
Autonomous high-speed vehicle
manoeuvring

An optimal control approach to autonomous driving

Master’s thesis in Systems, Control and Mechatronics

Michel Company
Fredrik Andersson

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019

Autonomous high-speed vehicle manoeuvring

An optimal control approach to autonomous driving

MICHEL COMPANY
FREDRIK ANDERSSON

Department of Electrical Engineering
Division of Systems and Control

Chalmers University of Technology
Gothenburg, Sweden 2019

Autonomous high-speed vehicle manoeuvring
An optimal control approach to autonomous driving
MICHEL COMPANY
FREDRIK ANDERSSON

© MICHEL COMPANY, FREDRIK ANDERSSON, 2019.

Supervisor: Balázs Adam Kulcsár, Electrical Engineering
Examiner: Balázs Adam Kulcsár, Electrical Engineering

Master’s Thesis 2019
Department of Electrical Engineering
Division of Systems and Control
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

iii

Autonomous high-speed vehicle manoeuvring
An optimal control approach to autonomous driving
MICHEL COMPANY
FREDRIK ANDERSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The topic of this thesis is a linear time-varying model predictive contouring control
scheme (LTVMPCC) of a nonlinear vehicle model that is linearized around the tra-
jectory. Instead of determining a specific path for a vehicle on a known track the
LTVMPCC calculates a control signal in which the vehicle progress furthest for a
finite time horizon. The controller can handle physical boundaries of the control
inputs such as minimum and maximum steering angles, but also limitations on the
states. For example the controller will not allow for a control input in which the
position of the vehicle progress outside the track.

An approach to avoid obstacles is also implemented in the controller. As the con-
troller only can handle linear problems a sub-optimal feasible path is found around
the obstacles. This path is the fed into the controller by formulating new constraints
around the path.

A Lyapunov based approach is taken to give the controller a stabilizing ability. This
is done by an addition of a quadratic constraint which forces the weighted norm of
the state to decrease. The contraction parameter of the constraint is computed to
ensure the stabilizing ability remains despite a model/plant mismatch due to lin-
earization.

As the controller relies on the current states for calculating the control input all
the states are required to be known, or at least estimated. This can be achieved
by using various sensors combined with an observer. In this thesis an Extended
Kalman Filter is used to estimate the states.

The LTVMPCC is tested on different scenarios and compared against a trivial LQ
controller.

Keywords: Optimal Control, Vehicle Model, Model Predictive Control, Path Fol-
lowing, Kalman, Stability Guarantee, Lyapunov

iv

Acknowledgements
We would like to extend gratitude to Chalmers University of Technology for letting
us realise our idea for this thesis and especially Balázs Kulcsár for his support and
tutoring. We could not have asked for a better supervisor.

Michel Company and Fredrik Andersson, Gothenburg, March 2019

vi

Contents

List of Figures x

List of Tables xii

Nomenclature xiii

1 Introduction 1
1.1 Aim of the project . 1
1.2 Limitations . 1
1.3 Disposition . 2

2 Theory 3
2.1 Vehicle model . 3
2.2 Model Predictive Control . 5
2.3 Model Predictive Contouring Control 6
2.4 Observer . 9

3 Methods 11
3.1 Vehicle model . 11
3.2 Linear Time Varying Model Predictive Contouring Control 12
3.3 Constraints . 16

3.3.1 Border constraint . 16
3.3.2 Slip angle constraint . 17
3.3.3 Obstacle avoidance . 17
3.3.4 Contraction constraint . 23

3.4 Casting into a QP problem . 28
3.5 Baseline controller . 32

3.5.1 Reference trajectory . 32
3.5.2 Time varying LQ controller 34

3.5.2.1 Qlq and Rlq weights 34
3.6 State estimation . 38

4 Implementation 40

5 Results 41
5.1 Scenario 1: S-curve . 42

5.1.1 Model Predictive Contouring Controller 42

viii

Contents

5.1.2 Baseline controller . 48
5.1.3 Comparison . 51

5.2 Scenario 2: S-curve with obstacle . 51
5.2.1 Model Predictive Contouring Controller 52
5.2.2 Comparison . 58

5.3 Scenario 3: Straight road with obstacle 58
5.3.1 Model Predictive Contouring Controller 59
5.3.2 Comparison . 64

5.4 Scenario 4: Track with and without added output noise 65
5.4.1 MPCC . 66
5.4.2 MPCC with observer . 69
5.4.3 Comparison . 82

6 Conclusion 84
6.1 Suggestions for further research . 84

Bibliography 85

A Time varying Hessian entries I

B Time varying Gradient entries II

C Linear Quadratic controller weighting matrices III
C.1 Scenario 1 . III
C.2 Scenario 2 . III
C.3 Scenario 3 . III

ix

List of Figures

2.1 Single track vehicle model. 4
2.2 Model Predictive Control scheme. 6
2.3 Visualisation of the Model Predictive Contouring Control scheme. . . 7
2.4 Visualisation of the approximate Model Predictive Contouring Con-

trol scheme. 8

3.1 Driven trajectories for different values of qθ. 15
3.2 Visualisation of lane constraint. 16
3.3 Parameter space - ISO view . 21
3.4 Parameter space - Top view . 21
3.5 Sub-optimal solution range. 22
3.6 Border adjustment using polynomial path planner. 23
3.7 Contraction constraint with N = 40. 24
3.8 Function values over a typical range of Lipschitz constant L. 27
3.9 Flow chart of PSO algorithm. 36

5.1 Driven and predicted trajectories. 42
5.2 LTVMPCC driven trajectory for Scenario 1. 43
5.3 LTVMPCC state and control trajectories for Scenario 1. 44
5.4 LTVMPCC slip angles for Scenario 1. 45
5.5 Contouring error and lag error for Scenario 1 46
5.6 Contraction of state norm for Scenario 1. 47
5.7 LQ driven trajectory for Scenario 1. 48
5.8 LQ state and control trajectories for Scenario 1. 49
5.9 LQ slip angles for Scenario 1. 50
5.10 Driven trajectories for Scenario 1. 51
5.11 Driven and predicted trajectories. 52
5.12 LTVMPCC driven trajectory for Scenario 2. 53
5.13 LTVMPCC state and control trajectories for Scenario 2. 54
5.14 LTVMPCC slip angles for Scenario 2. 55
5.15 Contouring error and lag error for Scenario 2. 56
5.16 Contraction of state norm for Scenario 2. 57
5.17 Driven trajectories. for Scenario 2. 58
5.18 Driven and predicted trajectories. 59
5.19 LTVMPCC driven trajectory for Scenario 3. 60
5.20 LTVMPCC state and control trajectories for Scenario 3. 61
5.21 LTVMPCC slip angles for Scenario 3. 62

x

List of Figures

5.22 Contouring error and Lag error for Scenario 3. 63
5.23 Contraction of state norm for Scenario 3. 64
5.24 Driven trajectories for Scenario 3. 65
5.25 LTVMPCC driven and predicted trajectories for Scenario 4. 66
5.26 LTVMPCC driven trajectory for Scenario 4. 67
5.27 LTVMPCC state and control trajectories for Scenario 4. 68
5.28 LTVMPCC contraction of state norm for Scenario 4. 69
5.29 LTVMPCC with observer driven trajectories for Scenario 4. 71
5.30 LTVMPCC with observer driven trajectory for Scenario 4. 72
5.31 LTVMPCC with observer state and control trajectories for Scenario 4. 73
5.32 LTVMPCC with observer contraction of state norm for Scenario 4. . 74
5.33 Heading and heading rate of change. 76
5.34 Longitudinal and lateral velocity. 78
5.35 Longitudinal and lateral acceleration. 79
5.36 Position. 80
5.37 Mean squared error. 81
5.38 LTVMPCC and LTVMPCC with observer driven trajectories for Sce-

nario 4. 82
5.39 LTVMPCC and LTVMPCC with observer driven trajectories for Sce-

nario 4. 83

xi

List of Tables

3.1 Table of vehicle parameter values. 12
3.2 Table showing parameter values for the particle swarm algorithm. . . 38

5.1 Table showing the default parameter values for the Model Predictive
Contouring Controller. 41

5.2 Table showing values of ᾱ for Scenario 1. 47
5.3 Table showing values of ᾱ for Scenario 2. 57
5.4 Table showing values of ᾱ for Scenario 3. 64
5.5 Table showing values of ᾱ for Scenario 4. 70
5.6 Table showing values of Pacejka formula constants. 70
5.7 Table showing sensor sample time and their variance. 70
5.8 Table showing values of ᾱ for Scenario 4 with observer. 75

xii

Nomenclature

x Position global frame
y Position global frame
ϕ Rotation local frame
vx Velocity in x-direction local frame
vy Velocity in y-direction local frame
ω Angular velocity local frame
Iz Inertia around z-axis
ax Acceleration in x-direction local frame
ay Acceleration in y-direction local frame
m Mass of the car
lf Distance from C.O.G to front axle
lr Distance from C.O.G to rear axle
Ff,x Longitudinal force, front wheel
Fr,x Longitudinal force, rear wheel
Ff,y Lateral force, front wheel
Fr,y Lateral force, rear wheel
x Plant state vector, x = [x y ϕ vx vy ω]T

τ Torque control input
δ Steering angle control input
u Plant control input vector, u = [δ τ]
κ Longitudinal slip ratio
D Pacejka parameter
C Pacejka parameter
B Pacejka parameter
E Pacejka parameter
αf Slip angle, front wheel
αr Slip angle, rear wheel
N Prediction horizon

xiii

Nomenclature

k Prediction step
Q State weighting matrix
R Control input weighting matrix
X Set of state constraints
U Set of control input constraints
ec Contour error
el Lag error
Ts Sample time
v Virtual control input
θ Virtual state
xd(θ) Path polynomial function, x coordinate
yd(θ) Path polynomial function, y coordinate
Ltrack Path length
qc Contour error weight
ql Lag error weight
qθ Virtual state weight
w Process noise
v Observation noise
Pf Observer covariance matrix
x̂ Estimated state
x̂∗ State trajectory from previous solution, shifted one time step
û∗ Control trajectory from previous solution, shifted one time step
Ac System matrix, continuous time
Bc System matrix, continuous time
gc System matrix, continuous time
Ad System matrix, discrete time
Bd System matrix, discrete time
gd System matrix, discrete time
Ā Augmented system matrix
B̄ Augmented system matrix
ḡ Augmented matrix
ξ Controller state vector, ξ = [x y ϕ vx vy ω θ]T

ū Control input vector, ū = [δ τ v]T

P Contraction constraint weighting matrix
ε Slack variable

xiv

Nomenclature

R∆ Weighting matrix for control input differences
Θ̂∗ Theta trajectory from previous solution, shifted one time step
ξ̂∗ Controller state trajectory from previous solution, shifted one time step
H Hessian matrix of QP problem
f Linear part of QP problem
Aeq A matrix, equality constraint
beq b matrix, equality constraint
Ain A matrix, inequality constraint
bin b matrix, inequality constraint
Qqc Q matrix, quadratic constraint
lqc Linear part, quadratic constraint
rqc Right hand side, quadratic constraint
z Optimisation variable vector
ṙ Observer state

xv

1
Introduction

Autonomous driving is an important area of research as many car-manufactures are
working hard to deliver self-driving cars in the near future. These cars needs to
be controlled by a computer, where the steering angle, throttle- and brake input
needs to be momentarily decided by some algorithm. There are many different
suitable algorithms, simple PID algorithms to more advanced algorithms such as
Model Predictive Control. The latter uses a mathematical model to predict "what’s
going to happen". Much like humans use our senses to take corrective actions for
example when driving.
Several works on autonomous driving using Model Predictive Control exists. In [8]
MPC is used to perform a double lane change manoeuvre in "snowy" conditions
while in [9] the work is focused on autonomous driving at the limits of handling
capabilities.
However, there are a distinct lack of works on autonomous driving which combine
detailed analysis of the controller, especially in different scenarios, and stability
guarantees.

1.1 Aim of the project
The aim of this thesis is to investigate how optimal control theory can be used
to improve vehicle manoeuvring in the context of autonomous high-speed driving.
One example of high-speed driving would be racing, another example would be high-
speed evasive manoeuvres from obstacles on the road. Both will be investigated in
this thesis. This includes developing both a control algorithm and a path planner
algorithm, which both should be suitable for real time implementation.
In contrast to similar works, this will take a more scientific approach and analyse
the performance of the controller in detail, and in various scenarios. An approach
to stability guarantees of the control algorithm based on the theories presented in
[2] will also be introduced. This thesis will present an approach to implementation
in the control algorithm of the theories on Linear Time Varying systems which is
not present in other works.

1.2 Limitations
This work will focus solely on high-speed driving at the limits of handling as there
are already many works on autonomous driving in within reasonable limits, such as
[8]. The work will use methods and algorithms suitable for real-time implementation

1

1. Introduction

since as stated the goal is to develop something that could eventually be implemented
in a real car. Thus the use more advanced and computationally heavy algorithms
for both path planning and control have been discarded. The exception to this is
the baseline controller which is only used for comparison purposes. To limit the
scope, four scenarios has been chosen for evaluation of the control algorithms. They
include, high-speed cornering, obstacle avoidance, double lane change manoeuvre as
well as driving around a race track.

