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Pericardium Segmentation in Non-Contrast Cardiac CT Images Using Convolutional
Neural Networks
BOLIN SHAO
Department of Signals and Systems
Chalmers University of Technology

Abstract

Recent studies show that the epicardial fat volume is an important indicator for
many cardiovascular diseases, such as coronary atherosclerosis. The epicardial fat
is the visceral fat that is located between the heart and the pericardium. The
pericardium structure, i.e. the heart sack, is a thin layer that covers the heart and
is barely visible in cardiac CT images.

This thesis proposes a method for automatic pericardium segmentation in non-
contrast 3D CT images. The thesis can be divided into two main parts. The first part
focuses on pericardium ground truth creation. Given a set of labelled contrast CT
images, image registration methods are used to generate an estimated pericardium
ground truth for unlabeled non-contrast CT images needed in the second part. Given
this estimated labelling, the second part of the thesis concentrates on pericardium
segmentation using machine learning algorithms. Convolutional neural networks
(CNNs) are trained to classify the voxels in the non-contrast CT images. Multi-
atlas techniques are combined with the generated probability map in order to define
the regions of interest. Graph cuts is applied to obtain the final segmentation.

The results present an average dice coefficient larger than 0.95 on the test images,
a comparable number to similar algorithms for contrast CT images.

Keywords: image segmentation, image registration, pericardium, machine learning,
convolutional neural network (CNN), non-contrast CT, SCAPIS, epicardial fat.
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1
Introduction

1.1 Background

Epicardial fat is a visceral fat deposit, located between the heart and the peri-
cardium, a double layered sac covering the heart. Recent studies have shown that
the epicardial fat volume may be an indicator of many cardiovascular diseases, such
as coronary atherosclerosis [29]. This requires an accurate pericardium segmenta-
tion, i.e. delineation of the pericardium in the image, as fat tissues are located both
inside and outside pericardium.

The widely used computed tomography (CT) images can be categorized into contrast
CT and non-contrast CT. Although the quality of contrast CT images are in general
better than non-contrast CT images, non-contrast CT images are much easier to
acquire and no intrusive injection is required. The injection of contrast agent can
sometimes cause adverse effects. Reactions vary from minor to severe, in some cases
even death. Also the non-contrast CT requires less dose and has no nephrotoxicity.
In general, non-contrast CT is still safer than contrast CT. In addition, for historical
reasons, non-contrast CT is still widely used in some countries, for example the US,
as a way of scoring calcium content in the vessels [30].

1.2 Aim

Conventionally, the pericardium segmentation can be done manually by profession-
als. However, the workload of manually delineating pericardium is huge, about 10
hours for one patient. Thus, an automated method is demanded. This thesis focuses
on automatic pericardium segmentation in non-contrast CT images.
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1. Introduction

1.3 Data

The data used in this project comes from the Swedish CArdioPulmonary bioImage
Study (SCAPIS), a nationwide project, which collects medical images of people aged
50 to 64 years old [31]. The data includes 27 contrast CT and the corresponding non-
contrast CT images, together with manually delineated pericardium segmentations
in the contrast CT images. The manual delineations were created by professionals
in previous projects. Thus there are no manual delineations for the non-contrast
CT images.

The contrast images in this project are of sizes varying from 512 × 512 × 342 to
512× 512× 458 voxels with a voxel dimension of 0.3320mm×0.3320mm×0.3000mm
and the non-contrast images are of sizes from 512×512×65 to 512×512×94 voxels
with a voxel dimension of 0.3320mm×0.3320mm×1.5000mm, a significantly larger
scale in the third direction.

Figure 1.1 shows an example of one slice of a 3D contrast volume image, the manually
delineated segmentation of the contrast image and non-contrast volume image. It
can be observed that the pericardium structure is barely visible as a thin line in the
contrast image, and even fainter in the non-contrast image.

Figure 1.1: An example of contrast and non-contrast CT images. Left: contrast
CT. Middle: contrast CT with pericardium segmentation. Right: non-contrast CT.

1.4 Our approach

To achieve the aim, machine learning algorithms have great advantages. The image
segmentation task is indeed a classification problem, i.e. to tell if the voxel belongs
to the foreground or the background, which is exactly what neural networks excel
at. Given recent studies [28], a convolutional neural network will be trained to
distinguish pericardium from other structures. Post processing techniques, such as
multi-atlas and graph cuts, are used to refine the results. However, ground truth
has to be acquired prior to the training.
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1. Introduction

In a common CT image acquisition procedure, the non-contrast image will first be
taken, and then the contrast agent will be injected to the patient. After 10 to 15
minutes, the contrast image can be taken. Thus, the contrast and non-contrast
images not only differ from intensities as Figure 1.1 shows, but also in placement.
To achieve accurate segmentations, image registration methods are used to register
the contrast images to the non-contrast images. In this thesis, both feature-based
and intensity-based registration methods were applied.

In summary, this thesis consists of two major parts. The first part deals with the
missing manual segmentation for the non-contrast images. The second part uses the
segmentation results from the previous parts to train a convolutional neural network
in order to automatically segment unseen non-contrast CT images.

1.5 Related work

Previous work by Alexander Norlen et al. [22] presents an efficient approach to
automatically segment pericardium and compute epicardial fat volume in contrast
CT images. The method used random forest as a classifier and achieved a dice score
of around 0.95.

Similar medical image segmentation work is done by Måns Larsson et al. [32]. In
the paper, a convolutional neural network is trained to segment different organs in
one contrast CT image, such as spleen, kidney, gallbladder and so on. The average
dice score achieved is around 0.76, with a highest dice score of 0.93 of spleen and a
lowest dice score of 0.57 of portal vein and splenic vein.

3



2
Theory

2.1 Fat detection

In a conventional CT scan machine, the image is usually generated by measuring the
intensity of a penetrating x-ray beam. Figure 2.1 sketches the principles of image
acquisition in a typical fourth generation CT machine. The x-ray beam is generated
from the x-ray tube and then transmitted through the human body. The detectors
are illuminated by the attenuated x-ray beam, whose intensity usually varies with
locations, since the human body contains various tissues with different absorption
abilities.

Figure 2.1: An illustration of a CT scan machine. [1]

The intensities assigned by the detectors are then compared to the attenuation value
of water and displayed as Hounsfield Units (named after Sir Godfrey Hounsfield).
In practice, the Hounsfield scales of different tissues are not the same for different
CT scanners, but most of them lie in a relatively fixed range, shown in Figure 2.2.
As illustrated in the figure, a typical Hounsfield scale is from -1000HU to +1000HU,
which stands for a shade of grey from black to white. In clinical applications, the
Hounsfield Scale intervals of a tissue can usually be observed from the intensity

4



2. Theory

histogram of the CT images [2].

Figure 2.2: The Hounsfield Scale of CT numbers [2].

2.2 Image registration

Image registration or image alignment is to align multiple images of the same ob-
ject, so that images taken under different conditions, such as different perspectives,
different sensors or different time, can be compared. The correspondences between
images can usually be represented by geometric transformations. Applying a ge-
ometric transformation will map points and areas in one image to another image.
Examples of applications are to align medical images captured by different modali-
ties (MRI, CT or SPECT), or to compare images taken at different times to discover
the variation of a tumor.

The methods of image registration can be generally classified into two families:
feature-based methods and intensity-based methods. In feature-based methods, cor-
respondences are found between image features, such as the SIFT feature points [6],
while in intensity-based methods, intensity patterns of the entire image or sub-
images are compared.

In image registration, it is often the case that one image is the target image while
the rest of the images are the source images. The goal of image registration is now
to calculate the most appropriate transformation for each source image that warps
the source image onto the target image.

In Figure 2.3, the MRI image slice u(x) is the target image and the CT image v0(x)
is the source image. The warped CT image, v(x), is an ideal image perfectly aligned
with the target image u(x). An unknown transformation matrix relates the warped
image v(x) to the source image v0(x) by

v0(x) = v(T ∗(x)). (2.1)

The goal of the registration process is to estimate a matrix T̃ that is close to (T ∗)−1.

5



2. Theory

Figure 2.3: An example of 2D registration [4].

2.2.1 Transformation model

Geometric transformation models determine how one image transforms into another
one. Two commonly used models are affine transformations and non-rigid transfor-
mations. An affine transformation can be formed by four basic transformations:
translation, scaling, rotation and shearing.

Figure 2.4: Basic affine operations [3].

