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Abstract
For autonomous vehicles, safety is most important. Thus, it is desired to know how
the vehicle will behave given e.g. a steering input. Additionally, it is important
to predict how the vehicle would behave given some perturbation. Therefore, this
thesis investigates which analytical methods can be used to quantify the robustness,
performance, and stability properties of the system. To ensure safety, how limits
can be derived regarding disturbances or uncertainties is also considered.

To investigate these matters, linear vehicle models augmented with uncertain pa-
rameters and adapted to the behavior of a more complex nonlinear model are used
as tools for analysis and controller synthesis. In both the time and the frequency do-
main, specifications regarding the desired performance and the system uncertainty
are created. PID, LQ, and H∞ control are then used and compared. Optimization
of controllers, given system behavior objectives, is also performed.

Uncertainty analysis gives a trustworthy range of system behavior for the linear
model. Adapting this model to the nonlinear model behavior results mostly in sim-
ilar system responses, making the argument that analytical results can be carried
over from the linear to the nonlinear model easier for these cases. Most of the op-
timized controllers result in the wanted system behavior. The analytical methods
successfully quantified system behavior. However, some methods proved more useful
than others. Uncertainty and disturbance limits are both computed through simu-
lation, with an analytical verification of the frequency domain uncertainty.

Keywords: Robust control, Robustness analysis, Autonomous vehicle, Parametric
uncertainty, Controller optimization, H-infinity control, LQI control
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1
Introduction

Motion control for autonomous vehicles is concerned with controlling the driving
dynamics of the whole vehicle combination, both laterally and longitudinally. It has
the task to control all the available actuators in a vehicle to safely and efficiently
follow the intended path along the road. One of the major challenges is ensuring
and communicating a predictable behavior that other parts of the system can rely
on. In short, the control system acting directly on the actuators has to be robust if
the main controller acting on overall vehicle behavior is to be robust. Stability must
be ensured and behavior guaranteed for all parts of the vehicle dynamics regardless
of present disturbances, as safety is of the essence.

At Volvo Trucks, the control of an autonomous vehicle is divided into several levels.
These are visualized in Figure 1.1 and are explained as follows: The Driver side,
with information from the Cloud, makes the decision on how the Vehicle shall be
driven in a specific situation by requesting an acceleration and yaw rate behavior
from the truck using a positional controller acting on a reference model representing
the truck. The controllers for the actuators in the truck acts on a complex dynamic
system. Because of this, there is a need to translate system behavior from a complex
model of the system and communicate them to the Driver, i.e. communicate limits
on how the truck can be maneuvered while maintaining stability, and subsequently
how well the requested behavior can be followed. Furthermore, as the real system
is affected by disturbances, delays, and uncertainties, the closed-loop system has to
be proven robust against these perturbations.

Figure 1.1: System overview

1



Introduction

1.1 Aim
This thesis aims at investigating different system behavior metrics, comparing their
qualities and developing a method for deriving bounds for parameter uncertain-
ties and external inputs such as disturbances, noise and reference signals, to ensure
robustness, stability, and performance of a truck system given a plant model, a con-
troller and time domain specifications. Further, controllers should be synthesized
with the goal of fulfilling a desired system behavior. The aim is encapsulated by
defining the research questions for this thesis:

• Which analytical methods can be used to quantify robustness, performance,
and stability regarding lateral and longitudinal controllers in the context of
autonomous truck vehicles? How do these compare?

• How can bounds for parametric uncertainty and external disturbances be de-
rived, to ensure safety and stability in a closed-loop consisting of a plant model
and controller?

1.2 Limitations
Throughout the thesis, some things are chosen not to investigate, to allow focus on
what is regarded as more important to be able to answer the research questions.

• The thesis takes into account only the vehicle and environment part of the
entire system explained in the introduction and visualized in Figure 1.1, leaving
out any effect the cloud and driver could have on the system behavior. Driver
behavior is replaced by a general reference such as a step or a first order system
response.

• Both the longitudinal and lateral behavior of the vehicle is investigated, how-
ever, these cases are simplified to a two-dimensional behavior, leaving out e.g.
roll dynamics.

• The number of controller types is selectively limited to allow for more time
spent on developing the analysis tools and other important parts of the thesis.
Moreover, some things are assumed rather than investigated for the same
reason, e.g. that the system can provide full state feedback to enable the use
of LQR and LQI controllers.

• The complexity of the linear models is limited, e.g. assuming simple first-order
behavior of actuators. Moreover, varying delays present in the real system are
not included, dead-time is instead considered static.

• The opportunity to test any result on the real system and/or implement real
system data for analysis is not possible due to time and business reasons.

2



Introduction

1.3 Approach
Firstly a literature review is carried out, mainly in the fields of vehicle dynamics
and robust control theory. This is to get an overview of earlier work and to deepen
knowledge about the system at hand to find appropriate methods of controlling it.
Then, linear models are derived to enable the use of linear analysis tools. These
models are tuned to behave like a more complex model of the vehicle. Some can-
didate control theories fit for the task at hand are also chosen. From them, the
most promising ones are applied to the control task by designing, implementing,
and tuning them for the linear models.

With the chosen controllers implemented, their closed-loop robustness is evaluated
with a focus on parametric uncertainty, disturbance, and noise. For these, metrics
are defined to be able to quantify robustness, performance, and stability in time and
frequency domain, such that the behavior can be communicated to the Driver, as
mentioned in Section 1. Optimizing methods are used to maximize or minimize cer-
tain aforementioned measures to find what can be achieved for different controllers.
To validate the method described above, optimized controllers are implemented in
a more complex and supposedly more realistic nonlinear model to validate the ac-
curacy of the linear model closed-loop behavior and the resulting metrics.

1.4 Report outline
The rest of the report is divided into the following 4 chapters,

• Background
In this chapter, the background information needed to understand the origin
of the problem for the thesis is presented. Furthermore, certain terminology
is defined and control theory used is explained.

• Approach
In this chapter, the vehicle models used in the thesis are introduced, the con-
trol problem, and how it is approached is presented. Further, the analytical
methods in time and frequency domain along with the analytical metrics of
interest are described. The method of considering these while optimizing a
controller using different optimizing approaches is presented.

• Results & Discussion
In this chapter, the methods introduced earlier are tested in several case stud-
ies. Their results are presented and analyzed. Further, the methodology of
the thesis and the research questions with regards to the thesis results are
discussed.

• Conclusion & Outlook
The thesis is concluded by summarizing its content and drawing conclusions

3



Introduction

from the results. Additionally, ideas for future work are proposed.

Throughout the report, note that in figures where a system response consists of two
curves, they are showing the sampled step-wise minimum and maximum response
range of that uncertain system. This applies in both the time and frequency domain.
Note also that the nominal system refers to the system with no uncertainties, i.e.
all uncertain parameters are set to their nominal value.

4



2
Background

Autonomous control systems rely on a controller design process that to some degree
can predict the behavior of the system and synthesize a controller such that it in
closed-loop is automatically regulated to a desired behavior. This design process is
often based on a model of the real system. Thus, the model must exhibit similar
dynamics to what is aimed to be controlled in the real system. However, this does
not necessarily mean that a complex model is always required. For instance, the
inherent robustness of feedback systems enables the use of simple models in control
design. Sometimes, a more complex model is needed, e.g. for feedforward control
design. For this purpose, a hierarchy of models is often used [1]. But for system
analysis, a linear model is often preferred. It has been shown that, for vehicle ap-
plications, a linear model can capture the behavior of a more complex, non-linear
model to a certain degree [2, 3], thus enabling use of linear models.

A control system is said to be robust if it is insensitive to the differences between the
real-world system that it acts on and the model of that system which is used to de-
sign the controller [4]. Thus, there is a need to identify the differences and preferably,
in controller synthesis, take them into account so that the control system works no
matter the situation. Since no model is perfect, there will always exist a difference
between its behavior and reality. To deal with that problem, one can e.g. introduce
parametric uncertainty and disturbances, and then try to incorporate them with
the model to bridge the gap. Control synthesis regarding parametric uncertainty is
for instance considered in [5]. Since there are many aspects to take into account, a
method of automatically synthesizing controllers can prove useful as was done in [6].

The control problem investigated in this thesis can be clarified by first getting an
overview of the entire control system presented in Figure 2.1, previously illustrated
more abstract in Figure 1.1. The Cloud determines the vehicle mission given data
from the current vehicle, other vehicles, traffic, and other data that affects the choice
of mission. A path planning controller then generates a path to be followed. A path
following controller acting on a reference model of the vehicle generates a longitu-
dinal acceleration and lateral yaw rate vehicle behavior. This acts as a reference
behavior for the vehicle controllers acting on the real vehicle. Synthesizing the vehi-
cle controllers to ensure that this behavior is met is the control problem considered
in this thesis. More specifically, some guarantee of how well this reference can be
met, given a vehicle controller, is of interest.

5
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Figure 2.1: Control system overview

The problem is analyzed by considering the control system in Figure 2.2, which is
the control system reduced to the Vehicle part only. The investigated reference is
thus seen as any given reference rather than one generated by the reference model.

Figure 2.2: Control problem of interest in this thesis

2.1 Terminology
Part of this work covered defining exactly what type of system behavior should be
guaranteed and in what sense it can be described in a coherent manner. To expand
on some important terms:

Stability

The ability of a system to not diverge in its behavior. Stability needs to be guaran-
teed in a robust system. The dynamics of the truck are not inherently unstable since
both longitudinal states (e.g. forward velocity) and lateral states (e.g. yaw-rate)

6
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converge to zero (with the exception of articulation angle, converging to any value
in its range of operation). This can be achieved with states initialized at reasonable
values without any external input to the system. However, if the system is equipped
with a bad controller, instability (e.g. positive feedback) or marginal instability (e.g.
constant oscillation in state variables) can occur.

Parametric uncertainty

Uncertainty due to that the exact value of a parameter is unknown.

Robust stability

The ability of a system to remain stable in spite of parametric uncertainty.

External input

Any type of plant input that will affect system behavior, e.g. a reference signal,
disturbance, or noise.

External output

Any type of plant output, e.g. system measurements passed on to another system
or an error output to be minimized.

Robust performance (robustness)

Can be defined as the system being robustly stable and all external inputs will get
amplified at a gain less than unity to the external outputs. The lower the gain, the
more robust the system is. Since disturbance is an external input, this term includes
disturbance rejection.

Time domain analysis

By, for instance, simulating a sudden change (e.g. a step) in an external input and
looking at how the system responds, one can judge how the system might act in
that certain situation.

Frequency domain analysis

By, for instance, using a Bode plot of the system one can look at gain and phase
shift at all possible frequencies of external inputs, and thus judge how the system
might act in a wider range of situations.

2.2 Control theory
In this thesis, four different controllers were considered, explained briefly in this
section. These are all feedback controllers, i.e. they all generate a control signal u
to a system given the error e between the measured current system state y and the

7
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reference r, which is the desired system state, i.e. e = r− y. In general, an observer
is often used to get an estimate x̂ of the full system state x. In this thesis, however,
the signal y is considered being a direct measurement of the full system state x and,
thus, there is no observer.

