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Searching for Vector Wave Dark Matter with Levitated Magnetomechanics
Analysis of a Hypothetical Direct Detection Experiment Using Levitating Super-
conductive Test Objects
MÅNS ANDURI
Department of Physics
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Abstract
This master’s thesis investigates the sensitivity of a hypothetical direct detection
experiment using levitated magnetomechanics for a vector bosonic wave dark mat-
ter candidate. The sensitivity studies done is for masses between 1.24 · 10−13 eV
and 4.14 · 10−12 eV and with four different possible background terms, where the
background is assumed to be thermally based. The vector boson is described with
the Lagrangian, L = −1

4FµνF
µν − 1

2m
2
DMAµA

µ+gAµn̄γ
µn, and couples to the baryon

number minus the lepton number, thus yielding an EP-violating force on a charge-
neutral test object. Since it is ultralight it can be seen as a classical wave. To
measure the sensitivity, the exclusion and discovery limits for the coupling constant,
g, are asymptotically derived with the Asimov data set for 95% confidence interval
and the 5σ level respectively. The limits are plotted against the mass scanned over
and compared with the discovery limit for an optomechanical experiment for the
same dark matter candidate. It is shown that the sensitivity for the most optimistic
background is comparable with said experiment.

Keywords: Asimov data set, direct detection, discovery limit, EP-violation, ex-
clusion limit, experimental sensitivity, levitated magnetomechanics, ultralight dark
matter, vector boson, wave dark matter.
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1
Introduction

Dark matter is a great unknown in physics. It makes up the majority of matter in
the known universe, and yet its constituent parts are still undetermined. Discovery
of dark matter could have huge consequences in astronomy and particle physics. A
better understanding of what the universe is made of would also have an indirect
effect on society, in popular culture, and technology, and it could lead more people
into the fields of particle physics, astronomy, and cosmology.

Historically, many different dark matter candidates have been introduced to explain
the missing visible matter in the universe. These possible candidates range from
dark baryonic matter to primordial black holes and it has even been proposed that
the theory of gravity needs to be modified and that there is radically less dark
matter than currently believed in the universe [1]. In time, though, the explanation
has mostly settled on dark matter being elementary particles, and most likely one
(or several) new elementary particle(s).

The candidates most recent studies have focused on are heavier candidates like
WIMPs, with masses larger than approximately 50 GeV [2], but there is a wide
range of possible candidates, such as light dark matter, with masses between 10−22

and 1 eV, or with masses being even lower. Any of these ranges for masses could hold
a candidate (or several candidates) that is the best fit for the dark matter observed
in and around our galaxy. Since there are several potential mass ranges for dark
matter candidates and there has not been any breakthrough in the realm of heavy
dark matter candidates it could be a good idea to focus on these lighter candidates
for dark matter as well. In Section 1.1 the history of dark matter exploration is
explained as well as the evidence for the existence of dark matter in general and a
few different dark matter candidates in particular. The section finishes with a brief
explanation of the poorly explored wave dark matter theory, which is the foundation
for the dark matter candidate that is explored in this thesis.

There are three ways to search for dark matter candidates: direct detection, which
can be a way to detect WIMPs, collider experiments to detect missing momentum
and energy possibly corresponding to dark matter, and annihilation of dark matter
particles which could result in detectable standard model particles [3]. In this thesis,
a possible direct detection experiment that could be used to search for light dark
matter particles at Chalmers University of Technology (CTH) is examined. The ex-
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1. Introduction

periment, and direct detection of dark matter in general, is explained in Section 1.2.

The focus in this thesis lies squarely on a dark matter candidate that is a wave dark
matter vector boson. Because of the way this dark matter candidate interacts with
matter and because of its light mass, it can be compared with the so called “dark
photon” [4]. The theory for vector bosons laid out in [5] is used together with the
statistical framework developed in [6] to find the experimental sensitivity for the
proposed experiment meant to search for light dark matter previously mentioned.
The thesis description is further expanded in Section 1.3. In Chapter 2 a more
in-depth explanation of the vector wave dark matter candidate is given as well as a
brief physical explanation of the connection between it and the dark photon. The
statistical framework from [6] is presented in Chapter 3. Finally in Chapter 4 the
resulting exclusion and discovery limits determining the experimental sensitivity
for the proposed experiment are shown. These results are compared to the results
presented in [5] and discussed.

1.1 Background
Dark matter is a type of matter that does not interact with the electromagnetic
field or via the strong force, and as such it is difficult to measure, but it has been
discovered to make up most of the total matter in the universe [1]. That dark matter
exists at all, however, and how the dark matter would be described is not obvious.
Historically it has taken time and effort for the theory of dark matter to be accepted
and a satisfying description of dark matter is yet to materialize. In this section the
history of and evidence for dark matter as well as the reasons for this thesis’ focus
on very light dark matter is discussed.

1.1.1 History
Humans have viewed the skies since before they formed settlements, but it was fairly
recently that the telescope was invented which allowed a more scientific view of the
sky [1]. Though it was not until the 20th century that the concept of dark matter
could be formulated in a way that could be recognized today. However, the need
for more mass that is not visible was discussed as early as the mid part of the 19th
century, but then focusing on the possibility of invisible stars and dark clouds to
describe the problems they encountered. The real first discussion of dark matter
was therefore just the possibility of matter that was too dark to be seen. In the
early part of the 20th century calculations of dynamics in the Milky Way by viewing
the stars as gas particles indicated that the the majority of these “stars” could be
dark [1]. This was done by comparing velocity dispersion for the stars with the size
of the system. At this time though, it was commonly believed to be more than or
at least similar amounts of visible matter to that of dark matter.

When the virial theorem was first applied on a galaxy cluster, the Coma Cluster, to
find the mass of said cluster in the early 1930s it was found that the velocity dis-
persion from the visible matter should be about 80 km/s, but the measured velocity
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1. Introduction

dispersion was about 1000 km/s [1]. The person who first did this (Fritz Zwicky)
thought that the “dark matter” was in “the form of cool and cold stars, macroscopic
and microscopic solid bodies, and gases.” Clearly the move to view dark matter
as non-baryonic was still ways of. And indeed a lot of astronomers did not believe
that the findings could be true as the invisible mass to visible mass ratio would be
too great. Several alternative explanations were offered but they did not stand the
test of time. During the 1970s, gas was ruled out as the main part of this dark
matter and so different (and strange) solutions started to be discussed. For more
information about these strange solutions that were proposed from this time and
onwards, the reader is refered to [1]. The velocity dispersion of the galaxy cluster is
also further discussed as evidence for dark matter in Section 1.1.2.1.

Another key element in the case for dark matter was the rotation curve of galaxies,
i.e. the rotational velocity as a function of radial distance from the galaxy centre.
These have been measured to be approximately constant and measurements of this
nature have been made since the 1910s [1]. It was not until the 1970s, however, that
scientists started to worry about the discrepancy between the observed mass and
the observed rotational velocities at the the outer parts of the galaxies, as earlier
optical observations could not find what can be found with radio observations. With
the rotational velocity, the mass of the galaxy can be calculated and a mass to light
ration can be inferred. Since the expected mass from the visible part of the galaxy
was different from what was measured from rotational curves, scientists began to
lean more in favor of the existence of dark matter as separate from ordinary visible
matter. The rotation curve as evidence for dark matter is described in more detail
in Section 1.1.2.2.

Though most other hypotheses of what could be this “dark matter” were discarded,
the view that it might be made out of subatomic particles did not become the
main focus for researchers until the later parts of the 1980s [1]. MACHOs (massive
astrophysical compact halo objects, a baryonic alternative) were not disproven to
be a dominating part of dark matter until the early part of the 21st century, but
non-baryonic dark matter candidates were a leading model as early as the end of
the 1980s. In the late 1970s the neutrino was proposed to be able to account for
the missing mass, but by use of numerical simulations it was shown, in the 1980s,
that the neutrino and similar particles could not be the dominating part of the dark
matter mass.

Supersymmetry (a symmetry that relates bosons to fermions, predicting “new” par-
ticles) was invented in the 1970s [1]. It can be used to predict particles outside of
the standard model that could be dark matter. And in the late part of the 1970s the
axion, a particle that could solve the strong charge conjugation parity problem in
quantum chromodynamics, was proposed. It is also a fitting dark matter candidate.
Weakly interacting massive particles (WIMPs) was proposed as a dark matter can-
didate in the 1980s, but other possible candidates have been proposed as well, such
as wave dark matter [7]. In more resent days this wave dark matter theory has been
established and being such a new phenomenon it is not surprising that it is so poorly
explored. Because of this it has not yet yielded any results that can be discussed in
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1. Introduction

the same way MACHOs and WIMPs can be discussed. Wave dark matter is briefly
described in Section 1.1.3.4 and connected more clearly to this thesis in Chapter 2.

