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Abstract
Object identification is a central part of autonomous cars and there are many sen-
sors to help with this. One such sensor is the LIDAR which creates point clouds of
the cars surrounding. This thesis evaluates a solution for object identification in 3D
point clouds with the help of a neural network. A system named DELIS (DEtection
in Lidar Systems), which takes a point cloud generated from a LIDAR as input,
is designed. The system consists of two subsystems, one non-machine learning al-
gorithm which segments the point cloud into clusters, one for each object, and a
neural network that classifies this clusters. The final output is then the classes and
the coordinates of the objects in the point cloud. The result of this thesis is a system
named DELIS that can identify between pedestrians, cars, and cyclists.

Keywords: LIDAR, Neural Networks, Object Identification, Segmentation, Auto-
motive applications.
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Dictionary
Adam - Adaptive Moment Estimation. An optimization algorithm that is used in
different kinds of ANN.

ANN - Artificial Neural Networks. Computing system inspired by biological sys-
tems.

CNN - Convolutional Neural Network. A special kind of ANN, that utilizes convo-
lution.

HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with
Noise. An algorithm designed to find stable clusters.

KITTI - Karlsruhe Institute of Technology and Toyota Technological Institute at
Chicago. A project between two technological institutions, that have captured a lot
of data from traffic environments that is available for the academy.

LIDAR - Light Imaging, Detection, And Ranging. A sensor that is used to detect
distances.
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1
Introduction

Autonomous driving is something that most car manufacturers are working on these
days and a few of them already have autonomous vehicles out driving for testing
purposes.
Self-driving vehicles need to be able to navigate safely and to do this they need to be
able to identify objects in the traffic correctly. To achieve this, different sensors and
classification algorithms, which have different properties, may be used. To exemplify,
when the light condition is bad, during nights, etc., sensors such as cameras have a
hard time working since they use light from their surrounding. There are however
sensors that are unaffected by the level of light in its surroundings. One such sensor
is the LIDAR (Light Imaging, Detection, And Ranging) sensor. A LIDAR creates
a point cloud which is a set of points representing the surroundings of the vehicle.
This point cloud can then be used to detect and identify objects in the vicinity of the
vehicle, which is needed to ensure safe navigation. In [2] it is claimed that one of the
advantages of LIDAR is its independence of light from the environment. This means
it works the same no matter the light conditions. An additional benefit is that the
LIDAR is able to create a 3D map of the car’s surroundings. This can be used by the
car to make decisions about what to do next and plan a route accordingly. On the
other hand, LIDAR is an expensive technology and is therefore not as widespread
as cameras. Figure 1.1 shows a car with a LIDAR on its roof.
In order to classify different kinds of objects, various strategies have been developed.
Artificial Neural networks, (ANN), is one of them. Researchers in [3] have developed
networks that have, depending on input data and architecture, accuracy over 90%,
when it comes to identification of different objects. That is 90% of the input data
that are sent through the ANN is correctly classified. This is however for 2D-image
from a standard RGB-camera, which is a well-researched area. Object classification
with 3D data as input, on the other hand, is less researched. A LIDAR sensor has
the advantage that it can provide a single complete view of the environment around

Figure 1.1: Car with a LIDAR mounted on its roof

1



1. Introduction

the car. Although it is possible to use multiple cameras around the vehicle and fuse
the different views together to achieve something similar this needs extra computer
processing, whereas with the LIDAR you get the complete view immediately.

1.1 Purpose and Objective

Point Cloud Segmentation Classification
Identified
objects

Figure 1.2: An overview of the system called DELIS (DEtection in LIDAR Sys-
tems). The boxes with soft corners are input and output and the boxes with hard
edges are the parts of the system. Throughout the report, this figure illustrates
which part of DELIS that is explained.

The purpose of this thesis is to examine if it is possible for a machine learning
method to classify objects obtained from LIDAR data that have been segmented
using non-machine learning methods.
This work covers object classification of PC obtained by a LIDAR. The data should
come from real and simulated traffic environments. To be able to answer the Re-
search Questions stated in chapter 1.3 DELIS, which be viewed in figure 1.2, will be
created.
DELIS should be able to work in real time and high classification accuracy. This,
since it is vital for applications like autonomous vehicles to quickly know if there
might be a dangerous situation.
One possible way for a vehicle to safely navigate is to use a machine learning method
to recognize different objects from the LIDAR data.
In this thesis, LIDAR data from the KITTI library [4] is used to train the ANN.
The system is going to be evaluated using both the KITTI data and simulated data
created with ESI Pro-SiVIC [5].
The created system, DELIS, is as a proof of concept for object detection in a 3D
environment using non-machine learning methods. It may be viewed in Figure 1.2.

1.2 Related Works

One common method to classify objects in traffic environments is to use images
obtained from cameras, an example of this is You Only Look Once: Unified, Real-
Time Object Detection [6]. However, this method sacrifices accuracy for speed. This
method uses a convolutional neural network (CNN) to both create the bounding
boxes and to calculate the class probability.
One approach to classification of objects in point clouds was introduced in VoxelNet:
End-to-End Learning for Point Cloud Based 3D Object Detection [7]. In the paper,
the researchers created voxels from point clouds and then ran them through an
ANN.

2



1. Introduction

A quicker way of obtaining a point cloud is to use a LIDAR. The paper in [8], gives
an idea of how CNN could be used in order to directly identify a road using LIDAR-
data as input. However the method used here does not include any identification of
moving objects in a traffic environment such as cars and pedestrians, but it shows
that it is possible to use LIDAR data in a CNN.
There is also proposed hybrid solutions such as Multi-view Convolutional Neural
Networks for 3D Shape Recognition[9]. In that paper, the idea was to convert the
3D point clouds into 2D images and train a neural network to identify the objects
from this images. One downside with this method is that the system loses the
advantages gained from using 3D data in the first place. This includes tasks such as
point classification, shape completion and scene understanding [10], [11], all which
can be very useful for a car in order to understand its surroundings.
There have been some papers that deal with object identification directly from point
clouds. For example, PointNet [10], where the researchers trained a neural network
to be able to identify an object based on the raw data points collected. This sounds
like a promising way to go, however, the data used was collected with a Matterport
3D camera, the camera takes 30 seconds to capture the depth and would thus be a
poor choice to use as a sensor on vehicles [12].
The project differs from others in the use of LIDAR data as input when classifying
an object with a neural network without using voxels. It also differs from other work
by the usage of non-machine learning segmentation methods. The project further
plans to include simulated data from a simulated traffic environment in order to see
if this data gives the same result as real-world data. Simulated data is interesting
because it is possible to generate a large amount of labeled data with minimal effort.
Simulated data is however problematic since it is difficult to make it realistic, hence
it often differs greatly from real-world data.

1.3 Research Questions
The research questions are as follows.
RQ1 How well does machine learning methods, trained on real traffic environments

perform on simulated environments?
In order to make data acquisition more efficient one can use simulated data.
However, the simulated data will not be available in the project until the
evaluation phase of the project.
This question is answered by creating a system and using KITTI data for
testing and training of the chosen machine learning method. First, when the
system is working with the KITTI data, the simulated data will be used for
testing and verification.

RQ2 Is it possible to use machine learning algorithms with non-machine learning
algorithms in order to make a competitive system for object classification?
The common procedure nowadays is to use an end to end neural network in
order to classify objects. However, this project will try to decrease the gap
between classical algorithms and machine learning methods, by using them

3



1. Introduction

together.
This will be answered when the evaluation of the system itself and its subsys-
tems, segmentation algorithm and machine learning methods, are performed.

1.4 Summary of Contributions

This thesis proposes a method to identify objects directly from a LIDAR scan. The
first step of two is to segment the point cloud into clusters, one per object. The
second is the classification of the objects with the help of a neural network. The
fact that the segmentation is done as its own algorithm and not in a neural network
makes this approach unique. As far as we know, this has never been done before.
This is opposed to doing the segmentation and classification in one neural network,
as is done in [8]. One other unique aspect is in the usage of both real-world and
simulated data. The simulated data shall be used to verify the network that is
trained with real-world data. Briefly before this project started one neural network
called PointNet were published, which is the neural network which DELIS is built
upon.
The evaluation of the segmentation was done by counting the points in the segmented
clusters and how many of them that were correctly labeled with the help of the
ground truth data. For the segmentation, the cluster creation time is measured
in order to obtain the performance time. This is relevant information for real-time
system applications. Among other things, it was concluded that the HDBSCAN, see
chapter 2.2.3, were faster than the Nearest Neighbour algorithm, although neither
is fast enough for a real-time application. Also, by counting the number of points in
the clusters that have the correct label and compare that number with the number
of points that are in the cluster, the accuracy for the segmentation is obtained.
The accuracy for the segmentation varied between different scenes and HDBSCAN
showed better performance overall.
As for the classification, the accuracy is obtained by dividing the number of correctly
classified objects with the total number of objects. It was apparent that the trans-
form nets used in PointNet were of great use when it comes to classifying objects
detected in point clouds. The validation accuracy of the network where around 95%
when using the training dataset.
The system itself is evaluated by manually inspecting the scene and counting the
number of identified objects of each relevant class and divide it by the total number
of objects in that class. Thus the system’s accuracy is obtained. The final system
where able to identify a few items depending on the scene, still the system has much
room for improvement. Our conclusion is that the segmentation part of the system
has the most to improve.

1.5 Scope and Boundaries

The types of objects to identify has been restricted to cars, cyclists, and pedestrians.
This is to prove that the suggested method works for multiple sets of classes.

4



1. Introduction

The three object limitation is also to simplify the data collection since these objects
are some of the most common objects in a traffic environment and therefore the
easiest to get data off. By focusing on three classes the dataset can build with more
data points of this classes, which will result in a more accurate identification.
The problems with identifying objects from LIDAR data is that the objects are only
scanned from one angle, which makes the input 2.5D and, the further away the
object is from the sensor, the fewer points are able to be found. As a result, the
classification requires a lot of training data in order to perform well.
The ANN being designed is based on a network called PointNet, [10], which is de-
signed to classify computer generated objects, and thus on 3D objects. The network
is trained on PC that contains 128 points, which is half as many as PointNet was
designed to read as a minimum. The limiting factor was the relatively few points in
the objects from the KITTI ground truth that was labeled as pedestrians. A higher
number of points makes it easier for the network to recognize an object, but this
would mean fewer objects to train on.
The system needs to separate objects from the point cloud to be able to identify
them, therefore some kind of segmentation is needed. No new segmentation methods
will be developed instead already existing algorithms will be implemented in the
system. Furthermore, the system will be designed to deal with a flat landscape,
thus no slopes or speed bumps are to be included in the project.
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2
Theory

In order to get a better view of this thesis, this chapter will provide the theory
necessary to get an understanding of the project. It will first give an understanding
of how to create point clouds and then it will provide a description of tools that
were used. The last two parts concern segmentation and classification, which are
the two most important parts of the theory. Figure 2.1 gives a picture of the system
that will be created.