2.2.1 PID controller
The PID controller is one of the most intuitive controller types. The control signal
u is computed by the equation

u = Ke = (P + I
1
s

+D
s

Tds+ 1)e, (2.1)

where P is the proportional gain, I is the integral gain, D is the derivative gain
and Td is the filter coefficient defining the low-pass filtering of e for the derivative
term [1]. This filter is crucial as the derivative might otherwise be high due to high
frequent measurement noise.

2.2.2 LQI controller
A Linear-Quadratic-Integral (LQI) controller is an extended form of the Linear-
Quadratic-Regulator (LQR) state-feedback controller, with the latter defining the
control law as

u = −Kx, (2.2)
where K is the optimal gain matrix [1]. To remove steady-state errors, LQR is
extended with integral action to form an LQI controller with state- and integral-
feedback

u = −Kz, (2.3)
where z is the state vector x extended with an integrated error state, i.e.

z =
[
x
1
s
e

]
. (2.4)

The theory in the rest of this section is shared by both LQR and LQI unless otherwise
stated. Given weighting matrices, Q and R, used for penalizing state and control
signal offset, and the parameter γlq (introduced by using Disturbance Rejection LQ
[7]), the optimal gain matrix K and the worst-case disturbance is found by solving
the min-max problem

min
u

max
d

J(u, d) (2.5)

where
J(u, d) =

∫ ∞
0

(
z(t)TQz(t) + u(t)TRu(t)− γ2

lqd(t)Td(t)
)
dt (2.6)

i.e. finding the minimizing control for the maximum disturbance d. The parameter
γlq determines how much the optimal gain matrix should be modified due to the
disturbance. A large value will lower the gains in K, so γlq has to be minimized if
extra control signal is wanted to compensate for disturbances.

8
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Solving the Modified Continuous time Algebraic Riccati Equation (MCARE) yields
the optimal solution to the problem according to [8]. The solution fulfills the saddle
point condition

(Best case control) J(u∗, d) ≤ J(u∗, d∗) ≤ J(u, d∗) (Worst-case disturbance).
(2.7)

The Riccati equation is

SAe + ATe S +Q− S(B2eR
−1BT

2e −
1
γ2
lq

B1eB
T
1e)S = 0 (2.8)

and from the solution, the minimizing control

u∗(t) = −R−1BT
2eSx(t) = −Kx(t) (2.9)

and the worst-case disturbance

d∗(t) = 1
γ2
lq

B1eSx(t) = Kdx(t) (2.10)

is found. Note that for LQI,

Ae =
[
A 0
−C 0

]
B1e =

[
B1
0

]
B2e =

[
B2
0

]
(2.11)

where A,C,B1, B2 are the standard state-space matrices (B1 - for disturbance, B2 -
for control signal). In the case of LQR, Ae = A, B1e = B1, B2e = B2.

To compensate for disturbances as well as possible, a minimization of γlq is per-
formed until the Riccati equation becomes unsolvable and the lowest possible γlq
can be chosen if robustness is to be prioritized. If the controller yields a too aggres-
sive control signal, one has to limit the minimization by stopping at a higher γlq,min.

2.2.3 H∞ controller
The H∞ controller is synthesized in a way that minimizes the infinity-norm of the
closed-loop gain from external inputs to external outputs. That means, it minimizes
the maximum gain for the closed-loop over all frequencies to find the lowest overall
gain γ that stabilizes the closed-loop. To do this, the plant should be included in a
generalized plant, as visualized in Figure 2.3. This can be done through the method
of Linear Fractional Transformation [9].

9
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External inputs Generalized plant External outputs

Error outputs

control signal u

measured state y

control error e

weighted disturbance

Plant

Wn

Wd

Wr

H
∞

 controller

e

u

noise n

disturbance d

reference r

Figure 2.3: Generalized plant setup for H∞ synthesis

The controller essentially minimizes the effect of the defined external inputs on the
defined external outputs and it specifically minimizes the defined error outputs w.r.t.
the infinity-norm. Without any tuning, the synthesized controller K in closed-loop
will have a low γ, and can thus be compensating for the external disturbances too
much, yielding an aggressive control signal. To achieve a less oscillatory behavior,
one must set a target γt > γ for the algorithm to stop at.

Since the synthesis method limits gain also on desired signals like the reference,
one should introduce weighted filters on the general input signals to improve it.
These filters should cover the critical frequency range for each input and raise their
gain if their effect on the general outputs is more important to minimize. Thus,
high gain is often used in Wd to remove disturbances quickly and low gain in Wr to
still follow references.

Given the generalized plant formulation with weighting filters, one can solve Linear
Matrix Inequalities to get a controller on Linear Time-Invariant (LTI) state-space
form which then can be turned into a transfer function for further analysis [10].
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Approach

In this chapter, the opening modeling section presents the linear models used and
their parametric uncertainties along with how they are adapted to fit their task
in this thesis. Further, the setup of the control problem is presented. The control
problem section also presents details about the involved controllers and the resulting
transfer functions to be analyzed.

With the models and control problem defined, the analysis method is presented.
In this section, evaluation metrics for robustness, performance, and stability are
defined. Further, the uncertainty and disturbance analysis methods are explained.

In the final section of this chapter, the method of automatic controller synthesis
is presented. This involves optimizing the different controller types for the desired
system behavior (in terms of evaluation metrics) in closed-loop with the aforemen-
tioned linear models.

3.1 Modeling
Having linear models of the truck was required to enable the use of linear analysis
and controller synthesis tools. These models are presented in Section 3.1.1 and 3.1.2
for the lateral and longitudinal cases respectively. Actuator dynamics and signal
delays are considered in Section 3.1.3. To emulate behavioral differences between
the linear model and the more complex non-linear Volvo truck model (VTM) (and
also in some sense to the real truck), the linear model was considered with some
uncertainties as presented in Section 3.1.4. The vehicle parameter values used for the
linear models were extracted from the VTM and are excluded due to confidentiality.
To conclude, the linear models were validated in simulation against the VTM in
Section 3.1.5.

3.1.1 Lateral model
Modeling the lateral behavior of the truck was done using a dynamic single track
model (DSTM), also known as a bicycle model. The concept of single track vehicle
modeling is common for lateral modeling and control design [1, 11]. The model
used here was derived in [12] using equations of motion, linearized for constant
longitudinal velocity, and assuming small articulation and tire slip angles. Two
models were used, one for the tractor only and one for the tractor with a semi-
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trailer. These are presented below, starting with the tractor-only model.

Tractor

The DSTM considering the tractor is visualized in Figure 3.1 with its state space
formulation presented in Eq. 3.1. The parameters used are presented in Table 3.1.
The states of the model are the lateral velocity vy and the yaw rate ψ̇. The model
takes as input the steering angle of the front wheels, δ.

Figure 3.1: Single track tractor model representation

Table 3.1: Lateral tractor model parameters

Mass m1 [kg]
Wheelbase l1 [m]
CoG distance to front axle a1 [m]
CoG distance to rear axle b1 [m]
Yaw of inertia Izz,1 [kg·m2]
Cornering stiffness front axle Cα,F [N·rad−1]
Cornering stiffness rear axle Cα,R [N·rad−1]
Rear axle to kingpin distance h1 [m]

[
v̇y
ψ̈

]
=
 −Cα,F+Cα,R

m1vx

b1Cα,R−a1Cα,F
m1vx

− vx
b1Cα,R−a1Cα,F

Izz,1vx
−a2

1Cα,F−b
2
1Cα,R

Izz,1vx

 [vy
ψ̇

]
+
 Cα,F

m1
a1Cα,F
Izz,1

 δ (3.1)

Tractor with semi-trailer

The DSTM considering the tractor with an attached trailer is visualized in Figure
3.2 with its state space formulation presented in Eq. 3.3. To make the state space
equations easier to read a few simplifications were made, as presented in Eq. 3.2.
The parameters used are found in Table 3.2. The states of the model are the lateral
velocity of the truck vy, the yaw rate of the truck ψ̇, the articulation angle rate ϕ̇,
and the articulation angle ϕ. The model takes as input the steering angle of the
front tractor wheels, δ.
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Figure 3.2: Single track tractor with trailer model representation

Table 3.2: Lateral tractor with semi-trailer model parameters

Tractor mass m1 [kg]
Tractor wheelbase l1 [m]
Tractor rear axle to kingpin distance h1 [m]
Tractor CoG distance to front axle a1 [m]
Tractor CoG distance to rear axle b1 [m]
Tractor yaw of inertia Izz,1 [kg·m2]
Tractor cornering stiffness front axle Cα,F [N·rad−1]
Tractor cornering stiffness rear axle Cα,R [N·rad−1]

Trailer mass m2 [kg]
Trailer rear axle to kingpin distance l2 [m]
Trailer CoG distance to kingpin a2 [m]
Trailer CoG distance to rear axle b2 [m]
Trailer yaw of inertia Izz,2 [kg·m2]
Trailer cornering stiffness rear axle Cα,T [N·rad−1]

C1 = Cα,F + Cα,R (3.2a)

Cs1 = a1Cα,F − b1Cα,R (3.2b)

Cq2
1 = a2

1Cα,F + b2
1Cα,R (3.2c)
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m1 +m2 −m2(h1 + a2) −m2a2 0
−m2h1 I1,zz +m2h1(h1 + a2) m2h1a2 0
−m2a2 I2,zz +m2a2(h1 + a2) I2,zz +m2a

2
2 0

0 0 0 1



v̇y
ψ̈
ϕ̈
ϕ̇

 = − 1
vx
×

×


C1 + Cα,T C1s1 − Cα,T (h1 + l2) + (m1 +m2)v2

x −Cα,T l2 −Cα,Tvx
C1s1 − Cα,Th1 C1q

2
1 + Cα,Th1(h1 + l1)−m2h1v

2
x Cα,Th1l2 Cα,Th1vx

−Cα,T l2 Cα,T l2(h1 + l2)−m2a2v
2
x Cα,T l

2
2 Cα,T l2vx

0 0 −vx 0

×

×


vy
ψ̇
ϕ̇
ϕ

+


Cα,F
a1Cα,T

0
0

 δ

(3.3)

3.1.2 Longitudinal model

Modeling the longitudinal behavior of the truck was done using the force balance
equation

mẍ = FT − FB − Fvdrag − Fwdrag − Fslope − Froad (3.4)

where FT is the engine torque force, FB the braking torque force, Fvdrag the vehicle
aerodynamic drag force, Fwdrag the opposing wind aerodynamic drag force, Fslope
the road slope force and Froad the road/rolling resistance force. These are visualized
in Figure 3.3 and defined as

FT = cpt
TT
rw

(3.5a)

FB = TB
rw

(3.5b)

Fdrag = 1
2ρcdAv

2
x (3.5c)

Fslope = mg sin θ (3.5d)

Froad = mgcr cos θ (3.5e)

where TT is the traction torque, TB is the brake torque and θ is the road slope angle.
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Figure 3.3: Longitudinal force balance model

using the parameters defined in Table 3.3. The powertrain coefficient was added to
cover non-modeled powertrain factors like e.g. gearing and was quantified to better
match the longitudinal behavior of the VTM.

