

Chalmers University of Technology

University of Gothenburg

Department of Signals and Systems

Gothenburg, Sweden, June 2012

Report No. EX032/2012

Implementation of CAN-interface and RTJ heads-up

display on an electric go-cart

Master of Science Thesis in the Programme Systems, Control and

Mechatronics

JONAS HENNING

JOHAN LOJANDER

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Implementation of CAN-interface and RTJ heads-up display on an electric go-cart

JONAS HENNING

JOHAN LOJANDER

© JONAS HENNING, June 2012.

© JOHAN LOJANDER, June 2012.

Examiner: PETTER FALKMAN

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:

A photo showing the electric go-cart platform controlled via a CAN cable.

Department of Signals and Systems

Gothenburg, Sweden, June 2012

Implementation of CAN interface
and RTJ heads-up display on an

electric go-cart

Master of Science Thesis in the Programme
Systems, Control and Mechatronics

Jonas Henning
Johan Lojander

June 4, 2012

Abstract

Today’s cars are filled with embedded systems making way
for advanced safety techniques and comfort-increasing features.
As a consequence, software complexity is taken to a completely
new level. To facilitate software development, automobile man-
ufacturers have created an open standard called AUTOSAR. It
serves as an interface between hardware and software, easing the
reuse of applications in ECUs.

Traditionally, real-time applications in automotive industry
are developed in low-level languages as C, but with growing com-
plexity these systems tend to be hard to overview. As a reac-
tion to this, a research project called CHARTER was started.
It strives to introduce high-level languages like real-time Java
(RTJ) and model driven development in critical embedded sys-
tems.

This thesis continues the development of an electric go-cart
by extending the software functionality with a heads-up display,
a cruise controller and a Controller Area Network (CAN) inter-
face for its motor controller.

By adding a CAN interface to the motor controller, it was
possible to instead connect the torque and brake pedals to the
Vehicle Master Control Unit (VMCU), and let this device de-
mand an adequate torque from the motor controller via CAN.

Aligning with both AUTOSAR and CHARTER, the heads-
up display and the cruise controller were developed as AU-
TOSAR software components in RTJ. The heads-up display pro-
vides information about the vehicle to the driver, such as speed
and battery status. The driver may also activate the cruise con-
troller and set several options, through the heads-up display.

The future of AUTOSAR looks promising. The advantages
of scalability and reusability outperform the overhead in imple-
mentation. With RTJ for embedded systems still being in its
cradle, performance issues persists. Furthermore, the difficulty
to reach the hardware with RTJ occasionally forces the use of
Java Native Interface, decreasing the benefits of using Java in the
first place. However, the object-oriented approach and the low
learning threshold of Java are benefits worth taking into account.

i

Preface

This master’s thesis was written for Chalmers University of Technology,
Göteborg, Sweden as part of the master program Systems, Control and
Mechatronics. The thesis was performed by Jonas Henning and Johan Lo-
jander at QRTECH, Göteborg. Examiner and supervisor at Chalmers was
Petter Falkman at the Signals and Systems (S2) Department. Supervisor
at QRTECH was Anders Runeson and Benneth Claesson. We would like to
thank our supervisors at QRTECH and Petter Falkman for the dedication
and help in our project.

Throughout this report, the master’s thesis will be referred to as the
thesis.

ii

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 About QRTECH . 1
1.1.2 Project description . 1

1.1.2.1 Delimitation 4
1.1.2.2 The go-cart 4

1.1.3 Related work . 5
1.1.3.1 AC-motor control 5
1.1.3.2 In-vehicle infotainment demonstrator 6

2 Theory 7
2.1 AUTOSAR . 7

2.1.1 BSW . 8
2.1.2 RTE . 8
2.1.3 Application layer . 8

2.2 CHARTER . 8
2.3 Controller Area Network . 9
2.4 PID control . 12
2.5 Hardware Specifications . 13

2.5.1 VMCU and BMU . 13
2.5.2 Motor controller . 14

3 Method 15
3.1 The waterfall model . 15
3.2 Agile model . 15
3.3 Working process . 16
3.4 Development Environments 16

3.4.1 Eclipse Java IDE . 17
3.4.2 JamaicaVM . 17
3.4.3 Code Composer Studio 5 17

3.4.3.1 COM-configurator 18
3.4.3.2 CANoe . 18

3.4.4 Test-bench . 18

4 Implementation 21
4.1 Heads-up Display . 21
4.2 Cross-compilation for ARM with JamaicaVM 23

4.2.1 Profiling . 24
4.3 Motor controller and CAN interface 25

4.3.1 CAN bus performance 26
4.4 Cruise controller . 26

iii

5 Discussion and Conclusion 28
5.1 Discussion . 28
5.2 Conclusion . 29

A Gantt chart 32

iv

Acronyms

Name Description

A/D Analog/Digital

ADC Analog (to) Digital Converter

AUTOSAR AUTomotive Open System ARchitecture

BMU Battery Management Unit

BSW Basic Software

CAN Controller Area Network

CHARTER Critical and High Assurance Requirements Transformed through Engineering Rigour

CRC Cyclic Redundancy Check

DLC Data Length Code

DSP Digital Signal Processor

DTC Diagnostic Trouble Code

ECU Electronic Control Unit

E/E Electrics/Electronics

EMU Engine Master Unit (?)

GUI Graphical User Interface

HUD Heads-Up Display

IDE Integrated Development Environment

JNI Java Native Interface

JML Java Modeling Language

JVM Java Runtime Environment

JVM Java Virtual Machine

OS Operating System

PID Proportional-integral-derivative

PWM Pulse-Width Modulation

RPM Revolutions per Minute

RTE Runtime Environment

RTJ Real Time Java

SoC State of Charge

SoH State of Health

SW-C Software Component

SysML Systems Modeling Language

UML Unified Modeling Language

VM Virtual Machine

VMCU Vehicle Master Control Unit

v

List of Figures

1 System description of the go-cart 2
2 The go-cart before it was rebuilt 5
3 AUTOSAR layered architecture 7
4 CAN bus overview . 10
5 The ARM-based VMCU board 13
6 The Texas Instruments DSP 14
7 The waterfall model. 16
8 Illustrating the difference of how the garbage collector works

with Java and RTJ. 17
9 CANoe, a CAN development and testing software tool 19
10 The test bench set-up . 20
11 The different views of the heads-up display 22
12 Driving profiles . 23
13 Cruise Controller block diagram 26

vi

1 Introduction

Today’s electrification of cars provides a lot of opportunities. Cars are filled
with embedded systems making way for advanced safety techniques and
comfort-increasing features. As a result of this, software complexity is taken
to a completely new level. Traditionally, real-time applications in automo-
tive industry are developed in low-level languages as C, but with growing
complexity these systems tend to be hard to overview.

An ongoing project, named CHARTER (Critical and High Assurance
Requirements Transformed through Engineering Rigour), carried out by
QRTECH and several other European companies and institutions, serves
to use model driven development (e.g. JML/UML) and high-level languages
(e.g. real-time Java) to develop software for embedded systems.

To take a leading position in this matter in the automotive industry of
the future, QRTECH designed a master thesis serving to develop real-time
applications in Java for their electric go-cart. The go-cart has been worked
on during other previous masters’ theses carried out at QRTECH and serves
as a platform for testing and evaluating new techniques, hardware as well
as software.

1.1 Background

This section describes the challenges of this project, delimitations of the
thesis, a brief introduction to the thesis-requesting company QRTECH as
well as previous and related work.