Point Cloud Segmentation Classification
Identified
objects

Figure 2.1: The figure illustrates the system broken down to its main components
and how the data flows inside DELIS. This is also how the theory will be covered.

2.1 Generation of Point Clouds
A point cloud is a unified and simple structure that has none of the complexities
and combinatorial irregularities that meshes normally have, [10]. One way to view
point clouds is as points of data in a space. According to Mathworks [13], a point
cloud is normally used to measure distances in the physical world. Normally a 3D
Cartesian coordinate system is used to visualize the point cloud, which could be a
map or an object [14]. Its application may be everything between, robot vision and
boat building, [15], to medical applications like 3D tomographic reconstruction [16].
Point Clouds are also used in order to prevent robots in factories from colliding. An
example of a point cloud can be seen in Figure 2.2.

Organized vs Unorganized

A point cloud can be either organized or unorganized. When plotting them, both
kinds of point clouds look like one other. The difference is how they are stored.
According to [17], an organized point cloud has an organized structure resembling
an image where the data is sorted into columns and rows, e.g. n ×m. Such data
most often comes from stereo cameras. In knowing the relationship between points
in an organized point cloud the computational cost of certain algorithms can be
lowered, for example, the nearest neighbor algorithm. Unorganized point clouds are
on the other hand without structure, they are stored as a 1×M matrix. The only
thing you know is the number of points in the point cloud.
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2. Theory

Figure 2.2: Point Cloud of a Hare.

2.1.1 LIDAR
Normally cameras are used to identify objects in an automotive application, but
they have some limitations, both NASA and Chalmers University of Technology,
[2, 8], agrees on that cameras are very dependent on the surrounding light, which
makes it difficult for cameras to work in poor light conditions. The LIDAR, on the
other hand, does not have this problem which makes it an excellent tool in such
conditions. However, these sensors are expensive and often breaks, since there are
a lot of moving parts in them.
The LIDAR works by emitting a laser beam at a known direction. At the same
time, a clock is activated and measure the time it takes for a detector to detect the
laser, which has bounced on an object. The distance for the object is then obtained
through equation 2.1.

d = c
t

2 (2.1)

Where d is the distance, c is the speed of light and t is the measured time. It is
divided by two since it is half the time it takes for the laser to be emitted and
detected which is the time it takes from the emitter to the object. This is then done
in every different direction in order to get a full scene.
In [18] it is claimed that there are different kinds of LIDARs, which have different
applications. A coherent LIDAR is one example, it measures the velocity of an
object. The range LIDAR is one other example of a LIDAR. It measures the time
it takes for light to travel from the LIDARs emitter to an object and then back to
the sensor, from this the distance to the object may be obtained a diagram for the
vital parts can be seen in Figure 2.3.
To solve the cost and reliability issues with the LIDAR, a new kind of LIDAR called
Solid State LIDAR have been developed. These new type of LIDAR have a more
limited field of view but have the advantage of being cheaper to produce and they
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2. Theory

Figure 2.3: Diagram of the LIDAR. The red arrows is the laser that is being
emitted and hits an object. The reflected light is now symbolized as the yellow
arrows.

contain no moving part which increases the lifetime of the sensor. The lack of moving
parts also enables the LIDAR to have a lower weight and a smaller size. According
to [19] one additional advantage with the solid-state LIDAR is that the lower cost
makes it possible to combine two or more sensors in order to make the system more
fault tolerant.
A scene from a point cloud may be viewed in Figure 2.4

Figure 2.4: A point cloud created with the help of a LIDAR
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2. Theory

2.1.2 Stereo Vision
There are a number of different ways to create point clouds. One way is to use stereo
vision [20], which basically is two cameras that takes photos at the same time, with
a known distance between each other. Through triangulation, it is then possible to
calculate the distance to objects. As illustrated in Figure 2.5 an overview of how
stereo vision works may be viewed. The blue circle is not detected through the left
camera, which is illustrated by how the lines are dashed from the left camera. Since
it is known where the cameras are mounted in respect to each other, it is possible
to find out the distance from the objects to the cameras.

Figure 2.5: Illustration of stereo vision. The black boxes in the bottom are the
cameras that capture the images, which are the black and colored horizontal lines.
The blue circle, red star and yellow triangle are objects that the cameras detect,
thus the different colors on the images.

2.1.3 Synthesized Point Clouds
In [21] there are many ways to generated point clouds with the help of a computer.
One way is by using computer-aided design to create 3D models of objects, this
model can then be imported and transformed into a point cloud. By using this
method it is possible to get a symmetrical point cloud with all sides represented
instead of just the one side that is turned toward the sensor. Another way to
create point cloud is to simulate the real world and sensors, such as a LIDAR. This
approach has many advantages, the main ones being the possibility to generate an
almost infinite amount of labeled data, as well as the lack of noise which is present
in all point cloud created by sensors, especially when the sensor is moving, e.g the
LIDAR sensor on a car.
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2. Theory

2.2 Segmentation
Segmentation is done in order to separate the points of the different objects, in
the point cloud, into a smaller cluster that can be identified. There are a number
of ways of doing segmentation for point clouds [22]. Edge-based such as Normal
Segmentation [23] can provide good results if you find the right parameters, however,
it has difficulties if the data contains noise. Another method is described in [24]. It
uses the HDBSCAN algorithm which is a Region Growing method.

2.2.1 K-Nearest Neighbor Graph
The nearest neighbor graph is a useful algorithm when finding clusters and is il-
lustrated in Figure 2.6. The algorithm calculates the distance from one point to
the surrounding neighboring points and depending on the threshold, represented by
the circle, the point is seen as a neighbor or not. These calculations are done for
every point and result in points with common neighbors being classified as the same
cluster. The final result of a 2D dataset can look something like Figure 2.7. The
same idea can be applied to 3D points.

a
b q

c

Figure 2.6: Node a and b share a neigh-
bor labeled q, i.e. they belong to the
same cluster. Node c has no common
nodes with a or b i.e. it belongs to sepa-
rate cluster.

Figure 2.7: Clustering of 2D-points
with the use of K-Nearest neighbour
graph algorithm. The red circles are
the points and the black lines symbol-
izes which points that are in the same
cluster.
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Algorithm 1 Pseudo code for K-Nearest Neighbour Graph
1: for i← 1, ..., n do
2: if (hasCluster(ui)) then
3: continue;
4: end if
5: NN ← findNeighborsInRadius(xi, r)
6: for all uj ∈ NN do
7: if hasCluster(ui) ∧ hasCluster(uj) then
8: if clusterOf(ui) 6= clusterOf(uj) then
9: mergeClusters(clusterOf(ui), clusterOf(uj));

10: end if
11: else
12: if hasCluster(uj) then
13: clusterOf(ui)← clusterOf(uj);
14: else
15: if hasCluster(ui) then
16: clusterOf(uj)← clusterOf(ui);
17: end if
18: end if
19: end if
20: end for
21: if ¬hasCluster(ui) then
22: clusterOf(ui)← createNewCluster();
23: for all uj ∈ NN do
24: clusterOf(uj)← clusterOf(ui)
25: end for
26: end if
27: end for
28: for all Ci ∈ Clusters do
29: if ‖Ci‖ < nMin then
30: delete(Ci);
31: end if
32: end for
33: returnClusters;
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Description of K-Nearest Neighbor Graph Algorithm

• Step through each point.
• If the current point belongs to a cluster go to next point.
• For each point

– Find all neighbors within distance r.
– If any of its neighbors is in a cluster, attach the current point to the same

cluster, then attach all neighbors without a cluster to the same cluster.
– If the point belongs to a cluster and there is neighbours belonging to

different clusters, merge all this clusters.

2.2.2 K-D Tree

K-D tree is a binary tree with k-dimensions. All none leaf nodes generate a hyper-
plane that divides the space into two parts, known as half-spaces. Points to the
left are represented by the left subtree and the right side is represented by the right
subtree. Depending on the direction order of the hyperplanes the K-D tree can look
different. To construct the tree one cycle through the axes, x, and y in this case.
In the left part of Figure 2.8 the data is first split in the x-direction, at (7,2), the
median of the points, then the y-axis, and is then repeated. This method leads to
the balanced tree in the right part of Figure 2.8, where each leaf is approximately
the same distance from the root.
K-D tree is a common data structure used to lower the time complexity for nearest
neighbor searches due to its fast range search. Range search can be used, to great
effect in finding all neighbors within a specific distance of the queried point. Thanks
to the tree structure where the neighboring points are in the same sub-branch, large
portions of the tree can be eliminated and thereby speed up the process. This results
in a relatively low time complexity, which can be seen in equation 2.2 [25].

(7,2)

(5,4)

(2,3) (4,7)

(9,6)

(8,1)

Figure 2.8: The left picture is the K-D data structure where the red lines symbol-
izes splits in the x-dimenstion and the blue lines are splits in the y-dimensions. In
the right picture the same data is visualized as a tree.
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tworst = O(k ·N1− 1
k ) (2.2)

2.2.3 HDBSCAN
According to [24], one way to cluster data efficiently is by using Hierarchical-based
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN). Basi-
cally, the algorithm connects the points in the point cloud with each other and
prunes the points that are farthest away. A more detailed description is listed be-
low.

• Transform the space in order to distinguish clusters from each other and reveal
the outliers.

dmr,k(a, b) = max
(
corek(a), corek(b), d(a, b)

)
(2.3)

where dmr,k is the mutual reachability distance, a and b are two points located
in the space, d(a, b) are the euclidean distance between a and b. corek(x) is the
core distance. That is the distance between point x and the kth neighbour.
This is to make the algorithm more robust against noise. An example of this
is seen in Figure 2.9.

• Build a Minimum Spanning Tree from the Mutual Reachability Graph where
only the shortest edges are in. This will create a hierarchy of connected com-
ponents, where some are completely connected and others are disconnected.

• From the data obtained in the Minimal Spanning Tree, a dendrogram is cre-
ated. From this form, it is possible to eliminate clusters which contain too few
elements.

• This dendrogram is then condensed so each of the clusters contains a specific
number of elements. The condensation is done by pruning away the edge
which has the lowest value if two or more edges have the same value both
edges are removed simultaneously. At each split, the number of pruned nodes
are compared with a variable, minimum cluster size. If the pruned nodes are
more then this variable, they are stored as one new cluster, else they are seen
as noise.

• In order to obtain stable clusters, the inverse of the distance is used, λ =
1

distance
, where λ is the stability. λp,max is the value when the specific node was

pruned, died. λmin is when the cluster was created, i.e, when it got split off.
Stability for these clusters are then calculated as:

∑
p∈cluster

(
λp,max − λmin

)
(2.4)

• The final step is then to extract the clusters. This is done by comparing the
child nodes stability with its parents. If the children stability is higher then
the parent, the parent is discarded. Figure 2.10 illustrates this. The text in
the circles indicates the label of the cluster and the stability of it.
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b
a

Figure 2.9: Illustration of the core distance, where core distance is 3, k = 3. The
circle with red and blue color are the points that are being examined. Black circles
are points that are to be evaluated.

