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Optimization of Cold-formed Steel Sections using Genetic Algorithm
SARAH AREF
MAHDI MAHDI
Department of Architecture and Civil Engineering
Chalmers University of Technology

Abstract
Most research done on optimization of cold-formed steel members focuses on a single
cross-section with set conditions and steel yield strengths. How would this optimiza-
tion look if different cold-formed cross-sections are compared. Furthermore, how
would different cold-formed cross-sections with varying steel yield strength behave
in a global optimization.

The aim is to study how to reach optimized cross-sections (profiles) for roof trusses
in different steel strength classes using a genetic algorithm and create a library of
the most optimized cross-sections for certain spans and applied loads.

The four selected cross-sections to be analysed are C-section, double back-to-back
C-section, hollow square-section and hollow hexagon-section. These profiles can act
as diagonals in a roof truss and the compressed diagonals will be analysed. As for
the upper chord which is subjected to both compression and bending, only dou-
ble back-to-back C-sections will be optimized. Matlab functions were generated to
calculate the required parameters, buckling modes and capacities for the selected
sections. These functions were connected to a genetic algorithm to find the most op-
timized dimensions for each section. Lastly the most optimized cross-sections with
respect to smallest area were selected for different load and span length combination
to create a library.

The results of the genetic algorithm showed that for the upper chord the higher
the steel strength the smaller the area becomes but the section with higher steel
strength have a lower utilization ratio. The diagonals which were divided into two
groups and were analysed separately showed that the most optimized shape to use
is a hollow square-section. However, the connection between the upper chord and
the diagonals will not be feasible with closed cross-sections used as diagonals. The
chosen cross-section shape is therefore C-section.

Keywords: steel, cold-formed, cross-section, optimization, genetic algorithm, roof
truss, Eurocode 3.
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Optimering av kallformade stålsektioner med hjälp av genetisk algoritm
SARAH AREF
MAHDI MAHDI
Instutitionen för arkitektur och samhällsbyggnad
Chalmers tekniska högskola

Sammanfattning
Syftet med det här examensarbetet är att studera hur valet av lämpliga kallformade
stålsektioner som ska användas i en takstolsbalk sker med hjälp av en genetisk al-
goritm. Stålsektionerna ska även optimeras med avseende på olika sträckgränser
för stålet. Efter körningen av optimeringen ska ett bibliotek med olika stålsektioner
skapas för olika spannlängder och krafter.

De fyra valda tvärsnitten är; C-sektion, dubbel C-sektion, kvadratisk hålprofil och
hexagon hålprofil. Alla dessa fyra profiler kommer att analyseras som diagonaler i
takstolen medan endast dubbel C-sektionen kommer att analyseras som överram-
stång. Matlab har använts för att skapa funktioner som beräknar olika parametrar
och kapacitet för de valda profilerna. Med hjälp av genetisk algoritm hittades de
mest optimala dimensionerna för de valda lasterna och spannlängderna av takstols-
balken.

Examensarbetet resulterade i att de mest optimala tvärsektionerna för övre ramstån-
gen är dubbla C-sektioner med sträckgränsen 460 MPa. Lägsta arean erhölls för stål
med sträckgräns 690 MPa men tvärsnitten utnyttjades inte fullt ut och därför valdes
stål av typen S460 för de olika tvärsnitten för överramstången. Optimeringen av
diagonalerna medförde att kvadratiska hålprofiler är de mest optimala. I praktiken
är det dock mer lämpligt att fästa en öppen tvärsektion med dubbel C-profilen för
övre ramstången. Därav väljs öppen C-profil för det tryckta diagonalerna.

Nyckelord: stål, kallformning, tvärsektioner, optimering, genetisk algoritm, takstol,
Eurocode 3.
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1
Introduction

1.1 Background

Steel is a commonly used material in structural elements and withing steel construc-
tion there are many ways to shape the steel cross-sections, for instance through weld-
ing, hot-rolling and cold-forming. Steel members that are shaped by cold-forming
is widely used in industrial buildings as framing and as storage rack systems (Yu
et al., 2010). As well as for highway products, sheeting, piping and it has a broad
application in the car industry.

A possible way to optimize steel members is through cold-forming of thin steel plates.
These members can be used in truss structures in different applications. Various
shapes and dimensions can be achieved through cold-forming sections with different
yield strength. More complex sections can be produced through cold-forming when
it is compared to hot-rolled (Dubina et al., 2012) and this gives a wide potential
to the material. Furthermore, cold-formed steel members can be produced through
a process called roll-forming, where steel sheets are run through a series of rolls to
produce the desired cross-section. Roll-forming means more complex cross-section
can be mass produced in a rather inexpensive way (Rhodes, 1991).

In design, local buckling and different types of global instabilities become critical and
various failure modes need to be checked, for such thin- walled members. Moreover,
Dubina et al. (2012) describes that thin-walled cold-formed steel members of high
yield strengths are not widely used in roof truss girders due to the lack of knowl-
edge on the behaviour of these members. In particular the buckling of thin-walled
cold-formed are more complicated to consider in comparison to hot-rolled members.
This is due to the complexity of the cold-formed cross-sections (Dubina et al., 2012).

Most research done on optimization of cold-formed steel members focuses on a single
cross-section with set conditions and steel yield strengths. Tran, Li (2006) method
of global optimization for channeled cold-formed steel sections gives a good point
to start. However, as mentioned before the global optimization done by Tran, Li
(2006) is for a single cross-section. How would this optimization look if different cold-
formed cross-sections are compered? Furthermore, how would different cold-formed
cross-sections with varying steel yield strength behave in a global optimization?
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1. Introduction

1.2 Aim
The aim is to study how to reach optimized cross-sections (profiles) for roof trusses
in different steel strength classes using a genetic algorithm and create a library of
the most optimized cross-sections for certain spans and applied loads. The different
cross-sections are also to be compered. This master’s thesis is a part of an ongoing
research project, including Chalmers and companies from the industry, which focuses
on roof trusses, pedestrian and bicycle bridges.

1.3 Scope and limitation
This study will focus on thin-walled steel members not thicker than 5mm. The dif-
ferent steel yield strengths that are of interest in this project are S355, S460, S690,
other steel yield strengths will not be considered in this master thesis. The number
of cross-section shapes will be confined to 4. Further limitations are to consider roof
trusses in spans from 30m up to 40m which are common length of the investigated
roof truss girders in the research project.

The project will be limited to only consider one load case with uniformly distributed
load on roof trusses and the calculations and checks will only be done for ultimate
limit state, ULS, and not for service limit state, SLS. The length of the spans as
well as the magnitudes of the loads to be applied on the steel members are provided
through the research project. the values are obtained from a set of parametric design
studies with various conditions, such as span lengths, loads and truss geometries.

1.4 Methodology
This master’s thesis will be carried out in four phases. The first phase is to study
the design aspects of thin-walled, cold-formed steel members. Reference is made to
Eurocode and available literature on the topic. Moreover, in this phase there will
also be a study done on the limitations of the cold-formed cross-sections shape and
dimensions. This information is used to set the limitations and constraints for the
optimization.

The second phase is to set up design procedures in Matlab to calculate all necessary
cross-sectional parameters and checks according to Eurocode.

The third phase is to connect the Matlab procedure to different cold-formed cross-
sections with different steel yield strengths. The outputs from Matlab design pro-
cedures will then be run through the genetic algorithm to get the most optimized
cross-sections.

The last phase is to analyse the results of the genetic algorithm optimization and
create a library for the most optimized cross-sections for given parameters.

2



2
Cold-formed steel sections

Cold-formed steel is a common product used in structures and there are some differ-
ences between cold-formed and hot-rolled steel products. The manufacturing process
of cold-formed steel is also described in detail. The different manufacturing require-
ments on the material, such as radius-to-thickness ratios and width-to-thickness
ratios, are also explained and presented. Furthermore,

2.1 Introduction to cold-formed steel sections
One way of shaping a steel members cross-section is by hot-rolling. Another com-
mon way of shaping a steel members cross-section is by cold-forming. The hot-rolled
process forms steel plates into various shapes, such as I-section, by heating the steel
and shaping it. The cold-formed steel elements are shaped at room temperature out
of steel sheets, plates or bars and forms structural shapes or panels (Yu et al., 2010).
The shapes can be closed sections such as box sections, or open sections, U-,C- and
Z-sections, or built-up sections which consists of multiple sections put together as
one. The steel sheets can be formed to panels or decks, and with a large range of
dimensions these can serve as floors, roofs or walls.

Figure 2.1: Typical cross-sections for cold-formed steel sections.

An advantage of cold-forming is that more complex sections can be formed compared
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2. Cold-formed steel sections

to hot-rolled, this will be described in chapter 2.2. Another advantage of cold-
forming is an increase of the yield strength of the steel due to the cold working,
however, this results in a reduced ductility (Dubina et al., 2012). This increase of
strength is due to strain hardening and is mainly influenced by the material that
is used. Dubina et al. (2012) further explain that the residual stresses are less of
a problem for cold-formed sections as the residual stresses occur when hot-rolled
sections are cooling down which changes the stress-strain curve for material. The
process of coiling and uncoiling the steel sheet causes residual stresses in the material
along with the flattening of the sheet before it is formed to the desired shape (Quach
et al., 2004). According to Eurocode 1993-1-3 (2006) the average increase of the yield
strength for cold-formed members can be determined as follows in equation 2.1.

fya = fyb + (fu − fyb)
knt2

Ag
but fya ≤ fu + fyb

2 (2.1)

Where:

fya: average yield strength fyb: basic yield strength fu: tensile strength

Ag: gross cross-sectional area

k: numerical coefficient that depends on the type of forming as follows:
k = 7 for roll forming
k = 5 for other methods of forming

n: number of 90 bends in the cross-section with an internal radius r ≤ 5t (frac-
tions of 90 bends should be counted as fractions of n)

t: design core thickness of the steel material before cold-forming, exclusive of metal
and organic coating

However, certain requirements need to be met for equation 2.1, as stated in chapter
3.2 in Eurocode 1993-1-3 (2006). An alternative way to find the increased yield
strength is through testing which is also listed in the previously named chapter in
Eurocode.

Additional advantages of cold-formed steel elements in comparison to hot-rolled are
listed below (Yu et al., 2010):

- For light forces and/or short spans, cold-formed steel structures can be produced
in contrast to thicker hot-rolled sections.
- The sections can be manufactured in such a way that they are easily packed within
one another which lead to less need of shipping due to the compact packing.
- Cold-forming can be used to manufacture steel sections that are unique. The
production is economically favourable, hence this can result in efficient strength-to-
weight ratios.
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2. Cold-formed steel sections

- Flat hollow sections such as decks and panels, can be utilized to run electrical
wiring through the hollow section and the flat surfaces can be used as supports for
construction of floors, roofs and walls.
- If panels and decks are mounted in a certain way, they can act as rigid shear
diaphragms.

2.2 Method of production
In comparison to hot-rolled steel members, cold-formed steel members can be man-
ufactured at a faster rate and into more complex cross-sections. The cold-formed
steel members can generally be manufactured by roll forming or by folding and press
braking (Dubina et al., 2012). Depending on the cross-section complexity one or
the other method may be used.

2.2.1 Roll forming
The roll forming method consists of a series of rolls that gradually deform a flat sheet
of steel until the required shape is achieved. An example of roll forming machine
series can be seen in figure 2.2. The deformation allowed at each stage is generally
decided by the material properties. Furthermore, more complex cross-sections need
to go through a larger number of rolling stages (Rhodes, 1991). Some of these
complex cross-sections can be seen in figure 2.4. An advantage of roll forming is
that all necessary holes that a cross-section need can be done to a flat sheet of metal
before roll forming starts. The hole stamping machine can be seen in figure 2.2
placed before the roll forming series. This saves time and means that more complex
cross-sections are possible (Dubina et al., 2012).

Figure 2.2: Roll forming production setup at Bendiro.

Roll forming can be a very effective and fast method of manufacturing for a standard
profile cross-section. This is mainly due to the very automated process of production
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2. Cold-formed steel sections

as can be seen in figure 2.3. However, to produce a different cross-section the roll
forming setup needs to be changed or altered, which is a time-consuming process
(Rhodes, 1991). The initial cost of rolls and machines also implies that roll forming
is generally only used for large volume production.

Figure 2.3: Roll forming production machines at Bendiro.

Figure 2.4: Example of complex cross-sections produced by Bendiro.

2.2.2 Folding and press braking
As the name suggests, folding is a method where sheet material is folded in different
directions to produce a cross-section. Folding has however its limitations where only
simple cross-sections from short length sheet material can be produced in an effective
manner. For more complex cross-sections press braking is commonly used (Dubina
et al., 2012). Press braking is a method where larger sections of sheet material is
placed between a press and a shape. The press forces the sheet material to deform
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and mimic the shape profile. Using this method, the sheet material can be rotated
and replaced to produce complex cross-sections. Press braking is generally used to
produce custom shapes that are not widely available whereas roll forming is used to
produce standard shapes and cross-sections (Yu et al., 2010).

2.3 Applications

The use of cold-formed steel members varies widely and is applied in the car indus-
try, highway products, railway carriages, storage rack systems, sheeting, piping in
different industries, bridge construction and structural members in buildings, (Yu
et al., 2010).

The production of standardized buildings is easily made with cold-formed steel el-
ements and with the following advantages, fast construction and low maintenance,
it is commonly used in applications of agriculture and industrial halls, (Yu et al.,
2010). It can be used as steel framing, see figure 2.5, wall partitioning, see figure
2.6, as large panels for housing, see figure 2.7 or in truss systems such as a roof
truss, see figure 2.8, (Dubina et al., 2012).

Figure 2.5: Steel framing made of cold-formed steel elements (Dubina et al., 2012)
(p.35).
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2. Cold-formed steel sections

Figure 2.6: Wall partitioning made of cold-formed steel elements (Dubina et al.,
2012) (p.36).

Figure 2.7: Large panels for housing (Dubina et al., 2012) (p.37).
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2. Cold-formed steel sections

Figure 2.8: Roof trusses made of cold-formed steel-sections (Dubina et al., 2012)
(p.40).

Cold-formed Z-sections are usually used in today’s market mostly in roof purlins,
flooring and wall studs. The shape of the Z-section is optimal for having anchor
point on both sides, as can be seen in figure 2.9 (Yu et al., 2010). The advantage of
roll forming in this case is that all necessary holes and anchorage point can be done
to a flat sheet of metal before rolling. This reduced the complexity of production
compered to hot rolled. Moreover, the installation time is reduced which saves
money (Halmos, 1983).

Figure 2.9: Roof purlins made of cold-formed Z-section (Dubina et al., 2012)
(p.411).
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3
Structural behaviour of

cold-formed steel elements

During design of thin-walled members the structural behaviour needs to be consid-
ered. The main buckling types for cold-formed steel sections are local, global, dis-
torsional and shear buckling (Dubina et al., 2012). The global instability includes
various forms of buckling, namely flexural (Euler) and flexural-torsional buckling of
columns, as well as lateral-torsional buckling of beams. All the previously mentioned
buckling types will be checked according to Eurocode.

3.1 Material limitations
There are some requirements on the material properties of the steel with regard
to ductility, these are stated in Eurocode 1993-1-1 (2005). The requirements are
limits for certain ratios and values according to National Annex which must be
fulfilled.The first ratio, as seen in equation 3.1 shows the ratio for tensile strength
and yield strength. Equation 3.2 calculates the elongation at failure and should not
be lower than 15 % and the third requirement states the recommended ratio for the
strains as seen in equation 3.3.

fu
fy

≥ 1.10 (3.1)

Where:

fu: ultimate strength
fy: yield strength

5.65
√
A0 ≥ 15 % (3.2)

Where:

A0: the original cross-sectional area

ϵu ≥ 15ϵy (3.3)
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3. Structural behaviour of cold-formed steel elements

Where:

ϵu: ultimate strain
ϵy: yield strain

3.2 Dimension limitations
As described in chapter 2.2 cold-formed cross-sections can be built up to become
very complex. To avoid manufacturing processes that are economically unsound the
built-up cross-sections needs to meet some requirements concerning dimensions and
shape. The manufacturing process of cold-formed cross-sections is often limited by
the number of folds or bends; therefore, the radius of each bend need to be con-
sidered. Moreover, the cold-forming process induces, in comparison to hot-rolled
process, small amounts of residual stresses (Quach et al., 2004). These residual
stresses are for the most part in the bends of the cold-formed cross-sections. Con-
sequently, the radius-to-thickness ratio is important for the characteristics of the
cross-section. According to Rondal (2000) the type of analysis of the cross-section
is heavily influenced by the material choice, the thickness of the material and the
width. Another ratio to consider is therefore the width-to-thickness ratio for each
part in the cross-section. The width-to-thickness of each part in the cross-section
ratio also determines the risk for or susceptibility to local buckling for webs, flanges
and edge folds. By reducing the width of elements in the cross-section that may
buckle locally under compression, the susceptibility of local buckling can be reduced.
This is explained further in chapter 3.2.1. determines the risk for or susceptibility
to local buckling

3.2.1 Cross-section analysis and classification
To choose a method of global analysis the cross-section of a frame or structure can
be analysed for a classification. In Eurocode 1993-1-1 (2005) there are four different
classes to choose from. To determine a classification of the cross-section two param-
eters need to be considered:

• Slenderness (width-to-thickness ratio) of each element in the cross-section
• Type of compressive stress distribution

Depending on the classification of the cross-section and the stress distribution a
method of analysis can be chosen as described in Eurocode 1993-1-1 (2005) chapter
5.5. For this Master’s thesis only the elastic analysis is of interest. The four classes
of a cross-section are defined as the following:

• Class 1: A cross-section that can form a plastic hinge with the required ro-
tational capacity for plastic analysis.

• Class 2: A cross-section that can develop their plastic moment resistance but
have limited rotation capacity because of local buckling.

12
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• Class 3: A cross-section that the stress in the extreme compression fibre can
reach yield however due to the slenderness buckling occurs before development
of the plastic moment resistance.

• Class 4: A cross-section that will buckle before reaching yielding in one or
more members of the cross-section.

This is visualised in figure 3.1.

Figure 3.1: Behaviour of a cross-section in different cross-section classifications,
figure inspired by Al-Emrani et al. (2013).

For cold-formed steel members the thickness is much smaller than the width which
consequently means that the cross-section is in class 4 or class 3 (Dubina et al.,
2012). Only elastic global analysis can be carried out for cross-sections in class 4
or class 3 (Eurocode 1993-1-1 (2005)). For first order elastic global analysis to be
carried out the internal forces or any other structural behaviour that is changed
due to deformation must be negligible (Dubina et al., 2012). The changes can be
neglected if the condition in equation 3.4 is fulfilled.
The cross-section class can be checked using the table 3.1 for internal compression
parts and table 3.2 for outstand compression parts.
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Table 3.1: Maximum width-to-thickness ratios for compression parts: internal
compression parts (Eurocode 1993-1-1 (2005) table 5.2).

