

Component-based Capture & Replay vs.
Visual GUI Testing: an Empirical
Comparison in Industry
Master of Science Thesis in Software Engineering

Anmar Khazal

Ármann David Sigurdsson

Chalmers University of Technology

Department of Computer Science & Engineering
Gothenburg, Sweden, June 2014

The Authors grants Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet. The Authors warrants that they are the authors
of the Work and warrants that the Work does not contain text, pictures or other material
that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for ex-
ample a publisher or a company), acknowledge the third party about this agreement.
If the Authors warrants hereby that they have obtained any necessary permission from
this third party to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet.

Component-based Capture & Replay vs. Visual GUI Testing: an Empirical Comparison
in Industry

Anmar Khazal
Ármann David Sigurdsson

c© Anmar Khazal, June 2014.
c© Ármann David Sigurdsson, June 2014.

Examiner: Richard Berntsson Svensson
Supervisor: Emil Alégroth

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Division of Division of Applied Acoustics
SE-412 96 Göteborg
Sweden
Telephone: + 46 (0)31-772 1000

Abstract

Graphical user interfaces (GUIs) are becoming an essential part of all software, which
presents new challenges for high-level testing, i.e. GUI based system and acceptance
testing. Currently, these tests are primarily performed through manual practices that
are associated with problems such as high cost, tediousness and error proneness. These
problems have been proposed to be solvable with automated testing techniques. However,
support for automated high-level testing is still limited as Component-based Capture &
Replay (CC&R), the most commonly used automated GUI based testing technique in
industry today, suffers from various limitations that affect its usability, robustness and
foremost maintainability, which leads to higher costs. However, Visual GUI Testing
(VGT), a novel technique with promising characteristics such as high script robustness,
has therefore been proposed as a more suitable technique in industrial practice than
its predecessor CC&R. However, the body of knowledge regarding the VGT technique’s
applicability is limited in regards to the technique’s maintenance cost and robustness.

This thesis will present an empirical comparison in industry between CC&R and
VGT. The goal of the thesis is to compare the two techniques in an industrial context
and to further bridge the gap in empirical knowledge concerning the VGT technique’s
long term applicability in industrial practice. The thesis work was conducted at Compa-
nyX, which develops schedule and long term planning systems for the avionics industry
and was conducted in two phases. The first phase was a pre-study with the goal of
determining the industrial context of CompanyX. The second phase was an industrial
study performed with a quasi-experimental design which compared and evaluated the
two testing techniques, in terms of development cost, maintenance cost and robustness.

The results from this thesis work showed that there exists a statistically significant
difference between the techniques in terms of development costs and robustness. How-
ever, the results showed that there was no statistical difference between the techniques’
maintenance costs. Furthermore, both techniques were found to be applicable in in-
dustry and are powerful techniques for automated GUI based testing. However, the
techniques have different benefits and drawbacks in different contexts, which indicates
that a combination of the techniques would be the most beneficial. Further research is
however required to verify this claim.

Acknowledgements

I would like to thank my supervisor Emil Alégroth at Chalmers for always being available
and helpful through numerous and almost endless phone calls. This work would have
never been possible without his guidance. I also want to thank my co-author Ármann
for being a rewarding sounding board and terrible fussball player throughout the thesis.
Last but not least, I would like to thank my loving parents Saad and Ithar, my admirable
sister Rana, my hilarious brother Hedir and my wonderful girlfriend Gabriella who have
had faith in me and supported me through good times and bad.

Anmar Khazal, Gothenburg 3/6/14

First, I would like to thank my supervisor Emil Alégroth at Chalmers for his guid-
ance and motivation throughout this thesis. Second, my thanks go to Anmar Khazal for
his co-operation during this thesis work. Thirdly, I want to thank my father Sigurdur,
my mother Sigurlaug, my brother Vilhelm and my sister Margrét for their endless sup-
port during my education and for being my role models. Last but not least, I want to
thank my best Rannveig Ása for her love, faith and support while writing this thesis.

Ármann David Sigurdsson, Gothenburg 3/6/14

Contents

1 Introduction 1
1.1 Goal . 3
1.2 Purpose . 3
1.3 Scope . 3
1.4 Thesis outline . 3

2 Literature review 5
2.1 System and Acceptance test . 5
2.2 Manual GUI based testing . 6
2.3 Automated GUI based testing . 7

2.3.1 Coordinate-based Capture & Replay 7
2.3.2 Component-based Capture & Replay 8
2.3.3 Visual GUI Testing . 10

3 Context description 13

4 Methodology 17
4.1 Scoping . 17
4.2 Planning . 18

4.2.1 Context selection . 18
4.2.2 Hypothesis formulation . 19
4.2.3 Variables selection . 20
4.2.4 Selection of subjects . 21
4.2.5 Experimental design . 22
4.2.6 Instrumentation . 23

4.3 Operation . 23
4.3.1 Preparation . 24
4.3.2 Execution . 24
4.3.3 Data validation . 26

i

CONTENTS

5 Results 27
5.1 Development . 27
5.2 Maintenance . 32
5.3 Robustness . 34

6 Discussion 38
6.1 Development . 38
6.2 Maintenance . 40
6.3 Robustness . 40
6.4 General . 41
6.5 Tool discussion . 42

7 Validity evaluation 44
7.1 Internal validity . 44
7.2 External validity . 45
7.3 Construct validity . 45
7.4 Conclusion validity . 46

8 Conclusion 47

Bibliography 51

ii

1
Introduction

G
raphical user interfaces (GUIs) are becoming the primary means of inter-
acting with software systems [1]. The GUI handles user system interactions,
such as mouse clicks, mouse movements and menu selections. The GUI then
interacts with the underlying code with input events via messages or method

invocations and because the GUI can be complex, it can take up a large part of the
total system code, as much as up to 60% [1]. With this increased use and importance
of GUIs, testing of system correctness through the GUI has become an essential part
of the software verification and validation (V&V) process to ensure software quality
[1, 2]. However, at the same time market demands for faster time-to-market delivery
and higher software quality are increasing, which presents a concern for companies that
rely on manual V&V processes because manual GUI based testing is considered time-
consuming, tedious and error-prone [3, 4]. Automated testing lowers the required manual
effort on test execution and the tests can be executed faster and more frequently than
tests that are executed manually [5].

The most common automated GUI based testing technique in industry today is
called Widget/Component-based Capture & Replay [6, 7], in this thesis referred to as
Component-based Capture and Replay (CC&R). The CC&R technique makes use of
widget/component properties to interact with the system under test (SUT). Hence, the
CC&R technique operates on the GUI component level and therefore requires access
to the underlying code of the SUT [3, 4, 5, 6, 7, 8]. As a consequence, CC&R tools
interact with the SUT through direct GUI component invocation that differs from end
user system usage where SUT interaction is performed through mouse and keyboard
events instrumented by the operating system. Direct GUI component invocation makes
the technique robust to GUI layout change as long as the SUT’s GUI component API
and the structure of component properties, e.g. labels and/or ID numbers, remain
unchanged [9]. However, this property also limits CC&R tools in terms of usability, i.e.
they are only applicable for applications written in certain programming languages, are

1

CHAPTER 1. INTRODUCTION

platform dependent and do not work for distributed systems. Furthermore, despite their
robustness to change, CC&R test scripts are still subject to high maintenance costs due to
required technical knowledge required by the script developer, i.e. knowledge about the
SUT’s inner structure and available GUI component properties [2, 10, 11, 12, 13, 14]. Due
to CC&R’s limitations, despite the technique’s industrial use, we stipulate that further
research and new techniques are required to meet the industrial demand for automated
GUI based testing to replace or complement the currently used costly, tedious and error-
prone manual GUI based testing practices [6].

Visual GUI Testing (VGT) [7] is a novel automated GUI based testing technique
and a successor to CC&R with promising characteristics, e.g. high script robustness
and usability, which could make it a suitable technique to fulfil industrial needs [9].
Unlike it’s predecessor, VGT mimics user interactions with the SUT by using image
recognition to locate and interact with the SUT’s GUI components as shown to the
user on the computer monitor. Hence, the VGT technique operates solely on the SUT’s
GUI bitmap level by comparing expected bitmap graphics to the SUT’s runtime bitmap
graphics [3, 6, 7, 9]. Consequently making the technique blackbox and independent of
SUT implementation, operating system or even platform since no SUT code level access
or knowledge is required for use. The technique’s approach of using image recognition
also makes VGT scripts robust to GUI layout change since expected graphics can be
found anywhere on the monitor. For the same reason, VGT scripts are also not affected
by API code structure changes since the technique does not require access to the SUT’s
underlying code [3, 6, 7, 9]. The VGT technique is a good candidate to solve the problems
that are presented for CC&R, because the VGT technique is perceived to be cheaper
in terms of maintenance since less technical knowledge is required by the test developer
[6, 7].

However, even though studies by Börjesson and Feldt [3] and Alégroth et al. [7]
showcase the technique’s industrial applicability there are still gaps in VGT’s body
of knowledge regarding the applicability and long term applicability of the technique.
Additionally, to the authors’ best knowledge, there are no studies that compare VGT to
it’s predecessor CC&R in an industrial context, perceivably contributing to the sparse
use of VGT in industrial practice [3, 15].

To bridge these gaps in knowledge, this thesis presents an empirical study where
two instances of CC&R and VGT were compared in an industrial context. The com-
parison was performed through a quasi-experiment at CompanyX where quantitative
data regarding the techniques’ development time, maintenance time and robustness were
gathered and analyzed statistically to answer the study’s research questions. Research
questions that encompassed which technique was perceived to be more beneficial in terms
of the above stated metrics, e.g. development time, in the studied context.

Results of the study showed that a statistically significant difference exist between
the techniques in terms of development costs and robustness, but regarding maintenance
cost there was no statistical difference between the two techniques. Furthermore, the
results of this study show that the two techniques have different properties that make
them more suitable in different contexts and for different levels of test abstraction.

2

1.1. GOAL CHAPTER 1. INTRODUCTION

1.1 Goal

The main goal of this thesis is to compare the mature CC&R technique and the novel
VGT technique in terms of the metrics; development and maintenance cost measured as
time and robustness, in order to determine which technique has the better applicability
for each metric. In order to reach this goal, comparative data gathered will be gathered
and analysed in a quasi-experiment, conducted in an industrial context. Moreover,
our sub-goal is to further bridge the empirical gap in knowledge concerning the VGT
technique’s long term applicability in the industrial context. In addition, our meta-goal
is to determine if it is beneficial, in terms of the investigated attributes, for CompanyX
to change their current GUI based testing technique from CC&R to VGT.

1.2 Purpose

Hence, the purpose of this thesis is three-fold, (1) to compare the CC&R technique and
the VGT technique in an industrial context, (2) to find empirical evidence regarding the
costs associated with VGT and thereby contributing to the body of knowledge regarding
the technique’s long term applicability in industrial practice, (3) to provide a more
general contribution to the area of automated testing through the novel comparative
industrial study of the CC&R and VGT technique.

1.3 Scope

The scope of this thesis work is limited to comparing the techniques CC&R and VGT by
using only two tools within an industrial context. Furthermore, the open source VGT
tool Sikuli was considered to be included in the study but because of time constraints it
was discarded.

In addition, the outcome of this thesis work is perceived to only be generalizable for
similar contexts as the one at CompanyX. Thus, because of the limited scope, this work
is not considered holistic and further research is required to verify the findings presented
in this thesis for other tools, companies and contexts. However, despite the limited
scope, the study provides a general contribution to the body of knowledge of automated
testing and a particular contribution to the limited body of knowledge of VGT.

1.4 Thesis outline

The Introduction section is followed by the Literature review section 2, which describes
different levels of testing and the different GUI based testing techniques. The Literature
review section also describes the tools that were used to represent the techniques in this
study and it is followed by the Methodology section 4. In the Methodology section the
company where the study was conducted is described as well as the research methods
that were used to acquire the thesis work results. The results are presented in the

3

1.4. THESIS OUTLINE CHAPTER 1. INTRODUCTION

Results section 5 together with an analysis of said results. The analyzed results are then
discussed and elaborated on in the Discussion section 6. Thereafter the threats to the
result’s validity is presented in the Validity evaluation section 7. Finally the thesis work
is concluded in Conclusion section 8.