ROOT

C2, 4 C3, 6

C4, 6 C5, 7 C6, 3 C7, 1

C8, 2 C9, 4

Figure 2.10: Graph over the selection of the clusters that are obtained. The text
in the circles indicates the label of the cluster and the stability of it. The white
nodes are the ones which are kept and the gray are discarded.

2.3 Classification

In supervised learning, it is common practice to use labeled data sets to train the
system. The KITTI [4] project contains LIDAR scans of traffic environments, per-
formed with an autonomous car. The data is labeled and can therefore easily be
sorted into categories. This data is then divided into a test set, a training set, and
a validation set. One common rule of thumb is the “80-20” rule.
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2.3.1 Machine Learning Algorithms
There are a number of different ways to learn computer systems to classify data.
In the article Analysis Of Supervised Classification Algorithms, [26], different super-
vised learning algorithms, which mainly are used to classify and regress, are being
discussed.

Sliding Window Algorithm

The sliding window algorithm is used in image object detection. Basically, the
method moves a window around the image and checks if the window contains the
object that is requested. This algorithm is limited in that it is very computational
expensive [27].

Naïve Bayes Classifier

Naïve Bayes Classifier is obtained by using Bayes Theorem. The classifier uses two
variables, t, and X. k is the total number of classes, t is the class for one specific
and X is the set of predicative variables. Given the class variable, the Naïve Bayes
assumes all of the predicative variables are conditionally independent.

p(xnew|tnew = k,X, t) =
D∏
j=1

p(xj|tnew = c, t) (2.5)

Where xj is the is the value of the j:th variable. t is the unknown parameters. D is
the number of features.[28]

Support Vector Machine

Support Vector Machines, SVM, separates on data by “drawing lines” through them.
It classifies data that are in two dimensions easily through 2.6

ynew = sgn
(
ŵ0 + ŵTx

)
(2.6)

Where ŵ0 is the bias, ŵ is the weights, y is the class and x is the data that is
evaluated. This way, depending on which side of the line the data is on it either gets
classified as 1 or -1. In order to get the system to validate as good as possible, the
margin between the two different classes needs to be as large as possible in order to
safely classify new data. To find that, it is necessary to find a point as close to the
boundary as possible, thus optimizing as in 2.7.

minw,w0

1
2 |w|

2

s.t yi(ŵ0 + ŵTxi) ≥ 1, i = 1 : N (2.7)
N is the total number of data and i is the data being evaluated. There are a lot of
different techniques to change the binary SVM into a multi-class classifier. However
according to [28], these either takes a lot of computational time or are inaccurate,
both are attributes required in automotive applications.
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2.3.2 Artificial Neural Networks
Computer researchers consider ANN (Artificial Neural Networks) as systems that
constitute a number of nodes with different linear functions. These nodes might
be considered as a way to approximate basically every mathematical function [29].
Since ANN is a versatile way of examining data, it is known to be in various fields
like psychology, engineering, and economics [30]. They can be used in image analysis
for medical purposes [31] and in computer vision [32], but also in speech recognition
[33]. According to [34] ANN may even be used to analyze the toughness of ferritic
steel welds.
In [35] it is written that the nodes or the artificial neurons are organized in layers
and each node can send a signal to one or more nodes in the next layer. When
training an ANN, each weight is updated in order to give the input to next layer a
higher or lower value. The output from the final layer is used to determine which
class the objects is a member of.
From a point cloud obtained by a LIDAR, an ANN should be able to classify the
surrounding objects, [36, 37, 10]. However, the development of these kinds of meth-
ods is a new research field and not very developed. This project’s ANN will be based
on the ANN from Pointnet which will be modified to fit this purpose.

Optimization Algorithms

Optimization algorithms are used to find the optimum for the objective function.
There are a lot of different optimization algorithms, Adadelta, Nesterov Accelerated
Gradient are two examples of this [38].

Stochastic Gradient Descent One other example of an optimization algorithm
is the Stochastic Gradient Descent. Over a convex domain, SGD may optimize any
convex function, this through the usage of subgradients [39].
The update function for SGM is as follows:

θt+1 = θt − η · ∇θJ(θ;x(i); y(i)) (2.8)

[40] Where J(θ) is the objective function, θ are the models parameters. η is the
learning rate, which is the same as step size. t is the current round, x(i) is one
training example and y(i) is the corresponding label.

ADAM In order for an ANN to classify objects, it needs to be trained. In this
project, Adam [40], were used in order to learn the network to receive a value for
the optima. As seen in [40] there are a lot of other methods that also may be used.
The reason why Adam is used is because it calculates adaptive learning rates for
every parameter. Adam keeps the mean, mt, and the uncentered variance, vt of the
gradients, which normally makes the learning rate pretty large in the beginning and
lower when it gets closer to the optima. Thus Adam is preferable towards many
other adaptive learning algorithms. The equation for how the mean and variance
updates are in 2.9 and 2.10.

mt = β1mt−1 + (1− β1)gt (2.9)
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vt = β2vt−1 + (1− β2)g2
t (2.10)

Both mt−1 and vt−1 are normally initialized as a zero-vectors and the decay rates
are normally β1 = 0.9 and β2 = 0.999.
To avoid that the algorithm gets biased to zero, the bias-corrected mean and variance
are calculated as in 2.12:

m̂t = m̂t

1− βT1
(2.11)

v̂t = v̂t
1− βT2

(2.12)

These are the variables used in the Adam update rule, 2.13.

θt+1 = θt −
η m̂t√
vt + ε

(2.13)

where η is the learning rate, normally set around 0.001 and epsilon is a very small
positive value, 10−1 that prevents division by zero.

Over/Underfitting

Depending on how the accuracy of the validation set, different scenarios might occur.
The model should fit the training data in order to let the ANN decide on which
class the new object belongs to. However, if the model fits the training data too
well, the model is not going to be able to make a good evaluation of the new data.
The validation data have a large variance when speaking about the accuracy. This
is called overfitting, [41, 42]. In an ANN with many nodes, the ANN is likely to
follow a different path when making small adjustments to the input. One way to
get control of it is by adding dropout when training the network. Basically, the
dropout means that you disable a portion of the nodes in order to let the ANN learn
with fewer nodes, thus forcing the data to develop fewer, stronger paths based on
the same data. [42] When there are too few parameters the model will not be able
to fit the data and the bias for the validation data get high. One good remedy for
this is to add more nodes to the ANN. This is called underfitting [42], it is when
the system will not model the training data and therefore will not be able to make
any valid estimates of new data. An increment of the training data is what most
researchers recommend.
Examples of how the over, under and the perfect fit looks like, can be found in
Figure 2.11. The blue line indicates the perfect fit of the sampled data, which is the
red dots. The green line is the underfitted system response and the yellow line is
the overfitted output.
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Figure 2.11: Over (yellow), under (green) and perfect (blue) fit of the sampled
data (red dots). NOTE, the image is a toy example, and is specifically made to
exemplify the different types of fitting.

Convolutional Neural Networks

Fully connected layers require a lot of nodes and therefore many parameters to
be tuned. According to [35], one way reduce these parameters is to use convolu-
tional layers, Figure 2.12. The output from the convolutional layer is calculated by
convolving the weight of the node with its input. If it is already known how the
gradient of the loss function with respect to the computational nodes in H2, the
backpropagation becomes

∆L
∆wi

= ∆H2
0

∆wi
∆L

∆H2
0

+ ∆H2
1

∆wi
∆L

∆H2
1

+ ∆H2
2

∆wi
∆L

∆H2
2
. (2.14)

Where ∆ symbolizes the derivate-operand, L is the loss, H is the layer, w is the
weight. The superscript is what layer it belongs to and the subscript is to what
node in the current layer. By assigning: δi = δL

δHi
, rearranging 2.14 and calculate

with respect to each individual weight we obtain:

δL

δw0
= h0δ0 + h1δ1

δL

δw1
= h1δ1 + h2δ2 (2.15)

δL

δw2
= h2δ2 + h3δ3

When h1 = [h0, h1, h2, h3], which are the output from each node in H1, and δ2 =
[δ0, δ1, δ2, δ3] are the vector of the gradients in H1. With this you can show that 2.14
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H1
1

H1
2

H1
3

H1
4

∑

∑

∑

w2

Figure 2.12: A piece of a CNN. H symbolize a node and the superscript gives its
layer. The subscript indicate where in the layer the node is located in. w is the
weight.

is actually a convolution, 2.16.

(h1 ∗ δ2)(t) =
∫
h1(τ)δ2(t− τ)dτ (2.16)

Thus 2.17 is obtained by combining 2.15 with 2.16.

L

W
= h1 ∗ δ2 (2.17)

The quota L
W

shows the gradient of loss with respect to each weight. By noting that
w = H2

i

hj
is then possible to obtain 2.18

δL

δh0
= h0δ0 + h1δ1

δL

δh1
= h1δ1 + h2δ2 (2.18)

δL

δh2
= h2δ2 + h3δ3

The same calculations are used for the quota, L
hi

where i is one node. This is needed
in order to compute the backpropagation.
One other layer common in the CNN is the pooling layers. As described in [35],
the pooling layer is a way to reduce the data in different ways depending on the
information required. One common pooling is the max pooling layer, where it is the
maximum of a region that is kept. An example of the max pooling with stride 2× 2
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is in 2.19, where patch is the patch, from where the maximum, is obtained. A patch
is a subsection of the input image.

patch =


9 4 1 5
3 7 2 8
1 5 9 2
3 6 1 5

 maxpool(patch) =
[
9 8
6 9

]
(2.19)

PointNet

One type of convolutional neural network able to identify objects in 3D space is
the PointNet [10]. It is designed to classify and segment detailed scanned objects
and computer-generated point clouds. The scanner that PointNet utilizes is the
Matterport scanner [12, 43], which takes more than 30 seconds for the scan to
completed and more than one hour to upload to a computer. Needless to say, this
would not function in an online application for automotive.
One property that sets PointNet apart from other ANN is that it does not change
the point clouds into voxels or images. It does this by the use of three essential ideas.
The first idea is to approximate a general function of the point cloud by utilizing a
symmetric function on the transformed sets.

f(x1, ..., xn) ≈ g(h(x1), ...h(xn) (2.20)
In Equation 2.20 f : 2RN → R, h : RN → RK and g : RK × ... × RK → R is
a symmetric function. h is approximated by a multi-layer network and g by a max
pool and a single variable function. The second idea is for the segmentation part
of the PointNet which is not used in this project and is therefore disregarded. The
third idea concerns the rotation and translation of the point cloud. The PointNet
creators have designed transform nets which predicts an affine transform matrix by
a sub-network and then use this transformation directly on the input point cloud.
The input point cloud needs to be a subset of points from a Euclidian space. Thus it
needs to be able to be invariant under transformations, you should be able to both
rotate and translate the whole point cloud. Further, each point in the set is not
alone, together with its neighbors they make up important subsets of the total point
cloud. The network learns to select interesting points from the cloud according to
a set of criteria and encodes this into the layers for the network. One interesting
feature with PointNet is that it summarizes a point cloud by a few key points.
PointNet, which is an ANN that has a unified architecture, use a
alignment/transformation network to make the data more comprehensible. This
alignment/transformation network is basically the same as the back end of Point-
Net. The difference between the alignment/transformation nets and the normal one
concerns that the first transform net outputs a 3 × 3 matrix and the second a 64
× 64 matrix and the output from the system itself is the probability for each of the
classes. Both of the transformations gets multiplied with the input to these nets.
The output from PointNet is either the label for one segment or it is the label for
the entire input.
One downside with PointNet is that it does not consider nonuniform sampling den-
sity of the point cloud. Models that are trained for dense point clouds might have
a problem with sparse clouds and the other way around.