1.3 Disposition
The thesis is structured to give a brief theoretical background, show how the theories
have been used and implemented and finally results will be presented and discussed.

Chapter 2 Introduces related theory used in this thesis, including vehicle model,
Model Predictive Control basics and Observer theory.

Chapter 3 Describes the methods used for modelling and developing the control
algorithms.

Chapter 4 Presents a concept of how to implement this work on hardware. This
includes implementation on a small-scale Radio Controlled car using low-level
programming language and setting up necessary hardware and software.

Chapter 5 Presents and analyses the results from simulation, divided into four
sections, one for each scenario which will be evaluated.

Chapter 6 Analyses the work and presents thoughts and ideas of what to improve.

2

2
Theory

The following chapter will give a theoretical background of the methods used in this
thesis, such that it will be easy to follow the procedures in Chapter 3. The dynamical
model will be presented along with the so called Pacejka magic formula. A brief
background on Model Predictive Control (MPC) is given and then the introduction
of the Model Predictive Contouring Control (MPCC) scheme follows. Finally a
general description of the observer is given.

2.1 Vehicle model
An overall view of different models describing the dynamics of a vehicle can be found
here [6]. Below will focus on one of the most commonly used model, namely the
single-track vehicle model (also known as the bicycle model). It is also the one used
in this thesis. See Figure 2.1 for a visual overview of the model.

3

2. Theory

Fr,y(αr) αr

ϕ
ω

vy
vx

Ff,y(αf)

Ff,x(κf)

Fr,x(κr) lr

lf

δ

αf

x [m]

y
[m

]

Figure 2.1: Single track vehicle model.

The single track model a simplified vehicle model where symmetry of the vehicle
is assumed. Movement in the x-y plane is only considered, i.e no pitch or roll
movements are considered. And lastly vertical load is taken as constant. The set of
equations which describe the vehicle motion is as follows:

ẋ = vx cosϕ− vy sinϕ (2.1a)
ẏ = vx sinϕ+ vy cosϕ (2.1b)

ϕ̇ = ω (2.1c)

v̇x = 1
m

(Fr,x + Ff,x cos δ − Ff,y sin δ +mvyw) (2.1d)

v̇y = 1
m

(Fr,y + Fr,x sin δ + Ff,y cos δ −mvxw) (2.1e)

ω̇ = 1
Iz

(lfFf,y cos δ − lrFr,y) (2.1f)

ẋ = [ẋ ẏ ϕ̇ v̇x v̇y ω̇]T (2.1g)
u = [δ τ]T (2.1h)

Where m is the mass, Iz is the inertia around the z-axis, lr, lf is the length to the
rear- and front axis respectively from the centre point .The three first equations are
kinematic equations describing the vehicle motion with respect to a global frame.
The last three equations are dynamic equations which describes the vehicle motion

4

2. Theory

with respect to a fixed body frame. The input to the model is defined by 2.1h and
consists of the steering angle δ and torque input τ .
There are several ways to model the forces which acts on the tyres. A good overview
of these models such as the dynamic LuGre model, the semi-empirical TMEasy
model and the well known Pacejka magical formula can be found here [7]. Using the
latter of the models, the longitudinal force at the fron and rear wheel is given by:

Fi,x = Di sin (Ci arctan (Biκi − Ei(Biκi − arctan (Biκi)))), i = f, r (2.2)

Where κ is the longitudinal slip ratio, defined as:

κi = ωiwr
i
w − vx
vx

, i = f, r (2.3)

Where rw is the radius of the wheel. The slip ratio is measure of the difference in
the rotational speed of the wheel ωw and longitudinal velocity of the vehicle. While
the lateral force is then given by:

Fi,x = Di sin (Ci arctan (Biαi − Ei(Biαi − arctan (Biαi)))), i = f, r (2.4)

Where αi is the slip angles, defined as:

αf = − arctan (ωlf + vy
vx

) + δ (2.5)

αr = arctan (ωlr − vy
vx

) (2.6)

The slip angle is a measure of the difference in the angle of the velocity vector of
the wheel and the heading of the wheel.
The Pacejka magical formula is a semi-empirical formula, i.e its equations are not
derived from any physical laws hence the parameters Di, Ci, Bi, Ei, i = f, r needs to
be decided from an identification process.

2.2 Model Predictive Control
Model predictive control (MPC) has been used in industry since the 1980’s. Mainly
in the process industry where sampling time is in the magnitude of minutes, as the
computational requirements of MPC is quite heavy. This method uses a mathemati-
cal model to predict future behaviour, see figure 2.2. In contrast with the past there
is now embedded hardware which can handle MPC even at low sampling times.
Given this development in hardware, and the fact that MPC is the method which
mimics human-like anticipation the best, it is now suited for embedded control in
applications like autonomous driving.
Model Predictive control works by solving a finite horizon optimisation problem at
each time step:

5

2. Theory

PredictionPast

k k + 1 k + 2... ...k +N

Reference trajectory

Predicted output

Measured output

Predicted control sequence

Past control input

Prediction horizon

Figure 2.2: Model Predictive Control scheme.

minu,x
N−1∑
k=0
||xk − xrefk ||Qmpc + ||uk − urefk ||Rmpc (2.7a)

s.t. x0 = x(t) (2.7b)
xk+1 = f(xk,uk), k = 0, . . . , N − 1 (2.7c)
xk ∈ X , k = 1, . . . , N (2.7d)
uk ∈ U , k = 0, . . . , N − 1 (2.7e)

Where k is the discrete time notation with the time step Ts, N is the horizon
length, xrefk ,urefk is the reference trajectories (these can be set to zero if the goal is
to regulate the system to the origin) and Qmpc,Rmpc are weighting matrices. The
above optimisation problem is stated using the standard quadratic cost function,
but other objectives can be added to the cost as well.

2.3 Model Predictive Contouring Control
An adaptation of the standard Model Predictive Control scheme is the Model Pre-
dictive Contouring Control scheme [1]. This is a path following scheme, in contrast
to the standard reference tracking scheme. The difference between trajectory track-
ing and path following is that the former explicitly defines where to be and when to
be there while the latter only defines where to be. The timing of when to be where
on the path is given by a timing law who’s evolution is a part of the optimisation
problem. This means that the only information needed a priori is the geometric path
to be followed and a upper bound on the timing law input. In terms of autonomous

6

2. Theory

driving this is readily available information, the path to be followed can simply be
the fictional line in between the lines that defines the lane and the upper bound on
the timing law is the currently maximum allowed or desired velocity. In the Model
Predictive Contour Control scheme, the path is called the contour and the contour
error is the deviation from the path along its normal vector. Figure 2.3 shows a
visualisation of MPCC:

y

x

φ(θr)

ec

{xk, yk}

{xd(θr), yd(θr)}

Desired path

Figure 2.3: Visualisation of the Model Predictive Contouring Control scheme.

Where the contour error eck is given by:

eck = sinφ(θr)(xk − xd(θr))− cosφ(θr)(yk − yd(θr)) (2.8)

and φ(θr) is given by:

φ(θr) = arctan ∇yd(θr)
∇xd(θr)

(2.9)

Where {xd(θ), yd(θ)} is the x and y coordinates given by path polynomials as func-
tion of θ. The parameter θr(x, y) is the path parameter value at the position where
the contour error is minimised. Finding θr(x, y) becomes an optimisation problem
itself, thus it is not suited for Model Predictive Control. In [1] it is proposed to use
θk as an approximation to θr, where the former is given by:

θk+1 = θk + Ts vk, vk ∈ [0, vmax], vmax > 0 (2.10)

7

2. Theory

Where vk is a virtual input, to be decided by the controller. This is the so called
timing law often found in path following schemes. In order to make the approxima-
tion valid, a measure of the path distance between θk and θr, called lag error el is
introduced. Then el can be approximated by êl. Under the assumption that θk is
close to θr(x, y), then êl is given by:

êlk = − cosφ(θk)(xk − xd(θk))− sinφ(θk)(yk − yd(θk)) (2.11)

And now, using θk, an approximation of the contour error can be made:

êck = sinφ(θk)(xk − xd(θk))− cosφ(θk)(yk − yd(θk)) (2.12)

Figure 2.4 shows the visualisation of these two equations. As can be seen when
êl → 0 then θk → θr thus making êc a valid approximation of ec.

y

x

φ(θk)

ec

{xk, yk}

{xd(θr), yd(θr)}

Desired path

êl

el
êc

{xd(θk), yd(θk)}

Figure 2.4: Visualisation of the approximate Model Predictive Contouring
Control scheme.

The resulting optimisation problem formulation thus becomes:

8

2. Theory

min
x,θ

N−1∑
k=0
||êck(xk, yk, θk)||qc + ||êlk(xk, yk, θk)||ql − qθθk (2.13a)

s.t. x0 = x(t) (2.13b)
xk+1 = f(xk,uk), k = 0, . . . , N − 1 (2.13c)
θk+1 = θk + Ts vk, k = 0, . . . , N − 1 (2.13d)
xk ∈ Xk, k = 1, . . . , N (2.13e)
θk ∈ [−Ltrack, 0], k = 1, . . . , N (2.13f)
uk ∈ U , k = 0, . . . , N − 1 (2.13g)
vk ∈ [0, vmax], k = 0, . . . , N − 1 (2.13h)

Where qc, ql, qθ ≥ 0 and vmax > 0.

Mostly used in industry for machining tools or robotic arms, Model Predictive Con-
touring Control has in fact been successfully used for autonomous racing by a team
at ETH, where both linear [3] and nonlinear [10] versions have been implemented.

2.4 Observer
In order to implement the control scheme described in 2.3 the current state of the
system is required to be known, or at least estimated. This is achieved by fusing data
from the system model, measured data and the control inputs. The method used
in this thesis is the Extended Kalman filter. The system model and the observation
model can generally be described in discrete time as:

xk = f(xk−1,uk) + wk

zk = h(xk) + vk
(2.14a)

Where wk and vk are asumed to be:

wk ∼ N (0, σw
2), σw = Qk

vk ∼ N (0, σv
2), σv = Rk

(2.15)

The filter then works by using a model to first calculate a prediction of the state
vector, x̂ and the covariance matrix P f :

x̂k|k−1 = f(x̂k|k−1,uk) (2.16a)
P f
k|k−1 = FkP

f
k−1|k−1F

T
k +Qk (2.16b)

The second step is to include the observations from the current sample and update
the state vector and the covariance matrix, this is done by first calculating the new
measurement residual ỹk followed by the innovation covariance Sk and the Kalman
gain Kk:

9

2. Theory

ỹk = zk − h(x̂k|k−1) (2.17a)
Sk = HkP

f
k|k−1H

T
k +Rk (2.17b)

Kk = P f
k|k−1 +HT

kS−1
k (2.17c)

x̂ = x̂k|k−1 + Kkỹk (2.17d)
P f
k|k = (I−KkHk)P f

k|k−1 (2.17e)

where the state transition and observation matrices are calculated from the following
Jacobians:

Fk = ∂f
∂x

∣∣∣∣∣
x̂k−1|k−1,uk

Hk = ∂h
∂x

∣∣∣∣∣
x̂k|k−1

(2.18)

10

3
Methods

The methods used in this thesis will be presented in the following chapter. The
dynamical model used will be presented, along with corresponding parameter val-
ues. Linearization procedure of the optimal control problem will be shown and the
controller constraints will be derived as well as the conversion of the optimal control
problem to a convex Quadratically Constrained Quadratic Programming problem.
The chapter will also introduce a Baseline controller which will be used later as a
benchmark. Lastly a section on the method of state estimation used in the thesis is
given.

3.1 Vehicle model
The vehicle model used in this thesis is the one described in section 2.1 with param-
eters based on the Kyosho Mini-Z SPORTS AWD radio controlled car. The lateral
forces acting on the wheels are modelled by the simplified Pacejka magic formula.
By taking 2.4 and setting Ei = 0 the lateral forces are given by:

Fi,x = Di sin (Ci arctan (Biαi)), i = f, r (3.1)

The Pacejka formula is not used to model the longitudinal forces as they are function
of the slip ratio 2.3 which requires the wheel speed to be measurable. That is not
possible with the current hardware setup so the longitudinal forces acting on the
wheels are instead modelled by:

Fi,x = τ

rw
− 0.5Fresist, i = f, r (3.2)

Where τ is the input torque, rw is the radius of the wheel and Fresist is the combined
air resistance force and rolling resistance force. Assuming zero slope, the resistance
force can be modelled as:

Fresist = Crrmg + 0.5ACairv2
xρ (3.3)

Where Crr is the rolling resistance coefficient, A is the projected front area of the
car and ρ is the density of air. Crr is taken as the standard value for a car with
rubber tires on asphalt concrete.

11

3. Methods

The complete list of parameters for the car is then as follows:

Vehicle parameter values
Parameter Value

m 0.189 kg
lf 0.047m
lr 0.047m
r 0.0125m
Iz 0.303975 · 10−3

A 0.0035m2

wcar 0.07
lcar 0.12
Crr 0.01
Cair 0.26
Bf 0.3
Br 0.3
Cf 1.3
Cr 1.3
Df 4
Dr 4

Table 3.1: Table of vehicle parameter values.

