
Performance evaluation and modeling
of remote execution and caching cluster

Master’s Thesis in Computer Systems and Networks

MARÍA FERNANDA AGUILAR ROMERO

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021

Master’s thesis 2021

Performance evaluation and modeling
of remote execution and caching cluster

MARÍA FERNANDA AGUILAR ROMERO

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2021

Performance evaluation and modeling of remote execution and caching cluster

MARÍA FERNANDA AGUILAR ROMERO

© MARÍA FERNANDA AGUILAR ROMERO, 2021.

Supervisor: Marina Papatriantafilou, CSE
Advisor: Hans Hazelius, Veoneer
Examiner: Romaric Duvignau, CSE

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Performance evaluation and modeling of remote execution and caching cluster
MARÍA FERNANDA AGUILAR ROMERO
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The scope and application of distributed systems are an increasing trend by the
need for high-performance infrastructure. Many multi-branch organizations adopt
the resource-sharing approach to maximize the system’s utilization, especially in the
software developing industry. Computational techniques such as caching and cluster-
ing are suitable to boost the performance of computer systems at any architectural
level. This project presents a performance evaluation, modeling, and analysis of a
system inspired by the case study of the industrial partner, Veoneer. The case study
is used for software development and implements Bazel, a suitable tool for multi-
branch cooperation through remote caching and remote execution. Here, the remote
cache allows storage and sharing the outputs from all the compilations among the
branches, thus preventing the re-execution of tasks and reducing the response time
for developers. On the other hand, remote execution benefits from the computa-
tional resources of different servers across the branches. However, the benefits are
at the cost of complexity, and systems start to degrade in performance, such as
long response times revealed from the system’s monitoring. Therefore, performance
evaluation is essential for planning and improvement.
This work uses operational analysis, queueing networks, and the universal scalabil-
ity law to evaluate, model, and predict the system’s performance, respectively. The
aim is to establish algebraic relations between the system’s factors and metrics to
understand the impact of workload and system capacity on performance to predict
its behavior. The results expose that the cache is over-utilized and benefits from
horizontal scalability. On the other hand, the study reveals that a cluster benefits
from vertical scalability but still has its scalability bounds to prevent that multi-
threading effects (i.e. coherence, concurrency, and contention) affect performance
on parallel executions.

Keywords: Performance evaluation, performance modeling, remote cache, remote
execution, queueing modeling, scalability.

v

Acknowledgements
First and foremost, I have to thank the Swedish Institute. Without its scholarship
program for global professional leaders, this step in my professional career would
have never been accomplished. I would also like to thank to my academic super-
visor, Marina Papatriantafilou, and my advisor from Veoneer, Hans Hazelius, for
their assitance, patience, and dedicated involvement in my learning path during the
project.
I would also like to express my gratitude to my former professors, Patricia and Ig-
nacio, and my former colleages, José and Gabriel, who trusted on my capacity and
encouraged me to keep learning and growing.

Finally and most importantly, none of this could have happened without my fam-
ily, who, despite of the distance and time difference, made my journey easier by
providing me with unfailing support. Thank you.

María Fernanda Aguilar Romero, Gothenburg, November 2021

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Context . 2
1.2 Goals and Challenges . 4
1.3 Outline . 5

2 Background 7
2.1 Concepts . 7

2.1.1 Distributed Systems . 7
2.1.2 Caching . 9

2.2 A systematic approach for performance evaluation 11
2.3 Techniques for computer systems modeling 12

2.3.1 Queueing Networks . 14
2.3.2 Fundamental Laws . 16

2.3.2.1 Little’s Law . 17
2.3.2.2 Utilization Law . 17
2.3.2.3 Universal Scalability Law 18

2.4 Related Work . 19

3 Methodology 23
3.1 System Description . 23
3.2 Measuring the Real System . 24
3.3 Operational Analysis . 31
3.4 Analytical Model . 33

3.4.1 Hypothesis and Assumptions 34
3.4.2 Performance Modeling . 35

3.5 Performance Prediction . 36

4 Results and Discussion 39
4.1 Operational Analysis Results . 39
4.2 Analytical Model Results . 39
4.3 Performance Prediction Results . 41

5 Conclusions 45

ix

Contents

Bibliography 47

A Experimental Setup Configuration I

B The USL package in R III

x

List of Figures

1.1 Overview of expected operation of a system that implements remote
execution and caching services. 2

1.2 Density distribution of job duration in the cache and the remote ex-
ecution cluster. 3

2.1 Overview of a client-server model of distributed system. 8
2.2 Types of architectures for remote caches. 10
2.3 Density distribution of the arrival rate of tasks, from queueing to

execution, in the remote execution cluster. 13
2.4 Abstract overview of a queueing model. 14
2.5 Parameters of a single server queueing network model. 16
2.6 Scaling effects than can be illustrated by the application of USL. . . . 19

3.1 Overview of the operation of the case study system. 24
3.2 Probability distribution of arrival rate of jobs to the remote cache

and the remote execution cluster. 27
3.3 Job duration distribution by stage in the remote execution cluster. . . 28
3.4 Density distribution of busy workers under regular workload execu-

tion in the remote execution cluster. 29
3.5 Measured response time by arrival rate of GET and PUT requests in

the remote cache. 29
3.6 Measured throughput by the arrival rate of GET and PUT requests

in the remote cache. 30
3.7 Measured response time by the number of jobs in the remote execution

cluster. 30
3.8 Measured throughput by the number of jobs in the remote execution

cluster. 31
3.9 Measured cache utilization by arrival rate and number of jobs. 32
3.10 Measured cluster utilization by number of jobs in the remote execu-

tion cluster. 33
3.11 Monitored number of cores used by number of jobs during execution

stage in the remote execution cluster. 33
3.12 Queueing network representation of the system. 34
3.13 Overview of the experimental setup used to evaluate performance in

different configurations. 37

xi

List of Figures

4.1 Computed utilization in the cache and the cluster by number of jobs
in the system by application of Utilization Law. 40

4.2 Estimated response time from horizontal and vertical scalability im-
provements to the cache. 41

4.3 Estimated throughput from horizontal and vertical scalability im-
provements to the cache. 41

4.4 Estimated impact of the number of cache servers on the cache uti-
lization by the number of GET requests. 42

4.5 Measured response time and throughput by concurrency, for each
cluster configuration arranged in the experimental setup. 43

4.6 Predicted scalability according to USL model. 44

xii

List of Tables

2.1 Parameters that affect directly the performance of a remote cache
and remote execution system. 12

2.2 Notation used for queueing network models. 17

3.1 Metrics available from Prometheus and Grafana monitoring in the
production system of the case study. 25

3.2 Cluster configurations to measure response time and throughput. . . 37

A.1 Configurations and results of the experimental setup. I

xiii

List of Tables

xiv

1
Introduction

The increasing trend of big data and computing-intensive applications need more
complex, reliable, and scalable infrastructure. Behind the scenes, software develop-
ment is a significant pillar for such applications, acting as a cycle, where application
performance is a vital and meaningful metric of competitiveness in the software in-
dustry. Hence, clustering is an in-growing trend towards improving performance by
grouping and sharing resources within the members of a cluster. Likewise nodes,
that work together for either local or remote execution of tasks, cache instances
are also able to group up and act as one network resource. Despite the enormous
benefit from such load-balancing techniques, the largest the network, the hardest
the performance evaluation; further, representing the system in a model implies un-
derstanding the impact that each element delivers. Thus, there is a need for an
individual assessment of the components for a more accurate result [1].

Undoubtedly, performance evaluation, modeling, and analysis are crucial stages to-
wards optimization and need to be performed from time to time, especially for ca-
pacity planning, bottlenecks avoidance, and upgrading. Performance of distributed
systems depends on multiple factors such as the hardware characteristics (i.e., CPU,
RAM, disk, network transmission media, capacity), quality of software management
tools (e.g., scheduler, load-balancer), and workload (i.e., number of jobs, job arrival
rate, job type). In most cases, performance deterioration is linear to workload since
weak units start originating bottlenecks and impacting the overall performance of
the system [2]. However, a sudden heavy-workload can also cause unexpected per-
formance deterioration. All in all, performance turns around the load the system is
required to process and the metrics selected to qualify the system’s service.

Existing approaches for performance evaluation and modeling usually differ on the
assessed target, the system configuration, and the system capacity features. For in-
stance, distributed caching modeling [3], [4], network/traffic evaluation and model-
ing [5], [6], [7], distributed systems modeling [8], [9]. Notwithstanding, the available
benchmarks are not useful and suitable for every system; they need adjustment to
reflect their properties and allow minimum degrees of freedom for control tuning [10].
Evaluating performance is as meaningful as the measurement model’s complexity.
Therefore, there is a need for being aware of inputs and outputs while evaluating
a system and tuning parameters to identify its behavior based on both load and
metrics.

1

1. Introduction

1.1 Context
Performance awareness starts from selecting the appropriate tools and techniques
for project development. For instance, remote execution and caching are techniques
to improve the performance of application deployment. Remote execution intends
to offload local servers, whereas remote cache aims to reduce the number of compi-
lations by reusing the artifacts from previous executions. Bazel and Buildbarn are
open-source tools aiming to increase software development productivity by running
build tasks using remote execution and caching [11].

As an illustration of the features previously described, Figure 1.1 shows how the re-
mote execution and caching features of Buildbarn support application deployment.
The first time, the system distributes the compilation task on the remote executors,
saves the result in the cache, and returns the result to the client. From next time
on, if the code to compile remains the same, Buildbarn retrieves the result from the
cache; otherwise, remote workers compile what is new (i.e., last changes in the code)
and retrieves the results from previous compilations to produce the ultimate result.
Hence, the client expects to experience faster compilations as a result of using the
cache. The frontend (scheduler) is for illustration purposes only.

F
IR

S
T

 T
IM

E

R
ec

ep
tio

ni
st

Lo
an

of

fic
er

U
nd

er
w

rit
er

La
ne

La
ne

La
ne

New compilation Cached compilation

Client
Frontend
(scheduler)

Backend
(cache)

Remote
Executors

Code

S
E

C
O

N
D

 T
IM

E

R
ec

ep
tio

ni
st

Lo
an

of

fic
er

U
nd

er
w

rit
er

Code +
changes

Client
Frontend
(scheduler)

Backend
(cache)

Remote
Executors

Changes

Figure 1.1: Overview of expected operation of a system that implements remote
execution and caching services.

This thesis presents the system of the main case study, which corresponds to the
Test Infrastructure and Management production system by Veoneer. The system
relies on Bazel to provide of remote caching and remote execution features to the
multi-branch organization. Veoneer also provided the required infrastructure for
testing, as Chapter 3 describes.

