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Abstract 

While facing continuously stricter legislation due to the threat of global warming, 

vehicle manufacturers strive to find alternative means of transportation such as the 

Battery Electric Vehicle (BEV). While doing so, uncertainties regarding performance 

are halting the shift to more sustainable alternatives.  

This thesis will therefore build a framework for retailers to predict and estimate to 

which degree a BEV can replace a fossil-driven vehicle in specific missions. The 

framework will try to describe the details of transport missions while remaining 

relatively computationally light. This framework developed within the COVER project 

is called Operating Cycle (OC). It is a description of a road transport mission with an 

adequate level of detail that captures the physical and practical phenomenon of a 

transport mission. It can be divided into two sub-descriptions, the deterministic 

Operating Cycle (dOC) and stochastic Operating Cycle (sOC), which are the 

representations adopted in this thesis. Using vehicle log data from a specific Internal 

Combustion Engine Vehicle (ICEV), the OC format is extended to include models for 

Payload, Mission stop and EV-Recharging. Using the models of the OC format, a 

feasibility analysis of replacing a specific vehicle with a BEV is conducted. The 

resulting analysis shows that the current BEV fleet is not able to complete all the 

missions that the ICEV completed without alteration of specific transport missions.  

Keywords: Operating Cycle, Stochastic modelling, Transport mission, Battery Electric 

Vehicle, Depth of Discharge, State of Charge, deterministic Operating Cycle 
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Notations 

Symbol Explaination 

𝑂𝐶𝑠 stochastic Operating Cycle parameters 
𝑅𝑠 Stochastic road parameters 
𝑊𝑠 Stochastic weather parameters 
𝑇𝑠 Stochastic traffic parameters 
𝑀𝑠 Stochastic mission parameters 
𝑋𝑘 Random variable 

ℇ(⋅) Exponential distribution 
𝜆𝑠 Sign intensity 
𝑇𝑘 Standstill time stochastic variable 

𝑢(⋅) Uniform distribution 
𝑡𝑚𝑖𝑛 Lower boundery for standstill time 
𝑡𝑚𝑎𝑥 Upper boundery for standstill time 

𝑉𝑘 Recommended speed stochastic variable 
𝑣𝑚𝑖𝑛 Lower boundary for recommended speed 
𝑣𝑚𝑎𝑥 Upper boundary for recommended speed 

𝑃 Proability 
𝑆𝑉 Collection of possible speed signs 
𝑝𝑉𝑖𝑗 Probability of transition from state i to state j 
𝑓𝑉𝑖𝑗 Number of transitions from state I to state j. 

𝐴𝑅(⋅) Autoregressive 
𝑀𝐴(⋅) Moveing average 

𝐼(⋅) Integration 
𝑌𝑘 Road grade random variable 
𝜙𝑌 AR(1) model parameter 
𝐿ℎ  Hill length 
𝜎𝑒𝑌

2  Error variance 
𝐶𝑘  Curvature random variable 

𝑟𝑡𝑢𝑟𝑛 Minimum curvature radius 
μ  Mean 
𝜇𝑇 Mean temperature 
𝜇Ψ Mean relative humidity 
𝑇𝑦 Annual trend amplitude, temperature 
Ψ𝑦 Annual trend amplitude, relative humidity 
𝜔𝑦 Annual frequency 
𝜔𝑑  Daily frequency 
Ψ𝑑  Daily trend amplitude, relative humidity 
𝑇𝑑  Daily trend amplitude, temperature 
𝜑  Phase angle 
�̃�𝑘  Stochastic variable for temperature 
Ψ̃𝑘  Stochasitc variable for relative humidity 

ARIMA(p, d, q) Autoregressive integrated moving avarage 
ϕP(𝐿) Autoregressive lag polynomial 

𝑐𝑃  drift 
𝐻𝑝,𝑘  Descrete random variable for precipitation 

𝐺𝑎(α, β) Gamma distribution 
𝐘𝑤,𝑘  Wind speed and direction vector. 



 

 
 

𝑐𝑤  Constant offset 
𝚽𝑤(𝐿) Matrix operator 

ρ𝑡(𝑥, 𝑡) Traffic density 
𝑣𝑡(𝑥, 𝑡) Traffic speed 
𝑞𝑡(𝑥, 𝑡) Traffic flow 

𝑣𝑒  Vehicle speed 
𝑣𝑓  Free flow speed 
α Scale parameter, (first shape parameter for stable 

distributions) 
β Shape parameter 
γ Scale parameter 
δ Location parameter 
μ Location parameter 
σ Scale parameter 
ν Shape parameter 
𝑇 Threshold 
𝑇𝑘  Connector type 

𝑃𝑖𝑛𝑖𝑡  Initial state probabilities 
𝛤(⋅,⋅) Gamma distribution 

𝑃𝑘  Max charge power 
𝐶𝑐,𝑘  Capacity (number of connectors) 
𝑃0 Probability of zero vehicles in the system. 
𝐿𝑠 Average number of vehicles in the system 
𝑊𝑠 Average time spend in the system 
𝐿𝑞 Average number of vehicles in the queue 
𝑊𝑞 Average time spend in the queue 

𝑊𝑠,𝑣𝑒ℎ𝑖𝑐𝑙𝑒  Estimated time spend in the system for the simulated vehicle. 
Ereq Requested energy 
ω Weights 
𝐵𝑖  Sequence of consecutive identical samples. 

  



 

 
 

List of Acronyms 

OC  - Operating Cycle 
dOC  - Deterministic Operating Cycle 
sOC  - Stochastic Operating Cycle 
GCW  - Gross Combination Weight 
AR  - Autoregressive 
MA  - Moving average 
ARIMA - Autoregressive integrated moving average 
BEV  - Battery Electric Vehicle 
ICEV   - Internal Combustion Engine Vehicle 
HD  - Heavy Duty 
IEA  - International Energy Agency 
EV  - Electric vehicle 
SoC  - State of Charge 
DoD  - Depth of Discharge 
VECTO  - Vehicle Energy Consumption calculation TOol 
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1 Introduction 

This thesis is examining the feasibility of replacing a specific ICEV with a BEV. The 
introduction gives a thorough exposition of the problem formulation, background 
and methods used throughout this thesis. 

1.1 Background 

Many countries and regions have taken on the climate challenge by setting goals 
to reduce carbon dioxide from transport. Quantifying and reducing carbon dioxide 
emissions is not only a requirement by legislation but also a customer need for 
many. Trivially, companies strive to match the market needs but a survey given to 
1.500 corporate executives found that 70% of those surveyed indicated that their 
company had not made a clear case towards sustainability by 2009 [1]. The study 
also indicated that sustainability initiatives usually are compliance-driven rather 
than strategic, thus the lack of well-defined sustainability projects. Unlike most 
initiatives, this thesis tries to find sustainable solutions that have a possibility of 
being profitable for companies. Not only to meet customer needs and legislation 
but also by distributing the optimal vehicle concerning vehicle use.  
 
As mentioned, the transport sector faces multiple emission-related legislations 
and will likely continue to do so in the future. It is therefore necessary to present 
the laws and targets that the vehicle industry must obey in the nearest future. 
Sweden has recently (2018) decided on climate goals targeted towards 
transportation. Swedish authorities demand a CO2 reduction of 70% within the 
transportation sector over two decades (2010 to 2030) [3]. EU demands an 
emissions reduction from newly produced heavy vehicles of 30% from the year 
2030 [5] onwards. The reduction is compared against reference CO2 emissions 
based on monitoring data from the period 1st of July 2019 to 30th of June 2021. To 
remain competitive within the vehicle industry one will therefore have to find a 
solution that complies with the climate goals that exist and will exist going 
forward.  
 
Except for legislation, there exist ethical problems with burning fossil fuels. The 
continents that have the highest C02 emissions per capita are generally not those 
that suffer from the consequences [8]. The article states that a two-degree increase 
in average temperature would risk putting half of Africa’s population at risk of 
undernourishment. Also, multiple studies manifest that the world must make a 
change in trajectory concerning CO2 emissions to avoid causing irreversible 
damage to certain ecosystems. To quantify the impact of greenhouse gases, Nasa 
argues that the average temperature has risen about 1 degree C since 1880 [6]. 
Given the increase in C02 emissions, see Figure 1-1, one might argue that our 
current trajectory is pointing towards a warmer earth (except for the COVID 
pandemic year 2020). 
 



 

CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis 2 
 

 

 
Figure 1-1. Annual CO2 emissions worldwide [6]. 

To quantify, predict and analyse C02 emissions from the transportation sector 
there have been numerous initiatives, but an important one is the Vehicle Energy 
Consumption calculation TOol (VECTO) [2] developed by the European 
commission. Although very precise concerning C02 emissions and energy 
consumption, it does lack variation and has a risk of consolidating old technical 
solutions. The software includes 5 reference missions that are used in the 
quantification of vehicle emissions. The actual energy consumption of vehicles 
depends on vehicle use and does therefore not always follow the declared values. 
The automotive industry has for a long time searched for suitable methods and 
mathematics to describe transport assignments and actual vehicle use. A 
description of a transport mission developed through the COVER project is the OC. 
The OC format can be divided into two parts, deterministic OC and stochastic OC 
and can be further read about in Chapter 2. 
 
Except for the sustainability aspect, there are strategic reasons to reduce the spill 
of certain minerals and materials. Material shortage is currently not a big problem 
for the vehicle industry, except for certain components, but with the rise of BEV 
and battery-driven technology, the IEA predicts the lithium market to have supply 
shortages as soon as 2025 [4] which inevitably will drive up the prices and disrupt 
the supply chain. Another study written by USGS [14] expects the Lithium world 
reserve to be 22 million tonnes, which corresponds to two hundred twenty times 
the production volume of 2021. But the problem is not that there is too little 
lithium on planet earth, it is the rate of production that IEA argues cannot with 
current technology keep up with future needs. It is therefore in everyone’s interest 
to minimize lithium redundancy in product deployment and in the future find a 
sustainable means of recycling old batteries.  
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Apart from developing good sustainable products, companies must convince 
haulages and customers that their missions are better operated by the BEV rather 
than an ICEV to meet the climate targets set by the EU. Haulages have relied on 
ICEVs since time immemorial and do need incentives to make a shift. By 
facilitating an answer to the question “Can a BEV replace my ICEV without altering 
my transport missions?”, consumers should feel more secure in the transition to 
BEVs. The answer to that question is to be investigated in the present thesis, 
Virtual study of an electric heavy-duty vehicle in real operation.  

1.2 Problem motivating the project 

As mentioned in Section 1.1, there are numerous reasons for the transport sector 
to develop a market-leading non-fossil fleet. In the transition from internal 
combustion engine vehicles (ICEV) to battery electric vehicles (BEV), consumers 
are questioning the reliability of the new BEVs. To assess the problem, a detailed 
description of vehicle use is required, a description that is robust enough to 
function when the access to road data is limited and detailed enough to give a 
valuable result.  

1.3 Envisioned solution 

The thesis provides a skeleton solution for how heavy vehicles can be tailored to 
their usage. The skeleton solution makes use of previous work written within the 
COVER project as well as contributes to the format with new models. Specifically, 
source code and theory developed by Erik Nordström [9], Luigi Romano [10] and 
Pär Pettersson [11] to name some of the contributors. This thesis contributes by 
incorporating 3rd party data in the OC format such as weather and road data. All 
of this is packaged into an automized process that by as little interaction and 
modifications as possible can be run in another setting, for example, using data 
from another haulage. 

1.4 Objective 

The main objective of this study is to investigate to what extent a specific customer 
can utilize a BEV to accomplish their transport missions with success compared to 
today’s diesel-based fleet using a further developed OC format.  

1.5 Deliverables 

• A description of the  
o current sOC implementation. 
o contributions from the present thesis to the OC format, specifically 

within the mission property. 
• An analysis   

o using large samples of vehicle log data, specifically Gross 
Combination Weight (GCW) and mission stops. 

o of simulation results using dOCs. For example, energy consumption 
and mission failure/success rate. 

• A framework consisting of models, methods and tools that are reusable in 
another setting. For example, using log files from another haulage with 
different vehicles.  
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• Sizing of the battery pack with respect to the accessibility of charging 
stations for a specific customer. 