Consider a three-dimensional Cartesian coordinate system, whose basis vectors are
ei, ej and ek. A translation transformation simply moves the origin of the coordinate
system along a certain vector, i.e. ẽi

ẽj
ẽk

 =

 ei
ej
ek

 +

 ti
tj
tk

 . (2.2)

In order to represent all kinds of transformation by matrices, especially for the
nonlinear translation transformation, homogeneous coordinates are used. The above
translation can be formed as

T =


1 0 0 ti
0 1 0 tj
0 0 1 tk
0 0 0 1

 ,
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2. Theory

and thus, the translation operation can be rewritten as

(ẽi, ẽj, ẽk, 1)T = T (ei, ej, ek, 1)T . (2.3)

A slightly more complex transformation model is the rotation transformation. A
rotation transformation in 3D space can be decomposed into three 2D rotations
along the basis vectors ei, ej and ek. The 2D rotations with an angle θ about the
three axes are given by

Ri =


1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

 ,

Rj =


cos(θ) 0 sin(θ) 0

0 1 0 0
− sin(θ) 0 cos(θ) 0

0 0 0 1

 ,

Rk =


cos(θ) − sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

 ,

The corresponding 3D rotation operation can be written as

(ẽi, ẽj, ẽk, 1)T = RkRjRi(ei, ej, ek, 1)T . (2.4)

Rotation and translation transformation retains the scale of the basis vector, while
the scaling operation allows different scaling factors in different directions. The
scaling matrix is given by

S =


si 0 0 0
0 sj 0 0
0 0 sk 0
0 0 0 1

 .

Finally, shearing offsets a set of points a distance proportional to the coordinates

H =


1 hxy hxz 0
hyx 1 hyz 0
hzx hzy 1 0
0 0 0 1

 .

The affine transformation is the combination of these four basic operations. There-
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2. Theory

fore, an affine transformation can be written as
ẽi
ẽj
ẽk
1

 =


a b c ti
d e f tj
g h i tk
0 0 0 1



ei
ej
ek
1

 . (2.5)

Often, in medical imaging applications, mere affine transformations are not adequate
to describe all kinds of naturally occurring transformations. Non-rigid transforma-
tion on the other hand allows an arbitrary way to align one image to another.
One way to represent a non-rigid transformation is to use a deformation field, which
stores all corresponding coordinates between the source image and the target image.
Clearly, the more detailed the non-rigid transformation is, the more computational
power it requires. In medical imaging, a B-spline based, free-form deformation model
is usually used to balance the trade-off [26].

2.2.2 Feature-based image registration

Given a set of points P i(i = 1, 2...n) in the source image and the corresponding
matched points in the target image Qi(i = 1, 2...n), it is possible to calculate a
transformation matrix that maps P i to Qi. To achieve this, it is apparent that
n should be at least four, since a general affine transformation has 12 degree of
freedom. For cases with n larger than four, different affine transformation matrices
can be calculated through different four-point subsets of P i and Qi. Among all
possible transformation matrices, some are better than others. Thus, the goal now
is to select the best one, which is equivalent to a model fitting problem.

The model fitting problem can be furthermore concluded as an optimization problem
once an evaluation criterion, usually a cost function, is set. A simplified 2D example
is sketched in Figure 2.5. Stars and circles are used to mark the matched points
in the sources and target image respectively. Three pairs of points are selected
to calculate a 2D affine transformation matrix. By applying the transformation
matrix T on the source image, a warped image is obtained, shown as the tilted one
on the right. Comparing the target image and the warped image, it is clear that
some points align almost perfectly with their matched points, such as the red pair
with a small distance between the points. Other points are far away from their
corresponding points, for example the green pair. It is also reasonable to infer that
a transformation will be the best one if as many pairs as possible are well aligned.

Thus, it is straightforward to define a cost function as the number of outliers, which
is also called l0 norm. Let θ be a threshold such that a pair of points with a distance
smaller than the threshold are considered inliers, otherwise outliers. The distance
between the warped points and the corresponding points in the target images is
given by

ri(T ) = ‖P iT −Qi‖. (2.6)

8



2. Theory

Figure 2.5: An example of a transformation matrix estimation. The source image
is on the left and the target image on the right. The matrix is estimated through
the light blue pairs. The result circled by red is an almost perfect alignment, while
the green one is poorly aligned.

Therefore, a cost function based on the l0 norm can be defined as

L =
∑

ri(T )>θ
1. (2.7)

Another approach to define the cost function is to use l1 norm instead, i.e.

L =
∑
i

ri(T ). (2.8)

In this approach, the cost function is the sum of residuals, which punishes the pairs
far away from each other.

A similar approach to the l1 norm is to use l2 norm, i.e. the sum of squared distances

L =
∑
i

r2
i (T ). (2.9)

A modification of the l2 norm is known as truncated l2 norm, which aims at pre-
venting the system from being dominated by a few large distances.

L =
∑
i

min(r2
i (T ), θ2). (2.10)

As discussed above, the desired transformation matrix is achieved when the following
is true

T ∗ = arg min
T

L. (2.11)

9



2. Theory

Algorithm 1 RANSAC algorithm
1: Randomly select a minimum subset of data that is large enough to estimate the

model
2: Construct the model using the subset
3: Evaluate the model by a certain cost function
4: Keep the model if the cost is minimal so far
5: Repeat step 1 to 4 until a certain number of iterations is reached or cost is lower

than some threshold

In medical imaging, this problem can usually be well solved by an iterative method
named random sample consensus (RANSAC) [5]. A general RANSAC program
works as Algorithm 1 describes.

The remaining task is to find reliable matched points. This can be achieved by
comparing features in the source and target images. A gradient based algorithm
called scale-invariant feature transform (SIFT), proposed by David G. Lowe [6],
detects and describes feature points in the images. A point will be considered as a
feature point only when it is an extrema point once a difference of Gaussian function
has been applied to the image. The feature itself is described by a 128-dimensional
vector.

The correspondences between the feature points in the source image and target im-
age are constructed by calculating the distance between the 128-dimensional vectors
and thereafter applying the following matching criterion proposed by Lowe:

Let ai(i = 1, 2..m) be the descriptors of the source image, bj(j = 1, 2..n) be the
descriptors of the target image, then dij = ‖ai − bj‖ is the distance between the
descriptor ai and bj. For a certain descriptor ai, the best match is attained when
dij = min(dij) for all j = 1, 2..n. In case of many similar features in the images, a
correspondence is marked as valid when the following criterion is true:

distance of the best match
distance of the second best match < σ, (2.12)

where σ is a threshold between 0 and 1. A reasonable value of σ is between 0.6 and
0.9. For medical applications, one usually needs a value between 0.9 and 1.

2.2.3 Intensity-based image registration

Multimodal images are acquired through different methods and represent different
properties of the object, such as CT, MRI and PET, therefore the intensities of
the same object may vary a lot. However, they are far from independent. The
correspondence between the images can be statistically measured. To statistically
describe the intensity patterns in one image, the information theory proposed by
Shannon [7], can also be applied here [8].

10



2. Theory

The entropy, which is the expected information, of an image A with the intensity a
of a certain pixel is defined as:

H(A) = −
∑
a

pA(a) log pA(a), (2.13)

where pA(a) stands for the probability of pixel intensity a in image A, i.e. the ratio
of the number of pixels with intensity a to the total number of pixels in image A.

Consider another image B. If A and B are multimodal images, then A and B will
share some information. For example, if A and B are CT and MR images of the
same patient’s heart, though they contain different details, they share the same
information about where the heart is located. The joint entropy of A and B, which
describes the overall expected information of the system AB, will be less than the
simple summation of the individual entropy. It is defined as:

H(A,B) = −
∑
a,b

pA,B(a, b) log pA,B(a, b). (2.14)

This shared information situation is illustrated in Figure 2.6. The blue overlapped
part is the information that both A and B contain and is known as mutual infor-
mation. The relation of entropy and mutual information is:

I(A,B) = H(A) +H(B)−H(A,B)

=
∑
a,b

pAB(a, b) log2
pAB(a, b)

pA(a) · pB(b) .
(2.15)

Figure 2.6: Graphical explanation of mutual information.

Image registration is the alignment of images. Thus, it is obvious that the mutual
information I(A,B) would be largest when the two images are perfectly aligned.
Assuming that image A and B are related by a geometric transformation T , defined
by parameters α, a pixel L with intensity a in image A is statically dependent on
pixel T α(L) with intensity b in image B, that is:

a = A(L),
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b = B(T α(L)).

According to the argument of mutual information theory, the following equation
holds true:

α∗ = arg max
α

I(A,B), (2.16)

where T α∗ is the ideal transformation that perfectly align the two images.

2.3 Deep learning

Arthur Samuel, a pioneer in the field of artificial intelligence, said in 1959: ma-
chine learning is a field of study that gives computers the ability to learn without
being explicitly programmed [9]. It is a method of data analysis which allows the
automation of analytical model building. In general, machine learning algorithms
are used to find out patterns in the given data, such as speech recognition and face
detection in images. Based on different tasks, machine learning algorithms can be
roughly classified into three types: supervised learning, unsupervised learning and
reinforcement learning [10].