Although there is a detailed description of the system in Chapter 2, roughly speak-
ing, it works as follows: the requests from clients arrive at the Action Cache (AC)
for it to determine whether the required content is in the cache or not; if so, the sys-
tem retrieves the result from the cache, otherwise, the request is sent to the workers
for execution. In the end, the response time corresponds to both services’ response
time. As for illustration, Figure 1.2 shows the service-time density distribution to

2

1. Introduction

retrieve content from the cache (a) and executing an action on the workers (b) under
a regular one-week workload. The figure plots the timeline on the x axis and the
execution duration, which ranges from milliseconds (ms) to minutes (min) on the y
axis. The job density distribution is colored from low (blue) to high (red) according
to the number of jobs that arrived during the time interval of the x axis. For in-
stance, a high number of jobs with a GET duration of 1ms or less occurred around
9:15 a.m. in the cache, whereas a high number of jobs with a running duration
between 215ms and 464ms occurred in the cluster the same time.

(a) Cache-GET Requests

(b) Remote Execution Cluster

Figure 1.2: Density distribution of job duration in the cache and the remote
execution cluster.

Figure 1.2 shows that the higher density of cached jobs is served between 0 and 2

3

1. Introduction

milliseconds, whereas remote workers serve their majority of jobs between 46 and
215 milliseconds. Likewise, the number of jobs spending more than two minutes
is higher in the remote execution than the cache. Although the cache system is
significantly faster than the remote execution system, there is no infinite storage.
Therefore, this project’s performance analysis is also oriented to find a suitable con-
figuration for the remote executors to improve their impact on the response time.

Like the execution time, the existing system provides accurate measures for problem
identification; however, it is challenging to perform any hardware or software im-
provement in production environments. Therefore, there is a need for a performance
model that conceives tunable inputs and outputs to assess the goals. Besides, there
is a need for scenarios to validate the model.

Since there is not a default model to characterize distributed systems, it varies
according to the systems configuration and the available resources to conduct the
assessment. Frincu et al. summarize different models for infrastructure represen-
tation, based on simulations of various scenarios [9]. Kattepur et al. present a
single-user test approach, which differs from the workload approach in the accuracy
of bottlenecks identification caused by resource utilization, instead of traffic load [7].
Hence, the workload approach is the most suitable one for the evaluation this work
aims to perform.

1.2 Goals and Challenges
This project aims to characterize the system, object of study, by describing it
through an analytical model that eases the identification of weaknesses when de-
ploying applications. To be more specific, the intention is to estimate a model to
follow the bottlenecks’ path and find the elements with the most impact on perfor-
mance (i.e., network bandwidth, processor, memory, cache) according to different
workloads, and considering the interaction between the components.

Indeed, modeling and simulation are complementary approaches to understanding
systems behavior and to get significant insights about their performance. However,
computational resources are not always available to emulate an entire infrastructure
and its complexity. Moreover, there is a risk of tuning parameters within the pro-
duction environment because of unexpected real-time operation effects. Therefore,
this project experimented in a lab environment that replicates the production sys-
tem corresponding to the case study but is shorter.

Another challenge is the number of elements that are part of the study. At first
sight, every component within the infrastructure is an object of performance analy-
sis due to its impact on the execution path. Notwithstanding, the goal of modeling
is to focus on the sections under the Buildbarn management and configuration, it is,
the interaction between frontend, backend, cache, and workers. Also, even when per-
formance modeling leads to optimization, the latter is not part of the project since
such improvements are highly dependent on the model results and the company’s

4

1. Introduction

decisions.

1.3 Outline
The thesis proceeds with a background description in Chapter 2, which reviews fun-
damental aspects of performance evaluation and modeling. Following this, Chapter
3 describes the methodology by discussing the assumptions, the theoretical model,
and the experimental setup for data gathering. The results from evaluation and
modeling are presented in Chapter 4. Finally, Chapter 5 concludes the work by
summarizing and discussing the findings of the project, as well as presenting open
questions fo further work.

5

1. Introduction

6

2
Background

In essence, performance is the quantitative measurement of a service provided by a
system. That is why it is crucial to carry out performance evaluation and modeling
when designing and running a system. In this chapter, Section 2.1 reviews the
concepts applied to the project. Then, there is a summary of performance evaluation
in section 2.2, and system modeling in section 2.3. Finally, Section 2.4 shows relevant
work, from the literature review, about performance modeling and evaluation in
distributed systems and networks. The following compilation has been oriented to
the system of the case study for a better understanding.

2.1 Concepts
Undoubtedly, a system’s performance relies upon optimal configurations of both
software and hardware. Although the latter is harder to improve quickly on produc-
tion environments, policies and arrangements on key components might significantly
upgrade a system’s operation. Distribute systems platforms are widely applied on
high-performance structures due to their reliability, controllability, and scalability
[8]. This project refers the performance evaluation of a system that implements two
of the most efficient techniques for high-performance distributed systems: clustering
and caching, which are explained in the sections below.

2.1.1 Distributed Systems
The concept of distributed system varies in the literature in line with the context.
However, and without loss of generality, a distributed system is a group of inde-
pendent instances represented as one. In principle, distributed systems aim for
collaborative work by summing up the individual effort from each instance to meet
the demand [12]. Nonetheless, when grouping instances to work together, there is
an essential trade-off between sharing and coherence among instances.

Illustrated with Figure 2.1 is the distributed systems’ concept. Fundamentally, it
requires, at least, a client, a service, and a communication network, intending to
share resources. Misconfigurations in any of the components might lead to issues
that impact the performance of the entire system. For instance, a high number
of users, small system capacity, and low interconnection bandwidth. Thus, per-
formance analysis of distributed systems allows identifying the weaknesses of the
systems and so amend them. Likewise, solutions range from process improvement

7

2. Background

to hardware upgrades (e.g., network bandwidth increase, system capacity extension,
incoming requests limitation).

CLIENTS

S
E

R
V

IC
E

Figure 2.1: Overview of a client-server model of distributed system.

Clustering is the proper name for grouping resources. In computer systems, a clus-
ter might be a group of computers, threads, or even memory pages for non-uniform
address spaces [13]. Clustering gives way for high-performance techniques such as
fair distribution and load balancing among the grouped instances, leading to con-
sider clustering as exceptionally advantageous for parallelization. Hence, it becomes
crucial to consider scalability when designing a distributed system, so the available
resources increase as the demand grows.

Scalability is a concept used to measure the return of investment. There are different
dimensions of scalability for distributed systems. For example, one can think about
increasing the system’s size (i.e., more instances, more computational resources), its
geographical scope (i.e., expand the system to different locations by network), or its
administration features (i.e., guarantee management from different dependencies).
In most cases, scalability is required to overcome performance issues due to capacity
limits [13]. Ideally, it is expected that doubling the number of nodes in a cluster,
would increase twice the capacity of the system. However, linear scalability is not
often delivered. The main reasons the distributed systems are vulnerable to scale
are: contention, coherence, and concurrency [14].

Therefore, solutions should demonstrate that improvements are proportional to per-
formance gain; otherwise, it can be said the system is not scalable. There are two
main approaches to add capacity in computer systems for processing. On the one
hand, horizontal scalability refers to increase the number of nodes in the system.
On the other hand, vertical scalability increases the computational resources (e.g.,
RAM, number of processors, disk size) per node. What approach delivers better
performance depends on the system configuration and workload type.

Moreover, there are different communication approaches for distributed systems
depending on their architecture. A centralized approach, commonly known as
the server-client model, designates an instance to receive and handle the requests.
Instead, a decentralized system’s organization, commonly known as peer-to-peer

8

2. Background

model, splits the resources for any of the instances with the required resource han-
dle the request. Therefore, two primary communications approaches are suitable to
communicate users and applications on distributed systems. On the one hand, the
message passing paradigm that relies on message operations where clients send the
whole stack to the server for processing. On the other hand, the remote procedure
call that relies on procedures inquiries with no further details about the underlying
software implementation. The latter suits better for client-server architecture [12],
which also gives way to remote execution schemes as the case study of this project
and is explained below.

2.1.2 Caching
The caching concept varies according to the system’s architectural level it belongs.
Nevertheless, a broader description of cache summarizes it as the mechanism that
allows reusing information through buffering [15]. As the records in a cache are
replaced when needed, every successful finding is called hit; otherwise, if the lookup
fails, it is called miss. The cache’s primary asset is to prevent the system from
double processing. It is, avoiding the execution of actions already executed under
the same conditions with a result already produced and stored.

Regardless of the cache’s architectural level, the intercommunication between the
cache and processors constitutes a performance concern because the cache is first
consulted before accessing the processor for execution, thus increasing the execution
stages. However, the throughput and response time still benefit from the cache if
there is a high hit rate. The use of caching in distributed systems then becomes
paramount for performance improvement.

There are two main parameters that impact cache performance. On the one hand it
is the cache size, which determines the amount of data that be stored, and therefore
how likely is to have a hit according to popularity and requests frequency. On the
other hand is the replacement policy, which refers to the criteria to select the data
for deletion if space is needed for new entries. The most commonly used replacement
policies are First-In-First-Out (FIFO) and Least Recently Used (LRU). This project
refers to a cache running LRU replacement policy.

Cache optimizations vary according to the metric, as [15] shows. Development turns
around decreasing the hit time, increasing the cache bandwidth, reducing the miss
penalty, and reducing the miss rate. Due to the approach and goal of this project,
the analysis in the case study focused on reducing the average access time to the
cache that equals the reduction of hit time. The latter approach is mainly affected
by the cache size and the cache associativity [15]. The cache size was the main
interest of this project, as explained in Chapter 3.

There is an increasing trend for multi-branch organizations to share remote resources
through remote caches. However, the cost of remote queries differs according to the
infrastructure and cache location. Then, an optimal organization is needed when

9

2. Background

implementing a shared cache. There are two types of architectures to implement
remote cache systems: hierarchical and distributed [16]. The main difference be-
tween these architectures is where to place the cache unit. Figure 2.2 illustrates a
hierarchical cache to the left and a distributed cache to the right. This project refers
to a remote distributed cache.

Requests
from clients

LAN

WAN

Gateway

Cluster server

(a) Hierarchical

Requests
from clients

Gateway

WAN

WAN

Cluster server

(b) Distributed

Figure 2.2: Types of architectures for remote caches.

To speed up the access time to the cache, there exists the content-based storage
management. This approach, also known as Content Addressable Storage (CAS), is
the most efficient technique to speed up the requests in non-rewritable repositories
[11]. On the contrary to the location-based lookup, there is no need to traverse
the entire memory address to get the target and retrieve the content. Instead, the
lookup process relies on a hash table, also known as Action Cache (AC), to store the
actions and their results as hash codes in a key-value pair fashion. The case study
of this project relies on a AC + CAS remote cache.

In spite of the lookup mechanism, the popularity of data items is of great concern
for caching systems because of the effects that data duration and requests frequency
have on cache performance performance [17]. Here, the common approach is to as-
sume an Independent Reference Model for inter-requests time. However, the content
popularity does change over the time [18], which leads to constant caches requests
that consume bandwidth and takes read and write time. In the end, each cache
request impacts on overall cache performance.

