
Abstraction Layers and Energy Efficiency
in TockOS, a Rust-based Runtime
for the Internet of Things
Master’s thesis in Computer Systems and Networks

FILIP NILSSON & SEBASTIAN LUND

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Abstraction Layers and Energy Efficiency in
TockOS,

a Rust-based Runtime for the Internet of Things

SEBASTIAN LUND

FILIP NILSSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Abstraction Layers and Energy Efficiency in TockOS, a Rust-based Runtime for the
Internet of Things
SEBASTIAN LUND, FILIP NILSSON

© SEBASTIAN LUND, FILIP NILSSON, 2018.

Supervisor: Olaf Landsiedel, Computer Science and Engineering
Examiner: Philippas Tsigas, Computer Science and Engineering

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Abstraction Layers and Energy Efficiency in TockOS, a Rust-based Runtime for the
Internet of Things, FILIP NILSSON & SEBASTIAN LUND
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The advent of the Internet of Things (IoT) has led to an increasing number of
connected devices with the need to run several applications concurrently. This calls
for an operating system with a complete network stack, customized for embedded
systems with the requirements to be up and running for very long periods of time.
In this thesis, we demonstrate how Tock, an operating system written in Rust, easily
can be ported to a new hardware platform and provide similar results in terms of
performance and energy-efficiency as other state-of-the-art operating systems for the
IoT.
Our thesis revolves around the CC26xx family of microcontrollers from Texas In-
struments. These microcontrollers provide a wide range of features for power man-
agement, such as peripheral clock management, and support for several different
power modes. We show how software constructs can be used to facilitate the use of
these power saving resources and decide what power mode to use depending on the
workload.
Besides comparing Tock with its competitors, we document the process of working
with Rust in an embedded setting and research if Tock manages to leverage the
features of Rust to its advantage through an adequate abstraction level.

Keywords: Tock, TockOS, Rust, IoT, Bluetooth Low Energy, Embedded Operating
System, Energy efficiency, Power modes

v

Acknowledgements
We would like to thank our supervisor, Olaf Landsiedel, for his support and guidance
throughout the project. We also want to thank Amit Levy and the whole core team
behind Tock for sharing their knowledge and reviewing our code. Lastly, we would
like to thank Philippas Tsigas for being our examiner.

Filip Nilsson, Sebastian Lund, Gothenburg, June 2018

vii

Contents

List of Figures xiii

List of Tables xv

Acronyms 1

1 Introduction 3
1.1 Context . 3
1.2 Goals and Contributions . 4

1.2.1 Problem statement . 4
1.2.2 Contributions . 4

1.3 Report structure . 4

2 Background 7
2.1 Embedded Operating Systems . 7
2.2 Hardware . 8

2.2.1 UART . 8
2.2.2 I2C . 8
2.2.3 Memory protection unit . 8
2.2.4 Bluetooth low energy . 9

2.3 Platforms . 9
2.3.1 Simplelink Sensortag . 9
2.3.2 Launchpads . 9

2.4 The Rust Programming Language . 10
2.4.1 Ownership . 10
2.4.2 Borrowing with references . 11
2.4.3 Lifetimes . 11

2.5 Tock OS . 12
2.5.1 Kernel . 12
2.5.2 Userland . 13
2.5.3 Scheduling . 13
2.5.4 Grants . 13

2.6 Energy estimation . 13
2.6.1 Simulation . 14
2.6.2 Hardware-based energy measurement 14
2.6.3 Software-based on-line energy estimation 14

ix

Contents

3 Related work 15
3.1 TinyOS . 15

3.1.1 Discussion . 15
3.2 Contiki . 16

3.2.1 Discussion . 16
3.3 TI-RTOS . 17

3.3.1 Discussion . 17
3.4 Centralized power management in Linux 17

3.4.1 Discussion . 18

4 Design 19
4.1 General hardware abstraction . 19

4.1.1 Device drivers . 19
4.1.2 Hardware interface layer . 20
4.1.3 Hardware platform layer . 20
4.1.4 Discussion . 21

4.2 Tock hardware abstraction . 21
4.2.1 Capsules . 22
4.2.2 Hardware interface layer . 22
4.2.3 Hardware platform layer . 23
4.2.4 Discussion . 23

4.3 Energy efficiency . 24
4.3.1 On-demand resource management 24
4.3.2 Sleep modes . 24
4.3.3 Peripheral management . 25
4.3.4 Energy efficiency in Tock . 26
4.3.5 Discussion . 27

5 Implementation 29
5.1 General implementation . 29

5.1.1 Capsule . 29
5.1.2 Hardware interface layer . 31
5.1.3 Hardware platform layer . 32

5.2 Device driver details . 34
5.2.1 UART . 34
5.2.2 I2C . 35
5.2.3 Radio . 35

5.3 Energy efficiency . 36
5.3.1 Power manager . 36
5.3.2 Peripheral manager . 37
5.3.3 Sleep/Power modes . 38
5.3.4 Configuring the Sensortag for low-power consumption 39
5.3.5 Power saving features . 40

x

Contents

6 Evaluation 43
6.1 Evaluation setup . 43

6.1.1 Energy efficiency . 43
6.1.2 BLE . 44
6.1.3 Measurement setup . 44

6.2 Results . 45
6.2.1 Power consumption during inactivity 45
6.2.2 Tock power consumption . 47
6.2.3 Blink . 48
6.2.4 BLE . 49
6.2.5 Expected lifetime . 50
6.2.6 Abstraction overhead . 51

7 Discussion 53
7.1 Rust . 53
7.2 Sleep modes . 54

7.2.1 Transition responsibility . 55
7.3 Tock . 55

7.3.1 Architecture . 55
7.3.2 Abstractions over unsafe code 56
7.3.3 Portability . 56

7.4 Choice of platform . 56

8 Conclusion 59

Bibliography 64

xi

Contents

xii

List of Figures

2.1 TockOS Architecture . 12

4.1 Applications communicate with device drivers 20
4.2 Hardware abstraction layers . 21
4.3 Tock abstraction layers . 22
4.4 On-demand dynamic resource management design 24
4.5 Interaction between peripherals and the peripheral manager 25
4.6 Tock Kernel Main Loop . 26

5.1 Power saving features . 40

6.1 Measuring setup using an Oscilloscope 45
6.2 Standby power consumption comparison 46
6.3 Tock Power modes current draw . 47
6.4 Tock wakeup with and without deep sleep 48
6.5 Toggling LED on Sensortag with Tock 49
6.6 BLE advertising on Sensortag with Tock 50

xiii

List of Figures

xiv

List of Tables

2.1 External sensors found on the Sensortag platform. 9
2.2 Hardware specification for the CC2650 microcontroller. 10

6.1 Expected lifetime in different use cases of a Sensortag device running
Tock with our modifications. 50

xv

List of Tables

xvi

Acronyms

BLE Bluetooth Low Energy

GPIO General Purpose Input/Output

HAL Hardware Abstraction Layer

HIL Hardware Interface Layer

HPL Hardware Platform Layer

I2C Inter-Integrated Circuit

IoT Internet of Things

MCU Microcontroller Unit

MMU Memory Management Unit

MPU Memory Protection Unit

OS Operating System

TI Texas Instruments

UART Universal Asynchronous Receiver/Transmitter

1

Acronyms

2

1
Introduction

An increasing variety of physical objects connect to the Internet. Embedded systems
underlie everything from washing machines to light bulbs. The wide range of devices
gaining connectivity have coined a new term: The Internet of Things (IoT). The IoT
makes it possible to collect and act on information from a lot of different sources.
This information can be used to regulate sophisticated systems like power grids or
self-driving cars.

Embedded systems have traditionally been simple systems focusing on a very
specific set of tasks. As hardware has gotten more capable, they can now provide
more advanced applications to its users and run several different applications at once.
An advanced software platform with connectivity to the internet needs an operating
system (OS) to coordinate all the work on the system. This calls for an OS that
can provide multiprogramming and respect strict hardware constraints. Embedded
systems need to stay functional for long periods of time and as a consequence of
this, fault-tolerance and energy efficiency are also high-priority goals for embedded
systems.

Tock is an OS providing many of the features mentioned above. It focuses on
being resource efficient and safe. For this purpose the kernel is written in Rust, a
type-safe language without garbage collection [1]. Rust is a low-level language like C,
but provides many features from object-oriented languages. Memory management
also works in a radically different way, by using ownership and lifetimes.

This thesis describes the process of porting Tock to new hardware platforms and
how the kernel can be extended with new features for improved energy efficiency.

1.1 Context
Writing hardware-specific applications in order to decrease the power consumption is
cumbersome, and a more general approach is preferable. Therefore, it is motivated
to provide a flexible way for power management in the kernel so that software
developers can focus on other parts of their applications instead.

Many of the hardware platforms which Tock supports have several different fea-
tures (such as sleep modes) which could be used to decrease the power consumption.
These features were not being utilized by Tock before this work.

Contiki [2], TinyOS [3], and other embedded OS today support sleep modes
for their applications in order to reduce the energy consumption. Tock currently
supports concurrency and de-prioritization of processes in order to conserve energy
[4]. Tock has the potential to achieve better energy efficiency than it has today and

3

1. Introduction

this is crucial for battery-driven devices that needs to be running for several months
or even years.

1.2 Goals and Contributions
Our main goal is to evaluate and analyze the energy efficiency and the abstraction
Tock uses to leverage Rust’s features to its advantage in an embedded environment.
We have therefore decided upon two research questions and three contributions to
Tock.

Tock is currently only supported on three different platforms. Porting Tock to an
additional platform and documenting process, increases the availability of the OS
and helps with future development when adding support for new platforms.

1.2.1 Problem statement
• How do the abstraction layers in Tock affect portability?

• How does an embedded OS implemented in Rust compare to other state-of-
the-art implementations in terms of energy efficiency?

1.2.2 Contributions
• Port Tock to an additional development board by adding support for a new

family of microcontrollers and writing device drivers for the board’s different
peripherals.

• Enable platforms that use Tock to decrease their power consumption.

• Evaluate the energy efficiency of Tock during different levels of activity.

1.3 Report structure
The report starts with a theoretical background, giving the fundamentals to under-
stand the rest of the report. We talk about different hardware technologies, Rust,
and give an introduction to Tock. Following the background is a section about re-
lated work. Related work concerns the alternatives to Tock, and describes a couple
of other popular operating systems for sensor networks.

The design section gives more information about Tock’s abstraction layers and
describe, at a higher level, how a driver should be designed to fit with the rest
of Tock. Then we give some more details about each driver and our abstractions
for power management in the implementation section. The evaluation section talks
about testing our design and the metrics we use. This is also where we show the
results from our benchmarks.

The discussion section is where we talk about how suitable Rust is as a lan-
guage for embedded operating systems, and if Tock can leverage its features to its

4

1. Introduction

advantage. Our results regarding energy-efficiency are discussed and we share our
experiences about porting Tock to a new platform.

The report ends with a conclusion that summarizes our findings and discusses
the future of Tock.

5

1. Introduction

6

2
Background

This chapter describes concepts and knowledge necessary to understand the rest of
the thesis. It begins with a description of embedded operating systems in Section 2.1.
It then continues with a brief description of the peripheral hardware used in Section
2.2, followed by information about the platforms picked in Section 2.3. The chapter
then moves on to the Rust programming language in Section 2.4. Afterwards, Section
2.5 goes through parts of Tock not covered by this thesis for completeness. Finally,
the chapter concludes with energy estimation in Section 2.6.

2.1 Embedded Operating Systems
In [4], we can read about five key features that embedded operating systems need to
have in order to support the applications of tomorrow. The mentioned features are
dependability, concurrency, fault isolation, efficiency, and run-time updates. They
focus mainly on resource sharing between processes and preventing and recovering
from faults.

Dependability Embedded systems are often hard to access and can be found in
very remote locations. Because of this, they need to be up and running for an
extended period of time without the need for maintenance. An example could
be a distant weather station that constantly needs to forward data from its
sensors.

Concurrency As embedded systems get more complex, we need support for an
environment that can run several different applications concurrently. This
also increases power efficiency since we can allow the device to enter sleep
mode when asynchronous operations occur.

Efficiency Embedded systems running on limited power (e.g. batteries) need to
save their energy whenever possible to prevent the need for frequent main-
tenance. Another resource that is very scarce when it comes to MCUs is
memory. Applications should ideally not allocate more memory than needed.
Allocating memory dynamically to applications is one of the most efficient
ways, but this comes with the disadvantage that some applications might fail
when memory is exhausted by other applications.

Fault isolation Having multiple applications running on the same system means
that we have to make them all get along, even when something goes wrong.

7

2. Background

One way to ensure damage control is to isolate memory between applications.
Modern MCUs make this easy with memory protection units that can be
exploited by the operating system.

Updates at runtime IoT devices are often designed to run without downtime.
To make it possible to run applications this way, there needs to be a way to
communicate and apply updates to the system without interfering with the
ongoing work.

2.2 Hardware
This section introduces some of the hardware and protocols encountered during the
project. It is not meant to be an in-depth explanation of the technologies, but more
as a short overview to get a notion of their purpose.

2.2.1 UART
UART (Universal Asynchronous Receiver/Transmitter) is a piece of hardware used
for asynchronous serial communication. Asynchronous means that the beginning
and start of a packet is signaled through start and stop bits, and not controlled by
a shared clock.

