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Abstract 
Assessing cognitive workload is an important tool, for example when evaluating different 
techniques for improving prostheses. Here, we have developed a method to compare how 
the cognitive workload differs if a prosthesis has sensory feedback or not. We have used 
electroencephalogram (EEG) and performed a pilot study on ten intact limb subjects. An 
easy and hard level were constructed by changing the weight of a force sensitive cube that 
were to be lifted back and forth over a barrier while counting sounds in an auditory oddball 
task. A third level consisted of only the oddball task. The difference in difficulty between the 
different levels were verified by measuring performance, and perceived effort. On a group 
level, these measurements all indicated that the no task condition was easiest, and the hard 
task condition was most demanding. Measurements of the number of lifts for different 
repetitions of the easy and hard conditions also showed signs of a learning effect during the 
performance of the easy task. The cognitive workload was measured by using the event-
related potentials (ERP) technique and frequency bands. The results showed that the ERP 
component P3 was the only one that could indicate a significant difference between all 
three levels. A comprised measurement (consisting of the sum of ERP components N1, P2, 
P3, and LPP) and the alpha frequency bands (low-, high-, and broadband alpha) also 
showed a significant effect between some of the conditions.  

 

Keywords: Cognitive workload, Mental load, Learning, Electroencephalogram, EEG, 

Event-Related Potential, ERP, P3, Grasping task, Oddball Task, Dual-Task Paradigm 
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1 Introduction 
Here we introduce this thesis work by presenting the background for why this research is 
needed. After that we give a short description of the method of this work together with our 
aims and limitation. We also present our research questions and how we contribute to the 
research field. Lastly, we give you as a reader a guide for the structure of this report. 
 

1.1 Background 

The loss of a limb would imply a major change in almost any lifestyle, and there are many 
dedicated scientists, engineers, doctors, therapists etc. around the world working to make 
this change as convenient as possible. One possibility is to use a prosthesis as a substitute 
for the lost limb. Most often these prostheses are strapped on with a socket and electrodes 
are attached to the remaining part of the limb [1]. The socket often chafe the skin and imply 
a lot of discomfort for the person wearing it [2]. These kind of prostheses are also unreliable 
and patients therefore often choose not to use them [1]. 

In 1990 the world’s first osseointegrated prosthesis was implemented in Gothenburg, 
Sweden [3]. This means that the prosthesis is integrated in the bone of the amputee using a 
titanium rod. Apart from being a more secure and comfortable way of attaching the 
prosthesis than the conventional socket, this solution also opens up for the possibility to 
connect it to the muscles and nerves inside the remaining part of the limb. 29 years after 
the first osseointegrated prosthesis, in 2019, a Swedish man was the first in the world of 
getting an osseointegrated hand prosthesis with a neuromuscular interface [4], a so called 
e-OPRA [1]. This medical and technical achievement has been made possible by the 
collaboration between Chalmers Biomechatronics and Neurorehabilitation Laboratory 
(BNL), Centre for Advanced Reconstruction of Extremities at Sahlgrenska University 
Hospital and the company Integrum AB as part of their project “Natural Control of Artificial 
Limb Through an Osseointegrated Implant” [5]. By using the neuromuscular interface, the 
electrodes can pick up the signals from the muscles and nerves in the remaining part of the 
limb. That way, when the amputee execute the movement associated to move the hand, 
the hand moves [6]. By introducing sensory feedback in the prosthesis, which reflects when 
pressure that is applied to the surface of the hand of the prostheses, the nerves in the limb 
are stimulated. This way signals can also be sent from the hand to the brain and the brain 
can react to the stimuli given by the sensory feedback. 

Before the implementation of the neuromuscular interface, prosthesis users had to rely only 
on visual feedback and could not feel how hard they pressed an object or even if they 
touched it at all [6]. With the addition of sensory feedback that gives the carrier a 
significantly better experience [4], Chalmers BNL hopes to further facilitate and improve the 
quality of life for people with amputated limbs or motor impairments. 

Adding sensory feedback to a prosthesis intuitively seems to facilitate performing different 
tasks, like for example picking up a fragile object such as an egg. However, this needs to 
be investigated formally. One amputee who have received a prosthesis with sensory 
feedback have tried lifting a fragile object and they have broken or dropped the object less 
frequently with sensory feedback compared to when that feature is disconnected [7]. Also, it 
is possible that sensory feedback increase performance, but perhaps the effort is also 
increased. For this reason, there is a need for a quantitative and objective measurement of 
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the mental effort, or cognitive workload, for performing a task, such as lifting an egg, with 
and without sensory feedback. Such a method could also be used to evaluate different 
stimulation paradigms, i.e. different ways to stimulate the nerves.  

The first problem that arises when designing a method to measure cognitive workload is 
that there are currently only four people in Sweden with an implemented e-OPRA system 
[8]. This makes the sample size insufficient for reaching meaningful conclusions. Therefore, 
the conditions of lifting a fragile object with an e-OPRA prosthesis needs to be replicated 
with intact limb subjects as a complement. One way of doing this is to measure the 
cognitive workload for lifting the fragile object with your hand and compare this to when the 
sensory feedback is removed by using anesthesia on the hand and digits. 

The second problem is that research that involve a physical intervention needs to be 
approved by the Swedish Ethical Review Authority [9]. However, this application normally 
takes 60 days to be approved [10] which makes this approach unsuited for the time limit of 
this project. 

When measuring cognitive workload, there are several different options when choosing a 
method. These include pupil size measurements (e.g. [11]–[13]), heart rate variability (e.g. 
[14]–[16]) and breathing frequency (e.g. [16]). In this work, we will use two of the most 
common techniques to measure cognitive workload: electroencephalogy (EEG) using 
event-related potentials (ERP, e.g. [17]–[19]) and a self-assessment tool called NASA-
RTLX (a task load index developed by the National Aeronautics and Space Administration 
[20], e.g. [15], [21], [22]) to adapt a method and test if that can be used to assess cognitive 
workload in this kind of task. 

In 2019 a small study was made as part of Linn Berntssons master thesis at BNL. Her 
method was designed for testing amputees and were run with one amputee and compared 
three different conditions: no task, with sensory feedback and without sensory feedback. In 
the two last one the subject was instructed to lift a force sensitive cube back and forth over 
a small barrier. The first two conditions were also run with two intact limb subjects. The 
cognitive workload was evaluated using a combination of ERP measurements and the 
NASA-RTLX self-assessment tool. The results showed promise, but the method was tested 
with too few subjects to be able to draw any real conclusions. [23] 

1.2 Brief description of this work 

This report is part of a master’s thesis at Chalmers University of Technology where both 
writers, Fanny Apelgren and Ida Pettersson, have studied Engineering Physics. We then 
moved on to a master’s in Biomedical Engineering and Learning and Leadership, 
respectively. The thesis was written at the Department of Communication and Learning in 
Science (CLS) and the project was executed at Chalmers Biomechatronics and 
Neurorehabilitation Laboratory (BNL) at the Department of Electrical Engineering, under the 
Associate Professor Dr. Max Ortiz Catalán. The project has been supervised by Eva 
Lendaro (BNL) and Sheila Galt (CLS). 

In this study, we measured event-related potentials (ERP) using EEG equipment for three 
different conditions, each recorded in three blocks. The participants performed a lifting task 
by moving a force sensitive cube back and forth over a small barrier at the same time as 
they performed a secondary task of listening to and counting sounds, known as an oddball 
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task. The cube lit up when it was pressed too hard and the weight of the cube could be 
changed to vary the difficulty of the task between easy and hard. The participants were told 
that if the cube lights up, this indicates that the cube has been pressed to hard and “broke”, 
and that they should try to move the cube as many times as possible without “breaking” it. 
The third condition consists of merely the secondary task, i.e. counting sounds. This is 
called the no task condition. The EEG data were studied to examine if differences in event-
related potentials components and the frequency bands could be seen.       

During each condition the number of times the cube was lifted over the barrier and the 
number of times that it was “broken” were counted. The participant also reported the 
number of sounds that they counted in each block and filled out a self-assessment form, 
called the NASA-RTLX [20], to report the effort of each condition. The number of lifts and 
“breaks” per minute together with the difference between presented sound and counted 
sounds were studied as an indication of the subject’s performance, the result of the NASA-
RTLX was used to measure perceived effort and the EEG data served as a quantitative 
measurement of the cognitive workload.  

The different types of data and the experiment procedure that are used in this study were 
gathered from previous work on cognitive workload and recommendations from 
experienced scientists of the field. The force sensitive cube was designed with a few other 
similar models as an inspiration but was adapted for the criteria for this study. It has also 
been designed with the possibility for further development in mind, to enable use in other 
future studies. 
 

1.3 Aims and limitations 

The present study aims to develop and examine a method that can be used to measure the 
difference in cognitive workload with and without sensory feedback. The method by Linn 
Berntsson [23] have served as an inspiration, but we have mainly looked at other studies 
that have been tested with more subjects to develop our own improved methodology that is 
also adapted for intact limb subjects. Since anesthesia cannot be used without an ethical 
approval, we will test the method with other conditions to simulate the difference of with and 
without sensory feedback. Therefore, different levels of difficulty will be used as a 
substitute. The aim of this is to investigate how the variance in cognitive workload between 
the different levels of difficulty can be measured. We have also looked for signs of a 
learning process and the method has been tested using ten intact limb subjects. If the 
method can detect differences between different levels of difficulty, it could also be 
expected to be able to measure the difference between with and without sensory feedback, 
since these conditions are also believed to be different in difficulty. Therefore, the goal is for 
this study to serve as a pilot test in preparation for a future study where this methodology, 
or an adaption of it, will be used to investigate the difference in cognitive workload of 
performing a lifting task with and without sensory feedback, by using anesthesia.  

With the limited timeframe of this work, we have done our best to process and analyze all 
the EEG data. However, there remains other ways to examine the data that has been 
recorded, this will be discussed further in the section about future work. Among other 
things, we will not examine the EEG data or the results from NASA-RTLX for different parts 
of each condition. Signs of a possible learning process within the conditions will only be 
examined by looking at the factors measuring performance. 
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1.4 Research questions 

1) Will the subjects experience the expected difference in difficulty between the different 

conditions, on group and/or individual level, as indicated by…  

a)  …the perceived effort, given by the scores on the NASA-RTLX? 

b) …the performance, given by number of lifts, success rate and accuracy of the 

oddball task? 