3.2 Linear Time Varying Model Predictive Con-
touring Control

In order to solve the optimisation problem stated in section 2.3 sufficiently fast we
need to convert it into a linear problem with quadratic and/or linear cost function.
Since the model used is nonlinear we must linearise it. Let ẋ = f(x,u) and x =
[x y φ vx vy w]T , also let x̂∗ and û∗ be the optimal trajectories and the optimal
control inputs from the previous solution shifted one time step, then the linearized
model is given by:

ẋ ≈ f(x̂∗, û∗) +∇f(x̂∗, û∗)
[
x− x̂∗
u− û∗

]
=

f(x̂∗, û∗) + Ac(x− x̂∗) + Bc(u− û∗) = Acx+ Bcu + gc
(3.4)

Where Ac,Bc and gc are given by:

Ac = ∂f
∂x

∣∣∣∣∣
(x̂∗,û∗)

Bc = ∂f
∂u

∣∣∣∣∣
(x̂∗,û∗)

gc = f(x̂∗, û∗)−Acx̂
∗ −Bcû∗

12

3. Methods

The optimal shifted input trajectory is calculated by truncating the previous solution
and appending a feasible input:

û∗ = {u∗k|k−1,u∗k+1|k−1... ...u∗k+N−2|k−1,û∗k+N−1} (3.5)

Where the appended input û∗k+N−1 = u∗k+N−2|k−1.
The optimal shifted state trajectory is calculated by truncating the previous solution
and appending a feasible state:

x̂∗ = {xk,x∗k+1|k−1... ...x∗k+N−1|k−1, x̂
∗
k+N} (3.6)

Where the appended state x̂∗k+N = f(x∗k+N−1|k−1, û∗k+N−1). This is the Jacobian
linearization method where the nominal trajectories are contained in gc.
The system matrices are then discretized using the zero-order hold method:

M =
[
Ac Bc gc
0 0 0

]
, eM =

[
Ad Bd gd
0 0 I

]
(3.7)

The error measurement equations ec, el must also be linearised. As they are functions
of xd(θk), yd(θk), the path functions must first be linearised. This is done by Taylor
expanding the path functions around Θ̂

∗ and neglecting higher order terms. Where
Θ̂
∗ is the optimal trajectory of θ from the previous solution shifted one time step,

and appended in same manner as 3.6. The path function x̂dk+1(θk, Θ̂∗k) is given by:

x̂dk+1(θk, Θ̂∗k) = xd(Θ̂∗k+i|k) +∇xd(Θ̂∗k+i|k)(θk − Θ̂∗k+i|k) (3.8)

The path function ŷdk+1(θ, Θ̂∗k) is given by:

ŷdk+1(θk, Θ̂∗k) = yd(Θ̂∗k+i|k) +∇yd(Θ̂∗k+i|k)(θk − Θ̂∗k+i|k) (3.9)

Now the contour error and the lag error equations can be given by their linear
approximations:

êlk+i = − cosφ(θ̂∗k+i|k)(xk − x̂dk+1(θk, Θ̂∗k))− sinφ(θ̂∗k+i|k)(yk − ŷdk+1(θk, Θ̂∗k)) (3.10)

êck+i = sinφ(θ̂∗k+i|k)(xk − x̂dk+1(θk, Θ̂∗k))− cosφ(θ̂∗k+i|k)(yk − ŷdk+1(θk, Θ̂∗k)) (3.11)

The state vector is now augmented with the dynamics of θ, from eq. 2.10, yielding
the controller state vector ξ = [x y ϕ vx vy w θ]T and the controller input vector
ū = [δ τ vk]T . The linearized system matrices are augmented as following:

Ā =
[
Ad 0
0 1

]
, B̄ =

[
Bd 0
0 Ts

]
, ḡ =

[
gd
0

]
(3.12)

13

3. Methods

Using the above results, the linearized optimisation problem can be formulated:

min
ū, ξ, ε

N−1∑
k=0
||êck(xk, yk, θk)||qc + ||êlk(xk, yk, θk)||ql − qθθk+ (3.13a)

||∆ūk||R∆ + ||ε||qs2 + εqs
s.t. ξ0 = ξ(t) (3.13b)

ξk+1 = Ākξk + B̄kūk + ḡk, k = 0, . . . , N − 1 (3.13c)
ξk ∈ Xk, k = 1, . . . , N (3.13d)
ūk ∈ U , k = 0, . . . , N − 1 (3.13e)
εk ∈ [0,∞], k = 0, . . . , N − 1 (3.13f)
||ξj+1||P ≤ α||ξj||P (3.13g)

Both state and input are subject to constraints. A lower bound on the state vx is
imposed as the model becomes numerically unstable at longitudinal velocities close
to zero. This is a well known issue with the single-track vehicle model. The lateral
velocity vy is also symmetrically bounded at ±3 m/s. Input are subject to upper
and lower bounds:

−π5 rad ≤ δ ≤ π

5 rad (3.14a)

−0.003 Nm ≤ τ ≤ 0.003 Nm (3.14b)

And the virtual input vk is upper bounded by vmax. The matrix R∆ is the penalty
for deviations of the control input and is given by R∆ = diag(rδ, rτ , rv). The last
constraint 3.13g is the so called contraction constraint and is included to stabilize
the closed loop.
For Model Predictive Contouring Control the path must be differentiable. In this
thesis the points are interpolated using third degree parametric polynomials. Where
the parameter is θk ∈ [−Ltrack, 0], θ ≤ 0, and where Ltrack is the total length of the
centre line. Note that the centre line is negatively parameterzsed, i.e it ends in
the origin. This is done for stability purposes, explained in more detail in section
3.3.4. It is preferable to keep the ratio between qc and ql to simplify the tuning of
parameters which makes êl → 0. Thus qθ is considered as the performance tuning
weight. Figure 3.1 shows the effects of the solution for different values of qθ.

14

3. Methods

0 0.5 1 1.5 2

-0.5

0

0.5

1

Figure 3.1: Driven trajectories for different values of qθ.

Adapted from [1], for k = 0 the following procedure is used to find initial state and
input trajectories to linearise around:

Step 1: Initialise x̂∗00 , û∗00 , Θ̂∗0k to x̂∗ = {x0, x0......x0, x0}, û∗ = {u0, u0......u0, u0},
Θ̂∗ = {θ0, θ0......θ0, θ0} and set l = 0
Step 2: Compute 3.13c using ξ̂∗l0 (where ξ̂∗l0 is x̂∗l0 augmented with Θ̂∗lk) and û∗l0 ,
compute 3.10, 3.11 using Θ̂∗l0
Step 3: Solve optimisation problem 3.13b, increment l and compute x̂∗l0 , û∗l0 ,Θ̂∗l0
Step 4: Repeat Steps 2-4 until ||Θ̂∗l0 − Θ̂∗l−1

0 || ≤ ε for some ε > 0

The linear time varying model predictive contouring control scheme can be sum-
marised as follows:
Step 1: Set j = 0, k = 0 and use the initial trajectory method to calculate x̂∗0,û∗0,Θ̂∗0
Step 2: Compute 3.13c using ξ̂∗k and û∗k, compute 3.10, 3.11 using Θ̂∗k
Step 3: Solve optimisation problem 3.13b to obtain u∗, v∗.
Step 4: Apply u∗(:, 1) to the plant, and v∗(1) to 2.10.
Step 5: Calculate x̂∗k+1,û∗k+1,Θ̂∗k+1
Step 6: If k = jN + N − 1 then increment j and update 3.13g. Then increment k
and return to Step 2.

15

3. Methods

3.3 Constraints
Besides the state and input constraints detailed above, some additional constraints
have been introduced to the controller. They will be described in detail in this
section.

3.3.1 Border constraint
In order to stay within the lane two linear half plane constraints are constructed by
taking the tangent line at the position of θk on the centre line and translating it along
the normal. Figure 3.2 shows a visual representation of how the two constraints are
constructed:

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Figure 3.2: Visualisation of lane constraint.

Where the shaded red areas are the forbidden areas.

16

3. Methods

Let xd(θ), yd(θ) be the x,y coordinates of θk, and w be the width of the lane, then
the tangent vector at the position of θk is given by:

t = [cos(φ(θk)) sin(φ(θk))]T (3.15)
And the normal vector at the position of θk is given by:

n = [sin(φ(θk)) − cos(φ(θk))]T (3.16)
This yields the two constraints:

−(xk − (xd(θk) + w

2 sin(φ(θk)))) sin(φ(θk))+

+(yk − (yd(θk)−
w

2 cos(φ(θk))) cos(φ(θk)) ≥ 0)
(3.17)

−(xk − (xd(θk)−
w

2 sin(φ(θk)))) sin(φ(θk))+

+(yk − (yd(θk) + w

2 cos(φ(θk))) cos(φ(θk)) ≤ 0)
(3.18)

These constraints are updated at each predicted position of θ and the method has
been successfully used for autonomous driving on a track [3].

3.3.2 Slip angle constraint
A constraint on the slip angle is introduced to enhance stability of driving manoeu-
vres. The constraint is formulated by an approximation of the slip angles in order
to make it linear. It is given by:

αmin ≤ α̂i ≤ αmax, i = f, r (3.19)
Where α̂f is given by:

α̂f = −(ωlf + vy
v̂∗x

) + δ (3.20)

and α̂r is given by:

α̂r = (ωlr − vy
v̂∗x

) (3.21)

Where v̂∗x is the shifted optimal sequence from the previous solution.

3.3.3 Obstacle avoidance
By modifying the border constraints such that they also geometrically covers the
obstacle we can integrate obstacle avoidance into the current setup of the controller.
The main problem is how to decide which side of the lane should be adjusted.
In this approach a parameterized polynomial is constructed with one extra degree of
freedom. An optimal solution for the polynomial coefficients are found by posing the
problem as a constraint-free convex optimisation problem, which there are analytic

17

3. Methods

solutions for. Then by imposing constraints in the parameter space of the extra
degree of freedom, given by the parameter pair {a6, b6}, a sub-optimal solution is
found which satisfies the constraints while still guaranteeing kinematic feasibility.
Note that notations used in this section do not refer to the same notations as in
other sections. The model used is given by:

ẋ = v cosφ (3.22a)
ẏ = v sinφ (3.22b)

φ̇ = v tan δ
L

(3.22c)

Where v is the vehicle speed, δ is the steering angle and L is the length of the car.
Adapted from [4] we can define the initial and final configurations for the polynomial:

x0 = xmk (3.23a)
ẋ0 = vmk cos(φk) (3.23b)

ẍ0 = amk cos(φk)−
vk tan(δk sin(φk))

l
(3.23c)

xf = xpk+N (3.23d)
ẋf = vpk+N cos(φk+N) (3.23e)

ẍf = apk+N cos(φk+N)− vf tan(δk+N sin(φk+N))
l

(3.23f)

y0 = ymk (3.23g)
ẏ0 = vmk sin(φk) (3.23h)

ÿ0 = amk sin(φk)−
vk tan(δk cos(φk))

l
(3.23i)

yf = ypk+N (3.23j)
ẏf = vpk+N sin(φk+N) (3.23k)

ÿf = apk+N sin(φk+N)− vf tan(δk+N cos(φk+N))
l

(3.23l)

Where the superscripts m and p stands for measured and predicted, respectively.
The trajectory is then generated by the following polynomials:

x(t) = f(t)(G)−1(E−Ha6) + a6t
6 (3.24a)

y(t) = f(t)(G)−1(F−Hb6) + b6t
6 (3.24b)

Where

f(t) = [1 t t2 t3 t4 t5] (3.25a)
E = [x0 ẋ0 ẍ0 xf ẋf ẍf] (3.25b)
F = [y0 ẏ0 ÿ0 yf ẏf ÿf] (3.25c)

H = [t60 6t50 30t40 t6f 6t5f 30t4f] (3.25d)

18

3. Methods

and

G =



1 t0 t20 t30 t40 t50
0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 tf t2f t3f t4f t5f
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tf 12t2f 20t3f]


(3.26)

Where t is given by the time over the horizon of the LTVMPCC optimisation prob-
lem. A convex optimisation problem is then posed in order to solve for the coef-
ficients. Several different cost functions of interest can be constructed. One can
minimize against a straight line connecting the initial and final configurations, thus
forming a shortest-path type of polynomial. Another idea would be to minimize the
difference between the predicted path given by the controller and the polynomial,
thus achieving minimal disruption to the current trajectory of the car. In this thesis
we employ a cost function which minimizes the energy consumption. This cost func-
tion was chosen since it can be implied that the minimum waste of energy always
allows for the most efficient manoeuvre around an obstacle. However no further
analysis on the effects of the different cost functions are made. Since ẋ and ẏ can
be represented analytically in terms of a6 and b6 we can define a kinematic energy
cost function:

min
a6, b6

JE =
∫ tf

t0

1
2m(ẋ2 + ẏ2)dt (3.27a)

Re-formulating the cost using 3.24 the cost function becomes:

JE = 1
2m(s2(a6 + s1

2s2
)2 + s2(b6 + s4

2s2
)2 + s0 + s3 −

(s2
1 + s2

4)
4s2

) (3.28)