• Integration of road and weather data from 3rd party data suppliers into the 
dOC format. For example, altitude, air density and road signs.  

1.6 Limitations 

• The data processed was recorded by one single truck between the fall of 
2020 to the fall of 2021. Third-party road data deliveries do not consider 
the date of recording, so there is a possibility that the road data retrieved 
is misrepresentative for certain parts of a mission.  

• The weather data are recorded at Landvetter flygplats as opposed to the 
road-specific values one would like to have. Also, the data is recorded every 
hour with data losses being a commonality.  

• Working with big data requires the simulations to be robust and fast. Some 
functionalities are not possible to have. For example, a complex tyre model. 

• The result from this thesis is a product of the data collected by one vehicle 
and simulated using one vehicle model. Other vehicles and vehicle models 
might produce different results.  

1.7 Method 

This Section will describe the different methods that will be used throughout this 
thesis. Here it is important to distinguish between mission framework and 
transport mission. Mission framework refers to the start and end of a transport 
mission, whereas the transport mission represents everything affecting the 
vehicle under operation. 

1.7.1 Mission framework definition 

Previous theses written within the same project, the COVER project, have defined 
the framework of a mission as the start to the end of a log file, where the data 
logging starts and stops when the engine does so. In contrast, this project will 
allow a mission to be considered as a whole day of work. This mission framework 
exposes BEV-specific problems that an ICEV would not encounter. Such problems 
are lack of charging infrastructure or lack of range given a specific battery-pack 
size. These problems arise for BEVs as a consequence of recharging being a slow 
operation in comparison to refuelling for ICEVs. Also, assuming that the vehicle is 
not in operation during the night, the BEV is always considered fully recharged at 
every mission start. The assumption holds for haulages with a recharging point 
which is reasonable to demand given they own a BEV. This mission definition 
enables the use of a previously unused property within the OC format, the mission 
property. This property describes changes in payload, recharging, mission stops, 
etc. For further reading of the mission property, the author refers to Section 3.2 
and Section 3.3 

1.7.2 Transport mission descriptions 

A transport mission can be represented in numerous ways, to mention a few of 
them: There is the bird’s eye view, the dOC and the sOC. The bird's eye view 
description is conceived to be the most general, allowing straightforward 
classification of transport missions. In contrast, the sOC is a mid-level 
representation describing a transport mission through its stochastic parameters 
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and models. The models give insight into variations in altitude profiles, curviness, 
traffic etc. that the other transport mission descriptions cannot provide. Lastly, the 
dOC representation is a low-level description of a transport mission which 
captures the details of a specific mission. The upside of the dOC format is that it 
can act as input to full vehicle simulations making it possible to retrieve estimates 
of energy consumption, velocity profiles, etc. The dOC and sOC description will 
throughout this project remain the core concepts of this thesis.   

1.7.3 Model development 

In the development of models for the sOC and dOC, three core methods are used. 
First, in the development of the models, log data are examined to give information 
regarding the characteristics of the signal. Such signals are the GCW signal and the 
Boolean trailer-connected signal.  Second, grey box models are built using the 
information gained through the data analysis together with the existing 
knowledge base within each system. Third, model parameters are fitted using a 
set of data covering one year. 
 

1.7.4 Simulation model library 

The simulation model library used in this thesis is VEHicle PROPulsion (VehProp), 
developed at Chalmers. VehProp is a simulation model library for vehicle 
operations where one can execute full vehicle simulations to retrieve estimates of 
energy consumption and velocity profiles to name a few. In this thesis, VehProp 
assists in the feasibility analysis of replacing a specific ICEV with a BEV. One 
version of VehProp accepts the operating cycle format as input to the 
environment, making VehProp suitable for this study. 
 

1.7.5 Stochastic models 

In model development and the analysis of simulation results, well-established 
stochastic processes are often assumed. Such are Gaussian, Poisson, and gamma 
processes. Simplicity is not a direct requirement for this thesis, though, one must 
be able to draw samples from the distributions, preferably using built-in MATLAB 
functions. Also, it is of interest to make the models generic to ease future work 
within the field. 
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2 Operating Cycles 

This chapter presents the OC format without any of the contributions from the 
present thesis. Those are instead presented in chapter 3.  

2.1 The deterministic operating cycle 

The dOC describes a specific transport mission. It can either be a product of vehicle 
log data/external road data or it can be generated from an sOC. The dOC format is 
just as it sounds, deterministic, and has the possibility of being used as input to 
simulations. After simulation with dOC input, one can investigate how different 
vehicle configurations and driving behaviours affect energy consumption. The 
dOC format was originally developed by Pär Pettersson and is presently being 
further developed by Luigi Romano. A table of all the parameters included in the 
current dOC format is presented in Table 2-1 
 
Table 2-1. dOC parameters. The first column of each parameter is distance. The 

quality of the data acquired varies. Also, Traffic density can be generated from 

the sOC model. 

 Description Unit Data 

acquired 

Road:    

Topography: Altitude (m) Y 

Legal speed: Speed limit (m/s) Y 

Curvature: Radius of circle segment   (1/100 meter) Y 

Stop sign: Standstill time (s) Y 

Latitude: WGS84 latitude (degree) Y 

Longitude: WGS88 longitude (degree) Y 

Ground type: Surface type, cone index (-, kPa) N 

Roughness: waviness, roughness coef. (ISO 

8608) 

(-,  m3) Y 

Speed bump: Length, eight, angle ( m, m, degree) Y 

Traffic light: Standstill time (s) Y 

Give way sign: Recommended speed (m/s) N 

Traffic:    

Traffic density: Density (cars/m) N 

Mission:    

Payload: GCW – kerb weight = Payload (kg) Y 

EV-Recharging: Power (watt) Y 

Power take off: Time  (s) Y 

Travel direction: (1=forward, 0=reverse) (boolean) Y  

Mission Stop: Standstill time (engine turned 

off) 

(s) Y 

Mission matrix: Composition of Mission 

parameters 

(Boolean, kg, watt, 

watt, Boolean, s) 

Y 

Weather:    

Ambient temperature: Temperature (degrees Celcius) Y 

Wind velocity: Wind velocity (speed and angle) (degree, m/s) Y 

Relative humidity: Moisture content in air relative to 

possible moisture content in air. 

(%) Y 

Atmospheric pressure: Air pressure (hPa) Y 
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2.2  The stochastic operating cycle 

The stochastic operating cycle (sOC) is a mid-level description of a transport task. 
It ideally spans the whole set of models that describe a transport mission. The set 
of models and parameters required can be split into four different categories: 
road, weather, traffic, and mission. Each category includes several secondary 
models, such as the topography and curvature model and some of these models 
do inherit statistical parameters from their primary model. The structure of the 
sOC format is best described in Figure 2-1.   

 
Figure 2-1. Hierarchical structure of an sOC. Road type and season are both 

primary models and influence the value of the statistical parameters for the 

secondary models. Whilst the (secondary) road and weather parameters depend 

only on the respective primary model, the traffic ones are determined by the road 

type and season simultaneously. Figure and text borrowed from [10]. 

The set of parameters included in the sOC classification can be described 
mathematically as the set of parameters 𝑂𝐶𝑠 in equation (2-1), where OC stands 
for Operating Cycle and subscript s refers to stochastic. 
 

𝑂𝐶𝑠 = {𝑅𝑠, 𝑊𝑠, 𝑇𝑠, 𝑀𝑠} 2-1 

Also worth noting, the models and parameters of the sOC format have been 
introduced by Pettersson, Johannesson, et al. (2019) [24] with valuable 
contributions from Luigi Romano. Specifically, the weather and traffic models.  

2.2.1 Primary models 

There exist two primary models to this day, Road type and Season. Road type is 
determined by the speed limit and there exist three different road types currently. 
Those are, Uban, Rural and Highway. The primary model for Season is described 
by Winter, Spring, Summer and Autumn. Each secondary model inherits some 
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of their stochastic parameters from the Primary models and is described in the 
subsequent Sections 2.2.2, 2.2.3 and 2.2.4. 

2.2.2 Secondary road models 

This Section presents the currently available stochastic models for modelling 
roads in the OC format. 

2.2.2.1 Stop signs, giveaway signs, speed bumps & traffic lights 

The occurrence of stop signs, giveaway signs, speed bumps and traffic lights is 
modelled in one dimension, location. These entities behave as discrete events that 
are scattered randomly between the start and end of the mission i.e, the sign 
location is a random variable 𝑋 . Also, the sign probability is independent of 
previous signs i.e., the model fulfils the Markov property. An easy model with these 
characteristics is the Marked Poisson process, see equation (2-2). A Marked 
Poisson process does only require the sign intensity 𝜆𝑠  to be known, where the 
sign intensity is the rate of signs with respect to distance. Thus, the only 
dependency in determining the sign probability given a specific link is the link 
length. 
 

𝑋𝑘+1 − 𝑋𝑘  ~ ℇ(𝜆𝑠) 2-2 

In [24] the authors recommended the use of a Uniform distribution to model the 
standstill time and the recommended speed. The uniform distributions are 
bounded by (𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥) and  (𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥) respectively.    

𝑇𝑘  ~ 𝑢(𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥) 2-3 

 

𝑉𝑘  ~ 𝑢(𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥) 2-4 

For giveaway signs, speed bumps and traffic lights, all five parameters are 
required for a full description. Those parameters are standstill time bounds 
(𝑡𝑚𝑖𝑛 , 𝑡𝑚𝑎𝑥), recommended speed bunds (𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥) and intensity 𝜆𝑠. Stop signs are 
preferably described by standstill time bounds and intensity since the 
recommended speed should be zero in all instances. 

2.2.2.2 Speed limits and ground type 

The speed signs are assumed to be located at random positions and are therefore 
treated as a random process 𝑉 = 𝑉(𝑥). A restriction for speed limits is that they 
can only take a value from the set 𝑆𝑉 = {𝑣1, … , 𝑣𝑛} . Also, a greater part of the 
information regarding the next speed limit is contained within the current speed 
limit. Thus, Speed limits might be modelled as a Markov chain, see equation (2-5). 

𝑃(𝑉𝑘+1 = 𝑣𝑖,𝑘+1|𝑉1 = 𝑣𝑖 , 1, … , 𝑉𝑘 = 𝑣𝑖 , 𝑘) ≈ 𝑃(𝑉𝑘+1 = 𝑣𝑖,𝑘+1|𝑉𝑘 = 𝑣𝑖 , 𝑘) 2-5 

The Markov probability matrix is defined as 𝑃𝑉 ∈ ℝ 𝑛𝑣 × 𝑛𝑣 where each entry is the 
probability of transitioning from state 𝑖 to state 𝑗. Assuming no self-transitions, all 
the diagonal elements are of zero probability. The other entries take the value 
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according to equation (2-6), where 𝑓𝑉𝑖𝑗  is the number of transitions from state 𝑖  

to state 𝑗. 

𝑝
𝑉𝑖𝑗

=
𝑓

𝑉𝑖𝑗

∑ 𝑓
𝑉𝑖𝑗

𝑛𝑣
𝑗=1

 2-6 

 
The sign location is modelled as a set of Poisson processes, see equation (2-2). 
However, speed signs are not defined as a binary event, they can take all the states 
of  𝑆𝑉  and does therefore require 𝑛𝑣  number of intensities λ . Instead of 
representing the location of the speed signs as intensities, the writer chooses to 
define the mean length of a speed limit 𝐿𝑚𝑖  which is the inverse of the intensity λ. 

Given all, the whole model is fully parameterized by the set of variables {𝑓𝑣𝑖𝑗, 𝐿𝑗} 

given 𝑖, 𝑗 = 1, … , 𝑛𝑣.  

2.2.2.3 Topography 

The road, partitioned into small segments (links), has a road grade assigned to 
each of the links. Treating the road grade as a random variable {Yk} for each link 
k, an autoregressive model of order 1 can be used to model the grade, see equation 
(2-7).  

𝑌𝑘 = 𝜙𝑌𝑌𝑘−1 + 𝑒𝑌,𝑘,                    𝑒𝑌,𝑘 ∼ 𝒩(0, σ𝑒𝑌
2 ) 2-7 

Here, 𝜙𝑌 is the parameter of the model which can be interpreted as the memory of 
the previous link.  The parameter is the factor that tells how much of the previous 
links' road grade is to be inherited from the current link. The parameter can 
preferably be rewritten in terms of the hill length 𝐿ℎ , see equation (2-8). 