1.1.1 About QRTECH

QRTECH is a product development company with services within software
and electronics development. QRTECH also possesses long experience of
embedded systems in the automotive industry-dense city of Gothenburg.

For several years QRTECH has worked on an electric go-cart used as a
platform for testing automotive industry techniques such as electric motor
control, infotainment systems, battery management systems and, concerning
the thesis, drive-by-wire and real-time Java software development for critical
systems.

1.1.2 Project description

The thesis will further develop the electric go-cart by implementing soft-
ware functionality. The desired functions are: a heads-up display (HUD)
presenting data and status about the vehicle, a cruise controller, an error
handling mechanism and a CAN interface for the motor controller. Addi-
tionally, the available motor controller needs to be adapted to align with the
new CAN interface developed in the thesis. Since this project is a part of

1

another project called CHARTER (section 2.2), real-time Java will be used
for realisation of some software functionalities. In the scope of the thesis
also lies a general understanding of the complete system and how its parts
work together.

In Figure 1, an overview of the go-cart system is presented. Before the
start of the project, the pedals of the go-cart (Throttle and Brake in Figure
1) were directly connected to the motor controller, affecting output torque of
the AC-motor. For details, please refer to section 1.1.3.1. By the end of the
thesis, the Vehicle Master Control Unit (VMCU) should request a torque
from the motor controller via CAN, according to the pedals connected to
the VMCU, see Figure 1. At thesis start, CAN was physically available on
the motor controller, but unused. The thesis should design a CAN interface
for the motor controller making it possible to request a torque via CAN.
The CAN-network is also supposed to include a Battery Management Unit
(BMU) responsible for features like measuring cell voltages and current drain
as well as providing battery cell balancing functionality.

Motor controller
(Inverter) BMU

Brake

VMCU

Throttle

Heads-up
display

Motor

CAN

Figure 1: System description of the go-cart.

The CAN interface adaptation makes communication between the motor
controller and the VMCU possible in both directions. By installing the
VMCU and its display in the dashboard it can also serve as a heads-up
display, presenting information such as speed, battery state of charge and
engine temperature to the driver.

The design of the graphical user interface (GUI) of the heads-up display
is thus part of the thesis and it should display five different views presenting
information as:

• Driving View

– Speed

– Revolutions per minute (RPM)

2

– Battery State of Charge (SoC)

– Temperature

– Average Speed

– Trip-meter

• Battery View

– Battery State of Charge (SoC)

– Battery State of Health (SoH)

– Voltage

– Current drain

– Individual Cell Voltage

– Battery balancing mode

• Diagnostics View

– Diagnostic Trouble Codes (DTC)

– Possibility to clear certain or all DTCs

• Properties View

– Driving mode selection (Normal, Eco, Sport)

– Charging activation/deactivation

– GUI-menu position (left/right)

• Demo View

– QRTECH presentation

Note that development of the BMU itself is not part of the thesis, even
though information will be collected from the unit for presentation on the
heads-up display.

A cruise controller maintaining a desired speed given by the driver will
be developed. The idea is to let the cruise controller create a virtual throttle
pedal, sending an appropriate requested torque to the motor controller to
maintain a close to constant speed.

Creating error handling functions to detect and react to system malfunc-
tion is also part of the thesis. The driver should be alerted of system errors
and be able to take stance to and clear these errors. Security measures
avoiding critical errors like brake dysfunction or the motor locking on full
torque in case of a CAN failure will also be implemented.

3

1.1.2.1 Delimitation

The work is carried out at QRTECH in Kallebäck, Gothenburg. Fo-
cus is software development so hardware should be available and no changes
intended. It might be necessary to do some measurements in order to
test hardware or verify software results. There is no cost limit. Some
complementary items might be purchased after approval of request. The
thesis starts the 23rd of January spanning to the 8th of June, i.e. a total
of 20 weeks. The final date may be postponed if necessary, but meeting
deadlines are wished-for. Desired date of the handover of the planning
report is early February, the oral presentation at end of May and the
handover of the final report early June.

To limit time requirement for studies of related work and the go-cart
system overview, technical details of these were omitted.

The thesis incorporates work with the complete CAN interface on the
motor controller. On the VMCU however, only the software components
as the HUD and cruise controller are worked with. The lower AUTOSAR
layers, mainly the basic software and the RTE-layer are performed by a
colleague at QRTECH and are not part of the thesis. Some co-operation for
integrating the RTE-layer and the SW-Cs may however be needed.

Visual design of the heads-up display is secondary, focus is instead tech-
nology level and a well-working CAN interface including error detection.

1.1.2.2 The go-cart

The QRTECH go-cart was originally a standard go-cart with a com-
bustion engine. In 2010 it was rebuilt for electric drive as a part of a
master’s thesis in co-operation with Chalmers, where a Simulink model of
the electric motor of the go-cart was derived.

The AC-motor controller is based on a Digital Signal Processor (DSP),
which can be viewed in Figure 2 as the small red board close to the black
cables. The control algorithm was made as a previous master’s thesis at
QRTECH, described in Section 1.1.3.1. The battery pack is based on a set
of car batteries supplying the electric motor 48 volts. The motor drives the
rear axis with a constant gear ratio of 13:73. The throttle and brake pedals
are connected through wires to sliding potentiometers. The output voltage
from the potentiometers is read by the motor controllers analog to digital
converters (ADCs).

Furthermore, the go-cart is intended to be rebuilt by the end of the
thesis. The Pb-batteries will be changed to a lighter lithium-ion battery
pack, the heads-up display and BMU will be installed close to the battery
pack. Also, a CAN bus interconnecting the VMCU, DSP and BMU will be
added, and the brake and throttle pedals are to be connected to the VMCU,

4

Figure 2: The go-cart before it was rebuilt. Notice the twisted CAN cable
used to control the go-cart from the PC.

to support drive-by-wire functionality over CAN.

1.1.3 Related work

Since an insight of the complete system and how its parts works together was
desired for in the thesis, this subsection explains previous projects related
to the thesis.

1.1.3.1 AC-motor control

The previous master thesis carried out on the go-cart at QRTECH
aimed to develop a motor control algorithm for the AC motor. The motor
torque is controlled by a PID-regulator on the motor controller. By altering
the duty cycle of the Pulse Width Modulation-signals (PWM) affecting the
motor current, the motor torque is controlled. Since the motor output axis
is directly connected to the rear axis (via fixed gears) the control algorithm
is closely connected to the vehicle speed.

Extensive studies of the AC-motor control project have been performed
in the thesis. Integration with the motor controller is crucial when mov-
ing the pedals to the VMCU. Information in CAN frames received by the
motor controller will serve as input to the AC-motor control algorithm. Fur-

5

thermore, the implementation of a cruise control algorithm relies upon the
AC-motor controller for smooth speed control. No report of the master the-
sis was available at the writing of the thesis, whereof the lack of reference.

1.1.3.2 In-vehicle infotainment demonstrator

The main purpose of Sanell’s and Samuelsson’s project was to exam-
ine the possibility of using available hardware and software when developing
infotainment systems for automotive industry and investigate if it could
deliver the same performance as custom, self-made systems. The benefit of
using already existing hardware and software would be reducing costs.