10

2. Background

2.2 A systematic approach for performance eval-
uation

As computer systems are unique in organization and resources, any evaluation should
be adjusted to their components and conditions. For example, performance eval-
uation in distributed systems usually cares for individual or overall throughput,
latency, and utilization, leading to further analysis and experiment designs. In ad-
dition, performance evaluation aims to identify weaknesses, commonly known as
bottlenecks, towards improving the configuration for the system to deliver its high-
est performance at the lowest cost. Hence, it is also known that the more granulated
the evaluation, the more accurate the results.

Many authors have worked on techniques for performance evaluation of computer
systems. The proposals apply to different systems regardless of their architecture
and resources availability. For instance, Jain [19] proposed a systematic approach
to conduct a performance evaluation by characterizing the system’s features. Le
Boudec [2] described different methodologies for performance evaluation that turn
around the workload and the metrics instead. In the end, a clear system description
is what leads to meaningful insights. Below is a summary of the most prominent
findings to carry out a performance evaluation of computer systems, that were ap-
plied in this project.

Despite the system organization and the type of analysis to perform, there should
be an objective to address. By stating a goal, it becomes easier to identify inputs,
outputs, and metrics of interest. For instance, this project aims to evaluate the
performance of a system composed of two main services: remote cache and remote
execution cluster, in order to identify bottlenecks and points of improvement. There-
fore, it can be stated that the input is the workload from the compilation requests,
the output corresponds to the results, and the metrics of interest are the throughput
and the response time. Both metrics are typically used in performance evaluation,
the throughput measures the amount of job processed per time unit, and the re-
sponse time measures the time it takes for a job to be served by the system.

The metrics intend to quantify the service delivery and compare it to the expected or
desired limits. There is a trade-off between complexity and accuracy for the metrics.
However, metrics applied to the entire systems also allow to get relevant insights,
even if a subsystem is not working at its highest. For the metrics to be relevant, it
is highly recommended to express them in function of any of the system’s features
as the workload or available resources.

After an overall description, more details are needed for each component. Hence, it
is needed to characterize the individual services and their outcomes. Referring to
the case study of this project it can be said that remote cache is mainly comanded
by its size with the aim of provide storage for previous results; whereas the remote
execution cluster is mainly comanded by the number of nodes in the cluster with
the aim of load-balancing the workload.

11

2. Background

System’s parameters Workload’s parameters
Cache size Number of actions
Cache replacement policy Source size
Number of workers Locality of requests
Network bandwidth Arrival rate of actions

Table 2.1: Parameters that affect directly the performance of a remote cache and
remote execution system.

All things considered, performance is not affected only by the workload but its config-
uration. For instance, parameters from Table 2.1 are considered of significant impact
on performance of the case study system. The parameters are classified as system
parameters and workload parameters. System parameters are related to hardware
and software, while workload parameters refer to input features as the users and
their demand. Evaluations and analysis can be validated through experimentation.
To emulate real systems infrastrcuture and workload is challenging. However, there
are multiple techniques such as simulations and small-scale configurations. Exper-
iments are designed for data gathering, analysis, and results presentation. More
details about the experimental setup used in this project is described in Section 3.5.

2.3 Techniques for computer systems modeling
Likewise performance evaluation, there exists multiple approaches for performance
modeling of computer systems. The work of Lazowska [20] constitutes the founda-
tions for most of the contemporary works. In essence, a model intends to represent
the system’s features and behavior as algebraic relationships. Stochastic processes
are usually used to characterize the workload flow, and the occurrence of events due
to their property of randomness [21].

Modeling can start in observation, if trace records are available, they might help
to identify patterns such as the arrival rate of incoming jobs. As an example, Figure
2.3 depicts the density distribution of incoming workload to the remote execution
cluster from the case study. It shows a fluctuation in the workload, with peaks that
suggest the system is working at its highest and can be the starting point of an
evaluation towards an analytical model.

Observation can also be useful to identify statistical distributions that represent
the variables of a system’s model by simply comparing the observed pattern of the
records with the density distributions of the existent random variables (e.g., bino-
mial, exponential, Zipf, chi). For instance, let the incoming jobs be independent one
from another, and their arrival rate looks like Figure 2.3. It can be said that the
input workload is a discrete random variable, x, that follows an exponential distri-
bution. Thus, the exponential distribution is used to represent the input workload
mathematically.

12

2. Background

Figure 2.3: Density distribution of the arrival rate of tasks, from queueing to
execution, in the remote execution cluster.

Moreover, if the time between arrivals follows an exponential distribution and are
independent one fom another, then it can be also said that the arrival process is a
Poisson process. The Poisson process is defined by a parameter, λ, that represents
the average number of arrivals per time unit (i.e. the arrival rate). The Poisson pro-
cess is widely used to represent input workloads when modeling computer systems
[22].

Apart from the workload, a model characterizes the services as well. The main
properties of services are the time it takes to serve the requests (a.k.a. service
time), and the capacity, which is the total amount of the resource. Complex models
also consider waiting time and the time it takes for the job to shift among services in
interactive systems. The model proposed in this project reviews the role of waiting
time in the system, but considers only the service time for computations.

Similarly to performance evaluation, it is essential for the model to use the notation
of outputs as functions of inputs. It gives way for tuning tests, as well as better
understanding of the system capacity. For instance, the throughput as a function
of the arrival rate. There exist several mechanisms for systems representation, each
with different levels of accuracy and complexity on performance projections. This
project performed an analytical study based on modeling.

An analytical model can rely on stochastic models to represent its parameters, as
previously exemplified. However, performance analysis is not that manageable when
using stochastic models. Instead, there is a broader technique that allows making
approximations to simplify the analysis [21], the queueing theory, which is intro-
duced below.

13

2. Background

2.3.1 Queueing Networks
Queueing network approach is a concept used to describe a system behavior by
queueing theory; it represents the system as a series of queues that handle the in-
coming requests [20]. Figure 2.4 illustrates this concept by depicting a single-server
queue network. A queueing network can also represent a system with multiple
servers. Modeling a system as a queueing network allows to understand the impact
and relation between incoming requests and capacity through mathematical equa-
tions derived from each component’s features [23]. In the case of complex systems
with multiple queues, the resulting chain makes the analysis harder by requiring to
keep track of the requests through each queue [21].

Departures

System

Arrivals

Figure 2.4: Abstract overview of a queueing model.

Fortunately, there are different queueing networks systems to represent different
types of computer systems. For instance, a system in which the inputs and outputs
are external is called an open system. On contrary, if the jobs feed multiple stations
within the network, but are not delivered outside upon completion, it is a closed
system. Of course, the assumptions and goals differ in open and closed systems.
Typically, an open system assumes that the number of departures equals the num-
ber of arrivals, making one of the metrics, the throughput, known. On the other
hand, a closed system does not know the departure rate but the number of jobs in
the system at every time unit [22] [19].

Queueing networks are described by Kendall’s notation. This standar notation has
the form A/B/c/K/L/Z, where each character stands for a specific queue feature,
as explained below.

• A: inter arrival time distribution or arrival process (e.g. Poisson).

• B: service time distribution.

• C: number of servers in the queue station.

• K: system capacity, in terms of number of jobs the queue is able to buffer.

• L: size of the source from which the jobs arrive (i.e. population size).

• Z: scheduling discipline (e.g. FCFS).

14

2. Background

For convenience, Kendall’s notation can be simplied if some of the features are as-
summed as their default values. For instance, if K and L are infinite, and the queues
follows a First-Come-First-Served scheduling policy, the notation omits K, L and
Z characters so the notation is shorter. On the other hand, A, B and c should be
clearly stated since they are the statistical definitions of the queue. Thus, a mul-
tiserver system with exponential inter arrival time, exponential service time, and c
servers is denoted as aM/M/c queue becauseM states for exponential distributions
[24].

A network of M/M/c queues, where each queue has its arrival rate and service
time, can be subject of the product-form solution (i.e. individual analysis of the ser-
vice stations) if they are modeled and treated as Jackson’s Networks [19]. However,
in order for a queing network to apply Jackson’s theorem as it stands in Equation
2.1, the following conditions must be satisfied:

1. All the servers are identical with an average service rate µ.
2. The jobs are expected to arrive to the stations from either outside the system

or from other station. External arrivals are assummed to follow a Poisson
process with an average arrival rate λ.

3. The served jobs are able to either leave the system or go to another station in
a probabilistic routing, such that all the outgoing probabilities from a station
sum 1.

Thus, the average arrival rate of each service station, in a network composed of k
M/M/c queues, is given by the expression below [24].

λk = γk +
K∑

i=1
Pikλj (2.1)

Where, γk equals the external arrivals to station k, and Pik equals the probability of
the jobs to arrive at station k from a station i. Jackson’s theorem is also known as
the Flow Balance equation, since the system is assummed to be in equilibrium. In
addition, Jackson’s theorem provides the probability of the overall system’s state.
It is, the probability that there are Nk jobs in the kth station, but the study of this
probability goes beyond the scope of this project.

In the model, the incoming jobs equal the tasks to be processed in the system,
whereas the system’s capacity equals the system’s resources to process the tasks
(i.e. CPU, RAM, network bandwidth, storage space). A multi-server queueing
model gives way to represent components that serve with different resources. An
accurate representation of the workload is needed to avoid misleading results about
the system’s behavior. When modeling, the workload is mainly characterized by its
arrival rate, expressed in ops (jobs per second). Although it is impossible to replay
a real trace as the workload for modeling, observation gives way to probabilistic
representations of patterns instead.

Service parametrization is another essential procedure for modeling because it de-

15

2. Background

fines the characteristics of the queue. A service station is mainly defined by its
service time, and its capacity. The service time is the time that the station spend
serving a task. From the service time it is possible to get the service rate, which
is the number of jobs served by time unit. Furthermore, the service capacity is the
amount of tasks that the station is able to buffer before, during or after the service.
Usually, the models consider an infinite buffer capacity for the queues in the systes,
even though it might lead to inaccurate results for capacity planning and perfor-
mance evaluations.

Depending on the approach for the analysis, the parameters can be described using
stochastic models, measuring the real system, or approximating according to the ob-
served in a real scenario. In the end, the system’s outputs are quantitative measures
of how the service performed to the workload, called metrics. Typically, throughput
and response time are the metrics used for performance evaluation, especially in
open systems. However, individual metrics can be defined per service stations if the
services are different. Therefore, one of the major concerns when stating an analyt-
ical model is to find the relationship between the workload, the system operation,
and the output. Some fundamental laws already state some of such relations and
are presented below.

2.3.2 Fundamental Laws

Despite the fact that deterministic models eases the stochastic process description,
there are some relations that do not require detailed descriptions about the system
to accomplish a performance analysis. The primary benefit of using operational laws
is that real system measurements or simulations can verify the results [19] [20].