Table 3.3: Longitudinal model parameters

Mass (tractor) m [kg]
Wheel radius rw [m]
Air density ρ [kg/m3]
Drag coefficient cd [ ]
Tractor front area A [m2]
Rolling resistance coefficient cr [ ]
Powertrain coefficient cpt [ ]

This model was linearized for small angles θ, around a constant vehicle velocity ẋ0
and a constant headwind velocity vw0 such that the state-space model became

[
ẍ
]

= − 1
m
Fvdrag

[
ẋ
]

+ 1
m

[
−mg −mgcr −1

2ρcdAvw0 cpt/rw −1/rw
]


θ
1− θ
vwind
TT
TB

 (3.6)

where the state ẋ is the longitudinal velocity of the truck.
As the model is quite simple in design, adding a semi-trailer to it was just a matter
of adding its mass such that m = m1 +m2 given the masses from Tables 3.1 and 3.2.

3.1.3 Actuator modeling and signal delay
Altering the steering angle of the front wheels cannot be done instantly, no matter i
it is done by a human or through an automated system, due to inertia. Likewise, the
engine and driveline torque is not instant. Thus, these actuator behaviors must be
modeled. For this thesis, it was assumed that steering actuation behaved like a first
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order system with a rise time assumed to be 0.3 seconds, with the rise time defined
as the time it takes for a system step response to go from 10% to 90% of its final
value. Included in the steering actuator rise time was also the force build-up time in
the tire contact patch occurring when changing the steering angle. Moreover, there
was a maximum steering angle δmax = 45◦ and steering angle rate δ̇max = 22.5◦/s
representing physical limitations on the vehicle in reality. These input limits should
not be exceeded while simulating the lateral models.

Similarly, for the longitudinal model, the powertrain and brake torque actuation
model was assumed to be first order systems rise times of 0.75 and 0.25 seconds
respectively. The longitudinal models also have input limitations, in the form of
maximum total wheel torques for acceleration and deceleration. These were ap-
proximated given a maximum vehicle acceleration amax = 3 m/s2 and deceleration
dmax = 8 m/s2 possible for the tractor at low velocities, such that

TTmax = amaxrwm = 10440 [Nm] (3.7a)

TBmax = dmaxrwm = 27840 [Nm] (3.7b)

Running the longitudinal model with a trailer decreased the approximated acceler-
ation such that amax = 2 m/s2.

Furthermore, there is a signal delay due to the controller area network (CAN) bus
used for signal transmissions between the onboard micro-controllers. In reality, this
introduces a varying dead time delay depending on the traffic and priority settings
on the bus. For this thesis, it was assumed to be a constant 0.05 seconds.

3.1.4 Model adaption and uncertainties

The parameters set for the models include some uncertainties, i.e. intervals in which
each parameter varies. This was necessary as some parameters tend to change dur-
ing a run or between runs and cannot be accurately measured. As an example, the
cornering stiffness coefficient of the wheels changes depending on both tire-specific
dynamics such as tire pressure and environmental factors such as temperature. Like-
wise, the rolling resistance coefficient can change 20% depending only on how worn
the tires are [13]. This coefficient depends also on additional environmental fac-
tors. Including uncertain parameters ranges in a model result in a range of model
responses given a certain input.

The uncertainty range for each type of parameter regarding the lateral and lon-
gitudinal models were assumed to be the values presented in Table 3.4.
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Table 3.4: Linear model parameter uncertainty ranges

Mass ± 5%
Cornering stiffness ± 20%
Yaw inertia ± 5%
CoG position ± 0.1m
Air density ± 10%
Drag coefficient ± 5%
Rolling resistance coefficient ± 30%

Uncertainties can also be included in models to create a requested model response
range. In this case, it was desired that the model response should exhibit similar
behavior to the VTM. As such, some uncertain parameters were added and quanti-
fied to meet this criteria. These parameters and their respective uncertainty ranges
are presented in Table 3.5.

Table 3.5: Model adaptation parameters

Powertrain coefficient cpt 0.8 ± 20%
Brake system coefficient cbs 0.95 ± 20%
Lateral tractor model state uncertainty udLat,1 1 ± 10%
Lateral tractor semi-trailer model state uncertainty udLat,2 1 ± 30%

While these parameter additions did add some accuracy to the model behavior
compared to the VTM, the model outputs were found through open-loop simulation
to still be offset in comparison. To counteract this, the state space outputs were
manually scaled according to

ytrac = udlat,1

[
0.65 0

0 1

] [
vy
ψ̇

]
(3.8)

for the lateral tractor model and

yst = udlat,2


1.2 0 0 0
0 1.2 0 0
0 0 1.1 0
0 0 0 1.1



vy
ψ̇
ϕ̇
ϕ

 (3.9)

for the lateral semi-trailer model.

The actuator delays mentioned in 3.1.3 have an uncertainty aspect as well. The
powertrain actuation varies with the current engine and turbo rpm, selected gear,
etc. For these reasons, the delays were given the uncertainties presented in Table 3.6.

Table 3.6: Actuator rise time uncertainty

Steering actuation 0.3s ± 10%
Powertrain torque actuation 0.75s ± 50%
Brake torque actuation 0.25s ± 10%
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3.1.5 Model validation
The models presented in this section were to be used for controller synthesis and
subsequent analysis of the resulting closed-loop system, to be able to conclude how
a more complex model or the real system would behave. Thus, the models needed
to have similar behavior. To validate this, the lateral and longitudinal models were
compared to the VTM by simulating them in open-loop with the same constant
input. The simulated steering and torque input values presented in each figure cap-
tion were chosen not too aggressively as the models were derived and linearized for
small angles.

The lateral tractor model was simulated at velocities vx = 5m/s and vx = 10m/s,
visualized in Figure 3.4. The linear model response bounds represent the maximum
and minimum responses given any uncertain parameter combination. As the figure
shows, the range of the responses covers the VTM behavior. At higher velocity, the
uncertain model response gave a larger interval as the model dynamics, and subse-
quently its uncertainties, were scaled by the longitudinal velocity vx. Moreover, the
lateral velocity state of the VTM in Figure 3.4b seemed to involve more aggressive
dynamics than the linear model dynamics. The assumption that the two models
have similar behavior, given the uncertainty range simulation and comparison, is
not completely straightforward. Hence, this is further discussed in Section 4.
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Figure 3.4: Validation of the tractor lateral model using the VTM at two
different velocities

In Figures 3.5 and 3.6 the lateral tractor with semi-trailer was simulated for vx = 5
m/s and vx = 10 m/s respectively. In Figure 3.5 the linear model responses covers
the VTM simulation quite well, although the articulation rate is slightly outside of
the bounds. For the higher longitudinal velocity in Figure 3.6, it does not perform
as well. The articulation angle and rate behavior are not fully covered.
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Figure 3.5: Validation of the tractor with semi-trailer lateral model using the
VTM at vx = 5m/s with a step steering input of 0.2 rad
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Figure 3.6: Validation of the tractor with semi-trailer lateral model using the
VTM at vx = 10m/s with a step steering input of 0.05 rad

The result from validating the velocity behavior of the longitudinal tractor model
against the VTM is presented in Figure 3.7. This was done for two cases. For the
first case, the model accelerated from stationary to 5 m/s with a low torque input.
In the second case, the model accelerated from stationary to 10 m/s with a higher
torque input. In both simulations, the models were subjected to an initial step input
which was then decreased to end up in a steady state. Note that the linear model
velocity does not keep increasing much further than the figure shows, however this
was excluded to more clearly present the behavior of the first 10 seconds. It was
clear from both simulations that the linear model behavior encapsulated the VTM
behavior but had a slightly higher steady-state velocity given the same input torque,
as the linear model velocity keeps increasing slightly while the VTM velocity did not.
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Figure 3.7: Velocity behavior validation of the tractor longitudinal model using
the VTM

The braking behavior simulations for the tractor are presented in Figure 3.8. In
these simulations, the tractor started at different initial states and was decelerated
to stationary given different brake input torque. In the first case, Figure 3.8a, the
VTM had a quicker response to the brake input than the linear model. In the second
case, Figure 3.8b, the VTM response was better encapsulated within the possible
DSTM response. However, the VTM displayed a momentary reversing behavior
after braking to 0 m/s.
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Figure 3.8: Deceleration behavior validation of the tractor longitudinal model
using the VTM
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Simulating the longitudinal tractor with trailer models for acceleration and braking
situations resulted in very similar results to the tractor only simulation. Thus,
figures displaying these were considered redundant and are not presented here.

3.2 Control problem

The control problem was to assure that certain state variables of the plant model
should follow a reference under the influence of process uncertainty, disturbance, de-
lays, and noise. The closed-loop system should also be stable. The controller types
introduced in Section 2.2 are the ones chosen suitable for the task in this thesis.

The PID controller does not provide any inherent robustness guarantees but was
used to enable quicker development through faster script runtime as well as being
an intuitive comparison to the other controller types. The LQI has a robustness
guarantee that is

||Syd||∞ ≤ γlq, (3.10)

i.e. the peak gain from disturbance to the measured state is upper bounded by γlq.
The H∞ controller has one that is

||N ||∞ ≤ γ (3.11)

where N is the generalized plant introduced in Section 2.2.3. In that way, the peak
gain of all external inputs to external outputs are guaranteed to be below γ.

3.2.1 General system

To perform analysis given any kind of plant model or any of the controller types
specified earlier, a general system architecture was designed which can be seen in
Figure 3.9.

In this figure, the superscript ~ denotes signals before being delayed. The sys-
tem has three external inputs, disturbance, noise, and reference. The full state
y =

[
ync yc

]
(where ync are the non-controlled system variables, yc is the controlled

system variable) are assumed measurable and can thus be seen as an external output
of the system.
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Figure 3.9: General closed-loop system

By using this architecture, one can simply change any part of the system when
needed (e.g. controller K, feed-forward term Kr, delay d1 or transfer function from
u → y, Pu), and if some parts are not needed, they can be set to zero or one de-
pending on whether it is a gain (K/P ), or a delay (d). Using this architecture, a
PID or H∞ controller can be implemented through K and an LQI through KLQ. If
needed, a feed-forward term can be implemented through Kr.