2) Can the proposed method be used to measure differences in cognitive workload, on 

group and/or individual level as indicated by…  

a) …event-related potential (ERP) components? And if so, which components? 

b) …frequency bands? And if so, which frequency bands?  

3) Which latency windows (for ERP components only) and electrode sites should be used 

to examine the differences in cognitive workload with ERP components and frequency 

bands?  

4) Can a learning effect be observed during each condition by comparing the performance 

for each of the three blocks?  

 

1.5 Contribution 

The aim of this study is part of a larger goal, that ultimately comes down to improving the 
quality of life of amputees. By preparing for the future study with anaesthesia, this work is a 
step to provide quantitative evidence that adding sensory feedback in artificial limbs does 
lower the cognitive workload. This knowledge in turn will provide an incentive for the further 
development of prostheses. In addition to providing a method and a pilot study for this 
future study, this method might as mentioned also be used to evaluate different aspects of 
the prosthesis design, for example different stimulation paradigms. 

This work has also contributed to the total knowledge about ERP experiments and 
discovered several conflicting opinions about the best procedures of the field. We have also 
discovered the lack of, and importance of, motivation and reasoning to explain why certain 
methods were chosen. Besides the results of this thesis the collected data could also be 
analysed further, and more aspects could be examined using for example ANOVA 
statistical analysis, which seems to be the most common procedure in ERP studies (e.g. 
[17], [18], [24]). 

Studies using this or similar methods might also examine the learning process of receiving 
and learning to use a prosthesis. Even though the neuromuscular interface and the sensory 
feedback can be shown to decrease the cognitive workload, learning to live with a 
prosthesis will still demand practice and learning new strategies. The study of this progress 
can be an important step in the development of both prosthesis technology and the 
strategies used to teach someone to use a prosthesis.   
 

1.6 Thesis outline 

In the following chapters the thesis work will be described in further detail, starting with the 
theoretical background that lays the foundation of the work. After that follows the methods 
section where different parts of the method, from experiment procedures to data processing 
and analyses, are discussed. We describe possible approaches, discuss how they have 
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been used in other studies and present how we have chosen to do and why. The results for 
the performance, perceived effort and EEG data are presented and thereafter discussed. 
Lastly, there is a conclusion and ideas for future work.   
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2 Theory 
We will start by introducing the main concept of this work: cognitive workload. We will also 
give a background of the measurement methods: electroencephalogram (EEG) and event-
related potentials (ERP). The latter will also be discussed further in the methods section 
(section 3). Here we will give a brief introduction of the technique together with how ERP 
components and frequency bands can be used to assess cognitive workload. We will then 
conclude the section by discussing how and why EEG measurements can differ between 
different individuals. 
 

2.1 Cognitive workload 

We are all aware that some tasks demand more cognitive resources than others. Most 
people have no trouble walking and talking at the same time, but when you are asked to 
solve some equations it might be harder to keep up an interesting conversation. This comes 
back to attention and cognitive workload (also known as mental workload or cognitive load).  

There are different definitions to these, rather familiar, concepts and the relationship 
between attention and cognitive workload is also a matter of discussion. Rietschel et al. [19] 
states that “attention refers to the directed allocation of cognitive resources”. Similarly, 
Kantowitz [25] argues that cognitive workload is a subset of attention. Magill [26] elaborates 
this statement by saying that “attention refers to several characteristics associated with 
perceptual, cognitive, and motor activities” and that “a related view extends the notion of 
attention to the amount of cognitive effort we put into performing activities”. In this work 
there is no need to keep these interlaced concepts apart, so attention and cognitive 
workload will both be used in reference to the cognitive resources demanded by a person to 
perform a certain activity or task.  

To get back to the question of why we can perform some tasks simultaneously while others 
cannot, we need to introduce what is known as attentional reserve, or attention capacity. 
This theory states that we have a certain amount of attention, or cognitive workload, and 
that this can be split to do several things. Each task demands some of the attention from 
our reserve and leaves the rest. In the example above, walking does not demand a lot of 
cognitive workload and leaves some attention that you can use for example for talking. 
Meanwhile, solving equations might not leave enough spare attention in the reserve for 
conversation, and perhaps walking and talking at the same time does not allow you follow a 
map to find your way in a new place. 

That means that cognitive workload has an inverse relationship to the remaining resources 
of attentional reserve [27]. When the cognitive workload increases for a task, for example if 
you try to solve increasingly complex equations, the resources left for other tasks decrease.  

Workload and attention seem to be closely related to performance and learning. Kantowitz 
[25] suggests a model where too low or too high workload leads to lower performance and 
this view is supported by Winnie et al. [28] who says that efficient learning happens at the 
optimal level of cognitive workload. As a further link to learning, Magill [4] suggests that a 
new task takes a lot of cognitive effort in the beginning, but that learning takes place and 
thereby the attentional demands decrease with practice. This is known as the practice 
effect and means that learning of a task can be indicated in difference ways. Either by a 
decrease of cognitive workload together with a stable level of performance, by an increase 
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of performance with a stable level of cognitive workload, or by the combination of increased 
performance and decreased workload.  

Something else that needs to be considered when looking at attention and cognitive 
workload is how it is balanced by the demands of the task at hand. If the challenge of the 
task is too low one will experience boredom, and frustration will emerge if the challenge is 
too much compared to the skill level. The area in between these two outer limits, where skill 
and challenge are perfectly matched, is usually called flow. This is the feeling that can 
make you keep up a task, for example a video game, for a long time. If you are bored or 
frustrated because the game is too easy or too hard you are likely to stop playing. So it is 
believed that both these conditions will decrease the attention of the task [29].  
 

2.2 Electroencephalogram (EEG) 

One way to measure cognitive workload that is commonly used is by the 
electroencephalogram (EEG). EEG is a clinical tool that measures the electrical activity of 
the cerebral cortex with electrodes attached to the human scalp. The cerebral cortex is the 
outermost layer of the cerebrum, which is the largest part of the brain, and is divided into 
left and right hemisphere. Each hemisphere is in turn divided into four lobes: frontal, 
temporal, parietal and occipital lobes, that are associated with different functions of the 
human body [30]. The brain and its different regions can be seen in Figure 1. 

 
Figure 1. The brain and its four different lobes: frontal, parietal, occipital and temporal. 

The electrodes that are used to measure the electrical activity of the brain usually consist of 
a metal disk or pellet. They can be attached to the head with stickers, but since the number 
of electrodes used for a measurement normally is more than 16, they are usually attached 
to a cap that can much easier be fitted to the subject’s head. The electrodes pick up 
electrical activity from the brain in the form of electrical potentials for currents to flow from 
one electrode to a ground electrode. Since the recorded signals are in the range of 0 to  
100 𝜇V they typically need to be amplified by a factor of 1000-100000 before they are 
further processed [31].  

There are mainly four different characteristics for electrodes. They can be either wet or dry, 
and either passive or active [32]. Wet electrodes are generally Ag/AgCl electrodes, and one 
needs to put a conductive gel between the scalp and the electrode to get a good and stable 
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electrical connection. This also helps lowering the impedance of the electrode-scalp 
connection. A lower impedance induces less noise which is important to get good quality of 
the measurement [31]. Dry electrodes instead consist of a single metal, often stainless 
steel, that act as a conductor and the electrode are put directly on the scalp. The difference 
between passive and active electrodes are that the active electrodes include a pre-
amplification module after the conductive material. By that, the signal can be amplified 
before additional noise are introduced when the signal travels from the electrode to the 
system that measures the signal. This increases the signal to noise ratio. For passive 
electrodes there is no preamplification, which means that noise arising as the signals travel 
from the electrode to the measuring system will be amplified as much as the EEG signals. 
The different types of electrodes are combined, for example one can use active, wet 
electrodes [32].  
 

2.2.1 Referencing 

When creating an EEG amplifier, the ground electrode must be connected to a ground 
circuit for the EEG amplifier to work. This ground circuit is typically connected to other parts 
of the amplifier, which means that electrical noise is introduced at the site of the ground 
electrode. This means that there are noise present in the signal from the ground electrode 
that are not present in the signal from the other electrodes. To get rid of this noise, EEG 
recording systems use differential amplifiers. With the differential amplifier a reference 
electrode is used together with the operating electrode and the ground electrode to cancel 
out the noise. The differential amplifier records the potential between the operating 
electrode (O) and the ground electrode (G), as well as the potential between the reference 
electrode (R) and G. The amplifier then outputs the difference between these potentials  
O-G-(R-G) = O-R and since the noise from the ground circuit are the same for both O-G 
and R-G any noise generated at G will be eliminated in O-R. In other words, to get a single 
channel of EEG all three electrodes (operating, reference and ground) are needed. [31] 
 

2.2.2 Electrode positioning 

To get useful data that are comparable to other studies and possible to analyse it is 
important to position the electrodes in a correct way on the head. The most commonly used 
system to define the position of the electrodes is the 10-20-system [31]. Originally, this 
system used 21 electrodes, where two of them were placed on the earlobes and the rest 
were placed according to measurements of specific landmarks on the scalp. The landmarks 
used are the nasion (just above the nose, between the eyes), inion (the indent in the back 
of the head) and the left and right pre-auricular points (right in front of each ear), see Figure 
2. An equator through the nasion, inion and the left and right pre-auricular points, together 
with a line between the nasion and inion and a line between the left and right pre-auricular 
points defines the measurements used to place the electrodes. The equator and the lines 
are then divided into sections with the first mark at 10 % and the following marks at 20 % 
intervals, resulting in the electrode positioning in Figure 2a. An extended 10-20-system with 
128 electrodes can also be used, with marks on every 10 %, see Figure 2b [33]. Here we 
can also see that the electrodes are marked with letters and numbers. This is a way to 
indicate the location of the electrode. The latter gives the scalp region (F: frontal, T: 
temporal, C: central, P: parietal, O: occipital). The numbers indicate the distance from the 
center, where larger number are further from the central line. Even numbers are used for 
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the right hemisphere and odd numbers for the left. The letter “z” stands for the number zero 
and is used instead of the number “0” to avoid confusion with the letter “O”. 