Where:

s0 =
∫ tf

t0
(ḟ(t)G−1E)2dt (3.29a)

s1 = 2
∫ tf

t0
(6t5 − ḟ(t)G−1H)(ḟ(t)G−1E)dt (3.29b)

s2 =
∫ tf

t0
(6t5 − ḟ(t)G−1H)2dt (3.29c)

s3 =
∫ tf

t0
(ḟ(t)G−1F)2dt (3.29d)

s4 =
∫ tf

t0
(6t5 − ḟ(t)G−1H)(ḟ(t)G−1F)dt (3.29e)

And where ḟ(t) = [0 1 2t 3t2 4t3 5t4]. Examining 3.28 it is clear that the
optimal minimizing solution lies at:

a∗6 = − s1

2s2
(3.30a)

b∗6 = − s4

2s2
(3.30b)

19

3. Methods

In order for the trajectory to avoid obstacles as well as stay within the track two
constraints are introduced. The obstacle constraint is formulated as an inequality
which prohibits the trajectory to be inside a prohibited circular area:

(x(t)− xi)2 + (y(t)− yi)2 ≥ (r + ri)2 (3.31)

The subscript i denotes the i:th obstacle radius and r is set to half the width of
the car. The obstacles are considered static in the above formulation, however the
terms xi and yi can be reformulated to include relative velocity between the car and
the obstacle in order to consider the a moving obstacle. Even though the obstacles
are formally considered static, they can in fact be non-static as the polynomial
trajectory is re-calculated at each time sample. Using 3.24 the inequality can be
formulated as an inequality in the parameter space:

(a6 + g1,i(t)
g2,i(t)

)2 + (b6 + g3,i(t)
g2,i(t)

)2 ≥ (r + ri)2

g2,i(t)2 (3.32)

Where

g1(t) = f(t)G−1E− xi (3.33a)
g2(t) = t6 − f(t)G−1H (3.33b)
g3(t) = f(t)G−1F− yi (3.33c)

In addition to avoiding any obstacles, the trajectory must also stay within the lane.
We introduce such a constraint as:

(x(t)− xd(Θ̂∗k))2 + (y(t)− yd(Θ̂∗k))2 ≤ (rwidth)2 (3.34)

The inequality ensures that at each time sample the trajectory stays within a circle
centred at {xd, yd} given by the predicted Θ̂∗ trajectory. And rwidth is set to half of
the width of the lane. The inequality is then reformulated into the parameter space
in the same way as the obstacle constraint which gives the inequality:

(a6 + l1,i(t)
g2,i(t)

)2 + (b6 + l3,i(t)
g2,i(t)

)2 ≤ (rwidth)2

g2,i(t)2 (3.35)

Where

l1(t) = f(t)G−1E− xd(Θ̂∗k) (3.36a)
l3(t) = f(t)G−1F− yd(Θ̂∗k) (3.36b)

The set of trajectories which avoids the given obstacles and stays within the lane
can now be defined by finding the solution for {a6, b6} in the feasible area of the
parameter space. See Figure 3.3 and Figure 3.4.

20

3. Methods

Figure 3.3: Parameter space - ISO view

Figure 3.4: Parameter space - Top view

21

3. Methods

Finding such a solution requires to solve a constrained non-linear optimisation prob-
lem, unless of course the optimal solution {a∗6, b∗6} already lies in this space as can be
seen in figure 3.4. In practice this means that the optimal trajectory generated lies
inside the lane and is not obstructed by an obstacle. However if this is not the case
then a sub-optimal solution must be found. Such a solution can be found analyti-
cally by fixing the solution to a straight line, i.e. at each time t fix one parameter
and solve for the other. In figure 3.5 b6 has been fixed to b6 = b∗6 while the set of
feasible solutions for a6 at each time step is denoted A6 and is marked green.

-3 -2 -1 0 1 2 3

10-4

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
10-4

Figure 3.5: Sub-optimal solution range.

When the sub-optimal solution has been found for a trajectory which stays inside the
lane and avoids the given obstacle we can compute the lane constraint adjustments.
These are computed by first determining which side the trajectory passes the i:th
obstacle. This is done by rotating the points of the trajectory and current obstacle
to φ = 0 and compare their y-coordinates. Then it is determined which points in
the Θ̂∗ sequence lies inside the obstacle circle projected onto the centre line. Finally
at each of these points the border adjustment magnitude is obtained by computing
the intersection between a straight line the current obstacle circle. See Figure 3.6 for
an example of a computed polynomial and the corresponding border adjustment.

22

3. Methods

1 1.1 1.2 1.3 1.4 1.5 1.6
-0.2

-0.1

0

0.1

0.2

0.3

Figure 3.6: Border adjustment using polynomial path planner.

3.3.4 Contraction constraint
In order to stabilize the closed loop an additional state constraint is introduced, a
contraction constraint. This is a Lyapunov based approach to stability in that a
Lyapynov function is chosen and then constrained to decrease in discrete time. The
Lyapynov function is the constraint itself, which is chosen as the weighted norm of
the state vector. The constraint is given by:

||(ξj+1 − ξsp)||P < α||(ξj − ξsp)||P (3.37)

Where the norm applied is a so called weighted norm: ||ξ||P =
√
ξTPξ. The vector

ξsp is any equilibrium point where one wishes the system to contract towards, α is
the contraction parameter, α ∈ [0,1) and P � 0. Note that the superscript on the
state vector ξ is the so called contraction step notation. It is introduced to clarify
that the constraint is held constant for a period of N time steps. The norm is allowed
to increase in between, but is constrained to decrease with respect to sections of N
time steps. Figure 3.7 shows the norm of the plant and the norm of the prediction
model during a horizon (dashed lines) at chosen time steps.

23

3. Methods

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 3.7: Contraction constraint with N = 40.

where j is the contraction step, k is the time step and i is the prediction step.
Figure 3.7 shows how the constraint is held constant over a section of N time steps,
i.e the constraint is fixed in time and the number of time steps between the current
time step and the position of the contraction constraint on the time scale decreases.
When k = N−1, the constraint is updated, along with the contraction step j = j+1
and then placed at jN on the time scale.
As can be seen as long as the initial optimisation problem at time k is feasible, then
the consecutive N − 1 optimisation problems are feasible as well with respect to the
constraint, disregarding disturbances. The contraction parameter α can in practice
be seen as time varying in case large decaying disturbances enter the system between
j and j+ 1, such that infeasibilities in that scenario can be avoided by increasing α.
In order to account for the system being a linear approximation of the actual nonlin-
ear system, more restrictive bounds on the contraction parameter can be analytically
found, that is: 0 ≤ α ≤ α ≤ ᾱ < 1. The upper bound ᾱ accounts for the mod-
el/plant mismatch due to linearization and is thus in practice computed at every
contraction step. Following [2] these bounds on α are given by, where the discrete
time subscripts have been dropped for increased readability:

ᾱ = 1− γeLNTs(eLNTs − 1))
L

(3.38)

Where L is a Lipschitz discrete time varying constant for our system and γ is a
discrete time varying constant which quantifies the "strength" of the nonlinearities
in our system. The Lipschitz condition for dynamical systems is given by:

||f(x1)− f(x2)|| ≤ L||x1 − x2|| (3.39)

Where x1 and x2 is any state vector in the bounded set X . For our linear time
varying system the left hand side of 3.39 can be re-written as:

||f(x1)− f(x2)|| =||Acx1 + Bcu− (Acx2 + Bcu) =
=||Acx1 + Bcu−Acx2 −Bcu|| =
=||Acx1 −Acx2|| = ||Ac|| · ||x1 − x2||

24

3. Methods

If we plug this into the standard Lipschitz condition 3.39 then we get:

||Ac|| · ||x1 − x2|| ≤ L||x1 − x2||

And it is clear to see that the Lipschitz constant for a linear time varying system is
only depending on the norm of the linearized A matrix, i.e:

||Ac|| ≤ L (3.40)

Further assumptions are imposed from [2]. For all x ∈ Xk, all u ∈ U the following
bounds must hold over the prediction horizon:

Assumption 1:

||gc + Acx+ Bcu||P ≤ L(||x||P + ||u||) (3.41)

Where Ac,Bc and gc are the linearized matrices for the system in continuous time.
The inequality is instead computed with the predicted state trajectory over the hori-
zon along with its corresponding optimal control input.

Assumption 2:

||f(xpk,uk)− f(xk,uk)||P ≤ L(||xpk − xk||P) (3.42)

Where xpk is the plant state at time k and f is the nonlinear system. The pre-
dicted state is used for computation. The term f(xk,uk) can be re-written as
f(xk,uk) = Acxk + Bcuk + gc + F(xk,uk) where F is the higher order terms of
the Taylor expansion of f .

The idea is to find a Lipschitz constant for the transient states between the contrac-
tion steps, i.e between j → j + 1. In this thesis we find the Lipschitz constant by
construction, that is we compute all Lipschitz constants over the prediction horizon
from 3.40 then remove those who does not satisfy 3.41 and 3.42.

Assumption 3:
||F(x,u)||P ≤ γ(||x||P + ||u||) (3.43)

The inequality is computed with the predicted state trajectory over the horizon
along with its corresponding optimal control input. The parameter γ ∈ [0,∞) is
a positive constant which quantifies the norm increase in the higher order terms of
the Taylor expansion of f given the state and applied input. This can been seen
as quantifying the magnitude of the nonlinearities in the system. In this thesis we
restrict ourselves to only the quadratic higher order terms, the rest of the higher
order terms are neglected as they become insignificantly small. The constant γ is
computed by construction, that is by dividing the right hand side of 3.43, excluding
γ, with the left hand side. This is repeated for all prediction steps k+1→ k+N and
then the largest value of those computed γ are chosen. The largest value is chosen
since we want to find a bound for the transient states between the contraction steps

25

3. Methods

and this should be done in a worst case scenario manner.

Since α ≥ 0 then it is clear that there exists a condition that must be satisfied in
order for the computed bound to be valid. Since:

ᾱ = 1− γeLNTs(eLNTs − 1))
L

Then in order for α ≥ 0 to be satisfied then:

γeLNTs(eLNTs − 1))
L

≤ 1

Rewriting this gives a condition w.r.t γ

Condition of existence:

γ <
L

eLNTs(eLNTs − 1) (3.44)

After having computed all Lipschitz constants over the prediction horizon, excluded
those who do not satisfy the assumptions we are left with a range of constants which
needs to satisfy the condition of existence 3.44. Figure 3.8 shows the plot of the
right hand side of 3.44 and the upper bound ᾱ for a value γ = 0.009. It can be seen
that where the lines cross there no longer exists a Lipschitz constant L which will
yield a feasible ᾱ. It can also be seen from Figure 3.8 that the smallest L which
satisfy condition 3.44 will also yield the least restrictive upper bound ᾱ. Hence, in
this work, we take min(L) of the vector of Lipschitz constants which satisfy 3.41,
3.42 and finally 3.44. This way of applying the conditions by the use of predicted
trajectories is different than in [2] where the author suggests searching the whole
state space. This is not feasible for implementation with the aim for real time
embedded application. Thus we can not guarantee that the conditions hold for all
x ∈ X and all u ∈ U . However the context of the contraction constraint is to bound
the transient states between j → j + 1, that is over the coming N time steps. Thus
the predicted trajectories at time k will yield a good indication of where the system
will be in the state space for the coming time window where the transient states
must be bounded and contracted enough to impose stability.

26

3. Methods

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3.8: Function values over a typical range of Lipschitz constant L.

A lower bound α can be computed in order to prevent the contraction constraint of
driving the system into an infeasible set. From [2] it can be seen that computing

this lower bound can only be done under a strict assumption that Ac = ∂f
∂x

∣∣∣∣∣
(x̂∗,û∗)

is stable, i.e all Re(λ) are located in the left half plane, for all (x̂∗, û∗) which the
linearization is performed around. The introduction of θ in to the system dynamics
yields a positive eigenvalue in the matrix Ac and thus prevents us from computing
this lower bound on α. In order to prevent the upper bound ᾱ to drive the system
into infeasibility we simply set a constant lower bound to α = 0.7.
This stability approach was chosen as it has minimal effect on the controller. Firstly,
the contraction is only enforced a intervals of N time steps, hence it is not very
difficult to fulfil. Secondly, since θ ∈ [−Ltrack, 0] and the norm is weighted we can
achieve a naturally decreasing norm of the state vector as long as we move along
the path. Thus, unless stated otherwise, P is given by:

P =



10−5 0 0 0 0 0 0
0 10−5 0 0 0 0 0
0 0 10−5 0 0 0 0
0 0 0 10−5 0 0 0
0 0 0 0 10−5 0 0
0 0 0 0 0 10−5 0
0 0 0 0 0 0 1


(3.45)

27

3. Methods

3.4 Casting into a QP problem
The optimisation problem 3.13b can be casted into a Quadratically Constrained
Quadratic Program (QCQP) and be solved with readily available solvers. For this
work the optimisation suite CPLEX have been used to solve the problem, both
in simulation and implementation as it has interface to both MATLAB and other
programming languages such as C or C++.

minz zTHz + fTz (3.46a)

s.t. Aeqz = beq (3.46b)
Ainz ≤ bin + ε (3.46c)
zTQqcz + lqcz ≤ rqc (3.46d)

Where the decision vector z is given by:

z = [ξTk+1 ... ξ
T
k+N ūTk ... ūTk+N−1 εTk+1 ... ε

T
k+N]T (3.47)

As can be seen, the problem 3.46 is formulated as a sparse Quadratic Program.
Computational cost grows linearly with N in a sparse formulation compared to
quadratically or even cubically (depending on which method the chosen solver uses)
in a dense formulation [5]. As this work will use a rather large horizon N the sparse
formulation is best suited.