For the case of PID or H∞ control, any controlled system variable yc, its respec-
tive control signal u, and any non-controlled system variable ync, have the following
closed-loop equations

yc = P̂n

I +DP̂uK
n+ P̂d

I +DP̂uK
d+ DP̂u(K +Kr)

I +DP̂uK
r (3.12)

u = − DP̂nK

I +DP̂uK
n− DP̂dK

I +DP̂uK
d+ D(K +Kr)

I +DP̂uK
r (3.13)

ync = P̃nn+ P̃dd+DP̃u(K +Kr)r −DP̃uKyc (3.14)
D = d1d2 (3.15)

where d1 is the CAN delay and d2 is the actuator delay, D is the combined delay,
P̂ means transfer from (d/n/u) to the controlled system variable, P̃ to the non-
controlled system variables.

If one were to use pure dead time (e−τs) as CAN delay then most of the trans-
fer functions would not be rational and thus complicate analysis so a comparison
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was done between Padé approximations of different orders and pure dead time. It
can be seen in Figure 3.10.

Figure 3.10: Padé approximation of different orders compared to pure dead time.

The approximation of second order was deemed good enough without introducing
too many higher-order terms. Thus the CAN delay was given by

d1 = e−τs ≈
τ2

12s
2 − τ

2s+ 1
τ2

12s
2 + τ

2s+ 1
, (3.16)

where τ is the dead time in seconds.

When using LQI control the closed-loop equations change slightly due to full state
feedback. The controlled system variable equation used was

yc = P̂n

I +DP̂u(KLQy −KLQi
1
s
)
n+ P̂d

I +DP̂u(KLQy −KLQi
1
s
)
d + (3.17)

+
DP̂u(Kr −KLQi

1
s
)

I +DP̂u(KLQy −KLQi
1
s
)
r −

DP̃uKLQy

I +DP̂u(KLQy −KLQi
1
s
)
ync , (3.18)

the control signal equation used was

u =
(KLQi

1
s
−KLQy)P̂n −KLQy P̃n

I +D(KLQy P̃u − (KLQi
1
s
−KLQy)P̂u)

n+ (3.19)

+
(KLQi

1
s
−KLQy)P̂d −KLQy P̃d

I +D(KLQy P̃u − (KLQi
1
s
−KLQy)P̂u)

d + (3.20)

+
D(Kr −KLQi

1
s
)

I +D(KLQy P̃u − (KLQi
1
s
−KLQy)P̂u)

r , (3.21)
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and for the non-controlled system variables

ync = P̃n

I +DP̃uKLQy

n+ P̃d

I +DP̃uKLQy

d +

+
DP̃u(Kr −KLQi

1
s
)

I +DP̃uKLQy

r +
DP̂u(KLQi

1
s
−KLQy)

I +DP̃uKLQy

yc ,

(3.22)

where KLQy is the LQ gain of the system state and KLQi is the LQ gain of the
integral state. In Figure 3.9, KLQ =

[
KLQy KLQi

]
.

3.2.2 Controller parametric design

The PID controllers were designed in the way, described in Section 2.2.1, with the
filter coefficient being set between 10−3 and 103, so a PID controller used four pa-
rameters in total.

For LQI control, the first parameter used was the cost for the controlled state vari-
able offset, the second was the cost for integral error offset, the third was the cost
for control signal offset and finally the fourth was used to decide whether or not to
enable feedforward control. Thus, the fourth parameter was defined in the range
p4 ∈ [0, 1], where p4 > 0.5 enables feedforward control. As for LQR control, only
the cost for controlled state variable offset and the cost for control signal offset was
used since feedforward needs to be activated, making it two parameters in total. All
costs for non controlled state variable offset were set to zero.

There is some freedom in designing an H∞ controller. The design that was used in
this work uses three weighting filters (also termed preshaping filters); a lowpass-filter
for disturbances, a highpass-filter for measurement noise, and a bandstop-filter for
reference signals. The use of the filters is shown in Section 2.2.3. A typical setup of
filters can be seen in Figure 3.11.

Since the effect of disturbances and noise are of the highest importance to remove,
their gains are higher than the reference filter. By using an LP- and HP-filter with
cutoff frequencies far away from each other, the controller could more easily discern
and remove each perturbation. By using a bandstop-filter for references, the fre-
quency range of normal operation could be defined, and thus references were not
dampened but instead followed. This setup led to an H∞ controller with 7 pa-
rameters in total, consisting of gain and cutoff frequency for each filter, where the
bandstop filter had two cutoff frequencies.
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Figure 3.11: H∞ controller: design of typical preshaping filters

3.3 Analytical methods
To perform analysis of a plant in closed-loop with a controller, analytical methods
were investigated and chosen. The metrics (marked in italic) gained by the analysis
are further on used to evaluate closed-loop systems and to optimize controllers. They
are described in this section and visualized in Appendix A.

3.3.1 Stability analysis
To ensure a stable system, if the open-loop transfer function is stable, one can use
the simplified Nyquist criterion by looking at the Nyquist plot of the open-loop
transfer function (L = PC, where P is the plant and C the controller). If it crosses
the negative real axis to the right of the critical point (-1, j0), the system is stable,
and the greater the minimal distance to this point is, the more stable the system
is [1]. This is due to that the closed-loop system will have (1 + L) in its transfer
function denominator and if L would be close or equal to -1, the system gain will go
towards infinity. Thus, the metric minimal Nyquist distance was used as a measure
of stability.

A generalized stability margin, used with uncertain systems in robust control is
that of

‖H(P,C)‖∞ = 1
δv(P,−1/C) (3.23)

where H(P,C) is the Gang of Four (GoF) matrix, consisting of the four transfer
functions from the general inputs disturbance and noise to the controlled output
variable and the control signal, i.e. Syd, Syn, Sud, and Sun. The term δv(P,−1/C) is
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the Vinnicombe distance between P and −1/C [14]. What follows from this margin
is that a sample P ∗ from an uncertain system P is stable if

δv(P0, P
∗) < 1

‖H(P0, C)‖∞
(3.24)

where P0 is the nominal system. Thus, the metric for robust stability used in opti-
mization was to maximize the right side of the inequality, i.e. lowering the effects
of disturbance and noise onto the system output and the control signal [1].

3.3.2 Performance & Robustness analysis
In a sense, the performance and robustness of the system are intertwined. A system
with high robustness, i.e. with low system gains, will usually take a long time to
reach a reference. A system that has high gains will react strongly to reference
change, i.e. possibly have good performance, but might also react unwanted to per-
turbations such as sensor noise or external disturbances. Thus, they are described
in the same section.

The performance and robustness of the system were analyzed in both time and
frequency domain: in the time domain by simulating the system response to a refer-
ence, and in the frequency domain by calculating the Bode plot, which corresponds
to the gain and phase curve of the transfer function. Both a time and frequency
specification was created. The time specification should define acceptable or safe
system behavior. The frequency specification, explained in more detail later on, is
created from the time specification and thus, they are coupled. System responses
going outside specification in either domain could then be regarded as having bad
performance and/or robustness.

To analyze the system in the two aforementioned domains, meaningful metrics had
to be chosen and defined. In the time domain, the important metrics from simula-
tion were deemed to be the following. The reference oscillation of the system was
calculated as the sum of the derivatives of the controlled state. A low value was
often seen in robust systems. Reference reaction time was taken as the time from a
given reference change until the reference has been achieved within 1%. The shorter
the time, the better the performance. The reference overshoot was calculated as
the highest point of the controlled system variable response divided by the reference
amplitude. A low value was often preferred but if reaction time was important,
then that may introduce more overshoot. Lastly, the Non-controlled system variable
response was simulated and the point of interest was to see if it could be minimized
by the controller without feedback of the signal.

In the frequency domain, reference performance was calculated as the mean distance
between the frequency response of the system and the upper limit of the frequency
specification. Reference robustness was calculated as the mean distance between the
frequency response of the system and the lower limit of the frequency specification.
Thus, these two metrics indicate high and low gain systems respectively and opti-
mizing by them was shown to be more beneficial than using time domain metrics.
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The time domain performance metric were defined as the mean distance between
the system response and the reference and as robustness metric to the lower limit of
the time specification. The robustness metric difference can be seen in Figure 3.12,
where both solutions were tuned to find the most robust solution with Tuning 1
optimized in the frequency domain and Tuning 2 in the time domain. A slower time
response did not correspond to a low gain system.
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Figure 3.12: Frequency domain metric compared to time domain metric

The bandwidth of the system is defined as the frequency where the frequency response
falls below -3dB. Thus, frequencies below the bandwidth transfer most of the energy
of the signal. This can be used e.g. for Syr, where a high bandwidth might be wanted,
to be able to also follow high frequency reference signals, improving performance.
Since there are delays in the system, the phase shift was calculated and the integral
of it over the relevant frequency range was used as a metric to minimize. Less
phase shift yields a more robust system and allows for higher performance w.r.t.
the specification since more time was allowed for disturbance rejection and higher
gains can be used without violating the specification.

3.3.3 Disturbance analysis
To avoid disturbances affecting the system beyond acceptable behavior, one has to
look into how they influence it. In the time domain, disturbances were analyzed by
applying a step disturbance and evaluating the controlled system variable response.
There was also a time domain disturbance specification created to define the max-
imum level of impact that noise and disturbance can have on the system. The
following metrics for disturbance analysis were defined. Disturbance reaction time
was defined from the time a disturbance affects the system until it has been rejected
to 10% of its maximal amplitude. A low value was desired but does not take into
account that the disturbance might still be of large amplitude. Thus, disturbance
robustness was calculated as the mean distance between the system response of the
controlled system variable to a disturbance and its undisturbed level. A low value
means that the system was barely affected by the disturbance.
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In the frequency domain, looking at the Bode plot of the system, one can look
at the critical gain at the critical frequency, and thus decide at which input fre-
quency the system was excited the most. If disturbances are known to exist within
a certain frequency range, finding systems where the critical frequency was outside
of this range, was then considered positive. If disturbances have large magnitude,
the critical gain needs to be low so that the system remains safe.

3.3.4 Uncertainty analysis

A system with an uncertain parameter gives a range of responses. To find this
range, one would have to simulate the system for a fine resolution of the uncertain
parameter. This would take a large amount of time and was not convenient. The
models presented in Section 3.1 involves multiple uncertain parameters. Each added
uncertain parameter then increase the simulation time exponentially. To find the
response range of such a system, a method which gave a good approximation in a
short enough runtime had to be derived. The three different methods, presented
in Figure 3.13, were investigated. For this exemplifying figure, nine samples of two
parameters are done.

Random LHS Grid

Figure 3.13: Different sampling methods tested for uncertainty sampling

Random sampling will sample fully randomly and might thus lead to an unevenly
spaced distribution which will not be a close approximation of the response extremes,
i.e. the actual response bounds. A semi-random approach is Latin Hypercube Sam-
pling (LHS)[15]. It will make the distribution a bit more even by allowing only a
certain number of samples in each dimension. A third approach tested was grid
sampling which is done by evenly spacing the samples across the sampling space.