The work carried out by Sanell and Samuelsson can be seen as the pre-
decessor to the thesis and, naturally, has a lot of similarities. Both trying
to develop heads-up displays to present information to the driver on prede-
fined hardware and operating systems. Sanell’s and Samuelsson’s heads-up
display were created using QT (a framework for creating graphical user
interfaces) on a MeeGo Linux based system whereas the thesis runs the
Ångström distribution on slightly different hardware and with the GUI now
developed in Java Swing. While the in-vehicle infotainment demonstrator
thesis explored the possibilities of showing information provided via CAN
to the driver this thesis actually implements both CAN interface and HUD,
on a live platform. (Hans Sanell and Göran Samuelsson, 2011)

6

2 Theory

The theory section describes the open automotive standard AUTOSAR and
the dominating communication protocol in vehicles, Controller Area Net-
work. The in parallel on-going project CHARTER, serving to introduce
model driven development in embedded systems, is also considered.

2.1 AUTOSAR

The automotive industry is getting complex and diversified within the field
of Electrics/Electronics (E/E) implementation. Therefore automobile man-
ufacturers, suppliers and tool developers have developed an open standard
called AUTOSAR, AUTomotive Open System ARchitecture. It is being de-
veloped and established as an interface between hardware and software to
ease the reuse of applications and other software modules. AUTOSAR also
improves flexibility in case of software modifications and eases scalability
within and across product lines, cutting costs as a result. (Adam Hulin and
Marcus Johansson, 2011)

Figure 3: AUTOSAR software architecture including the three layers and
the important standardised interfaces. (Johan Elgered and Jesper Jansson,
2012)

AUTOSAR consists of multiple layers, see Figure 3, the basic software
layer (BSW), the runtime environment (RTE) layer and the applications
layer.

7

2.1.1 BSW

The lowest layer is called basic software, which consist of Microcontroller
Abstration Layer, ECU Abstratcion Layer, Services Layer and Complex
Drivers. The Microcontroller Abstraction Layer receives calls from higher
levels and forward these calls in a standardised way to the hardware and
peripherals. The BSW is the only layer with direct access to the micro-
controller. The basic software layer also incorporates the operating system
and interfaces to the upper layer, called RTE. (AUTOSAR, 2012)

2.1.2 RTE

The RTE is the layer in between the BSW and the applications layer. The
RTE-layer makes communication in underlying layers transparent to the
developer programming software components. Since SW-Cs are dependent
on the ECU hardware, the RTE has to be customised for the ECU on which
it runs. ECU-specific configuration therefore leads to that RTEs differentiate
between different ECUs. (Johan Elgered and Jesper Jansson, 2012)

2.1.3 Application layer

The applications layer consists of multiple software components, often re-
ferred to as SW-Cs. The SW-Cs comes in two types, application software
component type and sensor actuator type. The latter is software represent-
ing a sensor or an actuator whereas the former provides actuators with input
by collecting sensor data. (AUTOSAR, 2012)

All actual functionality in the vehicle is developed in the software com-
ponents. The purpose of the BSW and the RTE layers is simplifying and
standardising development of the software components, increasing reusabil-
ity and modularity. These properties makes AUTOSAR cost saving since
development and testing effort for software components can be reduced.
SW-Cs can be ported to other target platforms without spending time on
adaptation to new environments (Joakim Plate and Peter Fridlund, 2011)

The modular concept of course has drawbacks, mainly performance issues
due to increased processor and memory usage. Standardised software will
always take detours that single-purpose software can avoid. However, with
today’s increased hardware performance this may be a price worth paying
for increased software reusability. (Joakim Plate and Peter Fridlund, 2011)

2.2 CHARTER

Embedded systems are traditionally developed in low-level languages like
C or Assembly as these gives the programmer good control of time criti-
cal events. However, in big and complex systems the vast number of lines
of code can make the system difficult to overview. Therefore a project

8

called CHARTER (Critical and High Assurance Requirements Transformed
through Engineering Rigour) was started, striving to introduce high-level
languages and model driven development in critical embedded systems and
evaluate performance compared to traditional low-level languages.

QRTECH has good experience of time critical embedded systems, mainly
due to involvement in automotive industry, and the company’s role as a
CHARTER project member is to implement code of high-level languages
(especially real time Java) in critical embedded systems, in this case the
go-cart.

CHARTER is a ARTEMIS Embedded Computing Systems Initiative
project partnership between the European Commission, member states (UK,
Sweden, Ireland, Netherlands, Germany) and ARTEMISI (a non-profit In-
dustrial Association).

Partnership members except for QRTECH include universities like
Chalmers Univeristy of Technology and Dundalk Institute of Technology,
but also companies like Impronova (SWE), aicas (GER) and Atego (UK).
(Alec Dorling, 2012)

2.3 Controller Area Network

Controller Area Network (CAN) is a multi-master broadcast serial bus de-
fined by Bosch in the mid-80’s. It was initially intended for use in the
automotive industry and has been the dominating communication protocol
in cars and trucks since the mid-90’s. Due to the low cost of CAN controllers
it has also become popular in other fields such as industrial automation and
equipment for the medical industry. (Computer Solutions Ltd, 2012)

A modern car contains about 50 electrical control units (ECU’s), each
one often responsible for one feature, for example engine control, airbags,
cruise control, doors or mirror adjustment. Actuators and sensors are in
turn often connected to the ECU’s. The CAN bus connects the ECU’s and
provides the possibility for the ECU’s to communicate with one another.
CAN is particular in the sense that nodes are not predefined specific ad-
dresses, instead the messages have identifiers. Nodes can therefore listen for
specific messages on the bus and ignore those which are not of interest to
the node. In the same manner, nodes transmit messages with different iden-
tifiers depending on message content and receiver. The message identifier
also defines the messages priorities, where a lower identifier corresponds to
a high priority and vice versa. (Joakim Plate and Peter Fridlund, 2011)

When the CAN bus is idle, any node on the bus is free to start transmit-
ting. In the case of two nodes starting to send simultaneously, the highest
prioritised message (with lowest numerical id) will win the arbitration and
fulfil transmission whereas the message with lower priority will sense this,
step back and wait for the bus to be free, allowing for the message to be
resent after a predefined delay. (Joakim Plate and Peter Fridlund, 2011)

9

This built in prioritisation of messages is achieved using recessive and
dominant bits, ’1’ being recessive and ’0’ being dominant. If the bus is idle
(no one is sending) the bus is in it’s recessive state (high). If a node sends
a dominant ’0’-bit, it grounds the bus, drawing it down to ’0’. So, if a
dominant bit is sent on the same time as a recessive bit, the dominant bit is
displayed on the bus. The node sending the recessive bit sees that the bus
is ’0’ even if it sent a ’1’, and a collision is detected. If all nodes have unique
identifiers, which is necessary, a single node remains as winner when a full
identifier has been transmitted. This node now continues to send its data.
(Joakim Plate and Peter Fridlund, 2011)

There are two CAN specifications, basic (standard) CAN and full (ex-
tended) CAN. Basic CAN offers a maximum transfer speed of 250 kbit/s
and an 11 bit message identifier whereas the full CAN is capable of 1 mbit/s
with a 29 bit identifier. These transfer speeds are defined for 50 meter bus
length. By lowering speed the bus length can be increased, for example 125
kbit/s at around 500 meter extended CAN. There are a lot of possibilities
when choosing physical media for CAN, the most common being twisted pair
on a 5V differential signal. The CAN-low (CANL, CAN-) holding -2.5V and
CAN-high (CANH, CAN+) holding +2.5V. This makes the physical layer
robust even in noisy environments such as vehicles. The bus should be termi-
nated with 120Ω-resistances in both ends between CAN-low and CAN-high
to prevent interference due to reflections. A small CAN bus containing three
nodes can be seen in Figure 4. (Robert Bosch GmbH, 2012)

CAN Node
Microcontroller

CAN Controller

CAN Tranceiver

R

CAN Node
Microcontroller

CAN Controller

CAN Tranceiver

CAN Node
Microcontroller

CAN Controller

CAN Tranceiver

R

CANH

CANL

Figure 4: A CAN bus with the two differential signals CANL and CANH,
terminated with 120Ω resistances.