Class Part subjected to
bending

Part subjected to
compression

Part subjected to
bending and compression

Stress distribution
in parts

(compression positive)

1 c/t ≤ 72ϵ c/t ≤ 33ϵ
when α > 0, 5 : c/t ≤ 396ϵ

13α−1

when α ≤ 0, 5 : c/t ≤ 36ϵ
α

2 c/t ≤ 83ϵ c/t ≤ 38ϵ
when α > 0, 5 : c/t ≤ 456ϵ

13α−1

when α ≤ 0, 5 : c/t ≤ 41,5ϵ
α

Stress distribution
in parts

(compression positive)

3 c/t ≤ 124ϵ c/t ≤ 42ϵ
when ψ > −1 : c/t ≤ 42ϵ

0,67+0,33ψ

when ψ ≤ −1 : c/t ≤ 42ϵ(1 − ψ)
√

−ψ

ϵ =
√

235/fy
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Table 3.2: Maximum width-to-thickness ratios for compression parts: Outstand
flanges (Eurocode 1993-1-1 (2005) table 5.2).

Class Part subjected to
bending

Part subjected to bending and compression
Tip in compression Tip in tension

Stress distribution
in parts

(compression positive)
1 c/t ≤ 9ϵ c/t ≤ 9ϵ

α
c/t ≤ 9ϵ

α
√
α

2 c/t ≤ 10ϵ c/t ≤ 10ϵ
α

c/t ≤ 10ϵ
α

√
α

Stress distribution
in parts

(compression positive)

3 c/t ≤ 14ϵ c/t ≤ 42ϵ c/t ≤ 21ϵ
√
kσ

for kσ see table 3.4
ϵ =

√
235/fy

αcr = Fcr
FEd

≥ 10 (3.4)

Where:

αcr: load factor which the design load needs to be multiplied by to achieve elastic
instability in global mode.

Fcr: elastic critical buckling load for the global instability mode.

FEd: design load on the structure.

3.2.2 Effective width method
As mentioned before a cross-section in class 4 will buckle locally before reaching
yielding. To take this into account in the analysis, the cross-section members that
are in class 4 need to be reduced to an effective width (Hansen et al., 2010). The
idea is that members under compression can be seen like plates and have plate like
behaviour. The stresses will be redistributed when the plate reaches the buckling
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stress. The redistribution will be to an effective width, therefore only the effective
width is considered (Al-Emrani et al., 2013). This can be seen in figure 3.2.

Figure 3.2: Effective width of plate under compression (Al-Emrani et al., 2013)

The effective width, beff , of a member subjected to compression can be calculated
according to Eurocode 1993-1-5 (2006) as seen in table 3.3 and table 3.4. Where ρ
is the reduction factor for the width, ψ is the stress ratio and kσ is the buckling factor.

For internal compression elements the reduction factor, ρ, can be calculated as seen
in equation 3.5 and equation 3.6

ρ = 1, 0 for λ̄p ≤ 0, 673 (3.5)

ρ = λ̄p − 0, 055(3 + ψ)
λ̄2
p

≤ 1, 0 for λ̄p > 0, 673, where (3 + ψ) ≥ 0 (3.6)

For outstand compression elements the reduction factor, ρ, can be calculated as seen
in equation 3.7 and equation 3.8

ρ = 1, 0 for λ̄p ≤ 0, 748 (3.7)

ρ = λ̄p − 0, 188
λ̄2
p

≤ 1, 0 for λ̄p > 0, 748 (3.8)

Where:

λ̄p : b̄/t

28,4ϵ
√
kσ
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ϵ =
√

235/fy

kσ: buckling factor

To calculate the effective width of edge folds the same process as described above is
used. However, the buckling factor, kσ, is calculated as stated in equation 3.9 and
equation 3.10

kσ = 0.5 for b/c ≤ 0.35 (3.9)

kσ = 0.5 + 0.83 3
√

(b/c− 0.35)2 for 0.35 < b/c ≤ 0.6 (3.10)

Where:

c: edge fold width
b: flange width

Table 3.3: Effective width for internal compression elements subjected to compres-
sion (Eurocode 1993-1-5 (2006)).

Stress distribution (compression positive) Effective width beff

ψ = 1 :

beff = ρb̄

be1 = 0, 5beff be2 = 0, 5beff
h

1 > ψ ≥ 0

beff = ρb̄

be1 = 2
5−ψbeff be2 = beff − be1

h

ψ < 0

beff = ρbc = ρb̄/(1 − ψ)

be1 = 0, 4beff be2 = 0, 6beff
h
h

ψ = σ2/σ1 1 1 > ψ > 0 0 0 > ψ > −1 -1 −1 > ψ > −3
Buckling factor kσ 4,0 8, 2/(1, 05 + ψ) 7,81 7, 81 − 6, 29ψ + 9, 78ψ2 23,9 5, 98(1 − ψ)2
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Table 3.4: Effective width for outstand compression elements subjected to com-
pression (Eurocode 1993-1-5 (2006)).

Stress distribution (compression positive) Effective width beff

1 > ψ ≥ 0 :

beff = ρc
h

ψ < 0 :

beff = ρbc = ρc/(1 − ψ)
h
h

ψ = σ2/σ1 1 0 -1 1 ≥ ψ ≥ −3
Buckling factor kσ 0,43 0,57 0,85 0, 57 − 0, 21ψ + 0, 07ψ2

1 > ψ ≥ 0 :

beff = ρc
h

ψ < 0 :

beff = ρbc = ρc/(1 − ψ)
H
h

ψ = σ2/σ1 1 1 > ψ > 0 0 > ψ > −1 -1
Buckling factor kσ 0,43 0, 578/(ψ + 0, 34) 1, 7 − 5ψ + 17, 1ψ2 23,8

3.2.3 Ratios of interest
To assure that the cross-section can be manufactured the radius-to-thickness ratio
needs to be evaluated. According to Eurocode 1993-1-3 (2006) there are two different
requirements for radius-to-thickness ratio that are of interest for this thesis. The
first requirement states that if the radius-to-thickness ratio is less or equal to 5 then
the influence of rounded corners can be neglected in the calculations, as seen in
equation 3.11.

r

t
≤ 5 (3.11)

Where:

r: radius of internal bend
t: thickness
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The other requirement states that if equation 3.12 is true then the resistance of the
cross-section should be determined by test. Moreover, Eurocode 1993-1-3 (2006)
states that the angle between two plane elements, θ, should be between 45°-135°.

r

t
> 0.04E

fy
(3.12)

Where:
E: modulus of elasticity
fy: yield strength

As stated in chapter 3.2.1 cold-formed thin-walled steel members have often reduced
post-elastic strength and ductility. In practice this means that the cross-section is
in class 4 or class 3 and only elastic analysis is of interest. To determine the cross-
section class the width-to-thickness ratio needs to be considered for all the parts of
the cross-section which is stated in Eurocode 1993-1-1 (2005) chapter 5.6. Moreover,
for practical reasons the ratios stated above should be sought after to neglect the
effects of rounded corners in the calculations.

The radius-to-thickness ratio is also important for cold-formed sections when welding
is used to connect the cross-section members. As described in Eurocode 1993-1-8
(2005) chapter 4.14 welding can be used within a distance of 5t either side of the
rounded corner if the radius-to-thickness ratio satisfy the relevant value from table
3.5.

Table 3.5: Conditions for welding cold-formed steel elements zones and adjacent
material (Eurocode 1993-1-8 (2005) table 4.2).

r/t Strain due to cold
forming [%]

Maximum thickness [mm]
Generally Fully killed

Aluminium-killed
steel (Al >0,02 %)

Predominantly
static loading

Where fatigue
predominates

>25 <2 any any any
>10 <5 any 16 any
>3 <14 24 12 24
>2 <20 12 10 12

>1,5 <25 8 8 10
>1 <33 4 4 6
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3.3 Imperfections
In every structure there are initial imperfections, shortcomings in the material or the
assembled parts that contributes to second-order effects. According to the Eurocode
1993-1-1 (2005) there are two main sources of imperfection that the designer needs
to account for in the global analysis:

- Global imperfections for frames and bracing systems.
- Local imperfections for individual members.

3.3.1 Global imperfection for frames and bracing systems
For frames the initial imperfections are often in form of sway and can be accounted
for using equation 3.13. Sway can be described as the inclination of the whole frame
as seen in figure 3.3.

ϕ = ϕ0αhαm (3.13)
Where:
ϕ: global initial sway imperfection
ϕ0: basic value: ϕ0 = 1/200
αh: reduction factor for height h applicable to columns:

αh = 2√
h

but 2
3 ≤ αh ≤ 1, 0

h: height of the structure
αm: reduction factor for the number of columns in a row: αm =

√
0, 5

(
1 + 1

m

)
m: number of columns in a row including only those columns which carry a vertical
load. NEd not less than 50% of the average value of the column in the vertical plane
considered.

Figure 3.3: Equivalent sway imperfection (Eurocode 1993-1-1 (2005) figure 5.2)

The initial sway imperfection can also be replaced by a system of horizontal forces to
account for in the global analysis as described in Eurocode 1993-1-1 (2005) chapter
5.3.1. See figure 3.4.
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Figure 3.4: Replacement of initial sway imperfection by system of horizontal forces
(Eurocode 1993-1-1 (2005) figure 5.4)

For bracing systems, the initial imperfections can be accounted for by a geometric
imperfection of the members to be restrained. This is done in the form of initial
bow imperfection that can be calculated using equation 3.14.

e0 = αmL/500 (3.14)

Where:

L: length of the bracing system

However, for convenience the effects may be replaced by an equivalent stabilizing
force as shown in figure 3.5. The stabilizing force, qd, can be calculated using
equation 3.15 (Eurocode (1993-1-1, 2005)).

qd =
∑

NEd8
e0 + δq
L2 (3.15)

Where:

NEd: design value of the compression force
e0: initial bow imperfection
δq: in-plane deflection of the bracing system due to q plus any external loads calcu-
lated from first order analysis (may be taken as 0 if second-order analysis is used)
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Figure 3.5: Equivalent stabilizing force (Eurocode 1993-1-1 (2005) figure 5.6)

3.3.2 Local imperfections for individual members
Local imperfection for steel members can, as the global imperfections, also alter the
capacity of a steel structure and needs to be accounted for in the design procedure.
The first type of local imperfections is due to the sway of individual columns (Dubina
et al., 2012). Dubina et al. (2012) further explains that columns are not completely
straight and the initial imperfection will give an extra moment. This is shown in
figure 3.6 where the extra moment is derived from the eccentricity of the bowed
column.

Figure 3.6: Initial imperfection (e0,d) of a column with length L and compressive
force NEd (Eurocode 1993-1-1 (2005) figure 5.4).
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The effect of the initial imperfection of a column is accounted for in Eurocode’s
buckling curves. However, in some cases where the second-order effects of bow
initial imperfection is sensitive an additional factor of safety must be introduced.
This is done for cases where the condition in equation 3.16 is met.

λ̄ > 0.5
√
Afy
NEd

(3.16)

Where:

NEd: design value of the compression force.
λ̄: in-plane non-dimensional slenderness calculated for the member considered as
hinged at its ends
A: cross-sectional area
fy:yield strength

The initial bow imperfection can be replaced with a system of equivalent horizontal
forces as shown in figure 3.6.

3.4 Local instability
The term "sectional" instability modes include local and distorsional buckling since
mainly the shape and the resistance of the cross-section is influenced (Ungureanu,
Dubina, 1999). Either of these two buckling types can act independently or interact
with global buckling i.e., flexural or flexural-torsional buckling (Dubina et al., 2012).
Dubina et al. (2012) further describes that even though the two modes, local and
distorsional buckling, can interact the calculations can be performed separately.

Distorsional buckling can be calculated by linear buckling analysis according to Eu-
rocode (1993-1-3, 2006) which uses a simplified approach.
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3. Structural behaviour of cold-formed steel elements

Figure 3.7: Illustrative figures for different buckling modes, created in the software
Abaqus.

The distorsional buckling for plane elements with either edge or intermediate stiff-
eners is calculated by the following procedure:

K = u

δ
(3.17)

Where:

K: spring stiffness per unit length
u: unit load per unit length
δ: deflection of the stiffener due to u
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Figure 3.8: Equivalent stabilizing force (Eurocode 1993-1-3 (2006) figure 5.6).

The deflection, δ, of an edge stiffener is calculated according to equation 3.18

δ = θbp +
ub3

p

3
12(1 − v2)

Et3
(3.18)

With

θ = ubp
Cθ

(3.19)

Where:

bp: notional flat width of a plane element
θ: angle of deformed member as illustrated in figure 3.8
Cθ: spring stiffness for rotation

The elastic critical buckling stress is calculated according to equation 3.20

σcr,s = 2
√
KEIs
As

(3.20)

Where:

K: is the spring stiffness
Is: is the effective second moment of area of the stiffener
As: effective cross-sectional area of the edge stiffener

The thickness of the edge stiffener, as seen in figure 3.8, can be reduced to accom-
modate for distorsional buckling with a factor χd. The reduction factor is obtained
from the relative slenderness λ̄d according to equation 3.22 to 3.24. In the case of
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3. Structural behaviour of cold-formed steel elements

C-sections and back-to-back double C-sections the spring stiffness, K, is defined as
seen in equation 3.21.

K = Et3

4(1 − v2) · 1
b2

1hw + b3
1 + 0, 5b1b2hwkf

(3.21)

Where:

b1: Distance from web to the centre of the effective area of the edge stiffener

b1 = b2: for cross-sections with same length flanges

hw: Web height

kf : Ratio of top and bottom flange widths. kf = 1 for same length flanges

χd = 1, 0 if λ̄d ≤ 0, 65 (3.22)

χd = 1, 47 − 0, 723λ̄d if 0, 65 < λ̄d < 1, 38 (3.23)

χd = 0, 66
λ̄d

if λ̄d ≥ 1, 38 (3.24)

Where:

λ̄d =

√√√√ fyb
σcr,s

(3.25)

3.5 Members buckling resistance
Members buckling resistance can be seen as the members resistance against buckling
due to compression and bending. These cases can also be combined and the buckling
resistance can be calculated as a combined case. If the applied force is greater than
the buckling resistance of the member than the member will yield (or buckle). The
effects of buckling are considered by reducing the cross-section as described in the
chapter 3.2.1 for local analysis, however for global analysis there are different types
of buckling modes.

3.5.1 Roof truss girders: assumptions and buckling modes
This study will analyse roof truss girders subjected to uniformly distributed loads
which consist of snow and wind loads. As seen in figure 3.9 the roof truss girder can
be divided into three groups of elements: upper chord, diagonals and lower chord.
For this study only elements subjected to compression is of interest. In this case the
upper chord and compressed diagonals. For these two groups of elements (upper
chord and compressed diagonals) the following assumptions and buckling modes will
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be analysed:

• Upper chord:

– Subjected to compression and bending
– Buckling modes: Flexural buckling (only in y-y plane as the z-z plane

is restrained), torsional buckling, flexural-torsional buckling and lateral-
torsional buckling

• Diagonals:

– Carries only axial force, seen as hinged elements. In the real case the
diagonals will also be subjected to moment which is not considered in
this study.

– Buckling modes: Flexural buckling, torsional buckling and flexural-torsional
buckling

For the cross-section to have enough carrying capacity, both the cross-section re-
sistance and buckling resistance criterion must be fulfilled. These criterions are
dependent on the load case. The diagonals are only in pure compression or tension
while the upper chord is both in compression and bending. This can be seen in
figure 3.9.

Figure 3.9: Example of analysed roof truss girder.
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3.5.2 Compression
For a member to have enough resistance for axial force the following criterion need
to be fulfilled:

NEd

Nc,Rd

+ ∆My.Ed

Wfy
≤ 1 (3.26)

Where:

NEd: design compression force
Nc,Rd: design resistance of the cross-section for uniform compression

Nc,Rd = Afy

γM0
for class 1,2 and 3

Nc,Rd = Aefffy

γM0
for class 4

∆My.Ed: additional moment due to shift in centroid as seen in figure 3.10

For the member subjected to pure compression to have enough buckling resistance
the following criterion need to be fulfilled:

NEd

Nb,Rd

≤ 1 (3.27)

Where:

Nb,Rd: design buckling resistance of the compression member

The design buckling resistance of the compression member is calculated dependent
on the relevant buckling mode. For the compressed diagonals there are three possible
buckling modes, flexural buckling, torsional buckling and flexural-torsional buckling.
Each mode reduces the resistance by a reduction factor χ. The minimal design
buckling resistance will therefore be for the case with the minimal reduction factor
χ.

3.5.2.1 Flexural buckling resistance

The flexural buckling resistance of a cross-section can be calculated as stated in
Eurocode 1993-1-1 (2005) chapter 6.3. The buckling resistance of a compression
member is calculated as stated in equation 3.28. The reduction factor χ is calculated
as seen in equation 3.30 where the buckling curve used determines the imperfection
factor α.

Nb,Rd = χAfy
γM1

For Class 1, 2 and 3 cross-sections (3.28)

Nb,Rd = χAefffy
γM1

For Class 4 cross-sections (3.29)
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Where:

χ: reduction factor
A: cross-section area
Aeff : reduced cross-section area
fy: yield strength
γM1: safety factor

χ = 1

Φ +
√

Φ − λ̄2
(3.30)

Where:

Φ = 0.5[1 + α(λ̄− 0.2) + λ̄2]

λ̄ =
√

Afy

Ncr
for class 1, 2 and 3 cross-sections

λ̄ =
√

Aefffy

Ncr
for class 4 cross-sections

α: imperfection factor dependent on buckling curves

Ncr: the elastic critical force for the relevant buckling mode based on the gross
cross sectional properties

For flexural buckling the slenderness can be evaluated according to 1993-1-1 (2005):

λ̄ =
√
Afy
Ncr

= Lcr
i

1
λ1

for class 1, 2 and 3 cross-sections (3.31)

λ̄ =
√
Aefffy
Ncr

= Lcr√
Aeff

A

1
λ1

for class 4 cross-sections (3.32)

Where:

λ1 = π
√
E/fy

The flexural buckling can be calculated in two directions, in y-y and z-z planes which
will generate two reduction factors: χy & χz. The Design buckling resistance for
flexural buckling mode is therefore in the weak axis of the cross-section

3.5.2.2 Torsional and torsional-flexural buckling resistance

The torsional-flexural buckling resistance can be calculated using the same method
as for flexural buckling resistance, 1993-1-3 (2006). However, the elastic criti-
cal force, Ncr, is modified to compensate for twisting of the cross-section (Zahn,
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Iwankiw, 1989). The elastic critical force for torsional buckling of a simply sup-
ported beam, Ncr,T , is calculated as seen in equation 3.33. The elastic critical
torsional-flexural buckling force, Ncr,TF , is calculated using equation 3.34.