In Figure 3.14a, a comparison between different uncertainty sampling methods was
performed for an arbitrary system. A total of 3125 samples were taken (5 different
values for 5 parameters). LHS only differed around 0.01% from the random sam-
pling, thus they yield approximately the same solution. However, the Grid sampling
differed 0.5% from the random sampling. The random sampling took 28 seconds
while Grid and LHS took 44 seconds. Since the time difference was acceptable, Grid
sampling was thus chosen as the method for system uncertainty approximation as
it yielded the highest variance of system responses.
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Figure 3.14: Uncertainty sampling method and runtime comparison

In Figure 3.14b, a comparison between running MATLAB function usample (ran-
dom sampling) for a different amount of samples were performed. The runtime for
each test is shown in Table 3.7, and by looking at the figure it was decided that a
low number of samples (∼ 100) was good as a quick approximation of uncertainties
and that a longer run at around 104 samples does not differ much from the longest
run, and was thus a good amount to use as a final sampling result.

Table 3.7: Uncertainty sampling test runtime

Color Nr. of samples Runtime [s]
Black 102 100

Red 103 101

Green 104 102

Cyan 106 104

A typical result of how sampled uncertain system responses can look like what is
shown in Figure 3.15.
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Figure 3.15: Example of uncertainty sampling

The curve in the center of the system response is the nominal system’s response and
the outer curves are the step-wise minimal and maximal sampled uncertain system
responses.

Lastly, two metrics are measuring the sum of percentual uncertainty relative to the
nominal system for reference following as well as disturbance rejection. For reference
following, it is calculated in both time and frequency domain, and for disturbance
rejection only in the time domain. They are denoted as reference uncertainty and
disturbance uncertainty and are aimed to be minimized.
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3.4 Method
A method was created that should perform the analysis of a controller-plant combi-
nation and evaluate the behavior of the general system introduced in Section 3.2.1.
A flowchart of its process can be seen in Figure 3.16. There are two use cases marked
by the gray boxes.

Figure 3.16: Method overview

For the bottom case, given a controller, the method can be used to evaluate its
metrics in closed-loop with the plant and determine system behavior. For the top
case, given the desired controller type, the method can be used to synthesize a con-
troller according to the parametric design described in Section 3.2.2, and optimize
it towards fulfilling a certain specification or wanted behavior.

The top case will be explained more in detail, as the bottom case can be con-
sidered a sub-case of it. In Section 3.4.1 the inputs to the method are defined in
Parameters, in Section 3.4.2 the Pre-optimization step is explained in more de-
tail and in Section 3.4.3 the process of the Optimization step is described.

3.4.1 Parameters
The inputs to the method were defined in Parameters. These were

• Parameters
– Truck parameters (with uncertainties)
– Delays, disturbance, noise
– Control signal limitations
– Frequency ranges of interest
– Controller parameter range
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• Plant model (linear state space)
– Uncertain plant with disturbances, noise.

• Controller type (from the ones mentioned in Section 2.2)
• Time domain specification
• Reference signal
• Plot & optimization options

where the delays; signal dead time and actuator delay, are defined as in Section 3.1.3.
The disturbance was defined as the amplitude of a disturbance step and the noise
was defined by frequency and amplitude. Control signal limitations was defined by
maximum and minimum input to the system and also the maximal input rate. The
frequency range of interest was defined for each general input to the system (distur-
bance, noise, and reference) and was used to perform certain frequency analyses in
that range instead of the full range.

The controller parameter range defines the lower and upper limit of each controller
parameter for use in the optimizer. Time domain specification and reference signal
were generated from the metrics rise time, steady-state time, transient region error,
and steady-state error based on a generic first-order response but can also be chosen
manually. To compensate for the Padé approximation introduced in Section 3.2.1,
the specification allows for early negative responses. Typical model inputs used can
be found in Section 3.1. In Figure 3.17 an example of a time domain specification
is shown.
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Figure 3.17: Generation of time domain specification

3.4.2 Pre-optimization
Initial parameter search & Parameter range estimation

Since some solvers require an initial guess and since it can be useful to quickly get
a controller design for a quick test, this step of the method finds a controller for
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which closed-loop behavior stays within the time domain specification. A stochastic
optimization algorithm called Particle Swarm Optimization (PSO) [16] was used for
this task. The algorithm initializes particle positions and velocities randomly in the
parameter space, and then each particle is evaluated according to a user-defined
objective function. The best particle in the swarm is known to the other so that
they can converge towards that solution, but there is also a factor of exploration.

Thus, the resulting solutions are stochastic, which often causes long runtime, but the
method can handle non-smooth functions quite well. Since some sets of controller
parameters produce unacceptable closed-loop behavior according to a certain speci-
fication, they are penalized by functions with non-smooth elements. Thus, PSO was
shown to be useful as it could find acceptable initial parameters quickly (< 1 min.),
with the objective function of finding a system response in the center of the time
specification.

Further, there was an attempt to narrow the controller parameter ranges defined
as input to the method, which would narrow the search-space for optimization and
thus maybe improve results and shorten the runtime of the method. This was im-
plemented by a function first attempting to maximize the control signal, followed
by attempting to minimize the control signal while still staying inside of the time
specification, saving the minimum and maximum of each controller parameter to
find a new parameter range. This function is evaluated in the next section.

Frequency domain specification

To perform analysis also in the frequency domain a specification had to be created.
This specification was not very intuitive to specify manually. Thus, a method for
translating a time domain specification into the frequency domain was used [17].
Following is the implementation of this method used in this thesis; Given a time do-
main specification of how the closed-loop system should behave, the plant model to
investigate, and a controller, the closed-loop behavior was simulated. If the behavior
was inside the specification, the frequency response of the same closed-loop system
was approved in the frequency domain. By iterating this process, i.e. by letting
the function try different controller parameters to find a greater range of frequency
responses, an approximate specification could be constructed.

Two different ways of choosing controller parameters were investigated, grid sam-
pling (introduced in Section 3.3.4), and a PSO solution. It was also investigated
whether the parameter range estimation should be used or not. All four ways were
tested for 60 seconds and in Figure 3.18 the time domain responses for each of those
methods are shown. In Figure 3.19 the frequency specifications are shown. In the
time domain, the green curves are the specifications and the blue curves are system
responses.
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Figure 3.18: Comparison of time domain responses from creating frequency
specifications using different solutions
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Figure 3.19: Comparison of frequency specifications created using different
solutions
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As the runtime was short, the resolution of the grid had to be low (exponential
runtime growth), hence solutions produced by the grid solution were more narrow
than the system responses of the PSO-generated solutions. Using parameter range
estimation tends to skip the system responses which have the highest overshoot. The
grid solution lacks most of the slower system responses, which have lower gains as
can be seen in Figure 3.19 as well. Those responses are crucial if the goal is to find a
controller making the system robust. Thus, the PSO solution with parameter range
estimation was chosen as the method for generating the frequency specification.

As the PSO solution is stochastic, a longer runtime should yield a better result,
i.e. a wider frequency specification (larger solution-space). In Figure 3.20, a com-
parison was made between a 1-minute run and a 20-minute run. By looking at
Figure 3.20b, where the long run specification is marked in red, it was clear that the
shorter run produced a decent result since the area with most frequency content was
still captured. The green curves are the specifications and blue curves are system
responses in both time and frequency domain.

0 2 4 6 8 10 12 14 16

time [s]

-1

0

1

2

3

4

5

6

7

a
m

p
lit

u
d

e

time domain

(a) Short run, time domain

100 101

frequency [rad/s]

-60

-50

-40

-30

-20

-10

0

g
a
in

 [
d
B

]

frequency domain

(b) Short run, frequency domain (long
run marked in red)

(c) Long run, time domain (d) Long run, frequency domain

Figure 3.20: Comparison of frequency specification created by PSO with a 1
minute runtime compared to a 20 minute runtime
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There was an attempt to create a frequency specification also for the disturbance
rejection, but the frequency responses of the different plant, controller combinations
were poorly correlated to their behavior in the time domain, resulting in that the
specification could not be used. An illustration of that can be seen in Figure 3.21,
where the corresponding 5 responses in time and frequency domain have the same
color.
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Figure 3.21: Disturbance frequency specification

The pink and red solution had similar time behavior but quite different frequency
responses. Red and black had a similar frequency response but very different time
behavior. For disturbance rejection, one can argue that the blue and pink solutions
were both good solutions in the time domain but they differed greatly in the fre-
quency domain. No correlation was found and thus, disturbance rejection was only
analyzed in the time domain.

In Figure 3.22 it is shown that each controller type produced a unique frequency
specification for a certain plant model. Thus, when comparisons were made between
different controller types involving frequency specifications in the results section of
the thesis, the combined maximum and minimum of each specification were used
when plotting results. This means that a solution might not look optimal according
to the shown specification, but one should have in mind that the different solutions
are restricted by their respective specifications.
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Figure 3.22: Frequency specifications for different controller types

3.4.3 Controller optimization
The method outputs a controller optimized to stay inside the given specification and
minimize chosen Evaluation metrics, most of which are described in more detail
in Section 3.3. Reference metrics are calculated from Syr and disturbance metrics
from Syd. Metrics marked with a ∗ were inversed to be maximized. The evaluation
metrics used in the time domain are

• Reference oscillation
• Reference overshoot
• Reference reaction time
• Disturbance reaction time
• Disturbance robustness
• Disturbance uncertainty
• Non-controlled system variable response

and the evaluation metrics used in the frequency domain are
• Reference performance
• Reference robustness
• Critical gain
• Critical frequency
• Bandwidth
• ∗Minimal Nyquist distance
• Phase shift
• ∗Robust stability

and in both time and frequency domain, Reference uncertainty.
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The objective function of the controller optimization was defined as

min
x

(
(pu(em(x)2W (pyct + pycf + pdt + pynct))

)
(3.25)

where x is the controller parameters, em(·) is the function evaluating the closed-
loop metrics described above and W is a weighting vector used for choosing what
to optimize for. Of most importance, the score was raised by a scale of how much
the control signal exceeded its max value or max rate (pu). Further, it was de-
signed so that one can also choose to penalize violation of any of the following four
specifications.

• Controlled system variable time specification - pyct
• Controlled system variable frequency specification - pycf
• Disturbance time specification - pdt
• Non-controlled system variable time specification - pynct

and their values were based on a scale of the max distance that the system response
went outside of respective specification.

Finding the minimum of the objective function (Eq. 3.25) is not a simple task
for a solver. It is non-linear due to that a set of controller parameters are not
mapping linearly to all the different evaluation metrics and partly non-smooth due
to penalization of breaching specification. Thus, different solvers were tested. Ini-
tially, the non-linear solver fmincon[18] from the MATLAB Optimization toolbox
was used, but it is designed for problems with both continuous objective functions
and continuous first derivatives, thus only working in a subset of the optimization
problem, often getting stuck in local minima.

To solve this, the PSO solution was tested, which improved the solution but raised
the needed runtime much due to the introduced stochasticity. A third solver, in-
cluded in the MATLAB Global Optimization toolbox, surrogateopt[19] was tested,
and shown to perform better. This solver allow non-smooth objective functions and
tries to find the global minimum with some exploration, yet yielding results with low
stochasticity. It also proved to be quicker than the other two optimization methods
since it uses a surrogate function which approximates the objective function while
running. The actual objective function is also evaluated recursively in the algorithm
to guide the optimization.