21



2. Theory

2.4 Summary of the Theory
In this chapter different ways of generating point clouds were covered. Also, a short
description of KITTI, PointNet and also Pro-SiVIC are being presented.
This section also covered different algorithms and methods used to segment the
data. Further, it also covered different ways to classify data. It was decided to
use HDBSCAN because it showed good results when performing segmentation. The
accuracy of the algorithm was about the same as Nearest Neighbor but HDBSCAN
was much faster. Another advantage with HDBSCAN was that it was easy to
implement in our code due to preexisting libraries. Different objects in nature have
complex shapes and they would, therefore, have complex equations in order to be
drawn in a computer, it was therefore decided to use ANN. ADAMs are being used
since we do not have that much data to use.
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Methods

This chapter describes the methods used to conclude this project. The first section
states the research questions, followed by useful tools that were used in this project.
The third section covers the first subsystem, the segmentation. The fourth section
describes the classification. And the chapter is finished by the evaluation methods
of the system and its parts.

3.1 The Research Questions Revisited
The research questions are as follows.
RQ1 How well does machine learning methods, trained on real traffic environments

perform on simulated environments?

RQ2 Is it possible to use machine learning algorithms with classical algorithms in
order to make a competitive system for object classification?

RQ1 is answered by creating a system and using KITTI data for testing and training
the machine learning algorithm. When the system is working well with the KITTI
data, the simulated data will be used for testing and verification. RQ2 will be
answered when the evaluation of the system is performed.
From these questions, the system that is viewed in Figure 1.2 were designed. This
figure makes it is clear how the data flows in the system.

Point Cloud Segmentation Classification
Identified
objects

Figure 3.1: An overview of the to be designed system called DELIS. The boxes
with soft corners are input and output and the boxes with hard edges are the parts
of the system. As this section covers the methodology, the red box describes in
which part of DELIS where the method is used.

3.2 DELIS
DELIS were created with the alternative to switch between the two different seg-
mentation algorithms. After the segmentation, each cluster was randomly sampled
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for 128 points so that they fit into the neural network. The clusters and the points
are then labeled and stored in a file which can later be displayed. Delis also estimate
the center of an object by calculating the mean value for each axis in the cluster.

3.3 Useful Tools

This project has utilized a couple of different tools, this subsection gives a brief
description of KITTI, and ESI-Pro-SiVIC both are tools from where the data used
in this project was obtained from.

3.3.1 KITTI
KITTI [4] is a project carried out by Karlsruhe Institute of Technology in collabo-
ration with Toyota Technological Institute at Chicago, where the aim was to create
a benchmark for real-world computer vision. The researchers performed data col-
lection of traffic environments with the help of a car equipped with the following
sensors.

• Velodyne HDL-64E Laserscanner
• 2 Grayscale cameras, 1.4 Megapixels
• 2 Color cameras. 1.4 Megapixels
• 4 Varifocal lenses, 4-8 mm

The sensor used for this project is the Velodyne Laser scanner that creates point
clouds of the surrounding environment. The scanners spin at 10 frames/second and
obtain approximately 100k points per cycle.

3.3.2 ESI Pro-SiVIC
A company called ESI, [5] have created a 3D simulation tool for sensors, like LIDAR,
GPS, and cameras in a realistic environment. The environment is not just buildings,
roads, and other vehicles, but also different kinds of weather and lighting conditions.
According to Esi Pro-SiVIC - 3D simulations of environments and sensors, [44], the
simulator allows a good way to try algorithms for self-driving vehicles, perform safety
studies, analysis of sensor robustness and system performance.

3.4 Point Cloud

Point Cloud Segmentation Classification
Identified
objects

Figure 3.2: The red box indicates what part of DELIS that is currently being
discussed, in this case the input data, point cloud.
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The data used in this thesis were downloaded from the KITTI Vision Benchmark
Suite homepage [4] and the point clouds were divided into text files with x, y and z
coordinates for each point. There were also labeled data that provided information
about what objects each point cloud contained and the position of the identified
object. The labeling of the data was presented in the form of bounding boxes
placed around the objects of interest, e.g. cars, pedestrians, and cyclist. All points
inside such a box could be seen as belonging to the same object. With the help of
this information, the points were gathered into clusters and put into arrays with a
label of which object it was identified as. The clusters contained a varying number
of points depending on the distance to the LIDAR and the size of that object. The
cars contained the most points and the pedestrians the fewest.

These clusters were also transformed into their own 3D space in order for the ANN
to be able to understand the data, e.g normalized and centered around the origin.
This because the position of the object in the point cloud should not play a part in
the classification process.

Visually it was possible to determine what kind of object that a cluster is when it
contains more than 90 points. Because of this, and the fact that graphics processing
units work most efficient in base two, it was decided to use clusters that contained
128 points. These points were randomly sampled from clusters with more than 128
points and clusters that contained less then 128 points were discarded. The data
sets were further enlarged by sampling multiple times in the objects with the most
points. With this method, a larger data set was created. Since the dataset should
be balanced with an equal number of cars, pedestrians and cyclists the final size
of the data set was 800 for each type of object. The limiting factor in the process
was the number of pedestrians present in the KITTI data set. They were both the
fewest clusters and the smallest, hence the number of times that it was possible
to sample the clusters and create objects from the pedestrian clusters were not as
many as it was for the cars and cyclists. The data were finally divided into training,
testing and validation sets which are needed for different parts of the development
of DELIS.

The other type of data used in the project was point clouds from the ESI simulator[44],
which was used in the final evaluation of the system. This data was unlabeled and it
was therefore not possible to create a large dataset entirely of simulated data. The
data was created by building an environment that is as realistic as possible, with the
help of the simulator tool. This means a simulation with parked and moving cars,
buildings and pedestrians. Unfortunately, cyclists were unavailable in the simulator
which limits the results when comparing simulated data and the real world data.
The simulator allowed for the placement of LIDAR sensors in the environment cre-
ated, in this case, a car. It was also possible to change the properties of the LIDAR,
for examples resolution of the sensor and the aperture angle. In this project, the
properties were set to the same as Velodyne HDL-64E [45] since that is the sensor
used in the KITTI data collection. With the sensor in place, the simulator allowed
for the car to be driven around in the environment and collect data. The data
obtained were segmented and put into the ANN in the same way as the KITTI
data.
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3.5 Segmentation

Point Cloud Segmentation Classification
Identified
objects

Figure 3.3: This chapter is about the segmentation. The arrow that goes from
Point Cloud indicates that the segmentation part is being fed with Point Clouds.
The output from the segmentation is smaller point clusters of objects. These clusters
are sent to the classification part of DELIS

In order to separate the objects that are to be identified, from the point cloud, some
form of segmentation is needed. There are different ways of segmenting point clouds,
one way is to perform it with the help of an ANN that is also used to identify objects,
but this would not answer the research questions. In this project, the segmentation
was performed before the machine learning algorithm i.e. segmented clusters are
the input to the machine learning algorithm.
The segmentation was performed with two different algorithms, the first one was an
algorithm that used the nearest neighbor algorithm and graph building, the second
was the HDBSCAN segmentation algorithm [24]. The nearest neighbor algorithm
was chosen because it is one of the classical methods and the first that came to
mind. Our nearest neighbor-algorithm was designed and implemented by the au-
thors. HDBSCAN was decided because it is a fast and stable method.
The purpose of both algorithms was to divide the point cloud into clusters, that
consists of points which belong to an object in the scene. These objects could be
cars, pedestrians, trees or lamp posts, just to mention a few. Using one of these
algorithms on each scene, resulted in each scene being split into multiple objects,
with varied size and number of points. These are the objects that needs to be
classified.
The first algorithm, K-Nearest Neighbor graph, started by building a KD-Tree of
all the points. This KD-Tree were then used in order to speed up the querying of
the nearest neighbor in the algorithm. A description of the algorithm is seen below
and the pseudocode can be seen in 1

1. Step through each point.
2. If the current point belongs to a cluster go to next point.
3. For each point

(a) Find all neighbors within distance r.
(b) If any of its neighbors is in a cluster, attach the current point to the same

cluster, then attach all neighbors without a cluster to the same cluster.
(c) If the point belongs to a cluster and there are neighbors belonging to

different clusters, merge all these clusters.
The second algorithm used in the project was HDBSCAN [24]. This algorithm was
implemented and the results were compared to the previously described algorithm.
Further explanation of this algorithm is written in the theory chapter. To improve
the results of the algorithms the ground were removed from the point cloud. This
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was done by removing all points below a certain height. This operation helped
in separating the objects in the point cloud that were previously connected to the
ground. All points beyond a certain distance were also removed in order to speed
up the segmentation.

3.6 Classification

Point Cloud Segmentation Classification
Identified
objects

Figure 3.4: This section describes the classification part of DELIS. Point clusters
from the segmentation part is the input. The ANN identifies the point cluster and
label it. This labels together with the point clusters are the final output from DELIS.

ANN was used in this project as a method to classify the different objects because
they have a fast execution time, and when properly trained, they have high accu-
racy. They are also able to handle a large amount of data. The reason for using
PointNet[10] is that it is able to work on unordered point clouds without voxeliza-
tion or rendering, this makes it faster than many other networks. PointNet uses
the Tensorflow[46] framework to build their network. The code is open source and
easily modifiable.
It was decided to use the “80-20 rule” to split the data set into training and testing,
but since a validation set was also required the sets ratio became test 20%, validation
16% and training 64%.
PointNet is already programmed to use either SGM with momentum or Adams as
its optimizer.
According to the paper An overview of gradient descent optimization algorithms,
[40], different learning algorithms should be used depending on how much training
data that is available. If the input data is sparse, then one should use Adam.