28

3. Methods

The structure of the Hessian is given by:

H =



Hξ
k+1|k 0 · 0

0
... . . . Hξ

k+N |k 0 ...
... 0 R∆ −R∆

...
... −R∆ 2R∆

.
...
... . . . 2R∆ −R∆

...
... −R∆ R∆ 0 ...
... 0 Iqε2

.
... 0
0 · 0 Iqε2



(3.48)

Due to the need to linearize the contour error ec and lag error el the part of the
Hessian which denotes the entries for the state variables Hξ is time varying, and is
given by:

Hξ
k+i|k =



◦1 ◦2 0 0 0 0 ◦3
◦4 ◦5 0 0 0 0 ◦6
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
◦7 ◦8 0 0 0 0 ◦9


(3.49)

The entries ◦i, i = 1, 2..9 are given in Appendix A.

The diagonal elements of the Hessian was then perturbed by a factor of 10−8 to
ensure positive definiteness. The linear part of the QP problem is given by the
vector f :

f = [f ξk+1|k f ξk+2|k · · · f
ξ
k+N |k 0 · · · 0 qε · · · qε]T (3.50)

Where just as the Hessian, f is time varying to due to the linearization of the contour
error ec and lag error el. In particular, the time varying part is fξ which denotes
the entries for the state variables and is given by:

f ξk+i|k = [�1 �2 0 0 0 0 �3]T (3.51)

The individual entries �i, i = 1, 2, 3 can be found in Appendix B.
The equality constraint is constructed by the time varying matrix Aeq:

Aeq =
[
Aeq1 Aeq2

]
(3.52)

29

3. Methods

Aeq1 =



I7 0 · · · · · · · · · · · · 0
−Āk+1|k I7 0 ...

0 −Āk+2|k
.

... 0

... 0 ...

... I7 0
0 · · · · · · · · · 0 −Āk+N |k I7


(3.53)

Aeq2 =



−B̄k|k 0 · · · · · · · · · 0
0 −B̄k+1|k 0 ...
0 0
...
... 0
0 · · · · · · · · · 0 −B̄k+N |k


(3.54)

The right hand side of the equality constraint is given by the time varying vector
beq:

beq =



Āk|k ξ0 + ḡk|k
ḡk+1|k
ḡk+2|k

...

...
ḡk+N |k


(3.55)

The left hand side of the inequality constraint is given by:

Ain =
[
Ain1 Ain2 −I6N

]
(3.56)

Ain1 =



Aξ
ink+1|k

0 · · · · · · · · · 0

0 Aξ
ink+2|k

.
...
...
... 0
0 · · · · · · · · · 0 Aξ

ink+N|k


(3.57)

30

3. Methods

Ain2 =



Aū
in 0 · · · · · · · · · 0

0
...
...
... 0
0 · · · · · · · · · 0 Aū

in


(3.58)

Where the time varying matrix Aξ
in is given by:

Aξ
in =



sinφ(θ̂∗k+i|k) − cosφ(θ̂∗k+i|k) 0 0 0 0 0
− sinφ(θ̂∗k+i|k) cosφ(θ̂∗k+i|k) 0 0 0 0 0

0 0 0 0 − 1
v̂∗x
− lf
v̂∗x

0
0 0 0 0 1

v̂∗x

lf
v̂∗x

0
0 0 0 0 − 1

v̂∗x

lr
v̂∗x

0
0 0 0 0 1

v̂∗x
− lr
v̂∗x

0


(3.59)

The part of the Ain matrix which corresponds to the input variables is given by:

Aū
in =



0 0 0
0 0 0
1 0 0
−1 0 0
0 0 0
0 0 0


(3.60)

The time varying right hand side of the inequality constraint is given by:

bin =



xd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k)− yd(θ̂∗k+i|k) cosφ(θ̂∗k+i|k) + w
2 − dright

−xd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k) + yd(θ̂∗k+i|k) cosφ(θ̂∗k+i|k) + w
2 − dleft

αmax
αmax
αmax
αmax


(3.61)

Where dright and dleft stands for the distance of border adjustments, right and
left, respectively. The distances comes as input to the controller function from the
obstacle avoidance path planner. αmax appears in all four entries for the slip angle
constraint due to the reformulation of the symmetrical box constraint 3.19.
The stability constraint is formulated as a quadratic constraint and is incorporated
using the following matrices:

31

3. Methods

Qqc =



0 0 · · · · · · · · · · · · 0
0
...
...
...
... 0 0
0 · · · · · · · · · · · · 0 P


(3.62)

Where the position of the matrix P along the diagonal depends on the time step k
and contractive step j, as described in section 3.3.4.

lqc = [0 · · · 0 − 2Pξsp]T (3.63)

rqc = ᾱ||ξ − ξsp||P (3.64)

Where the position of the entries in the lqc corresponds to the position of P along
the diagonal in the Qqc matrix.

3.5 Baseline controller
For comparison purposes a base controller was designed. The main controller in
this thesis utilises a cost function which is difficult to compare with a more sim-
plistic controller. The latter controller will also use an offline calculated reference
trajectory.

3.5.1 Reference trajectory
Since this work is focused on autonomous high speed manoeuvres a natural choice
for the reference trajectory is a time optimal one. This trajectory is generated by
solving the following continuous time optimisation problem:

min
∫ tf

t0
dt (3.65a)

s.t. ẋ = f(x(t),u(t)) (3.65b)
x(t) ∈ X (3.65c)
u(t) ∈ U (3.65d)

Equation 3.65 states that the final time shall be minimised subject to the full six
state nonlinear system dynamics given by 2.1, state constraints as well as control
input constraints. Given the complexity of the nonlinear system dynamics and the
use of time varying state constraints it is difficult so solve analytically. Instead,
Equation 3.65 is re-casted into an equivalent discrete time optimisation problem.
This type of optimisation problem is solved over a finite, and fixed, number of time

32

3. Methods

steps. Hence to minimise time we apply a re-formulation of time. Let σ ∈ [0, 1]
denote the new normalized time variable and let σ = t

tf
. This yields d

dσ
= tf

d
dt
. A

new state can now be introduced, r = tf and let ṙ = 0. The system dynamics given
by 2.1 is now re-written and augmented by the new state r:

ẋr = vx cosϕ− vy sinϕ (3.66a)
ẏr = vx sinϕ+ vy cosϕ (3.66b)

ϕ̇r = ω (3.66c)

v̇xr = 1
m

(Fr,x + Ff,x cos δ − Ff,y sin δ +mvyw) (3.66d)

v̇yr = 1
m

(Fr,y + Fr,x sin δ + Ff,y cos δ −mvxw) (3.66e)

ω̇r = 1
Iz

(lfFf,y cos δ − lrFr,y) (3.66f)

ṙ = 0 (3.66g)

Giving the new state vector x̄ = [x y ϕ vx vy ω r]T . The problem can now be
formulated as a discrete time NLP, given by:

min
P∑
k=1

r (3.67a)

s.t. x̄k+1 = f(x̄k,uk) (3.67b)
x̄k ∈ Xk (3.67c)
uk ∈ U (3.67d)

Where r is the newly added seventh state variable corresponding to tf and P is the
total number of discretization points. The system dynamics are integrated and re-
scaled back using the Euler method with Ts =

tf
P

tf
= 1

P
. Additional state constraints

are imposed. A circular constraint keeps the trajectory inside the track:

(xk − xθ)2 + (yk − yθ)2 ≤ (rtrack −
wcar

2)2 (3.68)

Where xθ and yθ are the closest pair of points on the centre line to the car’s position,
rtrack is the width of half the track and wcar is the width of the car. Another circular
constraint is added for obstacle avoidance:

− ((xk − xθ)2 + (yk − yθ)2 ≤ (robstacle + wcar
2)2) (3.69)

Where robstacle is the radius of the prohibited zone. Half the width of the car is added
since the constraint is formulated with respect to the centre point of the car. Slip
angle constraints are added similar to 3.19 with the same upper and lower bounds.
The difference in this formulation is that there is no need to approximate the slip
angles equations to make them linear. Initial and final conditions are imposed on x, y
and ϕ given by θ0 and θP , respectively. Finally, the same control input constraints

33

3. Methods

as in 3.14 are imposed. The time optimal problem 3.67 is then solved using the
MATLAB function fmincon with the trajectory given by the centre line as initial
guess.

3.5.2 Time varying LQ controller
Since 3.67 generates reference trajectories for all states and inputs it is sufficient to
use a simple discrete time Linear Quadratic controller as a baseline controller. The
LQ controller minimises the following quadratic cost function:

min
∞∑
k=1

xTkQlqxk + uTkRlquk (3.70a)

For a linear time invariant system. However since the system used here is nonlinear
it has to be linearized at every time step k. The linear system is given by:

ẋ ≈ f(x∗,u∗) +∇f(x∗,u∗)
[
x− x∗
u− u∗

]
= f(x∗,u∗) +

Ac(x− x∗) + Bc(u− u∗) = Acx̃ + Bcũ
(3.71)

Where x∗ and u∗ are the optimal reference trajectories. In contrast to the lin-
earization used for the Model Predictive Contouring Controller earlier this uses the
deviation variables to avoid producing an affine system term. This facilitates the
computation of the LQ gain Klq. The gain is given by:

Klq = (BT
dPlqBd + Rlq)−1(BT

dPlqAd) (3.72)

Where Plq is the solution to the discrete time Riccati equation. The optimal control
is then given by:

ũo = −Klqx̃ (3.73)

The system equations are discretized in the same manner as the LTVMPCC and the
MATLAB function dlqr is then used to compute the optimal gain Klq at each time
step k. Since deviation variables are used for computation of the gain, the optimal
control must be re-formulated into absolute variables:

ũo = −Klqx̃⇒ uo − u∗ = −Klq(x− x∗)⇒ uo = u∗ −Klq(x− x∗) (3.74)

3.5.2.1 Qlq and Rlq weights

An important aspect of how well the LQ controller will track the reference trajec-
tories are the weighting matrices Qlq and Rlq. These will tune the behaviour of the
controller. There are some rules of thumb to go by when tuning these. The widely
known Bryson’s rule is often used. It states that the diagonal entries in Qlq and Rlq

should be the reciprocals of the square of the maximum allowed value for the state
and control input. That is though just the start of a trial and error process. In this
work we instead employ a stochastic optimisation algorithm to find the weights. The

34

3. Methods

algorithm used is Particle Swarm Optimisation, or PSO. It is an algorithm which
mimics the behaviour of an animal swarm where each individual moves with relative
unity with respect to the swarm. The flow diagram shown in figure 3.9 visualises
how the algorithm works:

35

3. Methods

Initialise particle values

Current fitness value better
 than pBest?

Updated pBest to current
values Keep current pBest values

If any particle's pBest is
better than gBest then

update gBest

Compute velocity for each
particle

Compute position for each
particle using velocity

End

Compute fitness value for
each particle

Convergence criterias met?

Yes

No

Yes No

Figure 3.9: Flow chart of PSO algorithm.

Where pBest and gBest stands for personal best and global best, respectively.

36

3. Methods

The initialisation of particles is given by:

Algorithm 1 Particle initialisation
1: for each particle do
2: for each position do
3: p.pos← varmin + r(varmax − varmin)

Where r is a random number r ∈ [0, 1], varmin and varmax is the minimum and
maximum of the optimisation variable range. Each particle position is stored in
p.pos.

The velocity update is computed by:

Algorithm 2 Velocity update
1: for each particle do
2: for each velocity do
3: p.vel← w(p.vel) + c1q(pBest− p.pos)/Ts + c2r(gBest− p.pos)/Ts

Where r and q are random numbers r, q ∈ [0, 1], w is the inertia weight and c1 and
c2 are the exploitation and exploration weights, respectively. Each particle velocity
is stored in p.vel. The inertia weight is updated by a simple rule:

Algorithm 3 Inertia update
1: w ← βw
2: if w < wmin then
3: w ← wmin

The position update is the computed by:

Algorithm 4 Position update
1: for each particle do
2: for each velocity do
3: p.pos← p.pos+ Tsp.vel
4: if p.pos > varmax then
5: p.pos← varmax

6: if p.pos < varmin then
7: p.pos← varmin

A meaningful fitness function needs to be designed in order for the algorithm to
measure its results. We are interested in finding candidates for Qlq and Rlq which
tracks the reference trajectories as close as possible. Thus the fitness function used
computes, for each particle in the swarm, a LQ gain matrix K, simulates the closed-
loop system using this gain and computes the sum of the Root Mean Square Error
between the closed-loop system trajectories and the optimal reference trajectories.
The parameters used in the PSO algorithm are as follows:

37

3. Methods

PSO Parameters
Parameter Value
Number of particles 30
Number of variables 8
varmax 100
varmin 1
w0 1.4
wmin 0.3
c1 2
c2 2
β 0.99
Ts 1

Table 3.2: Table showing parameter values for the particle swarm algorithm.