4

2
Literature review

G
UIs are becoming the primary method of interacting with software systems
and developers are dedicating a large amount of software code into GUI im-
plementation [1]. GUIs can constitute as much as 60% of the total software
code [1] and therefore a common practice has become to perform GUI based

system tests in order to ensure the correct operation of the overall software system [2].

2.1 System and Acceptance test

Testing of a software system is often done at different phases in the development process
and testing at each phase serves a different purpose citealegroth2013industrial. In the
early phases of a development process, testing is mostly done through unit testing of
individual components [9]. Unit testing is a process of testing individual components,
subprograms or procedures in the system, with the purpose to compare the actual output
of a component, subprogram or procedure to an expected output [16]. Unit tests interact
with the SUT directly through the source code and are therefore said to be performed
on the lowest-level of a system abstraction [9], see Figure 2.1. In contrast, tests that
are performed on the highest-level of the system abstraction, interact with the SUT
through the GUI, e.g. system and acceptance tests [9]. Although, it is not always the
case that system tests interact with a GUI they can also be performed on the system
component level [9], see Figure 2.1. The purpose of a system test is to verify that all
the components of the SUT work correctly together and that the SUT complies to the
system’s requirements [9, 16]. A requirement is a specification of a functionality or a
condition that the system must possess or meet in order to satisfy the customer’s or
end-user’s needs [17]. However, system tests do not assess if the SUT actually complies
to the customer’s or end-user’ needs [16]. Compliance to customer or end-user needs are
instead validated in acceptance tests [16].

5

2.2. MANUAL GUI BASED TESTING CHAPTER 2. LITERATURE REVIEW

Figure 2.1: Visualization of a general model of the abstraction levels of a system.

Currently, companies often use manual practices for GUI based system and acceptance
tests, which are associated with tedious, time-consuming and error prone practices [9].
To mitigate the issues with these manual practices, test automation has been proposed
as a solution [9]. However, most automated tests are performed on the lower levels
of system abstraction, e.g. unit tests, and therefore perceived unsuitable for high-level
tests, e.g. system and acceptance test [9, 18]. The reason is because a test on one level
of system abstraction has different goals and different test logic than a test on another
level of abstraction [18]. Unit tests for system tests are difficult to create because the
unit tests have to include both the logical and chronological behavior of the individual
components that the system tests aim to verify [18].

Nonetheless, automation techniques for GUI based tests exists, and will be presented
in the following section with further discussion on the difference of manual and automated
GUI based testing. Furthermore, different techniques to develop automated GUI based
test scripts will be presented. In particular, the text will elaborate on the techniques
that were used during this thesis work.

2.2 Manual GUI based testing

Manual GUI based testing is a commonly used approach for testing and quality assurance
in software industry [6]. One type of manual testing is scenario-based manual testing,
which is performed by a tester or developer that interacts with the SUT’s GUI, i.e. by
clicking on buttons or components on the screen, in a scenario predefined in a test case
specification [10]. After the tester has performed an, or several, interaction(s) with the
GUI component(s), (s)he manually verifies that the outcome on the screen is correct
according to an expected result [10]. Each test case specification can contain several

6

2.3. AUTOMATED GUI BASED TESTINGCHAPTER 2. LITERATURE REVIEW

scenarios and the scenarios can vary in length [9]. When the scenarios are long, the test
case execution will take a long time to perform manually and will become tedious, which
can lead to mistakes during the test execution [9].

Furthermore, since software systems are prone to change, they should be regression
tested. Regression testing is a testing practice that is performed after a modification
has been done to the system and is performed by rerunning all, or a set, of test cases to
determine if the modifications have affected other previous working parts/functions of
the SUT [16]. Manual GUI based regression testing can be associated with significant
cost, especially if many test cases need to be rerun [10, 19]. Therefore, the process of
manual regression testing is tedious, time consuming and can accounted for as much as
50-60% of the total software development cost [10, 19]. Hence, by automating the GUI-
based test cases it would be possible to execute the tests quicker and more frequently
than running the tests manually and thereby reduce the test effort and development
cost of the SUT [5]. However, as previously mentioned, the techniques that support high
level test automation have limitations that adversely affect their applicability.

2.3 Automated GUI based testing

Automated GUI based testing is tool-driven by tools where test cases are defined as
scripts that are implemented using a scripting language, e.g. VBScript1 [5]. These scripts
define scenarios of actions that when executed, result in interactions being performed
on the SUT’s GUI, i.e. automatic input to the SUT [5]. Furthermore, these test scripts
assert whether the SUT executed as intended, i.e. reported correct GUI output, and
report any assertion violations as a test execution failure [5, 20]. These test scripts
significantly reduce manual execution effort, because once the test cases are developed
they can easily be re-executed [5, 20]. However, the scripts are still associated with
a development cost, which for a large test suite can be substantial, especially in tools
where the scripts need to be written manually [20]. To mitigate these cost, many tools
for automated GUI based testing also support script recording [20], a practice that will
be described in detail in the following subsection.

2.3.1 Coordinate-based Capture & Replay

The first generation of automated GUI based testing techniques relies completely on
coordinates for recording and playback of test scenarios and is therefore referred to as
Coordinate-based Capture & Replay (C&R) [6, 9]. The technique can be described in
two steps. In the first step the user’s manual interactions with the GUI, such as keyboard
strokes, clicks at a set of coordinates, etc., are recorded in a test script. In the second
step the recorded test script is replayed to automatically interact with the SUT, thereby
automatically re-executing the scenario [1, 3, 6, 7, 9]. Thus automatically asserting the
system’s correctness, i.e. automated verification that the system behaves according to
it’s requirements specification [1, 6]. However, the Coordinate-based Capture & Replay

1http://www.visualbasicscript.com/

7

http://www.visualbasicscript.com/

2.3. AUTOMATED GUI BASED TESTINGCHAPTER 2. LITERATURE REVIEW

technique’s scripts are fragile to GUI layout change [7, 15]. That is, if changes are made
in the GUI layout after recording, the recorded coordinates may no longer be valid. This
may in turn cause the script to fail when executed. Thus, the C&R technique suffers
from limitations that affect the technique’s usability, cost, robustness and maintainability
[2, 10, 11, 12, 13, 14].

However, despite the techniques fragility to GUI layout change, the technique’s
scripts are perceived as robust to changes in the SUT’s code or API, given that the
changes do not affect the GUI [6, 7, 15]. This is because the technique operates mainly
on the GUI bitmap level, i.e. test scripts are carried out by replaying interactions at
exact coordinates on the monitor [6, 7].

2.3.2 Component-based Capture & Replay

Scripts developed in the second generation of automated GUI based testing techniques,
here referred to as Component-based Capture & Replay (CC&R), are robust against GUI
layout changes but fragile to API or code changes that affect the GUI components prop-
erties. The reason is because most CC&R tools acquire said GUI component properties
through direct access to the source code of the SUT. Thus, the CC&R technique operates
solely on the GUI component level. [3, 4, 5, 6, 7, 8]. To exemplify, during recordings of
manual user interactions, the technique captures properties such as id, type or methods
of GUI components. These GUI components are typically buttons, text fields or images.
The captured properties are later used during playback of the test script to identify and
interact with the SUT’s components. For example, a component can be identified and
located through its unique id property and/or unique name. Furthermore, interaction
with a component can be performed by invoking the component’s methods, such as a
buttonclick [4, 6].

However, in order to assert the correctness of a SUT during script playback, verifi-
cation points needs to be added to the test scripts that include the state of a set of SUT
GUI component’s properties after a set of inputs have been given [21]. For this reason,
the verification points can be compared to snapshots of the SUT’s state at a certain
point in time. The verification points are then used to verify that the SUT reaches the
same expected state during playback of a scenario by comparing the expected state with
the actual state [9].

The usage of component properties is therefore perceived to make the CC&R tech-
nique more flexible and robust than the C&R technique when it comes to GUI layout
changes [4]. However, CC&R’s main drawback is that the component interactions makes
the technique intrusive, i.e. it requires access to component property information and
underlying source code of the SUT and therefore treats the SUT as a white-box [9].
Because of this property, most CC&R tools are limited to work with a certain set of pro-
gramming languages or GUI libraries, i.e. no tool supports all programming languages
even though there are tools that use the Windows operating system environment to in-
teract with any windows component regardless of implementation, e.g. TestComplete
[6].

8

2.3. AUTOMATED GUI BASED TESTINGCHAPTER 2. LITERATURE REVIEW

Consequently, the CC&R technique suffers from limitations that affect the tech-
nique’s usability, cost, robustness and foremost maintainability [2, 10, 11, 12, 13, 14].
Between 30 to 70 percent of CC&R test scripts require maintenance even after minor
changes to the SUT, i.e. code or GUI layout changes [11, 12, 18], which affects the
CC&R technique’s applicability negatively and increases the amount of maintenance the
test scripts require [8, 11, 12, 18].

Additionally, the CC&R technique does not interact with the GUI like a human tester
manually would [9], e.g. instead of clicking on a button on the GUI through the operating
systems mouse click functionality the tools invoke the click through the button’s click
method. Another example of the difference is when GUI components have been defined
that are not set to be visible on the monitor. When this is the case, the technique can
still identify the invisible components and interact with them, which would be impossible
for a human [6, 13]. Consequently, such cases may cause inaccurate assertions results,
i.e. false-negative results or false-positive results. Hence, resulting in verification points
failing although no defect exists and verification points passing although a defect exists
respectively.

Although the CC&R technique possesses beneficial properties that support its use
for GUI based testing in practice, it has limited applicability for distributed software
systems, cloud-based systems with limited access to the back-end and systems that are
written in several programming languages. Furthermore, as mentioned, it is limited
to testing systems written in the limited set of languages that the used CC&R tool
supports. Due to CC&R’s limitations further research into GUI test automation and new
techniques is needed, despite the fact that CC&R’s limitations are context dependant
[6].

QuickTest Professional

As mentioned, CC&R is a tool-driven technique and the CC&R tool that was used in this
thesis work is Hewlett Packard’s Quick Test Professional (QTP) version 11.00 [22, 23].
QTP is capable of recording user interactions on both high and lower levels of system
abstraction, see Figure 2.1. To clarify, lower level recordings are performed through
component level recordings. The high level recordings are performed at GUI bitmap
level by using exact coordinates on the screen, i.e. the C&R technique. During low level
recordings, QTP only captures information about windows and their components, such
as text fields and buttons. This feature is called Object Recognition and the objects
with their respective properties are stored in an object repository. The object repository
allows the user to reuse saved objects and thus lower the development time of new test
scripts. QTP also allows the user to choose which components should be stored. For
example, the user can choose to only store the components that the user interacted with,
all components in a certain window or component of a specific type. In contrast, during
high level recordings the tool records all mouse movements, clicks and keyboard inputs
instead. This is advantageous when the user wants to interact with an object that is
not well defined, e.g. flash animations and drawing tools. QTP also allows users to
write and execute automated GUI tests using a scripting language, i.e. Visual Basic

9

2.3. AUTOMATED GUI BASED TESTINGCHAPTER 2. LITERATURE REVIEW

Script. The tool can also record a test log when requested. The scripts may be set up
to perform an action repeatedly, e.g to iterate over sets of data, such as spreadsheets.
Furthermore, assertions in the tool are called Checkpoints and determine if a test passes
or fails. Different types of checkpoints compare different types of data, e.g. text, object
status and and even bitmaps can be asserted if they exist in a particular place on the
screen with image recognition. Furthermore, QTP allows the user to create and share an
Action among test scripts, where an actions is comparable to a function. Hence, actions
contain code and allows reuse of code [22, 23].