Figure 2. Electrode positioning according to the normal and extended 10-20 system. The letters stand for scalp region (F: 
frontal, T: temporal, C: central, P: parietal, O: occipital). The numbers represent the distance from the center, with even 
numbers to the right and odd numbers to the left. “z” stands for zero and is used instead of the number to avoid confusion 
with the letter “O”. 
 

 
a) 10-20 system 

 
b) Extended 10-20 system 

2.2.3 Artifacts and Noise 

The electrodes do not only detect signals from activity in the brain, but also pick up other, 
non-neural, signals. Every time the subject moves, clenches their jaw, frowns, move their 
eyes, blink or something similar, this gives an electrical signal that can be picked up by the 
electrodes. Electrical signals from muscle movements are called electromyography (EMG). 
External sources, such as electrical equipment, can also emit electrical signals that can be 
picked up by the EEG electrodes. Another source for disturbance is the equipment itself, for 
example if the connection between an electrode and the scalp is instable. 

All of these non-EEG, signals are called artifacts [31]. Some of the muscle movements, 
especially from the eyes since they are located close to the electrodes, can cause big 
disturbances of the recorded signal. Others, like electrical equipment or some muscle 
activations, are smaller and more regular. Both of these kinds of artifacts need to be 
handled to be able to see the subtle changes of the small, often below 100 µV, neural 
activity. How this can be done is discussed in section 3.4.5.   
 

2.3 Event-Related potentials 

Here we will briefly introduce the event-related potential (ERP) technique, which is the 
cornerstone of the method of this thesis. The different aspects of this technique will be 
discussed in further detail in section 3. We will also present the concept of ERP 
components and frequency bands as a way to measure cognitive workload. Lastly, we will 
discuss different reasons for why measurements of cognitive workload can differ between 
different individuals.  
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2.3.1 Basic concept  

A common technique when measuring EEG is to use event-related potentials (ERPs). This 
is a way to single out certain activities in the brain. Raw EEG data is often hard to use, 
since it is a mix of all the neural activities in the brain. Even if you are told to focus on a 
certain task, your mind easily wanders. The ERP technique was first used in 1977 by 
Wickens et al. [34] and builds upon the idea that a certain stimulus, or event, can trigger a 
specific brain activity.  

The ERPs are measured by presenting some kind of stimuli, for example sounds or flashes 
of light, repeatedly while measuring EEG. Each stimulus is time-locked to the EEG data and 
marked by a line at the appropriate time. Later, a short section of EEG data, a so called 
epoch, is extracted around every stimulus. The epoch begins a short time before the 
stimulus and ends a certain time after the stimulus. It is common to use 100-200 
milliseconds pre-stimulus and 800-1000 milliseconds post-stimulus. The idea is that noise 
that is unrelated to the stimulus will cancel out when many epochs are averaged together 
and leave the EEG signals that are related to the stimuli. 

The book “An Introduction to the Event-Related Potential Technique” by Steven J. Luck [31] 
is a commonly used reference in this work. This, together with articles using the ERP 
technique, has helped us make all of the decisions involved in conducting an ERP 
experiment. 
 

2.3.2 ERP Components 

Luck [29, p. 68] gives the following definition of ERP components: 

“An ERP component can be operationally defined as a set of voltage changes that are 
consistent with a single neural generator site and that systematically vary in amplitude 
across conditions, time, individuals, and so forth. That is, an ERP component is a source of 
systematic and reliable variability in an ERP data set.” 

These voltage changes can then be picked up by the EEG electrodes, with different weights 
depending on the relative location of the source and each electrode.  

Here it is important to note the difference between ERP components and ERP peaks. The 
peaks in the ERP does also show voltage changes, but these changes do not necessarily 
reflect changes in a given component. For example, if the voltage of a positive peak is 
reduced it might reflect a reduction of an underlying positive component, but it might also be 
an increase of a negative component at the same latency, i.e. at the same time compared 
to the stimulus. There are some techniques to extract the components from the data, a 
common one being independent component analysis (ICA) that will be used and discussed 
in this work (see section 3.4.5.2). However, none of these methods can be completely 
trusted, and should be used with caution [31]. 

So, a single peak can never be assumed to represent a single component. Nevertheless, 
one can look at many different electrodes and study the latency of a peak. Since the time 
for a signal to travel the different distances from the source to each electrode can be closely 
estimated to be equal, the timing will coincide for one component at different electrodes.  

To avoid having to investigate all electrode sites (since they can be many), and still be able 
to draw conclusions from an ERP waveform, Luck recommends to use the components that 
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have been shown useful in earlier studies, either from other similar experiments or, if you 
are first in your field, from other fields [31].  

As a way to facilitate discussions about ERP and comparisons between studies there is a 
conventional method for naming the different peaks of an averaged ERP waveform. These 
names start with a letter, either N or P, to denote whether a peak is positive or negative. 
After that follows a number, describing one of two things. In the first convention the number 
describes the ordinal position of the specific peak, i.e. the first positive peak would be called 
P1 and the third negative peak N3. This convention is depicted in Figure 3. However, this 
plot uses the old convention of plotting ERP waveforms with the negative axis directed 
upwards. In this work we will use the same naming convention but with the positive axis 
upwards, as is common in most modern ERP studies [31]. The other possible way is to 
name the peak according to latency (i.e. the time after stimulus onset), so that a positive 
peak occurring around 300 ms after the stimulus onset would be called P300. In some 
cases, peaks are also named to describe their function or location, such as the error related 
negativity (when the subject discovers that he or she did something wrong) or late positive 
potential. [31] 

 

Figure 3. Depicting an example of an ERP waveform where each peak is named after the convention used in this thesis. 
The letter (P or N) stands for positive or negative (although note that negative is upwards in this plot) and the number 

stands for the peaks’ ordinal position. 

As mentioned, each component can be referenced to either by using the ordinal position of 
the peak (e.g. N1) or the latency (e.g. P200). The latter describes the latency at which the 
component is usually found, but this varies between different experiments and therefore this 
notion can be confusing. Luckily, the latency is often about 100 times the ordinal position, 
so that P1~P100, N2~N200 and so on [31]. However, some old conventions linger and P3 
is still often referred to as P300 because it was first found about 300 ms post stimulus even 
though it is more common to arise later than that [31]. The latency also tells us something 
about the stage of the stimulus processing by the brain. That means that earlier 
components arise from perceptual processing in the brain while later components reflect 
later stages of the reaction, including evaluation of the stimulus [17]. Here we describe 
some components that have been shown to be an indication of cognitive workload, that 
were the most common in our literature research. We will use the naming convention based 
on ordinal position.  
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2.3.2.1 N1 

The N1 component is specific to auditory stimuli and is characterized as one of the initial 
components in an auditory ERP, called long-latency auditory ERP components. It has been 
suggested that the N1 component signal the detection of acoustic change in the 
environment. The single-peak N1 component is evoked by short transient stimuli or by 
onsets of noise and has been shown to consist of three temporally overlapping 
constituents. The dominant contribution to the N1 component is most prominent at the 
fronto-central electrodes. [35] 

The N1 component has been linked to cognitive workload in several studies [18], [36]–[39]. 
One of the examined studies could show that N1 varied between some of the levels but not 
all [24] and two failed to show significance for N1 [17], [19]. In these studies, N1 was found 
between 75 and 180 ms post-stimulus, where the studies that were successful of linking N1 
to cognitive workload seems to have found it in the later region of that interval, see  
Figure 4.    
 

2.3.2.2 N2 

The N2 component is known for containing several different subcomponents: N2a, N2b, 
N2c. However, the basic N2 component (that will be discussed here) is said to be elicited 
by a repetitive, nontarget stimulus and it gets a larger amplitude if the stimulus is novel (not 
repeated). Depending on if the stimulus is task-relevant or task-irrelevant the N2 
component appears with different latency, with later latency if the stimulus is task-relevant 
(the difference between task- relevant and irrelevant stimuli will be discussed more in 3.2). 
Also, if the stimulus is auditory a larger effect is seen in the central sites and if the stimulus 
is visual the effect shifts to be larger in the posterior sites instead. [31] 

The N2 component has been examined in two of the studies that we have looked at [36], 
[37] and both showed that it successfully assess the cognitive workload. They found N2 in 
the interval 200 to 400 ms post-stimulus, see Figure 4.  
  

2.3.2.3 P2 

The P2 component is most prominent at the frontal and central scalp sites and is typically 
larger for stimuli containing simple, infrequent target features. At posterior sites, the P2 
component often interferes with N1, N2 and P3 and therefore it is hard to distinguish at 
posterior sites. [31] 

Two of the studies in our literature study could show a significant correlation between P2 
and different levels [17], [18], but three other could not verify this correlation [19], [24], [37]. 
P2 was found between 166 and 270 ms post stimulus, see Figure 4.  
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Figure 4. A sketch of the latency ranges where the different ERP components have been found according to our literature 
study. Each line is marked with the reference for the study it is taken from. Green lines indicate that there has been a 
significant difference between the different levels of difficulty. Orange means that a difference could only be seen between 
some of the tested levels, but not all. Grey lines mean that no significant differences could be shown. Studies that have 
not specified the latency range are marked with “?”. 

2.3.2.4 P3 

The P3 component is the most examined ERP component when it comes to cognitive 
workload [40], and that shows in our literature study. There are also several other 
components that are closely related to P3, and sometimes hard to differentiate from it. The 
ones examined in the studies we have read are novelty P3, P3a, P3b and early and late 
P3a. 

