time (10ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
at

t

A15
A7
GPU
MEM
SUM

(c) Heterogeneous version

200 400 600 800 1000
Time (10ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
at

t

A15
A7
GPU
MEM
SUM

(d) GPU version (overlap-
ping execution)

200 400 600 800 1000
Time (10ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
at

t

A15
A7
GPU
MEM
SUM

(e) Heterogeneous version
(overlapping execution)

Figure 5.3: Phases of energy consumption for DFC

5.2.2 Comparison of Direct Filter Classification variants
As the overlapping configuration improved both the GPU and heterogeneous, they
will be the ones used in further tests. The GPU version of DFC is faster than either
the CPU variant or the heterogeneous in all cases, followed by the heterogeneous
variant, as seen in Figure 5.4, 5.5 and 5.6.

The variants using the GPU requires the least energy in all cases, where the GPU
only version requires significantly less energy.

The greatest gains in total energy consumption are when the GPU version is signif-
icantly faster, at times reaching a more than 2 × speedup compared to the second
fastest version, seen in Figure 5.5a. This causes the energy consumption to be only
half that of the second fastest version.

When matching against random data with few patterns, the heterogeneous and GPU
version have a similar throughput, seen in Figure 5.4a. However, as the amount of
patterns increase, the GPU variant becomes significantly faster.

5.2.3 Direct Filter Classification compared to Aho-Corasick
Because the CPU version is slower than the other DFC variants, it is not included in
the comparisons against AC. Furthermore, the XU3 ran out of memory when using

39

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

B/
s)

1.00

1.00 1.00

1.00
1.49

1.83 1.69

1.21

1.17

1.18 1.13

1.21

http_related_rules_64
DFC (CPU)
DFC (GPU, Overlapping)
DFC (HET, Overlapping)

(a) Throughput

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

2

4

6

8

10

12

En
er

gy
 (k

J)

1.00

1.00

1.00

1.00

0.75

0.54
0.58

0.85

0.95

0.91

0.95

0.98

http_related_rules_64
DFC (CPU)
DFC (GPU, Overlapping)
DFC (HET, Overlapping)

(b) Energy consumption

Figure 5.4: Comparison of DFC variants: Snort HTTP patterns (2k)

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
 (M

B/
s)

1.00 1.00 1.00

1.00

1.20

2.07
1.90

1.27

1.08 1.10 1.10

1.19

emerging_http_64
DFC (CPU)
DFC (GPU, Overlapping)
DFC (HET, Overlapping)

(a) Throughput

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

2

4

6

8

10

12

14

En
er

gy
 (k

J)

1.00

1.00

1.00

1.00

0.77

0.46

0.50

0.78

0.94

0.90

0.91

0.93

emerging_http_64
DFC (CPU)
DFC (GPU, Overlapping)
DFC (HET, Overlapping)

(b) Energy consumption

Figure 5.5: Comparison of DFC variants: emergingthreats.net HTTP patterns
(9k)

Aho-Corasick (AC) with 20,000 patterns and large traffic data set, and is therefore
not included in the results.

Figures 5.7 and 5.8 show how AC is equally as fast, or faster, than the CPU variant
of DFC, except for when matching against random traffic. One may see how AC
keeps a somewhat consistent throughput for each traffic data set, whereas DFC is
much more dependant upon the amount of hits during the filter phase.

The GPU is once more the fastest option, beating the throughput of AC by 1.67 ×
while only requiring 0.54 × of the energy. The heterogeneous variant is faster than
AC when matching against the Darpa network traffic and the randomly generated
traffic, otherwise AC is faster than the heterogeneous variant. When matching
against random data, the variants of DFC are up to 2.5× faster, while only requiring
0.4 × as much energy.

40

emergingthreats.net

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

5

10

15

20

25

30

35

Th
ro

ug
hp

ut
 (M

B/
s)

1.00 1.00 1.00

1.00

1.13

1.44
1.36

1.42

1.06
1.06 1.06

1.19

emerging_all_64
DFC (CPU)
DFC (GPU, Overlapping)
DFC (HET, Overlapping)

(a) Throughput

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

5

10

15

20

25

30

35

En
er

gy
 (k

J)

1.00

1.00

1.00

1.00

0.87

0.72

0.77

0.70

0.92

0.90

0.90

0.82

emerging_all_64
DFC (CPU)
DFC (GPU, Overlapping)
DFC (HET, Overlapping)

(b) Energy consumption

Figure 5.6: Comparison of DFC variants: All emergingthreats.net patterns
(21k)

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

B/
s)

1.00 1.00 1.00 1.00

1.50
1.29 1.26

1.57

1.17

0.83 0.85

1.58

http_related_rules_64
Aho-Corasick
DFC (GPU, Overlapping)
DFC (HET, Overlapping)

(a) Throughput

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

2

4

6

8

10

12

En
er

gy
 (k

J)