2.3.3 Visual GUI Testing

The third generation of automated GUI based testing techniques is referred to as Visual
GUI Testing (VGT) [7]. VGT is a novel script and tool based testing technique and,
like its predecessors, is used to create automated GUI based tests [6]. The technique
uses image recognition for GUI interactions instead of GUI component coordinates or
properties like the C&R and CC&R technique. In other words, the VGT technique uses
image recognition to locate and interact with GUI bitmap components, i.e. by using the
actual graphics shown on a monitor [3, 6, 7, 9]. A VGT script scenario generally starts
by the VGT tool giving input to the SUT, e.g. keyboard strokes or mouse clicks. The
new state of the system is then observed and compared to some expected output using
image recognition [7]. Because of the image recognition’s ability to identify a bitmap on
the GUI regardless of it’s position on the screen, this technique is robust to GUI layout
change [3, 6, 7, 9].

VGT is supported by automated GUI testing tools like Sikuli [24], JAutomate [15]
and UFT [25, 26]. In addition, these tools support the C&R technique as well [7]. Fur-
thermore, VGT is an emerging technique in industrial practice [6, 7, 15], that treats
the SUT as a black-box and is said to be non-intrusive, i.e. the technique does not
require any access or even knowledge about the SUT’s implementation, e.g. program-
ming language, operating system or platform [9]. Consequently every VGT tool can
interact with, and test, any application regardless if it is desktop, web or even mobile
applications. Thereby, solving CC&R tools’ limitation of being intrusive because they
are whitebox [15].

On one hand, VGT scripts are robust to layout, API and even code changes, while on
the other hand, the image recognition make the scripts fragile to GUI graphic changes,
such as change of component size, color and shape [3, 6, 7, 9]. In addition, VGT suffers
from a problem that is common to all GUI based testing techniques, i.e. that the VGT
scripts need to be synchronized with the SUT’s state transitions [9]. This is supported
by all VGT tools by adding delays to the scripts in order to synchronize the script
execution with the SUT’s execution. Hence, the delays are used to let the SUT’s GUI
reach a stable state before continuing with the test script execution [6].

Although recent studies [3] have shown that VGT is applicable for automated system
testing in industry and indicated that it can be used also for acceptance testing, the
technique still suffers from challenges, problems and limitations. Many of which stem
from the technique’s immaturity and have been shown to cause developer frustration,

10

2.3. AUTOMATED GUI BASED TESTINGCHAPTER 2. LITERATURE REVIEW

add to development and maintenance costs, etc. One of the core challenges is related to
the image recognition algorithms used in the tools, which is not always deterministic,
leading to false-positive test results, i.e. the algorithms fail to find an image that is
shown on the screen [6].

However, a study conducted by Alégroth et al. [6] shows that most of the VGT
limitations discovered in their findings are perceived as manageable, which is an im-
portant result that supports the long-term industrial applicability of VGT. However,
the study also states that in order to make any conclusion regarding the technique’s
long-term applicability, additional future research is required to fill other gaps in VGT’s
body of knowledge, e.g. knowledge about the technique’s script flexibility, robustness
and maintenance costs [6]. In addition, VGT’s maintenance costs are particularly impor-
tant to evaluate since it is been reported as one of the core problems for the technique’s
predecessors [15].

Unified Functional Testing

The VGT tool that is used in this thesis work is Hewlett Packard’s Unified Functional
Testing (UFT) version 11.52 [25, 26]. UFT consists of two previous tools developed
by HP, i.e. QuickTest Professional (QTP) and Service Test2. This means that UFT
possesses the functionality and strengths of its predecessor QTP, but has a more user
friendly GUI and is extended with additional key functionality, such as Insight Object,
an image recognition based feature. The Insight Object’s functionality can be used
in the full range of UFT’s capabilities, such as recording test cases and asserting SUT
correctness. In Insight Object’s recording mode, images are captured of components that
are interacted with through mouse clicks and then stored in the script’s object repository.
In order to allow easier test maintenance, several images of the component are stored in
the Insight Object automatically by the tool, during the recording mode. By using an
image editor the user can select the most appropriate image of the component, as well
as modify the associated interactions and the area of the picture that should be used
when finding a match in the SUT. Insight Object also provides additional functionality
to exclude certain areas of the component when matching the image against the SUT.
This is useful for instance when the SUT’s objects contain text that is non-deterministic,
e.g. if the SUT supports different languages, the text part of an object like a button can
be excluded to make the scripts executable for all of the SUT’s supported languages.
Insight Object also has a feature for determining at what similarity level a found image
on the screen could be considered a match. The similarity represents the delta difference
between the actual and the expected output from the SUT. This feature allows the user
to define the threshold for the image recognition algorithm. This similarity level is based
on a percentage that can vary between 1 and 100% similarity to the originally captured
image. UFT also allows the user to manually verify what object in the application the
Insight Object was matched against through a preview feature. This feature is useful

2http://www.starbase.co.uk/what-we-sell/hp/functional-testing/hp-service-test-

software.htm

11

http://www.starbase.co.uk/what-we-sell/hp/functional-testing/hp-service-test-software.htm
http://www.starbase.co.uk/what-we-sell/hp/functional-testing/hp-service-test-software.htm

2.3. AUTOMATED GUI BASED TESTINGCHAPTER 2. LITERATURE REVIEW

when troubleshooting a broken script, e.g. when the tool matches an object to the wrong
component in the SUT. Furthermore, this match preview highlights the object in the
application with a blinking black frame around the object [25, 26].

12

3
Context description

T
he thesis work was conducted in an industrial context at one department in
CompanyX1. The company develops schedule and long term planning systems
for the avionics industry. CompanyX has several departments and each depart-
ment develops their own software. The department, where this thesis work was

conducted, develops a software that allows airline companies to allocate and maintain
their human resources, such as planning vacations, schedule trainings, and manning air-
crafts. The department will be referred to as DepartmentX2 in the remainder of this
thesis. The system that DepartmentX develops is developed with .NET, Python and
Java and the GUI contains standard .NET GUI components with additional components
from a 3rd party software. The system will be referred as SystemX3 for the remainder
of this thesis.

The employees at Department X work according to the agile development process
Scrum [27]. The department consists of two teams and within the teams everyone works
both as a developer and a tester. Thus, all team members are responsible for writing
tests, both unit tests and GUI-based test scripts, as well as implementing source code.

Each team has one product owner but one product manager is central for the whole
department. The role of the product manager is to gather requirements from the cus-
tomer while the product owners’ role is to determine what features should be imple-
mented in each sprint and to assign features to the teams. The teams share responsibility
for features and every task that is put on the Scrum board is something that each team
must solve together. Each sprint is 2 weeks long and the teams strive to have a new
release ready for the stakeholders at the end of every week. A stakeholder is a person or
an organization who affects or can be affected by the system [17], e.g. developer/tester
at CompanyX and airline companies.

1CompanyX is kept anonymous due to a non-disclosure agreement.
2DepartmentX is kept anonymous due to a non-disclosure agreement.
3SystemX is kept anonymous due to a non-disclosure agreement.

13

CHAPTER 3. CONTEXT DESCRIPTION

The teams also use continuous integration and develop GUI based test scripts in
parallel with the feature development. The developer who is responsible for a system
feature is also responsible that one or several test script(s) are developed for it. When a
test script fails, one member from the team is responsible for investigating why the test
failed and either report the failure as a defect in the system or fix the test script. This
team member is referred to as a test coach and team members take turns in having this
role each week, e.g. a team member is only test coach for one week and then another
team member takes over. This role distribution is performed in order to spread test
script knowledge and distribute the burden of investigating test script failures.

At the time of the thesis work, DepartmentX used the tool QuickTest Professional
(QTP) version 11.00 for their automated GUI based testing and therefore QTP version
11.00 was chosen to represent the CC&R technique in the thesis work. The department
uses QTP because they get good support from HP, the tool is widely used by other
companies and because there exist a lot of online documentation for the tool. However,
according to CompanyX, QTP has problems, for instance with recognition of 3rd party
software components and to test pop-up menus associated with right clicks. Due to
the identified limitations, CompanyX is planning to switch to another HP product,
namely Unified Functional Testing (UFT), version 11.52, to do their automated GUI-
based testing. UFT fulfills the definition of a VGT tool, i.e. that it can interact with, and
assert, a SUT through image recognition based actions [ref] and was therefore chosen
to represent the VGT technique in this thesis work. Other CC&R and VGT tools
were available but due to resource constraints, no other tools than QTP and UFT were
included in the study. In addition, CompanyX had already purchased licenses for UFT
and adding a new tools to the comparison could potentially have added additional costs
for CompanyX and because of the study’s time constraints adversely affected the quality
of the results.

SystemX is a software system made for the avionics industry that facilitates airline
companies with functionality to create and maintain long-term planning schedules for
flight crews. The purpose of SystemX is to control the balance of crew supply and
demand, and make more precise budgets and forecasts. The input data that the airline
companies provide to the system are for example flight schedules, crew data, training,
leave balances and vacations.

When testing SystemX, the system is executed in a test environment. This test envi-
ronment always includes specific test data to be used with the latest build of SystemX.
When starting up SystemX in a test environment, a window called the Launcher window
is first displayed. From the Launcher window it is possible to either install the system
or start it, through selections in the window. SystemX is not launched with any default
data, instead the tester has to load a data workset. A workset is a subset of a complete
data set provided by an airline company and is only for a specific period of time, with
a defined start date and an end date. Furthermore, the system consists of 5 modules
and each module contains commands and views for specific sets of data in the work-
set. For example, the Training module contains only the view and commands regarding
the training data, i.e. data regarding training activities for the airline company, in the

14

CHAPTER 3. CONTEXT DESCRIPTION

workset.
The GUI client for the system is programmed with .NET while the server is based

on both Python and C++. The server side of the system will not be discussed any
further since it is not relevant to this thesis work because it does not have a GUI. As
such, the thesis work was focused on the client of SystemX. The client’s GUI consists of
standard .NET GUI components with additional components from the 3rd party software
DevExpress4. The GUI does not change much between releases and is not refurbished
unless there is a decision to fully redesign modules. Figure 3.1 gives an overview of how
the GUI is structured. On the top of the GUI is a Menu bar which contains menu items.
Each menu item in the Menu bar is a button and produces a menu list when pressed.
Every menu list contains several list items which represent the commands that can be
performed, e.g. create, edit, open some information window, etc. The Toolbar consists
of shortcut icons for actions such as save, print and open new workset. The Workspace
is by default empty until the user loads a workset. When a workset has been loaded it is
possible to select different views to display in the Workspace. The views can be selected
from the Workset Explorer. The data in the Workspace is most often represented in
grid tables or spreadsheets. With the grid tables it is possible to filter the data or do
data manipulations such as create, update and delete. The GUI itself contains a lot
of menus, pop-up menus and pop-up windows which appear when the user presses an
icon, toolbar button or right-clicks on the grid table. Because of the many features and
views of SystemX it is considered to have a rich GUI, in contrast an application like a
calculator can be considered to have a lean GUI.

4https://www.devexpress.com

15

https://www.devexpress.com

CHAPTER 3. CONTEXT DESCRIPTION

Figure 3.1: An overview of SystemX’s GUI.

Some of the GUI’s functionalities, i.e. not well defined 3rd party components, have
proved to be difficult for DepartmentX to verify with QTP. Therefore, the development
and maintenance of the GUI based tests have been costly and it is desired to create a
GUI-based test architecture that uses the VGT technique because it is perceived to lower
development and maintenance costs, e.g. because more functionality can be tested and
the perceived robustness of the UFT tool. DepartmentX has started a transition into
VGT but had at the time of the thesis work only migrated a few QTP test cases into
UFT test cases.

16

4
Methodology

I
n order to do an empirical comparison of the automated GUI based testing tech-
niques CC&R and VGT, an industrial study was designed that followed the experi-
mental guidelines of Wohlin et al. [28]. Experiments are preferable to, for instance,
case studies when comparing and measuring what effect two different treatments

have on a phenomenon, because they are performed in a controlled environment [28].
In this case the phenomenon was the GUI based testing and the treatments the two
different GUI based testing techniques, whilst the independent variables of interest were
development time, maintenance time and robustness.