A difference could be seen when doing a quick optimization of an H∞ controller
towards good disturbance rejection. All solvers quickly approximated a good so-
lution to follow the reference within the specification which can be seen in Figure
3.23a. However, regarding the disturbance rejection, a slight shift in certain param-
eters could produce very different results, as can be seen in Figure 3.23b.
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Figure 3.23: Solvers yielding differing results

Unlike the two other solvers, fmincon required an initial starting point. The start-
ing point used was the initial guess calculated as described in Section 3.4.2. The
resulting solution was very close to the initial guess, thus stuck in a local minimum,
it was good for reference following but less good at disturbance rejection. The PSO
solution needed a longer time to converge to a good result for reference following
and showed very stochastic results for disturbance rejection. The surrogateopt
solver yielded a good result here.

The following procedure was executed when optimizing a controller:

Approximate optimization

Initially, an uncertainty grid with a minimum of 2 levels was used, i.e., the min-
imal and maximal value of each uncertain parameter. Then, 20 iterations of the
objective function were evaluated to find a system response that acts approximately
like, or converging towards the wanted behavior. In each iteration of the objective
function, uncertainties were being sampled. The controller parameters yielding the
best closed-loop system were saved.

Approximate uncertainties

The best system from the last step was used as the nominal system when sampling
approximate uncertainties. The grid level was decided by the maximum level that
generates up to 3000 samples. The step-wise minimal and maximal response in both
time and frequency domain were saved and also converted to percentual uncertainties
relative to the nominal system.
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Nominal optimization

Since uncertainty calculation was the most time demanding part of the method
(>90% of runtime), the percentual uncertainties calculated in the previous step
were used as a fixed margin of uncertainty when evaluating the objective function
in this step, which sped up optimization much. Hence, only the nominal system re-
sponse had to be calculated and the range of system responses was calculated using
the fixed percentual margin step-wise multiplied with the nominal system response.
The objective function was evaluated for 200 iterations.

A downside to calculating the percentual margin was when the system response
crosses zero several times. This can happen when for instance the reference was si-
nusoidal. Without fixing the problem, the uncertainty will take on very high values
due to the denominator (nominal system response) closing in on zero. The problem
was not fixed, and thus one of the case studies of the results, Single Lane Change
(SLC), had to be run for only the Approximate optimization step, but with 200
iterations instead of 20.

Uncertainty calculation

After nominal optimization was done, the best system from the last step was used
as the nominal system, and uncertainties were sampled again, but now with at max
20,000 samples. This number was decided from the decision taken in Section 3.3.4
with an extra margin of factor two. Responses in time and frequency domain were
saved again, and also converted to percentual uncertainties.

(Re-optimization)

The solution from Nominal Optimization with the more accurate uncertainties
was now checked to see if it lies within specifications. If not, it was re-optimized
once, for 100 iterations. The resulting system was mostly within specification, for
the cases where it is not, a recursive solution might have to be investigated.
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Worst-case gain verification

Lastly, the worst-case gain of the system was calculated as a way of verifying the cor-
rectness of the sampled uncertainty. The worst-case gain at a particular frequency
was calculated with MATLAB Robust Toolbox function wcgain, which computes
the structured singular value µ [20]. The worst-case gain is supposed to be the
highest gain possible given an uncertain system, and thus a warning was stated if
the sampled uncertainty has higher gain than the worst-case gain.

A downside to wcgain was that it only calculates the worst-case gains at often
around 20 frequency points, so in some cases, the sampled uncertainty has gain
peaks between two frequency points, and those peaks are thus not verified. An
example of the verification can be seen in Figure 3.24.
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4
Results & Discussion

To evaluate the method of closed-loop system analysis, controller optimization as
well as the similarities between the linear and non-linear models, four case studies
were conducted and are presented in this chapter. In the first case, optimization
for lowering the frequency range of the control signal is performed. In the second
one, LQI control is compared to LQR control. In the third, optimization for dis-
turbance rejection in both time and frequency domain is performed. Finally, in the
fourth study a single lane change situation optimized for four different evaluation
metrics. Further, the results are discussed with regards to methodology, modeling,
and controller choice. Finally, the research questions are discussed.
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4.1 Case study: Optimization for lower bandwidth

By lowering the bandwidth of the transfer functions from the external inputs distur-
bance, noise, and consequently reference, to the controlled state and control signal,
the system should get less excited at higher frequencies. Testing that had been
done on the real vehicle showed that inputs over a certain frequency tended to cause
oscillatory behavior in the system. Thus, optimization for lowering the bandwidth
was implemented. In Figure 4.1, results of this optimization is illustrated and the
effect on the control signal especially investigated.
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Figure 4.1: Bode magnitude plots of Sud, Sun, Sur

The PID solution from the initial parameter search was used as a reference solution
as a non-optimized comparison. In comparison to the reference solution, all four
controllers yielded a closed-loop system with lower bandwidth. The PID and LQR
solution still had quite high bandwidth from reference inputs. The LQI and H∞
solutions had similar bandwidth for such inputs but LQI dampened high-frequency
inputs even more. Similarly, for disturbance and measurement noise inputs, the PID
and LQR solution still had higher bandwidth than the other two. The H∞ solution
had the lowest bandwidth as well as a lower gain than the LQI in the mid-range of
frequencies, but a higher gain at high frequencies.
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4.2 Case study: LQI/LQR control
Due to the system architecture, which was explained in Chapters 1 & 2 and visualized
in Figure 2.1, a vehicle controller with integral action was not necessarily needed.
The reason for this is that the Driver acts as an outer loop integrating controller.
Thus, the LQR was included for analysis in the thesis. Since the LQR and LQI
controllers are based on the same theory, it could be interesting to see what difference
there would be between these in optimization. Thus, they are compared in Figure
4.2, tuned for two different metrics, and evaluated both by the linear lateral tractor
model and the VTM.
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Figure 4.2: LQI and LQR optimization comparison, time domain

Since the LQR has no integral action, it has a quite uncertain reference following and
poor steady-state performance. In this test, the uncertainties are actually almost
as large as what fits inside the specification. Thus, it is better to use LQI if less
uncertain reference following and steady-state performance are of the essence. In
Figure 4.3 the frequency domain of Syr for each solution is shown.
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Figure 4.3: LQI and LQR optimization comparison, frequency domain
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Since the frequency specifications are combined, it might look like the LQR can find
other solutions but its frequency specification was much narrower, almost as narrow
as its uncertainties (see Figure 3.22 for general reference). The peak in Figure 4.3a
corresponds to the slightly quicker response in the time domain. Further, the more
dampened frequency response in Figure 4.3b leads to the slower time response in
the time domain.

4.3 Case study: Disturbance rejection

For disturbance rejection of a general disturbance step, robust stability optimization
was compared to disturbance robustness optimization. The metric robust stability
measures peak gain of the GoF bode plots and disturbance robustness measures the
mean distance between the system response and the wanted behavior (the line at
zero) in the time domain. The results of optimizing for the two metrics and simu-
lating the resulting controllers with the linear longitudinal model (Eq. 3.6) is shown
in Figure 4.4. For this test, with the linear longitudinal model, the LQI controller
was used. Note that disturbance rejection was performed in a separate simulation
from that of reference following.

In Figure 4.4d it can be seen that optimizing for robust stability successfully lowered
the peak gain of the most amplified transfer function Sud. But to achieve good
disturbance rejection, it was not sufficient to only optimize for this, since this solu-
tion results in a higher gain in the low-frequency region of Syd than the disturbance
robustness solution. Thus, the disturbance was not rejected, and instead, the longi-
tudinal velocity becomes constantly affected by it. The crucial difference was most
likely caused by that the cost for integral state offset is about 108 times higher in
the disturbance robustness solution.

Likewise for PID, the integral gain was 0 for the robust stability solution, i.e. it
had no integral action. For the H∞ controller, a higher cutoff frequency for the
disturbance filter was noticed, and thus, the disturbance might get treated as a
reference signal. What was interesting was that both solutions have acceptable ref-
erence following, although differing so much in disturbance rejection.

The system responses for all three controllers were simulated in VTM, with the
results shown in Figure 4.5. At 5 seconds, a disturbance step of the same amplitude
for all three controllers was applied. For the VTM, it can be seen that the robust
stability solutions never reject the disturbance just as for the linear model. The H∞
controller seems to be least affected by the disturbance and was also the quickest
to compensate it. The reference seems to be followed better than the test with the
linear model.
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Figure 4.4: Simulation of linear longitudinal model: disturbance rejection
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4.4 Case study: Single lane change
A study of a single lane change maneuver was performed, which is considered a
standard test in vehicle dynamics testing. In this test, the reference sinusoidal pe-
riod was set to three seconds and with 0.3 rad/s amplitude. The specification was
generated as the reference ±0.15 rad/s, shifted 0.2 seconds later. The added metric
settling time was defined as the time between the end of the sinusoidal part of the
reference signal until the time where the controlled system variable had stabilized
within (0 ± 0.005Amax) where Amax = 0.3 rad/s. In Figure 4.6, the result of simu-
lating the linear lateral tractor model with four different H∞ controllers is shown.

The solution from the initial parameter search was used as a reference solution.
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Figure 4.6: Simulation of truck performing a single lane change I

In case (a), by just aiming to minimize the lateral velocity (non-controlled system
variable), the resulting controller will not follow the reference at all and will also
not fulfill the specification. That behavior is heavily penalized in the optimization
algorithm, but it was probably stuck in a good enough local minimum. In case (b),
the settling time was lower than the reference solution. In case (c), no difference
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in the amount of uncertainty can be seen. In case (d), the difference was not big
from the initial guess. The reference amplitude was not reached in any of the four
cases. For better reference following, the optimization weightings would have to be
changed.

In Figure 4.7a, the lateral velocity from the simulation shown in Figure 4.6a is
plotted and in Figure 4.7b, the phase plot from disturbance, measurement noise,
and reference to yaw rate from the simulation shown in Figure 4.6d is plotted.

The lateral velocity was lower, but at the cost of not following the reference
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Figure 4.7: Simulation of truck performing a single lane change II

properly. Further, the phase shift was lower than the phase shift of the reference
solution. The evaluation metrics are presented in Table 4.1.

Table 4.1: SLC evaluation metrics

I II III IV
ref 46.22 0.65 1263.68 17 719.14
(a) 1.58 0.08 227.58 13 082.34
(b) 50.01 0.21 1321.73 22 003.80
(c) 56.67 1.02 188.66 15 683.62
(d) 52.67 5.22 172.69 14 542.23

Metrics are, I - Non-controlled system variable response, II - Settling time, III -
Reference uncertainty, IV - Phase shift, the solutions are marked as in Figure 4.6.