As for the physical media, connector types are not yet formally specified
and custom designs are common. However, the 9-pin D-sub connector with

10

the following pin-out, has become popular.

• pin2: CAN-low (CAN-)

• pin3: GND (Ground)

• pin7: CAN-high (CAN+)

• pin9: CAN V+ (Power)

CAN offers four different types of frames, remote frame, error frame,
overload frame and data frame. The data frame comes in two formats, basic
and extended. The extended data frame is the only one used in the thesis
and its frame layout is showed in Table 1:

Name Bit-length Description

SOF 1 Start-of-frame.

ID part 1 11 First part of message identifier, also represents message priority

SRR 1 Recessive (0)

IDE 1 Identifier extension bit

ID part 2 18 Second part of message identifier, also represents message priority

RTR 1 Dominant (0) (see Remote Frame below)

Reserved bits 2 Reserved bits, dominant (0)

DLC 4 Data length code, number of bytes of data (0-8)

Data 0–64 Data to be transmitted (bytelength corresponds to DLC field)

CRC 15 Cyclic Redundancy Check, Checksum

CRC delimiter 1 Always (1)

ACK slot 1 Transmitter sends recessive (1), any receiver ACKs with dominant (0)

ACK delimiter 1 Must be recessive (1)

EOF 7 End-of-frame, must be recessive (1)

Table 1: The layout of the CAN data frame.

Normally CAN frames are sent cyclically, messages can for example be
sent every 10 or 100 ms. Using this manner, errors can be detected. If a
specific message stops arriving, nodes will realise there is an error occurrence,
making adequate actions. Also, bus overload can be avoided since bus load
is kept close-to constant if all messages ”always” are sent with a specific
cycle time. CAN buses in automotive industry often have a bus load around
70-80%.

CAN is well suited in vehicles for a lot of reasons. It is cheap and reliable
in harsh and noisy environments. Being message based also favours CAN
when deciding for a network type for the automotive industry, since certain
data often is relevant for several nodes in the vehicle and data consistency

11

is important. CAN also has the ability to automatically drop faulty nodes
on the bus to prevent these from bringing the network down. This fault
confinement ensures bandwidth for critical transmissions. (Corrigan, 2002,
revised 2008)

Another commonly used construction of CAN frames in the automotive
industry is the usage of the update bit. It is a single bit which is set to 1
if the corresponding signal has been updated, assuring the receiver that the
transmitter successfully managed to send a new updated value of the signal
in the most recent frame. (Joakim Plate and Peter Fridlund, 2011)

2.4 PID control

The Proportional-Integral-Derivative controller (PID controller) is a com-
monly used controlling mechanism within industry and other control inten-
sive environments. It uses an error (calculated as the difference between a
defined setpoint value and the output signal from the process) to adjust the
input signal to the process which it controls. The PID-controller is known
as three-term control since it uses a proportional gain for the present error,
integral gain for the summation of the past errors and a derivative gain for
the ”future” error, based on the current rate of change. The sum of the
three terms multiplied with the error adjusts the input signal to the process.
Sometimes, one or two of the terms are discarded, since only one or two of
the terms are required to control the system. This is achieved by setting
the term(s) to discard equal to zero and the result is for example a P- or
PI-controller. (Lennartsson, 2000)

12

2.5 Hardware Specifications

This section covers technical details about the electronics used in the thesis.
Other hardware, such as the motor and the batteries, are not described in
the section. However, it is inevitable not to mention them, since these are
controlled by the electronics.

2.5.1 VMCU and BMU

The hardware used as VMCU, illustrated in Figure 5, is developed by
QRTECH. It is based on the Gumstix Overo Earth with a 720 MHz ARM
Cortex-A8 CPU and 256MB RAM with a WLAN-controller, but with some
added features

• 5” resistive touch display

• Texas Instruments CAN controller ISO1050TI

The VMCU is running the lightweight Linux distribution Ångström. The
Ångström community originates from the OpenEmbedded, OpenZaurus and
OpenSimpad projects aiming to develop a stable, user friendly Linux distri-
bution for embedded devices. (koen, 2011)

Using a Linux based OS like Ångström involves a lot of advantages as
compared to a self-developed one, the largest being cutting development
costs.

(a) The backside of the VMCU. (b) The VMCU booting up the Ångström Linux distribution.

Figure 5: The ARM-based VMCU board. Notice the SD card holder con-
taining the Ångström OS

13

The BMU consist of the same hardware, running the same operating
systems, as the VMCU. The difference is that it lacks the 5” display.

2.5.2 Motor controller

The Texas Instruments developed Digital Signal Processor (DSP) F28335
Delfino is equipped with a 32 bit 150 MHz CPU, 3.3 V I/O design and two
CAN channels. It has 68 kB RAM and 512 kB Flash memory. Delivered
with the DSP was also a docking station, which is a small motherboard
giving access to all GPIO and ADC signals of the DSP.(TI and Community
contributors, 2012b)

The DSP mounted in the slot on the control board of the electric go-cart,
can be seen in Figure 6.

Figure 6: The Digital Signal Processor (F28335) by Texas Instruments.

14

3 Method

In this section the methods used through out the thesis are motivated and
described briefly.

At the beginning of the thesis, the hardware and the main goal were
known, making the waterfall model suitable to use. It consists of different
levels, where each level represent one phase of the thesis. Due to the phases,
the waterfall model is said to be static, aggravating for adoptions to new
requirements or features. To avoid the stiffness, the waterfall model is used
in combination with the agile modelling technique, which increases the dy-
namics and allows for features to be added or removed during the progress
of the thesis.

3.1 The waterfall model

The roots of the waterfall model stretches back to the 1970s, but it is still
used widely due to its simplicity, and wherefore it is also used in the thesis.
As can be seen in Figure 7, the waterfall model is divided into different
phases. In the first phase is the requirements (which originates from the end
user’s, in the thesis case QRTECH’s goal) defined as a set of functions and
constraints. A validation of these as well as the possibility of incorporating
them are also done in the first phase. In the second phase, the requirements
are used to make an overall system design, giving an idea on how the sys-
tem is going to work and look like for the end user. In the third phase, the
implementation and unit testing phase, the system is realized as a set of
independent units/modules (heads-up display, cruise controller, CAN inter-
face etc). In the fourth phase, the units/modules developed in the previous
phase are put together to make a complete system. Checks and testing are
performed to verify that the units/modules coordinates properly with each
other and that the entire system works as specified. If everything works
properly, the system is delivered to the end user and might be maintained
(if agreed upon at the beginning of the project) when necessary. (Nilesh
Parekh, 2011)

3.2 Agile model

After a while it was realized that the stiffness of the waterfall model needed
to be complemented with a more volatile method. Agile modelling is a mod-
elling technique which developed in the 1990s as a reaction to the existing
heavy regulating methods, serving to make projects open to inputs and to
’move quickly’. Less focus is put on documentation between different phases,
and instead is the development allowed to take sudden turns and changes.
A close interaction with the end user through the whole developing process
is often significant, which usually lead to a lot of prototypes before the final

15

Requirements
& Analysis

System Design

Implementation
& Testing

Integration
&Validation

Acceptance
& Maintenance

Figure 7: The waterfall model.

product is reached. (Gray Pilgrim, 2012)

3.3 Working process

Throughout the realization of the thesis the methods mentioned above was
followed. Utilizing the thesis specification in combination with discussions
and ideas from colleagues at QRTECH as a starting point, an overall thought
of the system was defined. In parallel was previous work studied to widen
the horizon and to get understanding of existing implementations on the
go-cart.