1.1.2 Evidence for dark matter
The evidence for dark matter presented here is in the same order as the correspond-
ing discoveries in Section 1.1.1, and evidence not mentioned there are presented later
in this section. The evidence does not only pertain to the existence of dark matter
but also that it is most likely non-baryonic. The possibility of the theory of modified
Newtonian dynamics (MOND) being correct is not discussed here but can be read
about in [1].

1.1.2.1 Velocity dispersion for galaxy clusters

As described earlier, using the velocity dispersion of a galaxy to find the mass or
vice versa using the virial theorem and not accounting for dark matter yields a
contradiction [1]. The virial theorem states that

⟨T ⟩ = −1
2 ⟨U⟩ , (1.1)

where T is the kinetic energy of the system and U the gravitational potential of
the system. If this is applied on the Coma Cluster, with the assumption that the
mass of a galaxy is the measured mass before dark matter was taken into account,
about 109 solar masses, the contradiction is found [8]. Taking the number of galaxies
that had been measured at the time when Swicky did this calculation for the first
time, 800 (now it is known to have over 1000 galaxies) so that the total mass of the
Coma Cluster becomes MComa = 1.6 · 1042, with radius of the cluster being about
R ≈ 1019 km, the theorem in (1.1) yields,

1
2
〈
v2
〉
MComa = −1

2
−3
5 G

M2
Coma
R

. (1.2)

Here G is the gravitational constant, and from this expression the square root of the
average velocity squared can be found:

√
⟨v2⟩ =

√
3
5G

MComa

R
≈
√

3
5 · 6.67 · 1.6 · 10−20 · 1042 · 10−19 km2/s2 (1.3)

≈ 80 km/s.

But the average measured velocity is about 1000 km/s and thus there is a contra-
diction. But this does not prove that there is a missing mass or that the mass is
dark matter. It could be argued that the Coma Cluster and other clusters this is
applied to are not stable enough for the virial theorem. However it can be shown
that the age of the clusters would have to be lesser than the age of the galaxies in
them if that was true [1].
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1. Introduction

Figure 1.1: Two rotation curves overlayed on the image of a galaxy (Messier
33). The observed rotation curve based on the measured (yellow and blue) data
shows a higher rotational velocity than the expected rotation curve. At radii out-
side of the galactic centre the velocity decreases for the expected rotation curve,
while the velocity for the observed curve increases slightly. Credit: Mario De
Leo, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via
Wikimedia Commons, https://upload.wikimedia.org/wikipedia/commons/c/
cd/Rotation_curve_of_spiral_galaxy_Messier_33_%28Triangulum%29.png.

1.1.2.2 Rotation curves of galaxies

To find out more about the unseen matter surrounding galaxies one can observe the
galaxies, and find discrepancies between the observed mass and the velocity of the
galaxy [1]. The rotation curve of a (spiral) galaxy is measured both in the optical
and radio ranges since the outer edges of the galaxy has no stars but rather a lot
of hydrogen gas. These measurements are used to find the rotational velocity as
a function of the distance from the galactic centre. The expected rotation curve
calculated from only visible mass would first increase in the central region and
then decrease with increased radius (the increase would be roughly v ∝ r and the
decrease v ∝ r−1/2) [9]. When the rotational velocity is actually measured, however,
the rotational velocity continues to increase and becomes approximately constant
at the outer edges [1]. This discrepancy can be seen in Figure 1.1, which shows the
expected rotation curve and the actual observed rotation curve of a spiral galaxy
(Messier 33). From this discrepancy, the conclusion can be drawn that there is
some sort of missing matter that explains why the observed rotation curve does not
decrease with radius. Since the rotational velocity is approximately constant far
“outside” the galaxy, this also provides evidence for the existence of what we now
call a dark matter halo, that additionally has a different distribution than the visible
matter. However to show that dark matter is unlikely to be baryonic matter, more
evidence needs to be discussed.
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1. Introduction

1.1.2.3 Lack of evidence for baryonic dark matter

The most obvious candidate for dark baryonic matter would be gas [1], but the gas
surrounding galaxies can be shown to correspond to less than 2% of the missing
matter. This is done by observing X-ray emissions from the ionized gas. Other
methods to find baryonic dark matter have similarly come up lacking, for example
the use of gravitational microlensing to find MACHOs have yielded results that
indicate a very low amount of MACHOs [10]. Gravitational microlensing is a method
where a small massive object (with mass between the mass of a planet to that of a
star), bends the light from a source behind it in relation to the observer, so that the
observer sees several versions of the source. In [10] the EROS-2 Collaboration used
this to find existing MACHOs, but with few observations their results indicate that
MACHOs make up less then 8 % of the missing matter in the dark matter halo.
Thus it is highly unlikely that the dark matter in the galactic halo is either gas or
MACHOs.

In general though, the evidence against baryonic dark matter comes mainly from
observed the baryon density of the universe. The Planck Collaboration [11] has
calculated the baryon density [1] and found it to be about Ωb ≈ 0.02225. With
such a small density (it corresponds to baryonic matter being about 7% of the total
matter) it is highly unlikely that baryonic matter makes up anything more than a
very small amount of the unseen dark matter.

1.1.3 Non-baryonic dark matter candidates
While baryonic dark matter have been mostly excluded, there are several non-
baryonic dark matter candidates that have been suggested. This thesis focuses
on very light candidates, since there exists experimental possibilities at CTH to
make potential discovery in this field and heavy candidates have been thoroughly
explored already. In this section a few candidates are discussed to showcase the
issue regarding these as candidates, starting with the lighter neutrino and the axion
and then moving on to the heavier WIMPs. But first a quick discussion about hot
and cold dark matter, and thermal as well as non-thermal creation of dark matter
particles.

Hot dark matter candidates are candidates that would have been relativistic dur-
ing structure formation while cold dark matter candidates would have been non-
relativistic [1]. If the dominating dark matter in the universe was hot this would
have lead to larger dark matter structures forming first and then fragment to smaller
(i.e. galaxy sized) structures later. Cold dark matter, in contrast, would have formed
smaller halos first and then merging would have lead to bigger structures. Simula-
tions of dark matter structures have shown that dark matter was most likely cold,
resulting in hot dark matter seemingly being a poor match for being the dominating
part of the dark matter in the universe.

If dark matter was thermally created it was created during the thermodynamical
equilibrium when the universe was young [12]. Eventually the dark matter would
have stopped being in this equilibrium as the universe cooled, and thus the particle
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1. Introduction

would no longer be created. However thermally created dark matter candidates
cannot be to light if they are going to be an example of cold dark matter since
the particles would have had to freeze-out of the thermal equilibrium in the early
universe [1]. Non-thermally created dark matter particles, however, can be light
without being hot. These particles are created at low enough temperatures so that
they do not reach thermal equilibrium or have a weak enough interaction with
the thermal plasma so that they cannot be seen as coupled to it [13]. As such,
non-thermally created dark matter offers the possibility of cold light dark matter,
important for structure formation.

1.1.3.1 Neutrinos

One of the earliest candidates for dark matter was the neutrino [1]. Since it is stable
and do not interact through either the electromagnetic force nor the strong force it is
an interesting candidate as this fits well with observations of how dark matter should
interact (at most weakly). However because of their low mass and how they were
created (thermally) it is an example of a hot dark matter candidate and because of
this it is not seen as a viable candidate for the dominating part of the dark matter
in the universe anymore. As such, the neutrino as dark matter cannot account for
the measured dark matter.

1.1.3.2 Axions

The axion were first thought of to solve the strong charge conjugation parity problem
in quantum chromodynamics, but is also an excellent dark matter candidate [1]. It
is weakly interacting and has a low mass (≲ 10−3 eV) and can be created both non-
thermally. As such it can be an example of cold dark matter, and light axions with
masses between 10−6 eV and 10−4 eV could describe all the dark matter measured.
Measuring the axion could be done in the same way as the vector boson in focus in
this article, with use of direct detection experiments. It can be noted that the axion
can be explored as a wave dark matter candidate [4].

1.1.3.3 WIMPs

A possible set of candidates of cold dark matter are WIMPs, which are weakly
interacting which is a desired type of interaction for dark matter [1]. They are
heavy (with a mass in the GeV-TeV-scale) and as such could be a thermal relic and
yet be cold dark matter. Notably WIMPs could make up all measured dark matter
in the universe. However searches for WIMPs should have yielded results by now.
They should not be too difficult to find, and as such the particles may very well not
exist, or be in a higher mass range than initially thought [2].

1.1.3.4 Wave dark matter

A poorly explored theory of dark matter is the wave dark matter theory [7]. It
states that light enough dark matter candidate can be described as classical waves.
It should be noted that because of the Pauli exclusion principle the particles are
bosonic. The theory has some interesting implications. On small scales the dark

7
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matter has a wave-like behaviour, but it retains the cold dark matter behaviour on
larger scales.