𝐿ℎ =
4π

π − 2𝑎𝑟𝑐𝑠𝑖𝑛(ϕ𝑌)
𝐿𝑠 2-8 

The error variance 𝜎𝑒𝑌
2  models deviations around the inherited value from the 

previous link. It can be expressed as the road grade variance, see equation (2-9).  

σ𝑌
2 =

σ𝑒𝑌
2

1 − ϕ𝑌
2  2-9 

The set of parameters {𝐿ℎ, σ𝑌
2 } is enough to model topography.   

2.2.2.4 Curviness 

Curvature is modelled by three parameters {𝑋𝑘, 𝐶𝑘, 𝐿𝑘}. The location 𝑋𝑘 modelled 
by a marked Poisson process, the curvature 𝐶𝑘 modelled as a modified log-normal 
distribution and the curve length 𝐿𝑘 modelled as a log-normal distribution. The 
location model is the same one described in Section 2.2.2.1. The Curvature 
modified log-normal distribution is defined by equation (2-10). 

𝑅′ = 1/𝐶 − 𝑟𝑡𝑢𝑟𝑛, 𝑙𝑜𝑔 𝑅′ ∼ 𝒩(μ𝐶 ,  σ𝐶
2 ) 2-10 

Here, 𝑟𝑡𝑢𝑟𝑛  is the minimum curvature radius, μ𝐶   is the mean of the log-normal 
distributed variable R’ and σ𝐶

2  is the variance of the same variable. The curve length 

𝐿 is modelled using a log-normal distribution defined by the mean and variance 

𝜇𝐿 ,  𝜎𝐿
2, see equation (2-11).  
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𝑙𝑜𝑔 𝐿 ∼ 𝒩(𝜇𝐿 ,  𝜎𝐿
2) 2-11 

The stochastic model for curviness is therefore fully parameterized by the set of 
six parameters {λ𝐶 , 𝜇𝐶 ,  𝜎𝐶

2, 𝑟𝑟𝑎𝑑𝑖𝑢𝑠 , 𝜇𝐿 ,  𝜎𝐿
2}. 

2.2.2.5 Road roughness 

The model for road roughness is not treated here and the reader is referred to 
Johannesson, Podgórski and Rychlik (2016) [19] for additional details.  

2.2.3 Secondary weather models 

Modelling weather is done under the assumption that weather properties remain 
approximately constant in space. The secondary weather models inherit some of 
their parameter values from the primary weather model. Depending on the choice 
of Primary model, a different set of parameters are retrieved.   

2.2.3.1 Air temperature and relative humidity 

Air temperature and relative humidity are assumed to be a composition of a 
deterministic variable and a stochastic variable. The deterministic term includes 
the yearly mean value  {𝜇

𝑇
, 𝜇

Ψ
}, the annual trends 

 {𝑇𝑦𝑠𝑖𝑛 (𝜔𝑦𝑑𝑦[𝑡] + 𝜑𝑇𝑦
) , Ψ𝑦𝑠𝑖𝑛 (𝜔𝑦𝑑𝑦[𝑡] + 𝜑Ψ𝑦

)} and the daily trends  

{𝑇𝑑𝑠𝑖𝑛(𝜔𝑑𝑑𝑑[𝑡] + 𝜑𝑇𝑑
), Ψ𝑑𝑠𝑖𝑛(𝜔𝑑𝑑𝑑[𝑡] + 𝜑Ψ𝑑

) }, see equations (2-12) and (2-13).   

𝑇𝑎𝑖𝑟,𝑘 = μ𝑇 + 𝑇𝑑𝑠𝑖𝑛(ω𝑑𝑑𝑑[𝑡] + φ𝑇𝑑
) + 𝑇𝑦𝑠𝑖𝑛 (ω𝑦𝑑𝑦[𝑡] + φ𝑇𝑦

) + �̃�𝑘  2-12 

 

Ψ𝑎𝑖𝑟,𝑘 = 𝜇Ψ + Ψ𝑑𝑠𝑖𝑛(𝜔𝑑𝑑𝑑[𝑡] + 𝜑Ψ𝑑
) + Ψ𝑦𝑠𝑖𝑛 (𝜔𝑦𝑑𝑦[𝑡] + 𝜑Ψ𝑦

) + Ψ̃𝑘 2-13 

The annual frequency 𝜔𝑦  =  2π/365 and the daily frequency 𝜔𝑑  =  2π/24 treats the 
oscillating behaviour of weather. The time of the day 𝑑𝑑[𝑡] and the day of the year 

𝑑𝑦[𝑡] are defined as: 

𝑑𝑑[𝑡] = (𝑡 𝑚𝑜𝑑 24), 𝑑𝑦[𝑡] = ⌊
𝑡

24
⌋ 2-14 

The phase angle 𝜑 handles the phase shift of daily and annual oscillation resulting 
from their sine wave model representation, where the subscript d represents day 
and y represents year. The set of sine waves amplitudes are  {𝑇𝑑 , 𝑇𝑦 , Ψ𝑑 , Ψ𝑦}. Figure 
2-2 shows the annual impact of temperature in Gothenburg. Given the figure, the 
set of annual temperature parameters T𝑦 , φ𝑇𝑦

 in Gothenburg should be close to 

8, −
π

2
, see the green curve.  
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Figure 2-2. The monthly average temperature in Gothenburg. The phase angle 

seems to be about 𝜑 = − 𝜋

2
. The figure is borrowed from [20]. 

The stochastic components { �̃�𝑘, Ψ̃𝑘  }  are modelled as an AR(1) process, see 
equations (2-15) and (2-16). For a more in-depth description of AR(1) processes, 
see Section 2.2.2.3 or [10]. 

�̃�𝑘 = ϕ𝑇�̃�𝑘−1 + 𝑒𝑇,𝑘, 𝑒𝑇,𝑘 ∼ 𝒩(0, 𝜎𝑒𝑇
2 ) 2-15 

 

Ψ̃𝑘 = 𝜙ΨΨ̃𝑘−1 + 𝑒Ψ,𝑘 , 𝑒Ψ,𝑘 ∼ 𝒩(0, 𝜎𝑒Ψ
2 ) 2-16 

The deterministic variables are calculated over a whole year and are independent 
of the seasonal setting. The stochastic parameters {ϕ

𝑇
, 𝜙

Ψ
, 𝜎𝑒𝑇

2 , 𝜎𝑒Ψ

2 }  on the other 

hand, are not. The inherited value for the stochastic parameters does differ with 
the season.  

2.2.3.2 Atmospheric pressure 

The model for atmospheric pressure used is an ARIMA(p,d,q) process, see 
equation (2-17), where p is the model order of the AR(p) component, d is the 
model order of the integrating component I(d) and q are the size of the moving 
average window MA(q). 
 

ϕP(𝐿)(1 − 𝐿)𝑑𝑃𝑎𝑖𝑟,𝑘 = 𝑐𝑃 + θ𝑃(𝐿)𝑒𝑃,𝑘 , 𝑒𝑃,𝑘 ∼ 𝒩(0, 𝜎𝑒𝑃
2 ) 2-17 

The Autoregressive lag polynomial ϕP(𝐿) is a function of the lag operator L. The 
rest of the parameters are the integrational component 𝐼(𝑑) = (1 − 𝐿)𝑑, the moving 
average function θ𝑃(𝐿), the time series 𝑃𝑎𝑖𝑟,𝑘,  the drift 𝑐𝑃  and the previous errors 𝑒𝑃,𝑘. 
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The atmospheric pressure model is therefore fully parameterized by the set of 
four parameters {𝑐𝑃 , ϕP(𝐿), θ𝑃(𝐿), 𝜎𝑒𝑃

2 } 

2.2.3.3 Precipitation  

Precipitation is modelled in a two-step process. First, the occurrence of 𝐻𝑝,𝑘 events 
are simulated and then a suitable probability density function is fitted to the 
intensity Λ𝑝,𝑘 which is the amount of precipitation. A Markov chain with a fixed 

interval length is used to model the occurrence. The discrete random variable 𝐻𝑝,𝑘  

is allowed to take two states, wet and dry. 

𝑃(𝐻𝑝,𝑘 = ℎ𝑝,𝑘|𝐻𝑝,1 = ℎ𝑝,1, 𝐻𝑝,2 = ℎ𝑝,2, . . . , 𝐻𝑝,𝑘−1 = ℎ𝑝,𝑘−1)

≈ 𝑃(𝐻𝑝,𝑘 = ℎ𝑝,𝑘|𝐻𝑝,𝑘−1 = ℎ𝑝,𝑘−1) 
2-18 

Since there are only two states, only two equations are required to fully 
characterize the model. The author chooses to parameterize the two entries of the 
anti-diagonal, see equation (2-19).   

𝑝𝐻12 = 1 − 𝑝𝐻11, 𝑝𝐻21 = 1 − 𝑝𝐻22 2-19 

The self-transitions can easily be calculated from equation (2-20). Given this, the 
anti-diagonal is now known. 

𝑃𝐻11 = 𝑓𝐻11/(𝑓𝐻11 + 𝑓𝐻12) 2-20 

When a wet event occurs, a Gamma distribution is used to model the intensity of 
precipitation, see equation (2-21). 

Λ𝑝,𝑘 ∼ 𝐺𝑎 (αΛ𝑝
, 𝛽Λ𝑝

) 2-21 

Precipitation is fully parameterized by the set of parameters {αΛp
, βΛp

, fHij}.  

2.2.3.4 Wind speed and direction 

Wind speed and wind direction exhibit a strong correlation. Therefore, the model 
used has to portray the mutual dependencies. One of the simplest models that 
fulfils our requirements is the VAR model. It is an extension of an AR model that 
couples multiple random variables, see equation (2-22).  

𝚽𝑤(𝐿) 𝐘𝑤,𝑘 = 𝑐𝑤 + 𝑒𝑤,𝑘 2-22 

The vector 𝐘𝑤,𝑘 = [𝑉𝑣,𝑘 , Θ𝑤,𝑘]  consists of the wind speed and the wind direction. The 
rest of the parameters are, the constant offset 𝑐𝑤 ∈ 𝑅2 , the vector of normally 
distributed innovations 𝑒𝑤,𝑘 ∈ ℝ2  with the covariance matrix  ∑𝑒𝑤,𝑘 ∈ ℝ2×2  and 
finally the matrix operator 𝚽𝑤(𝐿) . The matrix operator is defined by equation 
(2-23). 

𝚽𝑤(𝐿) = 𝐈 − ∑ 𝚽𝑤𝑗

𝑝

𝑗=1

𝐿𝑗  2-23 
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The model is fully parameterized by the set of variables  {μΘ𝑤
, 𝑐𝑤 , ∑ , Φ𝑤𝑗}𝑒𝑤

 for 𝑗 =

1, … , 𝑝. 

2.2.4 Secondary traffic model 

When modelling traffic, three main variables should be considered. Those are, the 
traffic density ρ𝑡(𝑥, 𝑡) , the traffic speed 𝑣𝑡(𝑥, 𝑡)  and the traffic flow 𝑞𝑡(𝑥, 𝑡) =
ρ𝑡(𝑠, 𝑡)𝑣𝑡(𝑥, 𝑡). Assuming stationary flow, we reduce the number of variables to 
two. In this case, traffic speed and traffic density are correlated and only one 
independent variable is needed to describe the state of traffic. The author chose 
traffic density. Traffic density is characterised by a diurnal component 
ρ𝑑𝑠𝑖𝑛(ω𝑑𝑑𝑑[𝑡] + φρ𝑑

), a stochastic variable �̃�𝑘  and the average traffic density μρ given 

a specific road segment and season. 

ρ𝑡,𝑘 = μρ + ρ𝑑𝑠𝑖𝑛(ω𝑑𝑑𝑑[𝑡] + φρ𝑑
) + �̃�𝑘  2-24 

The model for traffic density is the same as for the secondary weather model Air 
temperature, see Section 2.2.3.1 apart from annual trends. Also, trivially the 
parameters do have another physical interpretation. 
The vehicle speed 𝑣𝑒can be expressed, using Greenshields’s fundamental diagram, 
see equation (2-25). 