In supervised learning, the algorithm is presented with training data together with
the desired output as a guideline. The goal of the algorithm is to learn the specific
patterns that map the input to the output. For unsupervised learning, the algorithm
does not have any knowledge about the desired output. Thus, the objective is
usually to discover the hidden patterns in the given data. Unlike supervised and
unsupervised learning, reinforcement learning deals with a dynamic environment.
It is often used to perform a certain goal without being told if it is correct or not,
such as driving an autonomous car. From the perspective of the outputs, machine
learning algorithms are usually applied to solve the following problems: clustering,
regression, classification, density estimation and dimensionality reduction [10]. In
this thesis, machine learning are used for a classification task.

Figure 2.7 presents a simple classification task performed by a supervised learning
algorithm. The training data is marked by dots, which have two colors, red and
blue, representing different desired output, 1 and -1 respectively. Based on the
visualization of the training data, the pattern that the algorithm is supposed to
learn is that the plane can be roughly divided by two lines into two parts. To test
how well the algorithm learns this pattern, the algorithm needs to predict the output
of another data set, called test set, marked as asterisks in Figure 2.7 and colored by
their true values. As can be observed from the figure, most of the validation data
are correctly predicted, with only a small proportion wrong, which are marked by
green circles. This indicates that the algorithm has learned the suggested pattern
well.
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Figure 2.7: A typical classification task.

2.3.1 Artificial neural networks

Among all machine learning algorithms, such as support vector machines, random
forests and Bayesian networks, neural networks excel in many important problems,
for instance image recognition tasks and natural language processing [10].

As the name neural network implies, this type of machine learning algorithm is
inspired by the real neural network inside our brains. The artificial neural network
is composed of connected artificial neurons. The simplest artificial neuron is a
perceptron. Developed by Frank Rosenblatt [11] and based on previous work by
Warren McCulloch and Walter Pitts [12], a perceptron takes binary inputs and
gives one binary output, where inputs are the dendrites, output is the axon and the
artificial neuron is the nucleus in the real neuron.

Figure 2.8: An example of a perceptron.

The perceptron shown in Figure 2.8 has three inputs, x1, x2, x3. Each input is
connected to the neuron with a weight wi. The rule to compute the output is rather
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simple. The neuron will be fired and output 1 if the weighted sum is larger than a
certain threshold, otherwise the output is set to 0, i.e.

output =
{

0 if ∑
j wjxj ≤ threshold,

1 if ∑
j wjxj > threshold. (2.17)

It is apparent that by adjusting the weights, the output of the perceptron can be
changed even though the inputs remain the same. This indicates that the percep-
tron model can be used to make decisions, i.e. to map the input and the output. It
seems feasible to say that a complicated network composed of many connected per-
ceptrons can make delicate decisions based on many input factors. In the following
example illustrated by Figure 2.9, the three perceptrons in the first layer only make
very simple decisions according to the inputs, while the decisions made by the four
perceptrons in the second layer are based on the results of the first layer perceptrons.
This mechanism means that the decision made by a latter layer is usually on a more
abstract, complex and probably more general level than its former layer.

Figure 2.9: Network of perceptrons. Note: the multiple outputs of a perceptron
are only a way to imply that the sole output is used as inputs to different perceptrons
in the next layer.

In a supervised learning process, the weights of the network and the thresholds of
the neurons (usually called bias, denoted by b) need changing in order to map the
inputs to the desired outputs, until a certain criterion is fulfilled. For most feasible
learning methods, it is reasonable to infer that a small change of the parameters
will also cause a small corresponding change in the results. However, the perceptron
does not satisfy the general learning rule. As a matter of fact, due to the binary
output, a small change in the weights or bias of any perceptron in the network might
totally flip the final output. This makes the learning process hard to control.

To overcome this obstacle, another type of neuron is introduced, the sigmoid neuron.
It is much alike the perceptron with different weights for different inputs. But instead
of the binary 0 and 1, the output of the neuron is σ(∑

j wjxj + b), where σ is the
sigmoid function, defined as

σ(z) ≡ 1
1 + e−z

. (2.18)
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Generally, the function calculating the output is called the activation function, as in
the neuron’s being activated under certain conditions. Thus, the activation function
of a perceptron is a step function. From Figure 2.10, it is clear that a small change of
z = z+ ∆z in the step function may completely change the result. On the contrary,
the sigmoid function is smoother. In fact, the change in the output can be well
approximated by

∆output ≈
∑
j

∂ output
∂wj

∆wj + ∂ output
∂b

∆b. (2.19)

However, this equation is not true for perceptrons. Therefore, a network made up
of sigmoid neurons learns better than a perceptron network.

As stated above, the learning process is a procedure for changing the weights and
biases. The learning outcome is a function that maps the inputs to the output. As
a matter of fact, a multilayer network is a universal approximator [13], which means
it has the ability to simulate any arbitrary functions.

Figure 2.10: Widely used activation functions. Sigmoid function: σ(z) = 1/(1 +
e−z). Step function: σ(z) = (sgn(z) + 1)/2. Hyperbolic tangent function: σ(z) =
tanh(z). Rectified linear function: σ(z) =max(0, z)
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2.3.2 Back propagation

To successfully build the connection between the inputs and the output, a strategy
of tuning network parameters, i.e. weights and biases, is required. This problem can
be formed as an optimization problem, as in finding out a set of weights and biases
that produces outputs as close to the desired outputs as possible. This problem can
be solved by the back propagation algorithm, proposed by David Rumelhart [14].
To illustrate this method, the network structure shown in Figure 2.11 is used.

Figure 2.11: Structure of a multilayer neural network. wljk stands for the weight
from the kth neuron in layer l−1 to the jth neuron in layer l. blj represents the bias
of the jth neuron in layer l. alj is the activation of the jth neuron in layer l. Also
denote zlj as the weighted sum to the jth neuron in layer l.

The first layer of the network is the input layer, thus is a1 the inputs. The last layer,
layer L, is the output layer, and therefore is aL the outputs. All the other layers in
between are called hidden layers. To make use of the fast linear algebra routines to
perform the computation, it is possible to vectorize the variables and furthermore
define weight and bias matrices as wl = wljk and bl = blj. Hence, for the network in
Figure 2.11, it holds that w2 ∈ <4×3 and w3 ∈ <2×4.

As defined previously, the relation between these variables are:

zl+1 = wl+1al + bl, (2.20)

al+1 = f(zl+1). (2.21)
Computing these variables is called forward propagation. Since the network does
not contain any direct loops, it is called a feed forward neural network.

Similar to most optimization problems, it is necessary to define a cost function. As
an example, the cost function of the network in Figure 2.11 can be described by a
quadratic function

C = 1
2‖a

L − y‖2 (2.22)
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where y represents the desired outputs, in this case y ∈ <2×1. Thus, it is natural to
define a parameter updating rule as follows

wljk = wljk − η
∂C

∂wljk
, (2.23)

blj = blj − η
∂C

∂blj
. (2.24)

Such an updating rule guarantees that the updated parameters wljk and blj will lead
to a lower cost when the cost function is not at its local minima and stay at the
local minima after reaching it. This method is known as gradient descent, where the
parameter η, the learning rate, controls how fast the descent will be. A crucial part
of gradient descent is to calculate the partial derivatives, which can be efficiently
computed by the back propagation algorithm.

To calculate the derivatives, it is useful to define an error term δlj, which is used to
describe how much error in the outputs that the neuron causes with respect to its
weighted sum input

δlj ≡
∂C

∂zlj
. (2.25)

The following derivation shows how to calculate the error term for different neurons
in different layers.

δLj = ∂C

∂zLj
=

∑
k

∂C

∂aLk

∂f(zLk )
∂zLj

= ∂C

∂aLj
f ′(zLj ). (2.26)

For l = 2, 3..L− 1:

δlj = ∂C

∂zlj
=

∑
k

∂C

∂zl+1
k

∂zl+1
k

∂zlj
=

∑
k

δl+1
k

∂

∂zlj
(
∑
m

wl+1
km a

l
m + blm)

=
∑
k

δl+1
k (

∑
m

∂

∂zlj
wl+1
km f(zlm)) =

∑
k

δl+1
k wl+1

kj f
′(zlj).

(2.27)

The above two equations can also be vectorized

δL = ∇aC � f ′(zL), (2.28)

δl = (wl+1)Tδl+1 � f ′(zl). (2.29)
The symbol � here represents element-wise product, or Hadamard product.

The reason to introduce the error term is that it makes it easier to calculate the
partial derivatives in Equation 2.23 and 2.24. The partial derivatives can be derived
as follows.

∂C

∂wljk
=

∑
k

∂C

∂zlk

∂zlk
∂wljk

=
∑
k

∂C

∂zlk

∂

∂wljk
(
∑
m

wlkma
l−1
m + bl−1

m )

=
∑
k

∑
m

δlka
l−1
m

∂wlkm
∂wljk

= δlja
l−1
j ,

(2.30)

17



2. Theory

∂C

∂blj
=

∑
k

∂C

∂zl+1
k

∂zl+1
k

∂blj
=

∑
k

δl+1
k

∂

∂blj
(
∑
m

wl+1
km a

l
m + blm) = δl+1

j . (2.31)

From Equation 2.28 to 2.31, it is clear that the error term and the derivatives are
calculated backward from the last layer to the first layer, therefore, this method is
called back propagation. The back propagation algorithm combined with gradient
descent may be formulated as Algorithm 2.