Let Figure 2.5 illustrates a system modeled as a single server queueing network

X, R? SERVICE

Figure 2.5: Parameters of a single server queueing network model.

The quantities of interest and notation from the illustrated system are introduced
in Table 2.2. Where, λ and µ are random variables with exponential distributions,
and ops stands for operations per second. Also, operations equals to jobs in this
project.

16

2. Background

Notations Description Units
λ System’s arrival rate of jobs ops
N Number of jobs in the system jobs
T Time a job spends in the system seconds
µ Service rate seconds
X System’s throughput ops
R System’s response time seconds

Table 2.2: Notation used for queueing network models.

2.3.2.1 Little’s Law

Motivated by the need to connect the system’s performance with the input, Little’s
Law is the first and most important law for performance analysis. It relates the
average number of jobs in the system with the average time a job spends in the
system and the arrival rate. Little’s Law is applicable to both open and closed
systems. As for illustration, consider an open system where the job flow is expected
to be balanced (i.e., the number of departures is equal to the number of arrivals),
thus X = λ. Equation 2.2 express Little’s Law to apply on open systems, where
E[N] is the average number of jobs in the system at a certain time t, and E[T] is
the average response time experience by the tasks that were served during a certain
time t.

E[N] = λ× E[T] (2.2)

In this project, the Little’s Law is used to model the response time by increasing
the number of jobs in the system, after tuning the system’s features such as number
of servers and service time.

2.3.2.2 Utilization Law

A system’s performance is not only result of the amount of workload the system
receives, but how much the resources are used. Hence, Utilization Law in Equation
2.3 relates the arrival and service rates such that the utilization reflects if the system
has the capacity to handle the workload.

ρ = λ

µ
(2.3)

The previous relations are, indeed, a straightforward beginning for performance
evaluation in a single-server queueing network. However, to identify performance
weaknesses in a multi-server system, it is required to find the congestion from a
series of services in a system. The Bottleneck Analysis approach, described in [22]
in the context of queueing networks, aims to give insights about overloaded stations
under the premise that the utilization, µ, should be lower or equal to 1.

In case a station has more than one server to distribute and serve the workload, then

17

2. Background

Equation 2.3 is modified such the utilization is divided by the number of servers, c,
of the station. Thus resulting in Equation 2.4.

ρ = λ

µ× c
(2.4)

Then, a service station with ρ > 1 is an overloaded service and a potential bottleneck
since its performance limit has been reached. It is expected that any improvement
to overcome bottlenecks, even in just one service station, would have significant
impact on the overall system’s performance.

2.3.2.3 Universal Scalability Law

Finally, a nonlinear model developed by Gunther in 1993 [25] allows to predict the
system’s behavior by combining the well known Amdahl’s Law and Gustafson’s Law,
in a relationship called Universal Scalability Law (USL). The expression derives
from the aim of quantify performance scalability in parallel processing [14]. On
contrary to queueing theory, this model does not need for service measurements as
input. Then, the throughput, X, and the workload, N , are related in Equation 2.5
alongside three coefficients, α, β and γ, which represent contention, coherence, and
concurrency, respectively.

X(N) = γ ×N

1 + α(N − 1) + βN(N − 1) (2.5)

The author demonstrates that USL reduces to Amdahl’s Law when β = 0 and
γ = 1, it is, ideal parallelism and data consistency. In this project, USL is used
to find the optimal concurrency level and predict the throughput of the best con-
figuration. Figure 2.6 depicts the scaling effects that can be identified or predicted
using USL [14]. Here, scenario (a) corresponds to linear, the ideal, scalability with
no contention and total consistency among the nodes. Then, scenarios (b) and (c)
represents the effects of contention, it is, the cost of sharing resources among multi-
ple nodes. High contention can lead to bound system’s throughput which, in turn,
alongside inconsistency can lead to retrograde throughput by bounding the load as
well. Scenario (d) is most likely to show up when there is a high exchange activity
among the nodes, as in the case study configuration [14].

As observed, scalability is more sensitive to contention effects, such that, the higher
the contention the more bounded the scalability is with respect to the through-
put and load. This study concluded the type of scalability the system is expected
to perform according to the experimental configuration. Currently, applying USL
to production data is of research interest. Further details about the system and
adaptation of modeling techniques are explained in Chapter 3.

18

2. Background

(a) α = 0, β = 0 (b) α > 0, β = 0

(c) α � 0, β = 0 (d) α � 0, β > 0

Figure 2.6: Scaling effects than can be illustrated by the application of USL.

2.4 Related Work

Among the multiple methods for modeling computer systems, queueing networks
have been used effectively due to their versatility and simplicity when analyzing
system performance. While this method may compromise accuracy, some authors
have developed good approximations. The following review inspired the approach
used in this project.

Most of the works in performance modeling of computer systems, using queue-
ing networks, study Web systems. Similar to this project, the author of [26] ob-
tained measurements from load tests, for performance evaluation, to subsequently
use queueing networks for modeling and analysis of distributed environments. In the
end, the methodology resulted suitable to evaluate different systems architectures
under a variety of workloads. The response time was a metric determined by the
model. The study concluded, among others, that adding new devices (horizontal
scalability) is not always the solution for performance improvement.

Since analytical modeling is considered an effective evaluation approach by imple-
menting queueing networks, multiple researches have extended the simple models to

19

2. Background

more complex ones by considering heterogeneity from the workload. For instance,
Palmer et al. in [5], used a queueing network consisting of J multi-server services
to provide an efficient approximation method to model systems with complex flow
dynamics. This approach intends to understand the effects of such flow over the
dependency between overall demand and system capacity, and how resources may
be managed in light of them with heterogenous costumers.

Likewise, Jiang et al. developed a hierarchical model to understand the behaviour
of Cloud-edge data centers with heterogenous workloads. The system was described
as a hierarchical queueing model, where response time was analyzed as a function
of the arrival rate. The accuracy of the model proposed in [27] was validated with
analytical-numerical solutions and simulations. A similar approach was presented
by Chang et al. [28], who proposed a hierarchical stochastic model for performance
analysis under heterogeneous workload in scenarios where each costumer job may
require a different number of virtual CPUs. The model quantifies the impact of
arrival rate, buffer (cache) size, and number of CPUs, on performance.

However, it is not always possible to know the system organization and monitor
its behaviour. Therefore, estimating the model parameters becomes a challenge.
Awad et al. [29] developed a method to estimate service demands for open, close,
and multi-class queueing networks. In the end, the method aims to measure the
resopnse time for different workload intensity. A closed or open QN with multiple
server queues can be approximated into a single server QN using this approximation.

Other researchs point to decomposition as the most effective way to understand
system parametrization. Kuehn [30] published one of the earliest and most influen-
tial studies on queueing networks by decomposing them individually and proposing
an approximate method. In the study, N stations with single server queues are dis-
tributed over an open network. The interarrival times and service times are expo-
nentially distributed. Research revealed that generality in the arrival process is more
influential on accuracy than service process. Furthermore, the study recommends
the approximation to close networks for better results because of dependencies. Ac-
cording to the author, the single-server stations can also be replaced by multi-server
stations.

In addition to general performance evaluation models, there are also specific models
for clusters and caching systems. For instance, Vilaplana et al. [31] based their
work on queueing theory and open Jackson’s network to develop a model for cloud
architecture design that guarantees a certain level of performance. Since the model
combines M/M/1 and M/M/c queues, it is a valid reference for this project. More-
over, the model evaluates the performance through the response time and determines
the bottlenecks to correct the proper affecting parameter. Likewise, Ahmed et al.
[32] suggested a model for performance evaluation by estimating the throughput of a
cluster or the expected service time of the tasks. This work also detects bottlenecks
by using a multi-class Jackson network.

20

2. Background

As for the caching systems, there are also performance models that have been devel-
oped using queueing networks. Even though most of them characterize proxy caches
in web services, the foundations are a significant starting point for the aims of this
project. For instance, Bérczes et al. [33] updated the model from [34] to analyze
the impact of arrival rate requests in the performance of a proxy cache server by
considering the arrival rate as a Poisson process and the service times as random
variable following an exponential distribution. The numerical experiments revealed
that the response time increases with the arrival rate of requests, while more insights
were obtained from tuning the cache hit rate probability. Another widely studied
approach is to evaluate the performance of multitier applications, where at least one
of the tiers acts as a caching system. Hence, it is possible to introduce interaction
among the queues through probabilistic routing, as [35]. This scheme allows assess-
ing the natural effect of cache hits on the overall system’s performance.

The nature of computer systems and their distinct features do not give way to generic
frameworks for performance modeling. Albeit, previous research sets precedence for
meaningful comparisons of methodologies and results. This project applies the most
used approach (i.e., queueing networks) for performance modeling, but it differs in
the system architecture and parameters. Particularly the impact of cached requests
on the overall response time of system. Also, the complementary approaches to
identify scalability bounds from the results obtained in the evaluation. Finally, the
experimental setup using Bazel implementation has not been an object of study but
sets a configuration that provides uniqueness to the project.

21

2. Background

22

3
Methodology

This chapter aims to describe a general-purpose methodology for performance eval-
uation, which in turn is illustrated on the actual system. The system modeling
applies queueing theory, whereas the performance analysis was conducted through
experimentation and prediction. The latter requires to apply the universal scalabil-
ity law exposed in Section 2.3.2 in the previous Chapter. The methodology followed
in this project is summarized in three main stages: data gathering from real sys-
tem measurements, describing the system as a queueing network with mathematical
relations of performance metrics, and model validation using experimental scenarios.

The content of this chapter proceeds as follows, Section 3.1 describes the system
and its operation as a function of the remote cache and remote execution units.
Then, Section 3.2 shows meaningful measurements from the real system that allows
characterizing the system towards an operational analysis, aiming to identify bot-
tlenecks. Next hypothesis and assumptions are stated in Section 3.4. Finally, the
simulation environment is described in Section 3.5.

3.1 System Description
This project refers to the case study of the industrial partner, precisely, the in-
frastructure used for software development. In the case study, the clients are the
developers who build, compile, and test different software projects. Therefore, the
infrastructure provides for remote execution and remote cache services to clients
through the implementation of Bazel. This project focuses on the core features of
that specific infrastructure. An overview of the system’s operation is illustrated in
Figure 3.1 to point out the paths that incoming jobs might take to be served by the
system.
The system then operates as follows. The source code stipulates the environmental
variables, commands, arguments, inputs, and outputs for compilation, from which
actions are identified according to a dependency graph built by Bazel. Bazel avoids
executing actions if the inputs, arguments, environmental variables, and commands
correspond to previous executions. The code is then separated into actions accord-
ing to the building dependencies. Each action specifies all the inputs, including the
command to be executed.