However, the industrial study could not fulfill all experiment guideline criteria, and
therefore the industrial study has been classified as a quasi-experiment. A quasi-experiment
has the same purpose and goal as a true experiment but in a quasi-experiment the as-
signments of treatments, in this case the techniques CC&R and VGT, to the subjects can
not be completely randomized [28]. Hence, not all influences of the dependent variables
on the independent variables could be removed but were mitigated wherever possible
through randomization, as explained in subsection 4.2.4.

The quasi-experiment was divided into 4 phases; Scoping, Planning, Operation and
Analysis [28]. The following sections will describe the quasi-experiment process for the
industrial study, with exception of the analysis phase that will be presented in section 5.

4.1 Scoping

The purpose of the Scoping phase was to determine and formulate the goal of the in-
dustrial study. The goal should include the following: Object of study, Purpose, Quality
focus, Perspective and Context [28]. Therefore, the goal for this industrial study was
defined as:

” The goal of this industrial study was to compare the mature CC&R technique and

17

4.2. PLANNING CHAPTER 4. METHODOLOGY

the novel VGT technique in terms of the metrics; development and maintenance cost
measured as time and robustness, in order to determine which technique has the better
applicability for each metric”

4.2 Planning

The purpose of the Planning phase was to determine how the study would be conducted.
The planning phase is divided into 7 individual steps; context selection, hypothesis for-
mulation, variables selection, selection of subjects, experimental design, instrumentation
and validity evaluation [28]. The following sections will present each step. However, the
study validity has been omitted and is instead discussed in section 7.

4.2.1 Context selection

The context selection describes the environment in which the study, in this case quasi-
experiment, will be executed [28]. The purpose of the context selection is to try to make
the experiment results as generalizable as possible, i.e. to strengthen the study’s external
validity. The environment can be characterized in four dimensions; offline vs. online,
student vs. professional, toy vs. real problems and specific vs. general [28]. The context
for the industrial study was defined as:

Study type: Offline

Participants: Students

Problem: Real problems

Generalizability: Specific

Table 4.1: The context definitions for the industrial study.

Firstly, the context was defined as offline since it was not planned with the purpose of
customer delivery and also because CompanyX did not plan to use the test cases devel-
oped in this thesis in any real development project. Secondly, the industrial study would
be conducted by students, i.e. the authors, rather than professionals. Since the study
was aimed at evaluating the techniques in an industrial context, it had been preferable
from a validity point of view if the study had been conducted by industrial practitioners.
However, because of resource constraints it was not feasible to use industrial practi-
tioners. Instead, the students acquired as much domain knowledge as possible such that
they could perceivable represent novice engineers at the company. Thirdly, the industrial
study would cover real problems rather than toy problems, since the data acquisition
and technique comparison was performed based on real test cases from CompanyX for
a real, yet offline, system, i.e. SystemX. Fourthly, the context was defined as specific
rather than general, since the study would be performed within the industrial context of
DepartmentX in CompanyX. Consequently, the results are only perceived generalizable

18

4.2. PLANNING CHAPTER 4. METHODOLOGY

to similar contexts as that of DepartmentX in CompanyX and systems similar to Sys-
temX. Therefore the context has been described in rigorous detail to ensure replicability
and external validity of the results within said context.

4.2.2 Hypothesis formulation

Hypothesis testing is the basis for statistical analysis and the hypothesis or hypotheses
need to be stated formally prior to any data collection and the study needs to be designed
to ensure that the collected data is valid for answering the hypotheses [28].

For the industrial study there were three quality aspects that were of interest for
the comparison between the studied tools: development time, maintenance time and
robustness. However, these aspects are ambiguously defined in literature and therefore
we have presented the definitions that were used during the thesis work, for each aspect,
below:

Development time (cost) was defined as the time it took to develop and verify correct test
execution per test script for one version of SystemX. The measured development time
was considered more beneficial the lower it was. Hence, the most beneficial technique in
terms of development time was the technique with the lower average development time.

Maintenance time (cost) was defined as the time it took to adjust or change a test script
and verify correct test execution on another version of SystemX than the version the
script was developed for. The measured maintenance time was considered more benefi-
cial the lower it was. Hence, the most beneficial technique in terms of development time
was the technique with the lower average maintenance time.

Robustness was defined as the chosen technique’s ability (CC&R or VGT) to execute
a test script despite of abnormal behavior in SystemX. The observed robustness was
considered more beneficial the less action, e.g. additional script development, the tester
was required to do in order to mitigate script failure due to abnormal SystemX behavior.

The hypotheses for which quantitative information were collected were therefore for-
mulated to allow for formal statistical analysis, e.g. with a T-test or Wilcoxon rank
sum test. The reason for the choice of said type of tests was because it was not known
prior to the thesis work which technique would be the least costly or most robust. Thus
motivating a need for unbiased hypotheses, as given by the above stated tests, to gain
an unbiased view of which technique was more effective for each quality aspect and as
a whole based on all collected results. The following hypotheses were defined for the
industrial study:

Development time

• H01 : There is no difference in average development time between the CC&R tech-
nique and the VGT technique.

19

4.2. PLANNING CHAPTER 4. METHODOLOGY

• H11 : There is a difference in average development time between the CC&R tech-
nique and the VGT technique.

H01 : µCC&R = µV GT

H11 : µCC&R 6= µV GT

Maintenance time

• H02 : There is no difference in average maintenance time between the CC&R
technique and the VGT technique.

• H12 : There is a difference in average maintenance time between the CC&R tech-
nique and the VGT technique.

H02 : µCC&R = µV GT

H12 : µCC&R 6= µV GT

Robustness

• H03 : There is no difference in average robustness between the CC&R technique
and the VGT technique.

• H13 : There is a difference in average robustness between the CC&R technique and
the VGT technique.

H03 : µCC&R = µV GT

H13 : µCC&R 6= µV GT

4.2.3 Variables selection

Before creating the experimental design for the industrial study it was necessary to
choose the dependent and independent variables. The independent variables are the
variables that can be controlled and changed in the experiment and dependent variables
are variables that are affected by manipulating or changing the independent variables
[28]. The dependent variables are the variables that will be measured and were therefore
categorized as:

Independent variables

• CC&R

• VGT

Dedependent variables

• Development time

• Maintenance time

• Robustness

20

4.2. PLANNING CHAPTER 4. METHODOLOGY

4.2.4 Selection of subjects

In the Context selection, section 4.2.1, it was stated that the industrial study would
be conducted by the authors themselves, due to resource constraints, which lead to
convenient sampling of the study’s subjects. This sampling is also the reason why the
industrial study was classified as a quasi-experiment instead of a true experiment, since
the selection of subjects could not be randomized as prescribed for a true experiment.

However, the test case selection and implementation was randomized. CompanyX
provided the authors with natural language design specifications for 40 valid test cases
for SystemX that had previously been implemented in QTP. The test cases’ design
specifications included pre-conditions and several test steps for each test. The pre-
conditions contained criteria, i.e. the state that SystemX must fulfill before executing
the test steps. For example, a typical pre-condition was that SystemX was started and
loaded with a certain workset. Furthermore, each test step described an action that the
tester should perform on SystemX and the expected result of that action. An example
of what a design specification could look like is presented in Table 4.2.

Precondition 1 SystemX started

Precondition 2 Workset X loaded

Test Steps Action Expected results

Step 1 ”Click on the Crew icon” “Crew view is displayed”

Step 2 “Select crew xyz” “Crew xyz is selected”

...

Step N

Table 4.2: Example of a test case design specification was structured.

After the design specifications had been obtained, the test cases were categorized into
four categories; long, short, simple and complex. A test case was categorized as long if it
contained five or more test steps, because the average test steps of the provided 40 design
specification was 4.8. Furthermore, a test case was categorized as complex if any test
step contained data manipulation, e.g. create, update and delete, or an assertions of the
correctness of a table value. Data manipulation and table assertions were categorized as
complex since they were perceived to be cumbersome to implement with both techniques
prior to the thesis work. Each test case got two categorization and belonged to one of
the following groups; long and simple, long and complex, short and simple and short
and complex

After all 40 test cases had been categorized according to this scheme, 20 test cases
were selected at random to be implemented in the two techniques. In addition, analysis
of the set of 20 implemented tests showed that the minimum number of test steps in a
specification was two, the maximum number was 11 and the average number was 5.5,
which is perceived to cover the range of most general test cases for SystemX. The reason

21

4.2. PLANNING CHAPTER 4. METHODOLOGY

why not more than 20 test cases were chosen for implementation was due to resource
constraints.

The distribution of categorizations was seven Short and Simple, three Short and
Complex, four Long and Simple and lastly six Long and Complex test cases. The
resulting sample was perceived suitable for the thesis work due to its even distribution
among the four categories.

Categorization No. of test cases

Long & Complex 6

Long & Simple 4

Short & Complex 3

Short & Simple 7

Table 4.3: The categorization of the 20 test cases.

4.2.5 Experimental design

According to Wohlin et al. [28] there are three general design principles for an experi-
ment or a quasi-experiment and most of them use some combination of these principles;
randomization, blocking and balancing. The following section will explain what design
principles were applied in the industrial study.

Randomization
In an experiment or a quasi-experiment randomization can be used to select subjects to

represent the population of interest and to distribute objects among the subjects [28]. As
mentioned before, the industrial study was classified as a quasi-experiment, since there
were only two human, uncontrollable, subjects and the objects, i.e. test cases, which
were not randomly assigned to the subjects. Rather, a plan was created in order to
divide the usage of the techniques between the subjects. The plan consisted of switching
the testing tools between subjects after a test case had been implemented, as can be seen
in Table 4.4. The plan was expected to reduce the learning effect of a subject only using
one tool consistently, which could have affected the results by consistently lowering the
development time for one of the techniques/tools. However, the drawback of the test
implementation plan was that it could take time for the subjects change mindset after
switching from one technique to the other, which is perceived to have had an affect on
the measured development time. However, since the used tools have many similarities,
this switch effect is considered negligible.

22

4.3. OPERATION CHAPTER 4. METHODOLOGY

Test case Subject A (Author A) Subject B (Author B)

1 QTP (CC&R) UFT (VGT)

2 UFT (VGT) QTP (CC&R)

3 QTP (CC&R) UFT (VGT)

4 UFT (VGT) QTP (CC&R)

5...n Switch tool Switch tool

Table 4.4: Visual representation of test case development procedure used.

Balancing
Quasi-experiments and experiments have a balanced design when the treatments in the
experiment have equal number of subjects [28]. By having a balanced design the statisti-
cal analysis of the data becomes more simple and the analysis is perceived to be stronger
than an analysis from a non-balanced design [28]. This industrial study had a balanced
design, due to the subjects developed the same amount of test cases for each technique.

4.2.6 Instrumentation

There are three types of instrumentation for a quasi-experiment or an experiment; in-
strumentation objects, guidelines and measurement instruments [28].

For the industrial study, guidelines were created for the data collection. The guide-
lines described the data collection process that was used during script development, i.e.
what data to collect and when to collect it. In addition the guidelines specified when
the development of a test from the test design specification was considered completed.

A spreadsheet was used as the measurement instrument for the quantitative data
collection for the techniques’ script development time, maintenance time and robustness
measurements. The data collection guidelines described in the previous paragraph helped
ensure that the data collection was performed systematically. For definitions of collected
metrics the reader is referred to the Hypothesis formulation in section 4.2.2.

The script development and execution was performed on laptop computers with 64-
bit Windows 7 operating systems, each with 4 GB RAM and Intel i7-2620 CPUs clocked
at 2.70 Ghz. Furthermore, the screen resolution that was used during script development
was 1600x1024 pixels. The resolution of the computers is added here since it is perceived
to affect the speed of the image recognition as well as the size of the captured images in
UFT.

4.3 Operation

During the Operation phase, the industrial study was executed and the comparative data
about the two respective techniques CC&R and VGT was collected. The Operation

23

4.3. OPERATION CHAPTER 4. METHODOLOGY

phase is divided into 3 individual steps; Preparation, Execution and Data validation.
The following subsections describe each of the steps in the industrial study [28].