Algorithm 2 Gradient descent with back propagation
1: Initialize the network weights and biases, see Section 3.2.2 for details
2: Perform forward propagation, as in Equation 2.20 and 2.21
3: Evaluate the network by the cost function
4: Perform backward propagation, as in Equations 2.28 to 2.31
5: Update the weights and biases, as in Equation 2.23 and 2.24
6: Repeat step 2 to 5 until a certain criterion is reached

2.3.3 Convolutional neural networks

The multi-layer network discussed above is powerful but still has some problems. It
is a fully connected network, i.e. a neuron in one layer connects to all the neurons
in the next layer. Such full connectivity makes it difficult to train a larger network.
Due to the unstable gradient [15] and the large number of hidden layers, the learning
will be slow. In addition, in image recognition, it is natural to extract and identify
features. However, such features are not well expressed in a fully-connected multi-
layer network. In recent years, the convolutional neural network, originally proposed
by Yann LeCun [17], has been widely used in image recognition, language processing
and other related areas.

Figure 2.12: Structure of a convolutional neural network [18]. Details are explained
in the following sections.

The most distinctive feature of a convolutional neural network is that the neurons are
arranged in 3D, as in the example shown in Figure 2.12. Normally, convolutional
neural networks are built based on three basic ideas: sparse connectivity, shared
weights and pooling.
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As stated above, a neuron in a hidden layer of a multi-layer neural network has
connections to all the neurons in the former layer. Contrary to full connectivity,
a convolutional network is sparsely connected. Each hidden neuron in the convo-
lutional network has its own local receptive field and is not "responsible" for any
variations outside the field. In this way, the hidden neurons are only sensitive to a
certain spatially local input pattern. Figure 2.13 illustrates the local receptive field
in the first hidden layer.

Figure 2.13: Local receptive field [15]. The input layer has 28 × 28 neurons (i.e.
pixels). The local receptive field is 5 × 5 , that is, a neuron in the hidden layer is
only connected to 25 certain neurons in the input layer. The first hidden layer is
then of size 24× 24.

Still using the example in Figure 2.13, each neuron has 5 × 5 = 25 weights and
one bias. Unlike the fully-connected multi-layer network, where the weights of the
neurons are independent, in a convolutional network, all the neurons in one hidden
layer share the weights and bias. This implies that for the j, kth neuron in the
hidden layer, the output is

a2
jk = f(b+

5∑
m=1

5∑
n=1

w2
mna

1
j+m,k+n). (2.32)

It is obvious that the shared weights and bias dramatically reduce the number
of parameters, making the network easier to train and also reducing the risk of
overfitting. Also, it makes all the neurons extract the same feature at different
locations, which is quite useful when analyzing images. Therefore, the hidden layers
are also called feature maps and the weights matrix is also known as a kernel or a
filter. From a closer look at Equation 2.32, it is easy to spot that the summation is
actually a convolution, and the equation can be vectorized as

a2 = f(b+w2 ∗ a1). (2.33)

The number of filters is usually not 1. Figure 2.14 shows an example of how con-
volution works for multiple feature maps and filters. There are 4 feature maps in
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layer l− 1, and 2 in layer l. Let wl
pq be the weight matrix from the qth feature map

in layer l − 1 to the pth feature map in layer l, alp and blp be the activation matrix
and the bias vector of the pth feature map in layer l respectively. Then, the output
may be written as

alp = f(blp +
∑
q

wl
pq ∗ al−1

q ). (2.34)

Figure 2.14: An example of a convolutional layer. There are 4 feature maps in
layer l − 1, and 2 feature maps in the following layer l. Each feature map in the
latter layer corresponds to one filter, w.

Another concept in convolutional networks is pooling. It is usually used right after
the convolutional layer. The pooling layer extracts information from feature maps
and compresses them into a smaller map. Normally, the information is the maxi-
mum value of a non-overlapping rectangle, which is called max-pooling. Unlike the
convolutional layer, the pooling is performed on each feature map separately. If the
pooling size is 2 × 2, and there are 4 feature maps of size 24 × 24, the result will
be 4 condensed feature maps with size 12 × 12. In addition to max-pooling, there
are also other types of pooling layers, such as l2 pooling, which uses the l2 norm
instead of the maximum value. Using pooling can obviously reduce the amount of
computation for latter layers, but is also provides a translation invariance [19]. An
example is described in Figure 2.15.

Combining everything together, a convolutional network consists of one or several
serial or parallel convolutional layers and pooling layers. In order to obtain the
desired output, a fully connected multi-layer network is usually appended in the
end.

2.3.4 Hyper parameters

The presented theory above is sufficient to build a convolutional neural network.
Provided the gradient descent and back propagation algorithm, it is also possible
to start training the network to learn the patterns in the given data. However, a
practical question is how to choose the parameters that define the network and the
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Figure 2.15: An example of a max-pooling layer [15].

learning process. It is usually the case that an improper choice of parameters results
in the inability of the network to actually discover any patterns. It is therefore
of great significance to be aware of a rough direction of tuning the parameters,
otherwise the output may not be better than a random guess. Hyper parameters
tuning is a very broad topic. The methods discussed below are some of the most
commonly used [15].

Cost function

The learning process is indeed the process to minimize the cost function. Thus
the choice of cost function will undoubtedly affect the result. Previously, as an
example, the cost function is set to be a quadratic function. However, this specific
form cannot guarantee a fast convergence speed. In fact, if the cost function is
defined by Equation 2.22, the learning speed can be derived as

∂C

∂w
= (a− y)σ′(z)x, (2.35)

∂C

∂b
= (a− y)σ′(z). (2.36)

where x is the training input, σ is the sigmoid activation. Recall the shape of sigmoid
function in Figure 2.10. It can be seen that when the output is close to 1, the curve
becomes quite flat and its derivative becomes very small. This will inevitably cause
the learning to slow down.

One way to deal with this problem is to use a cross-entropy cost function,

C = − 1
n

∑
x

(y ln a+ (1− y) ln(1− a)), (2.37)
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where n is the number of training data. Using chain rule, its derivatives are

∂C

∂wj
= 1
n

∑
x

xj(σ(z)− y), (2.38)

∂C

∂b
= 1
n

∑
x

(σ(z)− y). (2.39)

The results indicate that using the cross-entropy cost-function, the learning speed
is controlled by the error in the output layer. The larger the error is, the faster it
corrects.

Another similar and widely used method for solving this problem is by introducing
a softmax layer as a type of output layer. The inputs to the softmax layer are of
no difference to the previous layers. When calculating the output of the softmax,
a softmax function is applied instead of the normal activation functions, such as a
sigmoid function. The output, i.e. activation, is given by

aLj =
exp(zLj )∑
k exp(zLk ) . (2.40)

One characteristic of this function is that all the outputs are positive numbers.
Another is that the summation of all the outputs equals one. Hence, the outputs
from a softmax layer can be regarded as probabilities.

The cost function following a softmax layer is similar to the cross-entropy cost
function, but simpler. It is known as negative log-likelihood, defined as

C = − ln aLy . (2.41)

Its corresponding derivatives are

∂C

∂wLjk
= aL−1

k (aLj − yj), (2.42)

∂C

∂bLj
= aLj − yj. (2.43)

It is apparent that the learning slowdown problem does not exist here.

In many cases, both the sigmoid plus cross-entropy and softmax plus negative log-
likelihood work well. But choosing softmax is particularly useful when the proba-
bilities are desired.

Learning control

The learning speed is not only controlled by the partial derivatives of the cost
function. The learning rate, η also controls the gradient descent. A large learning
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rate may help to give a quick start, but later on it may also miss the minimum. A
small learning rate may help finding the correct minimum but take a tremendously
long time. Therefore, the best approach is to vary the learning rate during the
training process. This is called learning rate decay. There are three common types
of learning rate decay schemes: step decay, exponential decay and 1/t decay [21].
The 1/t decay is described by the following equation,

η = η0/(1 + kt), (2.44)
where k represents learning rate decay, t denotes the number of epochs. Thus, a
higher learning at the start provides a quick drop to the minima region, but it is
slow enough later on to carefully examine the minima point.

Another method, inspired from real world physics, is called momentum based gra-
dient descent [15]. To describe it, a velocity variable, v, is introduced and the rules
for updating the weights, Equation 2.23 and 2.24, are slightly changed to

v′ = µv − η∇C,
w′ = w + v′,

(2.45)

where the momentum parameter µ controls how much friction there is in the system.
In practice, µ is often set to a value between 0 and 1.