All metrics are defined in Appendix A. As for metric I, case (a) had the lowest
value, and it was thus successful. It also had the lowest value for two other metrics,
but that can be ruled out due to its unacceptable system response. As for metric
II, case (b) had the lowest value and was thus successful. Comparing the results
of metric III with the visual results, it is clear that this metric was not properly
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designed, since the 6 times higher values is not apparent from visual comparison.
Further, case (c) fails to minimize it as well. As for metric IV, case (d) had the
lowest value and was thus successful.

4.5 Methodology
When analyzing parametric uncertainty, the chosen method of using grid sampling
proved good for models with not too many uncertain parameters. The trade-off lies
between having a grid with high resolution and runtime, as the runtime will grow
approximately at the same rate as the number of samples does, which is

ns = gnpr (4.1)

where ns is the number of samples, gr is the number of grid points in each param-
eter and np is the number of uncertain parameters. Ideally, a grid with very high
resolution would yield the best results (i.e. converging to continuous analysis). The
problem is that with each extra parameter added, the runtime grows exponentially.

So for instance, when simulating the lateral tractor model (Eq. 3.1) with 5 un-
certain parameters, a grid resolution of 2 was used for quick approximation and 7
at max for a more accurate analysis. There are 4 resolutions in between allowing
for flexibility, and the corresponding number of samples is 32 and 16807.

Compare that to simulating the lateral tractor with trailer model (Eq. 3.3) with 10
uncertain parameters, resulting in that a resolution of 2 results in 1024 samples and
for a resolution of 3, 59049 samples. Thus, using even the quickest approximation
besides nominal response resulted in the total runtime of the method increasing by a
factor 12. And there was no flexibility to test another resolution since 59049 samples
result in unfeasible runtime.

For reference signals, mostly first-order system responses were used instead of step
signals. This was because they were judged more realistic and used in controller
optimization, generated less aggressive controllers which was positive for simulation
of the VTM.

4.5.1 Model improvements and closed-loop validation
The idea was to use linear models with behavior similar to that of the VTM such that
results and conclusions from analyzing them could be translated to the VTM, which
was assumed to model behavior as close to reality as possible without obtaining real
data in any form. The linear models used for this purpose were pre-existing models
not derived specifically for this thesis. Making an initial comparison to the VTM by
running them in open-loop without any uncertainties given the same parameters and
input showed in some cases clear differences. This was expected as some dynamics
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are excluded from the linear models. The lateral models, as mentioned in [12] and
[21], did not model, for example,

• Large articulation and tyre slip angles
• Deviations from Ackermann steering geometry
• Varying axle cornering stiffness
• Vehicle body roll motion
• Aerodynamic forces
• Suspension, chassis and cabin dynamics

Also, the longitudinal model did not directly include e.g. any weight distribution,
suspension, or wheel slip dynamics. The wheel slip dynamics were however partly
included as the wheel torques were limited by approximate maximum acceleration
and deceleration.

To better match the VTM response, realistic uncertainties were first added to the
linear models, e.g., how much the cornering stiffness could vary depending on en-
vironmental reasons. While these uncertainties did add a range of input response
behavior to the linear models, they still did not alone encapsulate the VTM behav-
ior completely. To be able to reach that desired result, synthetic uncertainties were
added to the linear models, which also had their outputs scaled. This could result
in something like what was shown in Figure 3.4a, where it seemed like some combi-
nation of the included uncertainties would give a very similar response to the VTM.
However, it could also give a result such as in Figure 3.4b, where all the possible
linear model responses together encapsulated the VTM behavior to a large degree
but where it would seem maybe a bit more unlikely that a single unique response
would be close to the VTM response.

In closed-loop, the nominal linear model and VTM responses generally looked more
similar. This was probably because both models strive to follow the same reference.
For the same reason, the linear model uncertainty range gets thinner than the open-
loop simulations done in Section 3.1.5. This can for instance be seen in Figure 4.2
where the LQI was compared to the LQR. As the LQR does not have any integral
action, it has some steady-state error whenever the system was not nominal. Yet,
the VTM in closed-loop with an LQR designed with feedforward based on the linear
model resulted in close to no steady-state error, which was perhaps not anticipated.

Another result of the model behavior similarity in closed-loop was their respec-
tive control signals. For the aforementioned simulation visualized in Figure 4.2, the
corresponding control signals are presented in Figure 4.8. While the steady-state
control signals are equal, the transient behavior differ a bit. Most noticeably, the
VTM control signals initial response was more aggressive and exhibits a slightly
more oscillatory behavior, resulting in that the VTM signal was not being encapsu-
lated by the linear model bounds in that region.

To further improve the similarity in behavior between the linear models and the
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Figure 4.8: LQI and LQR optimization control signal comparison

VTM, there were several things that could have been done. Firstly, the models could
have been augmented with additional forces and dynamics. This could make the
models behave more like the VTM but with a risk of becoming over-parameterized
and for the case of uncertainty analysis computationally heavy. Another way of
increasing the similarity could be to tweak the parameters used for the linear models
to match the VTM behavior rather than using just using VTM parameters. Taking
this idea further, the models could have been derived using system identification
methods with input-output data from the VTM or perhaps even from the system in
reality.

4.5.2 Full-state feedback assumption

The LQR and LQI controller types presented earlier was subsequently used to gen-
erate results. These control theories bring some inherent robustness properties, such
as guaranteeing an infinite gain margin and a phase margin ≥ 60◦ [22]. However,
these two properties are only valid granted full-state feedback, i.e. that all system
states can be measured. If for some reason this is not the case and some states
instead have to be estimated using an observer, these robustness properties are lost
[1]. The lateral vehicle models used in this thesis, i.e., Eq. 3.1 and 3.3, involves the
tractor lateral velocity vy as a state.

Whether this is measured or not relies on how accurate of a measurement that
is required. In the real system, the lateral velocity is not directly measured, but
rather the integration of a measured lateral acceleration. If this integration would
introduce e.g. drift, would it classify as state feedback? Similarly, is a derivative of a
measurement a good enough measurement? While it is important to consider these
questions, defining the quality of measurement needed to allow for state feedback
was not considered a part of the scope of this thesis. Thus, it was assumed that full
state feedback was available.
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4.5.3 Validity of analyzing linear model guarantees
A linear model will never act exactly like its nonlinear counterpart unless the input-
output scenario is extremely limited, in which case the analysis might not be very
useful. Thus, the idea of guaranteeing a behavior from a nonlinear model (such as
the VTM) given the analysis of a linear model can be hard to argue for, as the
word guarantee is a very strong statement. What helps to argue for this is the way
the linear model is derived, with similar dynamics and adapted with uncertainties
as described in Section 3.1 while not arguing for an exact behavior guarantee but
rather for a range in which the behavior is expected.

Of course, there will always be dynamics present in a nonlinear model that can
not be modeled exactly in its linear counterpart. So, to what extent does a linear
model need to exhibit the same response as its nonlinear counterpart to be able
to make any kind of a guarantee? An idea on how to improve the argument for a
guarantee could be by e.g finding the unique set of uncertainties for the linear model
that best fits the VTM response and then determine the rigidity of the similarity
between these.

4.6 Guarantees for system in reality
As discussed in Section 4.5.3, guarantees for a nonlinear model given linear model
analysis can in itself be tough. Furthering that guarantee to a real system is a
completely different challenge and was not in the scope of this thesis. However,
what could be done is to gather real data and compare it in simulation, which is
something that is commonly done. In addition, the VTM could be augmented with
dynamic uncertainty to make a similar guarantee as was done between the linear
model and the VTM in this thesis.

A risk of layering uncertainties like this is that at the bottom layer (the linear model)
the propagated uncertainties could grow too large to make any sense for analysis
and controller synthesis. Of course, one could skip the middle layer (VTM) and
instead, as mentioned in Section 4.5.1, adapt the linear model directly to real-world
input-output data through system identification methods.

4.7 Controller choice
In general, bothH∞ control and LQI control showed great flexibility when optimized
for different metrics. LQR usually resulted in similar solutions, slightly indifferent
to optimization weights, maybe because of only having two parameters and feed-
forward always enabled. Since the H∞ controller is of a higher order than LQI,
and quite high in general, it can follow very quick reference changes better but it
has the downside that it needs more resources for its implementation and is more
susceptible to numerical errors (e.g. too high gain at certain frequencies). Some
of the H∞ controllers created by the method worked well for the linear models but
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there was trouble when simulating with the VTM.

The large derivatives produced lead to that a fine time resolution and a high order
solver was needed for simulation of the VTM, and thus time consumption rose. In
some of these cases, the H∞ controllers introduced a very large oscillatory control
signal, though still a very dampened response as the VTM includes realistic, phys-
ically limited, actuator modeling. Thus, for the actual use of the H∞ controllers
produced by the method, these limitations need to be included in the optimization.

Tuning the H∞ controller was not very intuitive, and thus generating controller
parameters (as done in the method described in Section 3.4) proved to be a good
way of doing it.

4.8 Evaluation metrics
The first research question of the thesis was Which analytical methods can be used
to quantify robustness, performance, and stability regarding lateral and longitudinal
controllers in the context of autonomous truck vehicles? How do these compare?
The evaluation metrics can be seen as a means of quantifying the terms mentioned
above. These metrics are discussed in this section.

By optimizing for certain metrics the resulting closed-loop behavior could vary a
lot. For example, when only optimizing for reference uncertainty, the system re-
sponse can be both fast and slow, oscillatory and non-oscillatory, overshoot or not,
and e.g. phase shift can vary much. This might be due to that there are many
minima of this metric in the objective function.

On the other hand, a metric like reference performance probably have a lot less
unique minima or that most of its minima belong to a clear region of the function
where minima of all metrics have resulting system responses that have good refer-
ence performance. Thus, reference uncertainty can be called a minor metric, and
reference performance a major metric.

In Figure 4.9 this theory is visualized, as the more complex objective function is
simplified to a two-dimensional function where the four different regions are where
most of the e.g. 4 different major metrics minima occur, and the markers show
where the minor metrics minima occur.

Optimizing only for major metrics yields more reproducible results and to optimize
for a minor metric should be done in combination with a major metric to in a
sense guide the optimization to a specific region of interest. The division of metrics
between major and minor seems to differ a bit depending on controller choice and
experiment setup, but in general, the following division was seen.
All metrics are defined in Appendix A. The major metrics are deemed to be

• Reference performance
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Figure 4.9: Simplified objective function supposed minima locations

• Reference robustness
• Reference reaction time
• Disturbance robustness
• Phase shift
• Bandwidth
• Non-controlled system variable response

and the minor ones are deemed to be
• Reference uncertainty
• Disturbance uncertainty
• Disturbance reaction time
• Reference oscillation
• Reference overshoot
• Minimal Nyquist distance
• Robust stability
• Critical frequency
• Critical gain

Another point of interest was how different evaluation metrics compare against each
other, for instance, are they equally good at finding certain solutions?