An example of a wave dark matter candidate is the previously mentioned axion, as
it is light enough. Another is the particle in focus of this thesis, the vector boson
which has a peculiar interaction that is not one of the four fundamental interactions.
It interacts with the baryon number minus the lepton number [4]. The vector dark
matter field yields an equivalence principle (EP) violating force and if it is tested
on a charge-neutral test object it only interacts with the neutron number meaning
that tests on this candidate would be fairly easy to perform.

1.2 Direct detection
A wave dark matter candidate could hypothetically be measured with direct detec-
tion experiments. These experiments require the measuring of the direct effect of
the dark matter on a sensor of some kind [3]. More massive dark matter particles,
like the WIMP, can cause a noticeable recoil of the nucleus in matter, but when it
comes to lighter dark matter candidates such an recoil would be undetectable, so
electron recoils are often searched for instead. However, in the case of wave dark
matter, which is a wave rather than individual particles, nuclear recoils could be
detected. The wave nature of the dark matter makes detection more easy as the
whole test object would fit inside of the dark matter wave, causing a potentially
noticeable force on the object from the totality of particles in said wave, depend-
ing on the coupling constant for the dark matter candidate in question. A realistic
wavelength in wave dark matter is between about 10000000 km (for a dark matter
candidate with the mass 1.24 · 10−13 eV) and about 300000 km (for a dark matter
candidate with the mass 4.14 · 10−12 eV) as can be seen in Chapter 2, while the test
objects assumed in this thesis has a radius of 1 µm and 100 µm.

At Chalmers University of Technology there is a group that could do a fitting direct
detection experiment for the vector boson wave dark matter candidate (specifically
at the Quantum Technology Laboratory which operates at MC2) [14]. The exper-
imental set-up is described in detail in [15]. A microscopic superconductive object
made out of lead is levitated in a magnetic trap produced by two superconducting
coils. The test object levitates near the minimum of the magnetic field. When the
particle is moved (for instance by a dark matter induced acceleration) it changes the
magnetic flux threading the loops so that the current inside those loops changes. A
dc-SQUID magnetometer is connected to the loops and converts the flux to voltage,
which is measured.

In this experiment, the background noise affecting the test object is assumed to be
thermal and to have an acceleration power spectral density (PSD) based on the size
of the test object as well as based on the mechanical quality factor Qm = ωt/γm.
Here γm is the dissipation and ωt/2π is the trap frequency of the experiment. The
background PSD (in terms of acceleration squared per hertz) is for a test object
with the temperature, T , the Boltzmann constant, kB, and the mass of the test
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object, mt.o,
λB = 4kBTγm

mt.o
. (1.4)

For a test object with radius 1 µm, and a conservative value of the mechanical quality
factor 107 and an optimistic value 1011, the background is 7 · 10−16 and 7 · 10−20,
respectively. For a test object with radius 100 µm, and a conservative value of the
mechanical quality factor 107 and an optimistic value 1011, the background is instead
7 · 10−22 and 7 · 10−26, respectively. These background values are used later in the
thesis.

1.3 Thesis
Since the searches for dark matter currently in focus have yielded little results it
would be a good idea to focus more on different types of dark matter candidates.
As such the goal of this thesis is to find the potential experimental sensitivity of
the experiment discussed in Section 1.2 for a wave dark matter candidate. The
particle in focus is as discussed in the previous section a vector boson. The goal is
to find the exclusion limit and the discovery limit for the coupling constant between
a charge-neutral test object and the dark matter field and plot it against a realistic
mass interval based on the mass interval used in [6] to simplify comparisons. First
the acceleration on a test object induced by a vector dark matter wave is calculated,
inspired by [5]. Using this acceleration and a likelihood formalism developed in [6],
the exclusion and discovery limits can be calculated for this potential experiment.

However it should be noted that just because a candidate have not be found yet does
not mean that it does not exist. This thesis does not state that searches into heavier
candidates is fruitless, merely that other searches should be of greater focus. Note
that throughout this article natural units are used, i.e. the speed of light, c := 1,
and the reduced Planck constant, ℏ := 1.
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2
The dark matter model

In this chapter necessary theoretical knowledge surrounding the dark matter (DM)
candidate discussed in this thesis is given, as well as a derivation of the measurable
acceleration said particle can apply on a test object in the potential experiment at
CTH. This chapter follows the derivation done in [5] for the vector boson and was
suggested for experimentation in [4]. Section 2.1 discusses the theory of wave dark
matter and what is assumed when using this as a framework. Some information
about the vector boson regarded in this article is presented in Section 2.2. Finally
the derivation of the acceleration from one dark matter wave on a charge-neutral
sensor is derived in full in Section 2.3.

2.1 Wave dark matter
The term “wave dark matter” describes dark matter particles that are very light, so
light that describing them as a classical wave is a good approximation [7]. Such a
field has the property of having an angular frequency,

ω =
√
m2

DM +m2
DMv

2 = mDM
√

1 + v2 ≈ mDM

(
1 + v2

2

)
, (2.1)

which for realistic velocities can be approximated to ω ≈ mDM, for a dark matter
particle with the mass mDM and speed v. For particles to be able to be described
in such a way they have to have a high enough occupancy within their de Broglie
volume. The de Brogile volume is

λ3
dB = 8π3

m3
DMv

3 , (2.2)

and the occupancy number within this volume is the local density of the particles
divided by their mass and multiplied by the volume,

ρ
λ3

dB
m

= ρDM
8π3

m4
DMv

3 , (2.3)

which for small masses is huge. To find out what mass range such particles could
be within, a realistic value of the dark matter density and of the velocity of the
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2. The dark matter model

dark matter particles have to be found. The local dark matter density is typi-
cally estimated to be between 0.3 and 0.4 GeV/cm3 [16]. In this article the value
0.4 GeV/cm3 is used like in [6] but the final results are easily modified for any other
value of the density. The velocity dispersion for dark matter can be estimated to be
about 10−3 in the bulk of the halo [4]. This yields an estimated occupancy number
of about (29.6 eV)4/m4

DM. So for a dark matter particle with a mass lower than
about 30 eV the de Broglie volume would contain several particles. If the mass is
much lower the volume would contain enough particles so that the particle could be
well described by a classical wave.

The smallest mass possible for this approximation needs to be discussed as well.
Even an extremely tiny mass would have an associated wave, but an easy thought-
experiment shows that the de Brogile wavelength would be larger than the diam-
eter of the observable universe (about 28.5 Gpc) if the mass is less than about
1.4 · 10−30 eV. However the model breaks down for far more massive particles. If,
for instance, the wave length is larger than the diameter of a small dwarf galaxy’s
halo where dark matter has been measured then the approximation breaks down
since there would not be enough particles in the halo for the classical wave approx-
imation to fit said observations [17]. To then find a realistic minimum value for the
mass of the dark matter the de Brogile wavelength is set to be lower than 0.1 kpc:

0.1 kpc > 103 · 1 eV
mmin

· h · c ≈ 4 · 10−22 eV
mmin

0.1 kpc. (2.4)

The smallest possible mass is then seen to be about 10−22 eV, depending on the
velocity of the dark matter particle. In this article the masses regarded are between
1 eV and 10−22 eV, meaning that the particle can be described by a classically wave
without having an unphysically large de Broglie wavelength.

2.2 The vector boson
In Chapter 1 the vector boson this thesis focuses on is introduced, but here some
motivation for this choice is given. The particle has to be a boson since fermions
are a bad fit with the wave dark matter model [7]. Because fermions are governed
by the Pauli exclusion principle, it excludes the possibility that fermions have a
high occupancy number which is a necessary condition for the wave dark matter
approximation. Moreover, the spin and the Lagrangian of this boson need to be
specified. In this article the spin-1 boson with the interaction part of the Lagrangian
being gAµψ̄γ

µψ, where g is the coupling constant, ψ is a fermion, Aµ is the vector
field, and γµ is a gamma matrix, is focused on [4]. Specifically, the focus is on how
this field interacts with only neutrons, since the field couples to the baryon number
minus the lepton number (see eq. 2.5), giving an easier interaction in case of a
charge-neutral sensor.

Furthermore this means that the force from dark matter upon a test object is EP-
violating, meaning that experiments can be optimized more greatly since (in this
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case) the number of neutrons can be different for different charge-neutral test ob-
jects [4]. Using this, the force can be measured on different test objects, since the
EP-violating force leads to different accelerations of the objects that does not corre-
late to the difference in mass for said test objects. As such the effect from the dark
matter wave can be measured even if there is an additional effect from the physical
displacement of the test objects. Note also that the force is time-dependent and not
static, meaning that systematic effects do not mimic the effect from the dark matter
wave, the “signal,” since the force is oscillating at the frequency of the dark matter
mass.

This vector boson and scalar boson are two candidates suggested for further research
in [4] and as such are interesting to apply the statistical framework seen in [6]
to. In this thesis the focus is on the vector boson, but in [5] both candidates are
discussed, both only with coupling to the neutron to ease comparison between the
two candidates, albeit not using the same statistical framework as this thesis.