Ncr,T = 1
i2o

(GIt + π2EIW
L2
cr

) (3.33)

With:

i2o = i2y + i2z + y2
o + z2

o

Where:

G: shear modulus
IT : torsion constant of the gross cross-section
IW : warping constant of the gross cross-section
iy: radius of gyration of the gross-section about the y - y axis
iz: radius of gyration of the gross-section about the z - z axis
Lcr: buckling length of the member for torsional buckling

yo, zo: shear centre coordinates with respect to the centroid of the gross cross-section
(for doubly symmetric cross-section yo = zo = 0)

For cross-sections that are symmetrical about the y - y axis, the torsinal-fluxural
buckling elastic critical force can be calculates as:

Ncr,TF = Ncr,T

2β [1 + Ncr,T

Ncr,y

−
√

(1 − Ncr,T

Ncr,y

)2 + 4(yo
io

)2Ncr,T

Ncr,y

] (3.34)

With:

β = 1 − (yo

io
)2

3.5.3 Bending moment
To have enough load carrying capacity for members subjected to uniform bending
the following criterion needs to be fulfilled:

MEd

Mc.Rd

≤ 1 (3.35)

Where:
MEd: Design bending moment
Mc.Rd: Design resistance of the cross-section for uniform bending

Mc.Rd = Wfy

γM1
for class 1,2 and 3

Mc.Rd = Wefffy

γM1
for class 4
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For the cross-section to have enough buckling resistance the following criterion needs
to be fulfilled:

MEd

Mb.Rd

≤ 1 (3.36)

Where:

Mb.Rd is the design buckling resistance of the cross-section for uniform bending cal-
culated as:

Mb.Rd = χLT
Wfy
γM1

For class 1,2 and 3 (3.37)

Mb.Rd = χLT
Wefffy
γM1

For class 4 (3.38)

Where:

W : section modulus
χLT : reduction factor for lateral-torsional buckling

χLT = 1

ΦLT +
√

ΦLT − ¯λLT
2

(3.39)

Where:

ΦLT = 0.5[1 + αLT ( ¯λLT − 0.2) + ¯λLT
2]

¯λLT =
√

Wfy

Mcr
for class 1, 2 and 3 cross-sections

¯λLT =
√

Wefffy

Mcr
for class 4 cross-sections

αLT : imperfection factor dependent on buckling curves

Mcr: elastic critical moment for lateral-torsional buckling

The critical moment shown in equation 3.39 is dependent on the shape of the mo-
ment diagram. As a result of this the critical moment is therefore dependent on the
loading conditions, support conditions and point of application for the load.

Mcr = C1
π2EIz

(kzL)2




[(
kz

kw

)2
Iw

Iz
+ (kzL)2GIT

π2EIz
+ (C2zg − C3zj)2

]0.5

− (C2zg − C3zj)

 (3.40)
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Where:

C1, C2 and C3: coefficients dependent on the loading conditions and support condi-
tions as can be seen in table 3.6

kz and kw: effective length factors for rotation and warping, for the roof truss girder
both values are set to 1

Table 3.6: Loading and support coefficients as seen in Dubina et al. (2012).

Loading and
support conditions

Moment diagram kz C1 C2 C3

1,000 1,127 0,454 0,525
0,500 0,970 0,360 0,478
1,000 1,348 0,630 0,411
0,500 1,050 0,480 0,338
1,000 1,040 0,420 0,562
0,500 0,950 0,310 0,539

3.5.4 Combined load action
As seen in figure 3.9 the upper chord is subjected to both bending and compression.
To see if the upper chord has enough buckling resistance both the compression and
bending criterion must be fulfilled with regard to interaction. Moreover, for the
buckling resistance the interaction of bending and compression is also taken into
consideration as both flexural buckling and lateral-torsional buckling.

3.5.4.1 Cross-section load carrying capacity criterion

When the cross-section is not symmetrical, the shift of the neutral axis from the
gross cross-section to the effective cross-section will result in moment around the
y-axis. This is illustrated in figure 3.10. This will yield in a case of both bending
and compression with added moment (∆My.Ed) due to the shift in centroid.
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Figure 3.10: Moment due to eccentricity of the shifted natural axis.

For a cross-section subjected to compression the only additional moment will be
from the shifted centroid. The shift can be in both z-z axis and y-y axis. The
same principle is applied for a cross-section subjected to bending and compression.
therefore, the criterion that needs to be fulfilled is:

NEd

Aeff fy/γM0
+ My,Ed + ∆My.Ed

Weff ,y,minfy/γM0
≤ 1 (3.41)

Where:

∆My.Ed = NEdeNy (3.42)

Where:

eNy = ytp.eff − ytp: the shift of y-y axis

NEd: the applied compression load

My.Ed: the applied bending load

∆My.Ed: moment due to eccentricity

Weff,y.min: sectional modulus for a cross-section in class 4
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3.5.4.2 Interaction of bending and compression for buckling resistance

To calculate the interaction of bending moment and axial compression acting on a
member the requirement stated in equation 3.43 and 3.44 from Eurocode 1993-1-1
(2005) must be fulfilled.

NEd

χyNRk

γM1

+ kyy
My,Ed + ∆My,Ed

χLT
My,Rk
γM1

≤ 1 (3.43)

NEd

χzNRk

γM1

+ kzy
My,Ed + ∆My,Ed

χLT
My,Rk
γM1

≤ 1 (3.44)

Where:

NRk = fyAi (3.45)
Ai: area of the cross-section
Aeff for class 4 and A for class 3

My,Rk = fyWi (3.46)
Wi: section modulus
Weff for class 4 and W for class 3

In Eurocode 1993-1-1 (2005) there are two methods to obtain the interaction factors
kyy and kzy. Method 1 requires the deformation and since this master thesis only
considers ULS and not SLS, method 2 is used to determine the interaction factors.
The factors are obtained from table 3.7 for kzy and table 3.8 for kyy.

Table 3.7: Interaction factors for members susceptible to torsional deformations,
(Eurocode 1993-1-1 (2005), table B.2).

Design assumptionsInteraction
factors elastic cross-sectional properties

class 3, class 4
plastic cross-sectional properties

class 1, class 2
kyy kyy from Table 3.8 kyy from Table 3.8
kyz kyz from Table 3.8 kyz from Table 3.8

kzy
kzz kzz from Table 3.8 kzz from Table 3.8
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Table 3.8: Interaction factors for members not susceptible to torsional deforma-
tions, (Eurocode 1993-1-1 (2005), table B.1).

Interaction

factors

Type of

sections

Design assumptions

elastic cross-sectional properties

class 3, class 4

plastic cross-sectional properties

class 1, class 2

kyy

h

I-sections

RHS-sections

h

h

h

kyz
I-sections

RHS-sections
kzz 0, 6kzz

kzy
I-sections

RHS-sections
0, 8kyy 0, 6kyy

kzz

I-sections

h

h

RHS-sections

h

h

For I- and H-sections and rectangular hollow sections under axial and uniaxial bending My.Ed

the coefficient kzy may be kzy=0.
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The parameter Ψ in table 3.9 is equal to 1 which indicates that the two support
moments are of the same magnitude as seen in figure 3.11. As mentioned previously
the upper chord will be both in compression and bending and the moment diagram
will have the shape as the middle diagram in table 3.9 where the ratio αs is calculated
to determine Cmy and CmLT .

Figure 3.11: Moment diagram for upper chord of a roof truss girder with evenly
distributed load.

Table 3.9: Equivalent uniform moment factors Cm, (Eurocode 1993-1-1 (2005),
table B.3).

Moment diagram range
Cmy and Cmz and CmLT

uniform loading concentrated load

−1 ≤ Ψ ≤ 1

h

0, 6 + 0, 4Ψ ≥ 0, 4

h

0 ≤ αs ≤ 1 −1 ≤ Ψ ≤ 1 0, 2 + 0, 8αs ≥ 0, 4 0, 2 + 0, 8αs ≥ 0, 4

−1 ≤ αs ≤ 0
0 ≤ Ψ ≤ 1 0, 1 − 0, 8αs ≥ 0, 4 −0, 8αs ≥ 0, 4

−1 ≤ Ψ ≤ 0 0, 1(1 − Ψ) − 0, 8αs ≥ 0, 4 0, 2(−Ψ) − 0, 8αs ≥ 0, 4

0 ≤ αh ≤ 1 −1 ≤ Ψ ≤ 1 0, 95 + 0, 05αh 0, 90 + 0, 10αh

−1 ≤ αh ≤ 0
0 ≤ Ψ ≤ 1 0, 95 + 0, 05αh 0, 90 + 0, 10αh

−1 ≤ Ψ ≤ 0 0, 95 + 0, 05αh(1 + 2Ψ) 0, 90 − 0, 10αh(1 + 2Ψ)
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Roof truss girders

In this study, cross-section optimization is done for a large number of truss members.
Only elements in compression are considered (top chord and diagonals as seen in
figure 3.9). Load effects (axial forces and bending moments) were obtained from a
large parametric analysis of roof trusses with different input values. The parametric
analysis was conducted in the frame of an ongoing research project "LightSpan" with
the following parameters: L,H and Q.

The span length, L, of the roof truss girder analysed varies between 30m and 40m
with steps of 2m and with a height, H, that varies as a function of the span length.
The height, H, varies from L/30 to L/20 with increments of L/300. Along with
the evenly distributed load, Q, that varies from 10 kN/m to 25 kN/m with incre-
ments of 2kN/m. The dimensions are shown in figure 4.1 and presented in table 4.1.

Table 4.1: Analysed spans, heights and evenly distributed loads for the roof truss
girders.

Span length
L [m] 30, 32, 34, ..., 40

Height of roof truss girder
H [m] L/30 : L/300 : L/20

Evenly distributed load
Q [kN/m] 10, 12, 14, ..., 25

Figure 4.1: Dimensions and load for analysed roof truss girder.

To analyse all possible combinations of dimensions and loads some assumptions were
made to limit the project. The pitch angle of the roof is set to 3° while the dis-
tance between two diagonals at the upper chord is fixed to 3m as shown in figure
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4.1. The possible combinations of span length, roof truss girder’s height and evenly
distributed load were analysed in a parametric study with the purpose to find the
most optimized roof truss girders.

4.1 Loads and spans
To achieve as optimized cross-sections as possible the analysis for the upper chord
and the diagonal will be performed separately. This is mainly because the load
acting on the two different members varies and therefore two analyses performed
individually will be more favourable.

4.1.1 Upper chord
The analysis of the roof truss girder, which is performed in the parametric study
of the ongoing project "LightSpan", is done to all possible combinations of L, H
and Q that are shown in table 4.1. The results of the forces acting on the upper
chord, which has the length 3m, are presented below. Figure 4.2 shows the number
of elements that has a certain mid span moment. The mid span moment does not
have a major distribution along the x-axis and is concentrated between the moments
8 − 14 kNm. Furthermore, the ratio between mid span moments and end moments
for top chord elements is also very narrow as seen in figure 4.3. The ratio varies
between 0.6 to 1.5 for 90 % of all analysed top chords. The same results can be
viewed in figure 4.3 for the ratios between start and end moments for the top chord
elements. As a result of the minor ratio differences the mid span moments, start
moments and end moments are set to be of the same magnitude. The outcome of
this is that the parameter Ψ in table 3.9, which is the ratio between start and end
moment is set to 1. The parameter αs in the same table, which indicates the ratio
between the span and support moment is set to a constant value of -1. Figure 4.4
shows the moment distribution for the upper chord.
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Figure 4.2: Mid span moments for top chord elements.

Figure 4.3: Ratios between mid span moments, start moments and end moments
for top chord elements.

Figure 4.4: Moment distribution for upper chord.
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The mid span moments in figure 4.2 is compared to the axial forces for the upper
chord seen in figure 4.5. The axial forces are greater than the moments and as a
result the axial forces will have the major effect on the system. For the cross-section
optimization the mid span moment is set to 14 kNm for all the upper chord. This
value will cover over 90% of all the cases. For the axial force the values presented in
table 4.2 will be analysed to find one optimized cross-section for each force. These
values are steps as seen in the histogram illustrated in figure 4.5 to cover 90 % all
axial forces. For each axial force an optimized upper chord cross-section will be
created and added to a library.

Figure 4.5: Axial forces for top chord elements.

Table 4.2: Forces used to optimize the cross-section of the upper chord.

Forces acting on upper chord
N [kN ] -700 -900 -1300 -1400 -1500 -1600

MStart [kNm] 14
MMid.span [kNm] −14
MEnd [kNm] 14

4.1.2 Compressed diagonals
The compressed diagonals are analysed in the same way as the upper chord. For
the diagonals the length of the elements is not fixed and varies with regard to span
length and roof truss girder height. The parametric analysis done in the research
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project "LightSpan" is presented in figure 4.6 and shows that there are two main
groups for diagonals. The first group is diagonals between the lengths 1.5m to 3m
while the other group is made of diagonals with lengths between 3m to 4m.

Figure 4.6: Length for diagonal elements.

For the compressing axial forces there is a variation from −100 kN to −600 kN as
seen in figure 4.7. However, figure 4.7 does not give a clear picture of how the axial
force is distributed over the diagonal lengths. Figure 4.8 shows a scatter plot for
the diagonal lengths vs diagonals axial forces. From figure 4.8 it can be confirmed
that the behaviour of two groups as seen in figure 4.6 also stands for the axial force.
The first group has lengths between 1 m to 3 m with axial forces between 0 kN to
−100kN . The Second group consists of lengths between 3m to 4m with axial forces
between 0 to −600 kN .
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Figure 4.7: Axial forces for diagonal elements (only compression is shown).

Figure 4.8: Scatter of lengths vs axial force for diagonals.

As a result of the two groups of diagonals two different analysis of optimization
for cross-sections needs to be made. The first analysis will be made for "diagonal
group 1" while the second analysis for "diagonal group 2" as presented in table 4.3.
This will cover over 90 % of all possible cases. For each axial force an optimized
cross-section will be created and added to a library.
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Table 4.3: Axial forces and lengths to be used for cross-section optimization.

Forces and spans for diagonals

Diagonal group 1 Diagonal group 2

N [kN ] -100 N [kN ] -100 -200 -300 -400 -500 -600

L [m] 1,5 2 2,5 3 L [m] 3,5 4

4.2 Cross-sections
A variety of cross-section types is aimed at and therefore one open, one built-up
and two closed profiles were chosen. The open cross-section was chosen to a lipped
C profile as seen in figure 4.9 because it is a common cross-section and it can be
used as a diagonal for the truss girder. The C-section will be used as a diagonal and
can be subjected to flexural, distorsional, torsional buckling and flexural-torsional
buckling. An additional moment is also acting on this section due to shift of centroid
if the flanges are reduced.

Figure 4.9: C-section for diagonals.

A double back-to-back lipped C-section as seen in figure 4.10 was selected as the
built-up profile as to increase the capacity of a section, with an increased area, and it
can be used both as a diagonal and upper chord. Since the upper chord is subjected
to rather large loads with high magnitudes this cross-section will be the only section
used as an upper chord. Another reason for this choice is that the diagonals easily
can be mounted on the upper chord through the steel plate that runs through the
C-sections, see figure 4.10. The two webs of the two C-section will also be connected
with the steel plate. An assumption made for these cross-sections are that the webs
are rigidly connected throughout the length of the upper chord. In the real case the
webs are only rigidly connected where plates are placed as seen in figure 4.11. As a
result of this assumption the second moment of area will be lower for the real case.
In this study the difference will be neglected. For this case there will be no flexural
buckling in the z (see coordinate system in figure 4.1) direction since it is restrained
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due to the roof sheeting. As a result, the criteria showcased in equation 3.44 will
have a reduction factor, χz = 1.

Figure 4.10: Double back-to-
back c-section for diagonals and
upper chord.

Figure 4.11: Connection
between upper chord and di-
agonals.

The two closed sections are a hollow square section, see figure 4.12 and a hollow
hexagon, see figure 4.13. The purpose of the selected profiles is to compare the
square, which is a common profile, to a less used profile such as a hollow hexagon
and to learn about the potential of this shape. The risk for local buckling is less for
the hexagon if the same thickness is used. This might prove to be a more efficient
choice particularly for steels with higher strength. These two sections will serve as
diagonals and will therefore be subjected to compression and the following buckling
modes can occur: flexural buckling and torsional buckling. The distorsional buck-
ling will not be considered for the closed sections as it will not occur.

Figure 4.12: Square cross-
section for diagonals.

Figure 4.13: Hexagon cross-
section for diagonals.
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Optimization of cross-sections in

Matlab

To perform the calculations and checks described in Eurocode, Matlab is used.
Several Matlab functions were created to obtain the different parameters of a cross-
section as well as calculating the required checks. Matlab is also used to run the
genetic algorithm to obtain the results of the optimized cross-sections.

5.1 Matlab implementation
The different limitations and checks will be performed according to Eurocode, which
are described in chapter 3 and chapter 4. Each major calculation is performed in a
Matlab function and totally 14 functions were created and can be seen in Appendix
A. For the chosen cross-sections, see figure 5.1, various parameters will be calculated
as well as the cross-sectional capacity and buckling resistance.

Figure 5.1: The chosen cold-formed cross-sections.

5.1.1 Cross-section idealization
The Matlab functions created takes the idealized cross-section as input. An example
of an idealized lipped C-section is shown in figure 5.2. For rolled cold-formed steel
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sections the thickness is constant for all parts of the cross-section. This is also
almost always the case for built up cross-sections. As seen in figure 5.2 the idealized
dimensions therefore depends on the nominal thickness of the steel.

Figure 5.2: Idealization of C cross-section.

As input for the functions four matrices are required:
• Ey&Ez: coordinate matrices containing each parts coordinates in y and z axis
• t: thickness vector containing the thickness of each part
• es: matrix that contains each parts’ position, type and stress distribution

It is important to consider the numbering of the vectors Ey and Ez, they should be
defined as shown in figure 5.3 and the flange should she defined before the nearby
edgefold.

Some rules for how to number and give coordinates for each element in a cross-
section:

• all vertical elements should be oriented from bottom to top.
• all horizontal elements should be oriented from left to right.
• if the cross-section has edge folds (lips), the nearest flange coordinates should

always be presented before the coordinates of the edge fold. Example of that
is element 4 and 5 in figure 5.3.

• the origin of the coordinate system should always be at the bottom leftmost
part of the cross-section as seen in figure 5.2.
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Figure 5.3: Coordinates for idealized C cross-section.

Ey =


y1 y2
y2 y3
y4 y3
y1 y6
y6 y5

 Ez =


z1 z2
z2 z3
z4 z3
z1 z6
z6 z5



es =


StressDistribution1 PartPosition1 PartType1

... ... ...
StressDistribution5 PartPosition5 PartType5



StressDistribution:
1 for compression
2 for bending
3 for bending and compression

PartPosition:
1 for internal compression element
2 for outstand compression element

PartType:
1 for web
2 for flange
3 for edge fold
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The axis for the cross-sections in the Matlab functions are defined as in Eurocode
and are shown in figure 5.4. This is important to consider when calculations are
made for plane buckling around the weak and strong axis as well as for calculations
of the cross-section capacity. Furthermore, the centre of gravity in the Matlab
functions are defined as shown i figure 5.4. The centre of gravity of the two cross-
sections coincides at the intersection point of the y and z axis. ytp is defined from
the bottom of the element to the centre of gravity and ztp is the distance from the
left of the cross-section to the centre of gravity.

Figure 5.4: Bending axis and distance to neutral axis.

5.1.2 Matlab implementation of cross-section resistance

The main procedure to calculate the cross-sectional parameters is shown in the
flowchart presented in figure 5.5. The outputs from this procedure can then be used
to calculate the cross-section buckling capacity and the checks required as seen in
figure 5.6.

As seen in figure 5.5 the first step is to calculate the distance from the bottom of
the cross-section to the neutral axis and check all elements for cross-section classi-
fication. The Matlab functions used are seen in Appendix A.2 and Appendix A.1.
The outputs from these functions can further be used as inputs to calculate the
cross-sectional parameters needed to reduce all elements in class 4. The reduction
functions can be seen in Appendix A.4, Appendix A.7 and Appendix A.5 while the
cross-sectional parameters, second moment of area, torsional constant and warping
constant, can be calculated with Matlab functions presented in Appendix A.3, Ap-
pendix A.8 and Appendix A.9.