The transmitting device sends data from its TX-pin to the receiving device’s RX-
pin. Transmission speed is decided by the Baud rate which expresses the speed in
bits per second (bps). For two devices to communicate with each other, they must
use roughly the same baud-rate.

UART requires little setup and uses a simple protocol. It is often used as a debug
tool and provides a way to get information from the system.

2.2.2 I2C
I2C is a way for integrated circuits to communicate with each other. It is often
used by the MCU to control slower peripheral devices on the same board. More
generally, I2C provides for several slave devices to communicate with one or more
master nodes. The hardware is simple in the sense that only two wires are needed
for the communication. One wire is used for the clock signal (SCL) and the other
for data (SDA). By manipulating the signals on these buses, certain transmission
conditions (START/STOP/ACK), can be generated.

2.2.3 Memory protection unit
To support advanced memory architectures, many modern processors include a
Memory Management Unit (MMU) to provide support for virtual memory. An
MMU also provides protection between different memory areas by preventing errant
or malicious applications to access parts of memory they are not authorized to use.

A Memory Protection Unit (MPU) is a simpler device that only provides the
memory protection part of an MMU. MPUs is commonly found in embedded systems

8

2. Background

with limited memory size where there is not enough resources for virtual memory
to be useful.

2.2.4 Bluetooth low energy
Bluetooth is a technology for short-range wireless communication. Each Bluetooth
device has a radio for transmitting and receiving data over the ISM-band. Bluetooth
Low Energy (BLE) is a more power efficient and less costly version of Bluetooth
that still maintains the same range as the original version. The key difference is
that BLE does not continuously stream data, but remains in sleep-mode until there
is something to send. BLE is common for portable, battery-driven devices that only
sends data periodically. It is also found in sensor networks and other areas related
to the Internet of Things.

2.3 Platforms
The main platform for this project is the Simplelink Sensortag [5] from Texas Instru-
ments (TI). The Sensortag is a powerful platform with a lot of different sensors and
peripherals. This platform is however not fully compatible with Tock’s hardware re-
quirements to provide isolation between applications. Therefore, Tock is also ported
to a Launchpad with a similar microcontroller to enable us to get more feedback
from the Tock core-team. A more elaborate discussion about the choice of platform
is held in Section 7.4.

2.3.1 Simplelink Sensortag
The Sensortag consists of a CC2650 MCU together with a wide variety of external
sensors (Table 2.1) [5].

Table 2.1: External sensors found on the Sensortag platform.

Article number Description
MPU9250 9-axis Motions Sensor
TMP007 IR Thermopile Temperature Sensor
HDC1000 Digital Humidity Sensor
BMP280 Altimeter/Pressure Sensor
OPT3001 Ambient Light Sensor

The CC2650 MCU has a Cortex-M3 [6] processor and a radio-unit with support
for Bluetooth Low Energy (BLE). Some of the microcontroller’s specifications can
be seen in Table 2.2.

2.3.2 Launchpads
Launchpads are evaluation boards available from TI to test their microcontrollers.
They are circuit boards with just enough logic to load programs and get acquainted
with the technology.

9

2. Background

Table 2.2: Hardware specification for the CC2650 microcontroller.

Specification Value
Clock Speed 48 MHz
Flash 128 KB
Cache 8 KB
SRAM 20 KB

In this project, Tock is ported to a launchpad running a prototype of a microcon-
troller (CC2652R1) which belongs to the same family as the microcontroller used
by the Sensortag.

2.4 The Rust Programming Language
Rust is a programming language focusing on safety and concurrency. It uses a very
strict compiler and type system to ensure safety and makes most of the security
checks at compile time to save time during execution. Its syntax is similar to C and
C++, but it takes a new approach to memory management. Instead of allocating
and freeing memory dynamically during runtime, Rust introduces the concept of
ownership. The language is also very strict when it comes to how variables changes
their state. Variables are always immutable by default and can only change their
value if they are declared as mutable.

2.4.1 Ownership
Ownership is one of Rust’s most defining properties. Ownership means that all
resources are owned by a specific variable, and once it goes out of scope, the resource
is released. A resource might however be moved from one variable to another, which
is called ownership transferal. It is also possible for one scope to borrow a variable
from another scope, and then return it once it is finished. The rules of transferals
is checked during compile time, which removes the need for extra overhead (e.g a
garbage collector). Listing 2.1 illustrates the concept of ownership, and transferal,
with a simple example of what happens when the rules are broken.

Listing 2.1: Transferal of ownership in rust

1 {
2 let s = String::from("Test"); // Beginning of scope for s
3 stringFunction(s); // Transferal of s to function
4 println!("{}", s); // Fail: value has moved
5 } // End of scope if not for fn call

10

2. Background

2.4.2 Borrowing with references
It is possible for variables to be borrowed between scopes, which is done by lending
a different scope a reference instead of the variable itself. The referenced variable
could either be mutable or immutable, which is explicitly stated. It is not possible
to borrow a mutable and an immutable reference at the same time, since this can
result in race conditions [7].

Listing 2.2: Borrowing with references in Rust. The variables v1 and v2 is borrowed
as references to the function foo, and then returned when foo returns.

1 fn foo(v1: &Vec<i32>, v2: &Vec<i32>) -> i32 {
2 // do stuff with v1 and v2
3 // return the answer
4 42
5 }
6

7 let v1 = vec![1, 2, 3];
8 let v2 = vec![1, 2, 3];
9 let answer = foo(&v1, &v2);

10 // we can use v1 and v2 here!

2.4.3 Lifetimes
Ownership and references is complicated in rust, and many failures can occur when
sharing resources between scopes (e.g. a resource is freed by scope A, but scope B
still has a reference to it). Lifetimes is used to explicitly inform the compiler of how
long any given resource will exist [8]. You do not have to explicitly declare a lifetime
for each resource, the compiler can automatically infer lifetimes for resources. See
Listing 2.3 for an example of when the lifetime of a resource is shorter than the
lifetime of a resource with a reference to it, causing an error.

Declaring lifetimes of resources is done by using {<, >} brackets, e.g. Foo <′ a >
where ’a indicate the lifetime of the resource. You can use multiple lifetimes in a
struct in order to assign different lifetimes to members.

Listing 2.3: Premature deallocation of a referenced resource in rust

1 struct Foo<'a> {
2 x: &'a i32,
3 }
4

5 fn main() {
6 let x; // x goes into scope
7 //

11

2. Background

8 { //
9 let y = &5; // y goes into scope

10 let f = Foo { x: y }; // f goes into scope
11 x = &f.x; // error here
12 } // f and y go out of scope
13 //
14 println!("{}", x); //
15 } // x goes out of scope

There is a special case of lifetime called ’static, which means that the lifetime is
infinite. ’static resources will only be released once the program ends, and exists
indefinitely. Borrowing a ’static resource as mutable can present memory leaks
[9, 10].

2.5 Tock OS
Tock is an embedded operating system for the IoT developed in Rust [4, 11]. The
safety and performance traits of Rust makes it an interesting alternative to classical
low-level languages like C for OS development. Tock tries to leverage the advantages
of Rust to provide a fully featured OS for modern applications, running on limited
hardware with strict power constraints. An overview of how Tock is designed can
be seen in Figure 2.1.

Figure 2.1: TockOS Architecture. The red box to the left is the Tock kernel.
It consists of two main parts: capsules and core modules. Capsules are untrusted
(no unsafe code allowed), and core modules in orange are trusted. The blue box to
the right represents the userland, and the running processes/applications.

2.5.1 Kernel
Tock uses a micro-kernel design [4], and is built from several components called
capsules. Capsules are sandboxed by Rust’s strict type-system and untrusted by

12

2. Background

default. Untrusted means that they are not trusted to execute unsafe code. The
kernel is modular and only a subset of capsules are chosen at compile-time. Capsules
are responsible for the communication with userland processes and is the main entry
point when a process wants to use any type of hardware resource.

Some parts of the kernel need to leave Rust’s type-system in order to perform their
function. These modules reside outside of capsules and include the scheduler, board-
specific configurations and the Hardware Abstraction Layer (HAL). Because of their
use of unsafe language features, these modules are trusted to be well designed.

2.5.2 Userland
Userland contains applications which run with limited privileges [4]. Applications
are not trusted and have limited memory access. They are designed to run with-
out interfering with the kernel, meaning that they can be uploaded, enabled, and
disabled during runtime.

Userland applications can be developed in any language, as their safety and reli-
ability is ensured by the underlying operating system. The most common languages
used today for userland applications are C and C++ [12].

Applications have a local memory area for their data which is independent from
the rest of the system and other processes. This independence makes it easy to load
and replace applications in comparison to capsules that need to be integrated with
the kernel at compile-time.

2.5.3 Scheduling
Processes are scheduled with a round-robin algorithm while scheduling of capsules is
event-based. Kernel events decide when capsules should run and these events always
have higher priority than processes. Event handling in the kernel is not preempted
which gives capsules the possibility to block other capsules and processes by doing
long running computations.

2.5.4 Grants
Each process has a small heap that they can allocate memory from. When it comes
to the kernel, it too needs to be able to dynamically allocate resources in certain
situations. The way this has been solved in Tock, is that a fraction of each process’s
memory space is reserved for the kernel. These memory regions are called grants
and they give us a dynamic kernel heap where processes can exhaust their own part
of this memory without affecting other processes. Capsules can only work on grant
memory and Rust’s type-system and lifetimes make sure that references can’t leave
this area. It also enables us to quickly re-allocate memory if a process dies.

2.6 Energy estimation
Low power consumption is crucial for IoT devices. Many devices have limited power
supplies and need to make informed decisions to preserve their lifetime. This section

13

2. Background

discuss different approaches, both hardware and software-based, on how to estimate
the power consumption.

2.6.1 Simulation
One way to estimate power consumption is to use a cycle-accurate simulator of the
system where all different parameters can be controlled and measured. This gets in-
creasingly difficult as the complexity of the system grows. One alternative approach
is to create a profile of the hardware empirically and simulate power consumption
using a model created from the profile [13]. A big question in this case is if the
results from such a simulation can be generalized to the real world. In [14] the au-
thors argue that the only way to see how temperature and the physical environment
affects the result is to run experiments in the real environment and at scale.

2.6.2 Hardware-based energy measurement
Using a hardware-based approach to measure the power consumption is often accu-
rate, but might require modification of the existing hardware [15]. Many methods
for achieving accurate results are often complicated and costly [14]. A classic ap-
proach is to measure the voltage drop around a shunt resistor. Using Ohm’s law one
can calculate the current and ultimately the power by multiplying the current with
the voltage over the device (Equation 2.1).

Pdevice = Vshunt

Rshunt

Vdevice (2.1)

2.6.3 Software-based on-line energy estimation
An alternative approach presented in [15] is to measure the time a device spends
in certain power-modes together with the time peripherals are activated. A table
keeps track of all relevant components. When a component is started, a time-stamp
is created and when the component is turned off the difference is calculated from the
initial time-stamp and added to the corresponding entry in the table. This approach
is non-intrusive if the platform supports timers in its lower power modes.

This way of measuring power consumption is implemented in Contiki and is easy
to port to similar operating systems [15]. How accurate this approach is needs more
research [15], but it should be able to give good estimates when doing comparisons
on the same platform. Equation 2.2 shows how the energy consumption can be
calculated by multiplying the current draw (Ic) for different components together
with the time (tc) they spend in active-mode and then summing up the result for
each component.

E

V
=

∑
i

Ici
tci

(2.2)

14

3
Related work

This section describes some of the popular alternatives to Tock today. Contiki is
an open-source OS that already has support for the Sensortag platform and many
of the drivers implemented will be inspired by the drivers that Contiki uses. It
also describes TinyOS, since it is one of the earliest systems for sensor networks
and some of the main contributors of TinyOS is now working on Tock. Another
operating system worth mentioning is TI developed, namely TI-RTOS, and is the
default operating system for the Sensortag platform supplied by TI.

3.1 TinyOS
TinyOS is one of the first operating systems for sensor networks. It focuses on pro-
viding a flexible platform for low-energy devices and follows a reactive programming
model. TinyOS is not a stand-alone OS, but a series of modular components that
are built into the application to create an application specific environment [3].

TinyOS uses its own dialect of C (NesC) that creates programs out of compo-
nents that are wired together to form the final application. Components in TinyOS
uses three different forms of abstraction. There is commands and events which is
used for communication between components, and tasks which is a way to achieve
concurrency within a specific component.

Commands and events create well-defined interfaces between components. Com-
mands are requests to specific components to perform something. Once a command
is completed, the status of the command is then signaled through an event. This
makes all communication non-blocking. Each computational request is turned into
a task that can be scheduled individually. This allows a command to return imme-
diately and the result to be reported back at a later time through an event.

Each application has a wiring specification that defines how different components
should be fit together. Wiring specifications work as blueprints for the final program
and are independent of how components are implemented.

3.1.1 Discussion
TinyOS is in a sense a predecessor to Tock, and some of the contributors of TinyOS
is also developers of Tock. This effectively means that Tock includes improvements
from lessons learned during the development of TinyOS. Tock does not suffer from
the unsafety which comes with using C (or NesC) in TinyOS, and have more concern
about safety in its design.