Results from previous executions are stored in the Conten Addressable Storage
(CAS) unit, and mapped in the Action Cache (AC) as a key-value entry. The AC

23

3. Methodology

Figure 3.1: Overview of the operation of the case study system.

module is responsible for managing a hash table with the correspondence between
the actions and the results of the actions [11]. A successful lookup in the AC gives
way to retrieve the action results from the CAS. Otherwise, the remote execution
unit executes and puts the result in the CAS for subsequent requests.

In the production system, the cache is an array of two disks, 6TB size each. The
addressing space is divided by half among the two disks, which distribute the IO
operations. Derived from Chapter 2, it is known that a high hit rate from the cache
guarantees a faster output delivery. However, it depends on the system capacity
(i.e., the cache size in storage units), so the larger the cache, the higher number of
results to store for subsequent requests. Nevertheless, storage is not infinite, and so
the number of items needs to be replaced from time to time when the cache is full.
Here, the replacement policy comes into action. Since the impact of the replacement
policy is beyond the scope of the project, a Least Recently Used (LRU) replacement
policy is assumed from now on.

On the other hand, the remote execution unit is studied as a cluster. The clus-
ter capacity is devoted to the number of nodes in the cluster and the supported
level of parallelism. Moreover, the cluster consists of 19 virtual machines, each run-
ning a Docker container capable of executing the actions using a maximum of 32
threads per container. The threads are also known as the buildbarn workers for
Bazel. Despite the number of servers that each container can handle, there is a
physical limitation in the host VMs. There are only eight cores available per VM
to serve the threads. In other words, under a heavy workload condition, there is a
maximum of 608 tasks (i.e., threads), but only 152 can be executed in parallel.

3.2 Measuring the Real System
As mentioned previously, observation is a practical starting point to identify a
system’s behavior. Tools for system monitoring primarily intend to measure the
resources consumption at each component to compute essential metrics such as
throughput and response time. The measurements are obtained by querying the

24

3. Methodology

operating system, and the metrics result from relationships and operations. For in-
stance, the response time results from the difference between the time a task leaves
the system and the time it entered, therefore obtaining how long it takes to be
processed. Moreover, modern monitoring tools also provide interactive dashboards
with plots to follow and understand the trends through time.

Two efficient and widely used open-source tools for systems monitoring are Grafana
and Prometheus. Prometheus is a monitoring and alerting toolkit that collects and
stores metrics as time-series data in a multi-dimensional data model. Prometheus
also supports a query language for the data to be exported. On the other hand
is Grafana, a visualization solution that retrieves information from a data source,
as Prometheus, to plot as convenient. Grafana also provides a collection of shared
dashboards that fits different requirements and data sources [36].

The system of the case study uses Prometheus and Grafana for monitoring of the
remote cache and remote execution cluster. This project requires the metrics listed
in Table 3.1 for the operational analysis, described in the following Section.

Service Metrics Units

Remote
Cache

Operation rate by operation (GET, PUT) ops
Duration by operation (GET, PUT) seconds
Operation rate by GRPC status (OK, Not Found) ops

Remote
Execu-
tion
Cluster

Operation rate ops
Duration by stage(Queueing, Executing) seconds
Operation count by stage (Queued, Executed, Completed) operations

Table 3.1: Metrics available from Prometheus and Grafana monitoring in the
production system of the case study.

Hence, the metrics corresponding to the remote cache are retrieved from the Action
Cache (AC) and the Content Addressable Storage (CAS), where

• Operation rate by operation is the number of read and write operations per
time unit reported by the CAS. This metric is used to compute and µ of the
remote cache.

• Duration by operation correspond to the average time it takes for the read and
write operations. This metric is reported by the CAS and is used to compute
R of the remote cache.

• Operation rate by GRPC status corresponds to the number of operations per
time unit reported by the AC as OK or Nor Found when the lookup is suc-
cessful or not, respectively. This metric is used to compute λ and X of the
remote cache.

As for the remote execution cluster, the metrics are reported by the Scheduler and
the Build Executor units, which corresponds to the Frontend and the workers, re-
spectively. Metrics from the remote execution are also mean for the operational

25

3. Methodology

analysis, where

• Operation rate is reported by the Scheduler as the number of operations per
second assigned to the workers. Since the number of active workers equals the
number of threads, this metric corresponds to the number of active threads
per second.

• Duration by stage is reported by the workers, as the time it takes for the tasks
to wait in the queue and be executed. It is measured in seconds and R in the
cluster.

• Operation count by stage is reported by the Scheduler as the number of op-
erations in the queue, being executed, and mark as complete. λ and X are
obtained from this metric.

Analyzing the metrics from the monitoring system is the first step to understand the
system’s behavior and recognize performance anomalies. For instance, if a long task
duration is identified by observing a dashboard, another dashboard can be analyzed
within the same time series, looking for a pattern such as a high operation count
or high arrival rate. If the irregularity coincides, then it can be suggested that the
factor impacts the metric. As an illustration, Figure 1.2 (b) shows long responses
time from the remote execution cluster around 08H55; at the same time, Figure
2.3 displays a peak on arrival rates to the remote execution cluster. Therefore, an
assumption can be that the response time increases with the arrival rate. Then, the
analysis can turn around the confirmation of that proposition.

Particularly, in this project, observing data from monitoring gives way to under-
stand the entire system by, for example, compare the arrival rate of jobs to the
cache with the remote execution cluster. It can be observed in Figure 3.2 that the
number of operations per second arriving to the cache is significantly higher than
the number of operations per second arriving to remote execution cluster, within
the same time interval of 66 seconds. Therefore, it can be inferred that the remtoe
cache is more demanded than the remote execution cluster.

Besides, the remote cache and the remote execution cluster can be analyzed in
isolation. As for the remote execution cluster, the scheduler manages the incoming
actions as queued, executed, and completed. Queueing status refers to the jobs that
are scheduled and wait to be served. Then the executing status refers to the jobs
that the workers are already executing. Finally, completion refers to the jobs that
are ready for leaving the system. Even though this project focuses on the execution
stage, the queueing stage is also important to observe because it can relate to a long
response time. Illustrated with Figure 3.3 is the density distribution of job duration
by stage in the cluster. It can be seen that the most populated stage is the executing
stage. The sporadic population on the queueing stage leads to infer that long-stay
times result from non-available workers.

Another significant measure from the system is the number of workers that are
busy during the execution stage. From the monitoring, it is known that the total

26

3. Methodology

(a) Remote cache.

(b) Remote execution cluster.

Figure 3.2: Probability distribution of arrival rate of jobs to the remote cache
and the remote execution cluster.

number of executing workers corresponds to the total number of tasks that are being
executed concurrently. For example, figure 3.4 shows the density of busy workers
during eight hours.
Below are summarized the most relevant insights obtained from observations that
have been illustrated thus far in this Section:

1. There are more results retrieved from the cache than executed by the cluster.
Also, the cache is the fastest service in the system. Then, a model is needed to
evaluate that increasing the cache capacity would benefit the overall response
time of the system.

2. The highest queueing times coincide with the highest executing times. How-
ever, the number of busy workers is not the same, nor the maximum, in the
most demanding time intervals. Then, a performance evaluation of different
configurations could determine the best arrangement to exploit the cluster’s
capacity.

27

3. Methodology

(a) Queueing Stage

(b) Executing Stage

Figure 3.3: Job duration distribution by stage in the remote execution cluster.

So then, monitoring data allows to evaluate the system’s performance in terms of the
stated metrics: Response Time (R) and Throughput (X). Precisely, the response
time from advertised for the cache, Rc, corresponds to the average time it takes for
GET operations to be completed. In addition, the cache throughput, Xc, corre-
sponds to the number of successful operations per second that the cache delivers.
PUT requests are not considered in the workload since the number of GET requests
is considerably greater and only GET requests leave the system back to the user.

Figure 3.5 depicts Rc and its trend by arrival rate of GET and PUT requests.

28

3. Methodology

Figure 3.4: Density distribution of busy workers under regular workload
execution in the remote execution cluster.

As observed, the response time of PUT requests is not affected by increasing the
arrival rate, as the response time of GET requests does. This is because the larger
the buffer, the longer it takes for the cache to perform the lookup.

Figure 3.5: Measured response time by arrival rate of GET and PUT requests in
the remote cache.

Likewise, throughput was measured concerning the arrival rate for both GET and
PUT requests. As illustrated in Figure 3.6, PUT requests are served almost at the
same rate as their arrivals. However, serving GET requests is affected as the number
of arrivals increases and does not reach the expected rate.

The same metrics were obtained from the remote execution cluster. Here, the sched-
uler unit advertises the arrival rate, the number of jobs by stage (i.e., queueing and
executing), and the residence time of jobs by stage as well. Because of the stages,
the response time of this subsystem corresponds to the sum of the queueing time and

29

3. Methodology

Figure 3.6: Measured throughput by the arrival rate of GET and PUT requests
in the remote cache.

execution time, which in turn is shown in Figure 3.7. Throughput is also depicted
as a function of the number of jobs in the system in Figure 3.8.

Figure 3.7: Measured response time by the number of jobs in the remote
execution cluster.

In brief, from the magnitude of the response times from the cache and the remote
execution cluster, the overall response time is mainly affected by the time it takes
for the workers to execute the jobs. Likewise, the overall system’s performance
can benefit from improving the cache. For that reason, the following sections aim
to analyze the best strategies to improve the cache and the execution time in the
cluster.

30

3. Methodology

Figure 3.8: Measured throughput by the number of jobs in the remote execution
cluster.

3.3 Operational Analysis
The following analysis aims to ease the understanding of the existing real system’s
performance by applying the fundamental laws reviewed in Section 2.3.2. The values
used in the computations correspond to real values from the actual system. Nota-
tions from Table 2.2 are used for the quantities.

Even though there are several meaningful results from a performance analysis, this
work focuses on detecting bottlenecks. Then, the study starts with the identifica-
tion of the most demanded service between the remote cache and remote execution.
For that purpose, Equation 2.4 is applied to determine the utilization of each ser-
vice. Recall that each each parameter from the Equation 2.4 is described twice with
different index, c for the cache and w for the remote execution cluster. Then, the
following parameters are used:

• λc is the arrival rate of requests to the cache, equals the GRPC messages re-
turning status OK in the Action Cache (AC).

• µc is the service rate of the cache, obtained from the operation rate of GET
and PUT operations in the Content Addressable Storage (CAS).

• cc is the number of servers acting as cache during the observation period. This
number is fixed to two since there are two cache servers in the system object
of study.

• λw is the arrival rate of requests to the remote execution cluster, equals to
the operation rate that pass from the Non-existed status to Queued status,
advertised by the scheduler.

31

3. Methodology

• µw is the service rate of the remote execution cluster, obtained from the op-
eration rate advertised by the buildbarn workers.