An example of the procedure to calculate the cross-section load carrying capacity
and all necessary checks as stated in Eurocode can be seen in Appendix B.
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Figure 5.5: Flowchart for procedure to obtain cross-sectional parameters.
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Figure 5.6: Flowchart for procedure to obtain cross-section capacity.

5.2 Cross-section optimization using genetic algo-
rithm

To find the most optimized cross-sections a genetic algorithm, GA, is used and it is
implemented in Matlab. The GA searches within a design space for the design pa-
rameters that results in the most optimized cross-section. The method is described
in chapter 5.2.1 and chapter 5.2.2.
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5.2.1 What is a genetic algorithm?

According to Pamfil, Palm (2021) the genetic algorithm optimization is used to find
a number of design parameters, x, which is a vector that contains the desired vari-
ables. The fitness function or also called objective function is dependent on these
variables and is used to calculate the maximum or minimum of some properties,
it can for example be the area or the price. The fitness function can be subjected
to constraints such as utilization ratio or geometrical constraints. By introducing
a lower and upper bound for each variable in the vector x, the sought solution is
narrowed to an interesting design range (Pamfil, Palm, 2021).

Pamfil, Palm (2021) further explains that the GA method can be compared to a
biological evolution. Random values, within upper and lower bound, of the design
parameters are picked and this creates a random population. For each individual the
objective function is calculated and based on the result the GA selects some parents
to reproduce children for the new generation. This is done through mutation and
cross-breeding. There is an exception for the best individuals, so called elites, which
have the lowest objective functions, these go straight to the next population. The
new population is seen as the next generation based on the previous generations’
properties (Pamfil, Palm, 2021).

The purpose of the genetic algorithm is to generate more accurate solutions with
high utilization for each new population and the GA will continue until convergence
is reached. This happens when the function tolerance is reached. The function tol-
erance is the difference between two generations fitness functions. The termination
criteria can also be the number of maximum generations and the GA will stop when
this is reached.

5.2.2 Genetic algorithm implementation

The set-up of the genetic algorithm is seen in figure 5.7 and an example of the GA
set up in Matlab is seen in Appendix C. As input for the GA the number of vari-
ables (Nvars), the upper and lower bound and options for the GA are required. For
the optimization of the C-section and double C-section the variables are the height,
width, lip length and the thickness of the sections. As for the hollow square and hol-
low hexagon the variables are the height, width and thickness of the sections. The
upper and lower bounds are kept the same for the different profiles and are presented
in table 5.1. The geometrical dimensions are based on manufacturing constraints.
However, the thickness is seen as a discrete variable which varies between 2mm and
5mm with an increment of 0.1mm. This is due to the standard thicknesses of the
steel sheets.
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Table 5.1: Lower and upper bounds for the variables.

Variables
Lower

bound [mm]

Upper

bound [mm]

hw 50 160

bf 50 200

c 10 30

t 1 5

Figure 5.7: Flowchart for GA-optimization of cross-sections

The GA options shown in figure 5.7 are population size, max generations, elite count,
function tolerance and initial population. A convergence study was performed to
obtain the optimal population size to be used. The result of the study can be
seen in figure 5.8 which shows that the variables converge after a population size of
200 ·Nvars. The value for max generations is set to 100 ·Nvars, this is the generation
at which the optimization terminates. The optimization can also be terminated if
the function tolerance is reached before the max generation.
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Table 5.2: Input data for GA-options.

GA-Options

Population size 200 ·Nvars

Max generation 100 ·Nvars

Elite count 50

Function tolerance 1 · 10−9

Figure 5.8: Convergence study for variables with different population sizes.

The constraints for the GA optimization are to achieve a high utilization ratio of
the cross-sections load carrying capacity. The utilization ratio sought-after should
be close to 100 %. Furthermore, there are some geometrical constraints that need
to be fulfilled to imply the Eurocode analysis method. These constraints are shown
in table 5.3.

Table 5.3: Geometrical constraints applied from Eurocode 1993-1-3 (2006).

Geometrical constraints

b/t ≤ 60

c/t ≤ 50

h/t ≤ 500
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6
Results and discussion

The analysed roof truss girders, as described in chapter 4, are to be optimized for
a utilization ratio of 100 % using a genetic algorithm. The genetic algorithm is
set to minimize the total area of each cross-section used in the relevant roof truss
girder. For the upper chord of the roof truss only one cross-section is analysed,
double back-to-back C-section. The upper chord can be subjected to different loads
depending on the span of the roof truss, the applied evenly distributed loads and
height of the roof truss girder as presented in table 4.1. The most common combina-
tions are presented in table 4.2. For each compression force and applied moment an
optimized cross-section is defined and presented in this chapter to create a library of
cross-sections. Moreover, how these cross-sections are reached in the optimization
is analysed.

The compressed diagonals in the roof truss girders can be divided into two groups
as seen in table 4.3. For each group of diagonals four possible cross-sections are
analysed. The possible cross-sections are presented in chapter 4. A library of cross-
sections for the compressed diagonals is presented in this chapter.
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6.1 Upper chord
For the upper chord the cross-sectional area can be seen in figure 6.1. The results
show that for higher applied force the cross-sectional area increases linearly for each
steel yield strength. It can also be seen that the higher yield strength steel needs less
cross-sectional area to achieve enough load carrying resistance. The ratios between
areas needed to achieve enough load carrying resistance for different steel yield
strengths can be seen in figure 6.4. For the upper chord a fixed length of 3m is set.
The cross-section analysed can be seen in figure 6.2 while the moment distribution
with applied axial force and moment can be seen in figure 6.3.

Figure 6.1: Area needed to obtain enough load carrying resistance for different
steel qualities; Upper chord L = 3m.

Figure 6.2: Cross-
section of upper chord el-
ement.

Figure 6.3: Moment distribution over
the upper chord.

It can also be seen from figure 6.1 that as the axial force increases the area needed to
achieve enough load carrying resistance for different steel yield strength is not pro-
portional. This behaviour is due to local buckling being more susceptible for higher
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yield strength steel. To illustrate this behaviour the S355 steel is set as reference and
the ratio of needed area for different yield strength steel can be compared as seen in
figure 6.4. The figure presents the ratio of needed area when higher yield strength
steel is used for increasing axial force. When S460 steel is used the upper chord
needs between 18 % − 22 % less area, while for S690 steel needs between 32 % − 39 %
less area. Considering that the difference in cost between S355 and S460 steel is
minimal with savings of 18%−22% in weight the S460 steel is more efficient to use.
For S690 steel there is even more weight savings to be done, however, this comes
with an added cost. For S690 steel the cost saved in material weight will be added
back by higher steel yield strength cost. The cross-section library for the upper
chord can be seen in table 6.1 with steel yield strength of 460MPa.

Figure 6.4: Ratios between areas needed to obtain enough load carrying resistance
for different steel yield strengths; Upper chord L = 3m.

Table 6.1: Optimized cross-sections for different applied loads; upper chord fy =
460MPa.

NEd

[kN ]

hw

[mm]

bf

[mm]

c

[mm]

t0

[mm]

Area

[mm2]

UR

Cross-section

UR

Buckling

700 132 76 13 4,4 2728 0,9622 0,9756

900 144 77 13 4,8 3110 0,9734 0,9806

1300 149 99 24 5 3950 0,9719 0,9809

1400 150 106 28 5 4148 0,9687 0,9782

1500 149 114 32 5 4410 0,9726 0,9804

1600 150 121 36 5 4640 0,9736 0,9795
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An interesting observation for the upper chord is that the web height first reaches
the upper limit set in the GA optimization followed by the flange width as seen
in figure 6.5. This is due to the fact that the upper chord design is governed by
bending/buckling around y-y axis and the most optimum utilization of material in
the cross-section is obtained by, first increasing the web height, and when the upper
limit value is reached, by increasing the flange width. It can also be seen that the
thickness reaches the upper limit for S355 and S460 steel to increase the buckling
resistance for higher loads.

Figure 6.5: Dimensions of upper chord cross-section vs applied force.

In this study only a minimal area of the cross-section is set as a fitness function for
the GA. However, looking at different steel strengths for a given applied force of
700 kN the lower strength steel achieves higher utilization ratios, especially cross-
section resistance utilization ratio, in comparison to S690 steel. For the upper chord
it can also be seen that for S460 steel both the cross-section resistance utilization
ratio and buckling resistance utilization ratio reaches nearly 100 %. The difference
in area of the cross-section can be seen in table 6.2. If the goal is to achieve the
highest utilization ratios than the lower yield strength steel is too be used. It can be
argued that the greater area for the lower yield strength steel can be justified by the
cost of higher-grade steel. Considering that S460 steel also reaches full utilization
ratios with almost no difference in price compered to S355 steel indicates that S460
steel is the best alternative for the upper chord. However, the least area will be
achieved by using S690 steel. The library is created using S460 steel as it reaches
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full utilization ratio and needs less area compered to S355 steel with no major added
cost.

Table 6.2: Cross-section dimensions for applied normal force NEd = 700 kN and
different steel strengths.

NEd

[kN ]

hw

[mm]

bf

[mm]

c

[mm]

t0

[mm]

Area

[mm2]

fy

[MPa]

UR

Cross-section

UR

Buckling

Difference in area

[%]

700 158 87 24 3 2280 690 0,7834 0,9806 -

700 132 76 13 4 2728 460 0,9622 0,9755 18

700 150 96 17 4 3309 355 0,9798 0,9790 31

6.2 Compressed diagonals
The optimized cross-sections for the two diagonal groups will be presented in two
separate sub-chapters to easily distinguish the result. The outcome of the GA is
presented in figures and tables and some load and spans are analysed to gain further
understanding of how the optimization is obtained. When analysing the result of
for different lengths of the diagonals mainly analyses of diagonal 1 is presented.
However, it should be mentioned that the same behaviour was seen for diagonal 2
in the cases that has been looked analyzed.

6.2.1 Diagonal group 1
The results of diagonal 1, which is subjected to 100 kN, is presented in figure 6.6
where the area and length of the diagonal is displayed. The four cross-sections were
optimized, and the first graph represents the yield strength fy = 355 MPa, the
middle graph fy = 460MPa and the last fy = 690MPa.

For the S355, the most optimized section for diagonals longer than 1.75 m is ob-
tained for the hexagon cross-sections. It was expected to reach a lower area for the
hollow square- and hexagon-sections compared to C- and double C-sections since
these closed sections have higher stiffness, less torsion and distorsional buckling ef-
fects.

It is interesting that the C-section is a better choice, when it comes to area, than the
double C-section for different lengths of the diagonal when S355 or S460 are used.
For S690, double C-sections give a slightly lower cross-sectional area for longer diag-
onals. This is mainly due to the effects of local buckling. For double C-section there
are two webs located on the natural axis giving less effect for the second moment
of area. This will result in greater area compared to a C-section. This behaviour
is further explained in chapter 6.2.1.2. However, a hypothesis is that the double
C-section can have higher buckling resistance for the limits set in the GA compared
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to a C-section.

Another interesting observation from figure 6.6 is that the area of the hexagon cross-
section does not change for the first two lengths. This is due to the lower limits set
in the GA optimization for width and height. It is concluded that widths and height
smaller than 50mm are not in the scope of this study. However, changing the lower
limit will not affect the results in a major way as the hexagon cross-section area is
linear. The hexagon cross-section area will therefore be parallel line with the square
cross-section line seen in figure 6.6.

Figure 6.6: Area needed to obtain enough load carrying capacity for different
cross-sections; diagonal 1.

For all cross-sections used as diagonals the utilization ratio is close to 100 %. The
comparison between the different cross-sections is therefore only dependent on the
area. For the optimization done in this study only the buckling resistance utilization
ratio is of interest for the compressed diagonals. This results in high utilization ratio
for different steel yield strengths. For the cross-section analysed the most effective
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cross-section is square cross-section as seen in figure 6.7 and the dimensions are
presented in table 6.3.

Figure 6.7: Cross-section of diagonal 1.

Table 6.3: Optimized cross-sections for different length of diagonal elements with
applied force NEd = 100 kN ; diagonal 1 fy = 690MPa (square cross-section).

L

[m]

hw

[mm]

bf

[mm]

t0

[mm]

Agross

[mm2]

UR

Buckling

1,5 54 55 1,4 305 0,9771

2 65 66 1,4 367 0,9741

2,5 76 75 1,4 423 0,9764

3 81 82 1,5 489 0,9802

For the full roof truss girder concept the square and hexagon cross-section will prac-
tically not work as diagonals. This is due to the connection between the upper
chord (back-to-back double C-section) and the diagonals being difficult to manu-
facture for closed sections. From a manufacturing and construction point of view,
open section will be feasible with regards to connection between the upper chord
and diagonals. The library for both groups of diagonals will therefore consist of C-
sections as seen in figure 6.8. For diagonal 1 the final library is presented in table 6.4.

Table 6.4: Library for diagonal group 1 with applied force NEd = 100kN consisting
of C-section with S690 steel (fy = 690MPa).

L
[m]

hw
[mm]

bf
[mm]

c
[mm]

t0
[mm]

Agross
[mm2]

UR
Buckling

1,5 50 50 22 2,1 407 0,9536
2 151 86 12 1,5 521 0,9807

2,5 158 94 10 1,7 622 0,9759
3 160 108 13 1,8 724 0,9790
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Figure 6.8: Back-to-back C-section used as diagonal.
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6.2.1.1 Square cross-section vs hexagon cross-section

When the higher yield strengths are analysed, it can be seen in figure 6.6 that the
most optimized cross-section is the hollow-square section both for the case where
fy = 460 MPa and fy = 690 MPa. The reason for that is that the square-section
needs to be reduced for fy = 355 MPa and when fy is increased the section can
be more compact (with shorter wall height) and thus the effective width (area) is
increased. For lower yield strength steel (fy = 355 MPa) it can also be seen that
the hexagon cross-section will need less area compared to the square cross-section.
This is due to that the slenderness of the walls in the hexagon cross-section is less
than that for a square cross-section with the same area. This is mainly due to the
bends in the hexagons cross-sections webs acting as stiffeners or dividers to reduce
the effects of local buckling. This can be seen in figure 6.9 and figure 6.10 where the
square cross-section strength will be determined by buckling strength while hexagon
cross-section by yield strength for fy = 355MPa. The reduction of area of the cross-
section due to local buckling is seen in figure 6.9 and figure 6.10 as red dotted lines.

Figure 6.9: Square cross-section shape for different span lengths in group diago-
nal 1. Cross-section capacity determined by local buckling if cross-section area is
reduced (class 4).
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Figure 6.10: Hexagon cross-section shape for different span lengths in group diag-
onal 1. Cross-section capacity determined by local buckling if cross-section area is
reduced (class 4).

To better understand what happens when comparing the hollow square and hollow
hexagon section the effective areas, along with the second moment of areas, for the
two cross-sections are presented in table 6.5. The values represent the yield strength
fy = 690MPa and different lengths of the diagonal.

Table 6.5: Square cross-section vs hexagon cross-section effective area and second
moment of area for different length of diagonals fy = 690MPa.

Square cross-section Hexagon cross-section

L

[m]

Aeff

[mm2]

Iy

[mm4]

Iz

[mm4]

Aeff

[mm2]

Iy

[mm4]

Iz

[mm4]

1,5 211 1, 532 · 105 1, 490 · 105 310 3, 355 · 105 3, 208 · 105

2 219 2, 653 · 105 2, 593 · 105 310 3, 355 · 105 3, 208 · 105

2,5 225 3, 977 · 105 4, 057 · 105 317 5, 436 · 105 4, 270 · 105

3 258 5, 464 · 105 5, 364 · 105 365 7, 189 · 105 5, 648 · 105
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Despite that the hollow hexagon cross-section has a smaller effective area for the
same diagonal length and yield strength, the buckling resistance of a hollow square is
higher. This can be explained through equation 6.1, even if the effective area (Aeff )
is smaller for one case the buckling resistance can reach a higher value through a
greater reduction factor (χ). The parameter Ncr in equation 6.2 is dependent on the
second moment of area (I) and a smaller I will result in a greater reduction factor,
and this is the case here and thereby the buckling resistance is greater.

Nb,Rd = χAefffy (6.1)

Where:

χ =
√
Ny

Ncr

(6.2)

6.2.1.2 Single C-section vs double C-section

From the results it can also be seen that the double C-section generally needs more
area compared to a C-section for the same applied axial force on the diagonals. A
hypothesis was that the double C-section will for most cases need less area when
used as a diagonal.

The results shows that both the cross-sections have a similar height of the web
which is most critical to have enough buckling resistance. On the other hand, the
length of the flange is shorter for the double C-section as well as thinner nominal
thickness. This results in a rather equal area of the two sections. This could be
seen for other cases as well (other span lengths and yield strengths). For the double
C-section that the flange is 40mm for most spans, which is the lower limit set in the
GA. This will result in a double C-section with greater area than that for a C-section.

Compering the dimensions of a C-section and a double C-section the slenderness of
the two cross-sections will be nearly the same. As the double C-section consists of
two back-to-back C-section the natural axis in y-y plane will be where the two webs
are connected. The results show that the global optimization wants to reach the
same magnitude for the second moment of area in both the y-y and z-z plane. Both
the cross-sections will also have very similar second moment of area, as the same
buckling resistance is sought after. This can be seen in figure 6.11. As a result of
this the web height for the two cross-sections will be nearly the same to achieve the
same second moment of area in y-y plane. The distance from the natural axis to the
flange centre of gravity for the double C-section will also yield in a smaller width
for the flanges as compared to a C-section.
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Figure 6.11: Second moment of area for C-section and double C-section.

6.2.2 Diagonal group 2
As mentioned previously the compressed diagonals are analysed in two groups that
covers the most common lengths and applied forces for typical roof truss girders in
the studied interval. The second group of diagonals, diagonal 2, are subjected to
compression forces that varies between 100 kN and 600 kN with lengths between
3, 5 m and 4 m, which is presented in table 4.3. For this group, an optimization
is made to create a library of optimized cross-section for the different lengths and
applied forces. The optimizations aim is to find the lowest area possible for a cross-
section that is needed to have enough buckling resistance. For the four cross-sections
analysed (see chapter 4) the area needed for each cross-section can be seen in fig-
ure 6.12 for steel yield strength of 355 MPa, figure 6.13 for steel yield strength of
460MPa and figure 6.14 for yield steel strength of 690MPa.

From the results the most optimized cross-section for steel yield strength of 355MPa
is the hexagon cross-section for five out of six cases. However, for higher strength
steel the square cross-section will need less area to achieve the same buckling resis-
tance of the hexagon cross-section. This trend is in line with the results seen for
diagonal group 1. An interesting observation is that for an applied load of 600kN on
a diagonal with length of 3, 5m the cross-section with lowest is hexagon cross-section
with steel yield strength of 460MPa.
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From figure 6.12 it is seen that for all applied forces greater then 100kN the hexagon
cross-section with S355 steel is the best followed by square cross-section. It can also
be seen that the double C-section is the least effective.

Figure 6.12: Area needed to obtain enough load carrying capacity for different
cross-sections; diagonal 2, fy = 355MPa.
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From figure 6.13 it is seen that single and double C-section requires almost the same
area for S460 steel. The closed sections (hexagon and square sections) are closer
in terms of area. However, hexagon cross-section becomes more efficient for higher
axial forces.