1.00

1.00

1.00 1.00

0.63

0.61
0.60

0.47

0.79

1.02

0.98

0.54

http_related_rules_64
Aho-Corasick
DFC (GPU, Overlapping)
DFC (HET, Overlapping)

(b) Energy consumption

Figure 5.7: DFC compared to AC: Snort HTTP patterns (2k)

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
 (M

B/
s)

1.00 1.00 1.00 1.001.16

1.67
1.54

2.62

1.05 0.89 0.89

2.45

emerging_http_64
Aho-Corasick
DFC (GPU, Overlapping)
DFC (HET, Overlapping)

(a) Throughput

Da
rp

a

IS
CX

 d
ay

 2

IS
CX

 d
ay

 6

Ra
nd

om

0

2

4

6

8

10

12

14

En
er

gy
 (k

J)

1.00

1.00

1.00 1.00

0.86

0.54

0.58

0.34

1.05

1.04

1.04

0.41

emerging_http_64
Aho-Corasick
DFC (GPU, Overlapping)
DFC (HET, Overlapping)

(b) Energy consumption

Figure 5.8: DFC compared to AC: emergingthreats.net HTTP patterns (9k)

41

emergingthreats.net
emergingthreats.net

42

6
Discussion

This chapter will start by discussing the result shown in Section 5.2. It will then
briefly discuss any ethical and sustainability impacts the areas touched upon in this
thesis may have. The chapter concludes by discussing potential future work that
may be done in the area of GPGPU to improve IoT applications.

6.1 Effect of optimizations

Many tests were run in order to greedily find the best configuration for the two
variants of DFC using a GPU. The many tests showed the importance of constant
measurements, as what one might assume to be an obvious optimization might not
be, and even differs between the two variants. The summary of the final results can
be seen in Appendix A.

As expected, mapping memory had a great impact upon the total time, seen in
Table 5.1 and 5.2. This is because there is no longer need to copy data between the
CPU and GPU.

Thread granularity had a surprisingly large effect upon the GPU version, seen in
Table 5.3. Both the kernel and CPU execution time is greatly reduced, but the CPU
time even more so. The reduced execution time on the CPU is because it does not
have to needlessly iterate over many positions in the result vector, as the matches
are bundled per thread. Barely any improvement was recorded for the heterogeneous
variant, see Table 5.4, but the small improvement seen were most likely because of
fewer wasted memory loads.

As expected, utilizing local memory did not result in any gains for either variant,
but instead caused great slowdowns, seen in Tables 5.5 and 5.6. As mentioned in
Section 4.3.4, this was expected as the Mali GPU does not have any local memory,
but instead emulates local memory by simply storing it in global memory. Using lo-
cal memory therefore only increases the amount of memory accesses in vain, causing
the slowdown.

By storing the Direct Filters (DFs) in texture memory, a reduced execution time
was hoped to be achieved thanks to an increased cache hit rate. Instead it resulted

43

in an increased execution time of the kernel. The cause is possibly that textures
in OpenCL have to be loaded as vectors. This means that a 16B load has to be
performed, and the index with that contains the one relevant bit has to then be
calculated, causing extra computations. Since this computations is in the hot path
of the kernel execution, it may be the cause of the slowdown. The hot path is very
important in DFC, since DFC’s speed is the result of quickly being able to filter out
matches.

Utilizing vector instructions did not speed up the execution either, displayed in
Tables 5.7 and 5.8. The potential 8 × throughput increase instead turned into a
40% increase of kernel execution time for the GPU version. The most likely reason
is that the amount of memory accesses increase, causing the slowdown. The filtering
phase of the vectorized version requires many stores, as the previously not stored
filter result have to be both stored. These filters have to later be read, causing
unnecessary memory accesses. It is highly likely that a GPU with local memory
could benefit from storing the filter matches, as writing and reading from local
memory is far less costly than accessing global memory.

There are two further reasons as to why the vectorized kernel is slower than the
scalar one. The first is the lack of a gather instruction, causing the filtering phase to
not be entirely vectorized and has to instead become scalar in the middle. However,
the slow down should still not cause the execution time to be worse than the simple
scalar version. Secondly, the vectorized version requires slightly more complex logic
for indexing, requiring extra instructions in the hot path of the execution.

Overlapping execution further improved execution time and energy consumption.
It can be seen in Figure 5.3 how the to overlapping variant require a larger instan-
taneous energy consumption, but reduce the total energy consumption due to the
reduced execution time. The reduced execution time is most likely because the over-
lapping execution better utilizes the CPU and GPU, where frequent stalls do not
interrupt the execution behavior.

The rest of this section will go into more detail regarding the two respective variants.