3.6 State estimation
The state estimation is based on the EKF described in 2.4. The main difference
is that the measurement functions are all linear, thus removing the need for the
Jacobian in the update part of the filter. The car is tracked in x-y position and its
orientation using a camera. A gyroscope is used for measuring the angular velocity
ω. An accelerometer is used to measure acceleration in x and y. The observer
transition function used in the filter is the same as 2.1 but the system has been
extended to include acceleration in x and y direction as states.
The transition equation thus becomes:

ṙ(t) = f(r(t),u(t)) (3.75)

Where:

r(t) = [x(t) y(t) ϕ(t) vx(t) vy(t) ω(t) ax(t) ay(t)]T (3.76a)
u(t) = [δ(t) τ(t)]T (3.76b)

f(r(t),u(t)) =



vx cos(ϕ)− vy sin(ϕ)
vy cos(ϕ) + vx sin(ϕ)

ω
ax
ay

1
Iz

(lfFf,y cos δ − lrFr,y)
jx
jy


(3.77)

jx and jy is the jerk in x and y-direction and directly relates to the control inputs
from u(t).

38

3. Methods

As the system is sampled in to discrete time the model needs to be rewritten, this
is done using modified Euler:

ṙ(t+ Ts) = r(t+ Ts)− r(t)
Ts

, Ts → 0 (3.78)

r(t+ Ts) ≈ r(t) + f(r(t),u(t))Ts = r̂k|k−1 =



x+ Ts(vx cos(ϕ)− vy sin(ϕ))
y + Ts(vy cos(ϕ) + vx sin(ϕ))

ϕ+ Tsω
vx + Tsax
vy + Tsay

ω + TS
Iz

(lfFf,y cos δ − lrFr,y)
ax − ax(t−Ts) + 1

m
(Fr,x + Ff,xcos(δ)− Ff,ysin(δ) +mvyω)

ay − ay(t−Ts) + 1
m

(Fr,y + Ff,ycos(δ) + Ff,xsin(δ)−mvxω)


(3.79)

Where ax(t−Ts) and ay(t−Ts) are the previous values for the acceleration in x and y
direction respectively.
The prediction for the covariance matrix P f is then calculated from the Jacobian
of the transition function, and the process noise described in Q as:

P f
k|k−1 = FkP

f
k−1|k−1F

T
k +Q (3.80)

where

Fk = ∂f
∂r

∣∣∣∣∣
r̂k−1|k−1,uk

, Q =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 σw 0 0
0 0 0 0 0 0 σax 0
0 0 0 0 0 0 0 σay


Ts (3.81)

The update equations 2.17 are calculated separately for each sensor using different
measurement functions.

hcamera =

 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0


hgyroscope =

[
0 0 0 0 0 1 0 0

]
haccelerometer =

[
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

] (3.82)

39

4
Implementation

An attempt to implement the controller for the Kyosho Mini-Z SPORTS AWD was
made. The control values for torque and steering angle was intended to be calculated
on a PC and then wirelessly transmitted to the Mini-z. The position and orienta-
tion measurement was to be implemented on a Raspberry Pi 3 Model B+ running
a version of Linux PREEMPT_RT and a connected camera and radio transceiver. The
Raspberry Pi was intended to be used for camera measurements and communication
relay between the control PC and the Mini-z.

The control circuit on the Mini-z was to be removed and a new circuit containing
an accelerometer and gyroscope for state estimation, a current sensor measuring the
current of the driver motor, two PWM driver circuits for the steering and driver
motor, a radio transceiver to transmit sensor data and receive control input for
steering angle and driver motor torque, and finally a micro controller for on board
signal processing and computations.

The main part of this was implemented in the project however a problem arose.
The solver times for the controller turned out to be longer then any reasonable sam-
pling time, even for short a horizons. The quadratic constrains in the optimization
problem drastically increased the solution time, but even without the quadratic con-
straints the solver times were not acceptable. The solver times could of course be
reduced using better hardware and a specialised QP solver, however due to the lim-
ited resources and time constraints a decision was made to focus on the simulation.

40

5
Results

In this chapter the results will be presented. A couple of scenarios was been designed
for evaluation of the controller. The first scenario will be analysed more in depth
than the other scenarios in order to limit the scope of the thesis. As such, the first
scenario will feature more data and focus on showing the performance of both the
MPCC and the baseline controller. The analyses from the subsequent scenarios will
therefor focus more on the MPCC and the driven trajectories. Important to note is
that the results presented in this chapter should not be viewed as a comparison on
which controller is better. The MPCC is essentially a path follower scheme while
the baseline controller is a trajectory tracking scheme, where the trajectory is offline
calculated. The results should instead be seen as how close the MPCC can come
to time optimality whilst using a moderate finite horizon and as well retaining its
stability guarantees. The weighting matrices for the baseline controller can be found
in Appendix C.
Below is a table of the default parameters used in both simulation and implemen-
tation, unless other wise stated:

Default parameter values
Parameter Value

N 40
ql 250
qc 0.025
qθ 0.25
qε 1000
qε2 1000
rδ 1
rτ 1
rθ 1
α 0.99

αmin -0.2 rad
αmin 0.2 rad
vmax 3 m/s (without obstacle)
vmax 2 m/s (with obstacle)

Table 5.1: Table showing the default parameter values for the Model Predictive
Contouring Controller.

Note that in the following control trajectory plots the control input τ has been scaled

41

5. Results

with a factor of 100 for better readability.

5.1 Scenario 1: S-curve
In this scenario, both the MPCC and the baseline controller will perform an s-curve
manoeuvre. We will analyse the data and showcase the strength and similarities
between the controllers. The car will start with maximum allowed velocity, as we
are looking to see how the s-curve will be navigated in a high speed manner. Thus
the initial conditions for this scenario is as follows:

ξ0 = [0 0 0 2 0 0]

Final conditions for the Time optimal trajectory computation were given as:

xtf = [2.3 free free free free free]

5.1.1 Model Predictive Contouring Controller
In this section we will show the results from the Model Predictive Contouring Con-
troller on the s-curve scenario. In Figure 5.1 the predicted trajectories for time k+ i
and the actual trajectory for time k are shown.

0 0.5 1 1.5 2

-0.5

0

0.5

1

Figure 5.1: Driven and predicted trajectories.

42

5. Results

The predicted trajectories shows the evolution of how the controller navigates the
given scenario. It is clear that due to the finite horizon the controller cannot foresee
the second curve until roughly one third into the scenario. The S-curve scenario
shows that the Contouring-scheme works as intended, meaning that the car "cuts"
the corners due to the maximization of progress of θk on the centre line.

0 0.5 1 1.5 2

-0.5

0

0.5

1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 5.2: LTVMPCC driven trajectory for Scenario 1.

The velocity profile of the actual driven trajectory in Figure 5.2 shows how the
controller slows the car down in order to clear the corners.

43

5. Results

10 20 30 40 50 60 70 80

-6

-4

-2

0

2

4

6

8

(a) State trajectories.

10 20 30 40 50 60 70 80

-0.5

0

0.5

1

1.5

2

2.5

3

(b) Control trajectories.

Figure 5.3: LTVMPCC state and control trajectories for Scenario 1.

44

5. Results

0 10 20 30 40 50 60 70 80 90 100
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 5.4: LTVMPCC slip angles for Scenario 1.

The deceleration can be seen as well in the control trajectories shown in Figure 5.3b,
the controller applies full braking as the car nears the first corner. In Figure 5.4
we can see that the slip angle constraints are hitting their respective limits for both
corners. Examining further it is clear that the first corner is especially difficult.
The forward slip angle constraint αf is on its limit as the car is approaching, and
navigating the first corner. This translates to what is known as under-steer, meaning
the front steering wheels are not generating the lateral force needed to turn the car
due to wheel slip. In summary, the LTVMPCC manages to control the car through
a difficult S-curve where the car is experiencing severe slip due to the high initial
velocity.

45

5. Results

0 10 20 30 40 50 60 70 80 90 100
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 5.5: Contouring error and lag error for Scenario 1

Figure 5.5 shows how the controller manages to keep the lag error el low while
allowing the contour error ec to grow when needed.

46

5. Results

Values of ᾱ
Time step ᾱ
k = 40 0.942147594081742
k = 80 0.99
k = 120 0.716791479087716

Table 5.2: Table showing values of ᾱ for Scenario 1.

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 5.6: Contraction of state norm for Scenario 1.

In Figure 5.6 we see how the norm of the state is decreasing over the course of the
S-curve scenario. The norm of the state is well below the upper bound ᾱ at each
contraction step. The computed values of ᾱ during the simulation were as follows:
At time k = 40 the computed upper bound ᾱ is not very restrictive. This is due to
the fact that it is computed at time k = 0, at which the predicted trajectories have
not yet begun to adjust much for the coming corner section. Thus at the time of
computing the bound, the car is driving in relatively steady state meaning there is
little model/plant mismatch. At time k = 80 no feasible bound could be computed
due to not finding a Lipschitz constant which satisfy the assumptions stated in 3.3.4
over the prediction trajectories at time k = 40. The last bound computed at time
k = 120 is quite restrictive. Accelerating out of the second corner and on to the
straight lane while having saturated lateral forces could yield significant model/plant
mismatch. Hence the contraction constraint enforces a strong contraction of the

47

5. Results

state norm to ensure stability.

5.1.2 Baseline controller
In this section we will show the results from the baseline Linear Quadratic controller.
The time optimal driven trajectory which is calculated offline is also presented.

0 0.5 1 1.5 2

-0.5

0

0.5

1

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 5.7: LQ driven trajectory for Scenario 1.

Figure 5.7 shows the driven trajectory using the LQ controller. The controller is
using the offline calculated time optimal trajectory as reference. Thus we see how
the velocity is kept high during the S-curve in contrast to our Model Predictive
Contouring Controller which does not have full knowledge of what is coming up.

48

5. Results

20 40 60 80 100 120

-3

-2

-1

0

1

2

3

4

5

(a) State trajectories.

20 40 60 80 100 120

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(b) Control trajectories.

Figure 5.8: LQ state and control trajectories for Scenario 1.

49

5. Results

0 20 40 60 80 100 120 140
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 5.9: LQ slip angles for Scenario 1.

Just as with our main controller the slip angles constraints are on their limits for a
good part of the simulation time which can be seen in Figure 5.9. This shows that
due to the high initial velocity even the time optimal trajectory consists of braking
hard and steering into the initial corner, causing under-steer. The state and control
trajectories in Figure 5.8 confirms this.

50

5. Results

5.1.3 Comparison
In this section a comparison plot is shown and further data will be presented for
comparison purposes.

0 0.5 1 1.5 2

-0.5

0

0.5

1

Figure 5.10: Driven trajectories for Scenario 1.

In Figure 5.10 we see the Model Predictive Contouring Controller trajectory, the
LQ trajectory and the Time optimal trajectory superimposed. The final time for
the MPCC was tf = 1.82 seconds. For the Time optimal trajectory/LQ Controller
the final time was tf = 1.48 seconds. This makes the trajectory yielded by the LQ
controller roughly 18.7% faster than the one yielded by the MPCC.

5.2 Scenario 2: S-curve with obstacle
In this scenario we present the same S-curve as in the previous scenario, however
with an added an obstacle in a rather inconvenient position on the track. The
obstacle is placed at x, y = {1.45, 0.4}. This position of the obstacle will force
both the MPCC trajectory and the Time optimal trajectory to change with respect
to their trajectories from Scenario 1. Initial conditions and final conditions from
Scenario 1 are repeated as well.

51

5. Results

5.2.1 Model Predictive Contouring Controller

0 0.5 1 1.5 2

-0.5

0

0.5

1

Figure 5.11: Driven and predicted trajectories.

The addition of the obstacle requires the path planner to modify the lane constraints.
As can be seen in Figure 5.11 the path planner modifies the constraint such that
the car can pass to the right of the obstacle. This choice is a result of minimising
the energy spent of passing the obstacle.

52

5. Results

0 0.5 1 1.5 2

-0.5

0

0.5

1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 5.12: LTVMPCC driven trajectory for Scenario 2.

The velocity profile in Figure 5.12 shows a significant drop in velocity when passing
the obstacle. The torque input trajectory in Figure 5.13b show how the controller is
applying full braking for a large period of time while approaching the corner with the
obstacle. Navigating around this obstacle at such large initial velocity is a difficult
task. Despite this the controller still manages to keep the slip angles within their
limits (as posed, using predicted longitudinal velocity) as can be seen in Figure 5.14.

53

5. Results

10 20 30 40 50 60 70 80 90 100 110

-6

-4

-2

0

2

4

6

8

(a) State trajectories.

10 20 30 40 50 60 70 80 90 100 110

-0.5

0

0.5

1

1.5

2

2.5

3

(b) Control trajectories.

Figure 5.13: LTVMPCC state and control trajectories for Scenario 2.

54

5. Results

0 20 40 60 80 100 120
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 5.14: LTVMPCC slip angles for Scenario 2.