The P3 component is typically evoked by rare task-relevant events and it is said to reflect 
an updating of the context information, which often is assumed as an update of the working 
memory. There is also clear evidence that the amplitude of the P3 component can be 
influenced by the amount of attention allocated to a stimulus, which has been most clearly 
observed in dual-task experiments where the subject is to perform two tasks at the same 
time. The latency of the P3 component changes over the scalp and is shorter over the 
frontal areas and longer over the parietal areas. It also differs between individuals 
depending on how rapidly the subject can allocate their attentional resources, such that the 
latency is shorter for subjects with higher mental speed. [35] 

As mentioned above, the P3 component can be divided into several subcomponents: 
mainly the P3a, P3b and novelty P3 component. These subcomponents are typically 
elicited by different task conditions and can be recognized by their different topographic 
distributions. The P3a subcomponent has a centro-parietal maximum amplitude distribution 
and is elicited by rare tones presented in a series of frequent tones without a task. If novel 
distracters (such as a dog barking) are used in a sequence of frequent tones a fronto-
central P3 potential is elicited, which is called the novelty P3. The P3b subcomponent is 
elicited by task-relevant stimuli and has a parietal maximum amplitude distribution. Often, 
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P3b and the classic P300 (P3) are said to be the same component. It is also found that the 
novelty P3 differs from the classic P300 component and that the P3a and novelty P3 are 
most likely variants of the same ERP that varies in scalp topography depending on 
attentional and task demands. [35] 

Many studies have linked the P3 component and it’s relatives to cognitive workload [17], 
[18], [34], [37], [39]–[42]. One study failed to show significance for P3 [29] and one could 
only show significance between some of the levels [36]. In the successful cases, P3 has 
been found in the interval between 270 and 517 ms post-stimulus, and more commonly in 
the earlier part of that interval, see Figure 5.  

When looking at the related novelty P3, it has also been proven successful in assessing 
cognitive workload by several studies [19], [24], [43]. One has only shown a change of 
amplitude between some of the levels examined [44]. The novelty P3 component has been 
observed between 250 and 332 ms post-stimulus, see Figure 5. 

Lastly, some studies have linked P3a to cognitive workload [38], [45], where one split the 
component into early and late P3a. Another study saw no correlation between different 
levels and neither P3a nor P3b [43]. The components were found somewhere in the range 
between 210 and 405 ms post-stimuli, see Figure 5. 
 

2.3.2.5 LPP  

The late positive potential (LPP) is commonly identified as a midline centro-parietal ERP 
with a strong connection to emotional stimuli such as pleasant and unpleasant pictures. It 
becomes evident at 300 ms, and can therefore be mistaken for the P3 component, but the 
LPP component often continues for latencies up to 2000 ms, even though it is maximal in 
the latency range of 300-1000 ms. LPP has also been shown to indicate reaction time to a 
stimulus by that the LPP amplitude increases when the reaction time increases. [35] 

The LPP component has been shown to be an indicator of cognitive workload [17], [18], 
[21]. The findings have been within the interval 400 to 610 ms post stimulus, but two of 
these three studies found LPP close to the end of this interval, see Figure 5. 
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Figure 5. As the previous figure, this is a sketch of the latencies where each component has been found, and each study 
is marked with its reference number. This figure includes the same color coding as the previous one (green: significance, 
orange: partly significance and grey: no significance), but here darker colors are used to indicate different versions of P3. 
This is also indicated by letters where “a” is P3a, “b” is P3b, “N” is Novelty P3, “ea” is early P3a and “la” is late P3a. A dot 
indicates that no interval was given, only the latency of the peak. As before, “?” denotes studies where the latency has not 
been specified. 

2.3.3 Frequency bands 

The measured EEG signals often have an oscillatory, repetitive behaviour and therefore the 
collective electrical activity of the cerebral cortex is often called a rhythm. The EEG rhythms 
diverse between individuals and depends on things like the mental state of the subject, if 
they are awake or sleeping for example. Since the electrical activity arises from the 
activation of neurons in the brain, the rhythms can have different frequency depending on 
how synchronous the activated neurons are. The frequency range for the rhythms is 
approximately between 0.5 and 30-40 Hz and are often divided into five frequency bands, 
Delta, Theta, Alpha, Beta and Gamma [30]. The Alpha band is also sometimes subdivided 
into Low- and High-Alpha. The ranges of each band differ slightly between different studies. 
However, the differences in how the frequency bands are defined are relatively small 
(around 1 Hz). So, in this work we will discuss previous findings about a certain frequency 
band, such as Alpha, without consideration about the fact that the studies have used 
slightly different definitions of Alpha. We have decided to use the same ranges as was used 
by Rietschel et al. [46], which are presented in Table 1. Now we will present each of these 
frequency bands and their connection to cognitive workload, as shown by other studies that 
are part of the literature study of this work. We also describe the quotient Theta/Alpha.  
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Table 1. EEG frequency bands [46]. 

EEG FREQUENCY BANDS 

DELTA RHYTHM <3 Hz 

THETA RHYTHM 3-8 Hz 

ALPHA RHYTHM 8-13 Hz 

    LOW-ALPHA 8-10 

    HIGH-ALPHA 10-13 

BETA RHYTHM 13-30 Hz 

GAMMA RHYTHM >30 Hz 
 

 

2.3.3.1 Delta 

The Delta rhythm has a large amplitude and is mostly present during deep sleep. In normal 
adults it is normally not observed in the awake state other than that it is indicative of 
cerebral damage or brain disease[30]. It has also been shown that Delta rhythms are 
involved in motivational processes such as the necessity to satisfy the basic biological 
needs. [47] 

Our literature study has shown that there seems to be no significant correlation between the 
Delta frequency band and cognitive workload. We found two studies that measured Delta in 
tasks of varying difficulty, but neither saw any significant results [46], [48]. 
 

2.3.3.2 Theta 

The Theta rhythm mostly occurs during drowsiness and certain stages of sleep [31], but it 
has also been shown to correlate with a variety of behavioural, cognitive and emotional 
variables. The main domain seems to be memory and emotional regulations, but there are 
also indications that Theta activity occurs when performance of a learned task is increasing 
most rapidly and that it declines as tasks becomes familiar [47]. Especially at frontal scalp 
sites Theta activity can be facilitated by emotions, focused concentration and during mental 
tasks [49], meaning that it is expected to increase with increasing workload. 

Theta is, together with Alpha (described below), the frequency band that has been shown to 
relate most to cognitive workload [40]. Several studies have shown that theta can show the 
difference in cognitive workload between different levels [11], [21], [40], [50]. However, our 
literature study has also shown that several studies have failed to show this correlation [14], 
[29], [45], [46], [48] and a few studies have seen statistical significance for theta between 
some levels, but not between all [24], [44]. This can for example mean that there is a 
difference between the easy condition compared to the medium and hard, but that no 
difference can be seen between the two latter conditions. 
 

2.3.3.3 Alpha 

The Alpha rhythm occurs during wakefulness over the posterior regions of the head and 
does normally have higher amplitude over the occipital areas. It is typically characterized by 
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rounded or sinusoidal waveforms. The amplitude varies between individuals and in a given 
individual also from time to time but is normally below 50 µV in adults. It is commonly 
blocked or attenuated by attention and mental effort, especially visual attention, and are 
most prominent when the eyes are closed [51]. The amplitude of the Alpha frequency band 
is therefore expected to decrease with increasing workload. 

As mentioned, Alpha and Theta has been shown to indicate cognitive workload [40]. Alpha 
is also the most studied frequency band in the literature that we have studied for this work, 
sometimes split up into sub-bands Low- and High-Alpha. Several studies have seen a 
significant difference in Alpha between different levels of difficulty [11], [14], [21], [29], [40]. 
One of the studies have, however, failed to show a significant effect [50]. When comparing 
High- and Low-Alpha, the upper frequency range seems to often yield significance [24], 
[44], [46], [48] while the lower range often only can show difference between some of the 
levels [24], [44].  
 

2.3.3.4 Beta 

Activity recognized as Beta rhythm are mainly found over the frontal and central regions of 
the head and is found in almost every healthy adult. The amplitude does normally not 
exceed 30 µV and it can be blocked by motor activity and tactile stimulation [51]. Beta 
activity normally increases with drowsiness and light sleep and also with mental activation 
[49]. 

In our literature study, there has been little evidence of a correlation between Beta and 
cognitive workload. Most studies that have examined beta have not been able to show a 
significant effect [14], [29], [46], [48], [50] while one has seen a difference only between 
some of the conditions [24]. 
 

2.3.3.5 Gamma 

The Gamma rhythm consists of high-frequency oscillations and are said to be related to a 
state of active information processing [30]. Induced Gamma activity have been reported 
during sensory, cognitive and motor processing and may be related to sensory binding as 
well as sensorimotor integration [51].  

One of the studies that we have read have seen evidence of a significant difference 
between different levels for the Gamma frequency band [46]. One study has seen effects 
between some of the conditions but not all [24]. However, two studies have also failed to 
show a correlation between gamma and cognitive workload [50], [52]. 
 

2.3.3.6 Theta/Alpha: 

Besides the frequency bands, the quotient Theta/Alpha is also commonly used when 
assessing cognitive workload. There are several ways of calculating this ratio, often by 
using either frontal or parietal (see Figure 1) electrodes when measuring Alpha and Theta. 
Frontal Thetha/parietal Alpha [44] and frontal Theta/frontal Alpha [24] has both been used 
to indicate cognitive workload. Another study performed by Gentili et al. [45] showed that 
the Theta/Alpha ratio could be calculated from electrodes in the same area and still show 
significantly higher values for a higher level of difficulty.  
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2.3.4 Differences between individuals 

As mentioned, cognitive workload is here defined as the cognitive resources demanded by 
a person to perform a certain activity or task. This means that the cognitive workload is not 
only correlated to the difficulty of the task, but also to the abilities of the individual. When 
the task demands are close to exceeding a person’s ability, the workload is high, and the 
limits to boredom and frustration depend on both the task and the individual skill level.  

Apart from this, ERP measurements also varies between individuals. Differences between 
different subjects can reflect biological differences such as skull thickness or cortical folding 
patterns [31]. Other factors that can affect the ERPs when measuring cognitive workload 
are age, lack of sleep, time-of-day, time since the last meal, time of year and geographic 
location (mainly because of difference in daylight), exercise (mainly affects older people), 
and the intake of common drugs such as caffeine, nicotine and alcohol [53].  
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3 Method 
Here we present how we have constructed our method, by describing general theory for the 
different parts and discussing how others have chosen to do. 
  