It is also possible to speed up the learning process by using batch mode, i.e. propa-
gating forward and backward several inputs at the same time. Hence, the batch size
becomes another hyper parameter. If too small, the speed up from the hardware
and matrix processing library will not be significant. If too large, the weights are
simply not updated frequently enough. The obvious trade-off can luckily be easily
balanced since the batch size is under most conditions independent from other hyper
parameters [15]. Assume the input is not x, but instead it is xi, i = 1 . . .m, where
m is called batch size. Batches will be sent forth and back in the network until all
data has been processed exactly once. This is called an epoch. The gradients using
batch mode are slightly changed according to

∇C ≈ 1
m

m∑
j=1
∇Cxi

. (2.46)

The corresponding weight and bias updating rules are also slightly changed

wljk = wljk −
η

m

∑
i

∂Cxi

∂wljk
,

blj = blj −
η

m

∑
i

∂Cxi

∂blj
.

(2.47)

This type of gradient descent is also known as stochastic gradient descent.

Overfitting

As stressed previously, the learning process is an optimization procedure, while the
learning outcome is the result of model fitting. Since the neural network (theoreti-
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cally) has the ability to simulate any function, the ultimate result will be a model
that maps all the input data to the desired output. However, in most circumstances,
this ultimate result may not be the best one for classifying unseen data.

Figure 2.16: Model fitting. For the same points, the left figure shows a 9th order
polynomial curve fitting while the right figure shows a straight line fitting.

Figure 2.16 shows an example when the best model might not be the one that maps
all the data perfectly. The blue curves are the models that try to map the input
data x to the desired output y. The left one, a 9th order polynomial, perfectly maps
all the input data to the output data while the right one, a straight line y = 2x,
does not provide an exact mapping, but it is still a good one. Although either of
them could be correct, the simple one is more likely to reveal the underlying truth
without any prior knowledge. In this case, the data can either be explained by a 9th
order polynomial or a straight line plus some noise. If so, the 9th order polynomial
just learns the local noise, and will fail to generalize to unseen data. This is known
as overfitting.

To solve the overfitting problem, one obvious approach is to use more training data.
The more training data the network uses, the better it generalizes. But sometimes
obtaining data is not easy. A simple solution to this is to artificially expand the
training data. For instance, adding a little noise or rotating the image by a small
angle. This approach usually provides a good result and has been widely used, see
[20].

Another technique to reduce the overfitting problem is to introduce a regularization
term in the cost function. The reason for doing so is to prevent one or several
weights from being too large such that it dominates the network and affects the
output. Two commonly used regularization terms are l1 and l2 regularization. For
l1 regularization the cost function is now given by

C = C0 + λ

n

∑
w

|w|, (2.48)

and for l2 regularization, it is given by

C = C0 + λ

2n
∑
w

w2, (2.49)
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where C0 is the original cost function and the parameter λ is called weight decay.

For neural networks, one unique method to reduce overfitting is called dropout.
Unlike l1 and l2 regularization, dropout does not change the cost function. Instead,
it modifies the network itself. As discussed above, the reason why overfitting could
arise is because a large enough network has the ability to simulate any arbitrary
function. Thus, what dropout does is to temporarily reduce the size of the network.

Supposedly, the training network is the left one in Figure 2.17. Before each forward
propagation, dropout randomly deletes half of the neurons in the hidden layers,
as shown in the right part of Figure 2.17. Thereafter, the forward propagation
and back propagation are performed. After repeating this process in every network
update, the network will be tuned as a half-sized one. When combining all of
them, the amount of neurons will be twice the amount when during training. To
compensate for this, the weights are divided by two. A normal back propagation
builds up co-adaptations between neurons. This works for the training data, but
not for the unseen validation and test data. Random dropout forces the neurons to
be independent from each other, and to produce the correct output no matter which
neurons are included in the network [27].

Figure 2.17: Dropout. The left figure presents the original network structure. The
right figure shows the neurons that are randomly dropped out (dashed) during the
training.
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Methods

3.1 Ground truth creation

The purpose of this thesis is to automatically segment the pericardium with the help
of supervised learning techniques. Though, for this data set, there are no manual
delineations of pericardium. The ground truth segmentation file is crucial to the su-
pervised learning algorithm, where it represents the desired output. Therefore, the
first step is to create a manual segmentation for the non-contrast CT data. Luckily,
the data set also includes contrast CT images with corresponding manual labelling
for each patient. Thus, for each patient, a semi-manually delineated segmentation
file was created based on the contrast CT images. This was made possible through
image registration techniques, that is, registration between the contrast and non-
contrast images of the same patient. After the image registration, the semi-manual
delineations are examined by the same physician who manually delineated the con-
trast CT images. The results are scaled from one to five, where five represents better
or equal to manual delineation.

3.1.1 Image registration

The registration is done in two parts. First, an initial registration result is obtained
through feature-based registration. Then, this result is used as an initialization for
the following intensity-based registration. This efficient approach is commonly used
and has been proved to yield satisfactory results in [22] and [23].

The feature-based registration can be divided into four steps:

• Feature detection: Feature points are detected in both the target image
(non-contrast CT) and the source image (contrast CT).

• Feature description: Gradient based, SIFT-like feature descriptors are cal-
culated for the detected feature positions.

• Feature matching: The correspondence between a feature point in the source
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image and another one in the target image is constructed based on their feature
descriptors and a certain criterion, such as the Lowe criterion, i.e. the matched
feature points are only considered valid if the distance between them is smaller
than a certain threshold.

• Transformation matrix estimation: An individual affine transformation is
estimated between each source and target image using the RANSAC algorithm
with the valid matched feature points.

The semi-manual segmentation for the non-contrast image is then obtained by warp-
ing the segmentation of the contrast image according to the registration result. Fig-
ure 3.1 shows an example of both valid and invalid matched feature points.

Figure 3.1: An example of matched feature points. The left one and the middle
one are contrast images, the right one is the corresponding non-contrast image.
Red points are valid matches while the yellow ones are invalid. The threshold for
validation in this case is 5mm. In the left and the right images, point 1020 in the
non-contrast image matches point 12825 in the contrast image. In the middle and
the right images, point 1647 matches point 7082. Point 12827 in the left figure,
point 1644 and point 1022 in the right figure are also feature points which match
points in other slices and therefore not discussed here. To be noticed, the left and
the middle images are not the same slice.

The contrast image and the non-contrast image of the same patient were retrieved
at different times. This means the relative position between the patient and the CT
scanner are different, which contributes to differences between the contrast and non-
contrast images. In addition, the heart changes shape and location at different heart
cycles. This contributes to even more differences between the two modalities. As
a global transformation, the affine transformation does not contain any local infor-
mation and cannot fully reflect the complex movement of the organs and tissues in
human body. Therefore, a pure affine transformation is not sufficient to capture the
full range of deformation needed to transfer the ground truth in an optimal manner.
Hence, a second intensity-based, non-rigid registration is applied to compensate for
the need of local non-rigid deformations.

The intensity-based registration uses the feature-based, affine registration as an
initialization. The goal is to estimate a non-rigid transformation for each source

27



3. Methods

and target image. This is done by minimizing a cost function based on normalized
mutual information. In this thesis, the non-rigid transformation is estimated using
the software package elastix, which can be found freely available online.

3.1.2 Ground truth evaluation

One apparent approach to evaluate the semi-manual delineations is to visualize the
results slice by slice in all three perspectives. Along with the visual inspection, an
overall method can also be used for evaluation. The data used in this project consist
of both contrast CT images and non-contrast CT images. The contrast and non-
contrast images were taken at different patient position, but approximately within
half an hour. Thus, the fat volume inside heart, i.e. the epicardial fat, should not
differ and is therefore reasonable to use as a criterion to tell how good or bad the
segmentation of the non-contrast images are.

As stated previously, the intensity of the CT images varies due to different absorption
abilities for different parts of the human body. Therefore, it is reasonable to infer
that voxels with similar intensities represent the same kind of tissue. Thus, it is
possible to separate fat tissue from other tissues, such as muscle tissues, in a voxel
intensity histogram.

Figure 3.2 illustrates an example of the histogram of a CT image, in which four
local maxima can be clearly seen. They represent four different tissues. According
to Figure 2.2, the peak at around -70HU represents fat tissue. Thus the area under
that curve is the fat tissue volume.

Figure 3.2: Histogram of a CT image. The x-axis represents the HU intensity and
y-axis represents the number of voxels.

In order to eliminate the influence of the contrast agents diffused into the fat tissue,
the Hounsfield Unit interval of fat tissue is calculated separately for contrast and
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non-contrast images. In addition, since the same CT scanner settings were used
when acquiring the images, the intervals should not significantly vary from patients
to patients. Therefore, CT image histograms are constructed based on all patients’
data, to be specific, the sum of the normalized probability of each patient.