During the development of software components, testing environments
(consisting of equivalent hardware that is available on the go-cart) was set-
up at the bench, allowing for verification throughout the process. Hopefully
this approach resulted in elimination of some early teething troubles. After
completion of the individual software components, they were tested on the
blocked up go-cart one-by-one and finally altogether composing the entire
system.

3.4 Development Environments

This section describes the different software used to simplify the work
throughout the thesis. Also, an description of the test-bench set-ups, is
given.

16

3.4.1 Eclipse Java IDE

Eclipse IDE for Java Developers is an Integrated Development Environment
(IDE) featuring code-completion, syntax highlighting and search functional-
ities as well as giving the possibility to test-run the class files in the Oracle
Java Runtime Environment (JRE) with a simple click, making development
and testing effective and easy. (The Eclipse Foundation, 2012)

3.4.2 JamaicaVM

JamaicaVM is an application written by the CHARTER member aicas.
Aligning well with CHARTER’s aim, to introduce Java in embedded sys-
tems, JamaicaVM is designed with this in mind. JamaicaVM is a vir-
tual Java machine and a build environment for real-time Java. The use of
three different kinds of threads, RealtimeThread, NoHeapRealtimeThread
and Thread, ensures that execution performs optimally. JamaicaVM does
also support real-time garbage collection, allowing for threads of type Real-
timeThread and NoHeapRealtimeThread to interrupt the garbage collection
mechanism to met desired real-time criterion, see Figure 8. JamaicaVM is
available for three host systems, Windows, Solaris and Linux. From there,
it compiles and builds Java code to produce binaries which executes on
several CPU’s, including x86, PowerPC and ARM. (aicas GmbH and aicas
incorporated, 2012)

Thread Time

GC

Thread1

Thread2

(a) With classic Java, threads can be interrupted
by the garbage collector mechanism.

RealTimeT1

Time

GC

Thread1

Thread2

RealTimeT2

Thread

(b) With RTJ, real-time threads can interrupt the
garbage collector mechanism.

Figure 8: Illustrating the difference of how the garbage collector works with
Java and RTJ.

3.4.3 Code Composer Studio 5

The C-code for the TI DSP F28335 in the dock (described in 2.5.2) was
developed under Windows XP in a Eclipse-based development platform
called Code Composer Studio 5 (CCS5), provided by Texas Instruments.
In the same way as the Eclipse Java IDE, CCS5 features code-completion,
syntax highlighting and search functionalities but also provides support of
breakpoint debugging, machine code generation and erasing/writing of flash

17

through USB. A drawback is that CCS5 took a few minutes to build the
machine code and flash the non-volatile memory, making the development
cumbersome. (TI and Community contributors, 2012a)

3.4.3.1 COM-configurator

QRTECH has an in-house developed program called QRtech COM
Configurator, capable of generating CAN related C-code from an imported
XML-file. The imported XML-file is derived from CANdb++ Editor, a
third party software developed by Vector. CANdb++ Editor allows for
design of CAN frames, e.g. selecting not only which signals they should
consist of, but also bit-length and parameters like offset and type. It does
also come with the possibility to set several options, such as how often a
frame should be transmitted or if a signals should have an update bit or
not. (Vector Informatik GmbH, 2012)

3.4.3.2 CANoe

CANoe is a PC software used to analyse a CAN network and its
nodes. Nodes, which should be a part of the network, can be simulated
to test the behaviour of all ready existent nodes. By importing a CAN
database, frames on the CAN bus can be monitored and transmitting
frames can be tailor-made through simulated nodes, even under runtime.
CANoe also features bus load calculation and the possibility to draw signal
graphs. (Vector Informatik GmbH, 2012)

The software uses a small box called CANcaseXL which is connected to
the host machine through USB. The CANcaseXL is in its turn connected to
the CAN network using a twisted pair cable with D-SUB9 connectors. In
Figure 9 CANoe is used to simulate the VMCU sending the frame containing
the vehicle state and requested torque to the DSP, on the go-cart. The green
graph shows the actual torque generated by the motor and the black graph
shows the vehicle speed. In the lower-left quarter of the screen-shot, the
transmitting frame can be edited. In the lower-right quarter, all frames and
its signals on the bus can be viewed.

3.4.4 Test-bench

Two general test-bench set-ups were used in the thesis. The set-up repre-
sented by the dashed box in Figure 10 was used for developing the CAN
interface for the motor controller. On a PC running Windows, code was
edited, built and uploaded (via USB) to the DSP with Code Composer Stu-
dio 5. The PC was also running CANoe and a CANcaseXL was connected
to the PC via USB. With a twisted pair CAN cable with DSUB-9 connectors

18

Figure 9: Here CANoe is used to simulate the VMCU node when developing
the CAN interface on the motor controller.

the DSP’s CAN controller was interconnected to the CANcaseXL. Further-
more, especially in the first half of the thesis, an oscilloscope was used to
monitor the duty cycle of the PWM-signals from the motor controller.

The dashed-dotted box in Figure 10 represents the heads-up display
test-bench. The GUI was designed on Windows XP in Eclipse Java IDE
and test run with the Java Runtime Environment (JRE). When testing on
target hardware, the VMCU, JamaicaVM on Ubuntu Linux 11.10 was used
to cross-compile and build the binary. The executable was then transferred
from the PC to the VMCU via the intranet.

With a complete AUTOSAR architecture in place on the VMCU, the
CAN controller was tested by connecting it to the CANcaseXL in the same
manner as for motor controller development. However, this time CANoe
simulated the CAN controller of the DSP or the actual DSP itself was con-
nected.

19

VMCU

ARM7

5"

0
5

10 15
25

20

2200 RPM

WiFi

Internet

CANCase XL

angstrom

PC

WindowsXP
Ubuntu Linux 11.10

JamaicaVM
Eclipse Java
CANoe
COM Configurator
Code Composer Studio 5

USB

CAN

USB

DSP

TI F28335

CAN
Controller

PCA82C251

Oscilloscope

TP
BP

TP
BP

CAN
Controller
ISO1050TI

Figure 10: The test bench set-up.

20

4 Implementation

This section describes the design of the AUTOSAR software components,
the heads-up display and the cruise controller. The implementation of the
CAN interface on the motor controller is also treated.

4.1 Heads-up Display

The graphical user interface (GUI) for the heads-up display was developed
in Java using the Java libraries awt and Swing. (Skansholm, 2005) The use
of more extensive graphical frameworks such as Java FX was desired but
discarded due to low or non-existent Ångström support.