2.3 Effect on a charge-neutral test object
To find the effect on a charge-neutral test object from dark matter the equation
of motion for the test object first needs to be derived. In this case finding the
equations of motion for the centre of mass of the test object can be done through
the Lagrangian of a neutron in the test object. The force upon the neutron needs
only be multiplied with the number of neutrons in the test object to yield the force on
the test object. The Lagrangian is simple, the only difficulty is finding the potential
resulting from the dark matter wave, which is done in the next subsection.

Figure 2.1: Feynman diagram for neutrons scattering against an external vector
bosonic field. The incoming neutron is labeled with n and has momentum k and spin
s while the outgoing neutron (or incoming anti-neutron), labeled n̄, has momentum
k′ and spin s′. The cross symbolises that the dark matter, Aµ, is an external source.
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2.3.1 The potential from the dark matter field
The potential experienced by a neutron interacting with the dark matter field can be
found from the Born approximation and time-dependent perturbation theory used
on the scattering matrix (S-matrix). The interaction term between the vector field
Aµ and the neutron n is the third term of the following Lagrangian, given in [5]:

L = −1
4FµνF

µν − 1
2m

2
DMAµA

µ + gAµn̄γ
µn. (2.5)

From this Lagrangian an S-matrix for the interaction between neutron and the dark
matter filed can be found. Since the dark matter behaves like a classical wave the
interaction is best described as neutrons scattering against an external dark matter
field [18]. In Figure 2.1 the Feynman diagram for the neutrons scattering against
an external vector bosonic field is shown.

The first order S-matrix from quantum field theory (QFT) is:

S
(1),QF T
fi = −ig

∫
d4x⟨f | − Aµ(x)n̄γµn|i⟩ (2.6)

= ig
∫
d4xAµ(x)⟨f |n̄γµn|i⟩

= ig
∫
d4xAµ(x)ūs′(k′)γµus(k)ei[k′−k]·x⟨0|0⟩,

where Wick contractions are used, ⟨f | and |i⟩ represents the final and the initial
states of the anti-neutron and the neutron, and the last step requires usage of the
Feynman rules. The non-relativistic spin-sum rules are [19]:

ūs′(k′)γµus(k) ≈
(
2mn,

[
k⃗′ + k⃗

]
δs′s − 2i

[
k⃗′ − k⃗

]
× s⃗

)
(2.7)

leading to:

S
(1),QF T
fi = ig

∫
Aµ(x)ūs′(k′)γµus(k)ei[k′−k]·xd4x = igÃµ(k′ − k)ūs′(k′)γµus(k) =

=
[
q = k′ − k

]
≈ ig

{
2mnÃ0(q)δs′s − ⃗̃A(q) ·

[
(k⃗′ + k⃗)δs′s − 2iq⃗ × s⃗

]}
=

=
[
s = 1

2 σ⃗
s′s
]

= ig
{

2mnÃ0(q)δs′s − ⃗̃A(q) ·
[
(k⃗′ + k⃗)δs′s − iq⃗ × σ⃗s′s

]}
= ig

{[
2mnÃ0(q) − q⃗ · ⃗̃A(q) − 2k⃗ · ⃗̃A(q)

]
δs′s − i

[
q⃗ × ⃗̃A(q)

]
· σ⃗s′s

}
. (2.8)

In the last step, the anti commutativity and the circular-shift property of the cross
product was used as well as that k′ + k = q + 2k. For this result to lead to the
potential experienced by the charge-neutral test object the Born approximation
together with time-dependent perturbation theory has to be used [20, 21]. But for
the Born approximation to work the S-matrix has to be compared with an S-matrix
derived from non-relativistic quantum mechanics. The difference from the S-matrix
derived through quantum field theory is a factor 2mn since this term comes from the
relativistic normalization of the ground state. Finally the spin of the neutrons has

14
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to be dealt with. Since the neutrons in the test object are generally unpolarized,
it can be assumed that s′ = s. This leads to δs′s = 1 and that σ⃗s′s = 0 since
Pauli-matrices are traceless. The Born approximation can now be used to find the
quantum mechanical (QM) S-matrix:

S
(1),QM
fi = −iṼ (q). (2.9)

Here Ṽ is the Fourier transformed potential experienced by the test object. Com-
paring with the S-matrix from QFT, the Fourier transform of the potential can be
explicitly found:

Ṽ (q) = −g
{
Ã0(q) − 1

2mn
q⃗ · ⃗̃A(q) − 1

mn
k⃗ · ⃗̃A(q)

}
. (2.10)

Inverse transforming, the potential experienced by the neutron becomes:

V (x) = −g
{
A0(x) − i

2mn
∇⃗ · A⃗(x) − k⃗ · A⃗(x)

mn

}
= (2.11)

= −g
{
A0(x) − i

2mn
∇⃗ · A⃗(x) − v⃗n · A⃗(x)

}
.

This can be further simplified since

∇⃗ · A⃗(x) = 0 (2.12)

in the coulomb gauge, leading to a final expression for the potential:

V (x) = −g
{
A0(x) − v⃗n · A⃗(x)

}
. (2.13)

2.3.2 The acceleration from the dark matter field
To find the acceleration experienced by the test object in this potential the La-
grangian for one of the neutrons in it can be examined:

L = 1
2mn| ˙⃗x|2 − V (t, x⃗, ˙⃗x). (2.14)

By applying the Euler-Lagrange equation:

0 = ∂L
∂x⃗

− d

dt

∂L
∂ ˙⃗x

=⇒ mn ¨⃗x = d

dt

∂V

∂ ˙⃗x
− ∂V

∂x⃗
, (2.15)

the equations of motion can be found. With the potential from eq. (2.11):

d

dt

∂V

∂ ˙⃗x
= g

{
∂A⃗(x)
∂t

+
[
v⃗n · ∇⃗

]
A⃗(x)

}
(2.16)

−∂V

∂x⃗
= g

{
∇⃗A0(x) − ∇⃗

[
v⃗n · A⃗(x)

]}
, (2.17)
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the force on the neutron from the vector field, given by mn ¨⃗x, becomes:

F⃗ = −g
{

−∂A⃗(x)
∂t

− ∇⃗A0(x) + ∇⃗
[
v⃗n · A⃗(x)

]
− A⃗(x)

[
v⃗n · ∇⃗

]}
. (2.18)

Using the identity for the triple product,

a⃗×
(⃗
b× c⃗

)
= b⃗

(
a⃗ · c⃗

)
− c⃗

(
a⃗ · b⃗

)
, (2.19)

the force is simplified to look like a Lorentz force, but for dark matter coupled to
the neutron:

F⃗ (x) = −g
{

−∂A⃗(x)
∂t

− ∇⃗A0(x) + v⃗n ×
[
∇⃗ × A⃗(x)

]}
(2.20)

= −g
{
E⃗DM(x) + v⃗n × B⃗DM(x)

}
,

with E⃗DM(x) = −∂A⃗(x)
∂t

− ∇⃗A0(x) and B⃗DM(x) = ∇⃗ × A⃗(x). The similarities to a
photon are quite clear from this, as this expression has the same form as the Lorentz
force for the actual photon.

Focusing on eq. (2.20) and using the Lorenz gauge (∂µAµ = 0 implying that A0 =
v⃗ · A⃗(x)) results in:

F⃗ (x) ≈ g
∂A⃗(x)
∂t

. (2.21)

Since the dark matter velocity is very small A0(x) is much smaller than the absolute
value of A⃗(x). A Fourier transform of ∂A⃗(x)

∂t
is much greater than the Fourier trans-

form of v⃗n ×
[
∇⃗ × A⃗(x)

]
so that the last term also can be neglected by the same

argument.

In order to find the acceleration on a neutron in the test object, an expression for
the vector field needs to be found. For a free vector field the Klein-Gordon equation
is the equation of motion. Since A0(x) << A⃗(x) = Ai(x), one needs only look at
the spatial coordinates:

(□ +m2
ϕ)Ai(x) = 0, (2.22)

with solution that Ai is best described as a plane wave. If Ci1 and Ci2 are constants
and Ci1 + Ci2 = Ci, with eq. (2.21) the vector field is described as:

Ai(x) = Ci1e
i(ωt−k⃗·x⃗) + Ci2e

−i(ωt−k⃗·x⃗) = (2.23)
= Ci1

[
cos

(
ωt− k⃗ · x⃗

)
+ i sin

(
ωt− k⃗ · x⃗

)]
+

+ Ci2
[
cos

(
ωt− k⃗ · x⃗

)
− i sin

(
ωt− k⃗ · x⃗

)]
=

= [Ai real =⇒ Ci1 = Ci2] = Ci cos
(
ωt− k⃗ · x⃗

)
.