15

3. Related work

One major difference between Tock and TinyOS is the possibility to add appli-
cations at run-time. This is an advantage that Tock has as applications can be
uploaded separately, contrary to TinyOS where applications are an integral part of
the OS.

3.2 Contiki
Contiki is a lightweight operating system for large sensor networks. It provides a
flexible environment for applications while still taking limited hardware resources
into account. The architecture allows dynamic loading and replacement of applica-
tions and runs an event-based kernel [16].

An event-based kernel means that programs only run when triggered by events
from the kernel. Once an event-handler has started, it runs to completion. This can
cause problems when long-running calculations need to be run. However, there’s an
optional library that can be linked in to enable preemptive multi-threading [17].

One of Contiki’s main features is the possibility to load and replace programs
during runtime. The kernel informs a process that it is going to be replaced through
a special event. It is then up to the process to shut down and clean up after itself.
If information needs to be passed from the old process to the new one, there is a
way to transfer the internal state by passing a pointer to the state description on to
the new application.

Contiki is written in C and supports a large number of platforms, including the
Sensortag from TI [2]. Another interesting feature is the possibility to estimate
power consumption and locate where this power was spent.

3.2.1 Discussion
Contiki is widely adopted by the industry today. It is open source and has seen
many contributions since its creation in 2002 [18]. It can already be used on the
Sensortag, and the port is even supported by TI themselves. The wide adoption of
platforms gives Contiki a clear advantage over its competitors.

Like Tock, Contiki is designed towards embedded systems with limited resources.
There are, however, some disadvantages of Contiki - namely its safety. Contiki does
not impose as strict safety regulations as Tock does by default. An example of this
is the possibility to directly manipulate hardware registers without any safety guar-
antees. This can even be done from user applications, which is strictly prohibited
by Tock. Being able to remotely upload applications, together with unrestricted
memory access, is a potential security risk.

Tock focus more on safety and isolation, when Contiki provides very efficient
features in terms of practicality. Tock views processes as potentially malicious,
whereas Contiki views them merely as a unit of modularity. There is a higher risk
for memory related crashes in Contiki (e.g. null pointers, deallocated memory, etc.)
which is not likely to happen in Tock because of Rust. Tock has a more distinct
segregation of its dependencies to increase reliability and safety, providing static
verification during compile-time to guarantee that no memory issues occur during
runtime.

16

3. Related work

3.3 TI-RTOS
TI-RTOS is a real-time OS developed by TI to be used with their own MCUs. The
system provides a multi-tasking environment with protocol stacks and drivers so
that developers can focus on applications instead of system software [19]. Since
the operating system runs on hardware from the same developer, TI-RTOS is very
efficient in terms of using its resources and power consumption. A power manager
leverages the different energy saving features of the underlying hardware for minimal
power consumption [20]. Some of the power saving features found in TI-RTOS are
listed below.

Management of peripheral clocks and power domains is optimized to only
enable certain power domains and clocks on demand.

Power states are used to turn off certain peripherals and run the MCU on a lower
clock frequency. The OS keeps track of the peripherals used at any given time
and decides which power-mode to use.

Tick suppression schedules ticks to appear together with other time-driven func-
tions so that the MCU is not awoken from a low-power-mode when there is
nothing to do.

3.3.1 Discussion
TI-RTOS is specifically designed for TI’s own platforms. This means that they know
all esoteric details about the hardware when writing their code (and vice versa), and
hence can create very optimized solutions. There is an API provided from TI to
make their platforms more accessible for those who does not wish to use TI-RTOS.
This API is however written in C, and using it directly in Tock would circumvent
many of the safety and reliability features provided by Rust.

3.4 Centralized power management in Linux
Power management is often implemented as an afterthought and as an effect of that,
power management is often coarse-grained and hard to implement. Complex drivers
make it hard to reason where it is safe to put code for power management.

Xu et al. [21] suggests a solution to this problem by introducing a centralized
power manager in the Linux kernel. The power manager keeps track of whether a
device has any pending tasks. If no tasks are pending, a power off request will be
sent to the device. Two different ways are suggested to infer if a device has any
pending tasks:

Software-based inference Access to device registers are monitored to see if there
is any ongoing activity on a device. If a device is idle for a longer period of
time than a certain threshold, the device is assumed to have no pending tasks
and can be disabled.

17

3. Related work

Hardware-assisted inference Another approach is to extend the hardware with
extra register bits, indicating if devices are busy or idle. These bits are then
polled regularly to see there is any ongoing activity on a device. The reasoning
behind this approach is that, once a task is finished, a device will immediately
start processing a pending task. This means that the time threshold for when
a device is assumed to be idle can be much shorter than in the software-based
approach.

3.4.1 Discussion
A centralized power manager relieves driver developers from having to implement
manual power management inside of drivers. Xu et al. acknowledges that software-
based inference is less aggressive than power management in device drivers and that
supervising access to hardware registers incurs some overhead.

Adding to this, hardware-assisted inference assumes devices capable of indicating
when tasks are being processed. Another concern is the ability of a centralized man-
ager to make use of devices with more sophisticated power-saving features. Many
devices support several different modes of operation rather than just enabled and
disabled.

18

4
Design

This chapter elaborates on the design of Tock’s kernel and how its different compo-
nents interface with each other. In Section 4.1 we begin with a theoretical description
of how software can be executed independently of the hardware platform it runs on.
Later, we get more specific in Section 4.2 where we look at how Tock implements
several levels of abstraction to facilitate portability. Finally in Section 4.3 we take
a look at energy-efficiency, and how Tock can benefit from several extensions to
improve its power consumption.

4.1 General hardware abstraction
Adding support to several underlying hardware platforms increase the complexity
of software design [22], and may result in excessive duplication of code. Therefore,
abstraction layers are needed to provide common interfaces to the underlying hard-
ware which the system utilizes. This makes porting easier and enables the execution
of the same software on multiple hardware platforms.

4.1.1 Device drivers
In order to allow software to execute independently of what hardware platform
it runs on, a software abstraction layer is needed. This is commonly done with an
abstraction called device drivers [22]. Device drivers are designed to provide a generic
interface towards the underlying hardware. They are responsible for configuration,
listing, and communication with hardware devices.

Generally, device drivers have two different interfaces: one towards the hardware
and one towards user applications [23, 22]. The interface towards applications usu-
ally looks the same for all device drivers. For example, there could be three different
commands: configure, send, and receive. These commands are general enough to
perform a variety of functions. To distinguish between different devices, the com-
mands are used with different arguments and data. Libraries in userland can then
wrap these commands to make it easier for applications to communicate with device
drivers.

The interaction between applications and device drivers is illustrated in Figure
4.1. Note that there can be dependencies between drivers, as they can utilize the
functionality of each other (e.g. a radio driver that utilizes a timer driver to schedule
a transmission).

Device drivers are not only used to communicate directly with the hardware

19

4. Design

Figure 4.1: Applications communicate with device drivers in order to interact with
hardware, regardless of what platform they run on.

[23], but also include platform independent logic, for example, implementations of
protocols such as BLE. The reason for this is that some protocols are tightly bound
to a specific type of hardware, like the radio.

How device drivers are used in embedded operating systems differ between imple-
mentations [24, 25, 26]. Most operating systems use device drivers as components
attached to the kernel. The advantage of this modular approach is that many device
drivers can be seen as optional. This also makes it easier to combine device drivers
into new components that use utilize functionality from several drivers.

4.1.2 Hardware interface layer
The Hardware Interface Layer (HIL) provides a platform-independent abstraction
that hides differences in underlying hardware [23]. Hardware often differs in its im-
plementation and interaction depending on who manufactured it and what version
it is, making it more complex to add support for new platforms. The HIL is com-
posed of several hardware interface models, which each creates a contract of how
the underlying hardware behaves - regardless of the platform.

An interface model is an abstraction of how a specific type of hardware functions
(e.g. I2C, BLE). It sets an expectation of what features and functionality the un-
derlying hardware should provide. This abstraction allows an interface to be set up
between device drivers and the hardware, thus allowing device drivers to interact
with the hardware independently of what platform is used. Figure 4.2 illustrates
how a device driver can be compatible with several hardware platforms if both parts
follow the contract defined in the HIL.

4.1.3 Hardware platform layer
The Hardware Platform Layer (HPL) is the layer closest to the hardware. This
layer handles all details about the hardware so that the layers above do not have
to. The HPL implements the functionality defined in the HIL to make the platform
compatible with the device driver. Each platform needs its own HPL in order to be
compatible with the OS, which is illustrated in Figure 4.2. The HPL is ideally the
only layer that needs to be ported to add support for a new platform.

20

4. Design

Device driver HIL

Platform 3 Specific

Platform 1 Specific

Platform 2 Specific

Figure 4.2: The abstraction layers used to interface to different platform-specific
hardware. How the device driver uses the hardware interface layer in order to use
platform-dependent implementations of hardware interaction.

4.1.4 Discussion

There are always some limitations on how general an abstraction can be. The more
complex a device is, the harder it is to find a suitable abstraction. It is easy to
describe an abstraction for something as simple as an LED or a button, but harder
for a radio with support for multiple protocols. Complex hardware works in very
different ways depending on the manufacturer, and what design choices were made
during development.

Hardware abstractions may cause portability to suffer [27], as certain assumptions
often are made in higher abstraction layers. An example of this would be if the OS
assumes the existence of a specific hardware device. This would limit the portability
of the OS to only support platforms which use this device.

Embedded operating systems and general purpose systems have different ways
to manage hardware abstractions, with different goals and purposes in mind. Em-
bedded systems work with a lot of restrictions in terms of resources, which makes it
harder to use advanced and complex abstractions. Using Rust to design the abstrac-
tions gives a huge advantage since everything is checked during compilation, and not
during run-time. This minimizes overhead and allows for flexible and portable ab-
stractions.

4.2 Tock hardware abstraction

Tock uses different abstraction layers in order to easily extend or modify specific
parts of its functionality. Figure 4.3 shows a high-level overview of Tock’s current
design. Notice how the kernel consists of capsules that interacts with both hardware
and software.

In this section, we describe the four noticeable abstraction layers for the kernel:
capsules, HIL, HAL, and board-specific configurations. Capsules are described in
Section 4.2.1 and the HIL in Section 4.2.2. The HAL together with board-specific
configurations are what Tock consider to be its platform dependent implementation,
and is described in Section 4.2.3.

21

4. Design

KERNEL

Capsule

HIL

Platform specific

Board

HAL

USERLAND

Application

Application

HARDWARE

Figure 4.3: The abstraction layers of Tock. Applications communicate with cap-
sules, which uses the HIL to interact with platform-specific implementations, which
in turn interacts directly with the hardware.

4.2.1 Capsules
Capsules are Tock’s main abstraction for device drivers. They use Rust’s type and
module system to provide isolated units that communicates through well-defined
interfaces. It is a robust design since they are not allowed to use any unsafe code.

Capsules are meant to provide platform independent implementation of device
functionality (e.g. protocol implementations, virtual multiplexing) with a higher
execution privilege than regular applications. They can act as standalone units to
provide features which share resources between applications, or directly act as an
intermediary between applications and specific hardware - or even a combination of
them both.

Applications communicate with capsules using a generic interface which is capsule
independent, often in conjunction with a userland library to facilitate communica-
tion. This allows applications to communicate with every capsule regardless of its
functionality, or what hardware it uses.

4.2.2 Hardware interface layer
The HIL is used to interface between capsules and the HPL. The HIL should be as
generic as possible and depends on what type of hardware it interfaces against. The
information included should add an abstraction over the actual hardware interac-
tion, making the capsule oblivious to how the communication with the hardware is
implemented.

The HIL is the only way for capsules to communicate with and use hardware in
Tock since unsafe code is not allowed in capsules. This allows capsules to be ported
much easier to new platforms, since there would only be a need to add a new HIL
implementation for a new platform in order to use a specific capsule.

22

4. Design

4.2.3 Hardware platform layer
The hardware platform layer in Tock has been divided into two parts: the Hardware
Abstraction Layer (HAL), and board-specific configuration. A certain type of MCU
is often used in several development boards, but with a different set of peripherals
connected to it. It makes sense to design the HPL in such a way that MCU specific
logic is kept in the HAL and can be used by multiple boards which share the same
MCU.

4.2.3.1 Hardware abstraction layer

The HAL covers the MCU specific logic and implementation of all HIL modules that
are going to be supported. The aim is to keep the design general towards a family
of MCUs to avoid duplicate code. One module implements all the common parts
for a certain family and then a sub-module extends this with more specific settings
for a certain MCU.

4.2.3.2 Board-specific configuration

This part of the hardware abstraction configures the OS for a specific board by
deciding what capsules to use and connecting these with the HAL. This is also
where all pins are configured to match the layout of the board.

4.2.4 Discussion
The abstraction layers in Tock make it easy to add support for new platforms,
and the only layers that need to be implemented are the HAL and board-specific
configuration. However, the other parts of Tock need to be taken into consideration
as well.

Capsules are embedded into the kernel and cannot be changed dynamically during
runtime. This design choice makes it necessary to explicitly include capsules for each
platform in the board-specific configuration. If an application needs to be added
that depends on another set of capsules, the whole kernel needs to be recompiled.
Capsules can also cause issues as they make assumptions of how the underlying
hardware works. This can increase the complexity of the HAL as workarounds
might be needed to comply with these assumptions. This problem is hard to avoid,
and both the HIL and capsules need to be updated as more platforms get supported
by Tock.