3.1 Grasping task 

As mentioned in section 1.1, this work is a pilot study in preparation for measuring cognitive 
workload on intact limb subjects performing a grasping task with and without sensory 
feedback, where the latter condition will be done by using anesthesia on their hands and 
digits. Further, the conditions of this study are meant to mimic the conditions of with and 
without sensory feedback in prosthetic hands. A graphic illustration of the connection 
between the easy and hard condition of the different studies can be found in Table 2. 
 

Table 2. A schematic illustration of how the different levels are meant to be represented in our study and the future studies 
with anesthesia and prosthetic hands, respectively.  

 OUR STUDY STUDY WITH 
ANESTHESIA 

PROSTHETIC STUDY 

EASY TASK Lighter cube Without anesthesia With sensory feedback 

HARD TASK Heavier cube With anesthesia Without sensory 
feedback 

 

So, the main task to be examined in this work is a grasping task. This is performed by lifting 

a force sensitive cube (described more in section 3.7) back and forth over a barrier as many 

times as possible, without pressing it too hard i.e. breaking it. If the cube is pressed too 

hard it is indicated by that a red LED bar light up. The weight of the cube can be increased 

by adding extra weights to the cube, in order to make it harder to lift it without pressing it too 

hard. In that manner there are two different difficulties for the grasping task: easy and hard. 

These are meant to represent the different conditions of with and without sensory feedback, 

that will be used in the future study with anaesthesia that this work is in preparation for. 

Pictures of the experimental setup and the force sensitive cube can be seen in Figure 6. 

The force sensitive cube and its design process is further described in section 3.7. The 

grasping task is comparable to the modified Box and Blocks test, i.e. the Virtual Eggs Test 

developed by Clemente et al. [54]. 
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Figure 6. The experimental setup for the grasping task, with a closeup of the force sensitive cube.  
 

 
a) The setup for the grasping task, with two boards 
separated with a barrier. The cube was to be lifted back 
and forth over the barrier. 

 
b) The force sensitive cube, with force sensors, 
LED bar and weights. The weights could be 
removed to reduce the difficulty of the grasping 
task. 

3.2 Dual-task paradigms and oddball tasks 

Studies using the ERP (event related potential) technique are commonly performed by 
measuring ERPs of a secondary task that is performed simultaneously with a primary task 
of interest. This design is needed when it is not possible to directly assess the workload of 
the primary task, for example if there are no clear stimuli. The subjects are to primarily 
perform the primary task as well as possible and use remaining cognitive resources for the 
second task, doing it as well as possible under the circumstances. The secondary task in 
an ERP study can be for example to see flashes of light while performing a primary task of 
solving equations. Using ERP, the brain potentials related to the stimuli are measured. This 
way, the brain’s responses to the secondary task stimuli are expected to decrease as the 
difficulty of the primary task increases, and this shows by a decrease in amplitude of the 
different ERP components presented in section 2.3.2. The ERP technique thereby uses the 
inverse relationship between cognitive workload and attentional reserve, mentioned in 
section 2.1. This use of two simultaneous tasks, a primary and a secondary task, to 
measure the cognitive workload of the primary task is called a dual-task paradigm. In some 
studies, the subjects are required to react to the stimuli in some way, for example by 
pressing a button or by silently counting, while other studies tell the subjects to ignore the 
stimuli.  

A common dual-task paradigm is what is called an oddball task. Here, the stimuli contain 
common non-targets and rare targets, differentiated by for example pitch or colour. It is 
usual that the common non target represent 80 % of the stimuli. The ERPs are measured 
around the rare targets, since several ERP components are larger for a stimulus from a rare 
category than a common. The stimuli are usually either visual, auditory or somatosensory. 

The dual-task paradigm is widely used, but also questioned. One argument is that adding a 
secondary task will affect the performance of the first task, and thereby change the variable 
under investigation [18]. To deal with this problem, it is often recommended to use task 
irrelevant stimuli, i.e. stimuli that the subject should ignore [25]. However, Castellar et al. 
[55] examined this and could not find evidence that the primary task, in this case a game, 



 

 

21 

 

was affected by the secondary task of reacting to target sounds as fast as possible by 
pressing a button.   

When applying a dual task paradigm, there are many different factors to consider. These 
include deciding if the subjects should ignore or react to the stimuli, what type of stimuli to 
use and the timing of the stimuli. We will continue by discussing these options.  
 

3.2.1 The choice of stimuli 

As mentioned, stimuli can be either visual, auditory or somatosensory. Since the primary 
task of this work (lifting a force sensitive cube) involves using visual and sensory feedback, 
we have chosen to use auditory feedback for the secondary oddball task. This so that the 
secondary task should interfere with the primary task as little as possible. 

When using auditory stimuli, an approach that has become common is the novelty oddball 
task, which include novel, complex sounds (e.g. [18], [19], [39], [43], [45], [55]). This means 
a collection of complex sounds (e.g. a dog barking or a car honking) that are not repeated 
within each subject. When comparing different kinds of auditory stimuli, Dyke et al. [38] 
showed that complex sounds were better for measuring cognitive workload than simple 
sounds (e.g. a tone of a certain frequency). They could, however, not see any difference 
between if the sounds were repeated or not.  

In novelty oddball studies, it is common to use 80 % common, simple sounds (e.g. a low 
pitch tone), 10 % rare, simple sounds (e.g. a high pitch tone) and 10 % novel, complex 
sounds (e.g. a person coughing or a mosquito buzzing) (e.g. [39], [43], [55]). The ERPs are 
usually measured around the novel, complex sound since this is a better way to elicit ERP 
components [38] and these sounds are most often task-irrelevant by either having the 
subjects react to the rare, simple sounds by pressing a button or count them (e.g. [39], 
[55]), or by asking the subjects to ignore all sound and only focus on the primary task (e.g. 
[14], [18], [19], [45]). This means that the novel, complex sounds are used for the ERP 
measurement but are not relevant for any of the tasks. However, according to a study made 
by Debener et al. [43] task irrelevance is not necessary when applying the novelty oddball 
task. They also found that the novelty P3 was actually larger for task relevant sounds. That 
is to say that it was more effective to let the subjects count the novel sounds, that were also 
used for ERPs, than to count the rare, task-irrelevant sounds. This is evidence against the 
common view, and all other studies that we have looked at, both before and after Debener’s 
discovery, still use task irrelevant stimuli when measuring ERPs. 

For this study, we apply the novelty oddball task using 80 % common, simple sounds, 10 % 
rare, simple sounds and 10 % novel, complex sounds, as described above. Henceforth, 
these sounds will be referred to as common, rare and novel, respectively. We choose to 
use 500 Hz as common sounds and 1500 Hz as rare sounds, since these sounds 
represented the broadest range of frequencies we could use that were deemed comfortable 
to listen to for the subjects. The novel, complex sounds were randomly chosen from 93 
different audio clips and were only played once during each condition. The ERPs were 
measured by using the novel sounds, as recommended above [38] and the subjects were 
asked to count the rare sounds. This choice was made against what was shown by 
Debener et al. [43], since we decided to rather use the common approach of using task-
irrelevant stimuli to measure ERPs. This will make it easier to compare the results of this 
study to others. 
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3.2.2 Secondary task: Counting, reacting or ignoring? 

If the subjects are instructed to count sounds, this can also be used as an indication of 
cognitive workload. Since a harder task should decrease the attention available for 
counting, more errors should be made with a harder task than an easy one. However, Luck 
[31] raises an issue with this method. Since error could arise from missing a target, from 
mistaking a nontarget as a target or from losing count, it is impossible to tell if a correct 
number means that no error was made. For example, the combination of the two first errors 
would result in a correct number of counted targets. For this reason, the alternative of 
pressing a button in reaction of a target can be superior, since that allows both misses and 
false pushes to be considered. A problem with this approach is that it requires a movement 
that will result in artifacts. 

We decided to ask our subjects to count the rare, simple sounds of the oddball task. This 
choice was made to avoid subjects getting bored of the task, since the primary task is very 
repetitive. This because boredom might affect the willingness to focus your attention on a 
task, as discussed in section 2.1.  
   

3.2.3 Stimuli timing  

If the interstimulus interval, i.e. the time between two stimuli, is too short there is a risk that 
the different epochs will overlap, which will mean that potentials resulting from one sound 
might affect the next one. On one hand, you want the interval to be as short as possible to 
maximize the number of epochs to draw data from. On the other hand, the ERP 
components are bigger the longer the interstimulus interval and if the stimulus are played 
too often that might be tiering for the subject. Also, if the interval is too long, so called 
stimulus-preceding negativity can occur, which means that the subject is anticipating a 
sound. This can be confusing when analysing the results. Luck recommends around 1000 
ms interstimulus interval, and to use a temporal jitter of at least ±100 ms, since varying the 
interval also prevents stimulus-preceding negativity. This means that the interstimulus 
interval could vary randomly between 900 and 1100 ms, according to Luck. Also, since the 
epochs around each novel sound will later be averaged together (for more details, see 
3.4.6), varying the interstimulus interval also helps to prevent regular noise, such as alpha 
waves, to show in the averaged ERP waveforms. When it comes to the duration of stimuli, 
Luck recommends 50-100 ms for simple sounds and 300-400 ms for novel sounds, with  
5-20 ms rise and fall time. [31] 

It seems like most of the earlier studies that have applied the novelty oddball task (e.g. [13],  
[16]–[18], [23], [37], [42], [44], [54]) have, however, used a longer time for the duration of 
the simple sounds. They have all used the same sounds, originally from[56], and to 
facilitate comparing our result to theirs we have decided to use the same source for our 
sounds. 

Therefore, we have played the sounds in random order with a varied interstimulus interval 
between 960 and 1360 ms, as it follows Lucks recommendation and has been used by for 
example Debener [43] and Castellar Núñez [55]. The novel sounds are from the work of 
Fabiani et al. [56] and the duration is between 159 and 399 ms (mean 335,43 ms). The 
pure tones from the same source was 336 ms long, and as mentioned we chose to use  
500 Hz for the frequent sounds and 1500 Hz for the rare. Rise and fall time are 10 ms for 
the pure tones, but vary for the novel, depending on their properties.  
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3.3 Experimental procedure 

This thesis mainly resulted in a developed method to measure cognitive workload, that 
consists of the different parts described above: a dual-task paradigm consisting of an 
oddball task and a grasping task, where the cognitive workload is evaluated through EEG 
measurements and the self-assessment questionnaire NASA-RTLX. To test if the method 
could be used to measure cognitive workload, we performed a pilot study including 10 
subjects. 
 