55

5. Results

0 20 40 60 80 100 120
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 5.15: Contouring error and lag error for Scenario 2.

Figure 5.15 shows the contour and lag error. It can be seen that the important lag
error is kept small while allowing the contour error to grow as necessary.

56

5. Results

Values of ᾱ
Time step ᾱ
k = 40 0.943061862496222
k = 80 0.99
k = 120 0.99

Table 5.3: Table showing values of ᾱ for Scenario 2.

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 5.16: Contraction of state norm for Scenario 2.

Figure 5.16 shows the contraction of the state norm during the scenario. In contrast
to the contraction of the state norm in scenario 1 we can here see that between
contraction step one and two, i.e j = 1 −→ j = 2 the contraction of the state norm
has almost stagnated. This is due to the car moving slowly around the obstacle thus
the path variable θ is not decreasing as much as in scenario one. Given that the
contraction constraint is constructed with the weighted norm, with emphasis on θ
this is expected. However, the state norm is not required to be decreasing between
time steps k, only between contraction steps j, thus stability is still ensured.
The table shows the computed values of ᾱ. Feasible values for contraction steps
j = 2 and j = 3 could not be computed due to not finding a small enough Lipschitz
constant.

57

5. Results

5.2.2 Comparison
In this section a comparison plot is shown and further data will be presented for
comparison purposes.

0 0.5 1 1.5 2

-0.5

0

0.5

1

Figure 5.17: Driven trajectories. for Scenario 2.

Figure 5.17 shows the trajectories driven by both controllers. As can be seen the
Time optimal trajectory is passing to the left of the obstacle. This yields a faster
trajectory. The finite horizon of the MPCC limits its decision making and as such the
path planner (which only uses the same finite horizon information as the controller)
decides to pass to the right of the obstacle. The final time for the Model Predictive
Contouring Controller was tf = 2.28 seconds, while the final time for the baseline LQ
controller was tf = 1.88 seconds. Making the trajectory yielded by the LQ controller
roughly 17.5% faster. However, important to note that LQ controller cannot track
the time optimal trajectory well enough and thus crashes into the obstacle.

5.3 Scenario 3: Straight road with obstacle
In this scenario an obstacle is placed in the middle of a straight road. The goal for
the controller is to steer clear of the obstacle and then return to the centre line. This
manoeuvre is called a double lane change manoeuvre and is often found in other
literature related to automotive control, for example in [8]. The obstacle is placed

58

5. Results

at x, y = {2,−0.001}. The position is slightly perturbed south from y = 0 in order
to avoid dual solutions.

5.3.1 Model Predictive Contouring Controller

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.5

0

0.5

1

Figure 5.18: Driven and predicted trajectories.

Figure 5.18 shows the driven and predicted trajectories. The controller steers clear
of the obstacle and back to the centre line in reasonable amount of space.

59

5. Results

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.5

0

0.5

1

1.965

1.97

1.975

1.98

1.985

1.99

1.995

Figure 5.19: LTVMPCC driven trajectory for Scenario 3.

Figure 5.19 shows the driven trajectory along with its velocity profile. It can be seen
that the controller kept an almost constant max velocity over the scenario. Only
slowing down, relatively, as the car is approaching the centre line again after having
passed the obstacle and finding a straight trajectory towards the end.

60

5. Results

10 20 30 40 50 60 70 80 90 100

-6

-4

-2

0

2

4

6

8

(a) State trajectories.

10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

1.5

2

2.5

3

(b) Control trajectories.

Figure 5.20: LTVMPCC state and control trajectories for Scenario 3.

61

5. Results

0 20 40 60 80 100 120
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 5.21: LTVMPCC slip angles for Scenario 3.

Figure 5.20 shows the state and control trajectories over the scenario. The controller
struggled to keep the volatility of the heading low. Thus the oscillatory trajectories
seen in heading, rate of change of heading and steering input. This is due to lack of
grip at the high velocity the car is travelling, resulting in understeer, oversteer and
the controller then counter-steering to bring the sliding rear end of the car back into
line with the heading. In Figure 5.21 the same oscillatory behaviour is naturally
present. The offset between αf and αr shows understeer followed by oversteer.
However, despite the lack of grip the controller manages to steer the car around the
obstacle, at almost max velocity, while still keeping the slip angles within its limits.

62

5. Results

0 20 40 60 80 100 120
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

Figure 5.22: Contouring error and Lag error for Scenario 3.

In Figure 5.22 it can bee seen that the controller keeps the lag error el at almost
zero over the course of the scenario, while letting the contour error ec grow in order
to pass the obstacle.

63

5. Results

Values of ᾱ
Time step ᾱ
k = 40 0.999899868706781
k = 80 0.886181011494793
k = 120 0.994086242762391

Table 5.4: Table showing values of ᾱ for Scenario 3.

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5.23: Contraction of state norm for Scenario 3.

Figure 5.23 shows the contraction of the state norm during the scenario. The con-
troller had no difficulties in decreasing the norm as the path variable θ could be
maximised with great efficiency.
Upper bounds ᾱ could be computed at each contraction steps. Where the upper
bound computed at k = 80, j = 2 is significantly more restrictive. This is due to
the car manoeuvring around the obstacle at high speed giving the need for a more
restrictive bound as the model/plant mismatch increases.

5.3.2 Comparison
In this section a comparison plot is shown and further data will be presented for
comparison purposes.

64

5. Results

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.5

0

0.5

1

Figure 5.24: Driven trajectories for Scenario 3.

Figure 5.24 shows both drive trajectories. The trajectory yielded by the Time opti-
mal optimisation problem is tracked well enough by the LQ controller. The trajec-
tory given by the LQ controller passes the obstacle more close than the trajectory
yielded by the LTVMPCC. However the latter is quicker to return to the centre
line. The final time yielded by the LQ controller was tf = 2.03 while the final time
yielded by the LTVMPCC was tf = 2.04. Making the trajectory yielded by the LQ
controller roughly 0.5% faster than the one by the LTVMPCC.

5.4 Scenario 4: Track with and without added
output noise

In this scenario we show the results of driving one lap around the course. Firstly
using the MPCC with full state feedback, then secondly the MPCC using estimated
state feedback where a plant/model mismatch has been introduced as well.
For this section some plots which are present in previous sections has been omitted
in order to limit the space of the thesis.

65

5. Results

5.4.1 MPCC

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

Figure 5.25: LTVMPCC driven and predicted trajectories for Scenario 4.

Figure 5.25 shows the driven and predicted trajectories during one lap of the track.
The controller kept a racing line through most of the track. The controller had
some slight difficulties in navigating the u-turn seen at the top of the track. Due to
the finite horizon the controller does not know the car is actually entering a u-turn
segment, as can be seen by the predicted trajectories. Thus it enters this segment
with a high velocity, causing the controller to take a very wide turn when exiting
the u-turn segment.

66

5. Results

-1 0 1 2 3

0

0.5

1

1.5

2

0.5

1

1.5

Figure 5.26: LTVMPCC driven trajectory for Scenario 4.

Figure 5.26 shows the driven trajectory along with its velocity profile. As one would
expect, the controller kept the car at high velocity during the the straight lines,
slowing down when approaching curves, and speeding up when exiting curves.

67

5. Results

50 100 150 200 250 300 350 400 450

-10

-5

0

5

10

(a) State trajectories.

50 100 150 200 250 300 350 400 450

-0.5

0

0.5

1

1.5

2

2.5

3

(b) Control trajectories.

Figure 5.27: LTVMPCC state and control trajectories for Scenario 4.

68

5. Results

Figure 5.27 shows the state and control trajectories for the scenario. One can see
that the path variable θk is driven to zero and that the virtual input v, which
drives θk, varies a great deal during the lap. This shows the strength of letting the
controller decide the evolution of the path variable rather than have it predefined,
as in a reference tracking setup.

0 50 100 150 200 250 300 350 400 450
0

2

4

6

8

10

12

Figure 5.28: LTVMPCC contraction of state norm for Scenario 4.

In Figure 5.28 we see the contraction of the state norm during one lap. The controller
has no problem to satisfy the constraint all the way down to zero. This means that
the controller has decreased the state norm to satisfy the contraction constraint at
each contraction step j and driven the system into the predefined equilibrium point,
thus ensuring stability throughout the whole simulation.
A feasible upper bound α̂ could not be computed at every contraction step over the
course of the lap due to very large nonlinearites in the model.

5.4.2 MPCC with observer
The controller in this section is the same as above but now artificial output noise
is added and the states are estimated by the use of an Extended Kalman Filter.
A model/plant mismatch is introduced by perturbing the Pacejka force constants.
The standard values are given in 3.1. The perturbed Pacejka force constants are as
follows:

69

5. Results

Values of ᾱ
Time step ᾱ
k = 40 0.999505083703128
k = 80 0.993888998085892
k = 120 0.99
k = 160 0.99
k = 200 0.99
k = 240 0.99
k = 280 0.99
k = 320 0.806600365736303
k = 360 0.999743790777952
k = 400 0.99
k = 440 0.99

Table 5.5: Table showing values of ᾱ for Scenario 4.

Pacejka formula constants
Constant Value

Bf 4.3
Br 4.2
Cf 1.45
Cr 1.47
Df 0.3
Dr 0.34

Table 5.6: Table showing values of Pacejka formula constants.

The variance for the sensors are approximated from actual data in a stationary state.
However, as we want to test the controller in a more challenging way the variance
for the gyro and accelerometer have been slightly increased.

The measurement values are simulated from the actual state of the vehicle by adding
the corresponding disturbance to the current state. The observer uses the same vari-
ance for the observer noise as the variance for the simulated sensors.
The sample time Ts for the prediction step in the filter is 5ms. The sample time for
the sensors and and their variance is given in the following table.

Finally, the track constraints was tightened by 0.02 meters as a buffer.

Sensor sample time and variance
sensor sample time variance
camera 20 ms 0.002

accelerometer 5 ms 0.0001
gyroscope 5 ms 0.005

Table 5.7: Table showing sensor sample time and their variance.

70

5. Results

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

Figure 5.29: LTVMPCC with observer driven trajectories for Scenario 4.

Figure 5.29 shows the driven (estimated) and predicted trajectories for one lap. We
can see that the tightening of the track constraint yields a slightly conservative
driven trajectory. However in contrast to 5.25 the u-turn is navigated better. This
is due to the more conservative velocity going into the u-turn.

71

5. Results

-1 0 1 2 3

0

0.5

1

1.5

2

0.5

1

1.5

Figure 5.30: LTVMPCC with observer driven trajectory for Scenario 4.

The velocity profile in Figure 5.30 clearly shows a conservative velocity going into the
u-turn. However, for the rest of the lap the controller manages to keep the velocity at
a decent level despite not having full state feedback and especially more conservative
track constraints. The state and control trajectories are shown in Figure 5.31.

72

5. Results

50 100 150 200 250 300 350 400

-10

-5

0

5

10

(a) State trajectories.

50 100 150 200 250 300 350 400

-0.5

0

0.5

1

1.5

2

2.5

3

(b) Control trajectories.

Figure 5.31: LTVMPCC with observer state and control trajectories for Scenario
4.

73

5. Results

0 50 100 150 200 250 300 350 400 450
0

2

4

6

8

10

12

Figure 5.32: LTVMPCC with observer contraction of state norm for Scenario 4.

Figure 5.32 shows the contraction of the state norm during the scenario. At certain
contraction steps, for example at k = 240 and k = 320, rather aggressive contraction
is enforced. The controller still manages to satisfy the constraint at each contraction
step.

74

5. Results

Values of ᾱ
Time step ᾱ
k = 40 0.998282846434544
k = 80 0.98043673591626
k = 120 0.99
k = 160 0.99
k = 200 0.99
k = 240 0.7
k = 280 0.99
k = 320 0.7
k = 360 0.998673676158939
k = 400 0.747419733118292
k = 440 0.99

Table 5.8: Table showing values of ᾱ for Scenario 4 with observer.

Table 5.8 shows the computed upper bounds on α during the course of the scenario.
At time step k = 240 and k = 320 the upper bound ᾱ is computed to a value
of below 0.7. However, in the absence of the ability to compute a lower bound α
the computed value is clamped to 0.7 in order to avoid driving the system into in-
feasability.

Figure 5.33a and 5.33b shows the the rotation of the vehicle and it’s derivative. The
filtered states is almost identical to the actual states. The measurements noise is
slightly higher on the angle but the filter is able to compensate for it.

75

5. Results

0 50 100 150 200 250 300 350 400 450 500
-1

0

1

2

3

4

5

6

7

(a) Heading.

0 50 100 150 200 250 300 350 400 450 500
-3

-2

-1

0

1

2

3

(b) Heading rate of change.

Figure 5.33: Heading and heading rate of change.

76

5. Results

Figure 5.34a and 5.34b and shows the velocity in longitudinal and lateral direction.
As the velocity states are not measured the filter has to estimate the state from
current states and the relation given in the state estimation equation. The filter
is rather slow to react on the sudden movement of the vehicle in the beginning of
the simulation. This is mainly due to the initial value of the covariance matrix in
the filter, once it has converged to a steady state the filtered becomes more accurate.