The HAL contains MCU specific logic, which is shared between MCUs of the
same family. By keeping the HAL platform agnostic, Tock can easily be ported to
platforms which use hardware components that are already supported.

Handziski et al. describes how HIL models have to be actively developed in order
to cope with changes in the underlying hardware [23] - especially for wireless sensor
networks. Hardware is constantly improved and changed, which means the HIL will
sometimes need to be updated. This could pose a problem in Tock since all of the
abstraction’s implementations on all supported platforms would need to be updated.

23

4. Design

4.3 Energy efficiency
Energy efficiency is highly integrated into the hardware of IoT devices today. It is
desirable for any IoT device to last as long as possible, consuming the minimum
required amounts of energy to extend its lifetime. Several techniques can be used
to reduce the energy consumption of a device, and this section will discuss some of
the most common ones.

4.3.1 On-demand resource management
Resources needs to be dynamically managed in order to reduce the energy consump-
tion for a certain board. There is no need for a clock to tick or a peripheral to have
power if they are not used.

Dynamic management of resources can be designed in many ways depending on
the underlying hardware. Ideally, power management should be general enough to
support several boards, even if this is challenging since they often have very different
power saving features.

Peripherals need different resources in order for them to work. For example, if a
peripheral resides in a specific power region, that power region needs to be enabled
for it to work. Certain resources are also shared between peripherals. On-demand
resource management need to keep track of each resource, and their usage, to know
when to enable or disable them. This can be done by creating a power manager,
which is shown in Figure 4.4.

Resource manager

Resource 0

Resource 1

Peripherals

GPIO

UART

RADIO

Power manager

Figure 4.4: Resources are requested and released by peripherals through a power
manager. The power manager keeps track of the number of peripherals who use a
certain resource and can on-demand decide if it needs to be powered on.

The management of resources could be more abstract, which requires more as-
sumptions to be made about the underlying hardware. It would minimize the
amount of platform-specific implementation, but limit the number of platform-
specific energy efficient features that could be used. Using these platform-specific
features is a huge advantage in terms of energy efficiency, which is why our design
kept the entire resource management platform-specific.

4.3.2 Sleep modes
In order to reduce the energy consumption during inactivity, it is common to utilize
sleep modes for peripherals and the MCU. This suspends the peripheral or the

24

4. Design

MCU until a certain event has occurred, thus reducing the energy consumption
drastically. There is often several kind of sleep modes depending on the situation,
which all offers trade-offs in energy consumption and functionality. Lower energy
consumption often means reduced functionality during these periods. An example
of the predefined sleep modes for the Sensortag [6] can be seen below:

Active An application is currently running on the MCU.

Idle No application is running, the MCU is powered off, but all peripherals are
functional and available.

Standby No application is running, the MCU is powered off, and only the sensor
controller and alarm is available.

Shutdown Everything is powered off.

In order to know how far into sleep it is possible to transition, we need to keep
track of what peripherals that are being used and what sleep modes they are com-
patible with. Even if certain peripherals are not being used currently, they might
be waiting for something to happen, e.g. waiting on an interrupt from a sensor.

4.3.3 Peripheral management
To avoid interfering with ongoing peripheral activity, there needs to be a way to
decide if it is safe to drop to a certain sleep mode. This section describes a manager
that peripherals can use to receive notifications about power mode transitions and
prevent certain transitions if needed.

It should be possible to query the peripheral manager to determine the lowest
sleep mode currently supported by the board. The peripheral manager loops through
all subscribers and simply ask them which sleep mode they support at the moment.
The lowest sleep mode supported by all subscribers is then returned.

Since certain peripherals need to be disabled before certain sleep modes, the
peripheral manager should be able to notify peripherals before and after power
mode transitions. Peripherals can then release their acquired resources safely, and
then re-acquire them upon wakeup. This is useful for peripherals that perform
periodic tasks and do not need to be powered on in-between (e.g. a radio sending
advertisements periodically). See Figure 4.5 for an overview of the manager.

Peripheral

Peripheral
Manager

Register

Lowest sleep mode?

Before sleep

After wakeup

Figure 4.5: The peripheral manager lets peripherals subscribe to it, and then
invokes several hooks for these once transitions between power modes are to occur.

25

4. Design

4.3.4 Energy efficiency in Tock

Tock uses an event-based kernel, that waits for interrupts during inactivity. Tock
uses the default wait-for-interrupt (WFI) instruction supported by all ARM pro-
cessors (the main architectural target of Tock). This instruction reduces the power
consumption of the CPU when it is not needed. The WFI instruction is not enough
in many cases, however, and most hardware platforms support even lower power
modes by limiting their functionality (see Section 4.3.2). Tock needs to be extended
to support these power modes to improve its energy-efficiency further.

Tock always precedes the WFI instruction with a platform-specific invocation to
prepare the chip for inactivity, but not upon wakeup. Most hardware needs to be
configured before transitioning into inactivity, as well as afterwards. An illustration
of Tock’s current main loop is shown in Figure 4.6.

Service pending interrupts

Schedule & run processes

Pending interrupts? Yes

Wait-For-Interrupt

No

Figure 4.6: The main loop of the Tock kernel. It serves pending interrupts by
invoking their handlers, and then schedule each process until any application yield,
finally it transitions into hardware specific sleep.

4.3.4.1 Peripheral manager

Tock already has an implementation of a peripheral manager [28]. It enables noti-
fications and hooks for peripherals before and after access to hardware registers. It
is an abstraction which can be used to remove much of the unsafe code currently in
the HAL.

The Sam4L chip supported in Tock uses it to toggle clock gates for peripherals
before and after hardware register access, and ultimately uses the status of the clock
gates to determine if it is safe or not to transition into a lower power mode (Section
4.3.2 for further information).

26

4. Design

4.3.5 Discussion
Power management in Tock is currently very limited, and much work is being done in
order to improve this (e.g. safe peripheral management [29]). There is much to gain
by implementing on-demand resource management (Section 4.3.1) and support for
sleep modes (Section 4.3.3). More sophisticated sleep modes would reduce the power
consumption drastically, especially for IoT-devices with large periods of inactivity.

The power management in Tock today is very platform specific, which means that
performance will vary when new boards are added. Since the platforms have different
features for saving power, this is a necessary evil, but with the different managers
described in this chapter, we hope to make it somewhat easier to implement support
for these features in Tock.

The current peripheral manager in Tock does not handle certain edge-cases re-
lated to asynchronous operations. If a clock is disabled during an asynchronous
operation, the operation would be disabled as well. This adds a conditional when
we disable the clock. Therefore, another hardware register access would have to be
made once all asynchronous operations has been completed to successfully trigger
the hook after access, to disable the clock. This last hardware access would need to
be made before entering a lower power mode, else it would unnecessarily prevent it.
The current peripheral manager could potentially be merged with our own design
mentioned in Section 4.3.3 to fix this issue.

The peripheral manager described in Section 4.3.3 needs to poll all peripherals
to decide the lowest power mode safe to enter. An improvement to this could be
to have peripherals explicitly inform the manager when their minimum permissible
sleep state changes. Doing this means that the manager only has to re-evaluate
what sleep mode to use when something changes. This could provide a more scalable
solution, but the manager still has to inform all peripherals to prepare them for the
transition. However, it is safe to assume that the number of peripherals attached
to an IoT device is fairly small, which means that the overhead from polling all
peripherals should be negligible.

27

4. Design

28

5
Implementation

In this chapter, we look more closely at how the abstraction models from Chapter
4 are implemented in Tock, as well as the energy efficiency features. We begin with
a general description of how drivers are written in Rust before diving into details
about some of the drivers developed during the project. This is followed by details
about how the energy improvements were implemented, and what trade-offs there
are in their implementations.

5.1 General implementation
This section gives an overview of how different layers of the hardware abstraction
are implemented in Tock. It includes details as well as code examples that show
how the different software constructs are used. The implementation of capsules are
described in Section 5.1.1, the HIL in Section 5.1.2 and the HPL in Section 5.1.3.

5.1.1 Capsule
A capsule acts as a device driver. It communicates with user applications through
system calls and hardware devices through the HIL. Capsules often include ab-
stracted logic, for example how a communication protocol works at a higher level.

When the kernel is invoked through a system call, the kernel performs several
checks to see if the capsule exists and if it is busy. If the checks fall through, the
scheduler invokes specific functions in the correct capsule. Therefore, each capsule
need to implement a common communication interface:

allow(appid, driver-num, slice)
Allows the kernel to use memory allocated by the application. It is used to
transfer results back from the kernel to the application.

subscribe(driver-num, callback)
Subscribe allows the application to pass on a callback to the capsule, which is
invoked once a certain criteria is fulfilled.

command(driver-num, data, appid)
Command instructs the capsule to perform a specific operation. This interface
allows a limited amount of data to be transferred with the command.

The implementations of these functions differ depending on what the job of the
capsule is. Many capsules implement extra commands via the command function,

29

5. Implementation

and has extended functionality due to it. An example of how these functions are used
together would be to invoke a certain command and give access to some memory
using allow; and once the capsule is finished, make it invoke a callback which was
registered using subscribe.

Capsules depend on the HIL to communicate with the hardware. To allow two-
way communication, capsules themselves implement a client interface. This allows
the hardware to notify the capsule when a specific operation has been completed.

Capsules are represented as structures in Rust, using traits as a templates for
the HIL modules. This allows great flexibility when designing capsules, as traits are
highly generic and simply define an interface - a contract of what behaviour is to
be expected from a certain type of hardware. The actual HIL modules which the
capsule uses is assigned during the runtime configuration. Listing 5.1 contains an
example of how a capsule is constructed and connected with the HIL.

Listing 5.1: Example of capsule implementation. Notice the communication in-
terface on line 8, 13, and 18, that is expected by the Driver trait. On line 7 it is
explicitly defined that the kernel::hil::Module trait is used to communicate with the
underlying hardware. Both communication directions use abstract traits to form a
contract of communication - effectively an abstract protocol between applications,
the capsule, and the hardware.

1 // Capsule 'capsule', using kernel::hil::Module for HIL interface.
2 struct Capsule<'a, H: kernel::hil::Module + 'a> {
3 hil_interface: &'a H,
4 // ...
5 }
6

7 impl<'a, H: kernel::hil::Module> Driver for Capsule<'a, H> {
8 fn allow(&self, appid: AppId, allow_num: usize,
9 slice: AppSlice<Shared, u8>) -> ReturnCode {

10 // implementation of allow
11 }
12

13 fn subscribe(&self, subscribe_num: usize, callback: Callback)
14 -> ReturnCode {
15 // implementation of subscribe
16 }
17

18 fn command(&self, command_num: usize, data: usize, appid: AppId)
19 -> ReturnCode {
20 // implementation of command
21 }
22 }

30

5. Implementation

5.1.2 Hardware interface layer

The Hardware Interface Layer (HIL) in Tock is a work in progress. It is constantly
being developed and improved to cope with the needs of tomorrow. HIL models
depicts how a capsule expects the hardware platform layer to function in order to
provide the necessary service to applications. Capsules often expect information
about certain events from the hardware as well, and a way to disable or enable these
events.

Events are most often handled by creating another interface which the HAL will
use to notify capsules of certain callbacks. The capsules is expected to implement
these callback interfaces, effectively creating an abstraction using a two-way protocol
of interfaces between Capsules and the platform layer.

In Listing 5.2 is an example of a HIL model. It is a simple rust trait, where
the functions async_read, async_write is used to communicate with the hardware
device. It is also common to create a callback interface (see line 76) to be notified
when certain operations has been completed by the hardware.

Listing 5.2: Hardware interface module example. It shows how a HIL model can
be created to allow asynchronous communication and notification when operations
has been completed by using a callback interface Client.

1 pub trait Module {
2 // Perform asynchronous read
3 fn async_read(&self);
4 // Perform asynchronous write of `data`
5 fn async_write(&self, data: DataType);
6

7 // Callbacks are often invoked by using interrupts, thus
8 // we need to be able to either enable or disable them.
9 fn enable_interrupt(&self);

10 fn disable_interrupt(&self);
11 }
12

13 // Callback interface towards the capsule using the HIL
14 pub trait Client {
15 // Invoked when a read operation has been finished
16 fn read_done(&self, data: DataType);
17

18 // Invoked when a write operation has been finished
19 fn write_done(&self);
20 }

31

5. Implementation

5.1.3 Hardware platform layer
The hardware platform layer in Tock consists of two parts: the HAL, and board-
specific configuration. The HAL contains logic for the MCU and its peripherals. It
interacts directly with the hardware and is only compatible with a certain MCU or
family of MCUs. The board-specific configuration is in turn responsible for connect-
ing modules in the HAL with capsules and configuring what pins they use.

5.1.3.1 Hardware abstraction layer

The HAL contains MCU specific logic which performs direct configuration of hard-
ware peripherals. Its purpose is to implement different parts of the HIL to establish
an interface between capsules and hardware. The HAL contains unsafe code since
it needs to perform raw memory operations. This means that it is not restricted by
Rust’s type-system and needs to be trusted by the kernel.