𝑣𝑒(ρ𝑡(𝑠, 𝑡)) = 𝑣𝑓 (1 −
ρ𝑡(𝑠, 𝑡)

ρ𝑐

) 2-25 

Here, 𝑣𝑓  represents the free-flow speed and ρ𝑐  the critical density. The traffic 

model is fully parameterized by the set of six parameters {μρ, ρ𝑑 , φρ𝑑
, σ𝑒ρ

2 , 𝑣𝑒 , ρ𝑐}. 
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3 Model development 

This chapter consists of four parts, Refinement and analysis, contributions to the 
Deterministic Operating cycle format, contributions to the Stochastic Operating 
cycle format, and a proposal of a Driver decision-making - Recharging concerning 
the accessibility of recharging stations. 

3.1 Refinement and analysis of log vehicle data 

This Section begins by Defining missions as a workday. After that, data refinement 
and analysis are performed for Mission Stops and Payload vehicle logs.  

3.1.1 Defining missions as a workday 

To define a mission as a workday, first one must define a workday. Given a set of 
data, recorded from a model FH2370 heavy vehicle one would like to define a 
typical workday. To do so, a time scheme of all recorded log files over a year is 
provided in Figure 3-1. Zooming in on the time scheme, reviles that the heavy 
vehicle is typically in operation during the daytime on weekdays. Since no logfile 
encountered was spanning the night hours, it is fair to define a mission as: 
 

A mission is defined by all operations executed within a certain day. 

 

          e   t     e  an    e Mar   r Ma   n        e   t    

      

 e arte   r       

 rri e  t      

 ehi  e in   erati n

                                                                                    

      

 e arte   r       

 rri e  t      

 ehi  e in   erati n

 
Figure 3-1. Start and end time of 1500 logfiles which constitute to one year of 

operation. 

Given the mission definition, it is now easy to sort the log files into mission-specific 
folders. Mission 2020-09-14 presented in the right subfigure of Figure 3-1 consists 
of 4 logfiles, and we would like to concatenate those without losing valuable 
information. For example, it is important to identify all the mission stops since 
those are a part of the OC format. Out of curiosity, a small statistical analysis of all 
the missions is performed.  
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Figure 3-2. 112 Mission start and stop times represented in Histograms. 83% of 

all missions are started before 7 a.m. 93% of all missions are ended by 6 p.m. 

From the probability histograms, one can conclude that most missions are 
relatively similar. The mission start is generally initiated before 7.00 and the 
mission is generally completed before 18.00. This allows for the postulation of the 
BEV to be fully recharged by every mission start. The assumption requires the 
dock to have a recharging point which seems like a fair assumption given that the 
haulage has a BEV. 

3.1.2 Mission Stop 

First, all mission stops initiated by one single heavy vehicle during one year of 
operation were collected. Then, the distribution of standstill time per mission is 
presented in a histogram together with a gamma distribution, see Figure 3-3. 
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Figure 3-3. Mission stop durations. 90.9% of the Mission stops are of less than 1h 

in duration. 

Given the small sample size (about 400 Mission stops), the risk of overfitting the 
data is present. Thus, the choice of distribution. The fit is decent except for around 
the 45-minute mark. It is reasonable to believe that the peak is due to the driver 
having a lunch break. A more sophisticated model could probably represent the 
mission stop better, such a model could be a bimodal distribution consisting of a 
normal distribution and a gamma distribution. The lunch break is normally 
distributed and every other stop is gamma distributed. This hypothesis of mine 
should preferably be further investigated before being perceived as accurate. 

3.1.3 Payload 

From the log files, a GCW estimate is available which is said to be noisy. The 
estimate is said to regularly deviate by up to 10% from the true mass signal but 
can under circumstances deviate by even more. The exact distribution and 
characteristics of the noise are unknown. Since the noise characteristics are 
unknown, a few assumptions regarding the true mass must be made. A reasonable 
starting point is to assume part-wise constant mass. Some change in mass is to be 
expected over time due to heavy rain, fuel usage and loss of material during travel. 
But it is fair to assume that such dependencies have a small impact on the total 
mass, and a change in mass is rather due to noise than actual mass change. An 
example GCW log is provided in Figure 3-4 for reference. 
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Figure 3-4. The logged GCW signal for Mission 8th of September 2020.  

Since we don’t know the true mass and its statistical properties, one must make a 
few justified assumptions. It is fair to assume the following: 

1. Mass is piece-wise constant. A change in mass should be recorded over at 
least 10 minutes. 

2. A change in mass is considered when a deviation of 10% or more, 
compared to recent mass values, is recorded. This implies that the weight 
of an unloaded heavy vehicle could deviate by about 1.5 tonnes and a fully 
loaded heavy vehicle by 6 tonnes. 

3. Mass does always alternate between loaded and unloaded. The vehicle 
cannot be topped up when already partially loaded. Note that a trailer, 
loaded or unloaded, can be attached to the vehicle without a problem.  

4. The driver loads and unloads all his goods instantaneously. 
 
From these assumptions, it is fair to assume that the driver had nine load-on and 
nine load-off events during the day 8th of September 2020, see Figure 3-4.  
To smoothen the GCW signal, first, let’s start investigating if there are any patterns. 
A histogram built using all the GCW data points recorded over one year is 
presented in Figure 3-5. 
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Figure 3-5. The histogram displays the distribution of all GCW data available. A 

multimodal distribution consisting of four normal distributions is fitted to the 

GCW data. 

From Figure 3-5 one can identify that there are 4 different load cases. With this 
knowledge, one might view this as a classification problem. A first guess resulting 
from Figure 3-5, is that the classes might correlate with the fact that a trailer is 
connected or not. To investigate if that is the case or not, the GCW data is separated 
into two sets of data, with trailer and without trailer, see Figure 3-6.  
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Figure 3-6. The GCW data was split into two different sets of data, with trailer 

and without trailer. The upper histograms contain all the GCW data and the 

lower histograms are created using the two new sets of data. Two bimodal 

distributions are fitted to the data. 

From Figure 3-6, our first guess seems valid. The truck does operate under 4 
different load cases. To ease the reading, each load case is assigned a state name 
according to Figure 3-7. 
 



 

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis  20 

 

     Mi  i n sa   es       

                        

           
 

 

   

 

   

 

   

 
r 
 
a
 
i i
t 
  
e
n
s
it
 

   
  

3

2

4

1

1: UNLOADED
2: UNLOADED – T
3: LOADED
4: LOADED - T

 
Figure 3-7. Schematic representation of states. 

Now, to improve the fit, two bimodal distributions are fitted to the data. Their 
characteristic parameters are presented in Table 3-1. For this thesis, sample 
generation is of interest. Therefore, the complexity of the distributions is not 
considered. If one were to do more rigorous statistics, the author suggests using 
the normal distributions provided in Appendix A.1. The statistical parameters of 
interest for the payload estimation are the kerb weight and the trailer mean 
weight. The trailer's mean weight is defined as μ𝑡 = μ𝑢𝑡 − μ𝑢, where u is subscript 
for UNLOADED, ut is subscript for UNLOADED-T. Calculations resulted in a kerb 
weight of 16.22 tonnes and a trailer mean weight of 6.22 tonnes. For reference, 
the mean of a stable distribution is calculated using the formulae in equation (3-1). 

μ = δ − βγ𝑡𝑎𝑛 (
πα

2
) 3-1 

Table 3-1. Distribution characteristics of the four different load cases. 

Payload 
Classifications 

Distribution α β γ δ μ σ ν 

UNLOADED Stable 1.309 0.647 623.02 15451.7 - - - 
UNLOADED-T Stable 1.137 -0.248 612.28 23134.7 - - - 

LOADED 
t-location-
scale 

- - - - 28751 2555 3.90 

LOADED-T Weibull 54299.6 17.17 - - - - - 

 
Viewing the problem as a classification problem, a threshold filter [12] should 
produce the desired result. A threshold filter is a classification filter which divides 
all the data into two new sets of data, the set of data that is above the threshold 
and the set of data that is below the threshold. The set of data that is below the 
threshold is assumed to be an unloaded heavy vehicle and everything above is 
assumed to be a loaded heavy vehicle. This type of filter is common practice within 
image processing but works perfectly for our use case as well.  
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But first, a transport mission is defined by the cargo rather than the vehicle. 
Enabling simulation using vehicle models with different kerb weights is one of the 
requirements of this model. Therefore, instead of estimating the GCW, the kerb 
weight is removed from the signal resulting in the Payload signal. This implies a 
shift in the x-axis of 16.22 tonnes in Figure 3-5, Figure 3-6 and Figure 3-7.  
Now, given that we have access to the trailer-connected signal, it is possible to set 
a variable threshold. The variable threshold is discrete and can take two values, 
3.5 and 10.5 tonnes. The threshold values are a result of the statistical analysis of 
the GCW data, where the threshold value should be somewhere between Unloaded 
and loaded. Without a trailer, this would imply 3.5 tonnes and with a trailer 10.5 
tonnes.  
   

𝑇 =  {
3.5 𝑡𝑜𝑛𝑛𝑒𝑠, 𝑖𝑓 𝑛𝑜 𝑡𝑟𝑎𝑖𝑙𝑒𝑟 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 
10.5 𝑡𝑜𝑛𝑛𝑒𝑠,       𝑖𝑓 𝑡𝑟𝑎𝑖𝑙𝑒𝑟 𝑐𝑜𝑛𝑛𝑐𝑒𝑡𝑒𝑑       

 3-2 

 
Given a specific mission, an example threshold is presented in Figure 3-8, where 
the red dashed line represents the variable threshold, see the upper subplot. The 
middle subplot is the product of the variable threshold, where 1 indicates above 
the threshold and 0 indicates below the threshold. The lower subplot is the filtered 
Payload signal.  
 
Assuming that variations in the states UNLOADED and UNLOADED-T are due to 
noise, a constant value is assigned for segments of the signal being below the 
threshold. That value is 0 kg for UNLOADED and 6.22 (tare trailer weight) for 
UNLOADED-T. In contrast, the states LOADED and LOADED-T is allowed to vary 
since those are presumed to be caused by variations in load rather than noise.  
 
Investigating several missions, it seems like the mass measurement is converging 
overdamped i.e., it does rarely overshoot. Therefore, the mass value assigned for 
parts of the signal that is above the threshold is the mean of the 10% max mass 
values registered over that part of the signal.  
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Figure 3-8. Variable threshold, logical threshold signal and resulting payload 

signal. The signal is sampled at a constant frequency of 10 Herz.  

As one might notice, the signal does already look credible except for a few spikes 
in the signal. Those spikes are a huge problem though. Due to VehProp relying on 
the assumption of constant mass during travel, a mass change requires the driver 
to make a stop. With this in mind, it is important to not have an excessive amount 
of mass changes since this will result in an alteration of the transport mission. 
Therefore, a spike filter is treating the payload signal as well as the threshold 
signal, see Section A for the definition of a spike filter. A spike filter works as it 
counts the number of consecutive times a certain value is received. If the number 
of consecutive times is less than a certain value, it is considered a spike and the 
opposite value is assigned to the spikes. Two types of spikes must be treated, in 
this thesis, they will be referred to as drop-spike and peak-spike. A drop-spike is 
defined as a small segment of signal that is recognised as being under the 
threshold. The opposite applies to a peak-spike. An example of peak-spikes can be 
seen in Figure 3-8 around sample 1.7 ⋅ 105. An example of a drop-spike can be seen 
around sample 1.15 ⋅ 105. Removing the peak-spikes results in Figure 3-9. 
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Figure 3-9. Variable threshold with peak-spikes removed. 

The peak-spike filter removed all the spikes but it did also remove a suspicious 
spike just before sample  0.5 ⋅ 105. The spike is about 5000 samples in width and 
the spike filters consider a spike to be six thousand or fewer samples in width and 
does therefore remove that spike. One can argue that this should not have been 
considered a spike but given the assumption of partwise constant mass for 10 
minutes i.e., 6000 samples with 10 Hz update frequency, it is considered a spike. 
Now, it’s time to remove the drop spikes. 

 
Figure 3-10. Final Payload signal. 