6.1.1 Graphics Processing Unit version
The speedups gained from optimizing the parameters of the GPU version of DFC
were great, resulting in a speedup of 3.5× and an energy improvement almost as big.
Two optimizations had the biggest impact upon the improvements: mapping mem-
ory and increasing the thread granularity. The improvements gained from mapping
memory were expected, as the memory transfer overhead is often the bottleneck for
GPGPU applications [19]. Mapping memory had a much greater impact upon the
GPU version compared to the heterogeneous variant because the buffer containing
the results of the matching is much greater in size for the GPU version.

Increasing the thread granularity to 8 had the largest relative increase, while the

44

remaining increases up to 40 had diminishing returns. Somewhat surprisingly, the
CPU execution time was affected the most by increasing the thread granularity. The
reason is because the array containing the matches is stored per thread instead of
per input character, greatly decreasing the work that has to be performed if there
are no matches, as discussed in Section 4.3.2. Why the kernel execution time was
reduced is not as obvious, but may have to do with fewer threads being spawned,
causing less competition for execution. Fewer threads might also lead to worse
latency hiding during a memory load, which is why it might lead to a slowdown in
the end. Another possible reason for the speedup of the kernel execution is that
since any memory load always fetches 16B from memory [41], memory might have
been fetched unnecessarily when only a few bytes were accessed. This contradicts
somewhat with the idea of wasted memory loads, since 40 is not divisible by 16.

Further improvements were seen when increasing the amount of data processed at
once. Larger data chunks results in more threads being spawned, and fewer kernel
executions. While the kernel and CPU execution time both decreases by a small
margin, the total time does not decrease by much, and the energy consumption
actually increases. A possible reason is that there is some overhead related to
tracking the many threads, or working with a larger allocation of memory.

6.1.2 Heterogeneous version
The heterogeneous version did not see great improvements from most optimizations.
Mapping memory and overlapping the execution of the CPU and GPU had the
largest impact. Any other configuration caused a slowdown or increase in energy
consumption.

Why increasing the thread granularity to 16 caused a slowdown compared to 8 in
kernel execution time is not obvious, as it had a positive effect for the kernel in
the GPU version. One reason might be that it results in fewer threads, not being
able to hide the many memory loads required for the simple execution model of
the heterogeneous kernel. However, that line of reasoning does not seem to hold
as increasing the chunk size increases the amount of running threads, and with the
previous reasoning it should then improve the speed further.

6.2 Comparison of Direct Filter Classification vari-
ants

The GPU variant of DFC is faster, or equally as fast, than either the CPU and
heterogeneous in all cases. When matching against few patterns, the GPU and
heterogeneous variant have the same throughput for random data. The reason is
that the few patterns result in few matches in the filters, resulting in the CPU not
having to perform many exact matches. But as the number of pattern increases,
the work that has to be performed by the CPU also increases, slowing down the
heterogeneous variant. With the same reasoning one may see how the CPU variant

45

is much closer to the throughput of the GPU variant when comparing few patterns
to random data, but the gap increases with the number of patterns.

Another intriguing finding, also suggested by Figure 5.3, is that even when the
throughput of the GPU variant and the heterogeneous version is equal, the energy
required for the GPU version is lower. Once again, this is because the GPU requires
less energy than the CPU.

As to why the GPU version is faster than the heterogeneous version when matching
against real traffic is simply because of the increased concurrency granted through
the many threads of the GPU is better suited for exact matching. As seen with
the random network traffic, filtering is cheap but exact matching is not. Therefore,
by offloading both filtering and exact matching to the many threads of the GPU, a
speedup is achieved. This is not necessarily true for all GPUs, as the many branches
required for exact matching may be too costly on some architectures, discussed in
Section 2.4.1.

What is interesting is that filtering was believed to be the phase better suited on a
GPU, while it seems as if exact matching is the better suited phase.

Another finding is the great improvements that were had upon the CPU’s execution
time with the GPU variant when the thread granularity was increased. This finding
pointed towards how costly it is to simply loop through hundreds of megabytes
of data. A similar scheme may be used for the heterogeneous variant, but was not
implemented in this thesis. However, an equally drastic improvement is not expected
as it is still believed that exact matching is what requires the most time for the CPU
in the heterogeneous variant.

6.3 Direct Filter Classification compared to Aho-
Corasick

The biggest difference between Aho-Corasick (AC) and DFC is arguably that the
throughput of AC is consistent between traffic data sets. AC simply iterates over
the characters in the input, transitioning between different states for each one, and
is therefore not concerned with how many matches there are in the input. DFC
is much more dependant upon the input data, able to very quickly remove true
negative matches, but slows down once exact matching is performed. This is the
most obvious when matching against random data, as DFC is able to quickly filter
out all the non-matches.

The sensitivity DFC has towards the network traffic analyzed may open it up towards
algorithmic attacks, where the attacker sends carefully crafted packets to cause
resource exhaustion of the NIDS. If the attacker knew the patterns used in the
NIDS, it could cause a great slowdown by sending the longest pattern in the set, as
the exact matching is what requires the most time.