Listing 5.3 shows a bare-bones example of a HAL module. Almost all of the
modules follow this pattern. They each interface directly with a set of hardware
registers, which is mapped to specific memory locations. To be able to write to
memory without any restrictions, we need to explicitly declare that the code is
unsafe by using an unsafe-block. This can be seen in start_peripheral() at line 22,
where we dereference a pointer to the registers.

Listing 5.3: Chip module example. The module interfaces directly with the regis-
ters found on line 1. The registers are mapped to a memory address (provided by
hardware design), shown on line 7.

1 pub struct Registers {
2 pub control: VolatileCell<u32>,
3 _reserved: [VolatileCell<u8>, 0x10],
4 pub status: VolatileCell<u32>,
5 }
6

7 const MODULE_BASE: u32 = 0x1234_1234;
8

9 pub struct Module {
10 regs: *const Registers,
11 state: Cell<u8>,
12 }
13

14 impl Module {
15 const fn new() -> Module {
16 Module {
17 regs: MODULE_BASE as *const Registers,
18 state: Cell::new(0),
19 }
20 }
21

32

5. Implementation

22 fn start_peripheral(&self) {
23 let regs = unsafe { &*self.regs };
24 regs.control.set(1);
25 }
26

27 fn return_state(&self) -> u8 {
28 self.state.get()
29 }
30 }
31

32 impl kernel::hil::module::Module for Module {
33 // HIL implementaions
34 }

Tock uses several software abstractions to manipulate ownership and make it
easier to share data contained in unsafe and low-level structs. The Cell abstraction
used for the state variable in Listing 5.3 allows it to be accessed several times by
creating copies of the value contained inside of it [30]. An alternative for more
advanced members, where copying involves significant overhead, is the TakeCell
construct. In short, TakeCell allows us to define a closure where we can manipulate
a variable before returning ownership to the original owner.

The HAL module also configures the device for interrupts. The kernel will forward
interrupts to the module by calling a handle_interrupt function. This function
handles the interrupt accordingly and forwards the event to the capsule by using a
callback client.

5.1.3.2 Board-specific configuration

HAL modules are written to be compatible with all boards that support a certain
MCU. This avoids code duplication but requires some initial configuration of the
board. Each module needs to be attached to its corresponding capsule and callback
clients need to be set for handling interrupts. The HAL modules must also be
configured to use the pin layout of this particular board.

All of this happen in main.rs which is defined for each board in Tock. This is
where the whole board is set up before loading the application and starting the OS.
Listing 5.4 shows how a GPIO driver is set up for an example board before jumping
to the operating system’s entry point.

Listing 5.4: A somewhat simplified example of how to set up a board with a
GPIO driver. The Platform struct holds the device driver which is initialized with
the GPIOPin chip module on line 6 and 14. On line 18 we give each pin module
the capsule as a callback client.

1 pub struct Platform {
2 gpio: &'static capsules::gpio::GPIO<'static, cc26xx::gpio::GPIOPin>,

33

5. Implementation

3 }
4

5 pub unsafe fn reset_handler() {
6 let gpio_pins = static_init!(
7 [&'static cc26xx::gpio::GPIOPin; 3],
8 [
9 &cc26xx::gpio::PORT[0],

10 &cc26xx::gpio::PORT[1],
11 &cc26xx::gpio::PORT[2],
12]
13);
14 let gpio = static_init!(
15 capsules::gpio::GPIO<'static, cc26xx::gpio::GPIOPin>,
16 capsules::gpio::GPIO::new(gpio_pins)
17);
18 for pin in gpio_pins.iter() {
19 pin.set_client(gpio);
20 }
21

22 let platform = Platform { gpio }
23

24 // Init kernel with platform struct and run main
25 }

The platform struct holds all device drivers the platform is going to use. In
Listing 5.4 this corresponds to the GPIO capsule using the GPIOPin chip module.
Everything is initialized in the reset handler which is run every time the system
boots. The static_init macro helps us instantiate static variables at run-time.

At line 18 we can see how all instances of the hardware module gets the capsule
as a callback client. This client is used to signal the capsule after interrupts.

5.2 Device driver details
This section describes specific drivers and hardware modules in greater detail. For
each peripheral, we describe what functionality the driver provides to the system
and some details about the HIL functions they implement.

5.2.1 UART
This module handles all interaction with the UART hardware in the MCU. It pro-
vides a simple way of transmitting messages to an external device. Receiving is not
implemented at the moment and interrupts are not enabled. UART is only used
for debugging in this project, which is why only a handful of hardware features are
supported.

34

5. Implementation

From the HIL we implement a function for initializing the hardware and a another
for transmissions. The init function powers up the peripheral, disables interrupts
and configures the hardware by setting the baud rate and enabling requests to be
queued in FIFO order. After all configuration parameters are set, this function
enables the hardware by writing to the corresponding registers.

The transmission function takes a byte array together with its length as argu-
ments and issues the bytes to be written once there is room in the FIFO queue. Once
a transmissions has been completed, a callback is made to the kernel indicating that
the command is complete.

5.2.2 I2C
I2C is used to communicate with external sensors on the board. There are two
different interfaces/buses it can communicate on. Before communication can take
place, an interface and an address need to be selected. The hardware module allows
a master node to communicate with one slave node at a time. The operations are
read, write and read_write. Read and write takes a data buffer as argument together
with the number of bytes to read/write. read_write combines the two operations
and performs first a write operation and then a read. In this last operation, both
read and write share the same buffer.

The I2C module is used exclusively by modules controlling the external sensors.
We do not provide a way for user applications to utilize the I2C driver on this board.

5.2.3 Radio
This module handles the interaction with the radio hardware, and thus part of
the Bluetooth stack. The Tock BLE implementation is still unfinished, and the
design of how to handle radio communication is a work in progress. Currently, only
advertisements are supported and transmissions can only occur one at a time for
every dedicated BLE channel.

The CC26xx family of MCUs use a dedicated extra Cortex-M0 MCU to handle all
Radio communication. The communication with the main MCU (Cortex-M3/M4)
and the Radio MCU is performed through shared memory and dedicated registers.
Commands are sent to configure the radio and communicate using either BLE,
IEEE802.15.4, or FM. It is possible to use all of the aforementioned protocols at the
same time, thus achieving high flexibility in terms of wireless communication.

There are mainly two types of commands used in communication between the
MCUs:

Direct commands are simple and often used to toggle a single function. They often
have no arguments and are very simplistic in their nature (e.g. ping).

Immediate commands are dedicated memory structures that form more complex
commands (e.g. transmission, and settings) with a wide range of variables and
arguments.

It is possible to share commands between the MCUs as the Radio MCU has
unrestricted access to the entire RAM of the main MCU [6, p. 1586]. The main

35

5. Implementation

MCU issues commands by assigning a specific memory-mapped register to either an
integer indicating a direct command or a pointer to a memory address indicating an
immediate command.

The way CC26xx handles radio communication differs from how other chips man-
age the radio in Tock. The capsule is very specific to the radios currently supported
and the HIL is being redesigned to change this. The final implementation of the
radio for the CC26xx family will have to be updated in the future to reflect these
changes. Hopefully, this will lead to a solution with fewer workarounds because of
assumptions made higher up in the hardware abstraction.

5.3 Energy efficiency

To coordinate the power management of the board, we have designed two different
software constructs that keep track of different resources being used and decide
what power mode we can drop to when sleeping. The two constructs are the Power
manager (Section 5.3.1) and the Peripheral manager (Section 5.3.2).

5.3.1 Power manager

This construct facilitates the management of different hardware resources on a chip
related to power. By keeping track of the number of references to a certain resource,
we can determine if the resource needs to be powered on or not.

For a resource to be tracked it needs to be registered with the power manager. The
power manager then controls all registered resources through a resource manager.
The resource manager knows the hardware specific details of how to enable/disable
the resources.

Resources are arbitrary objects identified using an integer identifier. This allows
flexibility in terms of resources as they differ between hardware platforms. A re-
source management facility is supplied to allow further flexibility in terms of the
type of resource. Another way would be to supply a type of resource to the power
manager, and then allow each resource to implement a trait which would enable or
disable that specific resource. The required boilerplate to implement this would,
however, become tedious and cumbersome to developers, and further increase the
difficulty of supporting new platforms with low energy consumption.

Listing 5.5 shows an example which shows how a set of resources can be controlled
through the power manager. A peripheral that wants to use a certain resource simply
requests the resource through the power manager and releases it once it is done. This
is can be seen in Listing 5.6.

Note that it is possible to request a resource multiple times and never release it.
This was a choice to avoid overhead and try to keep the power manager unaware of
the requester.

36

5. Implementation

Listing 5.5: Example showing how we instantiate a power manager with a resource
manager. The power manager keeps track of when resources are needed and then
calls the functions defined in the resource manager to turn them on and off. In
order to track the usage of resources, they first need to be registered with the power
manager. This can be seen in the init function.

1 // Requests for resources (regions) will go through this power manager
2 pub static mut PM: PowerManager<RegionManager> =
3 PowerManager::new(RegionManager);
4

5 pub struct RegionManager;
6

7 impl ResourceManager for RegionManager {
8 fn enable_resource(&self, resource_id: u32) {
9 // Enable the resource of identifier resource_id

10 }
11

12 fn disable_resource(&self, resource_id: u32) {
13 // Disable the resource of identifier resource_id
14 }
15 }
16

17 // Registers all resources we want the power manager to keep track off.
18 pub unsafe fn init() {
19 for resource in RESOURCES.iter() {
20 PM.register_resource(&resource);
21 }
22 }

Listing 5.6: An example of how a peripheral might request a certain resource to
do some work and then release it once the work is done.

1 PM.request_resource(power_region_id);
2 // Do some work which requires the power region to be on.
3 PM.release_resource(power_region_id);

5.3.2 Peripheral manager
The peripheral manager is a way for peripherals to get notified during transitions
between power modes, and to decide which transitions are possible in order for pe-
ripherals to retain their functionality. Peripherals sometimes need to save and restore

37

5. Implementation

their state, or disable and enable their features, before and after sleep. To enable
this, we provide a way for peripherals to register themselves, each implementing a
Rust trait to enable the peripheral manager to invoke them when needed.

There are three functions each peripheral must implement in order to be able to
interact with the peripheral manager:

lowest sleep-mode
Returns the lowest possible power mode the peripheral can transition to right
know.

before sleep
Gets called before going into sleep in order to prepare the peripheral for the
transition.

after wakeup
Re-initializes the peripheral after waking up from sleep mode.

There are often an arbitrary number of peripherals available, as peripherals can be
attached and removed manually by users. There would need to be a way to register
new peripherals on the fly to be able to keep track of every peripheral. This is why
each peripheral needs to be manually registered for the peripheral manager to be
aware of their existence. In order to register peripherals, they need to be statically
allocated and appended to a linked list upon board configuration. The memory for
the linked list is reserved during compile-time, which ensures safe operation during
run-time.

Peripherals once registered can never be unregistered. The ability to unregister
peripherals would require dynamic memory management. Tock does not support
dynamic management of static memory, as it is considered unsafe and prone to
memory leaks if not handled carefully. It is neither possible to remove members
of the linked list, as the links are formed by immutable fields, and changing the
structure may result in undefined behaviour.

5.3.3 Sleep/Power modes
Sleep/power modes are used during inactivity to reduce the power consumption. An
IoT device often spends a great amount of its lifetime waiting for something, which
makes inactive periods very important in terms of energy efficiency.

The device should transition into the deepest sleep mode whenever possible. This
can, however, interfere with the functionality of the device. To prevent transition
when an asynchronous operation is pending (i.e. sensor reading in progress), the
peripheral manager described in Section 5.3.2 is used.

The setup of different sleep modes differ between hardware platforms, as they
provide different features in terms of energy efficiency. One common denominator
for the Cortex-based architecture of MCUs is that, in order to transition into efficient
deep sleep, an indicator bit has to be set in the system control block that allows the
MCU to disable certain features when waiting for interrupts.

An example of how the transition into sleep mode might look like is presented in
Listing 5.7. It begins by a query to the peripheral manager to get the lowest sleep

38

5. Implementation

mode possible. Depending on the returned value, it either prepares and transitions
into deep sleep, or simply waits for interrupts until it continues.

Listing 5.7: An example of how a sleep routine may look like, invoked to reduce the
energy consumption during inactivity. We retrieve the lowest possible sleep mode
from the PeripheralManager, and then transition into the appropriate sleep mode -
and do not interfere with the peripherals functionality or pending operations.

1 // Get the lowest possible sleep mode
2 let sleep_mode: SleepMode = SleepMode::from(peripherals::M.lowest_sleep_mode());
3

4 match sleep_mode {
5 // DeepSleep is defined to be the lowest possible
6 SleepMode::DeepSleep => {
7 // We need to prepare peripherals for deep sleep
8 peripherals::M.before_sleep(sleep_mode as u32);
9

10 // Enable deep sleep & disable certain services during this period
11 // This also sets the deepsleep bit in the system control block
12 power::prepare_deep_sleep();
13

14 // Transition into deep sleep by invoking the WFI
15 // (Wait-For-Interrupt) instruction
16 support::wfi()
17

18 power::prepare_wakeup();
19

20 // Peripherals might need to setup in order to
21 // properly function again
22 peripherals::M.after_wakeup(sleep_mode as u32);
23 },
24

25 // Do not transition into deep sleep (no setup), just
26 // wait for next interrupt
27 _ => support::wfi(),
28 }

5.3.4 Configuring the Sensortag for low-power consumption
For the lowest power settings, everything on the board needs to be powered off
according to the sleep modes described in Section 4.3.2. However, this configuration
only applies to the MCU, but the rest of the board also needs to be put in a low
power mode. Mainly this means turning off external sensors and configuring the
GPIO pins in a mode that does not allow any leakage currents to occur.