Just as for the peak-spikes, a suspicious drop-spike was removed at sample 1 ⋅ 105 
in Figure 3-10.  If one does not agree with these spikes being removed, one should 
simply change the spike filter width that is set to 6000 consecutive samples.  

3.2 Deterministic Operating cycle 

This Section describes the contributions this study delivers to the dOC format.  
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3.2.1 EV-Recharging dOC model 

The model for EV-Recharging purposed in this thesis quantifies a recharging 
event, in terms of energy acquired, but also enables smart driving behaviour. To 
do so, every Ev-Recharging station along the driven path is modelled rather than 
the power input as is purposed in P. Pettersson [21]. 
 
The deterministic model consists of a set of six variables, {𝑋𝑘, 𝑃𝑘, 𝑇𝑘, μ𝑘, λ𝑘, 𝐶𝑘} for 
𝑘 = 1, … , 𝑛 where n is the number of Recharging stations along the route. The 
distance 𝑋𝑘 is the one-dimensional location of the recharging stations. Recharging 
stations are generally not encountered along a driven trace, but rather in close 
proximity to the trace through a highway exit or similar. Somehow, one must map 
the recharging stations' 2d coordinate position to the Operating Cycles’ one-
dimensional position, distance. A first solution to this is to assume that recharging 
stations are located along the mission path. Given that the distance to the 
recharging station is less than a set distance  𝑑𝑚𝑎𝑥, preferably the to-be driven 
distance (the exit distance), but an easier choice would be the linear distance, a 
charging station is said to be encountered. 
 
The maximum available charging power 𝑃𝑘 is measured in kW and is the station-
specific max power output. Connector type 𝑇𝑘  can take an integer value 
represented in equation (3-3), where each integer maps to a specific connector 
type. The connector types modelled are those available in Europe today [16]. 

𝑇𝑘 = {

1, 𝑖𝑓 𝑇𝑦𝑝𝑒 2 −  𝑀𝑒𝑛𝑛𝑒𝑘𝑒𝑠
2, 𝑖𝑓 𝐶𝐶𝑆/𝐶𝑜𝑚𝑏𝑜 2              
3, 𝑖𝑓 𝑂𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟        
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The AFID directive 2019/94/EU requires every charging point to include either a 
type two or a CSS connector. Before the directive, charging points with other 
connectors were built and some of those remain. To limit the list of connectors, 
only the most prevalent ones are listed. Also worth noting, is that DC charging 
(CCS/Combo 2) is typically preferred since it allows for a much larger power 
output, but the number of charging stations supporting DC charging is much 
sparser. Therefore, AC charging stations is to be included in the format.  
 
The mean service time 1/μ𝑘 is the average time for which a connector is occupied. 
The mean arrival rate λ𝑘 is the rate at which vehicles line up to charge. The mean 
service time and the mean arrival rate should preferably be described by two 
vectors, each with 24 entries, one for each hour. Assuming that the mean arrival 
rate is correlated with traffic density, it is reasonable to have an average arrival 
rate for each hour of the day, see Figure 3-11. 
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Figure 3-11. Average Traffic density in Gothenburg weekdays, November 2021 

[17]. 

The maximum capacity 𝐶𝑘 is the number of connectors a station is equipped with.  

3.2.2 Payload and Mission Stop dOC models 

No changes to the dOC models for Payload and mission stops have been required. 
The existing dOC model for mission stop requires the position and the standstill 
time. Payload is represented by the magnitude and position and is denoted Cargo 
weight in the dOC format.  

3.3 Stochastic Operating cycle 

This Section presents the contributions the present thesis has made to the sOC 
format.  

3.3.1 Payload Stochastic model 

The stochastic model for the payload is described by a combination of four 
processes, Distance travelled in state, Transitions between states, Payload 
magnitude of state and Initial state.  

3.3.1.1 Distance travelled in states 

First, the distance travelled in states is assumed to be equal for all states, i.e. no 
distinction between the distance travelled unloaded and loaded is made. This 
representation is a simplification that was made early in the project and a 
suggested future representation is presented under Section 4.3.2. Assuming that 
changes in states are best represented as randomly scattered events along the 
path, the distance travelled in states is modelled as a marked Poisson process, see 
APPENDIX A. A marked Poisson process does only require the mass change 
intensity 𝜆𝑚  to be known. Thus, the only dependency in determining the 
probability of an event given a specific link is the link length. 

𝑋𝑘+1 − 𝑋𝑘 ~ ℇ(𝜆𝑚) 3-4 

3.3.1.2 Transitions between states 

The second process is the transition between states. The probability of a certain 
state transition is modelled as a Markov chain, where a change in mass is assumed 
to have no self-transitions. This implies that our Markov matrix has no diagonal 
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elements 𝑃 = (

0 ⋯ 𝑝𝑗1

⋮ ⋱ ⋮

𝑝𝑖1 ⋯ 0

) ,        𝑓𝑜𝑟 𝑖, 𝑗 =  1, … 4  . Each entry 𝑝𝑖𝑗   represents the 

probability to move from state 𝑖 to state 𝑗 at the next event. The resulting Markov 
matrix P is presented in equation (3-5). 
 

𝑃 =  (

0 0.8145 0.1855 0
0.2452 0 0.0044 0.7504

1 0 0 0
0.9461 0.0539 0 0

) 3-5 

 
For a graphical representation, the Markov matrix is presented in Figure 3-12, 
where the colour of each arrow represents the probability of transition from state 
to state.  
 

        

          

      

        

 

   

   

   

   

   

   

   

   

   

 

  
  
 
 
  
  
 
  
  
 
 
 
  
  
 

 
Figure 3-12. A Markov-chain directed graph. Each probability of transition is 

represented by the arrow colour. 

Given the set of possible states {𝑈, 𝑈𝑇, 𝐿, 𝐿𝑇}, a few interesting conclusions can be 
drawn. First, except for self-transitions, four transitions are of zero probability. 
Those are, {(𝐿 → 𝑈𝑇), (𝑈 → 𝐿𝑇), (𝐿 → 𝐿𝑇), (𝐿𝑇 → 𝐿)}. The first transition of the 
set is probably never perceived in reality. That state transition would imply that 
the truck gets unloaded and attaches a trailer at the same time. A more realistic 
transition is  (𝐿 → 𝑈 → 𝑈𝑇) which would have the probability of 1 ⋅ 0.81 =  81%. 
The second transition of the set is also unreasonable, a more probable transition 
of events is (𝑈 → 𝑈𝑇 → 𝐿𝑇)  which would have a probability of 0.81 ⋅ 0.74 =
 60% . The third and fourth transitions should be possible. But those state 
transitions can not be detected with the current filter implementation, see Section 
3.1.3. These are transitions that do probably occur but go undetected because of 
the choice of filter, the threshold filter. Assuming those are intermediate 
transitions, the overall mass approximation remains relatively accurate. In other 
words, an improvement of the Payload smoother would result in an improvement 
of the Stochastic model. Given four zero probability transitions and no self-
transitions, the set of stochastic parameters P summarizes to 9 parameters. 
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3.3.1.3 Payload magnitude of states 

Now the third process is payload magnitude distributions. Given a certain state, 
the respective state mass is modelled by the four different distributions, 
characterized by their parameters presented in Table 3-1. An assumption 
regarding the states UNLOADED and UNLOADED-T is made. The variance around 
those states is presumed to be a product of noise rather than actual variation in 
the true signal. Therefore, those states can only take the constant values 0 and 6.22 
tonnes respectively. But for the LOADED and LOADED-T, variations are assumed 
to be prevalent. The stochastic parameters needed to describe the Payload 
magnitude for state LOADED are {μ, σ, ν}, where μ is the location parameter, σ is 
the scale parameter and ν shape parameter. State LOADED-t requires the set of 
parameters {α, β}, where α is the scale parameter and β is the shape parameter. 
Given all of this, the payload magnitude stochastic model requires the set of 5 
parameters, 𝐴 =  {μ, σ, ν, α, β}. 

3.3.1.4 Initial state modelling 

Lastly, the fourth process, initial state modelling. The Initial state is modelled by a 
generalized Bernoulli distribution with probabilities in equation (3-6).  
 

𝑃𝑖𝑛𝑖𝑡(𝑋𝑖 = 𝑥𝑖) = {

87.32%,       𝑖𝑓𝑥𝑖 = 𝑈        
9.27%, 𝑖𝑓𝑥𝑖 = 𝑈 − 𝑇
2.93%, 𝑖𝑓𝑥𝑖 = 𝐿         
0.49%, 𝑖𝑓𝑥𝑖 = 𝐿 − 𝑇 

 3-6 

Probabilities are calculated from all the missions using equation (3-7), where 𝑓𝑖  is 
the number of missions with initial state 𝑖. 

𝑓𝑖

∑ 𝑓𝑖
4
𝑖=1

 3-7 

3.3.1.5 Complete model 

All four processes together describe the payload of a heavy vehicle. The stochastic 
parameters needed are the set of model parameters { λ, 𝑃, 𝐴, 𝑃𝑖𝑛𝑖𝑡} which adds up 
to nineteen parameters.  

3.3.2 Mission stop stochastic model 

A mission stop is defined as a stop that requires the engine to be turned off. The 
deterministic model for mission stops requires two parameters, distance and 
standstill time. Given that we have no information on when and where a mission 
stop occurs, the occurrence of a mission stop is modelled as a Poisson process. 
This implies that the mission stops are scattered randomly over the whole trace. 
In contrast to the position of the mission stop, the standstill time could benefit 
from a data-driven approach using vehicle log data. In Section 3.1.2, standstill time 
is presumed to be a gamma process. The parameters (α, β) of the fitted gamma 
distribution are presented in equation (3-8), see Appendix A.6 for a rigorous 
explanation of gamma distributions. 

𝑋𝑘 ∼ 𝛤(0.6595,0.8062) 3-8 

3.3.3 EV-Recharging stochastic modelling 

This Section purposes a stochastic model for the EV-Recharging. 
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3.3.3.1 Location of EV-Recharging station 

The stochastic model for EV-Recharging assumes charging stations to be located 
at random. Recharging stations scattered as a sequence of discrete events along a 
path described in one dimension can preferably be modelled by a marked Poisson 
process. A marked Poisson process requires one parameter, λp  the rate of 

charging stations with respect to distance. Each mark represents a charging 
station which in turn has a set of characteristic parameters. 

3.3.3.2 Maximum available charging power, connector type and capacity 

The maximum available charging power 𝑃𝑘, the connector type 𝑇𝑘 and capacity 𝐶𝑘 
are all modelled by a generalized Bernoulli distribution, see equation (3-9). They 
are all modelled with a uniform probability of 1/𝑛, mimicking a dice roll due to 
lack of information. A more advanced distribution would probably represent these 
stochastic variables better, but given the lack of information, the present thesis 
purpose an easy distribution for those variables.   

𝑃𝑘~𝑓(𝑥 = 𝑖) =
1

𝑛𝑝
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𝑇𝑘~𝑓(𝑥 = 𝑖) =
1

𝑛𝑇
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𝐶𝑘~𝑓(𝑥 = 𝑖) =
1

𝑛𝐶
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3.3.3.3 Average service and arrival rate  

The average service rate μ and the average arrival rate λ are modelled by two 
normal distributions.  

μ𝑘~𝑁(μμ,𝑛 , σμ,𝑛
2), 𝑊ℎ𝑒𝑟𝑒 μ𝑘 ≠ 0 3-12 

 

λ𝑘~𝑁(μ
λ,𝑛

, σλ,𝑛
2), 𝑊ℎ𝑒𝑟𝑒 λ𝑘 ≠ 0 3-13 

 
The mean and variance of the pdfs are yet to be known. A case study should 
preferably be conducted to get a better understanding. A possible provider of such 
data is VIRTA networks.  