A non-complete but working RTE-layer, together with a test interface
for setting variables/signals in the RTE-layer, was early integrated with the
heads-up display, allowing for testing and validation throughout the process.
(For a reminder of RTE, see Section 2.1.2)

The heads-up display consists mainly of Java Swing components, such as
JPanels and JLabels. To place the components in the JFrame, a combination
of the classes FlowLayout and TableLayout were used. TableLayout is a
custom non-standard Java class which allows for exact positioning in a grid-
like structure, making the placement of components easier compared to using
the default layouts in Swing (http://java.sun.com/products/jfc/tsc/
articles/tablelayout/).

At first, vehicle data such as speed, temperature, revolutions per minute
and state of charge, was presented to the driver using JPanels and JLabels.
The speed is also displayed in a more convenient way, using the drawline
component in Swing’s 2D Graphics library, which was used to draw a needle
in a velocimeter. To create the velocimeter, eight JLabels (each containing
digits representing a speed) were placed in a third of a circular arc, with an
equal distance between each other, see Figure 11a.

The drawline method paints a line between two defined coordinates.
Thus, by calculating new coordinates for one of endpoint of the line, it is
possible to make the needle rotate and follow the circular arc according to
the changes in speed.

To make the heads-up display more attractive, an external font was used.
The font can be described as having a retro-digital-watch-look, based on a
seven segment display. It had also to be monospaced to avoid movements
of text, since the letters did not have the same width. The font used is
DS-Digital and is a shareware font created by Dusit Supasawat (http://
www.dafont.com/ds-digital.font).

The battery indicators used in the driving view (Figure 11a) and the
battery view (Figure 11b), are based on another 2D Graphics GUI Swing
component, namely the drawrect. An instance of this component creates
the rectangle representing the border of the battery. To indicate the state

21

http://java.sun.com/products/jfc/tsc/articles/tablelayout/
http://java.sun.com/products/jfc/tsc/articles/tablelayout/
http://www.dafont.com/ds-digital.font
http://www.dafont.com/ds-digital.font

of charge, the standing rectangle is filled with the corresponding number of
underlines stapled one another, see Figure 11a.

Since the needle, especially when moving, looked jagged, the Java ren-
dering hints parameters were changed (for example enabling anti-aliasing)
to improve the appearance of the graphical representation. The battery
indicators also used this setting.

The heads-up display, as explained in 1.1.2, consists of five views: driv-
ing, battery, diagnostics, properties and demo. The option to switch between
different views is available through the menu to the right. It contains five
JLabels, each with an attached ActionListener, setting the visibility of the
pressed view to true and all others to false when clicked. It also prohibits
unnecessary operations to be made on views that are not visible, increasing
performance.

A picture containing the views can be seen in Figure 11.

(a) The driving view (b) The battery view

(c) The properties view (d) The demo view

Figure 11: The different views of the heads-up display.

The driving view is the main view providing information to the driver
about the vehicle’s current state. It shows the speed, both with the ve-
locimeter and a numerical value, the average speed, the total distance driven,
revolutions per minute, the motor temperature and power status, such as
current drain and state of charge. See Figure 11a.

The battery view presents the state of the individual cells in the battery
and general battery status, such as state of charge and temperature, see
Figure 11b.

The diagnostics view shows a button, providing the possibility to clear
DTC:s after the driver has been informed about the occurrence of the error.

22

In the properties view, the driver can select which driving profile to use,
enable or disable battery charging and decide if the menu should be placed
to the left or to the right. See Figure 11c.

In the demo view, the driver is shown a brief presentation about
QRTECH. A power point presentation was segmented into pictures which
are displayed with the media player delivered with Ångström, mplayer, show-
ing each slide for 5 seconds. See Figure 11d.

Figure 12: Mapping of throttle pedal position to the reqeusted torque, for
the three different driving profiles.

Another feature requested by QRTECH, is the option to choose between
different kinds of driving profiles. Therefore, three profiles are built into
the go-cart, Normal mode, where the throttle position is mapped 1:1 to the
torque request, ECO mode, where the requested torque is mapped 1:2 to
the throttle position, and Sport mode, where the request torque is mapped
2:1 to the throttle position and set to maximum torque when the pedal is
pressed halfway or more, see Figure 12. The profile selection is made in the
properties view.

4.2 Cross-compilation for ARM with JamaicaVM

When a fairly complete version of the heads-up display was ready it was com-
piled and built using JamaicaVM. This was done under Ubuntu 11.10 with
the JamaicaVM cross-compiler for ARM7, referring to the class containing
the main method, using the command:

jamaicac -useTarget linux-arm-le -verbose -d ../classes

RTE/Rte.java

23

which compiles the Java code, essentially building class files in the same
manner as the standard Java compilation command (javac). Typing:

jamaicabuilder -target=linux-arm-le -XstaticLibraries "stdc++"

-verbose=1

-resource+=ds-digi.ttf:ds-digii.ttf:ds-digib.ttf:ds-digit.ttf

-object=BSW/SocketCAN/BSW_SocketCAN_SocketCAN.o RTE/Rte

then uses the class files to generate C-code which is built to a binary
executable on the ARM platform. Note how the custom fonts are added
to the binary as resources and how the JNI coded in C++ is passed to
jamaicabuilder using the -object flag. Since jamaicabuilder needs a few
minutes to build the 18MB binary, the heads-up display was developed and
tested as far as possible in the Java virtual machine (JVM) before building
with jamaicabuilder. However, when a binary was built, it was transferred
to the VMCU using its wireless internet connection. On the target system
it was run (after setting execution flags) with:

chmod +x Rte

./Rte

4.2.1 Profiling

It was discovered that execution of the binary generated by JamaicaVM was
a lot heavier than running the class-files in the JRE. The solution was found
in the profiling feature of JamaicaVM. By calling the profiling flag when
running jamaicabuilder, a special version of the binary is generated:

jamaicabuilder -target=linux-arm-le -XstaticLibraries "stdc++"

-profile -verbose=1

-resource+=ds-digi.ttf:ds-digii.ttf:ds-digib.ttf:ds-digit.ttf

-object=BSW/SocketCAN/BSW_SocketCAN_SocketCAN.o RTE/Rte

When running this version on the target system (ARM), the program
checks which parts of the program that is slow and/or uses a lot of CPU
cycles and from this information generates a so called profile. The binary
is then rebuilt passing the generated profile to jamaicabuilder using the -
useProfile flag. Setting options such as number of threads, heap size and
how much of the code that is compiled also increases execution speed.

jamaicabuilder -target=linux-arm-le -XstaticLibraries

"stdc++" -useProfile ../RTE.Rte.prof -numThreads 20

-percentageCompiled 50 -heapSize=192M -verbose=1

-resource+=ds-digi.ttf:ds-digii.ttf:ds-digib.ttf:ds-digit.ttf

-object=BSW/SocketCAN/BSW_SocketCAN_SocketCAN.o RTE/Rte

24

The new binary is now tailor-made for maximal performance with satis-
fying results.

4.3 Motor controller and CAN interface

There are two primary parts of the DSP program: the PWM-interrupt and
the software interrupt.

The PWM-interrupt serves to control the electric motor, it is triggered
at a 20 kilohertz rate and is essentially the work of the previous master’s
thesis on the go-cart at QRTECH (see section 1.1.3.1). Its purpose is to read
sensors providing information such as winding currents and temperature as
well as reading the throttle and brake pedals and from this data react and
control the current supplied to the motor and its fan by altering the duty
cycle of PWM-signals.

In the thesis a new version of this routine was created. In the new version
update bits in the CAN frames are set when signals such as motor speed
and temperature are recalculated. Furthermore, the throttle and brake ped-
als are not read by the analog/digital converter measuring potentiometers.
Instead, the variable taking care of the requested torque is set by reading
an incoming signal in a CAN frame.