4.3.1 Preparation

The purpose of the preparation step is to select the participants that will act as sub-
jects and prepare materials needed for the execution step [28]. As previously stated, the
industrial study would be performed by the authors of this thesis, due to resource con-
straints. However, the authors needed training in QTP and UFT, since they had limited
hands-on experience with the tools. Therefore, an analysis of the tools was conducted
and it consisted of inspection of the tools’ development environment, review of the tools’
documentation and following tutorials. Overall time spent on working with the tools
before the industrial study was about 20 hours per subject in each tool. Furthermore,
the subjects attended an educational workshop, held by CompanyX, about SystemX to
learn about the system’s features from an end-user perspective. The authors’ goal of
attending the workshop was to gain domain knowledge about SystemX that would be
useful to understand the manual test specifications.

DepartmentX releases a new version of SystemX every two weeks and since the study
would stretch over several releases in calendar time an offline version of the system was
created that would not be affected by the daily builds or the releases, i.e. a fixed version
of the system. Thus ensuring that the functionality of the system would not change
during the development of the test cases. The fixed version of SystemX will in the
continuation of the thesis be referred to as the first version of SystemX.

However, in order to collect information about the maintenance time associated with
the CC&R and VGT test cases, another version of SystemX was needed. Therefore, a
version from three releases after the first version was used when measuring maintenance
time. The later version of SystemX will be referred to as the second version of SystemX
in the remainder of the thesis.

4.3.2 Execution

The industrial study was conducted over eight weeks, i.e. four releases of SystemX.
During these weeks the test scripts were developed and maintained and measurements
were collected for the metrics development time, maintenance time and robustness. The
following section will describe the data collection process for each metric.

Development
The development time metric was defined as the time it took to develop a script for
one test case, based on the manual test design specification and verify that it executed
correctly. The test script implementation was defined as complete when all test steps
in the design specification had been implemented and the entire test case executed suc-
cessfully against the first version of SystemX. However, the measured development time
only includes the time when the subject was actively developing or executing a test case.
As such, development time was not recorded if the subject left his workstation.

24

4.3. OPERATION CHAPTER 4. METHODOLOGY

Every developed test script began by launching SystemX and ended by terminating
it. This test script design was chosen in order to make the test cases consistent but also
independent of one another. Thus, allowing the test cases to be executed sequentially
or in random order.

As described in the Context description, section 3, it was identified that the testers
at DepartmentX did not implement functionality directly into Actions in QTP. Instead
they created a function library which stored the functions used in the test scripts. This
practice was performed to promote re-usability of recurring actions since many test cases
can perform the same actions, e.g. launch the system, open certain menus, etc. In order
to further capture the context of CompanyX, the company’s script development practice
with actions stored in functions was also used during the study. Each function consisted
of an action to be performed on SystemX and an assertion of the expected results of
said action. For example, opening a certain view in SystemX’s GUI and verifying that
the view was successfully opened.

The functions were stored in a function library and could therefore be reused among
test cases. When a function was created for a test case, the development time for that
function was documented. Thereafter, when the function was reused in another test
case, the development time for that function was added to the total development time
of the currently developed test case. Reusing functions without adding the function’s
development time would have otherwise resulted in unequal development time among
the test case where the function was developed and later where it was reused.

Maintenance
When all 20 test cases had been implemented in both QTP and UFT, they were executed
on the second version of SystemX. All failing test cases were then analyzed and test cases
that could be maintained were fixed. Maintenance time was measured as the time it took
to adjust or re-write a test case until it could execute successfully on the second version
of SystemX.

However, in the second version of SystemX one module of the system had been com-
pletely redesigned, new functionality had been added and some old functionality had
been removed. These changes had adverse affects on the applicability of nine of the
developed test cases that were no longer applicable because the functionality they aimed
to test had been removed from the system. The changes to the system therefore affected
the number of data points that could be collected for both of the technique’s mainte-
nance costs, i.e. only 11 data points out of 20 developed scripts. Consequently, the lack
of data points presents a threat to the validity of the results and therefore the reader
is informed every time the results refer to the maintenance data set. This outcome was
unforeseeable prior to the start of the study, but was recognized as an unlikely general
threat, i.e. worst case, since the study was performed at a company with its own, and
to the authors of this thesis, unknown agenda.

Robustness
Robustness was defined as the technique’s ability to successfully execute a test case de-

25

4.3. OPERATION CHAPTER 4. METHODOLOGY

spite of unexpected or abnormal behavior in SystemX. The data collection for robustness
was conducted by executing the 20 developed test cases sequentially 10 times in a row
for each technique. The sequential execution was performed by creating test suites in
respective tools where the core of the test suites consisted of a method that loaded and
executed each test case from a given directory.

When a failure occurred during the execution of a test suite, the cause of the failure
was investigated manually in order to identify if the failure was caused by unexpected
behavior of SystemX or a defect in the system. If the former was the cause of the
failure, the failure was documented and the test suite execution was resumed from the
next test case in the suite. Otherwise, the defect was reported to DepartmentX. The
failure analysis was important in order to identify the number of false positives and neg-
atives produced by the techniques and in extension the techniques’ individual robustness.

4.3.3 Data validation

According to Wohlin et al. [28], after the data has been collected in an experiment
or quasi-experiment, the researcher must check that the data is reasonable and that it
has been correctly collected. In the industrial study, both the subjects used the same
systematic approach to collect data, which also included data validation. Furthermore,
two test engineers at DepartmentX agreed to verify the correctness of the developed test
cases. The test engineers’ verification consisted of executing the test cases in both tools
on SystemX and checking that the test cases’ assertions were correct according to their
design specification.

26

5
Results

T
he following section presents the results of the thesis work which were ob-
tained during the industrial study.

5.1 Development

As previously stated, development time was measured as the time it took to successfully
implement a test case for the first version of SystemX. A test case was defined as im-
plemented when all the test steps of the test design specification had been implemented
and the test terminated successfully after completing all its steps. Table 5.1 presents the
development time of each test case, in minutes, and also their respective categorization,
see subsection Selection of subjects in the Planning section 4.2.4. The tests are presented
in the chronological order they were implemented in the study.

Test case Category

CC&R
development

time
(minutes)

VGT
development

time
(minutes)

1 Short, Simple 76 87

2 Short, Complex 155 154

3 Long, Simple 99 98

4 Long, Complex 104 75

Continued on next page

27

5.1. DEVELOPMENT CHAPTER 5. RESULTS

Table 5.1 – continued from previous page

Test case Category

CC&R
development

time
(minutes)

VGT
development

time
(minutes)

5 Long, Complex 138 106

6 Short, Simple 105 65

7 Long, Complex 163 122

8 Long, Simple 155 146

9 Short, Simple 113 90

10 Short, Simple 30 32

11 Long, Complex 139 106

12 Short, Simple 44 43

13 Long, Complex 121 104

14 Short, Simple 121 72

15 Short, Complex 66 52

16 Long, Simple 117 60

17 Short, Simple 100 74

18 Short, Complex 107 58

19 Long, Complex 87 101

20 Long, Simple 133 90

Total 2174 1734

Average 109 87

Standard deviation 36 32

Table 5.1: Table showing development time in minutes, for all test cases in each technique
respectively, for the first version of SystemX. The table also shows the categorization of all
test cases.

In order to provide the reader with a descriptive overview of the measured development
times the data from Table 5.1 has been visualized in Figure 5.1. The dark blue line in
Figure 5.1 represents the development times for VGT and the light blue the development

28

5.1. DEVELOPMENT CHAPTER 5. RESULTS

times for CC&R. For most of the test cases, the two lines have synchronized peaks and
troughs, i.e. if the development time is high for a test case developed in one of the
techniques, the development time is also high for said test case in the other technique.
Furthermore, some test cases have notably similar development times in both techniques.
Attempts were made to find some commonality between the test cases by inspecting
their categorizations and through analysis of their designs steps to explain the curves.
However, no general conclusion could be made.

Figure 5.1: Graph showing a visual representation of the development time for all test
cases in each technique respectively, for the first version of the system.

Figure 5.2 presents the accumulated development time, i.e. the total time spent on
developing the test cases in each technique for the first version of SystemX as new test
cases were incrementally added to the techniques’ test suites. As shown in Figure 5.2,
the accumulated development time for CC&R is higher than for VGT and the difference
between the lines increases steadily throughout the graph. This can be explained by the
CC&R technique’s average test case development time of 109 minutes compared to the
VGT technique’s 87 minutes per test case. Thus, indicating that the development costs
of CC&R scripts are higher than for VGT scripts in contexts similar to CompanyX and
SystemX.

29

5.1. DEVELOPMENT CHAPTER 5. RESULTS

Figure 5.2: Graph showing a visual representation of the accumulated test development
time trends for each technique, for the first version of SystemX. The test development costs
have been plotted in the chronological order they were implemented.

Hypothesis testing

The null hypothesis for comparing average development time between the two techniques,
CC&R and VGT, was as follows:

H01 : There is no difference in average development time between the CC&R technique
and the VGT technique.

H01 : µCC&R = µV GT

In order to statistically verify this hypothesis a Shapiro-Wilks test was first conducted
to determine if the data was normally distributed or not. The test resulted in a p-value
of 0.5469 for the CC&R data sample and a p-value of 0.812 for the VGT data sample.
These results are over the 0.05 threshold and therefore show that the data is normally
distributed in both samples [29]. A conclusion that is further supported by the box plot
in Figure 5.3 that shows that the data points from both samples are centered around
the median, which also suggests that the data is normally distributed. The box plot
also shows the dispersion and skewness of the collected samples. The line in the middle
of the box plot indicates where median of the sample is located and the box’s top and
bottom lines represent the 75% quantile and 25% quantile respectively. The tails of the
box represents the theoretical bound within which it is most likely to find all data points
if the distribution is normal [28]. Moreover, the box plot shows that both samples have
no outliers and that the majority of both sample’s data points are concentrated around
the median. Furthermore, the fact that both samples have no outliers indicates that the
chosen test cases are representative for all the 40 manual test cases that were available

30

5.1. DEVELOPMENT CHAPTER 5. RESULTS

for SystemX. Because the data sets were found to be normally distributed, the null
hypothesis, H01, can be tested with the parametric Student T-test rather than the non-
parametric Wilcoxon ranked sum test. When comparing two groups, the T-test assumes
that; both groups’ samples are random, independent, have unknown but equal variances
and come from a normally distributed population [29]. Analysis of our data samples
showed that they fulfilled the assumptions of being random and independent. However,
in order to determine if the two groups had equal variance, an F-test was conducted. The
F-test resulted in a p-value of 0.6445, which let’s us accept the F-test’s null hypothesis
that both data sets have equal variance. The T-test was performed with a 95% confidence
interval and had a p-value of 0.04706. Although this value is very close to 0.05 we are
still forced to reject the null hypothesis H01 and conclude that there is a statistically
significant difference in average development time between the two techniques [29]. As
such, the probability of committing a Type I error, i.e. incorrect rejection of a true null
hypothesis, is 5%. However, the T-test had a power of 56,6% which states the probability
of correctly rejecting the null hypothesis when the null hypothesis is false. Moreover,
the effect size, which describes the magnitude of difference between the two groups, was
calculated to be 0,648. The effect size means that difference between VGT and CC&R
is of a magnitude of 64,8% of a standard deviation of about 36 minutes [29].

Figure 5.3: Box plot visualizing the dispersion and skewness of the development time
samples, for each technique.