3.3.3.4 Complete model 

In total, the set of eight parameters {λp, 𝑛𝑝, 𝑛𝑇, 𝑛𝐶, μ
μ,𝑛

, σμ,𝑛, μ
λ,𝑛

, σλ,𝑛}  fully 

parameterize the stochastic model for EV-Recharging. 
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3.4 Driver decision-making - Recharging 

With the dOC definition of EV-Recharging, the driver can make recharging 
decisions concerning average waiting time W𝑞  and average time spent in the 

system (waiting and charging) W𝑠 to name a few. From queueing theory, an easy 
and intuitive model is constructed. The Kendall notation (𝑀/𝑀/𝑆): (𝐹𝐶𝐹𝑆/∞/∞) 
is in this thesis purposed to model recharging stations. The inter-arrival rate and 
the rate of service are both modelled as Poisson processes. The number of service 
channels (charging points) is assumed to be 1 or more which is denoted as 𝑀 in 
the equations below. The number of service channels is the same as the 
Recharging station capacity (𝐶𝑘), described in Section 3.2.1, assuming that all the 
connectors are functional. A more detailed description of the Kendall notation is 
found in APPENDIX A. The expressions for W𝑠  and W𝑞  is displayed below in 

equation (3-16) and equation (3-18) respectively, where 𝑃0 is the probability of no 
vehicles being present in the system, 𝐿𝑠 is the average number of vehicles in the 
system and 𝐿𝑞 is the average number of vehicles in the queue.   
 

𝑃0 =
1

[∑
1
𝑛!

(
λ
μ

)
𝑛

M−1
n=0 ] +

1
𝑀!

(
λ
μ

)
𝑀 𝑀μ

𝑀μ − λ

, 𝑓𝑜𝑟 𝑀μ >  λ 
3-14 

 

𝐿𝑠 =
λμ(λ/μ)𝑀

(𝑀 − 1)! (𝑀μ − λ)2
𝑃0 +

λ

μ
 3-15 

 

𝑊𝑠 =
𝐿𝑠

λ
 3-16 

 

𝐿𝑞 = 𝐿𝑠 −
λ

μ
 3-17 

 

𝑊𝑞 =
𝐿𝑞

λ
 3-18 

Here, it is important to understand the difference between the average time in the 
system 𝑊𝑠  and the simulated vehicles' average time in the system 𝑊𝑠,𝑣𝑒ℎ𝑖𝑐𝑙𝑒 . The 
simulated vehicle is necessarily not properly represented by the average vehicle. 
Since we have information regarding the simulated vehicle it would be 
preposterous to not include that information in the model. The average simulated 
vehicle service time is described in equation (3-19), where Wq is a scalar, Ereq is the 
driver-defined requested amount of recharge energy and Pk  is the max power 
output from the recharging station. 

𝑊𝑠,𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = Wq +
Ereq

Pk

 3-19 

Trivially, one would like to minimise the variable 𝑊𝑠,𝑑𝑟𝑖𝑣𝑒𝑟  . Fixating the energy 
request Ereq  to an arbitrary fraction of the battery capacity, let’s say 1/3. Using 
range prediction, it is possible to locate all the stations that are along our trace 
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before the battery state of charge (Soc) level is estimated to be below 20%. Now, 
calculate the estimated time in the system for the simulated vehicle and choose 
the recharging station with the smallest 𝑊𝑠,𝑣𝑒ℎ𝑖𝑐𝑙𝑒 . Do the same calculations 
recursively over the whole simulation. This is a neat and easy model that should 
and could easily be further developed. For example, one could introduce 
constraints on charging time or waiting time. Also, the driver does probably prefer 
time in service over time in a queue since service enables the driver to exit the 
vehicle.  
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4 Case studies 

This chapter consists of three parts, a description of the Simulation environment, 
a Feasibility analysis of replacing an ICEV with a BEV and an analysis of the 
Framework delivery 

4.1 Simulation environment 

This Section consists of three parts, a description of the dOC parameters used, a 
list of Assumptions made, and two tables presenting Vehicle specifications for the 
logged vehicle and the BEV vehicle model. 

4.1.1 dOC parameters  

Even though models and data are available for the dOC models, the BEV Vehicle 
model does not make use of all the fields of the format. The supported fields are 
Mission and Road resulting in simulations being carried out with the dOC 
parameters presented in Table 4-1.  
 
Table 4-1. dOC parameters used in simulations with VehProp. 

 Description Unit 

Road:   

Topography: Altitude (m) 

Legal speed: Speed limit (m/s) 

Curvature: Radius of circle segment   (1/100 meter) 

Stop sign: Standstill time (s) 

Speed bump: Length, height, angle ( m, m, degree) 

Traffic light: Standstill time (s) 

Mission:   

Payload: GCW – kerb weight = Payload (kg) 

EV-Recharging: Power (watt) 

Power take off: Time  (s) 

Travel direction: (1=forward, 0=reverse) (boolean) 

Mission Stop: Standstill time (engine turned off) (s) 

Mission matrix: Composition of Mission parameters (Boolean, kg, watt, watt, Boolean, s) 

 

4.1.2 Assumptions 

A few assumptions regarding certain vehicle systems and dOC parameters are 
required to enable simulation. The assumptions made are those presented in the 
bullet list below.  

- Every mission stop is seen as a recharging opportunity. As soon as the 
vehicle initiates a mission stop, recharging with 350kw is initialized. The 
purposed dOC model for EV-Recharging, see Section 3.2.1, is yet to be 
implemented. The dOC EV-Recharging format purposed can describe a 
more realistic recharging behaviour.  Although to limit this study, 
implementation and evaluation of that model are yet to be produced. 

 
- Recharging by regenerative braking is only limited by the battery charging 

limit which is 200 kW. It is reasonable to believe that the generators 
themselves have a power output limit that is not accounted for. Worth 
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noting, the same saturation (200 kW) applies for the external EV-
Recharging since it is a limitation of the vehicle battery. 

 
- The VehProp BEV vehicle model is rather simple. Due to simplicity, some 

dynamics of the Operating Cycle format are lost. For example, there exists 
no traffic model or weather model. Also, some dynamics in the vehicle are 
simplified and biases are likely introduced, affecting energy consumption.  

 
- Several signals are missing in the log and do therefore have to be estimated. 

To name a few: 
o PTO power signal  

▪ A Boolean On and off signal is available, but no power 
measure. Therefore, PTO power output is estimated to be a 
pulse with two kW magnitude. It is reasonable to believe that 
PTO Power output could be better estimated. Usually, one 
can measure the engine shaft power output (torque x 
angular velocity) during PTO usage. But due to uncertainties 
regarding the logged signal and to limit the project frame, no 
further study of this was conducted.  

o Stand still time while loading on/off the vehicle. 
▪ A study of loading times showed that 30 tonnes worth of soil 

takes about 150 seconds to be loaded using a single 
excavator. Assuming some time spill, a load event is 
estimated to take 300 seconds.  

o Speed bump dimensions 
▪ Brief market research was conducted. One world standard 

speedbump, consisting of a circle segment, named the watts 
hump typically has the dimensions 3.7 x 0.1 (width x height) 
[18]. Assuming the ramp is close to triangular, these bumps 
would have a slope of about 3.1 degrees. Given our imitated 
information regarding the specific speed bump encountered 
and the limited knowledge within the field, a harsher 
measure is used, a hump with dimensions 4.0x0.1 but with 
an angle of 4.3 degrees.  

    
The takeaway from the assumptions made is that the simulation result will not 
represent the past perfect as always with simulations. Given the generous 
recharging modelling together with the lack of weather impact modelling, it is fair 
to assume that the simulation result will score higher in terms of success rate 
compared to what field studies would suggest. The analysis should therefore be 
treated as an upper limit to how well a BEV could perform, rather than how well 
it will perform using today’s available technology.  

4.1.3 Vehicle specifications 

The vehicle logged during field tests is presented in Table 4-2.  
 
Table 4-2. Logged heavy-duty vehicle specifications. *Estimated from vehicle log 

data. 

Model: Volvo FH16 750 hp, 8x4 
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Engine designation: D16K 750 Step D, 16.1.1 

Max revs: 2000 rpm 

Max torque: 3550 Nm 

Gearbox: ATO3512F ASO-C 

Kerb weight: 16 220 Kg* 

WB wheelbase: 4300 mm 

 

In table Table 4-3, the vehicle used in the simulation.  
 

Table 4-3. Bev specifications. 

Model: Volvo FH Electric 

Driveline: 2 electric motors 

Battery capacity: 739.26 kWh 

Max torque: 1898.7 Nm 

Max Power: 510 kW 

Kerb weight: 11042 Kg 

WB wheelbase: 

 

4370 mm 

It is important to recognize the differences between the two vehicle models. Just from 

the vehicles, one should expect differences in energy consumption, driving behaviour 

etc. The logged vehicle is a much stronger and larger vehicle resulting in possibly more 

aggressive driving behaviour and larger energy consumption.   

4.2 Feasibility analysis of replacing an ICEV with a BEV  

This Section investigates the feasibility of replacing a specific heavy vehicle with a 
BEV. 

4.2.1 Findings 

A year's worth of dOCs meant that 159 missions were simulated. The feasibility of 
replacing the specific ICEV with the BEV without altering the transport mission is 
evaluated solely concerning battery capacity. No consideration of power 
limitations was taken. Missions that fail to be simulated are therefore not included 
in this analysis. If those missions fail due to power limitations or simulation 
environment errors is yet to be known. Therefore, an outlier rejection cell 
identifying failed missions is described by the list below, where subscript 𝑠 and 𝑙 
represent simulation and log file respectively. 
 

1. 
|𝑑𝑠−𝑑𝑙|

𝑑𝑙
< 5% 

2. 2 >
𝑡𝑠

𝑡𝑙
> 0.5 

3. 1.2 >
Es

El
> 0.8 

 
A mission is deemed valid when all three arguments are passed as true. The 
numbers are, even though looking, not random. The first cell, where 𝑑  is total 
mission distance driven, rejects simulations that have not completed the whole 
mission. This one is very strict compared to the other cells. If the distance does 
vary by more, one should question the degree of representation. The second 
argument, where 𝑡 is the total time of the mission, is very loose. There are multiple 
reasons for time to vary e.g., differences in driving behaviour and idling. The 
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window could be narrowed for longer missions, but for shorter missions idling 
can result in large differences. Therefore, a wider window is accepted. The third 
argument, where 𝐸 is the total engine shaft energy output over a mission. All these 
arguments are wide enough to avoid removing any valid simulation results while 
remaining narrow enough to remove invalid simulation results. Some of these 
arguments could have narrower windows without problem, but there is no need 
to, hence no further tuning was initiated. 
  
In the feasibility analysis, a mission is classified as successful if the DoD (depth of 
discharge) never surpass 70%. Accounting for battery degeneracy and voltage 
losses at low Soc levels, it is reasonable for a BEV to only deliver 70% of its 
maximum battery capacity. Given all, the maximum DoD during all missions is 
presented in Figure 4-1.  
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Figure 4-1. Bar plot of DoD normalized to sum 1. The Green area represents 

missions that are classified as successful. Missions outside the green area can not 

be completed without alteration in the transport mission. 

The fraction of missions that cannot be completed without alteration in the 
transport mission is about 8 %. To highlight the sensitivity, if the acceptable DoD 
range instead shrinks to 0.56 the fraction of failed missions doubles to about 16%. 
That said, it is of the highest importance that the simulation result is accurate. This 
study shows, even though being very generous with recharging, that the BEV used 
in simulations cannot perform the same transport missions as an FH16 can do. 
About two transport missions per month cannot be completed without alteration. 
Trivially, the amount of alteration does differ from transport mission to transport 
mission. Studying the failed missions, an interesting aspect is revealed. A couple 
of the failed missions could be classified as successful if the driver were to initiate 
a stop and charge a bit earlier, see lower subfigure in Figure 4-2. 



 

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis  35 

 

 
Figure 4-2. Mission 2020-Oct-19 energy comparison of simulation and log. The 

upper subplot presents the cumulative energy consumed over the whole mission 

and its linear trends. The middle subplot presents the deviations of cumulative 

energy consumed around the linear trend. The lower subplot presents the DoD 

level during simulation.  

In Figure 4-2, the DoD just surpass 0.7 at about 275km. If the driver could make 
the same stop just a couple of km earlier, the mission would be classified as 
successful. Altering the transport mission like this might not be possible given that 
the driver must comply with delivery deadlines, lack of recharging stations, etc. 
But given flexible transport mission scheduling, it is possible to reduce the fraction 
of failed missions to 7% if a mission stop is allowed to be frontloaded. But then 
again, it is difficult to assess compliance in altering those transport missions. Also, 
given the generous recharging modelling, it is fair to assume that the transport 
missions would have to be even more frontloaded in reality compared to 
simulations. 