3.2 Supervised Learning

A CNN is built in order to classify all the voxels in the non-contrast CT images as
either inside pericardium or not. The results of the intensity-based registration are
reckoned as ground truth in the supervised learning, while the original non-contrast
CT volume data is input to the neural network. After consulting with the physician
who manually delineated the contrast CT images, only the non-contrast CT images
with the semi-manual segmentation that are equal to or better than segmentation
delineated by experts are used for the supervising learning. For each input data, the
output from the CNN is designated as a number between 0 and 1, which represents
the input voxel’s probability of being inside the pericardium. If all voxels from a CT
image are sent into the CNN one after the other using a sliding window approach,
the result can then be seen as a probability map.

3.2.1 Pre-processing

First, since the same network is trained by multiple images, the images are individ-
ually normalized by subtracting the mean and dividing by the standard deviation
before any training.

After image normalization, the non-contrast CT image is reconstructed as 3D image
patches. Each patch is centered on the voxel to be classified, as shown in Figure
3.3. Based on the position of the voxel, three types of patches are defined: inside
the pericardium, outside the pericardium and right on the pericardium. The desired
network output, i.e. classification result is chosen in two different ways. The first
one classifies a voxel as background if the voxel is outside pericardium, like voxel
1. If the voxel is not outside, for example voxel 2 and 3, the label is denoted as
foreground. The second approach focuses on the pericardium itself. A voxel is
classified as foreground when it is located right on the segmentation, as voxel 3.
Otherwise, as for voxel 1 and 2 for instance, it is labelled as background. To be
more detailed, a voxel with a distance to the segmentation boundary lower than a
certain threshold, for example 1mm, will be counted as right on the segmentation.
Figuratively, the foreground in the first approach is a solid spheroid. While in the
second approach, the foreground is just the surface of the object, a hollow spheroid.

The non-contrast CT image used in this project has on average about 20 million
voxels. The computing time will unmanageable if patches from all voxels are used
for training. Thus, the images are first down-sampled. The sampling strategy is
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Figure 3.3: Input to CNN. The blue line is the ground truth. The three red boxes
represent three different types of image patches. Voxel 1 is outside the pericardium.
Voxel 2 is inside the pericardium. Voxel 3 is right on the pericardium.

defined as different sampling intervals in different dimensions. For example, every
25th voxel in the first dimension, every 20th voxel in the second dimension, every
10th voxel in the third dimension is selected and used to extract the corresponding
image patch. Depending on the total number of foreground and background voxels,
the sampling strategy might be different for foreground and background.

In the second approach, i.e. focusing on the pericardium itself, the number of
background voxels is obviously much larger than that of the foreground, which
results in an extremely unbalanced training set. In addition, only areas close to the
pericardium are of interest. It is then not necessary to include areas such as the
center of the heart and much of the lung, since those areas can be easily classified.
To effectively exclude such areas, a multi-atlas initialization is applied [33]. The
multi-atlas is computed based on all images that are available during the training
process. The segmentation of each source image is warped to the target image by an
affine transformation, which is calculated by feature-based registration. The sum of
all warped segmentations is then called the multi-atlas. Areas that all atlases agree
on, i.e. probabilities equal 1 or 0, are considered definitely either inside or outside
pericardium and therefore excluded from the patch extraction.

3.2.2 Network training

The CT images are randomly divided into three different subsets: a training, a
validation and a test set. Due to the scarcity of images, the training and validation
set include more images than the test set: 9 in the training set, 6 in the validation
set and 4 in the test set. The training set is the one that the network is actually
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trained on. Weights and biases of the network will be tuned based on the training set
through back propagation. The validation set is used to tune hyper parameters in the
structure of the network, such as network architecture, regularization parameters,
etc. The test set will not be used until the very end to evaluate the network’s
performance.

Three different network structures were tried out in this project, as shown in figure
3.4. Similar structures are commonly used in medical image classification. [32]

Figure 3.4: Network Structure. Conv: convolution layer, ReLU: rectified linear
unit activation, MP: max-pooling, FC: fully-connected layer, SM: softmax layer.

The input patch size for network structure 1 is 28 × 28 × 28, while it is of size
28× 28× 12 for network structure 2 and 3. Such a choice is based on the fact that
the voxel size is not the same for every dimension. For the first and second dimension,
each voxel represents 0.33mm, while a voxel in the third dimension represents 1.5mm.
The network structure and the patch size are chosen to contain the approximate
same amount of information in each dimension.

For the implementation of the convolutional neural network, the Torch7 package was
used. However, to avoid neurons from being saturated and the resulting learning
slow down problem, the default uniform distribution was not used. Instead, the
weights and biases were randomly chosen from a Gaussian distribution with mean
0 and standard deviation 1/√nin, where nin is the number of input neurons [15].

The training process will stop running when either the training accuracy no longer
increases or the validation accuracy stops growing. Training or validation accuracy
is defined as the ratio of the number of correctly classified voxels to the number of all
voxels. A non-increasing validation accuracy indicates that the network has already
encountered an overfitting problem, that is, all it learns are local noises instead of
general pattern information. An example can be seen in Figure 3.5: although the

31



3. Methods

training accuracy continues increasing, the validation accuracy stays at the same
level after around 250 epochs.

Figure 3.5: An example of overfitting. The blue line represents the overall training
accuracy. The red line represents the overall validation accuracy.

3.3 Post-processing

The goal of post-processing is to generate the final segmentation from the output
of the CNN, i.e. the probability map. A simple and intuitive method is to set a
threshold, such that voxels with intensities below the threshold will be considered
as background.

Figure 3.6 shows two examples of probability maps, generated by the two classifica-
tion approaches, i.e. detection of inside/outside pericardium and on/off pericardium
respectively. It is clear that the result is far from being perfect, since the white area
includes structures other than pericardium. A simple thresholding will not solve the
problem. Some complex post-processing work needs to be done before making any
conclusions.

In the upper and lower part of the probability map, it can be seen that the bones
are also classified as foreground. In order to get rid of voxels far away from heart, a
multi-atlas approach is used to draw regions of interests. Similar to the multi-atlas
approach applied in the pre-processing, if a voxel is considered to be background by
all atlas maps, it will be marked as background.

Another issue of the probability map is that some voxels inside the heart have a
lower probability, therefore a simple threshold will leave some "black holes" inside the
heart region. The solution used here is using graph cuts. By defining a proper cost
function, the problem can then be formulated as an optimization problem and solved
by finding the parameters that minimize the cost function. The final segmentation
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Figure 3.6: Probability Maps. The left figure is one slice of the input CT image, the
middle figure is the probability of being inside pericardium, where white corresponds
to a high probability and black corresponds to a low probability, the right shows
the probability of a voxel belonging to the pericardium border. The larger the
intensity is, the more confident the network will be. For the right one, the network
is only trained on the data around the segmentation, defined by the multi-atlas
initialization. The probability maps are generated by a sliding-window method over
all voxels.

x∗ is the solution to the following optimization problem [23]

x∗ = arg min
x∈{0,1}n

(
n∑
i=1

xi(
1
2 − P (i)) + λ

n∑
i=1

∑
j∈N(i)

xi(1− xj)), (3.1)

where P (i) is the probability of voxel i given by the CNN output, λ is regularization
weight and N is the number of connected neighbourhoods, where a 6-connected
neighbourhood is used here. The optimization problem can be solved by using [24].
The first term of the approach is based on the probability P , while the regularization
term keeps the segmentation smooth.

Clearly, from Figure 3.6, the probability P in Equation 3.1 should be a combination
of both the inside/outside and the on/off pericardium probability map, as the goal is
to segment pericardium. Let p1 be the probability map that tells if it is pericardium
or not, i.e. the right figure in Figure 3.6, and p2 be the probability map that
tells inside or outside pericardium, i.e. the middle figure in Figure 3.6. Since p1
contains information of pericardium and p2 contains information of whether it is
inside pericardium, as an intuition, P could be a linear combination of p1 and a
thresholded p2:

P = p1 + [p2 > α]. (3.2)

3.4 Evaluation

Finally, the test images are segmented according to the whole pipeline presented in
this chapter and then evaluated by the dice coefficient [25]. The dice coefficient is
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calculated by the segmentation given by the graph cuts and the ground truth:

Dice = 2|A ∩B|
|A|+ |B| , (3.3)

where A is the binary ground truth image and B is the binary segmentation image.
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Results and Analyses

4.1 Ground truth creation

In order to obtain the best possible semi-manual pericardium segmentation of the
non-contrast CT images, i.e. the targets for the supervised learning, the image
registration is tuned individually based on each patient. Thus, the registration
parameters vary from patient to patient. However, this makes the method less
general. Ground truth creation must be done manually by adjusting the parameters
and evaluating the performance.

Figure 4.1: An example of feature-based registration result. The left figure depicts
a slice of the contrast CT image, with the manual delineation marked as a blue line.
The right figure shows the feature-based registration results of the non-contrast im-
age. The semi-manual non-contrast segmentation is a result of warping the contrast
segmentation by an affine transformation estimated through RANSAC algorithm.