When minimizing non-controlled system variable response, the results would often
be close to those of optimizing for reference robustness, most likely due to that the
system variables are linearly dependent of each other as a linear model was used and
hence, when gains are lowered for reference following, the other system variable is
also less excited. Another example was that when performing the single lane change
case study, minimizing settling time usually gave results close to those from opti-
mizing for reference performance. This might be due to that a high gain controller
often reacts quickly to any existing control error.

Another thing that was observed was that optimizing for phase shift showed similar
system responses as optimizing for reference uncertainty. They both resulted in
controllers with high gains, and in terms of PID, the proportional gain was higher
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than similar controller parameters found in solutions optimized for e.g. reference
performance which yielded system responses with much more uncertainty. These
are just some examples of this, there might be more connections to be found.

4.9 Guaranteed bounds
The second research question of the thesis was how can bounds for parametric un-
certainties and external disturbances be derived, to ensure safety and stability in a
closed-loop consisting of a plant model and controller?.

As for parametric uncertainties, by sampling the uncertain plant and simulating
it in combination with a controller, the range of system responses can be analyzed.
Given a time domain specification that is deemed safe, it is then possible to calculate
what margin a certain parameter has for staying inside the specification. A slightly
conservative margin would be the minimal distance between the system response
and the specification.

Vice versa, it might be possible to test for the maximum level of uncertainty that
would make the system responses start ending up outside of the specification. Since
different parameters affect the system in different ways, certain combinations of un-
certainty in each of them could end up yielding the same system response, so it is a
multifaceted problem.

An idea to solve it is to simulate the system with varying amounts of uncertainty
in each variable, look for the combinations that make the total system uncertainty
(i.e. percentual uncertainty w.r.t. nominal response) hit different levels (numerical
but denoted as e.g. slightly uncertain, moderately uncertain, very uncertain and
outside of specification), in a sense creating a level plot in the same dimension as
the number of uncertain parameters. The question remains on how to perform this
with a limited amount of simulation and still be able to trust the results.

As for external disturbances, in the time domain one way to discern e.g. max slope
angle in the longitudinal case or max lateral wind in the lateral case was to sim-
ulate the system following a reference and suddenly receiving a disturbance step.
Then the system response can be checked to see if it stays within specification or not.

This can be done in combination with the already added uncertainty. By then
trying different levels of disturbance, a max level can be found. The downsides of
this method are that the disturbance has to be modeled accurately, which can be
tricky and time-consuming. Also, many different situations have to be simulated,
which might be impossible to create specifications for or take too much time.

Another perhaps more general idea (in the frequency domain) is to look at the
gain of Syd. If the maximum allowed state shift ∆y at each frequency is known in
some way, then by dividing with the known gain, the maximum disturbance level
at each frequency is also known. This has the downside that it requires accurate
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modeling of the disturbance, but with the upside of being able to create a profile
of max disturbance w.r.t. frequency. So the question is how to determine ∆y(f),
which remains to investigate.
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5
Conclusion & Outlook

The problem that sparked this thesis originates from the desire to be able to ana-
lytically prove that a given closed-loop system, given certain inputs, would behave
in a certain way. In this case, the closed-loop system is an autonomous truck. By
being able to prove and predict the behavior of the truck, it can operate safely and
allow other systems around it to operate safely and efficiently as well.

The aforementioned problem is certainly considerable and is thus only partly taken
on in this thesis. More specifically, the thesis tries to cover how to systematically
quantify the robustness, performance, and stability of a closed-loop system w.r.t
lateral and longitudinal control of an autonomous truck. Further, the scope involves
looking at how behavioral bounds of the truck can be determined when exposed to
parametric uncertainties or external disturbances.

To enable the use of frequency analysis and controller synthesis methods, only linear
models were used. They were chosen with simplicity in mind, i.e. they do not take
into account the full dynamics of all subsystems (e.g. extensive tire dynamics). This
is because the analysis was chosen to be on a high level, to get a rough overview
of major dynamics instead of getting stuck on details that maybe would require a
separate study.

As a benchmark for model accuracy as well as results analysis, the more detailed
and nonlinear VTM was used as a model that is regarded close to reality. The idea
was to make the linear model behave like the VTM so that analysis of the linear
model gives results that can be argued to be valid for the VTM as well. Hence, the
linear model was adapted to the VTM behavior response by introducing parametric
uncertainty and scaling its output, creating a range of behavioral responses, given
an input.

A general system architecture was proposed to standardize the control problem
and sort out the relevant transfer functions. A controller design procedure was de-
cided and early testing was performed to verify the expected model and controller
behavior. Further, analytical methods to quantify system behavior by evaluation
metrics both in time and frequency domain have been proposed. They relate to
factors such as stability, performance, robustness, and disturbance rejection. Most
are classical methods with well-known resulting metrics and some are newly intro-
duced, quite simple constructions. Methods for analyzing uncertain systems were
also briefly investigated.
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A method was created to both evaluate a closed-loop combination of plant and
controller, as well as generating a controller for a certain plant. The controller is
optimized for the goal of reaching a certain specified system behavior which can be
specified by the earlier defined evaluation metrics. It can also be specified by either
time domain specifications or frequency specifications created from time domain
specifications.

Whether the closed-loop passes the time specification was verified by simulation
runs and the frequency specification by evaluating transfer function frequency re-
sponse. Since the objective function is complicated, different optimizing methods
have been investigated, and the one handling global optimization most efficiently
was chosen. The optimization was done through several steps, designed to increase
solution accuracy and minimize the computational load.

The linear models used for analysis were adapted to match the VTM behavior
in such a way that comparing them in both open-loop and closed-loop simulation
show many similarities, where the VTM lies well inside the uncertain linear model
response bounds and the dynamic responses were similar. For some of the model
states, in some scenarios, the similarities were however weaker. As for the controllers
optimized towards some evaluation metric, some of them show good results in that
the wanted system behavior was achieved, and in others, some investigation into
improving optimization needs to be done.

Drawing conclusions regarding the VTM, given analysis and simulation results from
the linear model, is not hard to argue for in some cases, where the simulations of
the two models match well. However in some scenarios, at higher velocities or with
aggressive inputs, where the similarities were weaker, it is harder to argue that the
analytical results derived from the linear model would cohere with the VTM.

The evaluation metrics successfully quantify system behavior in terms of stabil-
ity, robustness, performance, uncertainty, and disturbance rejection. The method of
generating controllers to achieve a certain system behavior proved helpful in achiev-
ing certain system behavior. As for the behavioral bounds of the truck, those related
to parametric uncertainty can be calculated in simulation and verified by worst-case
gain analysis from the frequency domain. Those related to external disturbances
can be calculated through simulation.
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Future work
The method of generating controllers can be improved in the sense of making opti-
mization faster and finding better optima of the objective function (closer to possible
global optimum). The methods that require simulation is quite time-demanding and
specific for the scenario being tested. Thus a more general solution in a sense of
minimizing simulation use is yet to be found.

One of the studied test cases in Chapter 4 involved investigating a single lane change
maneuver. This concept could be extended to other types of common tests, such as
a double lane change, a sine with dwell, a constant radius turn, or a fishhook maneu-
ver. These could both present results in model similarity and provide optimization
goals for a deeper understanding of how a unique controller would handle different
situations. Optimizing a controller for multiple cases would require the optimizing
algorithm to be extended with this functionality. Most crucial would be how to
solve the zero-crossing problem mentioned under Nominal optimization in Section
3.4.3 and investigate whether the frequency specification solution can be extended
to more complicated references than step-like ones. Hybrid optimization, i.e. per-
forming as much analysis and optimization as possible of the non-linear model and
the remaining analysis on the linear model would be interesting.

Further extensions of the algorithm could involve optimizing for the case of two
controllers working together, as an acceleration controller and a braking controller
would. Additionally, since the lateral DSTM was linearized for constant longitudinal
velocity, it would be of interest to investigate how a possible gain scheduling of the
controllers can be implemented, and its implications.

Moreover, an investigation into the H∞/LQI robustness guarantees would be useful
to see if they can be used in creating behavioral bounds of the system or if they
can be translated to a more hands-on metric of robustness in e.g. the time domain.
The minimal performance level γ of each controller mentioned in Section 3.2 was
manually tuned in use within the method until the controllers became sufficiently
non-aggressive. Since γ is being minimized, it would be interesting to investigate
what the viable range is and whether the minimal level can be used as a tuning
parameter.

A different robust controller design method that appeared in the literature is that
of Quantitative Feedback Theory (QFT). It seemed interesting to investigate, but
no free tools to use it with MATLAB were found and that made it hard to incor-
porate into this thesis. Another thing would be to examine the field of Uncertainty
Quantification (UQ), e.g., to get a better sense of how to analyze and simulate the
uncertainty of the system, and how to analyze the reliability of the results.
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A
Evaluation metrics

Note that the metrics connected to the Nyquist and Bode plot (figures A.3,A.4) are
actually calculated by for all sampled systems and the worst result chosen. In these
figures, only the nominal system is shown for clarity.
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Figure A.1: Frequency domain metrics

Reference robustness: (
∑
f

|A|)/lf (A.1a)

Reference performance: (
∑
f

|B|)/lf (A.1b)

where A and B are logarithmically discretized and lf is the number of discretization
points.
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Figure A.2: Time domain metrics

Reference uncertainty: C +D (A.2a)

Reference overshoot: Ar + E

Ar
(A.2b)

Reference reaction time: F (A.2c)

Reference oscillation:
∑
t

Ẏn (A.2d)

where C is from Figure A.1, Ar is the amplitude of the reference, and Yn is the
nominal system response. Note that F is defined as the time between the start
of the reference until the time where the nominal system response first is within
Ar ± 1% but not necessarily within afterwards.
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Figure A.3: Nyquist plot metric

Minimal Nyquist distance: G (A.3)
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Figure A.4: Bode diagram metrics

Bandwidth: H (A.4a)

Critical gain: I (A.4b)

Critical frequency: J (A.4c)

Phase shift: K (A.4d)

Note that the bandwidth is defined at the lowest frequency where the system re-
sponse has a gain of -3dB. Further, the line enclosing the area of phase shift lies
at the first value higher than the phase shift of the system at low frequencies and
the value should be divisible by 90. The metric Robust stability is calculated as the
inverse of the infinity-norm of the GoF transfer functions (Syd, Syn, Sud, and Sun)
i.e. the inverse of their highest Critical gain.
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Figure A.5: Non-controlled system variable response

Non-controlled system variable response: L (A.5)

Note that the only the nominal system response was used to calculate this metric.
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Figure A.6: Time domain: disturbance metrics

Disturbance uncertainty: M (A.6a)

Disturbance robustness: (
∑
t

|N |)/lt (A.6b)

Disturbance reaction time: O (A.6c)

where lt is the length of the time vector. Note that O is defined as the time be-
tween that the disturbance enter the system until the time where the slowest system
response first is within (0±0.1 ·max(Yn)) where Yn is the nominal system response.
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