4.3 Framework delivery 

This Section evaluates the quality of the results presented in the previous Section 
and the stochastic models developed in Section 3.3. 

4.3.1 Deterministic model evaluation 

To verify the simulation environment as well as the dOC description, the engine 
shaft energy output is compared in Figure 4-3.  
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Figure 4-3. Comparison of total energy consumed during missions measured at 

engine shaft.  

Given that we are comparing the engine shaft energy output, this result is very 
accurate. There are a couple of things that should vary between our simulated BEV 
compared to the logged FH16 vehicle. 

- Friction in transmission. 
- Rolling resistance. 
- Weather impact on the vehicle. 
- Driver behaviour. 

To compare the simulation result with the log data, a line which minimizes the 
squared error is fitted to the energy consumption in simulation and in logging for 
every mission. The difference in slope of those lines is then collected and displayed 
in a histogram in Figure 4-4. The mean of the histogram represents the linear error 
that the simulation environment on average produce. Such bias could be caused 
by a misrepresentation of RRC, payload, etc.  
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Figure 4-4. Comparison of linear terms. The x-axis represents the linear term 

offset when comparing simulation results to logged field data.  

In Figure 4-4, one might notice that the linear error is close to normally distributed 
with a mean of zero. This implies that an arbitrary mission is expected to be 
simulated with zero linear bias in energy consumption compared to the log files.  
 
Another factor affecting energy consumption is the total mission time and 
distance. Allowing a transport mission to extend the timeframe, gives the driver 
the possibility to drive more fuel efficiently resulting in unfair simulation results. 
In Figure 4-5, the error between the simulation and the log file is presented. The 
difference in total time seems to approximately be normally distributed with a 
mean of -0.2h and a variance of 1.  

 
Figure 4-5. Comparison of total time per mission between logged vehicle data and 

simulation results. 

Assuming missions are operated under a 10-hour timeframe, a deviation of up to 
2 hours is quite large. It implies that the simulation environment does at instances 
finish a mission 20% faster/slower compared to the logged vehicle. The cause for 
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this is yet to be known but a list of the most likely reasons is provided in Section 
5.2.   
Now, the error in distance travelled is presented in Figure 4-6.  

 
Figure 4-6. Comparison of total distance driven per mission between logged 

vehicle data and simulation results 

The difference in total distance travelled is neglectable. A dozen meters is not 
impacting the overall energy consumption of missions operated for up to 500 km. 
 
To further evaluate the format, A specific mission is analyzed to prove the concept. 
In Figure 4-7, the cumulative energy consumed is plotted against distance. To 
verify the shape, the linear trend in energy consumption is removed and the 
resulting signals are presented in the middle subplot. The DoD although 
interesting, is impossible to prove since we have no data to do so.   
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Figure 4-7. Mission 2021-May-28 energy comparison of simulation and log. The 

upper subplot presents the cumulative energy consumed over the whole mission 

and its linear trends. The middle subplot presents the deviations of cumulative 

energy consumed around the linear trend. The lower subplot presents the DoD 

level during simulation. 

 
Except for the energy consumption, we should expect to have a similar speed 

profile. In Figure 4-8, the speed signal is presented. The upper subplot presents 

the measurement and the lower subplot the filtered measurement using a 

moving average filter. Here one might notice that the velocity profile of the field 

tests and simulations do compare quite well, indicating once again that the OC 

format is a good representation of a transport mission.   
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Figure 4-8. Speed log for Mission 2021-May-28. The upper subplot presents the 

measured signal. A moving average filter applied on the measured signal results 

in the signal presented in the lower subplot. 

4.3.2 Stochastic model evaluation 

To evaluate the stochastic models developed under Section 3.3, mission stops and 
mass logs are generated. For each dOC, the fields Payload and mission stop are 
now overwritten by the generated mass and mission stops. The values of those 
fields are generated from the stochastic model's Payload and Mission stop. The 
models and parameter values used to generate the samples are those presented 
in Section 3.3. To ease the reading, the notation generated dOC refers to dOCs with 
modified payload and mission stop fields. Energy consumption in simulations 
using the generated dOCs are to be compared against log data and the simulated 
dOCs. The results are shown in Figure 4-9.  
  



 

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis  41 

 

 ner     ns   ti n  er  issi n

                     

 n ine sha t  ner     t  t    h 

 

    

   

    

   

    

   

 i   ati n

 enerate     s

                             

Ma      in a   Missi ns

 

    

   

    

   

    

   

   e ta  e     ran e

 i   ati n

 enerate     s

 
Figure 4-9. The left subplot displays the engine shaft energy output. It shows that 

the generated dOCs are on average running a bit too easily. The right subplot 

displays the DoD. It shows that the DoD of generated dOCs is on average a bit low. 

Looking at the histograms, it seems like the generated dOCs do in general have a 
lower energy consumption. The shape is relatively similar but shifted with about 
100 kWh. To find the cause, a comparison of the generated mass and the logged 
mass is conducted. Recalling from Section 3.3.1, four processes should be 
considered, distance travelled in state, transition in between states, payload 
magnitude in each state and initial state. First, the distance travelled in state was 
assumed to be equal for all states. The distance driven within states over all the 
missions is presented in Figure 4-10. 
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Figure 4-10. Four subplots present the distribution of distance travelled within 

state for each state. 

The difference in distance driven within state are noticeable. The driver does stay 
in state LOADED-T about 5 times longer than within the state UNLOADED. These 
states do differ in GCW by about a factor of 4 (about 15 and 60 tonnes respectively 
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depending on the kerb weight of the vehicle). Now, the mass resulting from the 
sOC model is compared to the dOC-filtered mass in Figure 4-11. From this figure, 
it is possible to evaluate one out of the three remaining processes, the payload 
magnitude. The payload magnitude stochastic model is representative if the shape 
of each state is similar comparing the dOCs and the generated dOCs. Since the two 
unloaded states take the constant values of 0 and 6.22 tonnes (for an explanation, 
see Section 3.3.1) only the loaded states' distributions are presented.  
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Figure 4-11. Comparison of dOC and generated dOC mass logs for the two loaded 

states. 

The shape is relatively similar indicating that the payload magnitude is well 
represented by our models. The two other processes, transition in between states 
and initial state modelling are correctly modelled if the weight of each state is 
similar comparing the dOCs and the generated dOCs. The weight of each state is 
presented in Figure 4-12.  
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Figure 4-12. Comparison of dOC and generated dOC weights. The weights 

correspond to the number of times transitioning to state and starting in the state. 

The weights are very similar, indicating that our model have fit the data well. Now 
that all the four processes have been examined it is fair to say the shift in Figure 
4-9 is likely a result of the incorrect assumption made regarding equal distance 
driven within state. 
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5 Conclusions and Future work 

5.1 Conclusions 

Explain main conclusions & results. Be careful to include description of how you have 
met each of the objectives and deliverables. Short and often suitable on bullet form. 
(If more than 0.5..1 page, consider to move to other chapter, such as Result or 
Discussion.) 

• By including data analytics in the OC format, some new system dynamics 
have been discovered. A mass trace is now included and a model for 
mission stops. Also, one can see the importance mass plays in energy 
consumption. Just from one incorrect assumption, one can see a noticeable 
shift in energy consumption.  

• A large portion of the work has been to build a framework that transforms 
log data into dOCs. This framework will prove very useful for future studies 
within the field as it not only saves time but also includes the dynamics of 
a transport mission that has not been included before.  

• From Section 4.2, one now has an idea of how well a BEV can perform. The 
number of missions classified as failed in terms of DoD is not neglectable. 
We can from this result argue that a BEV cannot replace the FH16 without 
alteration of the transport mission. Vehicles of other transport missions 
could use the same framework developed to investigate if those can be 
replaced by a BEV.    

5.2 Future work 

To expand the use of our models, extensive validation of the models should be 
conducted. Given that the validation proves successful, the models do have other 
potential use cases. For example, they can assist in range prediction for vehicles in 
operation and also give valuable insights into vehicle usage. It is reasonable to 
believe that the models developed are not a perfect representation of all transport 
missions. Just from this study, numerous assumptions have been proven invalid 
after evaluation. For example, the payload sOC model. As discussed in Section 
4.2.1, a new model of the distance travelled in state should preferably be 
developed. Also, the inaccuracy of the model fit for the mission stop sOC model 
should be further investigated, see Section 3.3.2. A couple of models even require 
implementation. A model for EV-Recharging and a driver decision-making 
algorithm is presented in the present thesis and the author recommends coming 
authors to implement and validate these models further. They have the possibility 
to produce a more precise measure of DoD, enabling analysis of probable mission 
success rate concerning DoD.  
 
From the literature studies, improvements of one model were recognized, the 
traffic light sOC model. The author was in contact with Göteborgs Trafikkontor 
regarding statistics of traffic lights without any success. But given that data is 
available, the modal proposal is the following:  
Traffic signs stand still time should preferably be modelled by equation (5-1). 

�̃�𝑘 = 𝑇𝑘𝑥 5-1 
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Here, 𝑇𝑘 is the uniformly distributed variable described in equation (2-3), 𝑥 is a 
Bernoulli distributed random variable with probability p, and �̃�𝑘  is the new 
random variable representing standstill time at traffic lights. The current model 
does not model the occurrence of green lights, it assumes all traffic lights to be red. 
But the new and purposed model does however model both green and red lights. 
It is important to note that the dynamics of traffic lights could be even further 
developed. Some traffic lights are movement-sensitive and phenomena such as the 
green wave are impacting the probability of encountering red and green lights. 
 
In Section 4.3.1, the mission total time was examined. The result showed that 
simulations do vary quite a bit from the logged vehicle. Probable causes for this 
are listed below: 

• Load on/off event is estimated to take 300 seconds, which might be an 
inaccurate estimate for certain missions. 

• VehProps Mission state machine gets stuck due to zero crossings. 
• Vehicle limitations such as max power and max torque might reduce the 

speed of the vehicle for certain missions. 
• The Vehprop driver model might not perfectly represent the driver of the 

logged vehicle.  
• Idling without any action is not captured in the dOC format. For example, 

the driver might be idling at the mine site while talking to colleagues. That 
is not accounted for in the dOC format. 

• The standstill time at red lights and stop signs is estimated. A lucky driver 
might never stop at a red light. 

• VehProp does not model traffic even though the dOC format provides such 
data. Trivially, the logged vehicle is affected by the traffic density which 
might vary from day to day. 

 
Also, the OC format is still in development. New models are continuously being 
developed that will make simulations match the logged vehicles even more 
accurately. In Section 4.3.1, the linear offset for energy consumption comparing 
simulation results to the logged vehicle was examined. The result showed that 
simulations could be offset by up to 0.3 kWh/km which implies that a mission 
operated under 300 km could have a linear offset of 90 kWh. After consultation 
with Klimator, a market-leading digital road weather solution provider, a day of 
extraordinarily poor road conditions was now known, that is the 17th of February 
2021. A comparison between that day and a day during summer, the 10th of August 
2021, to display the impact of road conditions on energy consumption is 
presented in Figure 5-1.  
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Figure 5-1. Linear term comparison between a mission performed under snowy 

road conditions and a mission performed during the summer. 

As anticipated, the summer day has its energy consumption overestimated in 
simulation whereas, during the 10th of February, the opposite is true. But two 
missions are not sufficient to draw any conclusions, therefore the author 
recommends coming authors to investigate this further. Studies have shown that 
road weather conditions can have huge impacts on energy efficiency for road 
vehicles [25] and are likely one of the causes of the linear offset that certain 
missions experience in simulation. 
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APPENDIX A 

A.1 Multimodal Normal distributions. 

First, collect one year's worth of mass logs and plot the occurrence in a histogram. 
Second, fitting 4 Normal distributions, one to each load case, results in the 
following characteristics, see Table A-1 where ω is the weight of each distribution 
 
Table A-1. Characteristic parameters from fitting four normal distributions to 

GCW data, one for each state. 