39

5. Implementation

Of the sensors listed in Table 2.1, only the temperature sensor (TMP007) is
on by default. The other sensors starts up in a low power mode and needs to be
initialized before they power on and can be used. For low power consumption, the
temperature sensor has to be powered off manually. The communication with the
sensors happens through the I2C-bus. Usually, a single command to a configuration
register is everything that needs to be written in order to disable a sensor.

In general, all GPIO pins need to be configured in a way that prevents leakage
currents. By default, all pins are configured in a low-leakage mode that leaves them
floating with both input and output disabled. Some pins have external pull up or
pull down resistors connected to them (see the Sensortag schematic [31]) and in those
cases the pins need to be configured to match the pull to avoid voltage differences.

The Sensortag also has an external flash memory that can draw excessive current
if it is not configured properly. In our case, this means simply pulling the SPI-pins
(used for communication with external devices) low since they are currently not
used.

5.3.5 Power saving features
The CC26xx family of MCUs has a wide variety of features in order to save energy.
Mainly, there are four different ways to control the power consumption and they are
organized into a hierarchy where each power saving feature includes or depends on
the levels below. An overview of the topology can be seen in Figure 5.1.

Clock gate Peripheral

Power Domain (several)

Voltage domainVoltage regulator

Clock

Clock enable

Power supply

Figure 5.1: The figure shows the hierarchy of different power saving features in the
CC26xx family of MCUs. The simplest feature is to toggle the peripheral clocks.
Several peripheral clocks are in turn controlled by a power domain. Power domains
are grouped into voltage domains and lastly, we have the voltage regulator that
controls the power to the whole board.

Following is a short description of each power saving feature. In general, they
are all about turning off parts of the chips that are not in use to conserve energy.

Clock gating
Prunes the clock tree by disabling the flip-flops controlling a specific peripheral.

Power domains
Each power domain powers the logic for a certain type of peripherals. For

40

5. Implementation

example, turning off the Serial power domain will stop the UART and the
I2C bus. Turning a power domain off overrides the clock gating for all the
peripherals found in the domain.

Voltage domains
Includes several power domains and regions otherwise considered always-on.

Voltage regulator
Turning off the voltage regulator provides the lowest power configuration. The
chip reboots on power up and all peripherals need to be re-initialized.

The higher we go in the hierarchy the more energy we save, but the power cycling
also takes longer time. For example, toggling the peripheral clocks are almost in-
stantaneous while waking up from turning off the voltage regulator requires almost a
whole millisecond [32]. This is something that needs to be taken into consideration
if the board is in a lower power mode and needs to wake up in order to meet a
scheduled event.

41

5. Implementation

42

6
Evaluation

This chapter shows the results of our work and compares them to other operating
systems ported to the same hardware platform. We also describe the setup for
measuring the power consumption and the different benchmarks.

6.1 Evaluation setup
The evaluation consists of comparing the energy consumption and overall efficiency
in Tock with other state-of-the-art operating systems for IoT devices. More precisely
we, compare Tock with Contiki [2] and TI-RTOS [19] on the Sensortag. These are
both operating systems which share the following properties with Tock:

• Support for the Sensortag platform

• Source code available

• BLE support

• Low power configurations for improved energy efficiency

The source code is important in order to compare the different implementations
with each other. Support for BLE and low power configurations are relevant because
of our work to support these features in Tock for the Sensortag.

6.1.1 Energy efficiency
Measuring the power consumption on a device is hard since it varies over time
and heavily depends on what task the device is performing. IoT-devices could
constantly be monitoring a sensor, or alternatively, be configured to only do sensor
readings periodically. The power requirements differ between the two cases and
devices probably use different techniques to save energy depending on how often
they need to wake up to perform something. To cover most use-cases, we evaluate
three different scenarios:

Constant/Frequent readings
To cover the use-case of constant, or very high-frequent readings, we use BLE
advertisements. It is common for IoT devices to broadcast data over BLE (e.g.
sensor readings), and we want to evaluate the usage of BLE in conjunction
with implemented energy improvements.

43

6. Evaluation

Intermittent readings
To cover the use case of intermittent readings, we use an application that
intermittently toggles an LED on the Sensortag board. Toggling the LED is
meant to represent a sensor reading.

Infrequent readings
Some IoT devices are inactive for long periods of time, which makes them
suitable for very low sleep modes. In these cases, the actual jobs performed
between inactivity have very little impact on the lifetime due to how infre-
quent they are. To evaluate this use-case, we investigate how low the power
consumption can be while still being able to wake up.

6.1.2 BLE
To evaluate the BLE implementation, a way to detect and inspect raw BLE packets
is needed. In our case, we use an nRF52 [33] board configured as a BLE sniffer.

The BLE sniffer is used in conjunction with the measurement setup described in
Section 6.1.3 to view the energy consumption during and between BLE operations.
This is done to evaluate how our energy efficiency improvements work in conjunction
with regular functionality of the device (e.g. advertising its existence via BLE).

6.1.3 Measurement setup
In order to measure the power consumption, a shunt resistor is connected in series
with the board and the power supply, Figure 6.1 depicts the schematic of the setup.
By measuring the voltage VR over the shunt resistor, we can derive the current
using Ohm’s law (Equation 6.1). The benefit of using an oscilloscope to measure
the voltage is that we can see how the power consumption varies over time.

Isensortag = VR

10Ω
(6.1)

The measurements include external sensors and peripherals rather than just the
MCU. Measuring over the whole board is easier than singling out individual compo-
nents and it gives a more realistic estimate of Tock’s energy-efficiency. The ability
of Tock to communicate with external components is crucial for minimizing leakage
currents and something that needs to be included in our evaluation.

The oscilloscope of choice was the Rigol DS1054Z [34] which has a Roll mode
that enables us to observe slow signals in real-time without having to wait for the
wave-form to complete. To reduce the effects of random noise on the waveform,
the signal was averaged with the High-resolution acquisition mode. Another benefit
of using a digital oscilloscope is that the waveform can be frozen and saved to an
external storage device for later analysis.

44

6. Evaluation

+3V

~10Ω

SENSORTAG

OSCILLOSCOPE

+

-

+

-

+ -
VR

Figure 6.1: Schematic of the measuring setup. An oscilloscope measures the volt-
age over a resistor in series with the board. Derive the current by using Ohms law:
Isensortag = VR

10Ω , where Isensortag denotes the current through the SensorTag.

6.2 Results
This section explains the benchmarks in greater detail and shows the results from
running Tock on the Sensortag platform.

A comparison is made between the different operating systems supported on the
platform in terms of standby power consumption. The operating systems perform
with the same energy efficiency during the active and idle power modes, which makes
the standby power consumption more interesting.

We begin with the results for the power consumption during inactivity in Sec-
tion 6.2.1. Then, we continue with measurements and results for Blink and BLE
advertising in Sections 6.2.3 and 6.2.4 respectively. Following the results of our
benchmark applications, Section 6.2.5 gives an estimation of the energy efficiency
on the Sensortag board, presenting an estimated lifetime of the device.

6.2.1 Power consumption during inactivity
Power consumption during inactivity is important and has the possibility to extend
the lifetime of IoT devices greatly if reduced. Measurements of the power consump-
tion on the Sensortag during inactivity are shown in Figure 6.2. The voltage over
the board is constant which makes the power consumption directly proportional to
the current draw (P = U × I). This is why the power consumption is shown as
current draw in all figures in this chapter.

Tock seems to have better energy-efficiency than both Contiki and TI-RTOS.
This is surprising since all energy savings are done by turning off hardware features
and they all run on the same board. The reason for this is probably that the other
operating systems support more features on the Sensortag that might need to stay
on during sleep to be used after wakeup.

Both Contiki and Tock outshine the default TI-RTOS implementation since they

45

6. Evaluation

configure the GPIO pins according to the attached peripherals by default - something
TI-RTOS does not. TI-RTOS has to have the pins manually configured in order to
get the results depicted in Figure 6.2.

The measurements are performed with a simple application which yields as soon
as possible, without doing any work. It is also worth pointing out that the mea-
surements are done with the MCU in standby mode (Section 4.3.2). There is an
even lower power mode called shutdown. Putting the device in shutdown mode is
not used in Contiki by default and our implementation does not yet have support
for it. TI-RTOS might have an advantage here since the board can be allowed to
enter shutdown by just defining a different power policy [35]. The savings gained
from entering shutdown instead of standby [32, p. 38] are so small that it might not
be worth the trouble.

Tock Contiki TI-RTOS
0

50

100

150

200

250

300

350

Cu
rre

nt
 d

ra
w

(µ
A)

140

200

270

Power consumption during standby

Figure 6.2: Power consumption in Tock, Contiki, and TI-RTOS during standby.
The operating systems use different defaults which yield different current draw in
standby.

46

6. Evaluation

6.2.2 Tock power consumption
Measuring and comparing the power consumption in different power modes illus-
trates the potential energy savings that can be made during inactivity. Figure 6.3
shows the difference between the power modes available on the Sensortag.

It is clear that standby mode should be used as much as possible to extend the
lifetime of the device. However, the disadvantage of using standby is that the wakeup
time gets noticeable longer. This is illustrated in Figure 6.4 where the wakeup time
for Blink is measured when waking up from idle and standby. The extra delay needs
to be taken into account when working with strict timing-constraints.

There is also a noticeable current surge (about 6 mA) that occurs when waking
up from standby. If wakeups are too frequent, this surge might lead to increased
power consumption. This is not specific to Tock, but something that occurs for all
operating systems running on the Sensortag.

Standby Idle Active
0

1

2

3

4

5

Cu
rre

nt
 d

ra
w

(m
A)

0.14

2.08

3.69

Tock power consumption

Figure 6.3: Power consumption in different power modes, when running Tock on
the Sensortag.

47

6. Evaluation

0 250 500 750 1000
Time [µs]

0

1

2

3

4

5

6

Cu
rre

nt
 d

ra
w

[m
A]

Wakeup Idle

-0 500 1000 1500 2000 2500
Time [µs]

0

1

2

3

4

5

6

Cu
rre

nt
 d

ra
w

[m
A]

Wakeup Standby

Figure 6.4: Comparison of Tock wakeup times between idle and standby. The
wakeup time was measured with the Blink application when waking up to toggle
the LED on.

6.2.3 Blink

Blink is the simplest application of the benchmarks. It toggles an LED on the
platform at a certain interval. The benchmark shows that we properly can enter
sleep mode and then wake up without any issues. Before the transition into sleep,
we enable an IO-latch on the platform, which freezes the state of all GPIO pins in
order to retain them until we wake up. This is why the LED can still be powered
on in sleep mode.

A measurement of the power consumption can be seen in Figure 6.5. The device
wakes up to toggle the LED and then goes back to sleep as soon as possible for a
predetermined time of one second. What we see in the figure is the pulse of the LED,
either powered on or off (low edge represents LED off, high edge LED on) during
sleep. The brief window of activity is hard to notice in the figure, as the device
only performs a single syscall before going back to sleep. During sleep, the device
is power-cycled in order to retain its volatile memory (i.e. RAM). The recharge can
be seen as periodic spikes in Figure 6.5.

The Blink application is proof that Tock works as expected on the Sensortag,
and that the porting of Tock to the new platform was successful.

48

6. Evaluation

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]

0

2

4

6

8

10

Cu
rre

nt
 d

ra
w

[m
A]

Figure 6.5: Toggling the red LED on the Sensortag. The LED is toggled every two
seconds and the board enters sleep mode once the state of the LED has changed.
There is some noise due to electrical disturbance, as the current is very low.

6.2.4 BLE

The radio is arguably the most sophisticated peripheral on the Sensortag. The BLE
benchmark shows that our implementation of sleep modes can handle more complex
scenarios. The radio is more complex in the sense that it depends on more hardware
resources and has stricter timing constraints.

BLE advertisements increase the power consumption drastically. Wireless com-
munication requires a burst of electricity in order to transmit over the air. A BLE
advertisement round consists of three separate transmissions on three separate radio
channels, which are specifically dedicated for advertisements in the BLE protocol.

A typical BLE advertisement round in Tock can be seen in Figure 6.6, where
each peak represents one transmission on a specific channel. From the figure, we
can see that the peak current draw is about 18 mA during transmissions.

The energy efficiency of BLE heavily relies upon the frequency of advertisement
rounds, or transmission rounds. Gomez et al. [36] state that it could impact the
lifetime of a device in terms of years and that one should be careful when adjusting
this frequency. Tock has a frequency of 300 ms in its BLE advertising sample and
allows this to be dynamically changed during advertisements.

The power consumption during an advertisement round is almost identical on
all tested platforms. The main difference between the platforms is the idle power
consumption between rounds, which is described in further detail in Section 6.2.1.