• cw is the number of servers that build the cluster. However, the number of
busy workers varies according to the workload because of the load distribution.
Therefore, the value is obtained from the count advertised by the scheduler.

The values were gathered from an observation period of 66 minutes when the system
operated under a wide range of workloads. Firstly, the average number of jobs in
the cache, Nc, was computed with Equation 2.2, where Rc is the response time of
the cache. Then, the cache utilization was computed by applying Equation 2.4 to
obtain ρc. Figure 3.9 shows the impact of arrival rate and the number of jobs in the
system on cache utilization. It can be observed the overutilization of the cache once
it overcomes the threshold of 1.

Figure 3.9: Measured cache utilization by arrival rate and number of jobs.

As for the remote execution cluster, the number of jobs in the subsystem is not
required to compute since it is already provided by the production monitoring. Then,
Equation 2.4 is applied to determine the utilization of the cluster under the given
workload conditions. Figure 3.10 depicts the cluster utilization, ρw, with respect to
the number of jobs in the cluster. Note that the number of jobs correspond to the
sum of queued jobs and executing jobs.

Furthermore, by monitoring the CPU utilization in the cluster, it can be seen in
Figure 3.11 that the total number of cores is far from been used, even with the
maximum number of threads assigned to a job. Recall that the configuration of the
case study is of 152 total cores and 608 total threads.

In brief, measurements from the existing system suggest that the remote execution
cluster is not over-utilized. Unlike the remote cache, the cluster utilization does
not reach the threshold of 1, even with an increasing number of jobs in the system.
However, the average response time of the remote execution cluster is higher than the

32

3. Methodology

Figure 3.10: Measured cluster utilization by number of jobs in the remote
execution cluster.

Figure 3.11: Monitored number of cores used by number of jobs during execution
stage in the remote execution cluster.

remote cache and increases sharply, leading to suspect hardware scalability limits.
Thus, from the operational analysis results, the system needs to strengthen the cache
and speed up the cluster. A model is therefore developed to test the options towards
the assumptions mentioned above.

3.4 Analytical Model
Following the performance modeling approach described in Section 2.3, the case
study is modeled as a multi-server queueing network. It is treated as an open Jack-

33

3. Methodology

son Network model with independent queue stations corresponding to the remote
cache and execution cluster. Since each station needs a different analysis, and Jack-
son’s theorem allows each queue to be studied in isolation, then unique parameters
and capacities came up with the definition of each queue. The proposed queueing
network model is depicted in Figure 3.12.

Cache
Hit?

?s

X, Tr

?w

?u

Cache

Remote
Execution

Yes

No

Disk 1

Worker 1

Disk 2

Worker 2

Worker w

Figure 3.12: Queueing network representation of the system.

In the end, the model delivered individual insights that were relevant to the overall
performance overview.

3.4.1 Hypothesis and Assumptions
The assumptions for the model turn around the case study system. The model in-
tends to be as representative and straightforward as possible. The scheduler is not
part of the model as a unit, but its function is considered in the Remote Execution
queue subsystem. Thus, it is assumed that the scheduler follows a FIFO discipline
to dispatch the requests to the workers. In the whole system, it is also considered
that the number of incoming requests is independent of the system capacity. Finally,
every non-execution overhead, such as network transmission latency, is included in
the service time. It depends only on the size of the requests and is considered non-
congested.

As for the cache, the number of disks and their sizes are the leading performance
concerns. However, it is important to remark that the content-addressable storage
(CAS) implements a least recently used (LRU) replacement policy. Since the cache

34

3. Methodology

is modeled as a multi-server queue, the servers are assumed of the same size. There-
fore, the model starts evaluating two servers, as the case study. Like the cluster,
the cache performance is related to data transfer, and then the network bandwidth
is a vital factor. However, it is assumed that the server’s location and the network
bandwidth optimally support the data transfer rate.

On the other hand, the remote execution unit is assumed to be a cluster of ω
workers, each capable of running up to φ threads to process the incoming requests.
The threads are independent, and there are no idle threads when the scheduler is full
of requests. Queueing and execution times are considered for the computation of the
response time. There is also assumed a processor-sharing policy for load balancing
among the workers and the threads. What is more, job-thread affinity is ignored for
simplicity, which implies ignoring locality in each worker.

3.4.2 Performance Modeling
An analytical model starts with the characterization of the system. Refer to no-
tation from Table 2.2 and Figure 3.12 for the following description. The input
workload corresponds to the number of arrival jobs, and is measured in operations
per second [ops]. The input is characterized by its arrival rate, assummed as a
random variable with exponential distribution that follows a Poisson process with
parameter λ. The overall arrival rate of jobs is then divided in λc and λw such that
λ = Pc × λc + (1 −Pc) × λw, where Pc is the probability of the request’s result to be
on the cache.

The system’s outputs are the actions successfully served by both, the cache and
the remote execution. Therefore, the metrics of interest in this project, measured
over the system’s outputs, are the throughput X(λ) and the response time R, such
that:

• X(λ) counts the number of completed jobs by arrival rate, and

• R is the time it takes for a job to be served, from entering to exiting.

Recall that each job can be served by either the cache or the remote execution clus-
ter. Hence, X(λ) is measured in operations per second [ops], and R is measured in
seconds [s].

By considering to model a system in equilibrium, (i.e. λ = X), then Little’s Law is
adapted to get the system’s throughput, X(λ) as a function of the number of jobs
in the system, N , and the time a job spends in the system, R. Thus Equation 2.2
can also be expressed as Equation 3.1 below.

X(λ) = N

R
(3.1)

Regarding the response time R, it is conceptually defined as the addition of waiting
and service times spent by a job in every unit (i.e., cache and remote execution).

35

3. Methodology

Nevertheless, waiting time is not considered for the cache, and its service time
corresponds to the duration of GET() operation in the Content Addressable Storage.
As for the remote execution, both the waiting and service times are considered as
their definitions. Thus, the overall response time R is computed by Equation 3.2,
where Rc and Rw are the average response times reported by the cache and the
remote execution cluster, respectively; λc and λw correspond to the arrival rates to
the cache and remote execution cluster, respectively; and Pc is the probability for
the jobs to go to be served by the cache instead of the cluster.

Tr = λcRcPc + λwRw(1 − Pc) (3.2)

The model is based on aM/M/c queue where, the input workload is an arrival burst
of jobs that follow a Poisson process, thus the interarrival time of jobs is exponen-
tially distributed. Furthermore, the service time has a general distribution, and the
number of servers, c, corresponds the number of workers, ω, in the cluster.

The application of Little’s Law is regarded as a gold standard tool for performance
modeling. Therefore, Equation 3.1 evaluates the remote execution unit under the
following definitions: As Q is the number of jobs in the system, it equals to the
number of cache misses out of the total incoming jobs. From the real system it is
known number of jobs served by remote executors. Thus, the expected value of λw

equals to Qw as the mean number of jobs served by the remote execution unit.

3.5 Performance Prediction
This section describes the experimental scenario used to try different configurations
of remote execution services, in order to predict their performance and select the
best approach. Recall that the metrics used in the project are the response time
and the throughput, thus measured in the experimental setup.

The laboratory environment intends to be a system representation of the case study
of this project as illustrated in Figure 3.13. Here, both the cache and remote execu-
tion units are replicated from production configuration. It was mounted on a server
running XCP-ng hypervisor to host the Linux-based virtual machines that act as
frontend, backend, and workers.

Due to the CPUs availability from the server, two out of the three workers were
configured with 1 virtual CPU each. In a later configuration, one worker is powered
off for the second worker to have two virtual CPUs. A third worker was added in the
final stage to create a new experimental scenario for comparison. The third worker
had 4 CPUs. Configurations from Table 3.2 were used with the same load each, to
measure and compare the throuhput and response time.

Since the cluster has three levels of resources: number of nodes, number of cores,
and number of threads (i.e. concurrency level), then concurrency was chosen as the
scalability factor because it is part of the Bazel configuration and it affects the total

36

3. Methodology

XCP-NG

Frontend Backend Worker01

Ubuntu

Node-exporter Node-exporter Node-exporter

Prometheus

Grafana

BB remote
cache

BB remote
executor

BB sheduler

Bazel client

Worker02

Node-exporter

BB remote
executor

Figure 3.13: Overview of the experimental setup used to evaluate performance in
different configurations.

Workers Concurrency
1x1CPU 4,8,16,32
2x1CPU 4,8,16,32
1x2CPU 4,8,16,32
1x4CPU 4,8,16,32

Table 3.2: Cluster configurations to measure response time and throughput.

number of workers the scheduler sees as available for parallel execution. Therefore, a
cluster of one worker configured with a concurrency of four equals to four threads; a
cluster of two workers configured with a concurrency of four equals to eight threads.
It is, the number of buildbarn workers equals the number of nodes by the concur-
rency level.

As for the workload, the bazel test command was used to compile one of the
most demanded projects from production thus replicating intensive workload in the
cluster. The command used the following Bazel options to specify the number of
concurrent workers allowed to be used in parallel and the amount of workload, re-
spectively.

• −−jobs: to limit the number of concurrent workers. It is, the maximum num-
ber of threads allowed to run in parallel.

• −−runs_per_test: to specify the number of times the test run. It simulates
the compilation workload required by users.

The number of jobs per test run in each configuration were 100, 200, 400, 500, and
1000, and only successfully completed builds were considered. Refer to Appendix
A for the datasheet of experimental configurations and results. Moreover, the use

37

3. Methodology

of remote cache was avoided in every test to only evaluate the performance of re-
mote execution cluster. Also, the services were restarted after completion of each
test to reduce the effect of local caches on compilations. Monitoring of the experi-
mental lab was performed using Prometheus and Grafana, as the production system.

Finally, USL function in R was used to forecast the scalability of the experimental
cluster as a function of concurrency level. The functions reproduces the model and
returns the coefficients, α, β and γ, to understand the conditions under which the
system’s performance is operating [37]. Before using the usl function, it is required
to measure the throughput under controlled conditions, included the normalized
measured of X(1), where 1 is the concurrency level. At least a dozen of measure-
ments are needed for the model to predict the scalability limit. Here, the evaluated
system was the experimental cluster of three nodes, a total of six cores, and a con-
currency level ranging from 1 to 12. Appendix B shows the code used in R and its
output. The latter is explained in the next Chapter.

38

4
Results and Discussion

This chapter summarizes the results from the operational analysis, the analytical
model, and the performance prediction, such that the most demanded service, the
best configuration, and the scalability bounds, can be illustrated as a result of each
operation, respectively.

4.1 Operational Analysis Results
As the previous chapter stated, the aim of the operational analysis was to identify the
most demanded service and therefore a system’s bottleneck. By applying Equation
2.4 and parametrizing the model as Section 3.3 describes, it turned out that the
cache is performing as a bottleneck because its utilization overcomes the threshold
of 1 as the number of jobs in the system increases. Figure 4.1 depicts the utilization
trend of both cache and remote execution cluster, by the number of jobs in the
respective system.