31

5.2. MAINTENANCE CHAPTER 5. RESULTS

5.2 Maintenance

After all 20 test cases had been developed and successfully verified for the first version of
SystemX, they were executed on a second version of SystemX. As previously mentioned,
the second version of SystemX was an updated release of the first version. Maintenance
time was then measured as the time it took to adjust or re-write the tests cases that
failed on the second version of SystemX until they executed successfully on the second
version of SystemX. Table 5.2 shows the results of the maintenance time measurements
in minutes as well as the total maintenance time for each technique. The test cases that
were not applicable for the maintenance measurements, i.e. could not be maintained for
the second version of SystemX due to changes to the system, are marked with N/A. The
total maintenance time for the two techniques is remarkably low, only 18 minutes for
the CC&R technique and 36 minutes for the VGT technique to be compared to the total
development time of 2174 minutes for CC&R and 1734 minutes for VGT . However, the
table also shows that there were 9 out of 20 test cases that were not applicable (N/A)
for the second version of SystemX, which made it impossible to collect any maintenance
measurements for said test cases. In addition, the lack of maintenance measurements of
the N/A tests also explains the low overall maintenance time of the two test suites.

Test case

CC&R
maintenance

time
(minutes)

VGT
maintenance

time
(minutes)

1 7 20

2 11 13

3 0 0

4 N/A N/A

5 N/A N/A

6 N/A N/A

7 0 0

8 0 0

9 N/A N/A

10 0 0

11 0 0

12 0 0

Continued on next page

32

5.2. MAINTENANCE CHAPTER 5. RESULTS

Table 5.2 – continued from previous page

Test case

CC&R
maintenance

time
(minutes)

VGT
maintenance

time
(minutes)

13 N/A N/A

14 N/A N/A

15 0 2

16 N/A N/A

17 N/A N/A

18 N/A N/A

19 0 0

20 0 0

Total 18 35

Average 1.5 3.5

Standard
deviation

3.67 6.89

Table 5.2: Table showing the maintenance measurements for all tests, in both techniques.
N/A means that maintenance of the test case was not applicable, due to major functionality
changes between the two version of the system.

Hypothesis testing

The null hypothesis for comparing the average maintenance time between the two tech-
niques, CC&R and VGT, was defined as:

H02 : There is no difference in average maintenance time between the VGT technique
and the CC&R technique.

H02 : µCC&R = µV GT

As for the development time measurements, a Shapiro-Wilks test was performed to
determine if the data was normally distributed. Note that the test cases that were not-
applicable for the second version of SystemX were excluded from the data set during
the test. Thus, resulting in a sample size of only 11 maintenance time measurements.
The Shapiro-Wilks test resulted in a p-value of 2.102e-06 for the CC&R data sample

33

5.3. ROBUSTNESS CHAPTER 5. RESULTS

and 6.482e-06 for the VGT data sample, which is lower than the 0.05 threshold [29].
Therefore we must reject the null hypothesis and conclude that the data is not normally
distributed.

Because the data was not normally distributed we instead used the non-parametric
Wilcoxon rank sum test to test test the null hypothesis, H02. When comparing two
groups, the Wilcoxon rank sum test assumes that the data comes from the same pop-
ulation, is independant and not paired. However, the test does not assume that the
data comes from a normally distributed population but that it is at least ordinal [29].
Analysis of our data samples showed that they fulfilled the assumptions of coming from
the same population, being ordinal, independent and not paired.

The Wilcoxon rank sum test was performed with a 95% confidence interval and had a
p-value of 0.5916. Since this p-value is greater than the 0.05 threshold, it is not possible
to reject the H02 hypotheses. Moreover, the test had a power of 14.5%, which in turn
means that the probability of committing a Type II error is as high as 85,5%. When
a Type II error occurs, we erroneously fail to reject the null hypothesis, although the
null hypothesis is false. In our case this means that the probability of erroneously failing
to recognize a difference in average maintenance time between the techniques is 85,5%.
However, the low power is an indirect result of our small sample size that originally was
20 but ended up being only 11, as previously mentioned. Therefore, any statistically
claim regarding the average maintenance time is still open to speculation. Nevertheless,
based on to the statistical results for the null hypothesis H02 we conclude that there
is no statistically significant difference in average maintenance time between the two
techniques.

5.3 Robustness

In order to obtain the robustness measurements for the techniques’ scripts, the 20 test
cases were grouped into a test test suite that was executed 10 times on the first version
of SystemX. Afterwards, the average number of successful test case executions for each
technique was calculated out of the total 200 runs, results shown in Table 5.3. However,
because some robustness problems had been observed during test development, each
test case was also executed 10 times individually. Table 5.3 only presents the robustness
measurements when running the test cases sequentially in a test suite, as the individually
executed test cases’ robustness measurements resulted in 10 successful runs out of 10 for
all test cases in both techniques.

The reason why the measurements in Table 5.3 represent robustness is because we
expect the test cases to be successfully executed 10 out of 10 times. Hence, the results
presented in Table 5.3 are indicative of robustness issues with the techniques’ different
approaches. Thus, the results indicate that VGT is less robust than CC&R and that
image recognition is more prone to failure than object property identification. The source
of the robustness problem is purely technical, i.e. image recognition is complex and the
technique is immature. Based on this observation we stipulate that as the technique
matures and image recognition algorithms are improved, the robustness of VGT scripts

34

5.3. ROBUSTNESS CHAPTER 5. RESULTS

should improve as well. Support against this statement can however be derived from
the robustness measurements for the more mature CC&R technique that had less than
a 100 percent success rate. It is perceived that the technique’s robustness issues, as for
VGT, can be solved through technical advances but also allows us to speculate that it
may be a long time, if ever, before VGT’s robustness is perfected. A statement that is
derived on the similarities of the two approaches. However, the results show that further
research is required in order to improve the robustness of both techniques.

During the execution of the test suites, unexpected failures occasionally occurred.
The CC&R test suite had one test case that failed unexpectedly twice during the test
suite execution. The failure was because of object mapping failure of a component from
the 3rd party software, DevExpress, that was not well defined in the object repository.

For the VGT test suite there were two types of unexpected failures that were re-
occurring. Firstly, test execution would fail when a VGT test case performed an action
to open a pop-up window, because SystemX’s launcher window would be placed in focus
and cover it.

Secondly, the test execution would fail when a VGT test case performed an action
to interact with, e.g. click, a GUI component in a pop-up window but instead only
managed to place the pop-up window in focus without any interaction being performed.
Both failures with the VGT test suite occurred sporadically for different pop-up windows
and test case executions.

The failures in the VGT test suite could be fixed by adding failure mitigation code
in the test cases’ implementation. However, these test cases did execute successfully
when they had been developed. Therefore, it was expected that the test cases would
execute successfully every time they are executed, even though they are being executed
in a test suite. Thus, the additional failure mitigation was not perceived as necessary
for the robustness measurements.

Test case
CC&R

successful
executions

VGT
successful
executions

1 10 10

2 10 8

3 10 10

4 10 10

5 10 10

6 10 9

7 10 9

8 10 9

Continued on next page

35

5.3. ROBUSTNESS CHAPTER 5. RESULTS

Table 5.3 – continued from previous page

Test case
CC&R

successful
executions

VGT
successful
executions

9 10 9

10 10 10

11 10 9

12 10 10

13 10 8

14 10 10

15 10 8

16 10 10

17 10 10

18 10 10

19 10 9

20 8 9

Total 198 187

Average 9.9 9.35

Standard
deviation

0.48 0.75

Table 5.3: Table showing the robustness measurements for all test cases, for both tech-
niques, when executing all test cases sequentially in a test suite. The test suite was executed
10 times for both techniques.

Hypothesis testing

The null hypothesis for comparing the average robustness of the techniques was defined
as:

H03 : There is no difference in average robustness between the CC&R technique and the
VGT technique.

H03 : µCC&R = µV GT

36

5.3. ROBUSTNESS CHAPTER 5. RESULTS

As for the previous hypotheses tests we first conducted a Shapiro-Wilks test to deter-
mine if the data was normally distributed. The tests resulted in a p-value of 2.693e-09 for
the CC&R data sample and 0.000273 for the VGT data sample. These results are lower
than the 0.05 threshold and therefore show that the data is not normally distributed
[29].

Because the data was not normally distributed we once again picked the non-parametric
Wilcoxon rank sum test in favor of the Student T-test to test test the null hypothesis
H03. As previously stated, the Wilcoxon rank sum test assumes that the data comes
from the same population, is independent and not paired. However, the test does not
assume that the data comes from a normally distributed population but that it is at least
ordinal [29]. Analysis of our data samples showed that they fulfilled the assumptions of
coming from the same population, being independent and not paired.

The Wilcoxon rank sum test was performed with a 95% confidence interval and had
a resulting p-value of 0.002965. Because of this result we must reject the null hypothesis
H03 and conclude that there is statistical significant difference in average robustness
between the two techniques. Furthermore, the test had a power of 80,8% and an effect
size of 0.89502722. This means that there exist statistical difference between the average
robustness of CC&R and VGT scripts in successful executions with a magnitude of 89,5%
of a standard deviation of about 0,5 test cases [29]. Thus, supporting that our conclusion
regarding H03 is correct.

37

6
Discussion

The following section presents the discussion regarding the acquired results from this
thesis work. More specifically the section will discuss each measurement result, i.e.
development time, maintenance time and robustness, as well as a more general discussion
regarding the implications of this work. In addition, a discussion regarding the used
testing tools will also be presented which is based on the individual experiences and
observations made by the authors during the execution of the industrial study.

6.1 Development

The development time results, presented in subsection 5.1, show that there is a statis-
tically significant difference between the two techniques’ average development time. A
conclusion that is supported by the VGT technique’s total development time being 440
minutes less than the CC&R technique’s total time. Further support is given by CC&R’s
average development time of 108.70 minutes compared to VGT’s 86.69 minutes. Quan-
titative results that indicate that the average total development time of VGT scripts is
not only statistically significantly different but also lower than the development time of
CC&R scripts.

Furthermore, we argue that there exists also a difference in what types of tests that
are advantageous to develop in each technique, i.e. advantageous in terms of obtaining
the lowest development time possible. In addition, we argue that how scripts are devel-
oped in each technique, i.e. the development process, affects the development time as
well, a statement that is supported by previous work [6].

When implementing the test scripts using the VGT technique with the tool UFT,
a repetitive development pattern appeared. Firstly, we visually localized the compo-
nent to be interacted with, in SystemX’s GUI. Secondly, we created a snapshot of that
component by using UFT and saved it as an Insight Object in the tool’s repository.
Thirdly, we used that object in the test script, in association with an action such as

38

6.1. DEVELOPMENT CHAPTER 6. DISCUSSION

an assertion that the object existed on SystemX’s GUI by using image recognition or
invoking a supported method, such as a click or text input. This recurring work process
enabled us to follow the test design specification and intuitively implement and verify
the specified test steps in a consistent manner. Furthermore, because of the VGT tech-
nique’s properties, intuitiveness, and repetitive work process, the test developer does
not require any specific system knowledge nor needs to spend time on planning the test
case creation. In contrast, the CC&R technique’s work process is more dynamic and
alternating, which requires the test developer to both make use of system knowledge to
implement a test case as specified in the test design specification. For example, let’s
assume that a design step in a test design specification specifies that the columns in
a certain table should have some specific names and follow a certain order. With the
VGT technique the process would still be carried out as previously described, i.e. we
would save a snapshot of the table and its columns in the SUT and create an assertion
to verify that the snapshot exists in the SUT. In contrast, with the CC&R technique we
first have to figure out how to accesses the column names and then how to verify them
accordingly. This process is perceived as a much more technically daunting task than
the intuitive VGT approach of using the SUT’s graphical output. Determining how to
access component information is as such neither straightforward or even possible in some
cases. For instance, it is not possible to acquire component properties when the SUT
is written in several programming languages or if the SUT is distributed over several
computers, etc. As such, CC&R is dependent on the SUT’s implementation which also
explains why system knowledge is required to write scripts in the CC&R technique.

Furthermore, the planning process for the CC&R technique takes a varying amount
of time, i.e. the time it takes depends on the type of assertions that the test design
specification includes, how the SUT is implemented and the test developer’s experience
and skills. However, if the CC&R implementation is planned correctly and made as
general as possible, the implemented solutions can be reused, which lowers the total
development time of a CC&R test suite. To exemplify, in order to perform an assertion
of a column title in a data table, the test developer could create a function that is
able to verify any given table’s column titles, taking the table and the sought text as
input. However, if there is no benefit in creating a general solution to the test, i.e. if
the assertion is only performed once in the entire test suite, the cumbersome process
of planning and implementing the general test case in the CC&R technique would still
remain the same, in contrast to the straight forward static process previously presented
for the VGT technique.