Figure 6.13: Area needed to obtain enough load carrying capacity for different
cross-sections; diagonal 2, fy = 460MPa.
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From figure 6.14 it is seen that single C and double C-sections still have rather
moderate difference in term of area for S690 steel, the double C-section becomes
more efficient with steel yield strength of 690 MPa compared to yield strength
355 MPa. It can also be seen that the square cross-section is better in terms of
less area than the hexagon cross-section for all applied forces and different diagonal
lengths.

Figure 6.14: Area needed to obtain enough load carrying capacity for different
cross-sections; diagonal 2, fy = 690MPa.
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Figure 6.15: Hexagon
cross-section for diagonal
2

Figure 6.16: Square
cross-section for diagonal
2

The theoretical library created for diagonal group 2 can be seen in table 6.6. The
most dominant cross-section is the square cross-section as seen in the table. For
each cross-section shown in table 6.6 the dimensions are presented in table 6.7.

Table 6.6: Optimized cross-sections type for different length and applied forces of
diagonal elements; diagonal 2.

100 200 300 400 500 600

3,5 Square-1 Square-2 Square-3 Square-4 Square-5 Hexagon-1

4 Square-6 Square-7 Square-8 Square-9 Square-10 Square-11

70



6. Results and discussion

Table 6.7: Dimension of optimized cross-sections described in table 6.6.

hw

[mm]

bf

[mm]

t0

[mm]

fy

[MPa]

Agross

[mm2]
UR

Hexagon-1 95 95 3,2 460 1824 0,9741

Square-1 90 90 1,5 690 540 0,9779

Square-2 105 105 2 690 840 0,9724

Square-3 115 114 2,4 690 1099,2 0,9798

Square-4 123 123 2,7 690 1328,4 0,9785

Square-5 129 129 3 460 1548 0,9782

Square-6 96 95 1,6 690 611,2 0,9774

Square-7 114 116 2 690 920 0,9773

Square-8 126 124 2,4 690 1200 0,9795

Square-9 134 134 2,7 690 1447,2 0,9764

Square-10 140 140 3 690 1680 0,9806

Square-11 145 145 3,3 690 1914 0,9734
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As stated previously the closed cross-section are theoretically better for use as diag-
onals, however, in the concept used for the roof truss girders in this thesis only open
cross-section are feasible to use as diagonals. This is due to the connection between
the upper chord and diagonals. For diagonal group 2 a C-section is used with the
dimensions presented in table 6.8.

Table 6.8: Library for diagonal group 2 with consisting of C-section with S690
steel (fy = 690MPa).

L

[mm]

hw

[mm]

bf

[mm]

c

[mm]

t0

[mm]

Agross

[mm2]

NEd

[kN ]

UR

Buckling

3,5 67 72 21 3,3 835 100 0,9781

3,5 76 84 21 4,5 1287 200 0,9777

3,5 127 88 22 5 1735 300 0,9791

3,5 160 131 10 5 2210 400 0,9776

3,5 160 173 10 5 2630 500 0,9767

3,5 160 200 25 5 3050 600 0,9795

4 72 79 22 3,4 932 100 0,9800

4 85 91 22 4,6 1431 200 0,9797

4 160 97 22 5 1990 300 0,9793

4 160 165 10 5 2550 400 0,9783

4 160 200 27 5 3070 500 0,9828

4 160 200 56 5 3360 600 0,9829
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7
Conclusion

The genetic algorithm used for the optimization of steel cross-section analysed in
this Master’s thesis is set to reach a utilization ratio, for both cross-section resistance
and buckling resistance, close to 100 %. The genetic algorithm test different values
for web height, flange width and thickness through a number of generations until
minimal area with high utilization ratio is reached. The sensitivity of the GA is sus-
ceptible to the population size and therefore a convergence study was performed to
get the settings needed for high accuracy. The conclusions of the global optimization
using the genetic algorithm are presented in this chapter.

7.1 Upper chord
For roof truss girders subjected to uniformly distributed loads with spans between
30 − 40 m the upper chord, back-to-back double C-section, has optimized cross-
sections as seen in table 7.1.

For the upper chord the library created with back-to-back double C-section is seen
in table 7.1 where S460 steel is used. The presented cross-sections are dimensioned
for axial loads of 700−1600kN with applied moment of 14kNm. For S355 steel the
cross-sections will have high utilization ratios, however, the area needed to achieve
enough load carrying resistance is greater than that for S460 steel. Considering that
S460 steel and S355 steel is within the same price range it is more efficient to use
S460 steel. As for the S690 steel the needed area to achieve enough load carrying
resistance is even less than that for S460 steel but the utilization ratio will be lower.
Furthermore, the cost of S690 steel is not within the same price range as S355 and
S460 steel and therefore S460 steel is chosen.

Table 7.1: Library for upper chord consisting of back-to-back double C-section,
fy = 460MPa.

hw

[mm]

bf

[mm]

c

[mm]

t0

[mm]

Agross

[mm2]

Iy

[mm4]

Iz

[mm4]

IT

[mm4]

IW

[mm6]

W

[mm3]

CC-145x80 145 80 15 5 3350 1, 223 · 107 6, 301 · 106 2, 792 · 104 9, 805 · 109 1, 687 · 105

CC-150x110 150 110 30 5 4300 1, 740 · 107 1, 812 · 107 3, 583 · 104 3, 376 · 1010 2, 200 · 105

CC-150x120 150 120 40 5 4700 1, 884 · 107 2, 556 · 107 3, 917 · 104 5, 603 · 1010 2, 556 · 105
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7.2 Compressed diagonals
For the compressed diagonals the library created can be seen in the tables below.
The hypothesis made for the diagonals was that the hexagon cross-section would be
the optimal cross-section. This hypothesis was made as the hexagon cross-section
has less risk for local buckling. Furthermore, closed cross-sections are less suscep-
tible to torsional buckling. The results from this study show that the hexagon
cross-section will have less risk for local buckling. However, the square cross-section
needs less area, for most of the cases, to achieve the same buckling resistance as the
hexagon cross-section when higher yield strength is used. For lower yield strength
steel, the hexagon cross-section’s better resistance to local buckling will result in
less area compared to the square cross-section. For diagonal group two with length
3, 5m and applied axial force of 600kN the hexagon cross-section with yield strength
of 460MPa will have the smallest area. Due to manufacturing difficulties the closed
cross-sections are not feasible to use as diagonals when the upper chord is a double
C-section. An open C cross-section is therefore used and presented in the table 7.2
for diagonal group 1 and 2.

Table 7.2: Library for compressed diagonals consisting of C-section, fy = 690MPa

hw

[mm]

bf

[mm]

c

[mm]

t0

[mm]

Agross

[mm2]

Iy

[mm4]

Iz

[mm4]

IT

[mm4]

IW

[mm6]

W

[mm3]

C-50x50x2 50 50 25 2 400 1, 563 · 105 1, 667 · 105 533 2, 331 · 108 5854

C-160x110x2 160 110 15 2 820 3, 815 · 106 1, 344 · 106 1093 5, 347 · 108 28824

C-75x80x4 75 80 25 4 1140 1, 177 · 106 1, 128 · 106 6080 1, 816 · 108 26683

C-85x90x5 85 90 25 5 1575 2, 121 · 106 1, 936 · 106 13125 3, 486 · 108 42313

C-130x90x5 130 90 25 5 1800 5, 422 · 106 2, 252 · 106 15000 6, 987 · 109 67755

C-160x110x5 160 110 25 5 2150 9, 901 · 106 3, 862 · 106 17917 1, 665 · 109 83985

C-160x170x5 160 170 10 5 2600 1, 315 · 107 9, 237 · 106 21667 3, 877 · 109 132390

C-160x200x5 160 200 25 5 3050 1, 566 · 107 1, 618 · 107 25417 7, 268 · 109 144017
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7.3 Further studies
Further studies can be to analyse other cold-formed profiles than those chosen in
this project. This is to find if any other shape of a cross-section can be more optimal
with respect to a smaller area and high utilization ratio.

In this study an assumption is that the diagonals are not subjected to any moment.
In the real case the diagonals are subjected to a moment due to the eccentricity
from point of force application (at bolt connection) to centre of gravity for the
cross-section. Figure 7.1 shows a principal bolt connection between an upper chord
(double C-section with a gap) and a diagonal (C-section). The eccentricity is seen
as a distance e.

Further studies can analyse the extra moment due to eccentricity of the bolted
connection and to have the diagonals placed in between the double C-sections of the
upper chord. A hypothesis is that due to the extra moment the double C-section will
have less needed area for the diagonals. In the results from this thesis the double
C-section is not relevant for diagonals as the area is always bigger than that for a
C-section.

Figure 7.1: Bolt connection between upper chord and diagonal. Upper chord
consist of a double back-to-back C-section with a gap.

Another interesting aspect that can be analysed in further studies is using a dou-
ble C-section with a gap (as seen in figure 7.1) for the upper chord and placing
the diagonals between the two C-sections of the upper chord. As this study is to
analyse optimization for both upper chord and diagonals the gap between the two
C-section in the upper chord should not be set to width. For a set width for the
gap the web height of the diagonals would also be set, and the optimization would
be very limited. Further studies could include the optimization of the gap between
the two C-section for the upper chord or optimization of web height for the diagonals.
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7. Conclusion

Further investigation is to optimize the roof truss girder by running the optimization
again with the obtained cross-sections. By using the double C-section as the upper
chord and the square-section as the diagonals. As a result, other lengths of the
diagonals, moments and axial forces will be obtained. That will further lead to
other dimensions of the optimized cross-sections.
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A
Appendix: Matlab functions

A.1 Cross-section classification

function [y_tp,class,epsilon]=CSC(Ex,Ey,t,fy,es)

% Written by: Mahdi Mahdi, Chalmers University of Technology
% Master’s Thesis 2022
%----------------------------------------------------------------------
% PURPOSE
% Compute classification for each part in a cross-section.
%
% INPUT: Ex = [x_1 x_2;
% .
% .
% .
% x_n x_m]
%
% Ey = [y_1 y_2;
% .
% .
% .
% y_n y_m] [n,2] Matrix, Element node coordinates
% Each row corresponds to a new part
%
% t Element thickness [n,1] matrix
% fy Yield strength
%
% es = [StressDistribution_1 PartPosition_1 PartType_1;
% .
% .
% .
% StressDistribution_m PartPosition_n PartType_n]
%
% [n,3] Matrix, one row for each part
%
% StressDistribution 1 for Compression only
% 2 for Bending
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A. Appendix: Matlab functions

% 3 for Compression and Bending
%
% PartPosition 1 for Internal compression part
% 2 for Outstand flange
%
% PartType 1 Web
% 2 Flange
% 3 Edge fold
%
%
%
%
% OUTPUT: y_tp: Distance from bottom of cross-section to
% centroid
%
% class: [n,1] Matrix
% n: Cross-section classification for each element
%
% epsilon: Strain relation
%------------------------------------------------------------------------

% LAST MODIFIED: 2022-03-01 by Mahdi Mahdi
%------------------------------------------------------------------------

%---------------------Gross section parameters---------------------------

% Strain relation
epsilon=sqrt(235/fy);

% Function that calculates the distance from bottom of cross-section to
% centroid
y_tp=ytp(Ex,Ey,t);

%-----------------Cross-section classification-----------------------

for i=1:length(Ex)

% Length of element
c=sqrt((Ex(i,2)-Ex(i,1))^2 + (Ey(i,2)-Ey(i,1))^2);

% Class limits for internal compression part subjected only to compression
if es(i,1)==1 && es(i,2)==1
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A. Appendix: Matlab functions

class1=33*epsilon;

class2=38*epsilon;

class3=42*epsilon;

end

% Class limits for an outstand flange part subjected only to compression
if es(i,1)==1 && es(i,2)==2

class1=9*epsilon;

class2=10*epsilon;

class3=14*epsilon;

end

% Class limits for an internal compression part subjected to bending
if es(i,1)==2 && es(i,2)==1

class1=72*epsilon;

class2=83*epsilon;

class3=124*epsilon;

end

% Class limits for an outstand flange part subjected to bending
if es(i,1)==2 && es(i,2)==2

disp([’Outstand flange elements can only be subjected to’ ...
’ compression or compression and bending, not only bending’])

end

% Class limits for an internal compression part subjected to combined
% bending and compression

alpha=y_tp/(max(max(Ey)-y_tp));
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% if part is in bending or bending & compression but the whole part
% is in the compression zone than zeta is expressed as the
% following:

if (es(i,1)==2 || es(i,1)==3) && Ey(i,1) >= y_tp

zeta=-(Ey(i,1)-y_tp)/(Ey(i,2)-y_tp);

% if part is in bending or bending & compression and the part is
% not only in compression zone than zeta is expressed as the
% following:
elseif (es(i,1)==2 || es(i,1)==3) && Ey(i,1) < y_tp

zeta=-(Ey(i,1))/(Ey(i,2)-y_tp);
end

% If part is in bending & compression than class limits are calculated as
% the following

if es(i,1)==3 && es(i,2)==1

if alpha > 0.5

class1=(396*epsilon)/(13*alpha-1);

else
class1=(36*epsilon)/alpha;

end

if alpha > 0.5

class2=(456*epsilon)/(13*alpha-1);

else
class2=(41.5*epsilon)/alpha;

end

if zeta > -1
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class3=(42*epsilon)/(0.67+0.33*zeta);

else
class3=62*epsilon*(1-zeta)*sqrt(-zeta);

end
end

% Class for part according to limits calculated above. The element is in
% class 4 if non of the limits are compatible.
if class1>= c/t(i)

class(i,1)=1;

elseif class2>= c/t(i)

class(i,1)=2;

elseif class3>= c/t(i)

class(i,1)=3;

else

class(i,1)=4;

end
end
end

A.2 Distance to centroid
function [y_tp,A]=ytp(Ex,Ey,t)

% Written by: Mahdi Mahdi, Chalmers University of Technology
% Master’s Thesis 2022
%-------------------------------------------------------------------------
% PURPOSE
% Compute the distance from bottom of cross-section to centroid and the
% area of the cross-section
%
%
% INPUT: Ex = [x_1 x_2;
% .
% .
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% .
% x_n x_m]
%
% Ey = [y_1 y_2;
% .
% .
% .
% y_n y_m] [n,2] Matrix, Element node coordinates
% Each row corresponds to a new part
%
% t Element thickness [n,1] matrix
%
% OUTPUT:
% y_tp: Distance from bottom of cross-section to
% centroid
%
% A: Area of cross-section
%-------------------------------------------------------------------------
%
% LAST MODIFIED: 2022-03-01 by Mahdi Mahdi
%-------------------------------------------------------------------------

top=0;
for i=1:length(Ex)

% Length of element
c=sqrt((Ex(i,2)-Ex(i,1))^2 + (Ey(i,2)-Ey(i,1))^2);

% If change in x-axis is zero than element is 90° to x-axis

if (Ex(i,2)-Ex(i,1))==0

% Angle of element from x-axis
theta=pi/2;

else

theta=atan(sqrt((Ey(i,2)-Ey(i,1))^2/(Ex(i,2)-Ex(i,1))^2));

end

% If angle of element is 0° than midpoint of element is at
% half thickness (where our x-axis is, therefore y_e=0).
if theta==0
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y_e=0;

else

% Length from element mid point to element bottom
y_e=sin(theta)*c/2;

end

% Length from x-axis of coordinate system to midpoint of element
y_i(i)=Ey(i,1)+y_e;

% Area of element
A_i(i)=t(i)*c;

% Sum of each part
top=top+A_i(i)*y_i(i);

end

% Area of cross-section
A=sum(A_i);

% Distance from bottom of cross-section to centroid
y_tp=top/A;

end

A.3 Second moment of area
function [I]=SecondMomentOfArea(Ex,Ey,t,y_tp)

% Written by: Sarah Aref & Mahdi Mahdi, Chalmers University of Technology
% Master’s Thesis 2022
%-------------------------------------------------------------------------
% PURPOSE
% Compute the second moment of area of a cross-section.
%
% INPUT: Ex = [x_1 x_2;
% .
% .
% .
% x_n x_m]
%
% Ey = [y_1 y_2;
% .
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% .
% .
% y_n y_m] [n,2] Matrix, Element node coordinates
% Each row corresponds to a new part, n is
% number of parts
%
% t Element thickness [n,1] Matrix
%
% y_tp Distance from bottom of cross-section to centroid
%
%
% OUTPUT:
% I: Second moment of area of cross-section
%------------------------------------------------------------------------
%
% LAST MODIFIED: 2022-03-26 by Sarah Aref
%-------------------------------------------------------------------------

I_i=0;

for i=1:length(Ex)

% Length of each element
c=sqrt((Ex(i,2)-Ex(i,1))^2 + (Ey(i,2)-Ey(i,1))^2);

% Calculating angle of element from x-axis
theta=atan(sqrt((Ey(i,2)-Ey(i,1))^2/(Ex(i,2)-Ex(i,1))^2));

%-----------------------If change in x-axis is zero-----------------------
%-----------------------the element is 90° to x-axis----------------------

% If element is above the neutral axis
if ((Ex(i,2)-Ex(i,1))==0) && (max(Ey(i,:)) > y_tp)

theta=pi/2;

% Distance from element midpoint to element bottom
y_e=sin(theta)*c/2;

% Calculating second moment of area for each element
I_i(i)=t(i)*c^3/12+(t(i)*c*(y_tp-(Ey(i,1)+y_e))^2);

% If element is below the neutral axis
elseif ((Ex(i,2)-Ex(i,1))==0) && (max(Ey(i,:)) < y_tp)
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theta=pi/2;

% Distance from element midpoint to element bottom
y_e=sin(theta)*c/2;

% Calculating second moment of area for each element
I_i(i)=t(i)*c^3/12+(t(i)*c*(y_tp-y_e)^2);

%------------------------If angle of element is 0°------------------------

% If the element is above the neutral axis
elseif (theta==0) && (max(Ey(i,:)) > y_tp)

% Calculating second moment of area for each element
I_i(i)=c*t(i)^3/12+(c*t(i)*(Ey(i,2)-y_tp)^2);

% If the element is below the neutral axis
elseif (theta==0) && (max(Ey(i,:)) < y_tp)

% Calculating second moment of area for each element
I_i(i)=c*t(i)^3/12+(c*t(i)*(y_tp-Ey(i,2))^2);

%------------------------If the element is inclined------------------------

% If element is above the neutral axis
elseif (max(Ey(i,:)) > y_tp)

% Distance from element midpoint to element bottom
y_e=sin(theta)*c/2;

% Calculating second moment of area for each element
I_i(i)=t(i)*c/12*(c^2*cos(theta)^2+t(i)^2*sin(theta)^2)...

+(t(i)*c*(Ey(i,2)-y_tp-y_e)^2);

% If element is below the neutral axis
elseif (max(Ey(i,:)) < y_tp)

% Distance from element midpoint to element bottom
y_e=sin(theta)*c/2;

% Calculating second moment of area for each element
I_i(i)=t(i)*c/12*(c^2*cos(theta)^2+t(i)^2*sin(theta)^2)+...