46

The GPU variants improves the throughput up to 1.67× while only requiring 0.54×
the energy. The reason is once more that the GPU simply requires less energy for
the same amount of work, and is able to do more work at once thanks to the many
cores.

6.4 Ethics & Sustainability
Internet of Things has long been plagued by intrusions. At the time of writing,
another 500, 000 malware infected home routers have been discovered [57]. In the
article it is described how this malware has a kill-switch, being able to destroy any
of the infected devices at will, potentially rendering hundreds of thousands without
internet.

It is easy to see how solving this issue would be ethical. If embedded IoT devices
were able to run an efficient NIDS, maybe some of the many attacks may have been
avoidable. It might also bring further security education to the masses, as they may
now be notified if someone tries to access their system without having been granted
access.

Decreasing the energy consumption needed for an NIDS is obviously a step in the
right direction towards sustainability. However, if it was deemed that the best
implementation of an NIDS in a home is a separate device, there might be a need
to produce many NIDS devices. And as the bandwidth requirements increase, these
IoT Network Intrusion Detection Systems have to be replaced, causing unnecessary
waste. Hopefully the material in these devices could somehow be recycled, removing
most of the concerns regarding unnecessary waste.

6.5 Future Work
The opportunities for future work within the cross section of GPGPU, IoT and NIDS
are many. One way forward is to attempt to improve DFC in a GPGPU context
further. Potentially by improving the communication pattern between the CPU
and GPU, as the largest gains seemed to be had there. Another way is to further
improve the kernel execution time, as the largest time spent is currently there. Yet
another improvement to be made is to let the CPU and GPU work at the same
time, instead of having the GPU wait for the CPU to process the matches before
starting to process the next chunk of input data.

Further improvements to DFC may be looked into where the cost of the exact
matching is reduced, as it is obviously a bottleneck considering that when matching
against random data the throughput can be almost doubled. One way might be
to reverse the design of the heterogeneous variant, where the filtering is instead
performed on the CPU and the exact matching on the GPU.

Another way forward is to search for other pattern matching algorithms better suited

47

for being executed on a GPU, improving the execution time and energy consumption
further.

Finally, it has been shown that GPGPU can improve the execution time for some
applications. Further research should be done to see what kind of applications these
are. Such research would not only aid IoT devices, but could also have a big impact
upon mobile devices. As many smartphones nowadays have powerful GPUs, being
able to take advantage of it to not only decrease execution time but also energy
consumption is an attractive possibility.

48

7
Conclusion

In this thesis the suitability of using a low-powered and network connected embedded
device with a GPU as a network intrusion detection system was evaluated. The
suitability depends on the energy consumption and the throughput of network traffic
that the system can analyze. A GPGPU implementation of DFC is used to improve
the throughput of network traffic that may be analyzed per second and lower the
energy consumption.

The thesis shows that utilizing a GPU may not only reduce the execution time,
but also the energy consumption compared to only utilizing a CPU. By utilizing
GPGPU, the Direct Filter Classification algorithm’s throughput was increased by
more than 2 × while reducing the energy consumption by more than 50%. The
GPGPU variant of DFC was able to outperform the widely used pattern matching
algorithm Aho-Corasick by more than 50% while only requiring 50% of the energy.

Even if the execution time is not reduced, a reduced energy consumption may be
enjoyed. Utilizing a GPU as much as possible is therefore shown to be the best
solution. However, optimizing GPGPU code requires great care, and requires many
measurements to reach optimal performance. Failure to do so will result in a sub-
optimal throughput and energy consumption.

GPGPU in embedded systems may be used to gain significant speedups while re-
ducing energy consumption. It is therefore reasonable to assume that for Network
Intrusion Detection Systems in IoT, GPGPU is the path forward.

49

50

Bibliography

[1] Cheng-Hung Lin, Chen-Hsiung Liu, Lung-Sheng Chien, and Shih-Chieh Chang.
Accelerating Pattern Matching Using a Novel Parallel Algorithm on GPUs.
IEEE Transactions on Computers, 62(10):1906–1916, Oct 2013.

[2] Charalampos Stylianopoulos, Magnus Almgren, Olaf Landsiedel, and Marina
Papatriantafilou. Multiple Pattern Matching for Network Security Applications:
Acceleration through Vectorization. In 2017 46th International Conference on
Parallel Processing (ICPP), pages 472–482, Aug 2017.

[3] RemoteLock 7i WiFi Lock. https://shop.remotelock.com/product/
lockstate-remotelock-7i/. Accessed: 2018-02-20.

[4] tado° Smart Thermostat Starter Kit v3. https://www.tado.com/se/
products/smart-thermostat-starter-kit. Accessed: 2018-02-21.

[5] Microsoft IoT. https://www.microsoft.com/en-us/internet-of-things/
connected-factory. Accessed: 2018-02-20.

[6] IBM Watson IoT. https://www.ibm.com/internet-of-things/spotlight/
iot-zones/smart-factories. Accessed: 2018-02-20.