49

6. Evaluation

0.208 0.210 0.212 0.214 0.216 0.218
Time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Cu
rre

nt
 d

ra
w

[m
A]

Figure 6.6: Oscilloscope trace of one BLE advertising round. The three peaks
correspond to three transmissions on three different channels.

6.2.5 Expected lifetime
An estimation of the expected lifetime can be done using a theoretical model de-
pending on the use cases mentioned in Section 6.1.1. The model is divided into
two parts: active and inactive. The time periods for the active and inactive part
are modified depending on the use case, and the current draw is taken from the
measurements performed in Section 6.2.3 and 6.2.4. An expected lifetime is then
calculated using Equation 6.3.

Iaverage = (Iactive × Tactive) + (Iinactive × Tinactive)
T

(6.2)

Lifetime = BatteryCapacity

Iaverage

(6.3)

The battery capacity used is 240 mAh, which is the same capacity as the CR2032
battery shipped with the Sensortag.

Table 6.1: Expected lifetime in different use cases of a Sensortag device running
Tock with our modifications.

Description Tactive (s) Iactive (mA) Tinactive (s) Iinactive (µA) Lifetime (days)
BLE, frequent 20 18 40 80 1.65
Blink, intermittent 4 4 56 80 29.30
Blink, infrequent 0.2 4 59.8 80 107.44

50

6. Evaluation

As can be seen in Table 6.1, the expected lifetime drastically increases during
large periods of inactivity. This depends on the fact that Tock has a very small
amount of current draw during these periods. Active periods draw a lot of current,
and it is up to each user to design their applications with this in mind.

This does not mean that BLE is energy-inefficient in any way, and it was only
used in the frequent sample since we had practical values of the current draw of a
transmission over BLE. As mentioned in Section 6.2.4 the energy efficiency of BLE
is highly affected by the frequency of transmissions, and there are many tricks one
can use to improve this [37, 38].

6.2.6 Abstraction overhead
The abstractions introduced to handle resource management (Section 4.3.1) and
peripherals (Section 4.3.3), introduce extra overhead in Tock when used. This means
that one should be wary when using these abstractions since they both affect the
wakeup time and memory consumption.

6.2.6.1 Power Manager

The space complexity of the power manager is proportional to the number of re-
sources. Let R denote the resources for a specific platform, the space complexity
of the power manager would thus be O(|R|). This can become a problem since re-
sources can be almost anything on the platform (e.g. clock gates, peripherals, power
regions, etc.). The power manager yields a flexible and platform independent way
to manage resources, but it comes at the cost of memory. IoT devices often have
limited memory, and the OS running should not consume a majority of it.

As described in Section 5.3.1, a unique integer identifier is used for each resource.
When requesting or releasing a specific resource, there is a need to find the reference
counter paired with the resource by iterating over all resources to find a match.
This means that the worst-case lower bound on the request/release time complexity
is O(|R|). This presents a scalability issue as there is no bound on the number of
resources.

6.2.6.2 Peripheral Manager

The space complexity of the peripheral manager is proportional to the number of
peripherals attached to the platform. Let P denote the peripherals for a specific
platform, the space complexity would thus be O(|P |). IoT platforms generally do
not have a large number of peripherals, which limits the upper bound of the space
complexity. However, using the peripheral manager would increase the memory
consumption proportionally to the number of peripherals on the platform.

The peripheral manager has an impact on the wakeup time of the device, as
described in Section 5.3.2. The time complexity of getting the lowest power mode,
and notifying peripherals upon transitions, would both be O(|P |) since there is a
need to poll all peripherals.

51

6. Evaluation

52

7
Discussion

This chapter reflects our general thoughts about Rust and Tock together with the
key insights gained from porting Tock to a new platform and improving its energy-
efficiency.

The chapter starts with a discussion in Section 7.1 about Rust and its use in
embedded systems. Section 7.2 follows with a discussion about sleep modes and
what needs to be done in order to transition to them. Section 7.3 is concerned with
the design of Tock and the flexibility of its components. Finally, Section 7.4 explains
why the thesis includes two hardware platforms rather than just one.

7.1 Rust
Rust provides a certain set of features that makes it very attractive for operating
systems. Its strict memory management avoids problems related to pointers in C-
like languages such as buffer overflows and memory leaks. This is crucial for safety-
critical systems that needs to be up and running for long periods of time. Rust’s
approach to memory management together with its type system makes it possible
to write a safe kernel where only a small part of the code needs to be trusted [1].

When relying on software for security checks, there is always the question of
performance. Rust makes most memory checks at compile time which avoids a lot
of overhead during runtime. This means that Rust still retains reasonable overhead
thanks to its strict compiler and the lack of a garbage collector.

Rust is a relatively new language and its userbase is quite small. For newcomers
to the language, the concept of lifetimes and ownership (Section 2.4) can seem
intimidating at first, and the learning curve is steep. Rust requires some getting
used to if you come from other object oriented languages such as C or C++. The
benefits of using Rust are obvious, but it will take some time to fully appreciate its
features.

Writing Rust code for an embedded system provides an additional challenge: an
operating system interacts directly with the hardware through its device drivers, and
this often requires direct memory access. This means that we occasionally have to
leave the safety features behind and use unsafe Rust code. This code is more similar
to C and should be kept to a minimum if one wants to leverage the advantages
of the language. Finding good abstractions that hides the unsafe code behind safe
interfaces, is one of the main challenges when developing an operating system in
Rust.

The work of writing hardware specific modules includes a lot of unsafe Rust code

53

7. Discussion

because of the memory mapped registers for all peripherals. This means that the
porting process in our case revolve around writing very C-like code to be able to
interact with these memory areas. There is, however, ways to mitigate this which is
described in a pull request [28], and Section 7.3.2.

7.2 Sleep modes

Sleep modes are a way for IoT-devices to lower their power consumption when the
MCU is idle or waiting for an event. It is generally easy to put a device in sleep
mode, but there are several factors that need to be taken into consideration before
doing so. The CC26xx family of MCUs supports several different power modes.
One complex issue is deciding what sleep mode we can enter without interrupting
any ongoing activity. Different sleep modes keep different parts of the hardware
powered. Therefore, we need to ask all peripherals what power mode they support
at a given moment. This process can be somewhat simplified by the peripheral
manager described in Section 5.3.2.

The decision of what sleep mode to use is, however, more complex than just
looking at what peripherals are currently being powered. There is also several timing
constraints that need to be taken into consideration. The lower we go, the more time
it will take to wake up once there is something to do. If the radio broadcasts BLE
advertisements at a certain interval, we need to wake up in time to not delay the
advertisement. The reference manual for the MCU normally contains information
about the time it takes to wake up from a certain state, but on a full board, we also
need take external peripherals into account.

Adding support for new peripherals which are dependent on other peripherals
or system resources often means we have to modify several drivers to still support
all peripherals during sleep. In this thesis, we have tried to create several software
constructs that deal with this problem. Our intent is to keep them general enough
to reside in the kernel with the potential to be used by MCUs outside the CC26xx-
family. Taking timing-constraints in mind, further functionality needs to be added
that makes use of timers to see when peripherals need to be awakened to decide if
a certain sleep mode is safe to enter in order to meet all deadlines.

There is a trade-off between energy-savings and complexity. Contiki and TI-
RTOS keep things simple by mainly using two different sleep modes. The fist mode
is just to run the WFI-instruction to prevent the CPU from busy-waiting. The
other mode, deep-sleep, performs a more sophisticated configuration of the hardware
before entering sleep. Even in this mode, some power features is always kept on
since they are almost always being used or turning them off would require extensive
configuration when waking up.

Very fine-grained power management might be cumbersome and not provide that
much of an improvement to be worth the trouble. Be it smart-watches or sensor-
nodes, IoT-devices seldom need to be fully powered all the time. The degree of
power management that is needed depends on the lifetime expectancy of the device
and the frequency of different events.

54

7. Discussion

7.2.1 Transition responsibility
It is important to consider the responsibility of when to perform transitions be-
tween power modes, and where the logic for this should reside. There are three
different alternatives: userland, kernel, or a combination of both. All alternatives
pose problems in their own way and impose extra complexity into the operating
system.

Several applications should be able to run on the system without interfering with
each other. Giving the responsibility of transitions to userland gives applications a
lot of freedom, but might be problematic if several applications have to get along.
Resources used by other applications must be taken into consideration before tran-
sitioning to not disrupt their execution. Backwards compatibility can also be an
issue if different applications are built with different versions of the same userland
library.

Giving the responsibility of transitions to the kernel makes them seamless to all
applications, but increase the overall complexity of the kernel. The kernel would
inspect peripherals and their usage in order to determine if a transition should occur
or not. User applications would no longer be able to directly affect the transition
between sleep modes.

A compromise would be to share the responsibility between userland and kernel
by adding an extra syscall API. This would increase the complexity of both ap-
plications and the kernel, and both applications and peripherals would have to be
taken into consideration by the kernel when performing transitions. Applications
would be able to prevent transitions and have more control over them. The kernel
would be far more complex, as more conflicts would arise between applications and
peripherals. This approach might not be beneficial in all situations, but it is the
most flexible approach without compromising reliability.

7.3 Tock

This section addresses Tock’s architecture and discusses how easy it is to adapt
to a new hardware platform. The discussion will explain how Rust’s strengths are
emphasized while keeping the code safe and modular.

7.3.1 Architecture
The architecture of Tock is interesting in its design, in the sense that it revolves
heavily around safe memory management which it achieves with Rust’s safety mech-
anisms. The downside with these safety mechanisms is that all resources have to be
statically allocated during compilation. This means that all capsules used during
compilation will keep this memory during runtime and never be released. In other
words, this feature provides memory safety at the cost of increased memory usage
and flexibility of how memory is used during runtime since capsules which might
not be used are still allocated.

55

7. Discussion

7.3.2 Abstractions over unsafe code
In order to perform low level operations in Rust, it is necessary to use unsafe code.
This code can do unsafe operations such as raw manipulation of memory, which
is necessary in order to communicate with the hardware through memory-mapped
registers. The usage of unsafe code means that Rust is stripped of its safety features,
which should be avoided unless absolutely necessary.

Tock tries to minimize its usage of unsafe Rust to provide a safe environment, but
it cannot be removed completely. It is desirable to hide the unsafe implementation
and add abstractions which use unsafe code that is rigorously tested and verified.
Using these verified abstractions allow the overlaying logic to exploit Rust’s safety
mechanisms. An example is the Cell wrapper from Rusts standard library [39],
which is an extension to allow interior mutability [40] using unsafe code. This
allows a hidden mutable field within safe structures, to allow inherently immutable
structures to mutate their fields.

7.3.3 Portability
Adding support for a new platform in Tock is only as complex as the new platform.
As more platforms get support, the easier it will be to add another, since many
embedded platforms share properties and implementation details. The architecture
of Tock divides porting into three parts:

Capsules are entirely platform independent and should be designed with indepen-
dence in mind. When porting, it is sometimes necessary to add new capsules to
support new types of hardware, or to extend old capsules to be more general.

The HAL implements hardware specific features needed by the capsules. HAL
modules are specific to a certain MCU family but should be configurable to
support several boards.

Boards are entirely platform dependent, and should not share implementation de-
tails with other boards. Both the HAL and capsules are tied together in the
board configuration, and this is the main entry-point and setup for the kernel.

The abstractions are well designed and highly flexible. There are however some
assumptions Tock has made that makes it incompatible with some platforms. One
example of such an assumption is the existence of an MPU. The operating system
still works without one, but applications will not be completely sandboxed from
each other.

7.4 Choice of platform
The Sensortag uses a Cortex-M3 based MCU, which lacks an MPU as required by
Tock. For this reason, we also port the operating system to an early evaluation board
from TI which uses an almost identical MCU, but with an added MPU. However,
the evaluation board lacks much of the appeal of the Sensortag since it does not have

56

7. Discussion

any external sensors. To solve this, we keep our code compatible with both boards
to still be able to upstream our work and get feedback from the core-developers. The
ideas is to keep doing this until an updated version of the Sensortag is released.

57

7. Discussion

58

8
Conclusion

This chapter summarizes our findings and keeps a broader discussion about the
subject in general and what the future might hold for Tock.

The IoT is growing and its growing fast. The variety of different devices gaining
connectivity are constantly increasing. Embedded systems are often inaccessible
once in production and the sensitive data these devices handle need to be well pro-
tected. Tock handles these demands by providing a flexible platform, with inherent
safety and reliability features. Thanks to Rust, it provides a safe environment for
applications.

Tock has an active community with rapid development cycles. The safety features
and portability is two major features that makes it easy to start using Tock and
develop applications for it. However, Tock is still relatively new and all pieces
are not in place yet. Tock does not have a complete network stack and power
management is still in its early stages.

Tock has begun to shift more of its focus towards energy efficiency [29]. Tock
must find a general way to manage power consumption to keep its flexibility and
increase the incitement to port it to other platforms. Good energy-efficiency is
crucial for IoT-devices and a feature that must be supported by the kernel so that
the application developers can focus on other parts of their program.