3.3.1 Participants 

A good average ERP waveform can be obtained either by using long trials or many trials. 
However, the long preparation time for each subject (about one hour with the subjects for 
our experiment) makes it unrealistic to examine many subjects. Normally each study uses 
about 10-20 subjects for ERP measurements [31]. We have measured ERPs for 10 
subjects.  

The 10 participants (six females and four males) was students at Chalmers University of 
Technology in the age 24 to 28, with mean age 25.5 and standard deviation 1.43. All had 
normal or corrected to normal vision and hearing. The subjects’ handedness was evaluated 
through the Waterloo Handedness Questionnaire. This is made up of a series of questions 
of which hand one would use for performing certain tasks. The options were left always, left 
usually, both equally often, right usually and right always. The score is then added by 
assigning the options with values -2, -1, 0, 1, and 2, respectively. The score ranges from 
±72 and this score would thereby indicate a strong preference for either the left (-72) or the 
right (+72) hand. According to this all subjects were right-handed, with a received score in 
the range 41 to 56, with mean score 49.2 and standard deviation 4.38. The subjects also 
read and signed an informed consent, which can be found in Appendix C, before the 
experiment. 

To measure EEG we used an EEG system environment from g.Tec Medical Engineering, 
including g.HIamp multi-channel biosignal amplifier for 144 channels, g.GAMMA EEG cap 
with 128 g.SCARABEO active Ag-AgCl electrodes and g.TRIGbox trigger pulse box. The 
software used to collect the EEG data was g.RECORDER, a biosignal recording system 
from g.Tec. EEG was recorded at 2400 Hz from 128 electrodes according to the extended 
10-20 system, which is described in section 2.2.2 and can be seen in Figure 2.  Included in 
these 128 electrodes are four eye electrodes (EOG), two electrodes put on each earlobe 
and 122 scalp electrodes. As ground electrode we used the AFz electrode (between Fp and 
F in Figure 2). No online reference was used, instead the data was referenced offline. For a 
picture of a subject fitted with the cap and electrodes, see Figure 7. 

The trigger pulse box was used to time-lock the audio stimuli from the oddball task 
described above in section 3.2, which was played for the subjects through in-ear 
headphones. Headphones were used so that the subjects should hear equally in both ears, 
compared to if speakers had been used where there is a risk that the speaker sound is 
heard differently in the ears. For localizing and digitizing the exact individual position of the 
electrodes in 3D for all subject we used Polaris Krios System from Northern Digital Inc.  
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Figure 7. Person fitted with EEG cap with 128 electrodes. You can also see the EOG electrodes around the eyes. 
 

3.3.2 Tasks 

The developed method consists of three different conditions: no task, easy task and hard 
task, using combinations of the grasping task and the oddball task, described in section 3.1 
and 3.2, respectively. No task means that the subject performs only the auditory oddball 
task while focusing their gaze at a plus sign on a computer screen. For the easy and hard 
task conditions the subject was to perform the grasping task at the same time as the 
auditory oddball task. The easy and hard condition represent a dual task paradigm, 
described in section 3.2, where the grasping task is the primary task and the oddball task is 
the secondary task. The easy and hard conditions are, as mentioned in section 3.1, meant 
to replicate the conditions of with and without sensory feedback that will be used in the 
future study with anaesthesia. The no task condition is to add another level of cognitive 
workload that can be used as a baseline to examine if we can measure the differences in 
cognitive workload between different levels.  
 

3.3.3 Self-assessment using NASA-RTLX 

To get an indication of how much workload the subjects themselves thought they put into 
each task, we used a self-assessment questionnaire, or task load index, developed by the 
National Aeronautics and Space Administration called NASA-TLX [57]. The NASA-TLX is 
commonly used to assess perceived effort (e.g. [14], [21], [39], [44], [45]). The 
questionnaire consists of six subscales which represent the variables: mental, physical, and 
temporal demands, frustration, effort, and performance. Each subscale is a twenty-step 
scale from 0 to 100 and the subjects were asked to put a cross on the step of each 
subscale that best represented their effort on each task. For each task, the values for all 
subscales were added together and divided by six to get the averaged NASA Raw Task 
Load Index (NASA-RTLX). This index is more commonly used in many studies because it is 
simpler to apply compared to the NASA-TLX which also includes an additional weighting 
process to weight the different subscales against each other [20].  

We used the NASA-RTLX for each task and subject to get an indication of whether the 
perceived workload differed between the tasks. This will be used as an indicator to see if 
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the subjects experienced the expected difference between the different conditions. Subjects 
were also told to mark the different blocks in each condition with 1, 2, or 3 if they 
experience a difference in effort. They were also told that they could mark with an X if they 
estimated the same value for all blocks. In the end, most of the subjects did not experience 
a difference between the blocks, so only conditions were examined. For subjects who 
marked a difference, we have used the mean value.  
 

3.3.4 Procedure 

Before the experiment, the subject was fitted with the EEG head cap and a connection was 

made between each electrode and the scalp using a conductive gel. Then the EOG 

electrodes were attached around the eyes using adhesive labels, and the reference 

electrodes, used for offline referencing, were clipped to the earlobes. The impedance for 

the connections was kept below 50 kΩ and were also controlled regularly between the 

measurements. Lastly the electrode positions were scanned. The participant also filled out 

the informed consent, a photo agreement and the Waterloo Handedness Questionnaire. 

They were asked to use their dominant hand for the grasping task.  

During the experiment the subject was seated in a chair with an adjustable table in front of 

them. They got in-ear headphones through which the sounds for the auditory oddball task 

were played. Before the experiment started the subjects were informed about the tasks they 

were going to perform and got the possibility to ask questions about the procedure. We 

emphasised that the cube should be lifted as many times as possible without breaking it, 

and that the grasping task was the main task. The subjects also got to listen to one sound 

(or more if requested) of each type: frequent, rare, novel and start/stop-sound, so that they 

knew what to listen for. The start/stop sound consisting of three consecutive tones, were 

used to notice the participant that they could start respectively end doing the task. We also 

adjusted the audio to fit the subject’s preference. This could give rise to some differences 

between the individual results, since the intensity of a sound affects the amplitude of the 

reaction, or ERP components [31]. However, keeping the volume constant would have 

meant that the subjects would experience different volumes because of differences in 

hearing, which would also give raise to individual differences. If the sounds had been hard 

to hear or painfully loud, this would have contributed to exhausting the subjects faster. 

Therefore, the subjects got to adjust the volume so that they felt most comfortable.  

The subject was also instructed to not blink excessively, to not frown, clench their jaws or 

keep unnecessary tension in any other muscles. This is to avoid artifacts and will be 

discussed further in section 3.4.5.   

The time needed for each condition depends on how many epochs is needed to get a 
satisfactory ERP waveform. This in turn depends on what you are looking for in the data 
and how much noise there is, but Luck [31] recommends 10-50 epochs for larger 
components, such as P3, and 100-500 for smaller, such as P1. This because more 
measurements increase the signal-to-noise ratio and thereby makes it possible to study 
smaller components. Since stimulus duration, interstimulus interval and the percentage of 
novel sounds are already set (see section 3.2.3), the time for each condition depends on 
the number of epochs we chose to measure. We have chosen to use an algorithm that 
plays 600-720 stimuli in total. With novel sounds being 10 % of the sounds that gives us  
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60-72 novel sounds per condition. That way we also have some margin if some of the 
epochs needs to be rejected because of blinks or other artifacts, at least for large 
components. To keep the novelty of the novel sounds they were not repeated during a 
condition, which means that they were repeated a maximum of three times for each subject, 
with at least five minutes between the repetitions. Some of the sounds were not repeated at 
all. The algorithm randomizes the order of the played sounds as well as the interstimulus 
time, such that frequent, rare and novel sounds are mixed and played with different 
interstimulus times between each other. 

Maximizing the number of epochs needs to be weighed against too long blocks. This will 
exhaust the subjects and might affect the number of subjects willing to participate. But more 
importantly it will affect the subject’s ability to stay focused on the task, and longer times 
might therefore do more damage than good. 

It is also important to insert enough time for rest between the measurements. This helps to 
keep the subjects alert and focused on the task. It can also reduce blinking and muscle 
artifacts during the measurement, since the breaks gives the subject time to blink and 
stretch. For this reason, each condition was divided into three blocks of about four minutes 
with at least one minute break between them. Between each condition there was also time 
for about five minutes break, or more depending on what the subject wanted. By letting 
subjects perform the same task for three hours, or until they were exhausted, Trejo et al. 
[58] have shown that fatigue will affect the measurement by increasing the amplitude of 
both the alpha and theta frequency bands and the P2 component. However, the same 
study showed that N1 and P3 was not significantly affected by the time of the task.  

This means that each subject completed in total nine blocks, three for each condition. At the 

start and end of each block the special start/stop sound was played. After each block the 

subjects reported the number of rare sounds they had counted. During the longer break 

after each condition the subjects also filled in the NASA-RTLX questionnaire. All subjects 

started with the no task condition, and moved on to easy task and hard task, in that order. 

By doing so, the level of arousal will tend to vary between the conditions. To avoid this, 

Luck [31] recommends varying conditions unpredictably within each trial block. However, in 

the future study that this work is in preparation for, it will not be possible to switch back and 

forth between the conditions, since the conditions in that case will be with and without 

anaesthesia, respectively. It would be possible to use a random order between the different 

conditions, for example by inviting the subjects for two separate days, but we decided 

against this since the same order would make it easier to compare the different subjects’ 

learning processes. 

When the subjects performed the grasping task, the number of times they lifted the cube 

over the barrier was counted in order to get an indication of how well they accomplished the 

task during the different levels of difficulty. This was then divided by the time to compute 

number of lifts per minute, taking into account the fact that the total duration of the blocks 

shifted slightly. Since the task was to lift the cube without breaking it, we also counted the 

number of times they broke the cube (pressed it too hard such that it lit up). A success rate 

was then computed by subtracting the number of times the cube was broken from the 

number of total lifts. These measurements of performance will, together with the NASA-

RTLX, be used to verify the differences between the different conditions. It will also be 
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investigated for each block and compared to look for learning effects. It is expected that if 

learning takes place, performance would increase between the blocks.   