The relation between the density and the amplitude of the plane wave is known [22]:

ρDM = 1
2ω

2|Ci|2, (2.24)
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leading to the amplitude being expressed as:

∣∣∣C⃗∣∣∣ =
√

2ρDM

ω
. (2.25)

Finally this yields an expression for the absolute value of the force on one neutron:

|F⃗ (x)| = F (x) =
∣∣∣∣∣g ∂∂tA⃗(x)

∣∣∣∣∣ = g
√

2ρDM sin
(
ωt− k⃗ · x⃗

)
(2.26)

Note that the direction of this force in relation to the dark matter velocity is unknown
in this expression. The absolute value of the acceleration of the charge-neutral test
object is found by first multiplying it with the number of neutrons in the test object,
and then dividing the force with the mass of the object. The mass of the test object
can be approximated as the number of protons plus the number of neutrons times
the mass of the neutrons. Defining

xt.o = 1 + Np

Nn
(2.27)

as an experiment-dependent constant describing the relation between the number
of protons to the number of neutrons, then

mt.o ≈ mn (Nn +Np) = xt.oNnmn, (2.28)

where mt.o is the mass of the test object. The acceleration of the test object then
becomes:

a(x) =
√

2ρDM

xt.omn
g sin

(
ωt− k⃗ · x⃗

)
. (2.29)

The x⃗ dependence can be approximated away since the displacement from the force
on the test object is much smaller than the wavelength of the dark matter wave.
Introducing a random phase yields the final expression for the acceleration:

a(t) =
√

2ρDM

xt.omn
g sin

(
ωt+ ϕ

)
. (2.30)
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3
Statistical framework

This chapter delves into a statistical framework developed in [6], which uses a likeli-
hood function-based formalism to analyze experimental possibilities of measuring a
light dark matter axion particle. In this thesis the framework is used for the vector
boson to derive a likelihood function in Section 3.1 that has the acceleration from
eq. (2.30) in Chapter 2 as input to replace actual experimental data. To mimic
realistic experimental data, the velocity and phase of the fields representing individ-
ual dark matter particles are set to be different from one another, with the velocity
following the velocity distribution from the Standard Halo Model (SHM). Using this
theoretical acceleration, a power spectral density (PSD) can be derived and used as
data in the likelihood. Additionally, a background is assumed to be present in the
experiment, with its effect being mainly thermal effects on the experiment.

In Section 3.2 the derived likelihood is used to define two test statistics that can
be used set limits on the experimental sensitivity of an eventual experiment. These
test statistics specifically set limits on the coupling constant. One such limit is the
exclusion limit which is the highest value that the coupling constant can be measured
to have in order for the background to be the sole measurable contribution on the test
object for the experiment. The exclusion limit was calculated at a 95% confidence
level. The other is the discovery limit which is the lowest value the coupling constant
need to have in order to claim discovery of a signal of dark matter for teh experiment.
In this case the discovery limit was calculated at a level of 5σ.

3.1 The likelihood function

The likelihood function, L, test a model, M, containing a signal of dark matter plus
background. To find this likelihood, the PSD of the acceleration first needs to be
derived from the previously calculated acceleration [6]. To find it, the acceleration
is rewritten as the sum of every contribution to the acceleration from each dark
matter field representing individual particles with a random phase and an unknown
velocity that follows the velocity distribution from the SHM.

A single dark matter, i, corresponding to a single particle among a total number
of dark matter particles NDM in the local region has an acceleration ai(t) on the

19



3. Statistical framework

charge-neutral test object:

ai(t) = g

√
2ρDM/NDM

xt.omn
sin

[
mDM

(
1 +

v2
j

2

)
t+ ϕi

]
. (3.1)

A set, Ωj, is constructed for each particle with a velocity vj. The velocities for the
particles belonging to this set lie between vj and vj + ∆v, with ∆v so small that
all velocities can be approximated to vj, and the number of dark matter particles
belonging to the set is N j

DM. Using this, one can sum over i to find the contribution
to the total acceleration from only the particles with a velocity of vj:

aj(t) = g
∑
i∈Ωj

√
2ρDM/NDM

xt.omn
sin

[
mDM

(
1 +

v2
j

2

)
t+ ϕi

]
= (3.2)

= g

√
2ρDM/NDM

xt.omn
· ℑ

exp
[
imDM

(
1 +

v2
j

2

)
t

] ∑
i∈Ωj

eiϕi

.
To simplify this expression, a relation for the sum over phases can be used. To do
this it is necessary to introduce a Rayleigh distributed random variable, αj [23]:

P
(
αj

)
= 2αj

N j
DM

e−α2
j /Nj

DM . (3.3)

Note that when the acceleration is summed over j, a random variable needs to
be drawn for every j. Now taking the random variable and scaling by

√
N j

DM/2
simplifies the distribution so that

P
(
αj

)
= αje

−α2
j /2, (3.4)

leading to ∑
i∈Ωj

eiϕi = αj

√
N j

DM/2 · eiϕj . (3.5)

The acceleration then becomes

aj(t) = gαj

√
ρDM ·N j

DM/NDM

xt.omn
· sin

[
mDM

(
1 +

v2
j

2

)
t+ ϕj

]
. (3.6)

The velocity of the local dark matter follows a distribution from the SHM [6]:

fSHM(v) = v√
πv0vobs

e−(v+vobs)2/v2
0 · (e4vvobs/v2

0 − 1), (3.7)

with the the speed of the Sun relative to the halo rest frame, vobs(≈ 232 km/s), and
the speed of the local rotation curve, v0(≈ 220 km/s). Using this, one can find that
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the amount of dark matter particles within Ωj is N j
DM = NDMfSHM(vj)∆v. This

results in the total acceleration becoming:

a(t) = g
∑

j

αj

√
ρDM · fSHM(vj)∆v

xt.omn
· sin

[
mDM

(
1 +

v2
j

2

)
t+ ϕj

]
(3.8)

=
√
A
∑

j

αj

√
fSHM(vj)∆v · sin

[
mDM

(
1 +

v2
j

2

)
t+ ϕj

]

with
A = g2 ρDM

x2
t.om2

n
. (3.9)

Setting the number of data points collected for a frequency f in an experiment to
N , over a time period of T for the frequency bin, the time between data points is
∆t

(
= 1

f

)
. Since an experiment samples data points in a discrete manner one can

rewrite the acceleration on the test object as time-series data. The acceleration for
a data point, n, is then

an =
√
A
∑

j

αj

√
fSHM(vj)∆v · sin

(
mDM

[
1 +

v2
j

2

]
n∆t+ ϕj

)
, (3.10)

with n∆t = T .

Taking the discrete Fourier transform of this:

ak =
N−1∑
n=0

ane
−2πikn/N , (3.11)

one can find the PSD for the acceleration [6]:

Sk
aa = (∆t)2

T

∣∣∣∣∣∣
N−1∑
n=0

ane
−2πikn/N

∣∣∣∣∣∣
2

, (3.12)

with k = 0, ..., N − 1 and ω = k2π
T

. Now setting

mDM

(
1 +

v2
j

2

)
= ωj (3.13)

the PSD in terms of ωj and k becomes:

Sk
aa = A

(∆t)2

T

∣∣∣∣∣∣
∑

j

αj

√
fSHM(vj)∆v

N−1∑
n=0

sin
(
ωjn∆t+ ϕj

)
e−2πikn/N

∣∣∣∣∣∣
2

. (3.14)

The PSD can be rewritten in terms of the experiment’s angular frequency:

ω = 2πk
∆tN = 2πk

T
, (3.15)
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so that

Saa(ω) = A
(∆t)2

T

∣∣∣∣∣∣
∑

j

αj

√
fSHM(vj)∆v

N−1∑
n=0

sin
(
ωjn∆t+ ϕj

)
e−iωn∆t

∣∣∣∣∣∣
2

. (3.16)

Using that, for large T ,
1
T

= ∆f = 1
2π∆ωj = 1

2π
mDM

2 ∆(v2
j ) (3.17)

= 1
2π

mDM

2
(
(vj + ∆v)2 − v2

j

)
≈ 1

2πmDMvj∆v,

where in the last step the fact that ∆v2 is almost zero has been used, results in a
PSD of the form:

Saa(ω) = A
mDM

2π

∣∣∣∣∣∣
∑

j

αj∆v
√
vjfSHM(vj)∆t

N−1∑
n=0

sin
(
ωjn∆t+ ϕj

)
e−iωn∆t

∣∣∣∣∣∣
2

. (3.18)

Using this result and letting T approach infinity leads to the summation over j be-
coming an integral over v and ∆t becoming an infinitesimal dt. This approximation
is appropriate as a real experiment would run for a long enough time that the period
would be huge in comparison to the time between data points. The PSD now only
has one sum:

Saa(ω) = A
mDM

2π

∣∣∣∣∣∣
∫ ∞

0
dvαv

√
vfSHM(v)dt

N−1∑
n=0

sin
(
ωvndt+ ϕv

)
e−iωndt

∣∣∣∣∣∣
2

, (3.19)

which can be calculated to:

dt
N−1∑
n=0

sin (ωvndt+ ϕv)e−iωndt = dt

2i

N−1∑
n=0

{
ei(ωv−ω)ndteiϕv − e−i(ωv+ω)ndte−iϕv

}
=

= dt

2i

{
eiϕv

1 − ei(ωv−ω)T

1 − ei(ωv−ω)dt
− e−iϕv

1 − e−i(ωv+ω)T

1 − e−i(ωv+ω)dt

}
. (3.20)