(t(i)*c*(Ey(i,1)+y_e-y_tp)^2);
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end

% Total second moment of area
I=sum(I_i);

end

A.4 Flange reduction
function [Ex_flange,Ey_flange,t_flange,es_flange]=...

flangeEdgefoldReductionCompression(Ex,Ey,t,es,class,epsilon)

% Written by: Mahdi Mahdi, Chalmers University of Technology
% Master’s Thesis 2022
%----------------------------------------------------------------------
% PURPOSE
% Reduce flanges and edge folds that are in cross-section class 4.
%
% INPUT: Ex = [x_1 x_2;
% .
% .
% .
% x_n x_m]
%
% Ey = [y_1 y_2;
% .
% .
% .
% y_n y_m] [n,2] Matrix, Element node coordinates
% Each row corresponds to a new part
%
% es = [StressDistribution_1 PartPosition_1 PartType_1;
% .
% .
% .
% StressDistribution_m PartPosition_n PartType_n]
%
% [n,2] Matrix, one row for each part
%
% StressDistribution 1 for Compression only
% 2 for Bending
% 3 for Compression and Bending
%
% PartPosition 1 for Internal compression part
% 2 for Outstand flange
%
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% PartType 1 Web
% 2 Flange
% 3 Edge fold
%
% t Element thickness [n,1] matrix
%
% class [n,1] Matrix for CSC of each part
% n: Cross-section class for each element
%
% epsilon Strain relation
%
%
% OUTPUT:
%
% Ex_flange & Ey_Flange: Coordinates for reduced flange and edge folds
%
% t_flange: Thickness for reduced flange and edge fold
% elements
%
% es_flange: Element parameters for reduced flange and edge
% fold
%-------------------------------------------------------------------------
%
% LAST MODIFIED: 2022-03-22 by Mahdi Mahdi
%-------------------------------------------------------------------------

% Creating output matrices
Ex_flange=[];
Ey_flange=[];
t_flange=[];
es_flange=[];
class_flange=[];

%-------------------------Reduction of flange-----------------------------

% Start values for reduction factor rho
rho=[1;1];

for i=1:length(class)

% Length of element
c(i)=sqrt((Ex(i,2)-Ex(i,1))^2 + (Ey(i,2)-Ey(i,1))^2);
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% Reduction for all parts in class 4 if cross-section is in
% compression only
if (class(i)==4) && all(es(:,1)==1)

% For compression zeta is always 1 for flanges
zeta=1;

% Reduce flange first
if es(i,3)==2

% K_sigma for internal compression element
if es(i,2)==1

K_sigma=4;

% K_sigma for external compression element
elseif es(i,2)==2

K_sigma=0.43;

end

% Slenderness
lambda_p=(c(i)/t(i))/(28.4*epsilon*sqrt(K_sigma));

% Reduction factor rho for internal compression element
if es(i,2)==1

if lambda_p <= 0.673

rho=1;

else
rho=(lambda_p - 0.055*(3+zeta))/(lambda_p^2);

end

% Reduction factor rho for external compression element
elseif es(i,2)==2

if (lambda_p <= 0.748) && (es(i,2)==2)
rho=1;
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elseif (lambda_p > 0.748) && (es(i,2)==2)

rho=(lambda_p - 0.188)/(lambda_p^2);

end
end

% Reduction of internal compression element
if es(i,2)==1

% Effective width
b_eff=c(i)*rho;

be1=0.5*b_eff;
be2=0.5*b_eff;

% New coordinates for reduced flange, the coordinates in y-axis
% stays the same because the flange is always at 0° from x-axis

Ex_flange(end+1,1)=Ex(i,1);
Ex_flange(end,2)=(Ex(i,1)+be1);

Ex_flange(end+1,1)=(Ex(i,2)-be2);
Ex_flange(end,2)=Ex(i,2);

Ey_flange(end+1,1)=Ey(i,1);
Ey_flange(end,2)=Ey(i,2);

Ey_flange(end+1,1)=Ey(i,1);
Ey_flange(end,2)=Ey(i,2);

% New thickness vector for reduced part
t_flange(end+1)=t(i);
t_flange(end+1)=t(i);

% New class matrix that accounts for the new element of the
% reduced flange and puts them in class 3
class_flange(end+1)=3;
class_flange(end+1)=3;

% New part info matrix for added element in flange
es_flange(end+1,:)=es(i,:);
es_flange(end+1,:)=es(i,:);
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% Reduction of external compression element
elseif es(i,2)==2

% Effective width
b_eff=c(i)*rho;

% New coordinates for reduced flange, the coordinates in y-axis
% stays the same because the flange is always at 0° from x-axis
Ex_flange(end+1,1)=Ex(i,1);
Ex_flange(end,2)=Ex(i,2);

Ey_flange(end+1,1)=(Ey(i,2)-b_eff);
Ey_flange(end,2)=Ey(i,2);

% New thickness vector for reduced part
t_flange(end+1)=t(i);

% New class matrix that accounts for the new element of the
% reduced flange and puts them in class 3
class_flange(end+1)=3;

% New part info matrix for added element in flange
es_flange(end+1,:)=es(i,:);

end
end

%-------------------------Reduction of edge fold--------------------------

if es(i,3)==3

% K_sigma for edge fold
if (c(i)/c(i-1) <= 0.35)

K_sigma=0.5;

else

K_sigma=0.5 + 0.83*(((c(i)/c(i-1))-0.35)^2)^(1/3);
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end

% Slenderness of edge fold
lambda_p=(c(i)/t(i))/(28.4*epsilon*sqrt(K_sigma));

% Reduction factor
rho=(lambda_p-0.188)/lambda_p^2;

% Reduction factor may not exceed 1
if rho > 1

rho=1;

end

% Effective width
b_eff=c(i)*rho;

% New coordinates for reduced edge fold
Ex_flange(end+1,1)=Ex(i,1);
Ex_flange(end,2)=Ex(i,2);

Ey_flange(end+1,1)=(Ey(i,2)-b_eff);
Ey_flange(end,2)=Ey(i,2);

% New thickness vector for reduced edge fold
t_flange(end+1)=t(i);

% New class vector for reduced edge fold
class_flange(end+1)=3;

% New info matrix for reduced edge fold
es_flange(end+1,:)=es(i,:);

end
end

end
end

A.5 Distorsional buckling
function [chi_d,t_n,t_flange]=...

DistortionalBuckling(Ex_flange,Ey_flange,...
Ex_n,Ey_n,es_flange,es_n,t_flange,t_n,b_f,h_w,c,E,fy,v)
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% Written by: Mahdi Mahdi & Sarah Aref, Chalmers University of Technology
% Master’s Thesis 2022
%----------------------------------------------------------------------
% PURPOSE
% Distorsional buckling check and reduction of thickness
% of the edge stiffeners.
%
% INPUT: Ex_flange = [x_1 x_2;
% .
% .
% .
% x_n x_m]
%
% Ey_flange = [y_1 y_2;
% .
% .
% .
% y_n y_m]
%
% Ex_n = [x_1 x_2;
% .
% .
% .
% x_n x_m]
%
% Ey_n = [y_1 y_2;
% .
% .
% .
% y_n y_m] [n,2] Matrix, Element node coordinates
% Each row corresponds to a new part for
% reduced flange elements and non reduced
% flange elements
%
% es_flange = [StressDistribution_1 PartPosition_1 PartType_1;
% .
% .
% .
% StressDistribution_m PartPosition_n PartType_n]
%
% [n,3] Matrix, one row for each part
%
%
% es_n = [StressDistribution_1 PartPosition_1 PartType_1;
% .
% .
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% .
% StressDistribution_m PartPosition_n PartType_n]
%
% [n,3] Matrix, one row for each part
%
% StressDistribution 1 for Compression only
% 2 for Bending
% 3 for Compression and Bending
%
% PartPosition 1 for Internal compression part
% 2 for Outstand flange
%
% PartType 1 Web
% 2 Flange
% 3 Edge fold
%
%
% t_flange Vector with edge stiffener thickness for
% elements that needs to be reduced (class 4)
% [n,1] matrix
%
% t_n Element thickness for elements not in class 4
% [n,1] matrix
%
% b_f Flange width
%
% h_w Web hieght
%
% c Length of edge fold
%
% E Young’s Modulus
%
% fy Yield strength
%
% v Poisson’s ratio
%
%
% OUTPUT:
% chi_d: Reduction factor for thickness of edge stiffener
%
% t_n: Vector with edge stiffener
% thickness for non reduced elements
%
% t_flange: Vector with edge stiffener thickness for
% reduced elements
%
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%----------------------------------------------------------------------
%
% LAST MODIFIED: 2022-04-26 by Mahdi Mahdi
%----------------------------------------------------------------------

% Output matrices
chi_d=1;
A_s=0;

t_stiff=[];
Ex_stiff=[];
Ey_stiff=[];

% Calculating the area of the edge stiffener (Edge fold + effective part of
% flange)

%------------------If no flange or edge fold are in CSC 4------------------
if isempty(Ex_flange)

t0=t_n(1);

for i=1:length(es_n)

% Length of each part
c_stiff(i)=sqrt((Ex_n(i,2)-Ex_n(i,1))^2 + (Ey_n(i,2)-Ey_n(i,1))^2);

if es_n(i,3)==3

% Area of edge stiffener
A_s(i)=t0*(c_stiff(i-1) + c_stiff(i));

% Coordinates for edge fold in stiffener
Ex_stiff(end+1,:)=Ex_n(i,:);
Ey_stiff(end+1,:)=Ey_n(i,:);

% Coordinates for flange in stiffener
Ex_stiff(end+1,:)=Ex_n(i-1,:);
Ey_stiff(end+1,:)=Ey_n(i-1,:);

% Thickness for edge fold and flange in stiffener
t_stiff(end+1)=t0;
t_stiff(end+1)=t0;

% Effective width of flange
be2=c_stiff(i-1);
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end
end

else

t0=t_flange(1);

for i=1:length(Ex_flange)

% Length of each part
c_stiff(i)=sqrt((Ex_flange(i,2)-Ex_flange(i,1))^2 +...

(Ey_flange(i,2)-Ey_flange(i,1))^2);

if es_flange(i,3)==3

%------------------If only the edge folds are in CSC 4--------------------

if all(es_flange(:,3)==3)

% Area of edge stiffener
A_s(i)=t0*(b_f + c_stiff(i));

% Coordinates for edge fold in stiffener
Ex_stiff(end+1,:)=Ex_flange(i,:);
Ey_stiff(end+1,:)=Ey_flange(i,:);

% Coordinates for flange in stiffener
Ex_stiff(end+1,1)=Ex_flange(i,1)-b_f;
Ex_stiff(end,2)=Ex_flange(i,1);

Ey_stiff(end+1,1)=Ey_flange(i,2);
Ey_stiff(end,2)=Ey_flange(i,2);

% Thickness for edge fold and flange in stiffener
t_stiff(end+1)=t0;
t_stiff(end+1)=t0;

% Effective width of flange
be2=b_f;
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%------------------If flange and edge fold are in CSC 4------------------

else

% Area of edge stiffener
A_s(i)=t0*(c_stiff(i-1) + c_stiff(i));

% Coordinates for edge fold in stiffener
Ex_stiff(end+1,:)=Ex_flange(i,:);
Ey_stiff(end+1,:)=Ey_flange(i,:);

% Coordinates for flange in stiffener
Ex_stiff(end+1,:)=Ex_flange(i-1,:);
Ey_stiff(end+1,:)=Ey_flange(i-1,:);

% Thickness for edge fold and flange in stiffener
t_stiff(end+1)=t0;
t_stiff(end+1)=t0;

% Effective width of flange
be2=c_stiff(i-1);

end
end
end
end

% Area of edge stiffener (only one edge stiffener)
if any(A_s~=0)

A_s=nonzeros(A_s);
A_s=A_s(end);

end

%--------------------if only flanges are in CSC 4-------------------------

if isempty(Ex_stiff)

% Coordinates for edge fold and flange in stiffener
Ex_stiff(end+1,:)=Ex_flange(end,:);
Ex_stiff(end+1,:)=Ex_flange(end,:);

Ey_stiff(end+1,:)=Ey_flange(end,:);
Ey_stiff(end+1,1)=Ey_flange(end,1)-c;
Ey_stiff(end+1,2)=Ey_flange(end,2);
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% Thickness for edge fold and flange in stiffener
t_stiff=[t0

t0];

% Calculating y_tp for edge stiffener
y_tp_stiff=ytp(Ex_stiff,Ey_stiff,t_stiff);

% Calculating second moment of area for edge stiffener
I_s=SecondMomentOfArea(Ex_stiff,Ey_stiff,t_stiff,y_tp_stiff);

% Effective width of flange
be2=sqrt((Ex_flange(end,1)-Ex_flange(end,2))^2 +...

(Ey_flange(end,1)-Ey_flange(end,2))^2);

% Area of edge stiffener
A_s=t0*(be2+c);

%------------------Calculating ytp and I_s for edge stiffener--------------

else
% Calculating y_tp for edge stiffener
y_tp_stiff=ytp(Ex_stiff(end-1:end,:),Ey_stiff(end-1:end,:),...

t_stiff(end-1:end));

% Calculating Second moment of area for edge stiffener
I_s=SecondMomentOfArea(Ex_stiff(end-1:end,:),...

Ey_stiff(end-1:end,:),t_stiff(end-1:end),y_tp_stiff);

end

%------------------Checking for distorsional buckling---------------------

% For symmetrical sections in compression k_f=1
k_f=1;

% Distance from web to the centre of the effective area of edge stiffener
b_1=b_f - (be2*t0*(be2/2))/(A_s);
b_2=b_1;

% Spring stiffness, only for C and back to back C sections
K=((E*t0^3)/(4*(1-v^2)))*((1)/(b_1^2*h_w + b_1^3 + 0.5*b_1*b_2*h_w*k_f));
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% Critical stress for edge stiffener
sigma_cr_s=(2*sqrt(K*E*I_s))/(A_s);

% Slenderness
lamnda_d=sqrt(fy/sigma_cr_s);

% Reduction factor
if lamnda_d <= 0.65

chi_d=1.0;

elseif (0.65<lamnda_d) && (lamnda_d<1.38)

chi_d=1.47 - 0.723*lamnda_d;

elseif lamnda_d > 1.38

chi_d=0.66/lamnda_d;
end

% Reducing thickness of edge stiffener with reduction factor chi_d
if isempty(Ex_flange)

for i=1:length(t_n)

if es_n(i,3)==3

t_n(i-1:i)=chi_d*t_n(i-1);

end
end

else

for i=1:length(t_flange)

if all(es_flange(:,3)==3)

t_flange(i)=chi_d*t_flange(i);

elseif es_flange(i,3)==3
t_flange(i-1:i)=chi_d*t_flange(i-1:i);

end
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end
end

A.6 Reduction of hexagon
function [Ex_web,Ey_web,t_web]=ReductionHexa(Ex,Ey,t,es,class,epsilon)

% Written by: Mahdi Mahdi & Sarah Aref, Chalmers University of Technology
% Master’s Thesis 2022
%----------------------------------------------------------------------
% PURPOSE
% Reduce inclined webs that are in cross-section class 4.
%
% INPUT: Ex = [x_1 x_2;
% .
% .
% .
% x_n x_m]
%
% Ey = [y_1 y_2;
% .
% .
% .
% y_n y_m] [n,2] Matrix, Element node coordinates
% Each row corresponds to a new part
%
% es = [StressDistribution_1 PartPosition_1 PartType_1;
% .
% .
% .
% StressDistribution_m PartPosition_n PartType_n]
%
% [n,2] Matrix, one row for each part
%
% StressDistribution 1 for Compression only
% 2 for Bending
% 3 for Compression and Bending
%
% PartPosition 1 for Internal compression part
% 2 for Outstand flange
%
% PartType 1 Web
% 2 Flange
% 3 Edge fold
%
% t Element thickness [n,1] matrix
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%
% class [n,1] Matrix for CSC of each part
% n: Cross-section class for each element
%
% epsilon Strain relation
%
%
% OUTPUT:
%
% Ex_web & Ey_web: Coordinates for reduced inclined webs
%
% t_web: Thickness for reduced inclined webs
%
%-------------------------------------------------------------------------
%
% LAST MODIFIED: 2022-04-26 by Mahdi Mahdi
%-------------------------------------------------------------------------

% Creating output matrices
Ex_web=[];
Ey_web=[];
t_web=[];

be1=[];
be2=[];

%-------------------------Reduction of web--------------------------------

% Start values for reduction factor rho
rho=[1;1];

for i=1:length(class)

% Length of element
c(i)=sqrt((Ex(i,2)-Ex(i,1))^2 + (Ey(i,2)-Ey(i,1))^2);

% Reduction for all parts in class 4 if cross-section is in compression
% only
if (class(i)==4) && es(i,3)==1

% For compression zeta is always 1 for flanges
zeta=1;
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K_sigma=4;

% Slenderness
lambda_p=(c(i)/t(i))/(28.4*epsilon*sqrt(K_sigma));

% Reduction factor rho for internal compression element
if es(i,2)==1

if lambda_p <= 0.673

rho=1;

else
rho=(lambda_p - 0.055*(3+zeta))/(lambda_p^2);

end

% Reduction of internal compression element

if es(i,2)==1

% Effective width
b_eff=c(i)*rho;

be1(end+1)=0.5*b_eff;
be2(end+1)=0.5*b_eff;

end
end

end
end

%-----------------New coordinates for reduced inclined web----------------

% If no reduction is done
if isempty(be1)

% First element

% Part 1
Ex_web(end+1,:)=Ex(2,:);

Ey_web(end+1,:)=Ey(2,:);

XXV



A. Appendix: Matlab functions

t_web(end+1)=t(1);

% Second element

% Part 1
Ex_web(end+1,:)=Ex(3,:);

Ey_web(end+1,:)=Ey(3,:);

t_web(end+1)=t(1);

% Third element

% Part 1
Ex_web(end+1,:)=Ex(5,:);

Ey_web(end+1,:)=Ey(5,:);

t_web(end+1)=t(1);

% Fourth element

% Part 1
Ex_web(end+1,:)=Ex(6,:);

Ey_web(end+1,:)=Ey(6,:);

t_web(end+1)=t(1);

% If webs are reduced
else

% First element

% Part 1
Ex_web(end+1,1)=Ex(2,1);
Ex_web(end,2)=(Ex(2,1)-(be1(1)*cos(pi/3)));

Ey_web(end+1,1)=Ey(2,1);
Ey_web(end,2)=Ey(2,1) + (be1(1)*sin(pi/3));
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% Part 2
Ex_web(end+1,1)=Ex(2,2) + (be2(1)*cos(pi/3));
Ex_web(end,2)=Ex(2,2);

Ey_web(end+1,1)=Ey(2,2) - (sin(pi/3)*be2(1)) ;
Ey_web(end,2)=Ey(2,2);

t_web(end+1)=t(1);
t_web(end+1)=t(1);

% Second element

% Part 1
Ex_web(end+1,1)=Ex(3,1);
Ex_web(end,2)=(Ex(3,1)+(be1(2)*cos(pi/3)));

Ey_web(end+1,1)=Ey(3,1);
Ey_web(end,2)=Ey(3,1) + (be1(2)*sin(pi/3));

% Part 2
Ex_web(end+1,1)=Ex(3,2) - (be2(2)*cos(pi/3));
Ex_web(end,2)=Ex(3,2);

Ey_web(end+1,1)=Ey(3,2) - (sin(pi/3)*be2(2)) ;
Ey_web(end,2)=Ey(3,2);

t_web(end+1)=t(1);
t_web(end+1)=t(1);