It is important to note that, even though the cache is over utilized, it still has the low-
est service time, which made the cache the perfect candidate to apply the analytical
model in order to estimate performance improvements from different configurations.

4.2 Analytical Model Results
Improving the cache can come from increasing the disk size of each cache server, or
increasing the number of cache servers. It is, either vertical or horizontal scalability.
The aim of applying the analytical model by parametrizing the cache, was to find
the lowest response time and the highest throughput. Figures 4.2 and 4.3 show the
advantages of increasing the number of caches by applying Equation 3.2 and trying
different cache probabilities, versus increasing the cache capacity by reducing the
service time in the cache queue subsystem.

It can be observed that, the lowest response time is obtained by increasing the
amount of work sent to the cache. Instead, increasing the cache size makes the cache
taking longer to perform a lookup because of the big memory page to traverse. Thus,
the cache performance benefits from horizontal scalability solutions (i.e., adding
servers in the queueing model). Figure 4.4 illustrates the impact of increasing the
number of servers in the cache queue system, where the response time decreased by
half if, for instance, doubling the number of servers from k = 2 to k = 6 in the cache

39

4. Results and Discussion

(a) Cache utilization by number of jobs in the system

(b) Cluster utilization by number of jobs in the system

Figure 4.1: Computed utilization in the cache and the cluster by number of jobs
in the system by application of Utilization Law.

utilization. Note that k = 1 is not plotted because the initial configuration of the
cache system is k = 2; therefore, a downgrade is not an option from the previous
analysis and results.

As a result, using a minimum of four cache servers keep the cache utilization under
the threshold of 1, for the workload taken from the case study.

40

4. Results and Discussion

Figure 4.2: Estimated response time from horizontal and vertical scalability
improvements to the cache.

Figure 4.3: Estimated throughput from horizontal and vertical scalability
improvements to the cache.

4.3 Performance Prediction Results
On contrry to the cache, the remote execution cluster was mainly evaluated by using
the experimental setup and configurations from Table 3.2, due to available hardware
to perform the tests. Figure 4.5 shows the measured response time and throughput,
respectively, for each proposed configuration. Recall that these configurations al-
lowed to asses vertical versus horizontal scalability effects, such that, increasing the

41

4. Results and Discussion

Figure 4.4: Estimated impact of the number of cache servers on the cache
utilization by the number of GET requests.

number of nodes, from one to two, represents horizontal scalability, whereas increas-
ing the number of CPUs, from one to four, represents vertical scalability. Moreover,
the concurrency level varies, such that the cluster performance was evaluated as
long as the number of threads increased.

From the assessment, it can be noted that the 1x4CPUs configuration performed
better when concurrency increases, compared to the 2x1CPU configuration. In other
words, a higher level of concurrency is better handled by a higher number of CPUs
than a higher number of nodes. Hence, better performance means the combination
of highest throughput and lowest response time. Thus, vertical scalability performs
better than horizontal scalability for the simulation scenario of this case study. It
is important to have in mind, that the evaluations were limited by the available
resources and it could not be possible to assess more configurations.

Also, the results illustrate that increasing the concurrency level within a cluster
of nodes with single processor, impacts the response time and the throughput neg-
atively. This expected behaviour responds to race conditions between the threads.

Another important insight from the evaluation comes from comparing the perfor-
mance of 1x2CPU configuration versus the 2x1CPU configuration. Even though
there is no significant difference that lead to conclusions, it brings to discussion the
concern about synchronization among multiple nodes in a cluster. Here, it can be
argued that the communication network of the system is considerable slower than
the internal communication network between processors, which in the end lead to
increasing latency when passing messages.

Finally, the Universal Scalability Law was applied over the previous results, spe-
ficially, over the best configuration to determine its scalability bounds. The value

42

4. Results and Discussion

(a) Measured response time by concurrency level, per cluster configuration.

(b) Measured throughput by concurrency level, per cluster configuration.

Figure 4.5: Measured response time and throughput by concurrency, for each
cluster configuration arranged in the experimental setup.

pair of measured throughput by concurrency level, obtained from the 1x4CPUs con-
figuration, were taken as the input for the USL model. The model is available as
an open-source package for R, which applies Equation 2.5 to provide good approx-
imations about the performance scalability trend in the assessed system. The only
drawback of using the USL package is the need of, at least, half dozen of measured
values for better accuracy on predictions. Figure 4.6 illustrates the measured and
the modeled throughput, according the the USL model. Appendix B shows the code
and the complete result from the USL simulation.

As a result, the model computes the limit throughput, according to the Amdahl’s
asymptote, as well as the peak throughput and the optimal throughput. Further-
more, the model calculate the coefficients, α, β, and γ, from which scaling effects
can be deducted, as those depicted in Figure 2.6. Therefore, for the following dataset:

43

4. Results and Discussion

Figure 4.6: Predicted scalability according to USL model.

concurrency = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
throughput = (8.09, 15.05, 21.53, 26.36, 30.41, 33.45, 35.88, 37.23,

39.27, 40.20, 40.61, 41.63)

The model estimate the following coefficients:
α = 0.0680652
β = 0.0049927
γ = 0.0049927

And the following scalability bounds:
Limit throughput = 121.7
Peak throughput = 41.54 at concurrency 13.66
Optimal throughput = 41.46 at concurrency 14.69

From the results exposed above, β > 0 reveals that the system follows a retrograde
throughput, which can be a consequence of multithreading. Likewise, the experi-
mental setup performs better at a concurrency of 14.69, which does not deliver the
highest throughput, but a tradeoff between performance and resources usage.

44

5
Conclusions

This project addressed the performance evaluation, modeling, and analysis of a
particular architecture proposed by the industrial partner as a case study. The par-
ticularity of the target system was the combination of two essential techniques for
high performance in distributed systems: remote caching and remote execution clus-
tering. Moreover, the following methods were combined and used in different stages
of the study: queueing networks, operational analysis (a.k.a. bottleneck analysis),
and universal scalability law. In the end, the study delivered the expected results
needed to answer the proposed hypothesis.

From the performance evaluation and applying the fundamental laws, it could be
determined that the remote cache was an overutilized service under the reported
workload. However, the operational analysis showed that the cache was also the
fastest and most efficient unit in the system. Therefore, a model was used to verify
that upgrading the cache represents a noticeable response time reduction. Here, it
was observed that cache benefited more from horizontal than vertical scalability.

By upgrading the cache, it is important to differentiate the number of caches and
the cache size. The number of caches equals the number of servers in the queueing
model, whereas the cache size is the reduction of the service time. Therefore, due to
the existence of an Action Cache (AC), increasing the storage capacity by cache disk
would increase the lookup time and the overall response time. Instead, since the AC
performs the first filter by memory address, then the optimal solution is to increase
the number of servers acting as caches for the lookup time to be reduced in each
one. It is important to note that, due to the particular operation of the cache, as
a buffer, the results are not as accurate as expected because the replacement policy
was not considered a factor in the model.

On the other hand, as for the remote execution cluster, even though the evalua-
tion did not show any evidence of performance degradation by the arrival rate or
the number of jobs in the system, the cluster was emulated by an experimental
scenario aiming to find the best configuration as a tradeoff between the number of
nodes in the cluster and the concurrency level. In the end, it turned out that the
cluster performance benefits from vertical scalability. It is, more CPUs per node in
the cluster. However, it was expected a scalability bound because of its capacity to
handle contention, concurrency and coherence withing a multithreaded configura-
tion. Therefore, USL was applied to the records giving way to estimate the optimal
concurrency level, based on the measurements of the best configuration (1x4CPUs).

45

5. Conclusions

All in all, queueing networks technique allows to characterize a system and tune
its parameters to find the best combination from the proposed enhancements. As
for simplicity and accuracy, queueing networks are suitable to represent multiple
systems and their interactions, as well as being completemented with multiple tech-
niques to get better insights about performance. Vertical and horizontal scalablity
don’t benefit the systems in the same way, that is one of the reasons why a need
for performance evaluation is needed, eventually, to estimate the capacity bounds
of the system.

46

Bibliography

[1] K.-s. J. Hielscher, Measurement-Based Modeling of Distributed Systems. PhD
thesis, Universität Erlangen-Nürnberg, 2008.

[2] J.-Y. Le Boudec, Performance Evaluation of Computer and Communication
Systems. 2.3 ed., 2015.

[3] H. Ben-Ammar, Y. Hadjadj-Aoul, G. Rubino, and S. Ait-Chellouche, “On
the performance analysis of distributed caching systems using a customizable
Markov chain model,” Journal of Network and Computer Applications, vol. 130,
no. November 2018, pp. 39–51, 2019.

[4] G. Bai and C. Williamson, “Workload characterization in Web caching hier-
archies,” Proceedings - IEEE Computer Society’s Annual International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tions Systems, MASCOTS, vol. 2002-Janua, pp. 13–22, 2002.

[5] R. Palmer and M. Utley, “On the modelling and performance measurement
of service networks with heterogeneous customers,” Annals of Operations Re-
search, vol. 293, no. 1, pp. 237–268, 2020.

[6] R. Shi, Y. Gan, and Y. Wang, “Evaluating scalability bottlenecks by work-
load extrapolation,” in 2018 IEEE 26th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MAS-
COTS), (Milwaukee, WI, USA), pp. 333–347, IEEE, 2018.

[7] A. Kattepur and M. Nambiar, “Service demand modeling and performance
prediction with single-user tests,” Performance Evaluation, vol. 110, pp. 1–21,
2017.

[8] S. Bagchi, “The Modeling Approaches of Distributed Computing Systems,” in
Communications in Computer and Information Science, vol. 257, pp. 479–488,
2011.

[9] M. Frincu, B. Irimie, T. Selea, A. Spataru, and A. Vulpe, “Evaluating Dis-
tributed Systems and Applications Through Accurate Models and Simulations,”
Studies in Big Data, vol. 36, pp. 1–18, 2018.

[10] Y. Li, Y. Gupta, E. L. Miller, and D. D. Long, “Pilot: A framework that
understands how to do performance benchmarks the right way,” in IEEE 24th
International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, pp. 169–178, IEEE, 2016.

[11] L. A. Alpha, “Using remote cache service for Bazel,” Communications of the
ACM, vol. 62, no. 1, pp. 38–42, 2019.

[12] S. Pratt, Distributed Systems, vol. 33. 1991.
[13] A. S. Tanenbaum and H. Bos, Modern Operating Systems. Amsterdam, The

Netherlands: Pearson, fourth ed., 2008.

47

Bibliography

[14] N. J. Gunther, “How to quantify scalability, the universal scalability law (usl),”
Feb 2020.

[15] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach. 5th ed., 2012.