The exponential in the denominator can be Taylor expanded, since dt is so small
that it can be reasonably assumed that

(ωv ± ω)dt << 1 and (ωv ± ω)2dt2 ≈ 0, (3.21)

yielding:

dt
N−1∑
n=0

sin (ωvndt+ ϕv)e−iωndt ≈ i

2

{
eiϕv

1 − ei(ωv−ω)T

2i · 1
2(ωv − ω)+ (3.22)

+ e−iϕv
1 − e−i(ωv+ω)T

2i · 1
2(ωv + ω)

}
= i

2

{
−ei(ϕv+(ωv−ω)T/2) e

i(ωv−ω)T/2 − e−i(ωv−ω)T/2

2i · 1
2(ωv − ω) +

+ e−i(ϕv+(ωv+ω)T/2) e
i(ωv+ω)T/2 − e−i(ωv+ω)T/2

2i · 1
2(ωv + ω)

}

= i

2e
i(ϕv+(ωv−ω)T/2)

−
sin

[
1
2(ωv − ω)T

]
1
2(ωv − ω) + e−i(2ϕv+ωvT ) ·

sin
[

1
2(ωv + ω)T

]
1
2(ωv − ω)

 .
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The final approximation for this sum requires using

(ωv ± ω)T → ∞ (3.23)

with
sin (x/ϵ)/x → πδ(x) as ϵ → 0, (3.24)

yielding:

dt
N−1∑
n=0

sin (ωvndt+ ϕv)e−iωndt ≈ iπ

2 e
i[ϕv+(ωv−ω)T/2]

{
δ
(1

2(ωv − ω)
)

+ (3.25)

+ e−i[2ϕv+ωvT ]πδ
(1

2(ωv + ω)
)}

= −iπei[ϕv+(ωv−ω)T/2]δ(ωv − ω).

In the last step, the second term with the Dirac delta function is discarded as the
angular frequencies ωv and ω have to be larger than zero.

The PSD then takes the final form:

Saa(ω) = A
π

2

∣∣∣∣∣∣− i
∫ ∞

0
dvαv

√
mDMvfSHM(v)ei(ϕv+(ωv−ω)T/2)δ(ωv − ω)

∣∣∣∣∣∣
2

= (3.26)

= [dω = mDMvdv] = A
π

2

∣∣∣∣∣∣− i
∫ ∞

0
dωαv

√
fSHM(v)
mDMv

eiϕve
i
2 (ωv−ω)T δ(ωv − ω)

∣∣∣∣∣∣
2

= A
πfSHM(v)
2mDMv

α2
∣∣∣∣∣
v=

√
2ω/mDM−2

.

Using that α is exponentially distributed, one can see that the PSD also follows this
distribution, so that the distribution of the PSD is:

P [Saa(ω), λ(ω)] = 1
λ(ω)e

−Saa(ω)/λ(ω), (3.27)

with the mean λ(ω), and the mean of the total PSD,

λtot(ω) = ⟨Saa(ω)⟩ + λB = A
πf(v)
mDMv

∣∣∣∣∣
v=

√
2ω/mDM−2

+ λB, (3.28)

where a background term λB has been taken into account, which has a Gaussian
distribution.

The likelihood function for a data set d, given the model M (signal and background),
and model parameters, θ, follow this same distribution as the PSD. For each data
point, k, sampled at ω = 2πk

T
the wanted likelihood function then takes the form:

L(d|M, θ) =
N−1∏
k=1

1
λk,tot(θ)

e−Sk,tot
aa /λk,tot(θ). (3.29)

Using this likelihood, it is possible to find the exclusion and discovery limits for the
coupling constant determining the sensitivity of the experiment. Note that, like xt.o,
the background is dependent on the experiment and can even be dependent on the
frequency or the position of the test object depending on the experiment.
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3.2 Exclusion and discovery limits
Finding exclusion and discovery limits for the coupling constant g can be done with
the help of two test statistics, defined through the profile likelihood [6]. This function
is two times the natural logarithm of the ratio between the likelihood for the signal
plus background model M and the likelihood for a background only model MB:

Θ(mDM, A) = 2{ln[L(d|M, {A,mDM, θ̂B})] − ln[L(d|MB, θ̂B)]}. (3.30)

Note that the hat over the model parameters denotes that this background maxi-
mizes the background plus signal likelihood. The pair of test statistics used to find
the exclusion and discovery limits are written as qexc and qdisc respectively, and are
calculated at 95% confidence interval and 5σ level, respectively. If Â maximizes the
profile likelihood, the test statistic for the exclusion limit is defined as:

qexc(mDM, A) =

Θ(mDM, A) − Θ(mDM, Â) A ≥ Â,

0 A < Â,
(3.31)

while the test statistic for the discovery limit is defined as:

qdisc(mDM) = Θ(mDM, Â). (3.32)

The profile likelihood has the explicit form:

Θ(mDM, A) = 2
N−1∑
k=1

[
Sk,tot

aa

(
1
λB

− 1
λk,tot

)
− log λk,tot

λB

]
. (3.33)

By simulating data, Sk,tot
aa , the test statistics and (by extension) the exclusion and

discovery limits can be found. However, simulating with for example the Monte
Carlo method is both time inefficient and computationally expensive [24]. The data
can instead be asymptotically approximated with the so called Asimov data set.

3.2.1 The Asimov data set
The Asimov data set replaces the numerous simulated data sets with one “true”
representation of the simulated data [24]. This means that the Asimov data set is
the representation of the asymptotic data from the simulated data and can be used
to derive expected experimental sensitivity analytically. Since the data set is the
“true” data, there are no statistical fluctuations in the data set. When calculating
the exclusion limit, a data set with no signal and only background should be viewed,
meaning that A would be zero. When calculating the discovery limit though, the
data set is still background only distributed, but with A instead maximizing the
profile likelihood; the discovery limit needs to be exceeded for discovery since the
background can fake a signal.

In order to write the test statistics with the Asimov data set, first the data set itself,
Sk,Asimov

aa , needs to be written. The true value of A is denoted as At and the true
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value of the mean of the distribution is written in the same way. With this, the
Asimov data of the acceleration is

Sk,Asimov
aa ≡ λk,t = At

πf(v)v
mDM

∣∣∣∣∣
v=

√
4πk/(mDMT )−2

+ λB. (3.34)

The reason that the Asimov PSD is equal to its mean is that the mean of the true
data is itself, since there are no statistical fluctuations.

3.2.2 Deriving the exclusion and discovery limits
Using the Asimov data set, λk,t, the asymptotic form of the profile likelihood can
be found [6]:

Θ̃(mDM, A) = 2
N−1∑
k=1

[
λk,t

(
1
λB

− 1
λk,tot

)
− ln λk,tot

λB

]
. (3.35)

Here At maximizes the asymptotic form of the profile likelihood. Since a realistic
experiment would have been run long enough that the width of the frequency bins
would be much smaller than the range that λk and λB varies over, one can rewrite
the sum to an integral using

2vdv = d(v2) = 4π
mDMT

dk. (3.36)

With eqs. (3.28) and (3.34) the asymptotic profile likelihood then looks like

Θ̃(mDM, A) = TmDM

π

∫ ∞

0
dvv


At

πfSHM(v)
mDMvλB

+ 1
 ·

1 − 1
1 + AπfSHM(v)

mDMvλB

+ (3.37)

− ln
1 + A

πfSHM(v)
mDMvλB

.

With Taylor expansion to the second order, using

A · πfSHM

mDMvλB
<< 1, and (3.38)

At · πfSHM

mDMvλB
<< 1, (3.39)

with

A3πfSHM(v)
mDMvλB

3

→ 0, and (3.40)

AtA
2πfSHM(v)
mDMvλB

3

→ 0, (3.41)
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the asymptotic profile likelihood simplifies to:

Θ̃(mDM, A) ≈ TmDM

π

∫ ∞

0
dvv

{[
At
πfSHM(v)
mDMvλB

+ 1
]

·
[
1 − 1 + A

πfSHM(v)
mDMvλB

+ (3.42)

+ A2π
2fSHM(v)2

m2
DMv

2λ2
B

]
− A

πfSHM(v)
mDMvλB

+ A2π
2fSHM(v)2

2m2
DMv

2λ2
B

}
≈

≈ πT

mDM
A
[
At − A

2

] ∫ ∞

0

dv

v

fSHM(v)2

λ2
B

.