% Third element

% Part 1
Ex_web(end+1,1)=Ex(5,1);
Ex_web(end,2)=(Ex(5,1)-(be1(3)*cos(pi/3)));

Ey_web(end+1,1)=Ey(5,1);
Ey_web(end,2)=Ey(5,1) + (be1(3)*sin(pi/3));

% Part 2
Ex_web(end+1,1)=Ex(5,2) + (be2(3)*cos(pi/3));
Ex_web(end,2)=Ex(5,2);

Ey_web(end+1,1)=Ey(5,2) - (sin(pi/3)*be2(3)) ;
Ey_web(end,2)=Ey(5,2);

t_web(end+1)=t(1);
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t_web(end+1)=t(1);

% Fourth element

% Part 1
Ex_web(end+1,1)=Ex(6,1);
Ex_web(end,2)=(Ex(6,1)+(be1(4)*cos(pi/3)));

Ey_web(end+1,1)=Ey(6,1);
Ey_web(end,2)=Ey(6,1) + (be1(4)*sin(pi/3));

% Part 2
Ex_web(end+1,1)=Ex(6,2) - (be2(4)*cos(pi/3));
Ex_web(end,2)=Ex(6,2);

Ey_web(end+1,1)=Ey(6,2) - (sin(pi/3)*be2(4)) ;
Ey_web(end,2)=Ey(6,2);

t_web(end+1)=t(1);
t_web(end+1)=t(1);

end
end

A.7 Web reduction
function [Ex_web,Ey_web,t_web]=WebReduction(Ex,Ey,t,es,y_tp,class,...

epsilon,M,N,I_gross,A_gross)

% Written by: Mahdi Mahdi, Chalmers University of Technology
% Master’s Thesis 2022
%-------------------------------------------------------------------------
% PURPOSE
% Reduce web that are in cross-section class 4
%
% INPUT: Ex = [x_1 x_2;
% .
% .
% .
% x_n x_m]
%
% Ey = [y_1 y_2;
% .
% .
% .
% y_n y_m] [n,2] Matrix, Element node coordinates
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% Each row corresponds to a new part
%
% es = [StressDistribution_1 PartPosition_1 PartType_1;
% .
% .
% .
% StressDistribution_m PartPosition_n PartType_n]
%
% [n,2] Matrix, one row for each part
%
% StressDistribution 1 for Compression only
% 2 for Bending
% 3 for Compression and Bending
%
% PartPosition 1 for Internal compression part
% 2 for Outstand flange
%
% PartType 1 Web
% 2 Flange
% 3 Edge fold
%
% t Element thickness [n,1] matrix
%
% y_tp Distance from bottom of cross-section to
% centroid
%
% class [n,1] Matrix for CSC of each part
% n: cross-section classification
% for each element
%
% epsilon Strain relation
%
% M Moment
%
% N Normal force
%
% I_gross Gross second moment of area
%
% A_gross Gross sectional area
%
% OUTPUT:
%
% Ex_web & Ey_web Coordinates for reduced web
%
% t_web Thickness for reduced web
%
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%-------------------------------------------------------------------------
%
% LAST MODIFIED: 2022-03-22 by Mahdi Mahdi
%-------------------------------------------------------------------------

% Output matrices
Ex_web=[];
Ey_web=[];
t_web=[];
es_web=[];
class_web=[];

%-----------------------Stress relation: psi-------------------------------

for i=1:length(Ex)

% Length of element
c=sqrt((Ex(i,2)-Ex(i,1))^2 + (Ey(i,2)-Ey(i,1))^2);

% If part is in class 4 than area needs to be reduced
if (class(i)==4) && (max(Ey(i,:)) > y_tp) && (es(i,3)==1)

% If part is in compression only the stress ratio is equal on both
% sides of the part, psi=1
if es(i,1)==1

psi=1;

% If part is in bending but the whole part
% is in the compression zone than psi is expressed as the
% following:
elseif (es(i,1)==2) && Ey(i,1) >= y_tp

psi=(Ey(i,1)-y_tp)/(Ey(i,2)-y_tp);

% If part is in bending and the part is both in the
% compression zone and the tension zone than psi is
% expressed as the following:
elseif (es(i,1)==2) && Ey(i,1) < y_tp

h_c=max(max(Ey))-y_tp;

psi=(h_c-max(max(Ey)))/h_c;

% If part is in bending & compression than psi is expressed as
% following:
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elseif (es(i,1)==3)

% Section modulus
W_bottom=I_gross/y_tp;
W_top=I_gross/(max(max(Ey)) - y_tp);

W=min(W_bottom,W_top);

% Stress for moment and normal force
sigma_M=M/W;
sigma_N=N*A_gross;

psi=(sigma_M - sigma_N) / (sigma_M + sigma_N);
end

%----------------------Buckling factor, K_sigma---------------------------

% Internal compression elements
if es(i,2)==1

if psi==1
K_sigma=4;

elseif (1>psi) && (psi>0)

K_sigma=8.2/(1.05+psi);

elseif psi==0

K_sigma=7.81;

elseif (0>psi) && (psi>-1)

K_sigma=7.81 - 6.29*psi + 9.78*psi^2;

elseif psi==-1

K_sigma=23.9;

elseif (-1>psi) && (psi>-3)

K_sigma=5.98*(1-psi)^2;
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end
end

% Slenderness
lambda_p=(c/t(i))/(28.4*epsilon*sqrt(K_sigma));

if (lambda_p <= 0.673) && (es(i,2)==1)

rho=1.0;

%------------------------Reduction factor---------------------------------

elseif (lambda_p > 0.673) && (es(i,2)==1)

rho=(lambda_p - 0.055*(3+psi))/(lambda_p^2);

elseif (lambda_p <= 0.748) && (es(i,2)==2)

rho=1;

elseif (lambda_p > 0.748) && (es(i,2)==2)

rho=(lambda_p - 0.188)/(lambda_p^2);

end

if psi<0

%----------------New coordinates for reduced web elements-----------------

% Effective width
b_eff=(rho*c)/(1-psi);

be1=0.4*b_eff;
be2=0.6*b_eff;

% New x coordinates for reduced web elements
Ex_web(end+1,1)=Ex(i,1);
Ex_web(end,2)=Ex(i,1);

Ex_web(end+1,1)=Ex(i,2);
Ex_web(end,2)=Ex(i,2);

% New y coordinates for reduced web elements
Ey_web(end+1,1)=Ey(i,1) ;
Ey_web(end,2)=y_tp + be2;
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Ey_web(end+1,1)=Ey(i,2) - be1;
Ey_web(end,2)=Ey(i,2);

% New thickness vector
t_web(end+1)=t(i);
t_web(end+1)=t(i);

% New class matrix that accounts for the new element of the
% reduced web
class_web(end+1)=3;
class_web(end+1)=3;

% New part info matrix for added element in web
es_web(end+1,:)=es(i,:);
es_web(end+1,:)=es(i,:);

elseif psi==1

% Effective width
b_eff=c*rho;

be1=0.5*b_eff;
be2=0.5*b_eff;

% New x coordinates for reduced web elements
Ex_web(end+1,1)=Ex(i,1);
Ex_web(end,2)=Ex(i,1);

Ex_web(end+1,1)=Ex(i,2);
Ex_web(end,2)=Ex(i,2);

% New y coordinates for reduced web elements
Ey_web(end+1,1)=Ey(i,1) ;
Ey_web(end,2)=Ey(i,1) + be1;

Ey_web(end+1,1)=Ey(i,2) - be2;
Ey_web(end,2)=Ey(i,2);

% New thickness vector
t_web(end+1)=t(i);
t_web(end+1)=t(i);
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% New class matrix that accounts for the new element of the
% reduced web
class_web(end+1)=3;
class_web(end+1)=3;

% New part info matrix for added element in web
es_web(end+1,:)=es(i,:);
es_web(end+1,:)=es(i,:);

end
end

end
end

A.8 Torsion constant
function [I_T]=TorsionConstant(Ex,Ey,t,m,A)

% Written by: Sarah Aref, Chalmers University of Technology
% Master’s Thesis 2022
%-------------------------------------------------------------------------
% PURPOSE
% Compute the torsion constant of a cross-section.
%
% INPUT: Ex = [x_1 x_2;
% .
% .
% .
% x_n x_m]
%
% Ey = [y_1 y_2;
% .
% .
% .
% y_n y_m] [n,2] Matrix, Element node coordinates
% Each row corresponds to a new part, n is
% number of parts
%
% t Element thickness [n,1] matrix
%
% m Type of cross-section
% m=1 open cross-section
% m=2 closed cross-section
%
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% A Area of the gross cross-section
%
%
% OUTPUT:
% I_T: Torsion constant
%-------------------------------------------------------------------------
%
% LAST MODIFIED: 2022-04-26 by Sarah Aref
%-------------------------------------------------------------------------

I_Ti=0;

%-----------------------Open cross-section--------------------------------
if m==1

for i=1:length(Ex)

% Length of each element
c=sqrt((Ex(i,2)-Ex(i,1))^2 + (Ey(i,2)-Ey(i,1))^2);

% Calculating torsion constant for each element
I_Ti(i)=(c*t(i)^3)/3;

end
% Total torsion constant for open sections
I_T=sum(I_Ti);

%----------------------Closed cross-section------------------------------
else

P=0;
for i=1:length(Ex)

% Length of each element
c=sqrt((Ex(i,2)-Ex(i,1))^2 + (Ey(i,2)-Ey(i,1))^2);

% Total length of all elements
P=P+c;

end

% Torsion constant for a closed section
I_T=4*A^2*t(i)/P;

end

XXXV



A. Appendix: Matlab functions

A.9 Warping constant

function [I_w]=WarpingConstant(Ex,Ey,t,c,bf,hw,s)

% Written by: Sarah Aref, Chalmers University of Technology
% Master’s Thesis 2022
%------------------------------------------------------------------------
% PURPOSE
% Compute the warping constant of a cross-section.
%
% INPUT: Ex = [x_1 x_2;
% .
% .
% .
% x_n x_m]
%
% Ey = [y_1 y_2;
% .
% .
% .
% y_n y_m] [n,2] Matrix, Element node coordinates
% Each row corresponds to a new part, n is
% number of parts
%
% t Element thickness [n,1] matrix
%
% c Length of edge fold
%
% bf Length of flange
%
% hw Height of cross-section
%
% s Type of cross-section
% s=1 Lipped c-section
% s=2 back-to-back lipped c-section
% s=3 Closed sections
%
%
% OUTPUT:
% I_w: Warping constant
%-------------------------------------------------------------------------
%
% LAST MODIFIED: 2022-04-26 by Sarah Aref
%-------------------------------------------------------------------------

%Distance to centroid, from the bottom of cross-section

XXXVI



A. Appendix: Matlab functions

y_tp=ytp(Ex,Ey,t);

%Second moment of area around y-axis
I_y=SecondMomentOfArea(Ex,Ey,t,y_tp);

alpha=0.69;

%Shear centre coordinates with respect to the centroid of the gross
%cross-section
e=(bf*hw^2/I_y)*c*t(1)*(1/2+bf/(4*c)-(2/3*c^2/hw^2));

if s==1 %Lipped c-section

% Warping constant
I_w=((hw^2*bf^2*t(1))/12)*((2*hw^3*bf + 3*hw^2*bf^2 ...

+ alpha*(48*c^4 + 112*bf*c^3 + 8*hw*c^3 + 48*hw*bf*c^2 ...
+ 12*hw^2*c^2 + 12*hw*bf*c + 6*hw^3*c))/(6*hw^2*bf + ...
(hw + alpha*2*c)^3 - alpha*24*hw*c^2));

elseif s==2 %Back-to-back lipped c-section

% Warping constant for a c-section
I_w=((hw^2*bf^2*t(1))/12)*((2*hw^3*bf + 3*hw^2*bf^2 ...

+ alpha*(48*c^4 + 112*bf*c^3 + 8*hw*c^3 + 48*hw*bf*c^2 ...
+ 12*hw^2*c^2 + 12*hw*bf*c + 6*hw^3*c))/(6*hw^2*bf + ...
(hw + alpha*2*c)^3 - alpha*24*hw*c^2));

% Total warping constant of the cross-section
I_w=I_w*2;

elseif s==3 % Closed sections

% Warping constant
I_w=0;

end
end

A.10 Flexural buckling
function [Chi_Fy, Chi_Fz, Lambda_y, Lambda_z]=...

FlexuralBuckling(Ex,Ey,t,A_eff,E,fy,L_cr)

% Written by: Mahdi Mahdi, Chalmers University of Technology
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% Master’s Thesis 2022
%----------------------------------------------------------------------
% PURPOSE
% Calculate the reduction factors for flexural buckling in the two main
% planes, y-y and z-z.
%
% INPUT: Ex = [x_1 x_2;
% .
% .
% .
% x_n x_m]
%
% Ey = [y_1 y_2;
% .
% .
% .
% y_n y_m] [n,2] Matrix, Element node coordinates
% Each row corresponds to a new part
%
% t Element thickness [n,1] matrix
%
% A_eff Effective area of cross-section
%
% E Young’s modulus
%
% fy Yield strength
%
% L_cr Critical buckling length
%
%
% OUTPUT:
%
% Chi_Fy: Reduction factor for buckling around the y-y plane
%
% Chi_Fz: Reduction factor for buckling around the z-z plane
%
% Lambda_y: Slenderness of y-y plane
%
% Lambda_z: Slenderness of z-z plane
%
%-------------------------------------------------------------------------
%
% LAST MODIFIED: 2022-03-29 by Mahdi Mahdi
%-------------------------------------------------------------------------
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% Calculate the distance from centroid to bottom of cross-section
% (y-y and z-z plane) and gross cross-sectional area
[y_tp,A_gross]=ytp(Ex,Ey,t);
z_tp=ytp(Ey,Ex,t);

% Calculate the second moment of area around y-y and z-z plane
I_y=SecondMomentOfArea(Ex,Ey,t,y_tp);
I_z=SecondMomentOfArea(Ey,Ex,t,z_tp);

%-------------------Flexural buckling calculations------------------------
Lambda_1=pi*sqrt(E/fy);

% Radii of gyration
i_y=sqrt(I_y/A_gross);
i_z=sqrt(I_z/A_gross);

% Slenderness
Lambda_y=(L_cr/i_y) * (sqrt(A_eff/A_gross)/Lambda_1);
Lambda_z=(L_cr/i_z) * (sqrt(A_eff/A_gross)/Lambda_1);

% Imperfection factors

if fy >= 460 % Yield strength greater than 460 MPa

alpha_y=0.13;
alpha_z=0.13;

else % Steel with yield strength less than 420 MPa

alpha_y=0.21;
alpha_z=0.34;

end

theta_y=0.5*(1 + alpha_y*(Lambda_y - 0.2) + Lambda_y^2 );
theta_z=0.5*(1 + alpha_z*(Lambda_z - 0.2) + Lambda_z^2 );

% Reduction factors
Chi_Fy= 1 / (theta_y + sqrt(theta_y^2 - Lambda_y^2 ));
Chi_Fz= 1 / (theta_z + sqrt(theta_z^2 - Lambda_z^2 ));
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% Reduction factors should not be greater than 1.0
if Chi_Fy > 1

Chi_Fy=1;

elseif Chi_Fz > 1

Chi_Fz=1;

end
end

A.11 Torsional buckling
function [chi_T,Ncr_T]=TorsionalBuckling(Ex,Ey,t,A_eff,I_w,...

I_T,E,v,L_cr,n,fy,b_f,h_w,c_p)

% Written by: Sarah Aref, Chalmers University of Technology
% Master’s Thesis 2022
%------------------------------------------------------------------------
% PURPOSE
% Compute the reduction factor for torsional buckling
%
% INPUT:
% Ex = [x_1 x_2;
% .
% .
% .
% x_n x_m]
%
% Ey = [y_1 y_2;
% .
% .
% .
% y_n y_m] [n,2] Matrix, Element node coordinates
% Each row corresponds to a new part
%
% t Element thickness [n,1] matrix
%
% A_eff Effective area of the cross-section
%
% I_w Warping constant
%
% I_T Torsion constant
%
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% E Modulus of elasticity
%
% v Poisson’s ratio
%
% L_cr Buckling length of the member
%
% n Type of cross-section n=1 Lipped c-section
% n=2 Symmetrical section
% fy Yield strength
%
% OUTPUT:
%
% chi_T: Reduction factor for torsional buckling
% Ncr_T: Elastic critical force for torsional buckling
%-------------------------------------------------------------------------
%
% LAST MODIFIED: 2022-04-26 by Sarah Aref
%-------------------------------------------------------------------------

% Shear modulus
G=E/(2*(1+v));

% Distance to centroid, calculated from the bottom of the cross-section
[y_tp,A]=ytp(Ex,Ey,t);
z_tp=ytp(Ey,Ex,t);

% Second moment of area around y-axis
I_y=SecondMomentOfArea(Ex,Ey,t,y_tp);

% Second moment of area around z-axis
I_z=SecondMomentOfArea(Ey,Ex,t,z_tp);

% Radius of gyration of the gross cross-section about the y-y axis
i_y=sqrt(I_y/A);

%Radius of gyration of the gross cross-section about the z-z axis
i_z=sqrt(I_z/A);

if n==1 %Lipped c-section

% Shear centre co-ordinates with respect to the centroid of the gross
% cross-section
y_o=0;
z_o=(b_f*h_w^2/I_y)*c_p*t(1)*(1/2+b_f/(4*c_p)-(2/3*c_p^2/h_w^2));
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elseif n==2 %Symmetric cross-section

% Shear centre co-ordinates with respect to the centroid of the gross
% cross-section
y_o=0;
z_o=0;

end

i_o=i_y^2+i_z^2+y_o^2+z_o^2;

% Elastic critical force for torsional buckling
Ncr_T=(1/i_o)*(G*I_T+((pi^2*E*I_w)/L_cr^2));

% Non-dimensional slenderness
lambda_T=sqrt(A_eff*fy/Ncr_T);

% Imperfection factors

if fy<=420 % Yield strength less than 420 MPa
alpha_T=0.34; % Buckling curve b

elseif fy>=460 % Yield strength greater than 460 MPa
alpha_T=0.13; % Buckling curve a0

end

phi_T=0.5*(1+alpha_T*(lambda_T-0.2)+lambda_T^2);

% Reduction factor for torsional buckling
chi_T=1/(phi_T+sqrt(phi_T^2-lambda_T^2));

% Reduction factors should not be greater than 1.0
if chi_T > 1

chi_T=1;

end
end

A.12 Flexural-torsional buckling
function [chi_FT]=FTBuckling(Ex,Ey,t,A_eff,fy,E,L_cr,Ncr_T,n,b_f,h_w,c_p)

% Written by: Sarah Aref, Chalmers University of Technology
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% Master’s Thesis 2022
%-----------------------------------------------------------------------
% PURPOSE
% Compute the reduction factor for flexural-torsional buckling
%
% INPUT:
% Ex = [x_1 x_2;
% .
% .
% .
% x_n x_m]
%
% Ey = [y_1 y_2;
% .
% .
% .
% y_n y_m] [n,2] Matrix, Element node coordinates
% Each row corresponds to a new part
%
% t Element thickness [n,1] Matrix
%
% A_eff Effective area of the cross-section
%
% fy Yield strength
%
% E Modulus of elasticity
%
% L_cr Buckling length of the member
%
% Ncr_T Elastic critical force for torsional buckling
%
% n Type of cross-section n=1 Lipped c-section
% n=2 Symmetrical section
% b_f Width of flange
%
% h_w Height of web
%
% c_p Height of edge fold
%
%
% OUTPUT:
%
% chi_FT: Reduction factor for flexural-torsional buckling
%------------------------------------------------------------------------
%
% LAST MODIFIED: 2022-04-26 by Sarah Aref
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%-------------------------------------------------------------------------

% Distance to centroid, calculated from the bottom the cross-section
[y_tp,A]=ytp(Ex,Ey,t);
z_tp=ytp(Ey,Ex,t);

% Second moment of area around y-axis
I_y=SecondMomentOfArea(Ex,Ey,t,y_tp);

% Second moment of area around z-axis
I_z=SecondMomentOfArea(Ey,Ex,t,z_tp);

% Radius of gyration of the gross cross.section about the y-y axis
i_y=sqrt(I_y/A);

% Radius of gyration of the gross cross.section about the z-z axis
i_z=sqrt(I_z/A);

if n==1 %Lipped c-section

%Shear centre co-ordinates with respect to the centroid of the gross
%cross-section
y_o=0;
z_o=(b_f*h_w^2/I_y)*c_p*t(1)*(1/2+b_f/(4*c_p)-(2/3*c_p^2/h_w^2));

elseif n==2 %Symmetric cross-section

% Shear centre co-ordinates with respect to the centroid of the gross
% cross-section
y_o=0;
z_o=0;

end

i_o=i_y^2+i_z^2+y_o^2+z_o^2;

% Elastic critical force
Ncr_y=(I_y*pi^2*E)/L_cr^2;

beta=1-(y_o/sqrt(i_o))^2;

% Elastic critical force for flexural-torsional buckling
Ncr_FT=Ncr_y/(2*beta)*(1+(Ncr_T/Ncr_y)-sqrt((1+(Ncr_T/Ncr_y))^2-...