[7] A New Era of Internet Attacks Powered by Everyday Devices.
https://nytimes.com/2016/10/23/us/politics/
a-new-era-of-internet-attacks-powered-by-everyday-devices.html.
Accessed: 2018-03-04.

[8] New Mirai Worm Knocks 900K Germans Offline. https://krebsonsecurity.
com/2016/11/new-mirai-worm-knocks-900k-germans-offline/. Accessed:
2018-03-04.

[9] Update bricks smart locks preferred by Airbnb. https://techcrunch.com/
2017/08/14/wifi-disabled/. Accessed: 2018-03-04.

[10] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of
intrusion-detection systems. Computer Networks, 31(8):805 – 822, 1999.

[11] Spyros Antonatos, Kostas G. Anagnostakis, and Evangelos P. Markatos. Gener-
ating Realistic Workloads for Network Intrusion Detection Systems. SIGSOFT
Softw. Eng. Notes, 29(1):207–215, January 2004.

51

https://shop.remotelock.com/product/lockstate-remotelock-7i/
https://shop.remotelock.com/product/lockstate-remotelock-7i/
https://www.tado.com/se/products/smart-thermostat-starter-kit
https://www.tado.com/se/products/smart-thermostat-starter-kit
https://www.microsoft.com/en-us/internet-of-things/connected-factory
https://www.microsoft.com/en-us/internet-of-things/connected-factory
https://www.ibm.com/internet-of-things/spotlight/iot-zones/smart-factories
https://www.ibm.com/internet-of-things/spotlight/iot-zones/smart-factories
https://nytimes.com/2016/10/23/us/politics/a-new-era-of-internet-attacks-powered-by-everyday-devices.html
https://nytimes.com/2016/10/23/us/politics/a-new-era-of-internet-attacks-powered-by-everyday-devices.html
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://krebsonsecurity.com/2016/11/new-mirai-worm-knocks-900k-germans-offline/
https://techcrunch.com/2017/08/14/wifi-disabled/
https://techcrunch.com/2017/08/14/wifi-disabled/

[12] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. Paralleliza-
tion and characterization of pattern matching using GPUs. In 2011 IEEE In-
ternational Symposium on Workload Characterization (IISWC), pages 216–225,
Nov 2011.

[13] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. MIDeA: A
Multi-parallel Intrusion Detection Architecture. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS ’11, pages 297–
308, New York, NY, USA, 2011. ACM.

[14] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, Deokjin
Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park. Kargus: A Highly-scalable
Software-based Intrusion Detection System. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pages 317–
328, New York, NY, USA, 2012. ACM.

[15] Arian Maghazeh, Unmesh D. Bordoloi, Petru Eles, and Zebo Peng. General
Purpose Computing on Low-Power Embedded GPUs: Has It Come of Age?
Technical report, Linköping University, Software and Systems, 2013.

[16] Elena Aragon, Juan M. Jiménez, Arian Maghazeh, Jim Rasmusson, and Un-
mesh D. Bordoloi. Pattern Matching in OpenCL: GPU vs CPU Energy Con-
sumption on Two Mobile Chipsets. In Proceedings of the International Work-
shop on OpenCL 2013 & 2014, IWOCL ’14, pages 5:1–5:7, New York, NY,
USA, 2014. ACM.

[17] Martin Roesch. Snort - Lightweight Intrusion Detection for Networks. In Pro-
ceedings of the 13th USENIX Conference on System Administration, LISA ’99,
pages 229–238, Berkeley, CA, USA, 1999. USENIX Association.

[18] ODROID-XU3 Product Page. http://www.hardkernel.com/main/products/
prdt_info.php?g_code=g140448267127&tab_idx=1. Accessed: 2018-05-25.

[19] Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon, Changho
Hwang, and KyoungSoo Park. APUNet: Revitalizing GPU as Packet Pro-
cessing Accelerator. In 14th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 17), pages 83–96, Boston, MA, 2017. USENIX
Association.

[20] Ericsson AB. Ericsson Mobility Report.
https://www.ericsson.com/assets/local/mobility-report/documents/
2017/Ericsson-mobility-report-june-2017.pdf, 06 2017. Accessed:
2018-03-28.

[21] Chris W. Johnson. Barriers to the Use of Intrusion Detection Systems in Safety-
Critical Applications. In Floor Koornneef and Coen van Gulijk, editors, Com-
puter Safety, Reliability, and Security, pages 375–384, Cham, 2015. Springer
International Publishing.

52

 http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127&tab_idx=1
 http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127&tab_idx=1
https://www.ericsson.com/assets/local/mobility-report/documents/2017/Ericsson-mobility-report-june-2017.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2017/Ericsson-mobility-report-june-2017.pdf

[22] Snort User Manual. https://snort.org/downloads/snortplus/snort_
manual.pdf. Accessed: 2018-03-06.