3.6.1 Architecture
A common approach to creating an architecture is trial and error with a few common
guidelines. The common architecture for all the convolutional neural network is to
start with a couple of convolutional layers followed by a max-pooling layer. Then,
there normally is a few fully connected layers that might be connected to a layer
of dropout. The last layer use to be a fully connected layer with as many nodes as
there are classes to identify [10, 47, 35, 48, 6]. A script written to generate different
net structures were implemented. The different structures were evaluated and the
best one’s execution time and accuracy were compared in order to find an ANN as
good as possible. The networks that got evaluated were trained 100 epochs.
In order to produce a good architecture design, the computer randomly generates
a couple of hundred different designs and evaluated each one. The architecture
generation follows the algorithm seen in Figure 3.5. The purpose of the algorithm
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is to make sure the generated design is a valid one and is possible to execute, e.g
there cannot be two transforms after each other. The box which is labeled Exp is
used to change the dimensions of the point cloud in order to fit the ANN.
The architectures were implemented in tensorflow.

Start

Exp

Transform Net1Conv(16-1024)

Max Conv(16-1024) Max

Conv(64)

Transform Net2

Conv(16-1024) Fc(16-1024)Max

Fc(4)

Dropout

Figure 3.5: Flowchart of the Net-Generator. It was decided that we wanted at
least four layers, two convolutional and two fully connected layers. This because the
ANN needs a lot of nodes in order to avoid underfiting. Further, from [1], it is proven
that shallow ANN needs exponentially more nodes then deep networks. First the
generator decides if the ANN should start with a transform or with a convolutional
block. Afterwards there are at least two convolutional layers, followed by the second
transform. From the last max pooling and the convolutional layers there is a dotted
arrow pointing to the box labeled FC(16-1024), this is solely to indicate that the
arrows cross each other. There are at least two fully connected layers in the end.
And, of course, the last layer have as many nodes as there are classes. Branching is
equally weighted.
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3.6.2 Tensorflow

There are a lot of different frameworks to choose from when working with ANNs,
such as Tensorflow, Caffe, and Theano. In this project, Tensorflow were used thanks
to the fact that it has a built-in support for deep neural networks and Convolutional
Neural Network, (CNN) [46]. Since this project is just a proof-of-concept, it has more
focus on fast implementation and less on the execution time, which suits Tensorflow.
Tensorflow is also a good choice when it comes to designing a network for Python.

3.7 Evaluations

In order to know how well DELIS is compared with other existing systems, it is vital
to evaluate it. Each part was evaluated individually as well as the complete system.

3.7.1 The Segmentation

The evaluation of the segmentation was done in part by measuring the performance
and in part by measuring the accuracy. The performance was evaluated by measur-
ing the execution time of the segmentation and the cluster creation time over a few
different point clouds. The accuracy evaluation was done by counting the number of
points in the clusters from the segmentation and how many of them were correctly
labeled with the help of the ground truth data.
The segmentation evaluation is performed on both the KITTI data and the simulated
data. The performance was easily measured in the same way for both data types.
However, the accuracy evaluation was only possible on the KITTI data since no
ground truth data for the objects in the simulated data were available.

3.7.2 The Classification

For the classification, the accuracy for different neural network architectures are
tested and evaluated. The test set consists of KITTI data that is labeled, with a
size of 480 objects from each of the three classes. This allows for an average accuracy
to be calculated for each class and architecture.

3.7.3 DELIS

DELIS is evaluated with point clouds from both ESI Pro-SiVIC and KITTI. A
graphic display of the result was created, where the points were displayed in dif-
ferent colors depending on what the neural network identified the object as. This
visualization was used when the system where evaluated. The evaluation was done
by manually inspecting the different point clouds that were feed into the system
and count the cars, pedestrians, and cyclists in the image from the visualization
program.
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3.8 Summary of the Methods
In this chapter, we argue why we chose KITTI and ESI Pro-SiVIC as data sources
for our system. We briefly describe the different segmentation methods and have
some arguments on why ANN are chosen as the classification method. This is
followed by how the ANN we chose to use were obtained. Lastly, the evaluation of
the segmentation, the ANN, and the whole system is described.
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Results

The results of the project are listed in this chapter. It starts with the results for the
segmentation and continues with the classification results. Finally, the results from
the total system are covered. This chapter ends with a discussion where this system
is compared with similar applications, i.e. YOLO [6] and VoxelNet [7].
It was concluded that the Nearest Neighbour algorithm was slower then the HDB-
SCAN, the problem is that neither is the execution speed is too slow for a real-time
application. The accuracy for the segmentation differed from one scene to one other,
however, HDBSCAN showed better performance overall.
The resulting network had a validation accuracy of around 95% when using the
training dataset.
The final system where able to identify a few items depending on the scene, still the
system has much room for improvement. Our conclusion is that the segmentation
part of the system has the most to improve.

4.1 The Individual Parts

Point Cloud Segmentation Classification
Identified
objects

Figure 4.1: An overview of the to be designed system. The boxes with soft corners
are input and output and the boxes with hard edges are the parts of the system.

DELIS is constructed by two different parts, one part that segments and one that
identifies. The way the different parts interacts may be viewed in Figure 4.1.
DELIS, seen in Figure 4.1, takes the scan from a LIDAR as a whole, transform the
input point cloud into Euclidean coordinates and segment it. Thus the input for the
ANN is only clusters that have been segmented from the scene, which have more
than 128 points.
The evaluation of DELIS is done in three steps. First, the segmentation, then the
ANN, and finally the parts together.

4.1.1 Segmentation
This section contains the results of the segmentation evaluation which was done
by measuring the execution time of the segmentation and the truthfulness of the
segments.
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Algorithm Dataset Time

Nearest Neighbour with KD-tree
Dataset 1
Dataset 2
Dataset 3

30.74
15.72
24.76

HDBSCAN
Dataset 1
Dataset 2
Dataset 3

7.80
3.61
4.39

Table 4.1: Execution time for the segmentation of each dataset in seconds

In a real-time system e.g. a car, the execution time of a program is of utmost impor-
tance. As can be seen in 4.1, HDBSCAN is significantly faster than the alternative.
Even though the HDBSCAN is faster, it is still far from being fast enough to be
used in a real-time system. The segmentation was run on an Intel Core i7-5930K
CPU @ 3.50GHz.
The truthfulness of the segmentation was evaluated by comparing the segmented
clusters with the ground truth data in the KITTI dataset. The clusters compared
where manually identified in the scene and then compared to the ground truth. The
results can be seen in 4.2, 4.3, the tables show the number of points in the ground
truth cluster and in the segmented cluster. It also shows the number of points the
clusters have in common i.e the points that were correctly labeled. the table also
displays if the segmented object was identified correctly in the Neural Network.

Object GT Seg Common points Identified

Dataset 1
Car 1
Car 2
Car 3

2703
967
470

1756, 802
2994
722

1752, 802
861
398

No
No
No

Dataset 2 Pedestrian
Cyclist

307
853

269
808

269
805

Yes
Yes

Dataset 3

Car 1
Car 2
Car 3
Car 4

3298
1290
435
3859

3105
1203
281
4889

3104
1168
273
3273

Yes
Yes
No
Yes

Table 4.2: Segmentation of KITTI Data with HDBSCAN. The table shows number
of points in the segmented cluster and the number in the ground truth. It also
displays number of points the clusters have in common. The table also shows if the
segmented clusters where successfully identified. (Car 1 in dataset 1 was segmented
into two clusters)

4.1.2 Classification

This section shows results from the ANN that was constructed, starting with the
ANN-generator and ends with the how the selected ANN behaved on the test-set.

32



4. Results

Object GT Seg Common points Identified

Dataset 1
Car 1
Car 2
Car 3

2703
967
470

121208
121208
2186

2687
967
468

No
No
No

Dataset 2 Pedestrian
Cyclist

307
853

269
808

269
805

Yes
Yes

Dataset 3

Car 1
Car 2
Car 3
Car 4

3298
1290
435
3859

3171
1216
409
4889

3171
1181
401
3273

Yes
Yes
No
Yes

Table 4.3: Segmentation of KITTI Data with Nearest Neighbor. The ground truth
is the same as above the only difference to the table is the type of segmentation
algorithm used

Architecture

The only thing that is kept from PointNet are the transforms.
In order to choose between the different obtained architectures, obtained from 3.6.1,
every ANN that has over 80 % accuracy for the last 10 epochs on the validation set
was put in a list where the ANN with the lowest computational time was selected.
This net was trained an additional 1200 epochs before getting evaluated against the
test set. After retraining, almost all the cars were correctly classified. The class
with the lowest accuracy is Pedestrians with 0.88 % accuracy. This is when only the
ANN were run. i.e the segmentation was done by KITTI. The accuracy is to low to
use in a real car, however, as a proof of concept, it is acceptable.
Figure 4.2 is a graph for the networks structure. The arrow indicates the path the
data is processed. The input starts getting processed in Transform Net1, which the
first layer is a convolutional layer with 64 nodes, displayed on the left side. The
right side is Transform Net2, which is the same as Transform Net1, except for the
final layer. At the end of the of the main network, the middle part, there is one box
with the label “Dropout, 0.75 P" that means that each node in the layer before has
a 75% chance of being shut down. This has been introduced in chapter 2.3.2.

ANN on the Test Set

As mentioned previously, the data is split so three different categories of data are
obtained. The training and validation set is there to improve the training of the
ANN. The third set, (the test set), is used in order to show how well a system
behaves on new, previously unseen data. The results published was obtained when
running the test set after training for 1300 epochs:

Test on the Usage of transformations

When the system altogether is executed, during 100 epochs, the average accuracy
for the last ten epoch became 92.832. The values for the different epochs are listed
in 4.5
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Figure 4.2: The resulting ANN. The left wing is what is inside Transformation
Net1 and the right wing is Transformation Net2. In the middle the main network
is described. The rectangles are the layers and the text inside the box tells what
kind of nodes that are in that layer. The number tells ho many nodes that are
present inside the current layer. Max Pooling have no number since it have no
nodes. Dropout 0.75 P indicates that during training there is a 75 % chance that a
node is turned of.

Point Cloud

Transform Net1

Convolutional
Layer, 256 nodes

Max Pooling

Convolutional
Layer, 64 nodes

Transform Net2

Convolutional
Layer, 512 nodes

Fully Connected
Layer, 64 nodes

Fully Connected
Layer, 32 nodes

Fully Connected
Layer, 256 nodes

Dropout, 0.75 P

Fully Connected
Layer, 4 nodes

Class

Convolutional
Layer, 64 nodes

Convolutional
Layer, 128 nodes

Convolutional
Layer, 1024 nodes

Max Pooling

Fully Connected
Layer, 512 nodes

Fully Connected
Layer, 64 nodes

Convolutional
Layer, 64 nodes

Convolutional
Layer, 128 nodes

Convolutional
Layer, 1024 nodes

Max Pooling

Fully Connected
Layer, 512 nodes

Fully Connected
Layer, 256 nodes
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Number of examples 660
Number of correctly assigned 625

Eval mean loss 0.168
Eval accuracy 0.947

Eval avg class accuracy 0.948
Cyclist 1.0
Car 1.0

Pedestrian 0.881
Misc 0.911

Table 4.4: Table over the behaviour for the ANN. The top five entries tells how
many examples that were in the test-set and some numbers that are comparable
with other nets. The bottom four is the percentage of the correct evaluated objects.