4*beta*(Ncr_T/Ncr_y)));

% Non-dimensional slenderness
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lambda_FT=sqrt(A_eff*fy/Ncr_FT);

% Imperfection factor

if fy<=420 % Yield strength less than 420 MPa
alpha_FT=0.34; % Buckling curve b

elseif fy>=460 % Yield strength greater than 460 MPa
alpha_FT=0.13; % Buckling curve a0
end

phi_FT=0.5*(1+alpha_FT*(lambda_FT-0.2)+lambda_FT^2);

% Reduction factor for flexural-torsional buckling
chi_FT=1/(phi_FT+sqrt(phi_FT^2-lambda_FT^2));

% Reduction factors should not be greater than 1.0
if chi_FT > 1

chi_FT=1;

end
end

A.13 Lateral-torsional buckling
function [chi_LT]=LTBuckling(Ex,Ey,hw,bf,c,t,I_eff,I_w,I_T,E,v,...

L_cr,n,fy,ytp_eff)

% Written by: Sarah Aref, Chalmers University of Technology
% Master’s Thesis 2022
%-------------------------------------------------------------------------
% PURPOSE
% Compute the reduction factor for lateral-torsional buckling
%
% INPUT:
% Ex = [x_1 x_2;
% .
% .
% .
% x_n x_m]
%
% Ey = [y_1 y_2;
% .
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% .
% .
% y_n y_m] [n,2] Matrix, Element node coordinates
% Each row corresponds to a new part
%
% t Element thickness [n,1] matrix
%
% A_eff Effective area of the cross-section
%
% I_w Warping constant
%
% I_T Torsion constant
%
% E Modulus of elasticity
%
% v Poisson’s ratio
%
% L_cr Buckling length of the member
%
% n Type of cross-section n=1 Lipped c-section
% n=2 Symmetrical section
% fy Yield strength
%
%
% OUTPUT:
% chi_LT: Reduction factor for lateral-torsional buckling
%
%-------------------------------------------------------------------------
%
% LAST MODIFIED: 2022-04-26 by Sarah Aref
%-------------------------------------------------------------------------

%Shear modulus
G=E/(2*(1+v));

%Distance to centroid, calculated from the bottom of the cross-section
y_tp=ytp(Ex,Ey,t);
z_tp=ytp(Ey,Ex,t);

%Second moment of area around y-axis
I_y=SecondMomentOfArea(Ex,Ey,t,y_tp);

%Second moment of area around z-axis
I_z=SecondMomentOfArea(Ey,Ex,t,z_tp);
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if n==1 %Lipped c-section

%Shear centre co-ordinates with respect to the centroid of the gross
%cross-section

z_o=(bf*hw^2/I_y)*c*t(1)*(1/2+bf/(4*c)-(2/3*c^2/hw^2));

elseif n==2 %Symmetric cross-section

%Shear centre co-ordinates with respect to the centroid of the gross
%cross-section

z_o=0;

end

zj=z_o;

C1=1.127;
C3=0.525;
kz=1;

% Elastic critical force for torsional buckling
M_cr=C1*((pi^2*I_z*E)/(kz*L_cr)^2)*(((I_w/I_z)+(((kz*L_cr)^2*...

G*I_T)/(pi^2*E*I_z))+(C3*zj)^2)^0.5+C3*zj);

% Section modulus
W_eff_t=I_eff/ytp_eff;

W_eff_c=I_eff/(max(max(Ey))-ytp_eff);

W_eff_min=min(W_eff_t,W_eff_c);

% Non-dimensional slenderness
lambda_LT=sqrt(W_eff_min*fy/M_cr);

% Imperfection factor

if fy<=420 % Yield strength less than 420 MPa
alpha_LT=0.34; % Buckling curve b

elseif fy>=460 % Yield strength greater than 460 MPa
alpha_LT=0.13; % Buckling curve a0
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end

phi_LT=0.5*(1+alpha_LT*(lambda_LT-0.2)+lambda_LT^2);

%Reduction factor for torsional buckling
chi_LT=1/(phi_LT+sqrt(phi_LT^2-lambda_LT^2));

% Reduction factors should not be greater than 1.0
if chi_LT > 1

chi_LT=1;

end
end

A.14 Interaction of combined bending and axial
compression

function [eta_y,eta_z]=Interaction(N_Ed,chi_y,chi_z,chi_LT,...
M_Ed,fy,z_tp_eff,z_tp,class,A_gross,A_eff,W_eff,W,M_s,M_h,...
lambda_y,lambda_z)

% Written by: Sarah Aref & Mahdi Mahdi, Chalmers University of Technology
% Master’s Thesis 2022
%-------------------------------------------------------------------------
% PURPOSE
% Interaction criteria for bending and axial compression of an element
%
% INPUT:
%
% N_Ed Design value of the compression force
% chi_y Reduction factor due to flexural buckling (y-y plane)
% chi_z Reduction factor due to flexural buckling (z-z plane)
% chi_LT Reduction factor due to lateral torsional buckling
% M_Ed Design value of the maximum moment along the member
% fy Yield strength
% z_tp_eff Distance to centroid (z-axis) of effective
% cross-section
% z_tp Distance to centroid (z-axis)
% class Cross-section class
% A_gross Area of gross cross-section
% A_eff Effective area
% W_eff Effective section modulus
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% W Section modulus
% M_s Moment in the span
% M_h Moment at the support
% lambda_y Slenderness (y-y plane)
% lambda_z Slenderness (z-z plane)
%
%
% OUTPUT:
%
% eta_y: Requirement 1 for members subjected to bending and axial
% compression, should be less than 1
%
% eta_z: Requirement 2 for members subjected to bending and axial
% compression, should be less than 1
%-------------------------------------------------------------------------
% LAST MODIFIED: 2022-04-26 by Sarah Aref
%-------------------------------------------------------------------------

%Partial factor
gamma_M1=1;

%Shift in z-axis
e_Ny=z_tp_eff-z_tp;

%Moment due to shift in centroidal axis
deltaM_Ed=N_Ed*e_Ny;

if any(class==4)

N_Rk=fy*A_eff;

M_Rk=fy*W_eff;

else

N_Rk=fy*A_gross;

M_Rk=fy*W;
end

%Moment ratio in span vs support
alpha_s=M_s/M_h;

if alpha_s<0
%Assuming that Psi is constant(Psi=1)
if 0.1-0.8*alpha_s>=0.4
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%Moment factors
C_my=0.1-0.8*alpha_s;
C_mLT=C_my;

else
%Moment factors
C_my=0.4;
C_mLT=C_my;

end

elseif alpha_s>0

%Assuming that Psi is constant(Psi=1)
if 0.2+0.8*alpha_s>=0.4

%Moment factors
C_my=0.2+0.8*alpha_s;
C_mLT=C_my;

else
%Moment factors
C_my=0.4;
C_mLT=C_my;

end
end

L=C_my*(1+0.6*lambda_y*(N_Ed/(chi_y*N_Rk/gamma_M1)));
R=C_my*(1+0.6*(N_Ed/(chi_y*N_Rk/gamma_M1)));

if L<=R

%Interaction factor
k_yy=L;

else
%Interaction factor
k_yy=R;

end

LH=1-((0.05*lambda_z/(C_mLT-0.25))*(N_Ed/(chi_z*N_Rk/gamma_M1)));
RH=1-((0.05/(C_mLT-0.25))*(N_Ed/(chi_z*N_Rk/gamma_M1)));

if LH>=RH
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%Interaction factor
k_zy=LH;

else
%Interaction factor

k_zy=RH;
end

%Check 1
eta_y=(N_Ed/(chi_y*(N_Rk/gamma_M1)))+...

(k_yy*((M_Ed+deltaM_Ed)/(chi_LT*(M_Rk/gamma_M1))));

%Check 2
eta_z=(N_Ed/(chi_z*(N_Rk/gamma_M1)))+...

(k_zy*((M_Ed+deltaM_Ed)/(chi_LT*(M_Rk/gamma_M1))));

end
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B
Appendix: Example of
cross-section resistance

calculations

%----------------------------INPUTS----------------------------------------

% Geomatry inputs
h_w=125; %mm;
b_f=100; %mm;
c_p=20; %mm
t0=2.4; %mm

% Distance of gap between webs
d=10; %mm

% Mastrial parameters
E=210000; %N/mm^2
v=0.3;

% Coordinate matrix for y-axis
Ey=[0 b_f

0 0
b_f+d b_f+d+b_f
b_f+d+b_f b_f+d+b_f
0 b_f
0 0
b_f+d b_f+d+b_f
b_f+d+b_f b_f+d+b_f
b_f b_f
b_f+d b_f+d];

% Coordinate matrix for z-axis
Ez=[0 0

0 c_p
0 0
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0 c_p
h_w h_w
h_w-c_p h_w
h_w h_w
h_w-c_p h_w
0 h_w
0 h_w];

% Thickness vector
t=t0*ones(length(Ey),1);

% Properties of each element
es=[1 1 2

1 2 3
1 1 2
1 2 3
1 1 2
1 2 3
1 1 2
1 2 3
1 1 1
1 1 1];

%-------------------------------CSC----------------------------------------

[~,class,epsilon]=CSC(Ey,Ez,t,fy,es);

%-------------------------------Ytp----------------------------------------
[y_tp,A_gross]=ytp(Ey,Ez,t);

%---------------------REDUCTION OF CROSS-SECTION---------------------------

% Finding coordinates for all elements that are not in class 4
Ex_n=[];
Ey_n=[];
t_n=[];
class_n=[];
es_n=[];

for i=1:length(class)

c(i)=sqrt((Ey(i,2)-Ey(i,1))^2 + (Ez(i,2)-Ez(i,1))^2);
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if class(i)~=4

Ex_n(end+1,:)=Ey(i,:);
Ey_n(end+1,:)=Ez(i,:);

t_n(end+1)=t(i);

class_n(end+1)=class(i);

es_n(end+1,:)=es(i,:);

end

end

% Finding coordinates for all web elements that are not in class 4
Ex_n_webb=[];
Ey_n_webb=[];
t_n_webb=[];
class_n_webb=[];
es_n_webb=[];

for i=1:length(class)

c(i)=sqrt((Ey(i,2)-Ey(i,1))^2 + (Ez(i,2)-Ez(i,1))^2);

if (class(i)==4) && (es(i,3)==1)

Ex_n_webb(end+1,:)=Ey(i,:);
Ey_n_webb(end+1,:)=Ez(i,:);

t_n_webb(end+1)=t(i);

class_n_webb(end+1)=class(i);

es_n_webb(end+1,:)=es(i,:);

end

end
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% Moment of area for gross cross-section
[I_gross]=SecondMomentOfArea(Ey,Ez,t,y_tp);

% Finding coordinates for reduced flange elements
t_flange=[];
[Ex_flange,Ey_flange,t_flange,es_flange]=...

flangeReduction(Ey,Ez,t,es,y_tp,class,epsilon);

% Checking distortional buckling and reducing edge stiffners thickness
[chi_d,t_n,t_flange]=...

DistortionalBuckling(Ex_flange,Ey_flange,...
Ex_n,Ey_n,es_flange,es_n,t_flange,t_n,b_f,h_w,c_p,E,fy,v);

% Effective coordinates of the cross-section with reduced flanges and edge
% folds
Ex_eff=[Ex_n; Ex_flange; Ex_n_webb];
Ey_eff=[Ey_n; Ey_flange; Ey_n_webb];

% Effective thickness vector of the cross-section with reduced flangens and
% edge folds
t_eff=[t_n’; t_flange’; t_n_webb’];

% finding y_tp for reduced flange system
[y_tp_eff]=ytp(Ex_eff,Ey_eff,t_eff);

% Reduce the web if in class 4
[Ex_web,Ey_web,t_web]=...
WebReduction(Ey,Ez,t,es,y_tp_eff,class,epsilon,M_Ed,N_Ed,I_gross,A_gross);

% Effective coordinates of the cross-section with reduced web and flanges
Ex_eff=[Ex_n; Ex_flange; Ex_web];
Ey_eff=[Ey_n; Ey_flange; Ey_web];

% Effective thickness vector of the cross-section with reduced web and
% flanges
t_eff=[t_n’; t_flange’; t_web’];

%----------------------Cross-section parameters----------------------------

% Y_tp for effective cross-section
[y_tp_eff,A_eff]=ytp(Ex_eff,Ey_eff,t_eff);
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% Effective moment of area
[I_eff]=SecondMomentOfArea(Ex_eff,Ey_eff,t_eff,y_tp_eff);

% Section modulus
w_eff_c=I_eff/(max(max(Ez))-y_tp_eff);
w_eff_t=I_eff/(y_tp_eff);

W_eff=min(w_eff_c,w_eff_t);

w_c=I_gross/(max(max(Ez))-y_tp);
w_t=I_gross/y_tp;

W=min(w_c,w_t);

m=1; % Open cross-section
n=2; % Symmetrical cross-section
s=2; % Liped back-to-back C-section

% Torsional constant
[I_T]=TorsionConstant(Ey,Ez,t,m,A_gross);

% Warping constant
[I_w]=WarpingConstant(Ey,Ez,t,c_p,b_f,h_w,s);

%---------------------------Buckling analysis------------------------------

% Fluxural buckling reduction factors
[Chi_Fy, Chi_Fz, lambda_y, lambda_z]=FlexuralBuckling(Ey,Ez...

,t,A_eff,E,fy,L_cr);

% Torsional buckling reduction factor
[chi_T,Ncr_T]=TorsionalBuckling(Ey,Ez,t,A_eff,I_w,I_T,E,v,L_cr,n,...

fy,b_f,h_w,c_p);

% Torsional-Fluxural buckling reduction factor
[chi_FT]=FTBuckling(Ey,Ez,t,A_eff,fy,E,L_cr,Ncr_T,n);

% LT-Buckling reduction factor
[chi_LT]=LTBuckling(Ey,Ez,h_w,b_f,c_p,t,I_eff,I_w,I_T,E,v,L_cr,...

n,fy,y_tp_eff);

% Shift in centroid
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z_tp=ytp(Ez,Ey,t);
z_tp_eff=ytp(Ey_eff,Ex_eff,t_eff);

e_ny=abs(z_tp-z_tp_eff);

% Utilization ratios for interaction of moment and compressive forces
% (buckling resistance)

[UR2,UR3]=Interaction(N_Ed,Chi_Fy,Chi_Fz,chi_LT,...
M_Ed,fy,z_tp_eff,z_tp,class,A_gross,A_eff,W_eff,W,M_s,M_h,...
lambda_y,lambda_z);

% % Design buckling resistance for elements in compression
N_Rd=A_eff*fy;

% Global utilization ratio for bening and compression
UR1=(N_Ed/N_Rd) + ((M_Ed+e_ny*N_Ed)/(W_eff*fy));
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Optimization of double back-to-back C-section; Ge-
netic algorithm upper chord
clc
clear

% Applied compression forecs and moments
N_ed=[700 800 900 1300 1400 1600]*1e3; % N
M_ed=14*1e6; % Nmm
m_s=14*1e6; % Nmm
m_h=-14*1e6; % Nmm

% Length of upper chord element
l_cr=3000; % mm

% Steel strenght
f_y=[350 460 690]; %MPa

% All possible combantaions of forces and steel strengths
Comb=combvec(N_ed,f_y);

for j=1:length(Comb)

%Input global variables
global fy
global N_Ed
global M_Ed
global M_s
global M_h
global L_cr

%Output global variables
global UR1
global UR2
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global UR3
global N_bRd

%where we save our variable range

global hw %global hw
global bf %global bf
global c %global c
global t0 %global t0

% choosing relevent forces and steel strenghts for each combination
fy=Comb(2,j);
N_Ed = Comb(1,j);
M_Ed=M_ed;
M_s=m_s;
M_h=m_h;
L_cr=l_cr; %mm

% 4 GA variables, Hw, bf, c and t0
nvars=4;

% Discrete variables
t0=1:0.1:5;

% Lower bounds for variables
LB=ones(1,nvars);

LB(1)=50; % hw
LB(2)=50; % bf
LB(3)=10; % c

% Upper bounds for variables
UB=ones(1,nvars);

UB(1)=160; % hw
UB(2)=200; % bf
UB(3)=60; % c
UB(4)=numel(t0); % t0

% Initial guesses
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for i=1:nvars
X0(i)=1;

end

% optionas for GA
options = optimoptions(@ga, ...

’PopulationSize’, nvars*20, ...%should be 100x
’MaxGenerations’, nvars*100, ...
’EliteCount’, 50, ...%50
’FunctionTolerance’, 1e-9, ...
’PlotFcn’, @gaplotbestf); ...
InitialPopulationMatrix = X0;

% Fitness function for area
ObjFcn= @FitnessFunc_Area;

% Constraints function
ConsFcn= @constraints ;

[x,fval,exitflag]= ga (ObjFcn, nvars, [], [], [], [], LB, UB, ConsFcn, 1:nvars, options);
%x is vector containg the values of optimum solution
%fval is the value of the fittness function
%existflag tels if the solution converged & if the constraints are
%satisfied
%1:nvars tells GA to use integers only

["hw" "bf" "c" "t0"]
[x(1) x(2) x(3) t0(x(4))]

% Saving all variables
Area(j)=fval;

h_w(j)=x(1);
b_f(j)=x(2);
c_p(j)=x(3);
t_0(j)=t0(x(4));
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N_applied(j)=Comb(1,j);
fy_used(j)=Comb(2,j);
L_used(j)=3000;

Ur_global(j)=UR1;
Ur_interaction_y(j)=UR2;

end
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