[23] Robert S. Boyer and J. Strother Moore. A Fast String Searching Algorithm.
Commun. ACM, 20(10):762–772, October 1977.

[24] Beate Commentz-Walter. A String Matching Algorithm Fast on the Average. In
Proceedings of the 6th Colloquium, on Automata, Languages and Programming,
pages 118–132, London, UK, UK, 1979. Springer-Verlag.

[25] Alfred V. Aho and Margaret J. Corasick. Efficient String Matching: An Aid to
Bibliographic Search. Commun. ACM, 18(6):333–340, June 1975.

[26] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching
algorithms. IBM Journal of Research and Development, 31(2):249–260, March
1987.

[27] Sun Wu and Udi Manber. A fast algorithm for multi-pattern searching. Techni-
cal Report TR-94-17, University of Arizona. Department of Computer Science,
May 1994.

[28] Byungkwon Choi, Jongwook Chae, Muhammad Jamshed, KyoungSoo Park,
and Dongsu Han. DFC: Accelerating String Pattern Matching for Network
Applications. In 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 551–565, Santa Clara, CA, 2016. USENIX
Association.

[29] Iulian Moraru and David G. Andersen. Exact Pattern Matching with Feed-
forward Bloom Filters. J. Exp. Algorithmics, 17:3.4:3.1–3.4:3.18, September
2012.

[30] Marc Norton. White paper: Optimizing pattern matching for intrusion detec-
tion. Technical report, 2004.

[31] Maurice Herlihy. The art of multiprocessor programming, page 14. Morgan
Kaufmann, Waltham, MA, 2012.

[32] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. Large-scale Deep Unsuper-
vised Learning Using Graphics Processors. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, pages 873–880, New
York, NY, USA, 2009. ACM.

[33] John Michalakes and Manish Vachharajani. GPU acceleration of numerical
weather prediction. In 2008 IEEE International Symposium on Parallel and
Distributed Processing, pages 1–7, April 2008.

[34] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P.
Markatos, and Sotiris Ioannidis. Gnort: High Performance Network Intru-
sion Detection Using Graphics Processors. In Richard Lippmann, Engin Kirda,
and Ari Trachtenberg, editors, Recent Advances in Intrusion Detection, pages

53

https://snort.org/downloads/snortplus/snort_manual.pdf
https://snort.org/downloads/snortplus/snort_manual.pdf

116–134, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[35] Nausheen Shoaib, Jawwad Shamsi, Tahir Mustafa, Akhter Zaman, Jazib
ul Hasan, and Mishal Gohar. GDPI: Signature based Deep Packet Inspec-
tion using GPUs. International Journal of Advanced Computer Science and
Applications, 8(11), 2017.

[36] OpenCL Overview. https://www.khronos.org/opencl/. Accessed: 2018-03-
11.

[37] About CUDA. https://developer.nvidia.com/about-cuda. Accessed:
2018-03-11.

[38] Richard Fromm, Stylianos Perissakis, Neal Cardwell, Christoforos Kozyrakis,
Bruce McGaughy, David Patterson, Tom Anderson, and Katherine Yelick. The
Energy Efficiency Of Iram Architectures. In Conference Proceedings. The 24th
Annual International Symposium on Computer Architecture, pages 327–337,
June 1997.

[39] Kshitij Gupta and John D. Owens. Compute & memory optimizations for
high-quality speech recognition on low-end GPU processors. In 2011 18th In-
ternational Conference on High Performance Computing, pages 1–10, Dec 2011.

[40] Kwang-Ting Cheng and Yi-Chu Wang. Compute & Memory Optimizations for
High-Quality Speech Recognition on Low-End GPU Processors. In Proceedings
of 2011 International Symposium on VLSI Design, Automation and Test, pages
1–4, April 2011.

[41] ARM Mali GPU OpenCL, Version 3.0, Developer Guide. https:
//static.docs.arm.com/100614/0300/arm_mali_gpu_opencl_developer_
guide_100614_0300_00_en.pdf. Accessed: 2018-03-14.

[42] MerriamWebster definition of heterogeneity. https://www.merriam-webster.
com/dictionary/heterogeneity. Accessed: 2018-05-31.

[43] Miaoqing Huang and Chenggang Lai. Accelerating Applications Using GPUs
on Embedded Systems and Mobile Devices. In 2013 IEEE 10th International
Conference on High Performance Computing and Communications 2013 IEEE
International Conference on Embedded and Ubiquitous Computing, pages 1031–
1038, Nov 2013.

[44] Blaine Rister, Guohui Wang, Michael Wu, and Joseph R. Cavallaro. A fast
and efficient sift detector using the mobile GPU. In 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 2674–2678, May
2013.