Normally, when the PWM-interrupt is not executing, the DSP is busy
waiting in the main function. However, every tenth millisecond a software
triggered CPU-timer permits the DSP to execute code which purpose is to
serve the CAN controller. The CPU-timer allows for well-timed periodic
reception and transmission of CAN frames. Also, no code serving CAN
communication is executed during the PWM-interrupt and thus not delaying
the PWM-signal generation to the motor. This is important since motor
control performance is dependent on an agile PWM-routine.

When the software interrupt is triggered, the DSP reads the update bits
of all signals received. If the update bit is set, the value of the corresponding
CAN signal is copied to an on-memory allocated variable. However, if a
maximal number of update bits have been read in its low state, an error is
triggered.

When the variables have been updated, the routine checks the state of
the vehicle operating state variable and takes appropriate action. There are
four states:

• Shutting down. CAN transmission is stopped, however, the DSP is
still monitoring the CAN bus.

• Initiating. CAN communication is triggered and the DSP starts trans-
mitting frames.

• Charging. The batteries are charged by the BMU.

25

• Running. The DSP packs the transmitting frame with vehicle data, i.e.
vehicle speed, motor RPM, motor torque (current) and temperature
and tells the CAN controller that data is packed and ready to be
transmitted.

By reading an input pin called CAN-ON, the DSP decides which ver-
sion of the code to run. If CAN is off, the old interrupt routine (reading
the throttle and brake pedals via A/D-converter) is used and the software
interrupt does nothing. Instead, if CAN is on, the new altered version of
the PWM-interrupt is used and the software interrupt takes care of CAN
reception/transmission as described above.

4.3.1 CAN bus performance

During normal execution of the DSP and the VMCU, it was observed with
help from CANoe, that the CAN bus load was around 35%. At the same
time, a stress test was performed by decreasing the periodicity of certain
frames, resulting in a bus load of 80% (which is common in automotive
industry), without any peculiar behaviour.

4.4 Cruise controller

To control the PWM-signal to the motor, a PID is used. The cruise controller
was implemented by adding a second PID to control the input to the motor
PID.

Fcc Fmc G+++-
vref ve u1 u2

Figure 13: Block diagram of the go-cart including the cruise controller.

The original controller for the motor is illustrated as the block Fmc in
Figure 13. Its input signal is a torque request, which is read from the CAN
bus. When the cruise controller is active, the reference value is not the
torque but instead a by the driver defined speed, vref . Therefore, an extra
PID block is added before the original system to adjust for the error between
vref and v. If the go-cart moves too slowly, the Fcc regulator has to increase
the requested torque (u1) to accelerate the go-cart, and vice versa.

If the actual speed equals the desired speed, the motor controller reuses
the latest torque request as its input, since this torque request resulted in
the desired speed.

26

The integration of a cruise controller was first made on the DSP, even
though it is supposed to be present on the VMCU at the end of the thesis.
This, as the reconstruction of the go-cart was delayed (thus making it avail-
able for testing longer than expected), and the fact that the CAN interface
still was unavailable on the VMCU. Therefore was the PID implemented
directly on the DSP, as it ought to behave in the same way as if it would
have been implemented on the VMCU. The regulator parameters for the
PID-controller was selected using manual tuning. KI and KD was zeroed
and KP increased until the output started to oscillate. Then KP was halved
and KI increased until the error offset was corrected in a few seconds. D
was not needed and ignored. After a final optimisation by trial and error,
the parameter selection was finally KP = 0.6, KI = 0.005 and KD = 0.0 for
the Fcc.

Having the go-cart and a VMCU with working CAN interface acces-
sible again, the DSP cruise controller implementation was ported from C
to real-time Java and implemented as an AUTOSAR software component,
running on the VMCU. At the same time, new features were added. For
example, the speed of the go-cart must exceed 4 km/h to be able to activate
the cruise controller at all. Also, with the cruise controller activated, it is
possible to overtake another go-cart using the throttle pedal to exceed the
cruise controller reference speed. When the overtake is done and the throttle
pedal released, the cruise controller continues to control the speed, using the
earlier reference speed. Of course, pressing the brake pedal deactivates the
controller.

27

5 Discussion and Conclusion

This chapter presents the final conclusions and discusses problems encoun-
tered during the thesis. It explains the outcome and argues the choices
made and how issues have been treated and solved. Finally it proposes
some subjects suitable for future work.

5.1 Discussion

At the beginning of the thesis, the heads-up display was developed on an
unintended platform, resulting in performance issues when later executed
on the target platform. Painting and repainting graphics demanded too
much of the VMCU, preventing real time processes to be executed in time.
To handle this, the update time of the graphical user interface had to be
increased (updated less frequently). Also, more sophisticated methods used
to improve the appearance of the heads-up display were discarded. It can
be added that, according to the developers of JamaicaVM, techniques such
as anti-aliasing are slow in JamaicaVM which also supports the decision to
discard it.

After integrating the heads-up display with the RTE-layer and the soft-
ware components it came with, performance was yet again an issue. In
contrast to the very deterministic digital signal processor, the behaviour of
the VMCU was inconsistent. Activating the CAN interface made the GUI
slow and unresponsive. Analysing the bus it could be seen that the frames
sent from the VMCU was forming a queue and was therefore delayed. Also,
stressing the VMCU by frequently changing view on the heads-up display
sometimes caused the CAN communication to lag behind too much. The
problem was avoided by increasing the periodicity of the transmitting frame
from 10 milliseconds to 20 milliseconds, giving the VMCU more time for
repainting the GUI. Increasing the periodicity comes with an additional
domino effect. Since certain frames are transmitted less frequently, the data
they contain do not need to be updated and calculated as often as before,
lowering the load of the VMCU even more.

Error handling, or more specifically, diagnostic trouble codes (DTCs)
was part of the thesis description. The codes was to be displayed in a for
the purpose dedicated view, the diagnostics view, indicating errors present
on the CAN bus nodes. The diagnostic view should also have offered the
possibility to clear these errors. Unfortunately, these features had to be
set aside, since the work with the performance issues of the VMCU turned
out to be time consuming. Even though the DTCs missed out, some other
safety features have been built in. For example if the CAN bus for some
reason is broken between the VMCU and the DSP, the DSP recognises this
circumstance and sets the requested torque to zero, shutting down the motor.
In the same manner, the go-cart motor is shut down if too many frames

28

arrives without the update bit being set.
Unfortunately was the go-cart reconstruction not completed before the

end of the thesis, preventing the go-cart being tested on the ground. Even
though the cruise controller behaved as expected when the go-cart was
blocked up, it is hard to tell how it would behave with the go-cart on the
ground with load (driver). Hopefully, only minor control parameter adjust-
ments of the cruise controller is enough to adapt it to the new environment.

5.2 Conclusion

The thesis resulted in the electric go-cart being equipped with a VMCU, with
a heads-up display presenting data to the driver, a drive-by-wire feature via
CAN and a cruise controller making it possible to maintain a desired speed.

The fact that a JNI had to be written in C++ to be able to access
the VMCU CAN controller at all, is of course a general drawback with
(real-time) Java. It makes development more complex, adding another pro-
gramming language to the project. AUTOSAR does serve as a specification
for how interfacing between software layers is treated to extend reusabil-
ity, it does not specify which language to use for implementing these layers.
However, it can be concluded that a RTJ approach is possible when im-
plementing AUTOSAR even though some compromising may be necessary
when working close to hardware.