Figure 4.1 shows an example of the feature-based registration result. As can be
seen from the images, the warped segmentation does not perfectly align with the
non-contrast volume image. For this specific example, to the right of the heart,
the segmentation is supposed to be the boundary between the heart and the lung.
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However, the blue line goes into the lung. This problem is mainly caused due to
the negligence of the local intensity information. As stated in Section 3.1.1 the
semi-manual segmentation can be improved by using an intensity-based non-rigid
registration method. A closer look at the result may be found in Figure 4.2. The
improvement is clearly visible. The pericardium can be vaguely seen in the left
figure, from bottom left to top right. The blue line, which is the result of affine
transformation, is further away from the pericardium than the red line, the result
after non-rigid transformation. The local intensity information is taken into account
when estimating the local deformation field even if the pericardium itself is barely
seen.

Figure 4.2: An example of the intensity-based non-rigid registration results. The
left figure shows the non-contrast CT image. The pericardium, from bottom left
to top right, can be vaguely seen. The right figure shows the same image, with
the semi-manual segmentation on top of it. The blue line shows the result after
featured-based affine registration and the red line marks the final segmentation after
intensity-based non-rigid registration.

As described in the previous chapter, the evaluation of the ground truth is partly vi-
sual inspection and partly epicardial fat volume comparison, which is calculated from
the histograms. Figure 4.3 shows the Hounsfield scales from -300HU to +300HU
for contrast and non-contrast images respectively. It is clear that the muscle tissue
in the non-contrast image, which peaks at 39HU, has a relatively lower range than
the contrast image, which peaks at 60HU, due to the effect of contrast agents. On
the other hand, the range of fat tissues differ only slightly in the two curves. Based
on the two curves, it is understandable, though not extremely accurate, to say that
the trough between the two peaks is the separation point of fat and muscle tissues.
Combined with the results of the previous work [22], the fat tissue for contrast im-
ages is set between -192 to -41 HU. For non-contrast images, the interval is from
-192 to -48 HU.

The epicardial fat volume was estimated for the contrast and non-contrast images
respectively based on the method in Section 3.1.2. For the contrast images, the
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Figure 4.3: Histogram of normalized probability of all images. Only voxels inside
the heart and with HU between -300 and 300 are counted.

segmentation used is the manually delineated one. For the non-contrast images, the
utilized segmentation is the resulting semi-manual labelling computed by intensity-
based non-rigid registration. It is reasonable to assume that if the epicardial fat
volume of the contrast image is close to the fat volume of the corresponding non-
contrast image of the same patient, the semi-manual segmentation could work well as
non-contrast ground truth. However, as Figure 4.4 shows, the epicardial fat volume
difference for the contrast and non-contrast images is significantly larger for some
of the images. The unexpected large difference might be caused by erroneous semi-
manual labelling due to inaccurate registrations or due to an inaccurate estimation
of the fat tissue interval. Thus, analysis requires expertise in heart anatomy. After
consulting with a physician, 19 out of 27 non-contrast segmentations are marked as
correct and continually used for training the CNN later on.

4.2 Supervised learning

The network training process is an optimization procedure that aims to minimize
the network cost function and maximize the classification accuracy. Although the
cost function is what the gradient descent optimizes, from a practical point of view,
what is truly important is the classification result. Hence, training and validation
accuracy are used as indicators of how well the network performs.
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Figure 4.4: Epicardial fat volume difference for the contrast and the non-contrast
images.

4.2.1 Hyper-parameter tuning

For the network training process, the hyper-parameters can roughly be divided into
two groups. The first ones rather affect the optimization process, and tuning these
aims at reaching a higher training accuracy. The second group of hyper-parameters
mostly consists of regularization parameters, i.e. tuning these aims at solving the
overfitting problem by narrowing the gap between the training and validation set.

Optimization

Learning rate is the main parameter that controls the learning process, defined
by Equations 2.23 and 2.24. As discussed in Section 2.3.4, a larger learning rate
equals a larger step size in the optimization process. Likely, a larger step size causes
the algorithm to omit the global minimum point and thus it cannot escape a local
minimum. This can be seen in Figure 4.5. The training and validation accuracy
keep increasing until epoch 59, where the system drops into a local minimum. All
patches, no matter foreground or background, are classified as background. After
this point, the gradient descent algorithm does not manage to bring the system
outside the local minimum and remains the same for the remaining 241 epochs.

Using learning rate decay could potentially solve this problem, as discussed in Sec-
tion 2.3.4. This assumption was confirmed when running the experiments, which
can be seen in the right figure of Figure 4.5. The learning rate decay scheme used
here is defined by Equation 2.44.

The momentum and batch size (see the theory presented in Section 2.3.4) also affects
the learning speed, which can be seen in Figure 4.6. The curve for momentum
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Figure 4.5: Learning rate and learning rate decay. The left figure illustrates
the learning process when learning rate is too high. The right figure shows how
using learning rate decay may solve the problem. train Fore: training accuracy for
foreground voxels, i.e. voxels inside pericardium. train Back: training accuracy for
background voxels, i.e. voxels outside pericardium.

implies that the momentum parameter does not have a great impact on the final
accuracy, unless the momentum parameter is set to 1, where the velocity quickly
builds up due to zero "friction". On the other hand, batch size significantly affects
the classification result. This indicates that some trial and error experiments with
respect to the batch size have to be conducted to achieve the best performance. In
addition, the smaller the batch size is the longer the training time will be. Therefore,
choosing a value that balances this trade-off is also of great importance.

Figure 4.6: Effect of the momentum parameter and the batch size. The left figure
shows the effect of momentum, the right figure shows the effect of batch size.
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Regularization

In most cases, given enough time and a proper learning rate, the training accuracy
is capable of reaching almost 100%. However, due to the scarcity of data and less
accurate semi-manual segmentation, the validation accuracy always falls behind the
training accuracy, sometimes the gap is so large that the network probably just
learns local noise.

The method used in this project to improve this situation is adding weight decay,
presented in Section 2.3.4, to the network cost function and dropout layers in the
network structure. Figure 4.7 and 4.8 illustrates how weight decay and dropout
affect the result. All parameters are the same except the change of weight decay
or dropout. The accuracies of points in both figures are results after 300 epochs.
This is because the training accuracies almost do not increase after 300 epochs. The
computational time would be dramatically longer if the training processes aimed at
one certain training accuracy, if possible at all.

As Figure 4.7 shows, there is a general trend that as the weight decay decreases,
the training and validation accuracy tends to increase. However, some variations
exist when the weight decay is relatively small. In general, a higher weight decay
will make the regularization term dominate the cost function and the result will be
inevitably around 0.5. Similar conclusion can be drawn from Figure 4.8. The higher
the dropout ratio is, the more neurons the network randomly drops, the weaker the
network’s ability to generalize the data. Clearly, the network will not learn any
features in the data if the almost all the neurons are dropped.

Figure 4.7: Effect of weight decay. The relation between weight decay and accu-
racy.

An optimal choice of weight decay from Figure 4.7 is 10−6, with a higher validation
accuracy and smaller gap between the validation and training, although a relatively
lower training accuracy. Due to the same reasons, the dropout ratio could be between
0.1 and 0.3.
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Figure 4.8: Effect of dropout. The relation between weight dropout and accuracy.

4.2.2 Dataset and network structure

Since the original data contains too many voxels, over 20 million on average, the
images were down-sampled in order for the training process to finish within an
acceptable time frame. Different voxel sampling strategies were used, as presented
in Table 4.1, where Fore stands for foreground voxels and Back stands for background
voxels. The parenthesis in D, E and F stand for the distance from the pericardium.
Voxels with a distance smaller than the value specified in the parenthesis will be
considered as boundary.

Table 4.1: Different data sets used in the training process

Data Set Patch Size Sampling Interval
A 28× 28× 28 Fore:{20,20,10}, Back:{25,25,15}
B 28× 28× 28 Fore:{10,10,4}, Back:{13,13,5}
C 28× 28× 12 Fore:{20,20,10}, Back:{25,25,15}
D 28× 28× 12 Fore:{15,15,7},Back:{20,20,10},Boundary:{10,10,5}(5)
E 28× 28× 12 Boundary:{4,4,1}(1), the rest:{13,13,6}
F 28× 28× 12 Fore:{10,10,4},Back:{13,13,6},Boundary:{7,7,3}(5)

Since the number of voxels inside and outside the pericardium are not the same, the
first sampling strategy focus on creating a balanced training set. For the foreground
voxels, every 20th voxel in the first and second dimension and every 10th voxel in
the third dimension was selected. For the background, a slightly larger sampling
interval was used: every 25th in the first and second dimension and every 15th in
the third dimension.

To start with, the patch was extracted as a cube with 28 voxels as the length of
each side, and the network used was the first structure in Figure 3.4. The best
result for this dataset, dataset A, is 92% for the validation accuracy, as can be
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seen in Figure 4.9. The hyper-parameters are: batch size 50, learning rate 10−3,
dropout ratio 0.3, weight decay, learning rate decay and momentum are set to 0.
Although from the figure we can tell that the training accuracy is likely to continue
growing, the validation accuracy however remains at a relatively fixed range. Thus
continuing to train the network will only enlarge the overfitting and not learn any
general information.