In this thesis, we contribute to the open source community of Tock by adding
support to two new platforms, and new hardware modules for their peripherals.
The platforms offer new opportunities in terms of energy efficiency, which we take
advantage of in our implementation. We show that by successfully adding support
for two new platforms, the abstraction level of Tock is in its favor and easy to
port to new platforms, which answers our first research question. We also increase
the energy efficiency by providing new ways for Tock to manage peripherals and
resources, and further decrease the power consumption by utilizing lower power
modes. We show that our implementation holds up well against other state-of-the-
art embedded operating systems in terms of energy efficiency, which answers our
second research question: that an operating system implemented in Rust compares
well.

Tock is designed with safety and reliability in mind. It uses the inherent safety
features of Rust to provide a safe environment. This is however not always in
its favor and may increase the complexity of adding support for new platforms by
embedding assumptions at higher abstraction layers. The current flexibility provided
by the abstractions and the assumptions made did not hinder us in our work, and
the hurdles proved to be necessary. We argue that the trade-offs in assumptions
Tock has made is justified, and perhaps necessary to achieve the desired safety in

59

8. Conclusion

an embedded operating system.
Tock is still new to the embedded scene of operating systems, which is reflected

by how its design changes occasionally. Research is being made on how to utilize
the flexibility and safety of Rust to improve Tock even further. However, Rust is
a new language with a steep learning curve, and adoption comes at a slower rate
because of this.

60

Bibliography

[1] A. Levy, B. Campbell, B. Ghena, P. Pannuto, P. Dutta, and P. Levis, “The Case
for Writing a Kernel in Rust,” in Proceedings of the 8th Asia-Pacific Workshop
on Systems, APSys ’17, (New York, NY, USA), pp. 1:1–1:7, ACM, 2017.

[2] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible op-
erating system for tiny networked sensors,” in 29th Annual IEEE International
Conference on Local Computer Networks, pp. 455–462, Nov 2004.

[3] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, et al., “TinyOS: An operating system for sensor
networks,” Ambient intelligence, vol. 35, pp. 115–148, 2005.

[4] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta, and
P. Levis, “Multiprogramming a 64kB Computer Safely and Efficiently,” in Pro-
ceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
(New York, NY, USA), pp. 234–251, ACM, 2017.

[5] T. Instruments, “The SensorTag Story - IoT made easy.” http://www.ti.com/
ww/en/wireless_connectivity/sensortag/, Visited: Oct. 2017.

[6] “CC2650 Technical Reference Manual.” http://www.ti.com/lit/pdf/
swcu117, Visited: Feb. 2018.

[7] “References and Borrowing - The Rust Programming Language.” https:
//doc.rust-lang.org/1.9.0/book/references-and-borrowing.html, Vis-
ited: Feb. 2018.

[8] “Lifetimes - The Rust Programming Language.” https://doc.rust-lang.
org/1.9.0/book/lifetimes.html, Visited: Feb. 2018.

[9] “borrowck is unsound in the presence of ‘’static mut‘s 27616.” https://github.
com/rust-lang/rust/issues/27616, Visited: Feb. 2018.

[10] A. Levy, M. P. Andersen, B. Campbell, D. Culler, P. Dutta, B. Ghena, P. Levis,
and P. Pannuto, “Ownership is Theft: Experiences Building an Embedded OS
in Rust,” in Proceedings of the 8th Workshop on Programming Languages and
Operating Systems, PLOS ’15, (New York, NY, USA), pp. 21–26, ACM, 2015.

[11] “TockOS Website.” https://www.tockos.org, Visited: Mar. 2018.

61

http://www.ti.com/ww/en/wireless_connectivity/sensortag/
http://www.ti.com/ww/en/wireless_connectivity/sensortag/
http://www.ti.com/lit/pdf/swcu117
http://www.ti.com/lit/pdf/swcu117
https://doc.rust-lang.org/1.9.0/book/references-and-borrowing.html
https://doc.rust-lang.org/1.9.0/book/references-and-borrowing.html
https://doc.rust-lang.org/1.9.0/book/lifetimes.html
https://doc.rust-lang.org/1.9.0/book/lifetimes.html
https://github.com/rust-lang/rust/issues/27616
https://github.com/rust-lang/rust/issues/27616
https://www.tockos.org

Bibliography

[12] “TockOS Userland Source code.” https://github.com/helena-project/
tock/tree/ff133577d0326c8283fcc0d8f3159cbfc8fcf23f/userland, Vis-
ited: Mar. 2018.

[13] V. Shnayder, M. Hempstead, B.-r. Chen, G. W. Allen, and M. Welsh, “Sim-
ulating the Power Consumption of Large-scale Sensor Network Applications,”
in Proceedings of the 2Nd International Conference on Embedded Networked
Sensor Systems, SenSys ’04, (New York, NY, USA), pp. 188–200, ACM, 2004.

[14] X. Jiang, P. Dutta, D. Culler, and I. Stoica, “Micro Power Meter for Energy
Monitoring of Wireless Sensor Networks at Scale,” in Proceedings of the 6th
International Conference on Information Processing in Sensor Networks, IPSN
’07, (New York, NY, USA), pp. 186–195, ACM, 2007.

[15] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based On-line Energy
Estimation for Sensor Nodes,” in Proceedings of the 4th Workshop on Embedded
Networked Sensors, EmNets ’07, (New York, NY, USA), pp. 28–32, ACM, 2007.

[16] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible op-
erating system for tiny networked sensors,” in 29th Annual IEEE International
Conference on Local Computer Networks, pp. 455–462, Nov 2004.

[17] “Contiki Multithreading Library.” https://github.com/contiki-os/
contiki/wiki/Multithreading, Visited: May 2018.

[18] “Contiki: Bringing IP to Sensor Networks.” https://ercim-news.ercim.eu/
en76/rd/contiki-bringing-ip-to-sensor-networks, Visited: May 2018.

[19] “TI-RTOS.” http://processors.wiki.ti.com/index.php/TI-RTOS, Visited:
Mar. 2018.

[20] “RTOS power management: Essential for connected MCU-based IoT nodes.”
http://www.ti.com/lit/pdf/spry282, Visited: Mar. 2018.

[21] C. Xu, F. X. Lin, Y. Wang, and L. Zhong, “Automated os-level device runtime
power management,” SIGARCH Comput. Archit. News, vol. 43, pp. 239–252,
Mar. 2015.

[22] K. Popovici and A. Jerraya, Hardware Abstraction Layer, pp. 67–94. Dordrecht:
Springer Netherlands, 2009.

[23] V. Handziski, J. Polastre, J. H. Hauer, C. Sharp, A. Wolisz, and D. Culler,
“Flexible hardware abstraction for wireless sensor networks,” in Proceeedings
of the Second European Workshop on Wireless Sensor Networks, 2005., pp. 145–
157, Jan 2005.

[24] L. F. Friedrich, J. Stankovic, M. Humphrey, M. Marley, and J. Haskins, “A
survey of configurable, component-based operating systems for embedded ap-
plications,” IEEE Micro, vol. 21, pp. 54–68, May 2001.

62

https://github.com/helena-project/tock/tree/ff133577d0326c8283fcc0d8f3159cbfc8fcf23f/userland
https://github.com/helena-project/tock/tree/ff133577d0326c8283fcc0d8f3159cbfc8fcf23f/userland
https://github.com/contiki-os/contiki/wiki/Multithreading
https://github.com/contiki-os/contiki/wiki/Multithreading
https://ercim-news.ercim.eu/en76/rd/contiki-bringing-ip-to-sensor-networks
https://ercim-news.ercim.eu/en76/rd/contiki-bringing-ip-to-sensor-networks
http://processors.wiki.ti.com/index.php/TI-RTOS
http://www.ti.com/lit/pdf/spry282

Bibliography

[25] A. A. Jerraya and W. Wolf, “Hardware/software interface codesign for embed-
ded systems,” Computer, vol. 38, pp. 63–69, Feb 2005.

[26] E. A. Lee, S. Neuendorffer, and M. J. Wirthlin, “Actor-Oriented Design of
Embedded Hardware and Software Systems,” Journal of Circuits, Systems and
Computers, vol. 12, no. 03, pp. 231–260, 2003.

[27] J. Liedtke, “On Micro-kernel Construction,” SIGOPS Oper. Syst. Rev., vol. 29,
pp. 237–250, Dec. 1995.

[28] “Tock Automatic peripheral clock management pull request.” https://github.
com/tock/tock/pull/760, Visited: May 2018.

[29] “TockOS Blog Post about Peripheral Management.” https://www.tockos.
org/blog/2018/peripheral-management/, Visited: May 2018.

[30] A. Levy, B. Campbell, B. Ghena, P. Pannuto, P. Dutta, and P. Levis, “The Case
for Writing a Kernel in Rust,” in Proceedings of the 8th Asia-Pacific Workshop
on Systems, APSys ’17, (New York, NY, USA), pp. 1:1–1:7, ACM, 2017.

[31] “Sensortag Schematics.” www.ti.com/lit/df/swrr134c/swrr134c.pdf, Vis-
ited: May 2018.

[32] “CC2650 Datasheet.” www.ti.com/lit/ds/symlink/cc2650.pdf, Visited:
May 2018.

[33] N. Semiconductor, “NRF52832/NRF52DK BLE Board - Nordic Semiconduc-
tor.” http://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/
nRF52832, Visited: May 2018.

[34] “Rigol ds1000z Manual.” https://www.batronix.com/pdf/Rigol/
UserGuide/DS1000Z_UserGuide_EN.pdf, Visited: May 2018.

[35] “Power Management for CC26xx SimpleLink Wireless MCUs.” www.ti.com/
lit/ug/sprui20/sprui20.pdf, Visited: May 2018.

[36] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of bluetooth low
energy: An emerging low-power wireless technology,” Sensors, vol. 12, no. 9,
pp. 11734–11753, 2012.

[37] A. Nagy and O. Landsiedel, “Towards Energy Efficient, High-speed Commu-
nication in WSNs,” in ASCoMS: Proceedings of the Workshop on Architecting
Safety in Collaborative Mobile Systems held in conjunction with the 33nd Inter-
national Conference on Computer Safety, Reliability and Security (SafeComp),
Sept. 2014.

[38] B. A. Nahas and O. Landsiedel, “Towards Low-Latency, Low-Power Wireless
Networking under Interference,” in EWSN: Proceedings of the International
Conference on Embedded Wireless Systems and Networks, Dependability Com-
petition, Feb. 2016.

63

https://github.com/tock/tock/pull/760
https://github.com/tock/tock/pull/760
https://www.tockos.org/blog/2018/peripheral-management/
https://www.tockos.org/blog/2018/peripheral-management/
www.ti.com/lit/df/swrr134c/swrr134c.pdf
www.ti.com/lit/ds/symlink/cc2650.pdf
http://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52832
http://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52832
https://www.batronix.com/pdf/Rigol/UserGuide/DS1000Z_UserGuide_EN.pdf
https://www.batronix.com/pdf/Rigol/UserGuide/DS1000Z_UserGuide_EN.pdf
www.ti.com/lit/ug/sprui20/sprui20.pdf
www.ti.com/lit/ug/sprui20/sprui20.pdf

Bibliography

[39] “Rust Standard Library Documentation - core::cell::Cell.” https://doc.
rust-lang.org/core/cell/struct.Cell.html, Visited: May 2018.

[40] “Rust Documentation - Interior Mutability.” https://doc.rust-lang.org/
reference/interior-mutability.html, Visited: May 2018.

64

https://doc.rust-lang.org/core/cell/struct.Cell.html
https://doc.rust-lang.org/core/cell/struct.Cell.html
https://doc.rust-lang.org/reference/interior-mutability.html
https://doc.rust-lang.org/reference/interior-mutability.html

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Context
	Goals and Contributions
	Problem statement
	Contributions

	Report structure

	Background
	Embedded Operating Systems
	Hardware
	UART
	I2C
	Memory protection unit
	Bluetooth low energy

	Platforms
	Simplelink Sensortag
	Launchpads

	The Rust Programming Language
	Ownership
	Borrowing with references
	Lifetimes

	Tock OS
	Kernel
	Userland
	Scheduling
	Grants

	Energy estimation
	Simulation
	Hardware-based energy measurement
	Software-based on-line energy estimation

	Related work
	TinyOS
	Discussion

	Contiki
	Discussion

	TI-RTOS
	Discussion

	Centralized power management in Linux
	Discussion

	Design
	General hardware abstraction
	Device drivers
	Hardware interface layer
	Hardware platform layer
	Discussion

	Tock hardware abstraction
	Capsules
	Hardware interface layer
	Hardware platform layer
	Discussion

	Energy efficiency
	On-demand resource management
	Sleep modes
	Peripheral management
	Energy efficiency in Tock
	Discussion

	Implementation
	General implementation
	Capsule
	Hardware interface layer
	Hardware platform layer

	Device driver details
	UART
	I2C
	Radio

	Energy efficiency
	Power manager
	Peripheral manager
	Sleep/Power modes
	Configuring the Sensortag for low-power consumption
	Power saving features

	Evaluation
	Evaluation setup
	Energy efficiency
	BLE
	Measurement setup

	Results
	Power consumption during inactivity
	Tock power consumption
	Blink
	BLE
	Expected lifetime
	Abstraction overhead

	Discussion
	Rust
	Sleep modes
	Transition responsibility

	Tock
	Architecture
	Abstractions over unsafe code
	Portability

	Choice of platform

	Conclusion
	Bibliography