[45] Shima Soroushnia, Masoud Daneshtalab, Juha Plosila, and Pasi Liljeberg. Het-
erogeneous Parallelization of Aho-Corasick Algorithm. In Julio Saez-Rodriguez,
Miguel P. Rocha, Florentino Fdez-Riverola, and Juan F. De Paz Santana, edi-
tors, 8th International Conference on Practical Applications of Computational

54

https://www.khronos.org/opencl/
https://developer.nvidia.com/about-cuda
https://static.docs.arm.com/100614/0300/arm_mali_gpu_opencl_developer_guide_100614_0300_00_en.pdf
https://static.docs.arm.com/100614/0300/arm_mali_gpu_opencl_developer_guide_100614_0300_00_en.pdf
https://static.docs.arm.com/100614/0300/arm_mali_gpu_opencl_developer_guide_100614_0300_00_en.pdf
 https://www.merriam-webster.com/dictionary/heterogeneity
 https://www.merriam-webster.com/dictionary/heterogeneity

Biology & Bioinformatics (PACBB 2014), pages 153–160, Cham, 2014. Springer
International Publishing.

[46] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Er-
rors. Commun. ACM, 13(7):422–426, July 1970.

[47] Sang Kil Cha, Iulian Moraru, Jiyong Jang, John Truelove, David Brumley, and
David G. Andersen. SplitScreen: Enabling efficient, distributed malware detec-
tion. Journal of Communications and Networks, 13(2):187–200, April 2011.

[48] Samsung Exynos 5 Octa (5422) product page. http://www.samsung.
com/semiconductor/minisite/exynos/products/mobileprocessor/
exynos-5-octa-5422/. Accessed: 2018-03-14.

[49] ARM Cortex-A15. https://developer.arm.com/products/processors/
cortex-a/cortex-a15. Accessed: 2018-03-14.

[50] ARM Cortex-A7 product page. https://developer.arm.com/products/
processors/cortex-a/cortex-a7. Accessed: 2018-03-14.

[51] ARM Mali-T628 product page. https://www.arm.com/products/
multimedia/mali-cost-efficient-graphics/mali-t628.php. Accessed:
2018-03-14.

[52] M. Elteir, H. Lin, and W. C. Feng. Performance Characterization and Opti-
mization of Atomic Operations on AMD GPUs. In 2011 IEEE International
Conference on Cluster Computing, pages 234–243, Sept 2011.

[53] Toman Akenine-Moller and Jacob Strom. Graphics Processing Units for Hand-
helds. Proceedings of the IEEE, 96(5):779–789, May 2008.

[54] Bingsheng He, Naga K. Govindaraju, Qiong Luo, and Burton Smith. Efficient
Gather and Scatter Operations on Graphics Processors. In Proceedings of the
2007 ACM/IEEE Conference on Supercomputing, SC ’07, pages 46:1–46:12,
New York, NY, USA, 2007. ACM.

[55] Matthew V. Mahoney and Philip K. Chan. An Analysis of the 1999
DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly Detec-
tion. In Giovanni Vigna, Christopher Kruegel, and Erland Jonsson, editors,
Recent Advances in Intrusion Detection, pages 220–237, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[56] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. Toward
developing a systematic approach to generate benchmark datasets for intrusion
detection. Computers & Security, 31(3):357 – 374, 2012.

[57] New VPNFilter malware targets at least 500K networking devices world-
wide. https://blog.talosintelligence.com/2018/05/VPNFilter.html.
Accessed: 2018-05-24.

55

http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
http://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://developer.arm.com/products/processors/cortex-a/cortex-a15
https://developer.arm.com/products/processors/cortex-a/cortex-a15
https://developer.arm.com/products/processors/cortex-a/cortex-a7
https://developer.arm.com/products/processors/cortex-a/cortex-a7
https://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-t628.php
https://www.arm.com/products/multimedia/mali-cost-efficient-graphics/mali-t628.php
 https://blog.talosintelligence.com/2018/05/VPNFilter.html

56

A
Summary of configuration impact

I

C
onfi

gurations
R
esults

Im
provem

ent
M
A
P

T
H
R

M
E
M

V
E
C

W
G

C
H
U
N
K

W
R
IT

E
(m

s)
R
E
A
D

(m
s)

K
E
R
N
E
L
(m

s)
C
P
U

(m
s)