[16] P. Rodriguez, C. Spanner, and E. W. Biersack, “Analysis of web caching archi-
tectures: Hierarchical and distributed caching,” IEEE/ACM Transactions on
Networking, vol. 9, no. 4, pp. 404–418, 2001.

[17] S. Traverso, P. Torino, M. Ahmed, M. Garetto, P. Giaccone, and S. Niccolini,
“Temporal Locality in Today’s Content Caching: Why it Matters and How to
Model it,” ACM SIGCOMM Computer Communication Review, vol. 43, no. 5,
pp. 5–12, 2013.

[18] A. Montazeri, N. R. Beaton, and D. Makaroff, “LRU-2 vs 2-LRU : An Analytical
Study,” pp. 571–579, 2018.

[19] R. Jain, The Art of Computer Systems Performance Analysis: Techniques For
Experimental Design Measurements Simulation And Modeling. 1991.

[20] E. D. Lazowska, Quantitative System Performance Computer System Analysis
Using Queueing Network Models. New Jersey: Prentice-Hall„ 1984.

[21] M. Harchol-Balter and M. Harchol-Balter, Performance Modeling and Design
of Computer Systems-Queueing Theory in Action. 2013.

[22] Y. C. Tay, Analytical performance modeling for computer systems, vol. 7. 2018.
[23] K. Rahimizadeh, M. Analoui, P. Kabiri, and B. Javadi, “Performance modeling

and analysis of virtualized multi-tier applications under dynamic workloads,”
Journal of Network and Computer Applications, vol. 56, pp. 166–187, 2015.

[24] A. O. Allen, Probability, Statistics, and Queueing Theory With Computer Sci-
ence Applications. San Diego, CA, USA: Academic Press, second ed., 1990.

[25] N. J. Gunther, “Simple capacity model of massively transaction systems,” 1994.
[26] T. Rak, “Response Time Analysis of Distributed Web Systems Using QPNs,”

Mathematical Problems in Engineering, vol. 2015, 2015.
[27] L. Jiang, X. Chang, J. Mišić, V. B. Mišić, and R. Yang, “Performance analy-

sis of heterogeneous cloud-edge services: A modeling approach,” Peer-to-Peer
Networking and Applications, vol. 14, no. 1, pp. 151–163, 2021.

[28] X. Chang, R. Xia, J. K. Muppala, K. S. Trivedi, and J. Liu, “Effective modeling
approach for iaas data center performance analysis under heterogeneous work-
load,” IEEE Transactions on Cloud Computing, vol. 6, no. 4, pp. 991–1003,
2018.

[29] M. Awad and D. A. Menascé, “Deriving parameters for open and closed QN
models of operational systems through black box optimization,” ICPE 2017 -
Proceedings of the 2017 ACM/SPEC International Conference on Performance
Engineering, pp. 127–138, 2017.

[30] P. J. Kuehn, “Approximate Analysis of General Queuing Networks Decompo-
sition,” in IEEE Transactions on Communications, vol. COM-27, (Melbourne,
Australia), pp. 113–126, 1979.

[31] J. Vilaplana, F. Solsona, I. Teixidó, J. Mateo, F. Abella, and J. Rius, “A
queuing theory model for cloud computing,” Journal of Supercomputing, vol. 69,
no. 1, pp. 492–507, 2014.

48

Bibliography

[32] A. M. Mohamed, L. Lipsky, and R. A. Ammar, “Performance Modeling of
a Cluster of Workstations,” Proceedings of the International Conference on
Communications in Computing, no. May 2014, pp. 227–233, 2003.

[33] T. Bérczes and J. Sztrik, “Performance modeling of proxy cache servers,” Jour-
nal of Universal Computer Science, vol. 12, no. 9, pp. 1139–1153, 2006.

[34] I. Bose and H. K. Cheng, “Performance models of a firm’s proxy cache server,”
Decision Support Systems, vol. 29, no. 1, pp. 47–57, 2000.

[35] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “Analytic
modeling of multitier Internet applications,” ACM Transactions on the Web,
vol. 1, no. 1, 2007.

[36] P. A. 2014-2021, “Overview: What is prometheus?.” https://prometheus.io/
docs/. Accessed: 2021-05-26.

[37] N. J. Gunther and S. Moeding, “Analyze system scalability with the universal
scalability law,” Feb 2020.

49

https://prometheus.io/docs/
https://prometheus.io/docs/

Bibliography

50

A
Experimental Setup Configuration

Table A.1: Configurations and results of the experimental setup.

Begin of Table
VM concurrency bb-workers Workload Time(s) AvgThroughput(ops)

1x1CPU 4 4 100 229.920 16.000
1x1CPU 4 4 200 277.639 27.000
1x1CPU 4 4 500 439.274 22.000
1x1CPU 4 4 1000 882.031 23.700
1x1CPU 8 8 100 227.865 18.000
1x1CPU 8 8 200 271.752 25.600
1x1CPU 8 8 500 455.779 25.600
1x1CPU 8 8 1000 693.635 23.333
1x1CPU 16 16 100 229.209 9.000
1x1CPU 16 16 200 293.146 10.400
1x1CPU 16 16 500 432.853 18.200
1x1CPU 16 16 1000 849.869 17.800
1x1CPU 32 32 100 231.327 5.400
1x1CPU 32 32 200 309.547 6.400
1x1CPU 32 32 500 549.627 10.300
1x1CPU 32 32 1000 953.946 12.050
1x2CPU 4 4 100 145.291 23.500
1x2CPU 4 4 200 185.941 23.500
1x2CPU 4 4 500 290.947 16.600
1x2CPU 4 4 1000 471.205 36.400
1x2CPU 8 8 100 152.765 23.500
1x2CPU 8 8 200 174.914 37.600
1x2CPU 8 8 500 280.733 39.200
1x2CPU 8 8 1000 478.982 26.200
1x2CPU 16 16 100 145.060 33.400
1x2CPU 16 16 200 178.793 24.500
1x2CPU 16 16 500 277.835 40.600
1x2CPU 16 16 1000 496.280 36.400
1x2CPU 32 32 100 143.960 20.000
1x2CPU 32 32 200 181.905 28.667
1x2CPU 32 32 500 287.265 17.000
1x2CPU 32 32 1000 487.875 16.800

I

A. Experimental Setup Configuration

Continuation of Table A.1
VM concurrency bb-workers Workload Time(s) AvgThroughput(ops)

1x4CPU 4 4 100 367.168 2.800
1x4CPU 4 4 200 563.544 12.800
1x4CPU 4 4 500 569.635 9.600
1x4CPU 4 4 1000 940.755 14.700
1x4CPU 8 8 100 273.699 14.250
1x4CPU 8 8 200 275.275 17.600
1x4CPU 8 8 500 403.407 21.700
1x4CPU 8 8 1000 630.227 20.700
1x4CPU 16 16 100 231.042 14.200
1x4CPU 16 16 200 271.429 25.750
1x4CPU 16 16 500 325.336 41.167
1x4CPU 16 16 1000 517.434 56.200
1x4CPU 32 32 100 202.058 28.000
1x4CPU 32 32 200 220.864 30.667
1x4CPU 32 32 500 268.720 76.200
1x4CPU 32 32 1000 379.120 73.600
2x1CPU 2 4 100 232.829 28.400
2x1CPU 2 4 200 239.570 22.000
2x1CPU 2 4 500 307.520 44.400
2x1CPU 2 4 1000 454.184 30.600
2x1CPU 4 8 100 178.878 21.500
2x1CPU 4 8 200 217.833 20.400
2x1CPU 4 8 500 299.895 20.600
2x1CPU 4 8 1000 445.794 19.100
2x1CPU 8 16 100 184.807 21.000
2x1CPU 8 16 200 224.889 21.400
2x1CPU 8 16 500 295.779 46.900
2x1CPU 8 16 1000 468.985 20.000
2x1CPU 16 32 100 176.468 19.500
2x1CPU 16 32 200 222.474 35.000
2x1CPU 16 32 500 299.541 45.200
2x1CPU 16 32 1000 461.415 20.600
2x1CPU 32 64 100 186.682 19.000
2x1CPU 32 64 200 197.277 20.500
2x1CPU 32 64 500 325.479 24.889
2x1CPU 32 64 1000 535.532 27.000

End of Table

II

B
The USL package in R

Below is the R code used to model the data using the Universal Scalability Law.

// Performance Evaluation using USL
library(usl)
//Define the dataset
concurrency=c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
throughput=c(8.09, 15.05, 21.53, 26.36, 30.41, 33.45, 35.88,
37.23, 39.27, 40.20, 40.61, 41.63)
specsdm=data.frame(concurrency,throughput)

//Use the usl model in the dataset
usl.model<-usl(throughput concurrency,specsdm)

print("Summary")
print(summary(usl.model))

efficiency(usl.model)
barplot(efficiency(usl.model), ylab="efficiency/concurrency",
xlab="concurrency")

//Predict throughput for higher concurrency level
predict(usl.model, data.frame(concurrency = c(16, 32, 64)))

Output:

[1] "Summary"

Call: usl(formula=throughput concurrency, data=specsdm)

Efficiency:
Min 1Q Median 3Q Max
0.4187 0.5162 0.6457 0.8130 0.9763

Residuals:
Min 1Q Median 3Q Max
-0.51900 -0.21361 0.05938 0.15826 0.33281

III

B. The USL package in R

Coefficients:
Estimate Std. Error t value Pr(>|t|)

alpha 0.0680652 0.0075417 9.025 8.35e-06 ***
beta 0.0049927 0.0004278 11.672 9.75e-07 ***
gamma 8.2861415 0.1361476 60.861 4.40e-13 ***

–-

Signif.codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ” 1

Residual standard error: 0.2835 on 9 degrees of freedom

Scalability bounds:
limit: throughput 121.7 (Amdahl asymptote)
peak: throughput 41.54 at concurrency 13.66
opt: throughput 41.46 at concurrency 14.69

1 2 3 4 5
0.9763290 0.9081428 0.8661048 0.7953038 0.7339966

6 7 8 9 10
0.6728101 0.6185888 0.5616305 0.5265820 0.4851474

11 12
0.4455413 0.4186709

Predicted Throughput for higher concurrency level:
1 2 3

41.18315 32.88633 20.86299

IV

	List of Figures
	List of Tables
	Introduction
	Context
	Goals and Challenges
	Outline

	Background
	Concepts
	Distributed Systems
	Caching

	A systematic approach for performance evaluation
	Techniques for computer systems modeling
	Queueing Networks
	Fundamental Laws
	Little's Law
	Utilization Law
	Universal Scalability Law

	Related Work

	Methodology
	System Description
	Measuring the Real System
	Operational Analysis
	Analytical Model
	Hypothesis and Assumptions
	Performance Modeling

	Performance Prediction

	Results and Discussion
	Operational Analysis Results
	Analytical Model Results
	Performance Prediction Results

	Conclusions
	Bibliography
	Experimental Setup Configuration
	The USL package in R