With this form of the profile likelihood and the definition of the exclusion limit test
statistic in eq. (3.31), an expression for the test statistic can be found, with true
value of the signal At = 0 for background only:

qexc = − πT

2mDM
A2
∫ ∞

0

dv

v

fSHM(v)2

λ2
B

. (3.43)

Solving for the coupling constant, the exclusion limit gexc can be found to be:

gexc = xt.omn√
ρDM

−qexc
2mDM

πT

(∫ ∞

0

dv

v

fSHM(v)2

λ2
B

)−1
 1

4

. (3.44)

In the same way, but with A = At, the discovery limit test static as defined in eq.
(3.32) can be found:

qdisc = πT

2mDM
A2

t

∫ ∞

0

dv

v

fSHM(v)2

λ2
B

, (3.45)

resulting in the discovery limit

gdisc = xt.omn√
ρDM

qdisc
2mDM

πT

(∫ ∞

0

dv

v

fSHM(v)2

λ2
B

)−1
 1

4

. (3.46)

3.2.3 Values of the exclusion and discovery limits
To confidently exclude a signal, one should do so at a confidence interval of 95%
which corresponds to a p-value of p = 0.05 [25]. But to discover a signal one needs
to take into account the look elsewhere effect (described in Section 3.2.3.2) and a
confidence level of 5σ should be used as well. The p-value is then for the discovery
limit 2.87 · 10−7. In Section 3.2.3.1 the exclusion limit is found for the p-value of
0.05 and in Section 3.2.3.2 the discovery limit for a p-value of 2.87 · 10−7 is found.

3.2.3.1 Exclusion limit at 95% confidence interval

When setting an exclusion limit, the p-value is one-sided since downward fluctuations
in the measured acceleration would not be evidence against the background only
hypothesis [25]. To find the numerical value for the test statistic q95%

exc corresponding
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to this p-value, however, the cumulative distribution function (CDF), F (qexc), of the
test static, qexc, needs to be found, since

p = 1 − F (qexc) . (3.47)

To find the CDF the probability density function (PDF) must be integrated. The
PDF for the test static is according to Wilks’ theorem a half-chi squared distribution
with one degree of freedom [6, 24]:

f (qexc) = 1
2δ (−qexc) + 1

2
1√
2π

1√
−qexc

eqexc/2. (3.48)

Note here that in the equation the negative value of the test static is taken and
not the positive. This is because qexc is at most zero and otherwise can only be
negative from the definition in eq. (3.31), and can also be seen in eq. (3.43). With
this expression, one can integrate to find that the CDF is

F (qexc) = Φ
(√

−qexc
)
, (3.49)

where Φ is the standard normal distribution’s CDF.

Finding the value of the test static at 95% confidence level now only takes setting
the p-value to 0.05:

p = 0.05 = 1 − Φ
(√

−q95%
exc

)
=⇒ (3.50)

=⇒ q95%
exc = −(Φ−1(0.95))2, (3.51)

which can be found to be about −2.71. The exclusion limit at 95% confidence level
is then:

g95%
exc = xt.omn√

ρDM

2.712mDM

πT

(∫ ∞

0

dv

v

fSHM(v)2

λ2
B

)−1
 1

4

. (3.52)

In this thesis, the background is assumed to be constant in the potential experiment,
leading to:

g95%
exc = xt.omn

√
λB√

ρDM

2.712mDM

πT

(∫ ∞

0

dv

v
fSHM(v)2

)−1
 1

4

= (3.53)

= xt.omn
√
λB√

ρDM

[
2.712mDM

πT

√
2πv0vobs

erf(
√

2vobs/v0)

] 1
4

.

where the integral evaluates to
∫ ∞

0

dv

v
fSHM(v)2 = erf(

√
2vobs/v0)√

2πv0vobs
. (3.54)

The value of xt.o for the proposed experiment at CTH can be fixed using that the
lead superconductive test object has an atomic mass of about 207.2 u. The constant
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then has the value of 1.654952077. The values of the four backgrounds to be tested
are 7 · 10−16 m3 s−4 Hz−1 = 8.2 · 10−49 eV, 8.2 · 10−53 eV, 8.2 · 10−55 eV,
and 8.2 · 10−59 eV. With the known values of the neutron mass and the local dark
matter density, this leads to:

g95%
exc ≈ 3.56 · 1010 eV−1 ·

√
λB ·

[
mDM

T

]1/4
. (3.55)

Note that T is dependent on which independent mass frequency that is regarded,
and on the experiment.

3.2.3.2 Discovery limit at the 5σ level

The p-value is also one sided in the case of the discovery limit, since upwards fluctu-
ations in the measured acceleration would not be evidence against the background
plus signal hypothesis [25]. Here, though, Wilks’ theorem cannot be used directly
to find the PDF as the discovery limit’s associated test static has no degrees of free-
dom. But it is possible to show that this is also a half chi squared distribution, with
the CDF F (qdisc) = Φ

(√
qdisc

)
[6]. The survival function can then be expressed as

S
[
q5σ

disc

]
= 1 − Φ

(√
q5σ

disc

)
, (3.56)

which is the probability of finding a value higher than q5σ
disc given only background,

i.e the probability of the background faking a signal. Getting a p-value from this,
however, needs taking into account the look elsewhere effect.

The look elsewhere effect is an effect that occurs when much data is searched, which
can cause a false conclusion of a signal since the number of searches in and of
themselves may lead to an accidental fluctuation [6]. In this thesis, the signal is
scanned for over several masses (frequencies) and the number of frequency bins
would in a realistic experiment be big enough so that the look elsewhere effect
would have an effect on the measured data.

The effect can be accounted for by using the relation between the survival function,
the p-value and the number of independent mass points, NmDM . The number of
independent mass points can be assumed to be huge. For one independent mass
point the bandwidth is thought to be related to its escape velocity, vesc ≈ v0, so
that the difference between two subsequent mass points, m1

DM and m2
DM is mDMαv

2
0,

with α ≈ 3/4 · vobs/v0 ≈ 0.791 being a number of order unity that is to be tuned to
Monte Carlo simulations (not to be confused with the Rayleigh distributed random
variable) [6]. The mass points can then be parameterised as:

m
(i)
DM = m

(0)
DM · (1 + αv2

0)i. (3.57)

Using this, one can derive the approximate value of NmDM by using the maximum
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(fmax) and minimum (fmin) frequencies scanned over:

ln
[
fmax

fmin

]
= ln

[
ωmax

ωmin

]
≈ ln

[
(1 + αv2

0)NmDM −1
]

= (3.58)

= (NmDM − 1) ln
[
1 + αv2

0

]
≈ [NmDM >> 1] ≈

≈ NmDM ln
[
1 + αv2

0

]
.

With a Taylor expansion around αv2
0(<< 1) this becomes:

ln
[
fmax

fmin

]
≈ NmDMαv

2
0 =⇒ NmDM ≈ 1

αv2
0

ln
[
fmax

fmin

]
. (3.59)

The relation between the p-value and S [q5σ
disc] is

p = 1 −
(
1 − S

[
q5σ

disc

])NmDM . (3.60)

Since p for a 5σ level is small (and by extension S [q5σ
disc] as well), one can use a

Taylor approximation of the first order to find:

p ≈ NmDMS
[
q5σ

disc

]
. (3.61)

The value for the test statistic can then be found to be:

q5σ
disc =

[
Φ−1

(
1 − p

NmDM

)]2

=
Φ−1

1 − 2.87 · 10−7

1
αv2

0
ln[fmax/fmin]

2

. (3.62)

Since this number, NmDM , is experiment dependent, the discovery limit g5σ
disc can only

be expressed as:

g5σ
disc ≈ 2.77 · 1010 eV−1 ·

√
λB ·

[
q5σ

disc

]1/4
·
[
mDM

T

]1/4
, (3.63)

with q5σ
disc evaluated for the maximum and minimum frequency set by the experiment.

29



3. Statistical framework

30



4
Results

In this chapter, the exclusion limit and the discovery limit are plotted against the
mass for different backgrounds. Additionally, these plots are produced for two ex-
pressions for the time period in order to showcase the sensitivity dependence on
the time period. This is done in Section 4.1. This is followed by a section on a
comparison with the detection limit for the vector boson for an experiment with op-
tomechanical sensors from Figure 4 in [5]. The comparison is done for the two most
optimistic backgrounds and for both types of expression for the time period. This
is done in Section 4.2. The chapter is concluded with Section 4.3, which discusses
the results and offers a conclusion.