Figure 4.3: The final training for the chosen network with 1300 epochs.

When running the chosen network without Transform Net1 network the average for
the last ten epochs of a 100 epochs run, was 0.631. In table 4.6, it is apparent that
the system does not perform as well when the transform net is removed. Worth
noticing is that that the correct guessed between epoch 92 and 98 have dropped
with more than 10%. Further, the bias is low. Thus the system is neither over or
under fitted.

The Transform Net2 was also disabled alone, the last ten epochs are listed in table
4.7. The average became: 92.148

The last experiment with the Transform Nets that were concluded was disabling
both the transform nets. Again the average for the last ten of the 100 epochs was
recorded. The result from when both transform nets are disabled are in table 4.8.
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Epoch Percentage
91 95.12
92 91.80
93 92.77
94 91.41
95 92.38
96 92.19
97 93.16
98 92.19
99 93.16
100 94.14

Table 4.5: Impact on the evaluation-set when both transform nets are active

Epoch Percentage
91 66.60
92 67.77
93 61.33
94 64.26
95 64.45
96 62.11
97 60.35
98 57.03
99 65.63
100 65.43

Table 4.6: Impact on the evaluation-set when disabling Transform Net1

Epoch Percentage
91 88.67
92 93.16
93 93.75
94 90.82
95 91.41
96 91.99
97 92.58
98 94.14
99 92.77
100 92.19

Table 4.7: Impact on the evaluation-set when disabling Transform Net2
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Epoch Percentage
91 64.84
92 61.72
93 65.23
94 62.11
95 63.28
96 54.30
97 51.76
98 57.03
99 53.52
100 63.28

Table 4.8: Impact on the evaluation-set when disabling both transform nets

4.2 DELIS

The evaluation is done by running several scenes of LIDAR data through the different
parts, the result is then compared to manually identification of objects in the same
scene. The performance of DELIS is measured in how many objects it correctly
identified.
The system showed varying results depending on segmentation method and the
dataset. The Figures 4.4, 4.6, and 4.8 displays the resulting identification of the
network for HDBSCAN segmentation. The images 4.5, 4.7, 4.9, displays the result-
ing identification with Nearest Neighbor segmentation.
In order to evaluate the accuracy of DELIS two series of 50 frames where entered
into DELIS. The results can be seen in 4.15, 4.16, 4.17 and 4.18.
The system where also used with simulated data. Although the network was unsuc-
cessfully in identifying cars in the simulated data it managed to identify pedestrians,
examples can be seen in the Figures 4.11 and 4.14, the pictures show the segmented
and correctly labeled clusters from the KITTI dataset. 4.10 pictures a pedestrian
that the network identified correctly, 4.13 pictures a segmented cluster from the
simulated data that the network was unable to classify. All code for DELIS can be
found on https://github.com/ChristianLarsson91/DELIS.

4.3 Evaluation of Identified Data

In order to verify the output of DELIS we manually look at the identified objects.
The objects are counted and verified by us manually, so that they are correctly
labeled, in order to get the accuracy of DELIS.

4.3.1 Dataset 1
Figure 4.15 is a diagram where the number of correct and incorrect are blue respec-
tively red bars for each frame in the dataset 1 using nearest neighbor. The figure
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Figure 4.4: Dataset 1 with HDBSCAN segmentation, one cyclist in cyan and one
pedestrian in orange

Figure 4.5: Dataset 1 with K-nearest neighbor graph segmentation, one cyclist
in cyan and two pedestrian in orange and a traffic sign that has been labeled as a
pedestrian

4.16 shows also shows the correct and incorrect objects identified in each frame in
the dataset 1, however, now DELIS is used with HDBSCAN.

4.3.2 Dataset 5

Figure 4.17 is a diagram where the number of correct and incorrect are blue respec-
tively red bars for each frame in the dataset 5 using nearest neighbor. The figure
4.18 shows also shows the correct and incorrect objects identified in each frame in
the dataset 5, however, now DELIS is used with HDBSCAN. .
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Figure 4.6: Dataset 2 with HDBSCAN segmentation, object incorrectly identified
as a cyclist

Figure 4.7: Dataset 2 with K-nearest neighbor graph segmentation segmentation,
nothing identified

4.4 Summary
DELIS consists of two subsystems, one segmenting and one classifying part. The
two subsystems are first evaluated independently and then also together. It is clear
that HDBSCAN is much faster then Nearest Neighbor Algorithm and the results are
almost the same. Further, we try the chosen ANN with and without the transform
nets, where it is obvious how important the transform nets are. The chapter was
concluded by trying DELIS on complete scenes.

39



4. Results

Figure 4.8: Dataset 3 with HDBSCAN segmentation, five cars in purple

Figure 4.9: Dataset 3 with K-nearest neighbor graph segmentation segmentation,
three cars in purple

Figure 4.10:
Simulated data of a
pedestrian

Figure 4.11:
KITTI data of a
pedestrian

Figure 4.12:
A roadside sign from
KITTI that were identi-
fied as a pedestrian
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Figure 4.13: Simulated data of a
car that have not been identified

Figure 4.14: KITTI data of a car
that have been identified

Figure 4.15: Number of object correctly and incorrectly identified by DELIS with
NN
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Figure 4.16: Number of object correctly and incorrectly identified by DELIS with
HDBSCAN

Figure 4.17: Number of object correctly and incorrectly identified by DELIS with
NN segmentation
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Figure 4.18: Number of object correctly and incorrectly identified by DELIS with
HDBSCAN segmentation
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5
Discussion

The first section discusses the segmentation. Next part concerns the classification
and is then followed by a part about DELIS (DEtection In LIDAR Systems). The
third part concerns comparison with similar systems that are already online in sim-
ilar fields and also the answers to the research questions. The last part is about
ethics and sustainability.

5.1 Segmentation

Segmentation of the point clouds was a greater challenge than first expected since
the network was trained on pre-labeled objects, similar objects needed to be pro-
duced for the network input. The big problem with segmentation is to divide the
points into clusters were the points belong to the same object. The thesis used
the HDBSCAN[24] algorithm and nearest neighbor algorithm for segmentation with
different results. Due to the computational cost of the nearest neighbor algorithm,
the segmentation was very slow when it was used, the main bottleneck with the
algorithm was the graph building part. A method used to speed up the algorithm
was the KD-Tree, this lowered the cost of querying for neighbors. The removal of all
points beyond a specified range and the cropping of the ground also helped to speed
up the process since there are fewer points to process. Although cropping objects
may be dangerous to do in real life environments since you can remove potholes
or other obstacles. Also, the fact that it does not work if the ground is uneven is
another disadvantage of this solution. Still, we considered it acceptable since we
only consider scenes with a flat ground for this proof of concept.
The HDBSCAN were a lot faster which is a great advantage when it comes to
real-time systems, however, the execution time for the HDBSCAN is still not fast
enough for a real-time application. The truthfulness of the segmentation varied a
lot as well, primarily depending on the point cloud used as input. In order to make
the segmentation easier and faster, the ground was removed by a limit on the z-axis,
this limit was found through experimentation. The experimentation approach is far
from optimal and can likely be solved in a lot of ways. One suggestion is to sort the
points in the cloud after the z-axis and just remove the lowest points. This solution
ignores offsets of the point cloud in the z-axis. The drawback of this is the sorting
time of the points, with large point clouds this might cause problems. However, this
approach was not further developed due to that it was seen as outside of the scope
of the thesis.
Since the segmentation part was a big problem and good segmentation is critical for
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the network to be able to identify the objects, this problem should be investigated
further. There are some existing papers that present methods for segmentation of
point clouds. One of this possible alternative to our segmentation is Difference of
Normals as a Multi-Scale Operator in Unorganized Point Clouds [23]. The paper
proposes a method for segmenting unorganized point clouds by the use of surface
normals created from the points in the cloud. With the use of two surface normals,
calculated from surfaces with different sizes, both of the same point, changes can
be noticed in the point cloud. This changes can be used to create clusters from
the point cloud. The researchers in this paper managed to create promising results
with this type of segmentation. This method was never implemented in our system,
mainly because of time constraints. Furthermore, the segmentation part was not
the primary goal of the thesis and was therefor not prioritized. However, this is
something that could be interesting in investigating further.

5.2 Classification
When looking at the result of the evaluation of the ANN, see 4.4 it appeared as if
the system often failed at differentiating between the classes pedestrians and misc.
The cars were most often correctly labeled, the same for the cyclists.
The reason, for the low amount of correctly labeled misc, is that the system has
interpreted a misc object as something else. In the KITTI data, there are a lot of
objects that look like a car. Trucks and vans are some objects that are very similar
to cars, that are in the misc class, this is one of the reasons for the misc class to
be so low. The same goes for the pedestrians, in this case, there are lampposts and
road signs that gets miss-classified. To improve the misc class it might have been
good to put vans and trucks in the same category and evaluate on this new set. This
might, however, lead to that the result for the car class gets worse.
Another problem could be the size of the training set which was limited in the
number of pedestrians available in the point cloud data.
One interesting thing we discovered was the high result of the last ten epochs when
disabling the second transform net. However, the results were a bit too unstable.
Thus we decided to keep all of the transform nets, even though the execution time
would increase.
One useful aspect of 3D data is that it contains depth, which is used in combination
with RGB data in [49, 50]. It is shown that fusing images with LIDAR data can
increase the performance of the system. One additional extension to this project
would be to use this in order to further increase the accuracy of the system. However,
the execution-time would probably get worse since the more nodes that are used the
higher the execution-time becomes. On the other hand, there is a probability that
the images would not require more nodes since they contain more data, which should
make them easier to classify.
Another way to use both kinds of data is to convert the 3D point cloud into 2D
images and train a neural network to identify the objects from these images as the
researchers did in Multi-view Convolutional Neural Networks for 3D Shape Recogni-
tion [9]. The authors of Volumetric and Multi-View CNN for Object Classification
on 3D Data [32] deem the multi-view approach to be a strong alternative to direct

46



5. Discussion

classification of the point cloud. In that study the researchers compare a multi-view
CNN with a volumetric CNN i.e., the data is encoded as a 3D tensor of binary
values. They conclude that the limitation of volumetric CNN is the resolution of
the point cloud. Although one downside with this multi-view approach is that these
systems do not work well when it comes to 3D tasks such as point classification and
shape completion, but also not well with scene understanding [10, 11].
One other way to classify objects, that originates from 2D data processing, is de-
scribed in Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient
Convolutional Neural Networks [51]. In this paper they suggest to use the sliding
window method but extend it to 3D, this is, however, a computationally expen-
sive method although they argue that the empty space in the cloud would partially
compensate for this.
Concerning the ANN, it worked mostly satisfactory. However, we speculate that
by increasing the training set, primarily with pedestrians, the evaluation would be
increased. Further, by also adding the items in the misc class that are most difficult
for the system to label correctly, the misc class result would increase. This may be
viewed in 4.11 and 4.12. Another possible way, that might increase the result would
be to use a larger amount of data as training.