The acceleration profile in longitudinal and lateral direction is shown in Figure 5.35a
and 5.35b. The figures shows the actual, measured and filtered acceleration values.
The acceleration states estimated in the filter is fairly accurate and it is quick to
react to the sudden changes.

77

5. Results

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Longitudinal velocity.

0 50 100 150 200 250 300 350 400 450 500
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b) Lateral velocity.

Figure 5.34: Longitudinal and lateral velocity.

78

5. Results

0 50 100 150 200 250 300 350 400 450 500
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Longitudinal acceleration.

0 50 100 150 200 250 300 350 400 450 500
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(b) Lateral acceleration.

Figure 5.35: Longitudinal and lateral acceleration.

79

5. Results

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

Figure 5.36: Position.

In Figure 5.36 trajectory of the vehicle is shown as well as the estimated and mea-
sured position. The position measurements are quite inaccurate but the actual and
estimated trajectories are quite similar.

80

5. Results

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

MSE

Figure 5.37: Mean squared error.

In Figure 5.37 the mean squared error between the plant and the observer states
are shown. Initially the error is fairly high but decreases over the first samples and
settles between 0.05 and 0. The high error in the beginning of the simulation is
due to the incorrect initial guess of the covariance matrix once it has converge to a
steady state the error is reduced.

81

5. Results

5.4.3 Comparison
In Figure 5.39 the actual driven trajectories are presented for both controllers. The
controller without noise manages to keep a better racing line over the track, with
an exception for the u-turn. The more conservative controller with noise has an
advantage here in that the car enters the u-turn section at a lower velocity and can
thus manoeuvre around the u-turn without being pushed out wide. This can be
seen more clearly in Figure 5.38.

-1 0 1 2 3

0

0.5

1

1.5

2

0.5

1

1.5

Figure 5.38: LTVMPCC and LTVMPCC with observer driven trajectories for
Scenario 4.

The velocity profile with black marker edges are from the LTVMPCC with observer
and the velocity profile with no marker edges are from the LTVMPCC.

82

5. Results

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

MPCC
MPCC with observer

Figure 5.39: LTVMPCC and LTVMPCC with observer driven trajectories for
Scenario 4.

The controller without noise finished the lap in tf = 9.16 while the controller with
noise finished the lap in tf = 9.18. This shows that performance deterioration is
minuscule when adding output noise and using estimated state feedback.

83

6
Conclusion

An investigation into how to use optimal control techniques, including closed-loop
stability, for autonomous high-speed driving was carried out.
This thesis shows a successful implementation of a Linear Time Varying Model Pre-
dictive Contouring Controller along with an obstacle avoidance path planner. State
estimation was implemented using an Extended Kalman Filter. Stabilization of the
closed loop was achieved by the use of Lyapunov stability theory via a so-called
contraction constraint. A unique approach for implementation of the contraction
parameter computation for a linear time varying system was presented. The con-
troller was evaluated in four different scenarios, with and without obstacle, and
showed satisfactory results when compared to a time-optimal trajectory. Due to
hardware restrictions the controller was regretfully not implementable with desired
update rate on an embedded system.

6.1 Suggestions for further research
Finally, in this section we list some suggestions of improvements which can be made
and suggestions for further research which could be of use.

• More computing power would allow for use of a longer horizon in the controller
which would vastly improve driving trajectories. More computing power would
also give room for use of a more advanced path planner.

• Research if the use of Nonlinear MPC is feasible with regards to solver times.
This would most likely improve driving trajectories as linearization errors
would no longer be present.

• Further research into different solver should be made, as CPLEX might en-
counter numerical difficulties when solving QCQP problems [12].

• A successful real-time hardware implementation would show how the controller
would perform in the real world. Additions such as online estimation of the
Pacejka parameters could be made.

84

Bibliography

[1] Lam, D (2012). A Model Predictive Approach to Optimal Path-following and
Contouring Control. Ph.D. dissertation, University of Melbourne, Australia.

[2] de Oliveira, S (1996). Model predictive control (MPC) for constrained nonlinear
systems. Ph.D. dissertation, California Institute of Technology, United States
of America.

[3] A. Liniger, A. Domahidi and M. Morari (2014). Optimization-Based Au-
tonomous Racing of 1:43 Scale RC Cars.

[4] L. Wenhao, J. Peng, W. Liu, J. Wang and W. Yu (2013). A Unified Opti-
mization Method for Real-Time Trajectory Generation of Mobile Robots with
Kinodynamic Constraints in Dynamic Environment.

[5] L. Juan, E. Jerez, K. Constantinides and G. Constantinides (2011). A Con-
densed and Sparse QP Formulation for Predictive Control.

[6] R. Jazar (2017). Vehicle Dynamics - 3rd edition.

[7] R.T. Uil (2007). Tyre models for steady-state vehicle handling analysis.

[8] P.Falcone, F. Borelli, J. Asgari, H.E. Tseng and D. Hrovat (2007). Predictive
Active Steering Control for Autonomous Vehicle Systems.

[9] J. Gerdes and C.E Beal (2013). Model Predictive Control for Vehicle Stabiliza-
tion at the Limits of Handling.

[10] F. Leutwiler (2016). Nonlinear MPC for miniature RC Race Cars.

[11] J. Yang, Z. Qu, J. Wang and K. Conrad (2010). Comparison of Optimal
Solutions to Real-Time Path Planning for a Mobile Vehicle.

[12] IBM. Numeric difficulties and quadratic constraints. Available: https://www.
ibm.com/support/knowledgecenter/en/SS9UKU_12.4.0/com.ibm.cplex.
zos.help/UsrMan/topics/cont_optim/qcp/16_numeric_difficulty.html,
Accessed on: 2019-03-20

85

 https://www.ibm.com/support/knowledgecenter/en/SS9UKU_12.4.0/com.ibm.cplex.zos.help/UsrMan/topics/cont_optim/qcp/16_numeric_difficulty.html
 https://www.ibm.com/support/knowledgecenter/en/SS9UKU_12.4.0/com.ibm.cplex.zos.help/UsrMan/topics/cont_optim/qcp/16_numeric_difficulty.html
 https://www.ibm.com/support/knowledgecenter/en/SS9UKU_12.4.0/com.ibm.cplex.zos.help/UsrMan/topics/cont_optim/qcp/16_numeric_difficulty.html

A
Time varying Hessian entries

◦1 = 2ql(cosφ(θ̂∗k+i|k))2 + 2qc(sinφ(θ̂∗k+i|k))2

◦2 = 2 cosφ(θ̂∗k+i|k)ql sinφ(θ̂∗k+i|k)− 2 cosφ(θ̂∗k+i|k)qc sinφ(θ̂∗k+i|k)

◦3 =2qc sinφ(θ̂∗k+i|k)(cosφ(θ̂∗k+i|k)∇yd(θ̂∗k+i|k)−∇xd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k))−
− 2 cosφ(θ̂∗k+i|k)ql(cosφ(θ̂∗k+i|k)∇xd(θ̂∗k+i|k) +∇yd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k))

◦4 = 2(cosφ(θ̂∗k+i|k)ql sinφ(θ̂∗k+i|k)− 2(cosφ(θ̂∗k+i|k)qc sinφ(θ̂∗k+i|k)

◦5 = 2qc(cosφ(θ̂∗k+i|k))2 + 2ql(sinφ(θ̂∗k+i|k))2

◦6 =− 2ql sinφ(θ̂∗k+i|k)(cosφ(θ̂∗k+i|k)∇xd(θ̂∗k+i|k) +∇yd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k))−
− 2 cosφ(θ̂∗k+i|k)qc(cosφ(θ̂∗k+i|k)∇yd(θ̂∗k+i|k)−∇xd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k))

◦7 =2qc sinφ(θ̂∗k+i|k)(cosφ(θ̂∗k+i|k)∇yd(θ̂∗k+i|k)− xd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k))−
− 2 cosφ(θ̂∗k+i|k)ql(cosφ(θ̂∗k+i|k)xd(θ̂∗k+i|k) +∇yd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k))

◦8 =− 2ql sinφ(θ̂∗k+i|k)(cosφ(θ̂∗k+i|k)∇xd(θ̂∗k+i|k) +∇yd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k))−
− 2 cosφ(θ̂∗k+i|k)qc(cosφ(θ̂∗k+i|k)∇yd(θ̂∗k+i|k)−∇xd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k))

◦9 =2qc(cosφ(θ̂∗k+i|k)∇yd(θ̂∗k+i|k)−∇xd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k))2+
2ql(cosφ(θ̂∗k+i|k)∇xd(θ̂∗k+i|k) +∇yd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k))2

I

B
Time varying Gradient entries

�1 =2qc sinφ(θ̂∗k+i|k)(cosφ(θ̂∗k+i|k)(yd(θ̂∗k+i|k)−∇yd(θ̂∗k+i|k)θ̂∗k+i|k)− sinφ(θ̂∗k+i|k)(xd(θ̂∗k+i|k)−
−∇xd(θ̂∗k+i|k)θ̂∗k+i|k))− 2 cosφ(θ̂∗k+i|k)ql(cosφ(θ̂∗k+i|k)(xd(θ̂∗k+i|k)−∇xd(θ̂∗k+i|k)θ̂∗k+i|k)+
sinφ(θ̂∗k+i|k)(yd(θ̂∗k+i|k)−∇yd(θ̂∗k+i|k)θ̂∗k+i|k))

�2 =− 2 cosφ(θ̂∗k+i|k)qc(cosφ(θ̂∗k+i|k)(yd(θ̂∗k+i|k)−∇yd(θ̂∗k+i|k)θ̂∗k+i|k)− sinφ(θ̂∗k+i|k)(xd(θ̂∗k+i|k)−
−∇xd(θ̂∗k+i|k)θ̂∗k+i|k))− 2ql sinφ(θ̂∗k+i|k)(cosφ(θ̂∗k+i|k)(xd(θ̂∗k+i|k)−∇xd(θ̂∗k+i|k)θ̂∗k+i|k)+
sinφ(θ̂∗k+i|k)(yd(θ̂∗k+i|k)−∇yd(θ̂∗k+i|k)θ̂∗k+i|k))

�3 =− 2qc(cosφ(θ̂∗k+i|k)(yd(θ̂∗k+i|k)−∇yd(θ̂∗k+i|k)θ̂∗k+i|k)− sinφ(θ̂∗k+i|k)(xd(θ̂∗k+i|k)−∇xd(θ̂∗k+i|k)
θ̂∗k+i|k))(cosφ(θ̂∗k+i|k)∇yd(θ̂∗k+i|k)−∇xd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k))− qt + 2ql(cosφ(θ̂∗k+i|k)(xd(θ̂∗k+i|k)−
−∇xd(θ̂∗k+i|k)θ̂∗k+i|k) + sinφ(θ̂∗k+i|k)(yd(θ̂∗k+i|k)−∇yd(θ̂∗k+i|k)θ̂∗k+i|k))(cosφ(θ̂∗k+i|k)∇xd(θ̂∗k+i|k)+
∇yd(θ̂∗k+i|k) sinφ(θ̂∗k+i|k))

II

C
Linear Quadratic controller

weighting matrices

C.1 Scenario 1

Qlq =



9.853 0 0 0 0 0
0 56.959 0 0 0 0
0 0 31.397 0 0 0
0 0 0 40.045 0 0
0 0 0 0 11.910 0
0 0 0 0 0 1.676


Rlq =

[
94.623 0

0 9.578

]

C.2 Scenario 2

Qlq =



69.391 0 0 0 0 0
0 98.849 0 0 0 0
0 0 16.164 0 0 0
0 0 0 12.177 0 0
0 0 0 0 8.371 0
0 0 0 0 0 2.869


Rlq =

[
58.367 0

0 98.327

]

C.3 Scenario 3

Qlq =



51.312 0 0 0 0 0
0 98.698 0 0 0 0
0 0 40.936 0 0 0
0 0 0 16.478 0 0
0 0 0 0 6.519 0
0 0 0 0 0 2.682



III

C. Linear Quadratic controller weighting matrices

Rlq =
[
48.269 0

0 48.004

]

IV

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Aim of the project
	Limitations
	Disposition

	Theory
	Vehicle model
	Model Predictive Control
	Model Predictive Contouring Control
	Observer

	Methods
	Vehicle model
	Linear Time Varying Model Predictive Contouring Control
	Constraints
	Border constraint
	Slip angle constraint
	Obstacle avoidance
	Contraction constraint

	Casting into a QP problem
	Baseline controller
	Reference trajectory
	Time varying LQ controller
	Qlq and Rlq weights

	State estimation

	Implementation
	Results
	Scenario 1: S-curve
	Model Predictive Contouring Controller
	Baseline controller
	Comparison

	Scenario 2: S-curve with obstacle
	Model Predictive Contouring Controller
	Comparison

	Scenario 3: Straight road with obstacle
	Model Predictive Contouring Controller
	Comparison

	Scenario 4: Track with and without added output noise
	MPCC
	MPCC with observer
	Comparison

	Conclusion
	Suggestions for further research

	Bibliography
	Time varying Hessian entries
	Time varying Gradient entries
	Linear Quadratic controller weighting matrices
	Scenario 1
	Scenario 2
	Scenario 3