Thus, we suggest that the techniques are respectively advantageous for different types
of tests and that the work processes coupled with each technique affect the development
time. However, we also recognize that further research is required to evaluate what
types of tests are better served by one technique over the other. We also recommend
that script development time should be a key metric in this future work.

39

6.2. MAINTENANCE CHAPTER 6. DISCUSSION

6.2 Maintenance

The results from the maintenance measurements in subsection 5.2, show that there is no
statistical difference in average maintenance time between CC&R and VGT. However,
the conducted Wilcoxon rank sum test had only sample sizes of 11 and a statistical power
of 14.5%. The reason for these low sample sizes was because several of the developed
test cases were no longer applicable because of a redesign of a key module in the second
version of SystemX.

Previous studies claim that between 30 to 70% of CC&R test scripts require main-
tenance even after minor changes to the SUT [11, 12, 18]. As such we expected the
maintenance time to be high for the CC&R technique. However, our results show that
the CC&R technique required only a total of 18 minutes of maintenance, compared to
the CC&R total development time of 2174 minutes, i.e. the maintenance was only 1.57%
of the total development time. In turn, the VGT technique required 36 minutes of main-
tenance, i.e. 3.5% of the total development time of the VGT scripts. Consequently,
these results show that both of these techniques are associated with low maintenance
time compared to development time, even though it was only for 11 test cases.

However, since only 11 measurement points were acquired for the maintenance eval-
uation we suggest that further research is needed to support our results regarding the
differences in maintenance cost between the two techniques. Furthermore, we suggest
that future research into the maintenance cost of the studied techniques should be con-
ducted over a longer period of time and also evaluate the maintenance costs associated
with newly implemented features.

6.3 Robustness

The results in section 5.3, show that there exist a statistical significant difference in
robustness between the CC&R technique and the VGT technique. The results of the
test suites’ executions showed that the CC&R technique only had two failed test case
executions while the VGT technique had 13.

However, it is possible to argue that these failures are not caused by the techniques
but rather the tools. The CC&R test suite failure was caused by object mapping fail-
ure. This failure occurred when QTP failed to match a component from the 3rd party
software, DevExpress, with the object in the repository due to an insufficient object
description.

In VGT, there were two test suite failures that were re-occurring. First, the Launcher
window appeared in front of a pop-up window as it was being opened during a script
execution, and second, some interactions with pop-up windows were not executed cor-
rectly. We argue that these script failures were caused by immaturity in the image
recognition functionality of UFT. Similar problems were identified by Alégroth et al. [6]
when execute a VGT test suite with the open source VGT tool Sikuli [24]. Therefore, it
can be argued that current tools are not suitable to handle the execution of a VGT test
suite and need to be further improved if the VGT technique is to replace or complement

40

6.4. GENERAL CHAPTER 6. DISCUSSION

current testing techniques.
Furthermore, it is important to recognize the purpose of the test cases and discuss

whether they were created with the intention to verify or validate the system, i.e. used
for system testing or acceptance testing. Verification of a system consists of checking if
the system conforms with the system’s requirements specification whilst validation seeks
conformance to the end customer’s needs [30]. Assuming that the test cases implemented
during this study had been created to validate system conformance, the reported VGT
test suite failures of SystemX would be acceptable, since these behaviors would not be
accepted by a human user either. In contrast, if the test cases were supposed to verify
the system according to the system’s specifications, then the VGT test suite failures
would not be acceptable, since it would be desired to run the system regardless of any
unexpected interference of pop-up windows or pop-up messages.

Consequently, we argue that there exist a trade-off between creating GUI based tests
to verify a system or to validate it, i.e. a system test through the GUI or an acceptance
test. If a GUI based test is created with the intention to verify a system, then an extra
failure mitigation needs to be added manually in a VGT script, in order to handle the
unexpected behaviors of different windows and pop-up windows. However, this failure
mitigation would only be ad-hoc, e.g. by adding an extra assertion or an extra click.
In contrast, this failure mitigation would not be needed for a CC&R script, because
the script inherits robustness to interact with components and windows from how the
technique works. The technique can interact with the components and windows even
though they are not visible on the screen, due to the technique can access components’
properties and methods. Therefore, we agree with Börjesson and Feldt [3] that there is
a need for a framework or guidelines in order to develop more robust VGT test scripts
and to achieve the same level of robustness as for the CC&R technique’s scripts.

6.4 General

The sub-goal of this thesis was to determine if it is beneficial for CompanyX to change
their current GUI based testing technique from CC&R to VGT. Based on our findings,
trade-offs between development time, maintenance time and robustness needs to be
considered. Table 6.1 presents a summary of which technique we consider to be more
beneficial in terms of the investigated quality aspects development time, maintenance
time and robustness.

As can be seen in Table 6.1, we believe that it is more beneficial to use the CC&R
technique when prioritizing maintenance time and robustness as the CC&R scripts had
lower total maintenance time and higher robustness than the VGT scripts. In contrast,
as can be seen in Table 6.1 we believe that it is more beneficial to use VGT when
prioritizing development time, as VGT had lower total development time than CC&R.
In addition, SystemX contains several 3rd party components that are not well defined
and require image recognition to verify, which the CC&R technique does not support.

Therefore we argue that a trade-off between the investigated quality aspects must be
made when selecting a technique. Nevertheless, because the UFT tool supports both the

41

6.5. TOOL DISCUSSION CHAPTER 6. DISCUSSION

CC&R and VGT technique we suggest CompanyX to use UFT instead of QTP. Moreover,
we suggest CompanyX to use the most suitable technique for different types of test cases
but mainly continue using their current GUI based testing technique which is CC&R as
it will be most beneficial for the most part of their testing of SystemX. Furthermore, at
CompanyX the test engineers are not the only ones responsible for creating automated
GUI based test scripts, the developers do so as well. This is an additional reason why it
is more beneficial for CompanyX to use CC&R as the technique’s work process allows
the developers to advantageously make use of their coding skills to create general and
reusable test architecture, which we have previously discussed in section 4.3.2.

Technique Development time Maintenance time Robustness

CC&R X X

VGT X

Table 6.1: The evaluation of which technique is considered to be more beneficial in terms
of the investigated attributes development time, maintenance time and robustness or GUI
based testing of SystemX.

No previous research has conducted a comparison of the CC&R and the VGT tech-
nique in an industrial context, to the authors’ best knowledge. Hence, our presented
findings contribute to the academic body of knowledge in the field of automated GUI
based testing by showing the benefits and drawbacks of the two techniques with regard
to development time, maintenance time and robustness. Furthermore, we suggest that
future studies in the field should assess the benefits and drawbacks of combining the
CC&R and VGT technique. Suggestively by replicating our experiment and evaluating
the combination of the techniques in terms of development time, maintenance time and
robustness. This would allow an interesting comparison to our findings, as our findings
show that the techniques have different benefits and drawbacks in different contexts,
which indicates that a combination of the techniques may be beneficial.

6.5 Tool discussion

We are aware that the versions of the tools we used can be updated and thereby elimi-
nating or at least mitigating their problems and defects. However, we still would like to
make a contribution to the discussion about tool problems with our personal reflections
and experience of the tools.

UFT 11.52

The UFT tool that represented the VGT technique froze, i.e stopped responding, a
lot when using Insight Objects stored in the object repository. We speculate that the
freezes started to occur more frequently when the object repositories got too big, i.e.
when a repository reached around 100 MB. Our solution to this problem was to create

42

6.5. TOOL DISCUSSION CHAPTER 6. DISCUSSION

one small object repository for each test case, instead of having one huge repository
for all test cases. This lowered the frequency of crashes but did not totally solve the
problem. Furthermore, we speculate that UFT was more likely to crash when adding
objects manually to the object repository. Therefore we started to use the record and
replay feature instead as this seemed to also lower the amount of freezes in the tool.

Moreover, UFT caused system exceptions when we used Insight Objects directly in
actions, i.e. directly in the test scripts. However, when accepting the system exception
by manually pressing the OK button on the pop-up window that appeared, the test case
continued to execute as intended. To avoid getting system exception pop-ups, we used
the Insight Objects in functions, stored in a separate function library.

Recent studies [6] have shown that the image recognition functionality of Sikuli, a
tool that supports the VGT technique, could perceivably fail at random during test script
development. The researchers that conducted the study explain that the failures could
be because the image recognition’s similarity level for the sought image was either to high
or too low for the image recognition algorithm in use [6]. This is in our experience also
true for UFT. The Insight object recognition could in some cases find several component
matches in SystemX’s GUI for one Insight Object in the repository. However, we do not
consider this as a major problem as it could be easily fixed by increasing the similarity
level of the Insight Object to higher than the standard of 80% or by manually modifying
the Insight Object’s captured image, so it captures as unique graphics as possible. We
believe that the UFT tool is still immature. However, besides these mentioned problems,
we are content with the tool’s overall usability, features, layout and performance.

Furthermore, because UFT also supports all functionality that QTP provides, we
suggest UFT as being a suitable tool to use in future research that evaluates a mix of
the both techniques CC&R and VGT.

QTP 11.00

We are very satisfied with QTP’s usability and functionality. All interactions with the
tool went smoothly, with only a few crashes at random occasions. We speculate that
these crashes occurred due to the operation system in use as we could not find any way
to provoke crashes of the tool. We did not experience any problems with the tools object
repository. We interacted with the repository without problems, even though it stored
all test cases’ objects. Furthermore, the tool’s interface was straight forward and easy
to use. All in all we are very satisfied with the tool’s overall usability, features, layout
and performance and favour working with the more mature tool QTP over UFT.

43

7
Validity evaluation

This section presents the threats to validity of this thesis results. According to Wohlin
et al. [28] there exists four main categories of threats to result validity; internal validity,
external validity, construct validity and conclusion validity. The following section will
discuss what threats that were identified, what effect they are perceived to have for the
results and what steps that were taken to mitigate their effects.

7.1 Internal validity

Threats to internal validity are concerned with external influences, such as maturity of
the subject and social influences, that can affect the independent variables [28]. There
were two types of threats to internal validity identified for this thesis, i.e. Maturation
and Selection which will be described below.

Maturation concerns how the subjects can react differently as the study, in this case
quasi-experiment, progresses [28]. For example, the subjects might get bored of the work
if it is uninteresting to them, which might affect the result or data collection negatively,
e.g. by resulting in sloppy work or halting the study progress. Another maturation
concern is that the subjects might learn the studied concepts at different rate, which can
result in one subject being more efficient than the other.

In this thesis a systematic approach was created to reduce the learning effects of the
subjects by switching tools after developing a test case, as presented in the randomiza-
tion subsection under the Experimental design subsection 4.2.5. Furthermore, since the
authors of this thesis were the subjects in the study, the risk of the subjects getting
bored is considered minimal since they had a personal interest in acquiring valid and get
reliable results.

Selection regards the selection of subjects for the study, or in this case quasi-experiment,
and how representative they are for the population of possible subjects [28]. The selec-
tion threat was identified early in the planning phase of the industrial study, since the

44

7.2. EXTERNAL VALIDITY CHAPTER 7. VALIDITY EVALUATION

study would only be conducted by two subjects that were chosen through convenient
sampling. However, the subjects were still perceived to represent industrial practition-
ers that have limited knowledge of automated GUI based testing, e.g. testers/developers
at DepartmentX that have not used QTP or UFT before. To raise the representativeness,
the subjects prepared for the study by doing tool inspections of the testing tools and
attended an educational workshop to increase their domain knowledge about SystemX.
However, according to the guidelines set by Wohlin et al. [28] the study is still classified
as a study performed by/with students rather than professionals.

7.2 External validity

Threats to external validity are concerned with how generalizable the findings are from
a study, or quasi-experiment in this are [28]. Two threats were identified for the external
validity of this work; Interaction of selection and treatment and Interaction of settings
and treatment, which will be described below.