5.3 DELIS

The simulated data was problematic when used as input to the system, the segmen-
tation worked well but the network had problems in identifying the cars. It is hard
to say what the cause of this is, the first that comes to mind is that the data is
too symmetrical i.e there is no noise in the data. This is also further discussed in
future work, 6.1, to discover what the difficulty is. A limitation with the simulated
data was that we had no ground truth for the objects, only whole point clouds. If
we could retrieve the ground truth from this clouds somehow we could remove the
segmentation as a factor in the identification. This would also make it possible to
train a network of simulated data as previously discussed. It might also be possible
that the ANN is to well train on the KITTI-data that it is unable to classify the
data from the simulated environment. In order to improve the results, additional
data obtained from the simulation are required.
As described in 2.3.2, there might occur problems when the PointNet is trained on
dense data and then evaluated on sparse data, and the other way around. Since we
got the simulator so late in the project, there was no possibility of creating enough
training data to efficiently change the outcome.
An other way to improve the overall accuracy of the system could be to use sequences
of frame to identify an object. If an object could be located in several frames the
neural network would get multiple chances to identify it. This would greatly increase
the probability that the the object where correctly identified. In our verification of
the system we used sequences of frames and noticed that the sames object where
identified in several sequential frames. If DELIS where able to use this the accuracy
might improve. It might even be used to track and predict the path of the objects.
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5.3.1 Comparison with Existing Systems
When it comes to comparisons between 2D pictures and 3D point clouds it is a
difficult comparison to make. They both have their advantages and disadvantages
as discussed earlier. System for 2D object detection is most common, one of this is
YOLO. YOLO is interesting due to the speed it manages to identify objects. [6].
This speed comes at the cost of accuracy, the network only has an accuracy around
63.4 mAP, Mean Average Precision, on the other hand, it can analyze up to 45 FPS,
frames per second. YOLO has been further developed into Fast Yolo which is even
faster at 155 FPS, although its mAP has decreased to 52.7.
When it comes to 3D object detection, VoxelNet [7] is a system that analyses point
clouds and identifies objects. The idea is to divide the 3D space into voxels and ran-
domly sample a fixed number of points from each voxel. These points are then used
as input for a chain of VFE layers (Voxel Feature Encoding), which are specifically
designed to find features in the voxels.
With the help of these layers, 3D shape information can be gained, this information
can then be further aggregated using 3D convolution. The last step is a Region
Proposal Network that displays the detection result. The primary thing about
VoxelNet is the ability to operate on sparse point clouds.

5.3.2 Research Questions and Their Answers
RQ1 How well does machine learning methods, trained on data from a real traffic

environment, perform on simulated environments?

RQ2 Is it possible to use machine learning algorithms with classical algorithms in
order to make a competitive system for object classification?

Answer to RQ1

It was problematic for an ANN to perform well on both simulated and real data due
to the differences in the data between them. This can be seen in 4.13 and 4.14. The
main difference between the two types was that the simulated LIDAR did not take
into consideration any transparent surfaces such as the windshield on the car, this
resulted in a point cloud of the car without any interior points. Another difference
was the lack of noise in the simulated data, it is hard to say if the lack of noise
made it harder for the network to classify objects. However you can see that it
causes the artificial data to differ from the real world data, and this makes it harder
for the neural network. One limitation that was discovered, when training a neural
network, is to gather a sufficiently large dataset. This is probably due to the fact
that the equipment, such as a LIDAR, is expensive. It is also time-consuming to
manually label each object in the gathered point clouds, which is needed for the
data to be useful in training a neural network. This problem disappears when a
computer is used to generate the data. The number of point cloud that can be
generated is nearly limitless and the labeling is done automatically in the program.
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The disadvantage is that it is hard to generate realistic point clouds that are similar
enough to real-world data that the neural network will not notice the difference.
These problems will most likely solve them self with more advanced simulation
programs.

Answer to RQ2

The segmentation of point clouds turned out to be more difficult than expected. It
was often hard to separate an object from the surroundings, such as the ground or
a building. This resulted in that point from different objects were often clustered
together, e.g points belonging to the ground being clustered together with points
from a car. Two different segmentation algorithms were implemented and tried,
both with varying result. Perhaps if the training data for the ANN also would
contain segmented data, like a car with some road under it, the classification would
be more efficient and the accuracy would be higher. The problem with this is that
the segmented data would need to be manually labeled in order for it to be use-full
for training, and this would be very time-consuming.

5.4 Ethics and Sustainability
Since DELIS is supposed to be mainly in self-driving cars, this part will concern
autonomous vehicles. Autonomous vehicles will most likely have a smaller impact
on the environment in the forms of lower emissions due to the fact that these cars will
find the optimal path to traverse and will be able to drive in a more eco-friendly.
According to a study from NREL, National Renewable Energy Laboratory [52],
these vehicles will either save nearly 90% of fuel, when only benefits occur. On the
other hand, only the increase in energy are considered, the energy consumption will
increase up to 250%. We believe that the engineers developing these systems will
design them to be energy efficient.
One ethical dilemma that will arise is what all the professional drivers will do. If
all the vehicles are autonomous, there is no need for professions like bus-, cab- or
truck drivers. The same problem was faced during the industrial revolution. People
thought the machines were going to take their jobs. It turned out the other way
around. The machines needed someone to maintain them. Perhaps the need for
more mechanics will increase when everyone has their own personal shuttle. On the
other hand the opposite can happen where you might share your car with multiple
people and as a result, there will be fewer cars on the road. It is always hard to
predict about future tech but we believe that self-driven vehicles are inevitable and
they are going to revolutionize our everyday lives.
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6
Conclusion

In this project a system called DELIS (DEtection In LIDAR Systems) was created,
a system capable to identify pedestrians, cyclists, and cars from its environment.
Even though DELIS did not work as well as intended, primarily considering with
time and when using simulated data, we have proven that an Artificial Neural Net-
work, is capable of identifying objects from a LIDAR (Light Imaging, Detection
And Ranging) that were clustered by either the Nearest Neighbor algorithm or the
HDBSCAN-algorithm.
The problem with the simulated data was that it was very different from the real
world data. One difference was that it was too uniform and would therefore imme-
diately be identified as artificial. It might be possible to add noise to the simulated
data, which would make it more real. Another difference was that the LIDAR sensor
in the simulation was unable to identify transparent objects such as a windshield.
This resulted in a car shape, seen in 4.13, but without the common characteristics
of a car, such as an absence of points on the windshield as seen in 4.14. A way to
solve this problem could be to add simulated cars and pedestrians to the training
set. This was never done in the project and it is therefore hard to say what kind of
accuracy could be achieved and what problems would arise.
The segmentation algorithms used in this thesis performed adequately but left room
for improvements. Mainly the removal of ground points, which is currently just
cropped at a z-coordinate. Due to the limitation of the segmentation, it is also
difficult to get an exact value of the network accuracy from the simulated data and
the impact it has on the final results.

6.1 Future Work
One way to continue this work would be to train a neural network with simulated
data and validate with real-world data. This would save a lot of time and money
since the automotive companies, and perhaps others, would not need to collect real
data to train their networks. It would be possible to just let a computer generate
an almost infinite amount of data.
Another future work to continue this project could be to change the segmentation,
either by performing it in the neural network or by implementing some other algo-
rithm.
Our initial thought was that this system should be a part of a larger system. Next
part of that would be to track moving object over several frames. This could help to
improve the classification accuracy by giving the network multiple, slight different
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clusters, that the system would know is the same object.

52



References

[1] Shiyu Liang and R. Srikant. Why deep neural networks? CoRR,
abs/1610.04161, 2016.

[2] Farzin Amzajerdian Diego Pierrottet; Larry Petway Glenn Hines, Vin-
cent Roback. Lidar systems for precision navigation and safe landing on plan-
etary bodies. NASA. Technical Reports, 2011.

[3] Paul Babyn JimmyWang Gary Groot Mark Eramian Jianning Chi, Ekta Walia.
Thyroid nodule classification in ultrasound images by fine-tuning deep convo-
lutional neural network. "Journal of Digital Imaging", Volume 30(4):477–486,
2017.

[4] Christoph Stiller Andreas Geiger, Philip Lenz and Raquel Urtasun. Vision
meets robotics: The KITTI dataset. International Journal of Robotics Research
(IJRR), 2013.

[5] Esi pro-sivic(tm) 2016: Virtually test sensors in ultra-realistic 3D
scenes. https://search-proquest-com.proxy.lib.chalmers.se/docview/
1803543814?accountid=10041, 2016. Accessed 2017-12-14.

[6] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi.
You only look once: Unified, real-time object detection. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 779–788, 2016.

[7] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based
3D object detection. CoRR, 2017.

[8] Luca Caltagirone, Samuel Scheidegger, Lennart Svensson, and Mattias Wahde.
Fast lidar-based road detection using fully convolutional neural networks.
CoRR, abs/1703.03613, 2017.

[9] Evangelos Kalogerakis Erik G. Learned-Miller Hang Su, Subhransu Maji. Multi-
view convolutional neural networks for 3D shape recognition. 2015 IEEE In-
ternational Conference on Computer Vision (ICCV), pages 945 – 953, 2015.

[10] Kaichun Mo Leonidas J. Guibas Charles Ruizhongtai Qi, Hao Su. Pointnet:
Deep learning on point sets for 3D classification and segmentation. CoRR,
abs/1612.00593, 2016.

[11] E. Kim and G Medioni. Urban scene understanding from aerial and ground
lidar data. Machine Vision and Applications, 22(4):691–703, Jul 2011.

[12] Matterport. Matterport pro2 3D camera specifications. https://support.
matterport.com/hc/en-us/articles/115004093167, 2017. Accessed 2017-
12-13.

[13] MathWorks. 3-d point cloud processing. https://se.mathworks.com/help/
vision/3-D-point-cloud-processing.html, 2017. Accessed 2017-12-11.

53

https://search-proquest-com.proxy.lib.chalmers.se/docview/1803543814?accountid=10041
https://search-proquest-com.proxy.lib.chalmers.se/docview/1803543814?accountid=10041
https://support.matterport.com/hc/en-us/articles/115004093167
https://support.matterport.com/hc/en-us/articles/115004093167
https://se.mathworks.com/help/vision/3-D-point-cloud-processing.html
https://se.mathworks.com/help/vision/3-D-point-cloud-processing.html


References

[14] PointClouds.org. PCLVisualizer. http://pointclouds.org/documentation/
tutorials/pcl_visualizer.php. Accessed 2018-01-22.