An experiment procedure for this work can be found in Appendix A, with more information 

about preparation, execution and the work needed after each experiment. Also, at the end 

of the experiment the subjects also participated in another study. However, the procedures 

or results for this are not discussed in this work and since it was performed at the end it 

should not affect the result of this work. 

 

3.4 Signal processing 

Before analysing the EEG data, it needs to be processed to reduce the signal-to-noise ratio 
and obtain clean averaged curves to measure ERP components and frequency bands. This 
section describes common steps for signal processing and motivate our choices for this 
work. 

The signal processing has been done using EEGLAB [59], which is a freely available 
MATLAB toolbox, and the plugin ERPLAB [60]. These are specifically designed to analyse 
EEG and ERP data.   

3.4.1 Offline referencing 

Even if the EEG equipment uses a reference site during the measurements, as discussed 
in section 2.2.1, this site needs to be specified and sometimes changed offline before 
analysing the data. This is called offline referencing or, if the reference site is changed, re-
referencing. Since there are no electrically neutral sites on the head or the body in terms of 
neural activity, there are no perfect reference sites. This means that ERP measured at an 
active electrode will both reflect the EEG at the active electrode site and the reference site. 
Therefore, it is important to choose the reference site with caution, so it does not cancel out 
important information in the data. This means for example that a reference site near the site 
of interest is not a good choice. Also, reference sites that pick up much noise should be 
avoided to not get extra noise in the data. Which reference site that is the best depends on 
the application. [31] 

Common reference sites used are one or both of the earlobes (e.g. [17]–[19], [21], [37], 
[39], [44], [46], [61]) or one or both of the mastoids (the bones directly behind the ears, e.g.  
[36], [40], [41], [55], [62], [63]) because they are convenient and not biased toward one 
hemisphere if the average of the earlobes or the mastoids are used. They also lie close to 
each other, which means that EEG data referenced to the earlobes are comparable to EEG 
data referenced to the mastoids. Often the average of the earlobes or mastoids are used, 
but the two earlobes or the two mastoids can also be linked together physically with a wire 
and used as reference. Another common referencing technique is to use an average of 
several electrodes as reference. [31]  

The ears and mastoids can also be used as ground (e.g. [21], [38] used the earlobes and 
[43], [45] used the mastoids). Other possible sites to use as ground include the forehead 
(e.g. [37], [41], [42]) and, most commonly in our literature study, the FPz electrode (e.g. 
[18], [19], [40], [44], [46]). 

These differences between studies are a bit problematic since depending on which 
electrodes that are used for referencing, the ERP waveform can change. This makes 
different studies hard to compare. 
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Based on Lucks [31] recommendation to use a reference cite that is not biased to one 
hemisphere, not introduces a lot of noise, not close to the place on the scalp where the 
effect of interest is largest and most important to use a reference that is commonly used in 
other papers, we choose to use average earlobes as offline reference.  
 

3.4.2 Amplification 

The EEG technique uses electrodes attached to the scalp to measure the electrical signals 
from the brain. These signals are very small, usually under 100 microvolts, and need to be 
amplified by a factor of 1000-100 000. As mentioned before, this is done either directly with 
the recorded signal (active electrodes) or afterwards with a computer (passive electrodes). 
The first alternative is better, since this reduces the risk of amplifying noise that can arise 
between the electrodes and the computer. This is also what is used in this work.  
 

3.4.3 Filtering 

Before anything can be said about the EEG data it needs to be filtered to take away some 
of the non-neural background noise. For example, the electrodes pick up the frequency of 
the surrounding electrical equipment. The power line frequency in Sweden is 50 Hz [64], 
which is higher than the frequencies that are commonly of interest in studies regarding 
cognitive workload.  For this reason, the power line noise can be removed with a low pass 
filter. Luck [31] recommends using one with a half amplitude cut-off of 20-50 Hz. A half 
amplitude cut-off of 50 Hz means that 50 % of the 50 Hz signals will be cancelled. Hence, 
less than 50 Hz should be used to avoid the power line noise. Here one also need to take 
the Nyquist theorem into consideration. This theorem states that the sample rate should be 
at least twice as high as the highest frequency of the signal, or else information about the 
signal might be lost. We have used a sampling rate of 2400 Hz, which is more than enough 
with a half-amplitude cut-off of less than 50 Hz. 

It is also common to see slow shifts in the EEG data that arise from changes in skin 
hydration or static changes in the electrodes. That is why a high pass filter should also be 
applied, of about 0,05-0,2 Hz. [31] 

We have chosen to use a noncausal IRR Butterworth filter with high-pass 0,1 Hz, low-pass 
30 Hz and a slope of 12 dB/oct.  
 

3.4.4 Epoching 

Because of the trigbox, every stimulus is time-locked and marked in the raw data. The act 
of taking out segments around each stimulus in the EEG data is called epoching. The 
length of the epoch varies between different studies, but is usually about 1 second, for 
example 200 ms pre-stimulus and 800 ms after.  

Luck [31] recommends using a pre-stimulus that is at least 20 % of the total epoch time and 
to use even multiples of 100. The latter is because this tends to cancel out alpha 
oscillations. The pre-stimulus period is used as a baseline for the epoch, as a complement 
to filtering to reduce the effect of slow voltage drifts (discussed above). In this work we have 
chosen to use a pre-stimulus interval of 200 ms and a post-stimulus interval of 700 ms. This 
way, the pre-stimulus period is more than 20 % of the total epoch, and the post-stimulus 
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time should cover all the components described in section 2.3.2.  
 

3.4.5 Artifact management  

So far, filters and the use of the pre-stimulus interval as a baseline for each epoch has 

reduced the effect of the small and continuous types of noise and artifacts discussed 

above. Also, when averaging the epochs together, random noise will tend to cancel out. 

However, artifacts that always have the same polarity will have to be tended to by other 

means [63].  

It is always a challenge to measure ERPs when the task demands that the subject moves 

frequently, since every movement elicits artifacts in the data. This is why the subjects were 

told to try to avoid unnecessary tension, see section 3.3.4. The most common, and also 

typically biggest, artifacts are the ones related to the eyes, i.e. blinks and eye movements. 

These potentials are called electrooculogram (EOG). Dristelle [63] says that it is standard 

procedure to instruct the participants not to blink and to keep their eyes fixed, while Luck 

[31] problematize this, saying that keeping from blinking could yield other problems and 

affect the cognitive workload. Hence, we decided to ask the subjects to avoid excessive 

blinking, but that they should blink when they needed to.  

The procedure of having the subjects focus on a fixed point is used in many ERP studies, 

but it is not always possible. Here it might be possible, although very unnatural, to ask the 

subjects to fix on a given point while moving the cube back and forth. In the future 

experiment, when using anaesthesia, the visual feedback will be the only way for the 

subjects to know if they are gripping the cube or not, when performing the grasping task. 

Compromising their ability to see the cube properly would then increase the difficulty of that 

condition in an unwanted way. For this reason, we wanted to examine if the method, 

including eye artifacts, can be used to measure cognitive workload.   

Below, we will present how eye related artifacts can be detected and either rejected or 

corrected. Lastly, we will discuss how these techniques can be used to mine the EEG 

signals behind the artifacts.  

 

3.4.5.1 Artifact detection and rejection 

Unlike continuous noise from nearby electrical sources or such that can be removed by 
using filters, this approach does not work on large and transient artifacts like eye 
movements and blinks. However, the transient nature of these artifacts means that they do 
not affect all of the data, only the parts where the artifacts occur. For this reason, one 
possible way of dealing with these kinds of artifacts is by simply removing all epochs that 
contain them.  

The eyes are electrical dipoles, with a positive potential at the front of the eye and a 
negative at the back [31]. That means that when the eyes are moved, the signals change.  
To detect these changes, electrodes are commonly placed around the eyes when 
measuring EEG, as shown in Figure 7. Horizontal EOG (HEOG) is measured with 
electrodes lateral to both eyes, near the temple, and vertical EOG (VEOG) is measured 
with electrodes above and below one eye. The VEOG electrodes are also used to detect 
blinks, since they produce responses that are opposite in polarity depending if they are 
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measured above or below the eyes. This means that blinks can be recognized by the fact 
that the EEG signal from the electrode under the eye, VEOG2, are opposite in direction 
compared to the other channels, as can be seen in Figure 8. When the eyes are moved, a 
muscle is contracted. The eyes then usually look in the same direction for a little while 
before they move again. This creates a characteristic box-shaped output that can also be 
seen in Figure 8. [31] 

 

Figure 8. Eye blinks and horizontal eye artifacts. Notice the blinks at approximately 31.5, 36.5, and 39.5 s, where VEOG2 
deflects in the opposite direction compared to the other channels. We can also see the characteristic box shapes of eye 

movements at approximately 32-34.5 and 35-35.5 s. 

Thus, the artifacts arising from eye movements and blinks are fairly easily recognised. 
Therefore, it is possible to visually inspect all the data and manually remove all epochs that 
contain a blink or an eye movement. This is, however, very time consuming. A better 
alternative is to use some sort of algorithm to find these artifacts. One simple alternative is 
to use a voltage threshold to exclude all activity that are above or below certain limits. 
However, even after the use of high pass filters and pre-stimulus baselines there can be 
slow voltage shifts over an epoch. If the baseline moves from the mid-line this means that 
some large shifts might still be within the limits and, similarly, small shifts might end up 
rejected. [31] 

A better alternative is to use a moving peak-to-peak window. This technique measures the 
voltage difference within a specified window width, for example 200 ms. If this voltage 
difference is larger than a given threshold the epoch is rejected. Then the window is shifted 
right (by e.g. 50 ms) and compares the maximum voltage difference in that area to the 
threshold for rejection. This procedure is repeated until all the data has been examined. [31] 

A third method is the step function. Similarly to the moving peak-to-peak window it moves 
across the data in steps and looks at the data in short segments at a time. However, 
instead of measuring the maximum voltage difference, the step function method compares 
the average voltage in the first half of the window to the average of the other half. This is a 
better method to detect eye movements, and it can also detect blinks. Luck says that this 
might be slightly better overall compared to the moving window method, but he mainly 
stresses the fact that both are highly superior to simply using a voltage threshold. [31] 
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Both the moving window and step function methods need a specified threshold for rejection. 
This limit can be set equal for all subjects, but this is not recommended by Luck [31]. No 
humans are alike and neither are their EEGs. This means that a threshold that is right for 
one person might be too high to reject artifacts from another, or too low so that epochs 
without artifacts are rejected. Also, no algorithm is perfect, and there is always a possibility 
for mistakes. For this reason, Luck [31] recommends setting an initial, trial threshold and 
then visually inspect the data for each subject, to see if there are any epochs that should 
have been rejected but were not, or that was falsely rejected. If so, the threshold should be 
changed until a better fit has been found.    
    