It can be concluded that there is space for improvements on the VMCU.
Both the heads-up display and the CAN communication on the VMCU can
be optimised for performance and stability. Regarding the DSP, it works in
a deterministic manner, meeting its deadlines.

Comparing the actual time spent with the Gantt-chart, (see Appendix
A), it can be concluded that the time used for the heads-up display was
extended, stretching almost the whole thesis. In contrary, the work with
the CAN interface and the motor control was finished in a few weeks, while
being planned for more than ten weeks. Unfortunately, the DTCs had to be
left out for future work.

29

References

Adam Hulin and Marcus Johansson (2011), Test application generator for
autosar systems, Master’s thesis, Department of Computer Science and
Engineering at Chalmers University of Technology.

aicas GmbH and aicas incorporated (2012), “Jamaicavm—java technology
for realtime”, Collected 2012-04-27 . http://www.aicas.com/.

Alec Dorling (2012), “Charter project”, Collected 2012-01-20 . http://

charterproject.ning.com/page/charter-project.

AUTOSAR (2012), “About autosar”, Collected 2012-02-03 . http://www.

autosar.org/.

Computer Solutions Ltd (2012), “Can - a brief tutorial”, Collected
2012-03-05 . http://www.computer-solutions.co.uk/info/Embedded_
tutorials/can_tutorial.htm.

Corrigan, S. (2002, revised 2008), “Introduction to the controller area net-
work (can)”, Application Report , p. 14.

Gray Pilgrim (2012), “Waterfall model vs agile”, Collected 2012-01-17 .
http://www.buzzle.com/articles/waterfall-model-vs-agile.html.

Hans Sanell and Göran Samuelsson (2011), In vehicle infotainment demon-
strator, Master’s thesis, Department of Computer Science and Engineering
at Chalmers University of Technology.

Joakim Plate and Peter Fridlund (2011), Xcp over can and ethernet on au-
tosar, Master’s thesis, Department of Computer Science and Engineering
at Chalmers University of Technology.

Johan Elgered and Jesper Jansson (2012), Autosar communication stack
implementation with flexray, Master’s thesis, Department of Computer
Science and Engineering at Chalmers University of Technology.

koen (2011), “The Ångström distribution introduction”, Collected 2012-04-
04 . http://www.angstrom-distribution.org/.

Lennartsson, B. (2000), Reglerteknikens grunder, 4:7 edn, Studentlitteratur.

Nilesh Parekh (2011), “The waterfall model explained”, Collected 2012-03-19
. http://www.buzzle.com/editorials/1-5-2005-63768.asp.

Robert Bosch GmbH (2012), “What is can?”, Collected 2012-03-
07 . http://www.semiconductors.bosch.de/en/ipmodules/can/

whatiscan/whatiscan.asp.

30

http://www.aicas.com/
http://charterproject.ning.com/page/charter-project
http://charterproject.ning.com/page/charter-project
http://www.autosar.org/
http://www.autosar.org/
http://www.computer-solutions.co.uk/info/Embedded_tutorials/can_tutorial.htm
http://www.computer-solutions.co.uk/info/Embedded_tutorials/can_tutorial.htm
http://www.buzzle.com/articles/waterfall-model-vs-agile.html
http://www.angstrom-distribution.org/
http://www.buzzle.com/editorials/1-5-2005-63768.asp
http://www.semiconductors.bosch.de/en/ipmodules/can/whatiscan/whatiscan.asp
http://www.semiconductors.bosch.de/en/ipmodules/can/whatiscan/whatiscan.asp

Skansholm, J. (2005), Java direkt med Swing, 5:4 edn, Studentlitteratur.

The Eclipse Foundation (2012), “Eclipse ide for java developers”, Col-
lected 2012-05-02 . http://www.eclipse.org/downloads/packages/

eclipse-ide-java-developers/indigosr2.

TI and Community contributors (2012a), “Code composer studio (ccstu-
dio) integrated development environment (ide) v5”, Collected 2012-05-04
. http://www.ti.com/tool/ccstudio.

TI and Community contributors (2012b), “Tms320f28335”, Collected 2012-
02-10 . http://www.ti.com/product/tms320f28335.

Vector Informatik GmbH (2012), “The development and test tool for can,
lin, most, flexray, ethernet, wlan and j1708”, Collected 2012-02-28 . http:
//www.vector.com/vi_canoe_en.html.

31

http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/indigosr2
http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/indigosr2
http://www.ti.com/tool/ccstudio
http://www.ti.com/product/tms320f28335
http://www.vector.com/vi_canoe_en.html
http://www.vector.com/vi_canoe_en.html

A Gantt chart

ID
Ta

sk
 N

a
m

e
St

a
rt

Fi
n

is
h

D
u

ra
ti

o
n

ja
n

 2
0

1
2

fe
b

 2
0

1
2

m
a

r
2

0
1

2
a

p
r

2
0

1
2

m
a

j 2
0

1
2

2
2

-1
2

9
-1

5
-2

1
2

-2
1

9
-2

2
6

-2
4

-3
1

1
-3

1
8

-3
2

5
-3

1
-4

8
-4

1
5

-4
2

2
-4

2
9

-4
6

-5
1

3
-5

2
0

-5
2

7
-5

3
-6

1
2

w
2

0
1

2
-0

2
-0

3
2

0
1

2
-0

1
-2

3
P

la
n

n
in

g
re

p
o

rt

2
6

w
2

0
1

2
-0

3
-0

9
2

0
1

2
-0

1
-3

0
H

ea
d

s-
u

p
 d

is
p

la
y

6
w

2
0

1
2

-0
5

-1
1

2
0

1
2

-0
4

-0
2

C
ru

is
e

co
n

tr
o

l

2
w

2
0

1
2

-0
5

-1
8

2
0

1
2

-0
5

-0
7

Er
ro

r
h

an
d

lin
g

7
w

2
0

1
2

-0
3

-2
3

2
0

1
2

-0
2

-0
6

C
A

N
 in

te
rf

ac
e

3 87
1

w
2

0
1

2
-0

6
-0

1
2

0
1

2
-0

5
-2

8
O

ra
l p

re
se

n
ta

ti
o

n
 a

n
d

 o
p

p
o

si
ti

o
n

1
8

w
2

0
1

2
-0

6
-0

8
2

0
1

2
-0

2
-0

6
Fi

n
al

 r
ep

o
rt

4
4

w
2

0
1

2
-0

4
-2

0
2

0
1

2
-0

3
-2

6
M

o
to

r
co

n
tr

o
l

5 6

	Introduction
	Background
	About QRTECH
	Project description
	Delimitation
	The go-cart

	Related work
	AC-motor control
	In-vehicle infotainment demonstrator

	Theory
	AUTOSAR
	BSW
	RTE
	Application layer

	CHARTER
	Controller Area Network
	PID control
	Hardware Specifications
	VMCU and BMU
	Motor controller

	Method
	The waterfall model
	Agile model
	Working process
	Development Environments
	Eclipse Java IDE
	JamaicaVM
	Code Composer Studio 5
	COM-configurator
	CANoe

	Test-bench

	Implementation
	Heads-up Display
	Cross-compilation for ARM with JamaicaVM
	Profiling

	Motor controller and CAN interface
	CAN bus performance

	Cruise controller

	Discussion and Conclusion
	Discussion
	Conclusion

	Gantt chart