 μ σ ω 
UNLOADED 15758.9 1266.99 0.1935 
UNLOADED-T 22437.5 1129.02 0.4099 
LOADED 29028.6 1672.52 0.1077 
LOADED-T 53970.3 2045.13 0.2206 

 
The resulting multimodal distribution can be seen in Figure A-1 
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Figure A-1. The histogram displays the distribution of all GCW data available. A 

multimodal distribution consisting of 4 normal distributions is fitted to the GCW 

data. 

The probability density function of the multimodal distribution is presented in 
equation (A-1) 
  

𝑓(𝑥) = ∑ ωifn(x,μi,σi)
4
i=1   A-1 

Here, subscript 𝑖 is an integer value representing the four different states. 
The probability density function fn(x,μi,σi) is presented in equation (A-2). 
 

fn(x,μi,σi) =
1

σ𝑖√2π
 𝑒

−
1
2

(
𝑥−μ𝑖

σ𝑖
)

2

 A-2 

No further analysis of this result is provided.
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A. 2 Queueing theory 

Queueing theory is the mathematical study of waiting lines. The main purpose of 
queueing theory is to quantify and predict queue time and queue length using a 
set of parameters. This thesis makes use of queues with Kendall’s notation 
(𝑀/𝑀/𝑆): (𝐹𝐶𝐹𝑆/∞/∞) to describe queues at recharging stations. The entries of 
the Kendall notation are briefly described in the list below: 

- 𝑴: Inter-arrival time. Arriving vehicles are modelled as a Poisson process. 
- 𝑴: Exponential service time. Vehicle service time is modelled as a Poisson 

process. 
- 𝑺: Number of service channels. A charging station with five connectors has 

five service channels. 
- 𝑭𝑪𝑭𝑺: First Come First Served. Vehicles are served in the order of arrival. 
- ∞: The calling population. That is the number of BEVs that could charge at 

a specific station. It is assumed to be infinite. 
- ∞: The maximum number of vehicles in the waiting line before customers 

choose another station. It is assumed to be infinite.  

A. 3 Threshold filter 

A binary threshold filter marks data as either above or below the threshold, 1 or 
0. Given a threshold T, the binary random variable is defined by the value of the 
random variable x(t), see equation (A-3).  
  

𝑋(𝑡) = {
1, 𝑖𝑓𝑥(𝑡) > 𝑇

0, 𝑖𝑓𝑥(𝑡) < 𝑇
 A-3 

A. 4 Spike filter 

A spike filter counts the number of consecutive samples encountered with the 
same Binary value. If the number of consecutive samples is less than 𝑇𝑠 , the 
opposite value is assigned to the whole sequence. Each sequence of consecutive 
identical samples is denoted 𝐵𝑖 and the number of elements in 𝐵𝑖 is denoted 𝑛𝑖 . 
The filter equation is presented in equation (A-4). 

𝐵𝑖 = {
𝐵𝑖 , 𝑖𝑓 𝑛𝑖 > 𝑇𝑠

𝐵𝑖
∁, 𝑖𝑓 𝑛𝑖 < 𝑇𝑠

, 𝑓𝑜𝑟 𝑖 = 1,2, . . , 𝑘 A-4 

The resulting filtered signal is the composition of every sequence 𝑋𝑓(𝑡) =

{𝐵1, … , 𝐵𝑘}.  

A. 5 Marked Poisson Process 

The marked Poisson process models randomly scattered discrete events in the 
mathematical space, where each event is independent of the other. For this thesis, 
the space is reduced to the positive real axis, distance. With the rate of occurrence 
λ one can calculate the number of events expected up until the distance 𝑡 using 
equation (A-5). 

𝑃(𝑁(𝑡) = 𝑘) = 𝑃λ(𝑡) =
(λ𝑡)𝑘

𝑘!
𝑒−λ𝑡 , 𝑘 ≥ 0 A-5 
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To illustrate, five Poisson distributions are presented in Figure A-2 using 𝑡 = 1.   

 
Figure A-2. Poisson distribution with five different 𝜆 for 𝑡 = 1.  

The probability of an event occurring if driving the distance 𝑡  is presented in 
equation (A-6). 

𝑃(𝑇 ≤ 𝑡) = 1 − 𝑃(𝑁(𝑡) = 0) = 1 − e−λt A-6 

This process is repeatably used throughout this thesis and is usually the initiator 
of a certain event. Meaning that the marked Poisson process models the 
occurrence of events, not the effect of events.  
 

A. 6 Gamma distribution 

A gamma distribution is parameterized by the shape and rate parameters α, β >
 0 with the probability density function Γ(α, β), see equation (A-7). 
 

𝑓(𝑥;  α, β) =
β

α

Γ(α)
𝑥α−1𝑒−β𝑥 , 𝑥 > 0 A-7 

 
The gamma function Γ(∙) is defined by equation (A-8) 

Γ(𝑧) = ∫ xz−1
∞

0

e−xdx, 𝑅𝑒(𝑧) > 0 A-8 

To illustrate, by fixating one parameter at a time, one can see the impact of each 
parameter in the distributions presented in Figure A-3. 



 

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis  50 

 

 
Figure A-3. Gamma distributions with different parameters display the impact of 

each parameter. 



 

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis  51 

 

6 References 

      
[1] Sheth, N. Sethia, K. Srinivas, S.  (2011): Mindful consumption: a customer-centric 

approach to sustainability. Atlanta, USA: Emory University. 

[2] European commision. (Accessed jan. 09, 2023): Vehicle Energy Consumption 
calculation Tool – Vecto. ec.europa. https://climate.ec.europa.eu/eu-
action/transport-emissions/road-transport-reducing-co2-emissions-
vehicles/vehicle-energy-consumption-calculation-tool-
vecto_en#documentation.  

[3] Åkerinäringen. (2019): Färdplan för fossilfri konkurrenskraft.   

[4] Paoli, L. Gül, T. (2022): Electric cars fend off supply chenges to more than double 
global sales. IEA. 

[5] European Union. (2019): REGULATION (EU) 2019/1242 OF THE EUROPEAN 
PARLIAMENT AND OF THE COUNCIL of 20 June 2019 setting CO2 emission 
performance standards for new heavy-duty vehicles and amending Regulations 
(EC) No 595/2009 and (EU) 2018/956 of the European Parliament and of the 
Council and Council Directive 96/53/EC.  

[6] Buis, A. (2022): Steamy Relationships: How Atmospheric Water Vapor Amplifies 
Earth's Greenhouse Effect. NASA's Jet Propulsion Laboratory. 

[7] Our World in Data. (Accessed Jan. 09, 2023): Annual co₂ emissions. 
Ourworldindata. https://ourworldindata.org/grapher/annual-co2-emissions-
per-country?facet=none&country=~OWID_WRL. 

[8] United Nations. (2019): Climate Justice. 

[9] Nordström, E. (2020): Advanced Modelling and Energy Efficiency Prediction for 
Road Vehicles. Umeå, Sweden: Umeå University. 

[10] Romano, L. (2021): Mathematical modelling of operating cycles for road 
vehicles. Göteborg, Sweden: Chalmers University of Technology. 

[11] Pettersson, P. (2019): Operating cycle representations for road vehicles. 
Göteborg, Sweden: Chalmers University of Technology. 

[12] Sahoo, P. Soltani, S. Wong, A. (1988): A Survey of Thresholding Techniques. 

[13] Stanley, G. (Accessed jan. 09, 2023): Spike Filtering. gregstanleyandassociates. 
https://gregstanleyandassociates.com/whitepapers/FaultDiagnosis/Filterin
g/Spike-Filter/spike-filter.html. 

[14] U.S. Geological Survey. (2022): Mineral commodity summaries 2022. Reston, 
Virginia, USA. 

[15] Here developer. (Accessed Jan. 09, 2023): Country support. Developer.here  
https://developer.here.com/documentation/places/dev_guide/topics/coverage
-information.html. 

[16] European Comission. (Accessed jan. 09, 2023): Recharging systems. Ec.europa. 
https://alternative-fuels-observatory.ec.europa.eu/general-
information/recharging-systems. 

[17] TomTom. (Accessed jan. 09, 2023): Gothenburg traffic. tomtom. 
https://www.tomtom.com/traffic-index/gothenburg-traffic. 



 

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis  52 

 

[18] Weber, P. Braaksma, J. (2000): Towards a North American Geometric Design 
Standard for Speed Humps. 

[19] Johannesson, P. Podgórski, K. Rychlik, I. (2016): Modelling roughness of road 
profiles on parallel tracks using roughness indicators. 

[20] Vackert Väder. (Accessed jan. 09, 2023): Väder Göteborg. Vackertvader. 
https://www.vackertvader.se/g%C3%B6teborg/klimat-och-temperatur. 

[21] Pettersson, P. Berglund, S. Jacobson, B. et al (2018). A proposal for an operating 
cycle description format for road transport missions.  

[22] Virta. (Accessed jan. 09, 2023): Virta. www.virta.global. 

[23] Balaraaman, P. Chandrasekaran, P. (2021):  Influence of loading cycle time on 
the performance of hydraulic excavator in a construction site. Chennai, India: 
SRM Institute of Science and Technology. 

[24] Pettersson, P. Johannesson, P., Jacobson, B. Bruzelius, F. Fast, L., Berglund, S. 
(2019): A statistical operating cycle description for prediction of road vehicles’ 
energy consumption. 

[25] Nordin, L. (2015): Energy Efficiency in Winter Road Maintenance. Department 
of Earth Sciences, University of Gothenburg, Sweden. 



 

 CHALMERS, Mechanics and Maritime Sciences, Master’s Thesis  
 

 


	Master Thesis
	Abstract
	Contents
	Preface
	Notations
	List of Acronyms
	1 Introduction
	1.1 Background
	1.2 Problem motivating the project
	1.3 Envisioned solution
	1.4 Objective
	1.5 Deliverables
	1.6 Limitations
	1.7 Method
	1.7.1 Mission framework definition
	1.7.2 Transport mission descriptions
	1.7.3 Model development
	1.7.4 Simulation model library
	1.7.5 Stochastic models


	2 Operating Cycles
	2.1 The deterministic operating cycle
	2.2  The stochastic operating cycle
	2.2.1 Primary models
	2.2.2 Secondary road models
	2.2.2.1 Stop signs, giveaway signs, speed bumps & traffic lights
	2.2.2.2 Speed limits and ground type
	2.2.2.3 Topography
	2.2.2.4 Curviness
	2.2.2.5 Road roughness

	2.2.3 Secondary weather models
	2.2.3.1 Air temperature and relative humidity
	2.2.3.2 Atmospheric pressure
	2.2.3.3 Precipitation
	2.2.3.4 Wind speed and direction

	2.2.4 Secondary traffic model


	3 Model development
	3.1 Refinement and analysis of log vehicle data
	3.1.1 Defining missions as a workday
	3.1.2 Mission Stop
	3.1.3 Payload

	3.2 Deterministic Operating cycle
	3.2.1 EV-Recharging dOC model
	3.2.2 Payload and Mission Stop dOC models

	3.3 Stochastic Operating cycle
	3.3.1 Payload Stochastic model
	3.3.1.1 Distance travelled in states
	3.3.1.2 Transitions between states
	3.3.1.3 Payload magnitude of states
	3.3.1.4 Initial state modelling
	3.3.1.5 Complete model

	3.3.2 Mission stop stochastic model
	3.3.3 EV-Recharging stochastic modelling
	3.3.3.1 Location of EV-Recharging station
	3.3.3.2 Maximum available charging power, connector type and capacity
	3.3.3.3 Average service and arrival rate
	3.3.3.4 Complete model


	3.4 Driver decision-making - Recharging

	4 Case studies
	4.1 Simulation environment
	4.1.1 dOC parameters
	4.1.2 Assumptions
	4.1.3 Vehicle specifications

	4.2 Feasibility analysis of replacing an ICEV with a BEV
	4.2.1 Findings

	4.3 Framework delivery
	4.3.1 Deterministic model evaluation
	4.3.2 Stochastic model evaluation


	5 Conclusions and Future work
	5.1 Conclusions
	5.2 Future work

	APPENDIX A
	A.1 Multimodal Normal distributions.
	A. 2 Queueing theory
	A. 3 Threshold filter
	A. 4 Spike filter
	A. 5 Marked Poisson Process
	A. 6 Gamma distribution

	6 References