[15] Dong Ho Yun, Sung In Choi, Sung Han Kim, and Kwang Hee Ko. Registration
of multiview point clouds for application to ship fabrication. Graphical Models,
90(Supplement C):1 – 12, 2017.

[16] R.H. Huesman A. Sitek and G.T. Gullberg. Tomographic reconstruction using
an adaptive tetrahedral mesh defined by a point cloud. IEEE Transactions on
Medical Imaging, 25:1172 – 1179, 2006.

[17] PointClouds.org. The pcd (point cloud data) file format. Accessed 2018-01-26.
[18] Paul McManamon. Field Guide to Lidar. SPIE, 2015.
[19] LeddarTech Inc. Leddarvu, 8-segment solid-state lidar sensor mod-

ules. https://leddartech.com/app/uploads/dlm_uploads/2017/05/
Spec-Sheets-LeddarVu-4decembre2017-web.pdf, 2017. accesssed 2018-01-
22.

[20] S. Weiming M. Yuda, Z. Xiangjun and L. Shaofeng. Target accurate positioning
based on the point cloud created by stereo vision. 23rd International Conference
on Mechatronics and Machine Vision in Practice (M2VIP), pages 1 – 5, 2016.

[21] Ankit Sharma, A.K. Jha, and Arpan Halder. Layout optimization of a robotic
cell for foundry application by cad based point cloud modeling – a case study.
Industrial Robot: An International Journal, 44(6):788–797, 2017.

[22] E. Grilli, F. Menna, and F. Remondino. A review of point clouds segmentation
and classification algorithms. The International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, XLII-2/W3:339–344, 2017.

[23] Yani Ioannou, Babak Taati, Robin Harrap, and Michael A. Greenspan. Dif-
ference of normals as a multi-scale operator in unorganized point clouds. 2012
Second International Conference on 3D Imaging, Modeling, Processing, Visu-
alization & Transmission, pages 501 – 508, 2012.

[24] Yang Xi Lingjuan Li. Research on clustering algorithm and its parallelization
strategy. 2011 International Conference on Computational and Information
Sciences, pages 325 – 328, 2011.

[25] D. T. Lee and C. K. Wong. Worst-case analysis for region and partial region
searches in multidimensional binary search trees and balanced quad trees. Acta
Informatica, 9(1):23–29, Mar 1977.

[26] Omais Shafi Himani Raina. Analysis of supervised classification algorithms.
International Journal of Scientific & Technology Research, pages 440 – 443,
2015.

[27] C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond sliding windows:
Object localization by efficient subwindow search. In 2008 IEEE Conference
on Computer Vision and Pattern Recognition, pages 1–8, June 2008.

[28] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press,
2014.

[29] Subana Shanmuganathan and Sandhya Samarasinghe. Artificial Neural Net-
work Modelling. Springer International Publishing, 2016.

[30] J.C. Bioch ; W. Verbeke ; M.W. van Dijk. Neural networks: New tools for data
analysis ? Workshop on Neural Network Applications and Tools, pages 29 – 38,
1993.

54

http://pointclouds.org/documentation/tutorials/pcl_visualizer.php
http://pointclouds.org/documentation/tutorials/pcl_visualizer.php
https://leddartech.com/app/uploads/dlm_uploads/2017/05/Spec-Sheets-LeddarVu-4decembre2017-web.pdf
https://leddartech.com/app/uploads/dlm_uploads/2017/05/Spec-Sheets-LeddarVu-4decembre2017-web.pdf


References

[31] N.A. Khovanova T. Shaikhina. Handling limited datasets with neural net-
works in medical applications: A small-data approach. Artificial intelligence in
medicine, 2017.

[32] Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan
Yan, and Leonidas J. Guibas. Volumetric and multi-view cnns for object classi-
fication on 3D data. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5648 – 5656, June 2016.

[33] Yangyan Li, Sören Pirk, Hao Su, Charles Ruizhongtai Qi, and Leonidas J.
Guibas. FPNN: field probing neural networks for 3D data. CoRR,
abs/1605.06240, 2016.

[34] Harshad Kumar Dharamshi Hansraj Bhadeshia. Neural networks in materials
science. ISIJ International, 39(10):966–979, 1999.

[35] Hamed Habibi Aghdam and Elnaz Jahani Heravi. Guide to Convolutional Neu-
ral Networks. Springer International Publishing, 2017.

[36] Jonathan Masci Luca M. Gambardella Jurgen Schmidhuber Dan C. Ciresan,
Ueli Meier. Flexible, high performance convolutional neural networks for image
classification. International Joint Conference on Artificial Intelligence IJCAI-
2011, pages 1237–1242, 2011.

[37] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-
cnn: Octree-based convolutional neural networks for 3D shape analysis. ACM
Trans. Graph., 36(4):72:1–72:11, July 2017.

[38] Anish Singh Walia. Types of optimization algorithms used in neural networks
and ways to optimize gradient descent. https://towardsdatascience.com/
types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f,
2017. Accessed 2018-01-30.

[39] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth
optimization: Convergence results and optimal averaging schemes. CoRR,
abs/1212.1824, 2012.

[40] Sebastian Ruder. An overview of gradient descent optimization algorithms.
CoRR, abs/1609.04747, 2016.

[41] Geoffrey Everest Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Improving neural networks by preventing co-
adaptation of feature detectors. CoRR, abs/1207.0580, 2012.

[42] Chritian Günther H. M. W. Verbeek H. M. W. Verbeek Wil van der Aalst,
Vladimir Rubin. Process mining: a two-step approach to balance between
underfitting and overfitting. Software and Systems Modeling, 9(1):87–111, 2010.

[43] Matterport 3D media platform demo. https://vimeo.com/117514038. Accessed
2017-12-13.

[44] ESI Group 2018. Esi pro-sivic™ - 3D simulations of en-
vironments and sensors. https://www.esi-group.com/
software-solutions/virtual-environment/virtual-systems-controls/
esi-pro-sivictm-3D-simulations-environments-and-sensors, 2018.
Accessed 2018-01-09.

[45] Velodyne Lidar. Hdl-64e. https://velodynelidar.com/hdl-64e.html. Ac-
cessed 2018-01-30.

[46] Martin Schrimpf. Should I use tensorflow? CoRR, abs/1611.08903, 2016.

55

https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
https://www.esi-group.com/software-solutions/virtual-environment/virtual-systems-controls/esi-pro-sivictm-3D-simulations-environments-and-sensors
https://www.esi-group.com/software-solutions/virtual-environment/virtual-systems-controls/esi-pro-sivictm-3D-simulations-environments-and-sensors
https://www.esi-group.com/software-solutions/virtual-environment/virtual-systems-controls/esi-pro-sivictm-3D-simulations-environments-and-sensors
https://velodynelidar.com/hdl-64e.html


References

[47] Hong-Phuc Trinh, Marc Duranton, and Michel Paindavoine. Efficient data
encoding for convolutional neural network application. ACM Trans. Archit.
Code Optim., 11(4):49:1–49:21, 2015.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

[49] Joel Schlosser, Christopher K. Chow, and Zsolt Kira. Fusing lidar and images
for pedestrian detection using convolutional neural networks. 2016 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 2198–2205,
2016.

[50] Andreas Eitel, Jost Tobias Springenberg, Luciano Spinello, Martin A. Ried-
miller, and Wolfram Burgard. Multimodal deep learning for robust rgb-d object
recognition. 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 681–687, 2015.

[51] Dominic Zeng Wang Chi Hay Tong Ingmar Posner Martin Engelcke,
Dushyant Rao. Vote3deep: Fast object detection in 3D point clouds using
efficient convolutional neural networks. IEEE International Conference on
Robotics and Automation (ICRA), pages 1355–1361, 2017.

[52] Jeff Gonder Austin Brown, Brittany Repac. Autonomous vehicles have a wide
range of possible energy impacts. https://www.nrel.gov/docs/fy13osti/
59210.pdf, 2013. Accessed 2018-01-30.

56

https://www.nrel.gov/docs/fy13osti/59210.pdf
https://www.nrel.gov/docs/fy13osti/59210.pdf


A

Appendix: Randomized networks

This chapter contains some of the networks that were evaluated in chapter 3. mp
means max pooling, tf is a transform net. c is a convolutional layer and fc is a
fully connected layer. The first number indicates how many nodes that are in that
layer. Time is the average validation time for the last ten epochs during validation.
Accuracy is the average accuracy for the last ten epochs. Every net were trained
for 100 epochs. This is only a sample of all the NNs that were evaluated, since the
total of NNs were to many to put in here.
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A. Appendix: Randomized networks

Architecture Time Accuracy Architecture Time Accuracy

[expand]
[mp, 1]
[tf, 1]

[c_trans1, 32.0, 2]
[c, 1024.0, 3]

[c, 64, 4]
[tf, 2]

[c, 256.0, 5]
[c, 64.0, 6]
[c, 64.0, 7]

[fc, 64.0, 1]
[fc, 64.0, 2]
[fc, 512.0, 3]

[do, 1]
[fc, 256.0, 4]

[fc, 4, 5]

0.87166 0.72148

[tf, 1]
[c_trans1, 128, 2]

[c, 512, 3]
[c, 64, 4]
[tf, 2]

[c, 124, 5]
[mp, 1]

[fc, 512, 1]
[do, 1]

[fc, 16, 2]
[do, 2]

[fc, 124, 3]
[do, 3]

[fc, 512, 4]
[do, 4]

[fc, 32, 5]
[do, 5]

[fc, 16, 6]
[fc, 64, 7]
[fc, 4, 8]

0.91456 0.79238

[tf, 1]
[c_trans1, 256, 2]

[c, 124, 3]
[mp, 1]
[c, 64, 4]
[tf, 2]

[c, 256, 5]
[c, 64, 6]

[fc, 16, 1]
[do, 1]

[fc, 64, 2]
[fc, 4, 3]

0.37595 0.76387

[tf, 1]
[c_trans1, 128, 2]

[c, 124, 3]
[c, 64, 4]
[tf, 2]

[c, 128, 5]
[fc, 124, 1]
[fc, 128, 2]
[fc, 512, 3]
[fc, 16, 4]
[fc, 4, 5]

0.90975 0.71152

[tf, 1]
[c_trans1, 256, 2]

[c, 124, 3]
[mp, 1]
[c, 64, 4]
[tf, 2]

[c, 256, 5]
[c, 64, 6]

[fc, 16, 1]
[do, 1]

[fc, 64, 2]
[fc, 4, 3]

0.61580 0.81445

[tf, 1]
[c_trans1, 64, 2]

[c, 64, 3]
[tf, 2]

[c, 64, 4]
[fc, 512, 1]
[fc, 128, 2]
[fc, 128, 3]
[fc, 4, 4]

0.59992 0.71934
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