4.1 Plots of the exclusion and discovery limits
The 5σ discovery limit and the 95% exclusion limit were plotted against the mass for
masses realistic for the experiment. The mass range plotted over was dependent on
the frequency range the experiment is likely to be able to probe, i.e. from 30 Hz to
an optimistic 1 kHz (a more pessimistic highest frequency would be 200 Hz). This
corresponds to a mass range between 1.24 · 10−13 eV and 4.14 · 10−12 eV, but with
a more pessimistic upper limit of 8.27 · 10−13 eV. The period for each frequency bin
was set based on the mass related to that frequency bin. Two ways of formulating
this relations were probed; one where the time period was proportional to the m−1

DM
and one where the period was proportional to m−5

DM, both with the maximum time
period of 1000 s for the smallest mass. As such, the time periods T−1 and T−5 can
be written as the following functions, with mDM,i being the initial mass,

T−1 = 1000 s ·mDM,i ·m−1
DM (4.1)

and
T−5 = 1000 s ·m5

DM,i ·m−5
DM (4.2)

This was plotted for all four proposed background terms. Note that the plotted
exclusion limits are dashed lines while the plots of the discovery limits are solid, and
that the plots of the limits are red for the experiments where the test object has a
radius of 1 µm and blue for the test object with a radius of 100 µm. The lines are
also slightly transparent for the optimistic value of the quality factor. The highest
mass which can be said to be realistic to probe is marked with a grey dashed line.

31



4. Results

Figure 4.1: The exclusion limit of the coupling constant at 95% confidence level
and the discovery limit at the 5σ level plotted against mDM for four backgrounds,
marked with dashed lines and solid lines respectively. The time period used for each
frequency bin follows eq. (4.1), with an initial mass of 1.24 · 10−13 eV. The period of
the highest probed frequency bin was about 29.95 s. The plotted lines are red and
blue depending on whether the background term is for a test object with the radius
of 1 µm or 100 µm respectively. The lines are slightly transparent for the optimistic
value of the quality factor. The vertical line shows the lowest mass that is in the
optimistic part of the mass range.

Figure 4.2: The exclusion limit of the coupling constant at 95% confidence level
and the discovery limit at the 5σ level plotted against mDM for four backgrounds,
marked with dashed lines and solid lines respectively. The time period used for each
frequency bin follows eq. (4.2), with an initial mass of 1.24 · 10−13 eV. The period of
the highest probed frequency bin was about 24.1 µs. The plotted lines are red and
blue depending on whether the background term is for a test object with the radius
of 1 µm or 100 µm respectively. The lines are slightly transparent for the optimistic
value of the quality factor. The vertical line shows the lowest mass that is in the
optimistic part of the mass range.
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Additionally, all the plots are logarithmized. Figure 4.1 shows the plots together for
the time period proportional to one over the dark matter mass. The discovery and
the exclusion limits are proportional to the square root of the mass to the square
root of the background. Figure 4.2 shows the plots together for the time period
proportional to one over the dark matter mass to the power of five. The discovery
and the exclusion limits are proportional to the square root of the mass to the power
three, and also to the square root of the background.

As in Chapter 2 and 3, the dark matter density has been set to 0.4 GeV/cm3, xt.o
has been set to 1.65, while α has been set to 0.791, and the velocity distribution from
the standard halo model has been used. The values of v0 and vobs where 7.338 ·10−4,
which is approximately 220 km/s, and 7.738·10−4, which is approximately 232 km/s
respectively.

4.2 Comparison with an experiment that makes
use of mechanical quantum sensors

To get an understanding of the sensitivity of this potential experiment it needs to be
compared to other experiments. A comparison here could showcase what parameters
are most important to perfect in order to get the best sensitivity for finding the
vector bosonic dark matter candidate of focus in this thesis. Such an experiment
using optomechanical sensors is discussed for the same dark matter candidate in the
article [5]. In Figure 4 in that article, a discovery limit of the resonant scan at the
standard quantum limit is shown, which can be compared to the limits from this
thesis. The discovery limit for this optomechanical experiment had a background
depending on both thermal effects and effects from the standard quantum limit at
resonance.

The plots of the discovery and exclusion limits for the potential experiment using
levitated bodies were made in the same way as in Section 4.1. The same values
and the same functions of the time periods were used, and the same mass range.
Only the exclusion and discovery limits for the background based on the test object
with a radius of 100 µm were used, though, to ease comparison with the resonant
standard quantum limit scan in Figure 4 in [5].

The data from the plot in Figure 4 in [5] was extracted using a plot digitizer from
https://apps.automeris.io/wpd/. Then this data is plotted inside of the relevant
mass range with the calculated discovery and exclusion limits for the hypothetical
experiment using magnetomechanics. The discovery limit from the optomechanical
experiment is plotted with a solid green line and the discovery limit and the exclusion
limit for the magnetomechanical experiment are plotted with solid blue lines and
dashed blue line respectively, with the lines that are slightly transparent being for
the background with the more optemistic quality factor. Figure 4.3 show this for
the case where the time period follows eq. (4.1) and Figure 4.4 show this for the
case where the time period follows eq. (4.2).
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Figure 4.3: The exclusion limit of the coupling constant at 95% confidence level
and discovery limit at the 5σ level plotted against mDM for four backgrounds, marked
with dashed lines and solid lines respectively. The time period used for each fre-
quency bin follows eq. (4.1), with an initial mass of 1.24 ·10−13 eV. The period of the
highest probed frequency bin was about 29.95 s. The test object had a radius of 100
µm. The blue lines shows the exclusion and discovery limits for the magnetomechan-
ical experiment and the green line show the discovery limit for the optomechanical
experiment. The lines are slightly transparent for the optimistic value of the quality
factor. The vertical line shows the highest non-optimistic mass.

Figure 4.4: The exclusion limit of the coupling constant at 95% confidence level
and discovery limit at the 5σ level plotted against mDM for four backgrounds, marked
with dashed lines and solid lines respectively. The time period used for each fre-
quency bin follows eq. (4.2), with an initial mass of 1.24 ·10−13 eV. The period of the
highest probed frequency bin was about 24.1 µs. The test object had a radius of 100
µm. The blue lines shows the exclusion and discovery limits for the magnetomechan-
ical experiment and the green line show the discovery limit for the optomechanical
experiment. The lines are slightly transparent for the optimistic value of the quality
factor. The vertical line shows the highest non-optimistic mass.
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4.3 Discussion
In this section the results presented in the two previous sections are discussed and
lastly a conclusion for the thesis is presented. The first section discusses the as-
sumptions made in this thesis and how they have affected the results.

4.3.1 Framework for the experiment
Some relevant assumptions made in this thesis is of course the values of constants
that have been used, such as ρDM and the α based on from Monte Carlo simulations
done in [6]. However most of these can be easily modified if a more accurate esti-
mation of the value was to be found, and the overall form of the plots would not
differ from this.

Also the models used have had a great effect on the results, as the difference from
the different background terms can attest to. If there are bigger contributions to the
background then the ones assumed it could change the plots drastically, especially if
the background has a dependence on the frequency of the dark matter wave. Though
with this experiment being hypothetical this is an acceptable approximation since
the goal of this thesis is to test the possible sensitivity and the difference of the
effect from the most conservative and the most optimistic backgrounds are of five
orders of magnitude.

The dependence of the time period on the mass scanned over is clearly relevant
as the inclination of the plots is changed quite noticeably. The two models tested
for this also have greatly different effects on the lowest time scanned over. This is
notable since an assumption made in Chapter 3 is that T → ∞ for each mass bin,
and for a strong enough dependence on the mass and a big enough mass range to
scan over, this assumption is incorrect.

The assumption that the dark matter velocity adheres to the standard halo model is
also made, and thus some changes would have to be done (specifically in eq. (3.54))
in case a significantly different model was to be proposed.

In the end a change in the background term has a fairly small effect on the overall
sensitivity of the experiment since the square root of the background term is used.
It should be noted that the change between optimistic quality factor and the mass
(size) change of the test object is greatly favourable to a background with a bigger
test object.

4.3.2 Comparison with the optomechanical experiment
From the comparison it is clear that only the two most optimistic estimates on the
sensitivity is near the sensitivity of the optomechanical experiment. The estimations
of the sensitivity that are close to the discovery limit estimation from [5] are the
ones that have the background being based on the test object having a radius of
100 µm.
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As can be seen in the figures (4.3 and 4.4) the inclinations of the plotted limits are
quite relevant as a stronger mass dependence for the time period could mean that the
most optimistic estimate goes from having a higher sensitivity then the estimated
discovery limit from [5]for lower frequencies, to intersect the limit and then having
a lower sensitivity than limit at higher frequencies. The higher frequencies can as
such be less relevant than the lower frequencies depending on how the time period
is related to the scanned frequency. It should also be noted that experimentation
on the higher frequency is optimistic.

4.3.3 Conclusion
The estimated sensitivity from this thesis does show that discovery in this mainly
unexplored realm of dark matter can be possible for a coupling constant with a
order of magnitude as low as −26 to −22. Even though only the most optimistic
estimates on the sensitivity came close to the discovery limit estimated in [5], the
comparison does show that it is possible to get a better sensitivity with this style
of experiment as long as the experiment is tuned to do this, with a greater focus
on getting more massive test objects and some focus on getting a higher value for
the quality factor. Though depending on how the time period is related to the
frequency bin focusing on reaching higher masses with this experiment can yield
limited gains. Still this thesis motivates testing and improving the experiment with
levitated magnetomechanics.
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