Interaction of selection and treatment refers to the effects of not having suitable
subjects that are representative of the population we want to generalize the results for
[28]. This is a threat to the thesis results since the subjects’ experience of automated GUI
based testing and domain knowledge was limited prior to the study. These knowledge
limitations limit the perceived generalizability of the results for the desired population.
However, the treat was mitigated as the subjects attended educational workshops and
conducted tool inspections to raise their representativeness of industrial practitioners.
As such, the subjects are perceived to represent at least testers and developers with
limited experience, that work at CompanyX. However, according to the guidelines set
by Wohlin et al. [28] the study is still categorized as a student study.

In turn, interaction of settings and treatment is caused by the studied phenomenon,
SystemX, QTP and UFT in this case, not being representative in general industrial
practice [28]. Thus, it is possible that the characteristics of SystemX, QTP and UFT or
CompanyX’s context are too specific to generalize the acquired results for other systems,
GUI based tools or contexts. To mitigate this threat, the context of the study has been
described in as much detail as possible within the thesis.

In addition, QTP and UFT are not the only CC&R and VGT tools available on the
market and their representativeness for other tools is unknown. However, it is perceived
that all CC&R and VGT tools share common characteristics, as also reported in related
work for VGT [15], which supports the external validity of the reported results. However,
because of this threat we suggest that future research should compare CC&R and VGT
with different or more tools in order to verify our findings.

7.3 Construct validity

Threats to construct validity concern the design of the study, or quasi-experiment in this
case, and how the results are connected to the theoretical background of the study [28].

45

7.4. CONCLUSION VALIDITY CHAPTER 7. VALIDITY EVALUATION

There were two types of threats to construct validity identified for the thesis results;
Mono-method bias and Experimenter expectancies, which are described below.

There exist a threat regarding mono-method bias [28] for the quantitative results
presented in this thesis since the quasi-experiment was the only method that was used
to obtain said results. However, since the quantitative data was collected through a
systematic and rigorous methodology, the mono-method bias is perceived as low.

The second threat to construct validity relates to experimenter expectancies [28],
which can cause the experimenter to be positively biased towards one of or the other of
the studied phenomena/treatments/etc. However, since the authors did not favor either
technique prior to the thesis, nor had any personal gain in the outcome of the study,
this threat is considered limited.

7.4 Conclusion validity

Threats to conclusion validity concern the reliability of the results from a study, or the
quasi-experiment in this case, and if correct conclusions can be drawn from the results
[28].

Several steps were taken in the planning phase of the thesis work to reduce the
threats regarding conclusion validity. Firstly, a systematic approach was created for
data collection that the subjects strictly followed during the study in order to ensure
that the collected data was consistent and coherent, regardless of who collected the
information. Secondly, since the script development was performed by reusing functions,
the subjects could ensure that the developed test cases had the same structure and
functionality. These test case properties are perceived to have had a positive effect on
the data collection and the consistency of the collected data.

46

8
Conclusion

T
his thesis work presents a comparative study, with the established Component-
based Capture & Replay (CC&R) technique and the novel Visual GUI testing
(VGT) technique, with the purpose of evaluating which technique is perceived
the most beneficial in terms of development time, maintenance time and ro-

bustness [6, 7, 15]. The study was performed as a quasi-experiment at CompanyX with
an industrial system for the avionics domain. Analysis of the acquired results showed
that VGT had lower development time than CC&R. Whilst CC&R had a lower mainte-
nance time and higher robustness than VGT. Thus, these findings from the comparative
quasi-experiment resulted in three key contributions:

• C1. The development costs, measured as time, associated with VGT are lower
than for CC&R.

• C2. There exists no statistical significant difference in maintenance costs, measured
as time, associated with CC&R and VGT. However, the CC&R technique was
perceived to be better suited within the industrial context, because it had lower
total maintenance cost.

• C3. CC&R is generally more robust than VGT.

These contributions provide value to the currently limited body of knowledge on VGT
but also automated GUI based testing in general. Especially since automated testing has
been proposed as a way of mitigating the problems of high cost, tediousness and error
proneness, associated with manual test practices [4, 5]. However, support for automated
high-level testing is still limited as CC&R, the currently most common automated GUI
based testing technique in practice [1, 7], suffers from various limitations that affect its
usability, cost, robustness and foremost maintainability [2, 10, 11, 12, 13, 14]. VGT is a
novel GUI based test technique that is emerging in industrial practice that is perceived
to have characteristics that can overcome the limitations experienced with CC&R [9].

47

CHAPTER 8. CONCLUSION

However, VGT’s body of knowledge is currently limited and in order to make any con-
clusion regarding the technique’s long-term industrial applicability, additional research
is required, e.g. research regarding the technique’s robustness and maintenance costs [6].

Based on our findings we recommend companies with similar industrial context as
CompanyX to (a) use CC&R whenever applicable but (b) complement their CC&R use
with VGT for automated GUI based tests where CC&R is not applicable. In addition,
because the techniques were found to have different benefits and drawbacks, we propose
that a combination of the techniques can be the most beneficial in general practice and
is therefore an important subject of future research.

In summary, this thesis contributes with (1) empirical results about the differences
between CC&R and VGT in terms of development time, maintenance time and robust-
ness, (2) evidence that both CC&R and VGT are applicable techniques in practice for
GUI-based testing and (3) a general contribution to the body of knowledge on automated
testing with novel results from a comparative industrial study of the CC&R and VGT
techniques.

48

Bibliography

[1] A. M. Memon, Gui testing: Pitfalls and process, Computer 35 (8) (2002) 87–88.

[2] A. M. Memon, M. L. Soffa, Regression testing of guis, in: ACM SIGSOFT Software
Engineering Notes, Vol. 28, ACM, 2003, pp. 118–127.

[3] E. Borjesson, R. Feldt, Automated system testing using visual gui testing tools:
A comparative study in industry, in: Software Testing, Verification and Validation
(ICST), 2012 IEEE Fifth International Conference on, IEEE, 2012, pp. 350–359.

[4] M. Grechanik, Q. Xie, C. Fu, Creating gui testing tools using accessibility technolo-
gies, in: Software Testing, Verification and Validation Workshops, 2009. ICSTW’09.
International Conference on, IEEE, 2009, pp. 243–250.

[5] M. Grechanik, Q. Xie, C. Fu, Maintaining and evolving gui-directed test scripts, in:
Software Engineering (ICSE), 2009. IEEE 31st International Conference on, IEEE,
2009, pp. 408–418.

[6] E. Alégroth, R. Feldt, L. Ryrholm, Visual gui testing in practice: challenges, prob-
lemsand limitations, Empirical Software Engineering (2014) 1–51.

[7] E. Alégroth, R. Feldt, H. H. Olsson, Transitioning manual system test suites to
automated testing: An industrial case study, in: Software Testing, Verification and
Validation (ICST), 2013 IEEE Sixth International Conference on, IEEE, 2013, pp.
56–65.

[8] E. Sjösten-Andersson, L. Pareto, Costs and benefits of structure-aware cap-
ture/replay tools, SERPS’06 (2006) 3.

[9] E. Alégroth, On the industrial applicability of visual gui testing, Licentiate thesis,
Chalmers University of Technology (2013).

[10] K. Li, M. Wu, Effective GUI testing automation: Developing an automated GUI
testing tool, Wiley. com, 2006.

49

BIBLIOGRAPHY BIBLIOGRAPHY

[11] E. Horowitz, Z. Singhera, Graphical user interface testing, Technical eport Us C-C
S-93-5 4 (8).

[12] M. Grechanik, Q. Xie, C. Fu, Experimental assessment of manual versus tool-based
maintenance of gui-directed test scripts, in: Software Maintenance (ICSM), 2009.
IEEE International Conference on, IEEE, 2009, pp. 9–18.

[13] F. Zaraket, W. Masri, M. Adam, D. Hammoud, R. Hamzeh, R. Farhat, E. Khamissi,
J. Noujaim, Guicop: Specification-based gui testing, in: Software Testing, Verifica-
tion and Validation (ICST), 2012 IEEE Fifth International Conference on, IEEE,
2012, pp. 747–751.

[14] M. Finsterwalder, Automating acceptance tests for gui applications in an extreme
programming environment, in: Proceedings of the 2nd International Conference on
eXtreme Programming and Flexible Processes in Software Engineering, 2001, pp.
114–117.

[15] E. Alegroth, M. Nass, H. H. Olsson, Jautomate: a tool for system-and acceptance-
test automation, in: Software Testing, Verification and Validation (ICST), 2013
IEEE Sixth International Conference on, IEEE, 2013, pp. 439–446.

[16] G. J. Myers, C. Sandler, T. Badgett, The art of software testing, John Wiley &
Sons, 2011.

[17] K. Pohl, C. Rupp, Requirements Engineering Fundamentals: A Study Guide for the
Certified Professional for Requirements Engineering Exam-Foundation Level-IREB
compliant, ” O’Reilly Media, Inc.”, 2011.

[18] S. Berner, R. Weber, R. K. Keller, Observations and lessons learned from auto-
mated testing, in: Proceedings of the 27th international conference on Software
engineering, ACM, 2005, pp. 571–579.

[19] A. M. Memon, A comprehensive framework for testing graphical user interfaces,
Ph.D. thesis, University of Pittsburgh (2001).

[20] B. N. Nguyen, B. Robbins, I. Banerjee, A. Memon, Guitar: an innovative tool for
automated testing of gui-driven software, Automated Software Engineering (2013)
1–41.

[21] W.-K. Chen, T.-H. Tsai, H.-H. Chao, Integration of specification-based and cr-based
approaches for gui testing, in: Advanced Information Networking and Applications
(AINA), 2005. 19th International Conference on, Vol. 1, IEEE, 2005, pp. 967–972.

[22] A. Ulrich, A. Petrenko, Formal approaches to software testing, in: Third Interna-
tional Workshop on Formal Approaches to Testing of Software (FATES), Springer,
2003, pp. 1–14.

50

BIBLIOGRAPHY

[23] T. Lalwani, S. N. Kanoujia, T. Howarth, M. Smith, QuickTest Professional Un-
plugged, KnowlegeInbox, 2011.

[24] T.-H. Chang, T. Yeh, R. C. Miller, Gui testing using computer vision, in: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, ACM,
2010, pp. 1535–1544.

[25] L. Hewlett-Packard Development Company, A guide to image-based testing with
hp uft’s “insight” (Februari 2014).
URL http://www.automation-consultants.com/products-Unified_

Functional_Testing-135

[26] T. Lalwani, M. Garg, C. Burmaan, Uft/Qtp Interview Unplugged: And I Thought
I Knew Uft!, KnowledgeInbox, 2013.

[27] Scrum.org, The home of scrum (April 2014).
URL https://www.scrum.org/

[28] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén, Experi-
mentation in software engineering, Springer, 2012.

[29] R. Wilcox, Modern statistics for the social and behavioral sciences: A practical
introduction, CRC Press, 2011.

[30] J. P. Kleijnen, Verification and validation of simulation models, European Journal
of Operational Research 82 (1) (1995) 145–162.

51

http://www.automation-consultants.com/products-Unified_Functional_Testing-135
http://www.automation-consultants.com/products-Unified_Functional_Testing-135
https://www.scrum.org/

	Introduction
	Goal
	Purpose
	Scope
	Thesis outline

	Literature review
	System and Acceptance test
	Manual GUI based testing
	Automated GUI based testing
	Coordinate-based Capture & Replay
	Component-based Capture & Replay
	Visual GUI Testing

	Context description
	Methodology
	Scoping
	Planning
	Context selection
	Hypothesis formulation
	Variables selection
	Selection of subjects
	Experimental design
	Instrumentation

	Operation
	Preparation
	Execution
	Data validation

	Results
	Development
	Maintenance
	Robustness

	Discussion
	Development
	Maintenance
	Robustness
	General
	Tool discussion

	Validity evaluation
	Internal validity
	External validity
	Construct validity
	Conclusion validity

	Conclusion
	 Bibliography