T
O
T
A
L
(m

s)
E
N
E
R
G
Y

(J)
E
X
E

E
N
E

N
O

1
N
O
R

N
O

128
10

431
4870

2596
2730

11170
2867

1
1

Y
E
S

1
N
O
R

N
O

128
10

198
945

2750
2661

6787
1806

1.65
1.59

Y
E
S

8
N
O
R

N
O

128
10

195
678

1829
1191

4118
991

2.71
2.89

Y
E
S

16
N
O
R

N
O

128
10

195
654

1599
1119

3790
923

2.95
3.11

Y
E
S

24
N
O
R

N
O

128
10

196
653

1488
1108

3670
875

3.04
3.28

Y
E
S

32
N
O
R

N
O

128
10

194
644

1427
963

3451
854

3.24
3.36

Y
E
S

40
N
O
R

N
O

128
10

196
648

1406
899

3440
845

3.25
3.39

Y
E
S

48
N
O
R

N
O

128
10

196
647

1412
764

3464
845

3.22
3.39

Y
E
S

40
L
O
C

N
O

128
10

194
643

6267
900

8411
2238

1.33
1.28

Y
E
S

40
T
E
X

N
O

128
10

197
646

1777
899

3897
996

2.87
2.88

Y
E
S

40
N
O
R

Y
E
S

128
10

191
637

2065
876

4172
1095

2.68
2.62

Y
E
S

40
N
O
R

N
O

64
10

196
645

1674
892

3784
905

2.95
3.17

Y
E
S

40
N
O
R

N
O

256
10

196
645

1435
892

3501
870

3.19
3.29

Y
E
S

40
N
O
R

N
O

128
20

246
604

1399
693

3212
871

3.48
3.29

Y
E
S

40
N
O
R

N
O

128
25

286
580

1394
641

3187
872

3.51
3.29

T
able

A
.1:

Sum
m
arized

configuration
im

pact
for

G
PU

version
ofD

FC

II

C
on

fi
gu

ra
ti
on

s
R
es
ul
ts

Im
pr
ov
em

en
t

M
A
P

T
H
R

M
E
M

V
E
C

W
G

C
H
U
N
K

W
R
IT

E
(m

s)
R
E
A
D

(m
s)

K
E
R
N
E
L
(m

s)
C
P
U

(m
s)

T
O
T
A
L
(m

s)
E
N
E
R
G
Y

(J
)

E
X
E

E
N
E

N
O

1
N
O
R

N
O

12
8

10
43
6

13
13

64
6

25
09

51
95

14
38

1
1

Y
E
S

1
N
O
R

N
O

12
8

10
18
3

16
5

80
7

24
75

38
58

11
92

1.
35

1.
21

Y
E
S

8
N
O
R

N
O

12
8

10
18
1

16
3

76
3

24
82

38
15

12
00

1.
36

1.
20

Y
E
S

16
N
O
R

N
O

12
8

10
18
5

16
7

10
27

29
02

45
09

12
77

1.
15

1.
13

Y
E
S

8
L
O
C

N
O

12
8

10
18
3

16
5

22
27
4

30
16

25
86
6

81
38

0.
20

0.
18

Y
E
S

8
T
E
X

N
O

12
8

10
18
5

16
6

10
70

29
03

45
48

13
20

1.
14

1.
09

Y
E
S

8
N
O
R

Y
E
S

12
8

10
18
3

16
4

10
84

29
40

45
94

12
85

1.
13

1.
12

Y
E
S

8
N
O
R

N
O

64
10

18
5

16
7

78
3

24
65

38
28

11
86

1.
36

1.
21

Y
E
S

8
N
O
R

N
O

25
6

10
18
3

16
5

76
3

25
00

38
39

12
02

1.
35

1.
20

Y
E
S

8
N
O
R

N
O

12
8

5
18
7

17
3

78
1

24
94

38
57

11
89

1.
35

1.
21

Y
E
S

8
N
O
R

N
O

12
8

20
20
1

16
3

76
5

27
09

40
80

12
07

1.
27

1.
19

T
ab

le
A
.2
:
Su

m
m
ar
iz
ed

co
nfi

gu
ra
tio

n
im

pa
ct

fo
r
he
te
ro
ge
ne
ou

s
ve
rs
io
n
of

D
FC

III

	Acronyms
	List of Figures
	List of Tables
	Introduction
	Problem background
	Goals
	Motivation
	Limitations and Scope
	Report structure

	Background
	iot
	nids
	Detection techniques
	Application Example: Snort

	Pattern matching
	Single string matching
	Multiple string matching

	gpu in intrusion detection
	Programming gpu
	Integrated gpu

	Heterogeneous design

	Related work
	Cache-efficient pattern matching
	ffbf
	dfc

	Pattern matching with gpu
	Work segmentation
	gpgpu in embedded systems

	Pattern matching applications
	nids
	Malware detection

	Design & Implementation
	Hardware platform
	The algorithm: dfc
	Motivation
	Implementation

	Optimizations
	Reducing memory transfers
	Increasing work per thread
	Altering OpenCL workgroup size
	Utilizing local memory
	Storing df in texture memory
	Vectorized design
	Overlapping execution

	Evaluation
	Evaluation method
	Metrics & Challenges
	Other algorithms
	Data sets
	Hardware setup
	Experiments

	Results
	Effect of optimizations
	Comparison of dfc variants
	dfc compared to ac

	Discussion
	Effect of optimizations
	gpu version
	Heterogeneous version

	Comparison of dfc variants
	dfc compared to ac
	Ethics & Sustainability
	Future Work

	Conclusion
	Bibliography
	Summary of configuration impact