Figure 4.9: Training process of dataset A.

Using the same parameters, but including more input patches, the overfitting can
be improved. When the voxel sampling interval was set to 10×10×4 for foreground
and 13 × 13 × 5 for background the validation accuracy for dataset B increased to
94%.

Even though the validation accuracy reaches over 90% for this dataset, the cubic
patch shape means that the amount of information is much richer in the third dimen-
sion than the other two since the voxel is of scales 0.3320mm×0.3320mm×1.5000mm.
In addition, such a patch size excludes all the voxels in the first and last 14 slices in
the third dimension. The pericardium at the first and last several slices in the third
dimension is surrounded by fat tissues and thus hard to segment, as compared to
the slices where pericardium is almost the boundary of the lung.

Due to these reasons, the patch size was changed to 28× 28× 12. In addition, the
network structure is also changed to structure 2 in Figure 3.4, where a smaller filter
size in the third dimension corresponds to a smaller patch size. The best validation
accuracy for dataset C is 0.9. The decrease in accuracy compared to dataset A can
be explained the fact that dataset C includes voxels that are harder to classify, as
discussed above.

The voxels far away from the pericardium are easy to classify, while the ones near
pericardium are harder to classify. The voxels and the corresponding patches that
are outside but still close to the pericardium are very similar to the ones just inside
the pericardium. This can be seen in Figure 4.10. While the patch surrounding voxel
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3 has clearly different voxel intensities and patterns, and can be easily classified by
the network, there are only minor differences between the patches extracted from
voxel 1 and voxel 2. The segmentation is barely visible even for the human eye.
Thus, the next adjustment is to include more voxels near the pericardium. That
is, for voxels with a distance of less than 5 voxels to the pericardium segmentation,
the sampling density is set to a higher value. The best validation accuracy achieved
for dataset D is 84%. This validation accuracy is lower than the previous datasets
because it includes more voxels that are difficult to classify. Thus to compare the
result, the final segmentation must be evaluated rather than simply comparing the
validation accuracy.

Figure 4.10: Patches inside and outside pericardium. Voxel 1 is inside and close
to pericardium. Voxel 2 is outside and close to pericardium. Voxel 3 is outside and
far away from pericardium. The segmentation of this part of pericardium is shown
in the previous Figure 4.2.

From the results of all the training so far, the training accuracy is always able to
reach 100%. This indicates that the network may have too many parameters, i.e. too
many neurons. Moreover, since the voxel has a scale of 1 : 1 : 5 in each dimension,
the smaller patch size cannot make the amount of information in each dimension
fully even. Therefore, by reducing the filter size in the first convolutional layer and
pooling size in the max-pooling layer in the third dimension, the overfitting might
be improved. The result of dataset D using network structure 3 is better than using
network structure 2, with a two percent increase of the validation accuracy. A larger
dataset F, similar to dataset D, yields a slightly higher validation accuracy.

Lastly, inspired by the previous work in [22], the foreground and background labels
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are redefined as voxels located right on the segmentation boundary and the rest
of the voxels respectively, in order to extract pericardium itself. To balance the
training set, a multi-atlas algorithm is applied on the image before training. The
best validation accuracy is 0.692. The hyper-parameters are: batch size 50, learning
rate 10−3, dropout ratio 0.5, weight decay 10−4 and 0 for learning rate decay and
momentum. As a comparison with the previous validation accuracy, this one is
particularly low. As a matter of fact, as Figure 4.11 shows, the validation foreground
accuracy is not too much better than a random guess. One possible explanation is
that since the segmentation itself is not accurate enough, using only the boundary
as foreground makes the system extremely sensitive to the imperfect registration
result. Therefore, the training data’s generalization ability is furthermore impaired.

Figure 4.11: Training process of dataset E

Table 4.2 concludes the best result obtained for each data set.

Table 4.2: Best training result for each dataset. Parameters not presented are set
to 0. Abbreviations: BS: batch size. LR: learning rate. LRD: learning rate decay.
MOM: momentum. DO: dropout. WD: weight decay. Details of dataset can be
found in Table 4.1. The network structures are shown in Figure 3.4.

Data Set Validation hyper-parameter
(Network Structure) accuracy settings

A(1) 0.92 BS: 50, LR: 10−3, DO: 0.3
B(2) 0.94 BS: 50, LR: 10−3, DO: 0.3
C(2) 0.90 BS: 100, LR: 10−2, WD: 10−2

D(2) 0.84 BS: 50, LR: 10−2, DO: 0.3
D(3) 0.86 BS: 50, LR: 10−3, DO: 0.1, WD: 10−3

E(3) 0.692 BS: 50, LR: 10−3, DO: 0.5, WD: 10−4

F(3) 0.865 BS: 50, LR: 10−2, DO: 0.1, WD: 10−4
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4.3 Post-processing

As discussed in Section 3.3, the post-processing converts the probability map into a
binary segmentation using a combination of multi-atlas and graph cuts.

When computing the final labelling, the average dice score of the validation set
is presented in Figure 4.12 as a function of the post-processing hyper parameters:
threshold α in Equation 3.2 and regularization term λ in Equation 3.1.

Figure 4.12: Dice score of the different hyper-parameters of post-processing. The
left figure shows the effect of threshold α, and the right figure shows how the dice
score changes with different regularization weight λ.

The dice score for the four test images can be found in Table 4.3, using the parameter
configuration resulting in the best dice score for the validation images.

Table 4.3: Dice score of the test images.

image ID 1 2 3 4
Dice score 0.9582 0.9553 0.9563 0.9490

A closer look at one test image is shown in Figure 4.13. Comparing the top left figure
and the bottom left figure, it can be seen that the pericardium is indeed detected
with high probability. In the bottom left figure, the blue line at the lower part of the
image goes into the black background. This indicates that the multi-atlas algorithm
does not perform perfectly and excludes a part of the pericardium and the heart.
Fortunately, this part of heart does not usually contain too many fat tissues. In
addition, in the bottom right figure, the blue ground truth also disagrees with the
red segmentation result in the upper left part of the heart. The graph cuts algorithm
chooses the outer lung boundary, which is also of high probability as shown in the
top left figure, instead of the inner pericardium. Unlike the lower part of the heart,
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the upper part of the heart is where the fat tissues are usually located, as illustrated
by the volume image at the top right.

Figure 4.13: The final results on one of the four test images. The top left figure
shows the probability P in Equation 3.1. The top right figure is the original non-
contrast CT volume image. The bottom left shows the probability P with the
ground truth marked as blue. The bottom right plots the blue ground truth and
the red final segmentation results on top of the volume image.

The rest of the test images are very similar to the example in Figure 4.13. In some
cases, the multi-atlas fails to include all parts of pericardium. In other cases, the
graph cuts fails in choosing the correct line between the pericardium and the lung
boundary.
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Conclusion

In this thesis, an automated method to segment the pericardium structure in non-
contrast CT images is presented. The method combines supervised learning with a
CNN, multi-atlas and graph cuts. To create a ground truth labelling that can be
used for the supervised classification, image registration, including both featured-
based and intensity-based methods, was used to register manual delineations from
the contrast image to the non-contrast image.

The image registration is done between one patient’s contrast image and the same
patient’s non-contrast image. A feature-based registration method is first applied,
where an affine transformation is estimated for each patient. The result is then used
as an initialization for the intensity-based registration method. The final registration
results are examined by a professional.

The following segmentation task is handled by deep learning. A convolutional neural
network is trained by different approaches. The outcome probability maps include
both inside/outside pericardium and on/off pericardium. A combination of those
two types of probability maps is then processed by multi-atlas and graph cuts to pro-
duce an inside/outside pericardium segmentation. The final segmentations achieved
an average dice score of 0.9547 on the test images, with minor misalignment in some
regions.
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6
Future Work

Since the image registration result is not perfect, especially for some key regions,
it is hard to conclude how good this supervised neural network method performs.
Hence, to continue working on the non-contrast CT images, the first issue to solve
would be improving the accuracy of the semi-manual segmentation. In addition, to
evaluate the method, and also to compare with the previous work, a network based
on the contrast images should be trained.

In the convolutional neural network part, this thesis uses image patches with one
certain size. Thus the classification result is entirely based on the information within
the specific size. However, a larger patch size together with a parallel pipeline in
the CNN’s structure might help the network to learn some global information and
improve the probability by eliminating the regions far away from the pericardium
or even the boundary between the heart and the lung, where the post-processing
method used in this thesis sometimes fails.

As discussed in Section 3.2.2, the training, validation and test set have a very limited
number of images. A reasonable resolution is to use data augmentation. By increas-
ing the variety of the training dataset, the network might yield a higher validation
accuracy and better segmentation result on the test images.
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