3.4.5.2 Artifact correction 

Instead of rejecting data it is possible to use artifact correction, which removes only the part 
of the signal that corresponds to an artifact. This can be done by using a method called 
independent component analysis (ICA), which decomposes the EEG-data into a set of 
independent components. There are several different algorithms that can be used for this, 
but ICA is the most effective one [63]. By using ICA it is possible to identify components 
that isolate artifacts like blinks and eye movements and then simply subtract these 
components from the rest of the EEG data. 
 
The theory behind ICA is often described in terms of audio recordings on a cocktail party, 
the so-called cocktail-party problem [65]. Imagine that you are in a room with several 
people talking simultaneously and that you record audio with several microphones placed 
on different locations in the room. Also imagine that you want to separate the signals in the 
recordings to find out what each person in the room is saying. When you listen to the 
different signals you will notice that they sound a bit different depending on where they are 
recorded, even if they are recorded simultaneously in the same environment. But, if you 
separate the signals into their independent sources you will notice that they consist of the 
same sources, each source weighted a bit different depending on where in the room the 
signal was recorded. The signals are a mixture of sounds from the different sources and 
can be written as weighted sums. This means that the signals x(t), where x is the 
amplitudes and t the time index, can be written as 

x1  = 𝑎11s1 + a12s2 + ⋯ + 𝑎sn 

x2  = 𝑎21s1 + a22s2 + ⋯ + 𝑎2nsn 

. 

. 

. 

x𝑛  = 𝑎𝑛1s1 + an2s2 + ⋯ + 𝑎nnsn 

where s represents the individual sources and 𝑎 are the weighs. By assuming that the 
sources are statistically independent, ICA can separate them from the mixed signals x(t) 
and calculate the weights in the sum. However, as we can see in the equations above there 
are 𝑛2 weights to calculate but only n independent sources and n signals. To solve this 
problem ICA therefore uses the vector-notation of these equations instead, written as 

𝑥 = 𝐴𝑠 

and assumes that both 𝑥 and 𝑠 are vectors of random variables. Both 𝐴 and 𝑠 are then 
estimated by assuming that 𝑠 are statistically independent sources with non-gaussian 
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distribution. ICA first estimates the mixing-matrix 𝐴 and then computes its inverse 𝑊, the 
unmixing-matrix, where the independent sources can be calculated as 

𝑠 = 𝑊𝑥. 

As in the cocktail party problem, EEG data can be described as a mixture of signals from 
different components of brain activity. Hence, we can apply ICA to the EEG data and get an 
estimation of what independent components that can be behind the measured signals from 
the different scalp electrodes. As can be seen above, ICA will calculate as many sources as 
there were inputted signals, i.e. it assumes that n signals will be generated from n 
independent sources. 

Even though ICA can be used to remove many different types of artifacts, most studies 
(e.g. [55], [19], [11], [21], [38], [62], [63]) use ICA just for removal of eye blinks and 
horizontal eye movements. However, some studies (e.g. [24], [43]) also use ICA to remove 
other artifacts such as muscle artifacts, heart beat artifact, channel noise and power line 
noise. As described above in section 3.4.5.1 both eye blinks and horizontal eye movements 
have characteristic shapes that make them easy to detect, which means that independent 
components from eye artifacts are easy to recognize.  

When visually inspecting the ICA decomposed data to label components as artifacts one 
often looks at the scalp topography together with the frequency spectra and time courses, 
to identify characteristics of certain artifacts [66]. Eye blinks are characterized by a scalp 
topography that shows high activity at the front of the scalp (see Figure 9a), together with 
the characteristic spikes that can be seen in Figure 8 and an activity power spectrum that 
decreases smoothly for all frequencies and lacks peaks. Horizontal eye movements are like 
eye blinks identified by a smooth frequency spectrum and in the time course they are 
characterized by the box-shapes shown in Figure 8. An example of the scalp topography 
corresponding to horizontal eye movements can be seen in Figure 9b. It typically shows 
high activity in the front, with opposite polarity on the left and right side of the head. [67] 
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3.4.5.3 The choice of whether to reject or correct artifacts 

As mentioned in 2.3.2, there are no way to mine the different components of an EEG 
measurement with absolute certainty. ICA is based on an underdetermined problem and 
performs an optimization process to conclude the underlying components. That means that 
ICA will not deliver the same result for the same data each time it is run. Therefore, many 
chose to reject all epochs containing too much noise, either by using an algorithm with a set 
threshold or by visual inspection ([14], [17], [18], [36], [37], [39], [41], [45], [46], [48], [50]).  

However, despite its flaws, ICA is frequently used in ERP studies, since it can “save” data 
that would otherwise have needed to be rejected. In 2017, Drisdelle et al. [63] compared 
the convention of asking the subjects to keep their eyes fixed and thereafter rejecting 
epochs with eye movements to when eye movements were encouraged and later corrected 
using ICA. They found that ICA conserved the data and recommended this as a possible 
standard approach, instead of rejecting valuable data. The use of ICA was also 
recommended by Castellar et al. [29] in 2019. They specifically recommended it for studies 
evaluating cognitive workload by using computer games, and since our experiments have 
the need for eye movements in common, we deem ICA to be suitable for our study as well.   

When using ICA for artifact correction, it is usually combined with rejecting epochs with 
remaining artifacts. After ICA has identified and removed the most commonly occurring 
artifacts, for example eye movements, the epochs that are deemed to contain too much 
noise, electrode cable movements or such can be rejected using either set thresholds (e.g. 
[19], [55], [62], [63]) or by visual inspection (e.g. [24], [38], [43]). Luck also recommends to 
remove portions of data with big voltage shifts before applying the ICA algorithm [31]. 
These shifts can occur if the subject makes a big movement and they are usually found in 
the beginning and end of a recording, before and after the actual task. 

The identification of components that corresponds to artifacts is often done by visual 
inspection, but one can also use tools that automatically detects and labels artifactual 
components. One such tool is ADJUST [68] which combines stereotyped artifact-specific 
spatial and temporal features to identify artifactual components corresponding to eye blinks, 
vertical and horizontal eye movements and discontinuities. The dataset used for selecting 

 
a) A typical eye blink, where the signal is strong close to 

the eyes. 

 
b) A typical horizontal eye movement, where the signal is 

strongly negative/positive by the left/right eye. 

Figure 9. Scalp topography showing common eye artifacts: eye blinks and horizontal eye movements. 
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the features used for the algorithm consists of EEG data from a dual-task study of 21 
subjects. Another tool that can be used for automatic detection of artifacts is ICLabel [69], 
which contains spatiotemporal measures from more than 6000 EEG measurements and 
20000 independent components. It labels the components into seven categories: brain, 
muscle, eye, heart, channel noise, line noise and other, where the category other includes 
all components that does not fit into one of the previous types. Through a comparative 
study it is shown that ICLabel perform better than or comparably to other automatic 
component detection tools and this with a tenth of the computation time. 

Since the task of this work demands movements that will give rise to artifacts, we have 
decided to use ICA as a way to save data that would otherwise be useless. Note that ICA 
should be applied before epoching the data [31]. First the data was visually inspected and 
portions with artifacts that obviously arose from equipment failure was removed. Generally, 
this meant cutting from the beginning and end of each block, but one big deviation was also 
removed within one of the blocks. We also found out that one channel looked faulty for two 
conditions (showing big, regular fluctuations) so this channel was removed from analysis. 
For more information about how the signal processing affected the data for each subject 
and condition, see Appendix D. 

We then used the ICA algorithm (runica) available in EEGLAB [60] and later ICLabel with a 
threshold of 85 % for eye- and muscle artifacts. This means that any components where 
ICLabel estimated the likelihood that it was linked to eye- or muscle activity as greater than 
85 % was removed from the data. Before removing the components labelled as 85 % 
certain eye- or muscle artifacts, these components were also visually inspected to be sure 
that they were fine to remove. The ICA-corrected data was then epoched and checked with 
a moving window peak-to-peak algorithm to reject epochs with remaining artifacts that 
exceeded 100 µV compared to the mean of the pre stimulus interval (same threshold as 
[63]). We chose to use a set threshold for all subjects, since Luck’s recommendation of 
using individual thresholds mainly applies to eye artifacts. Since these should be removed 
with ICA, the set threshold was used to find noise or artifacts originating from moving 
electrodes or unstable connections to the scalp. If more than half of the epochs around the 
novel sounds were rejected, the subject should be removed from further analysis, according 
to a recommendation from Luck [31]. For our data, 1-22 (mean 4,7) ICA components were 
removed from each subject and condition. After the following artifact detection one subject 
had to be rejected because of excessive noise. For the others 0-40,3 % (mean 7,5 %) of 
the epochs around the novel sounds were removed from each subject and condition, 
leaving 37-72 (mean 60,7) novel sound epochs for analysis. For more information about 
this, see Appendix D. 
 

3.4.6 Averaging 

The process of averaging epochs is meant to increase the amplitude of any effect that is 
related to the stimuli, while decreasing artifacts that are assumed to be completely random 
with respect to the time-lock of the stimuli. 

Each epoch is sorted into a bin, according to what stimulus it is extracted around and what 
condition it is measured for. Using this information, averaged ERPs can be constructed for 
each bin. Here, we want to measure the ERPs elicited by the novel, complex sounds, so an 
average is constructed where epochs for novel, complex sounds are sorted into bins for 
each condition. After that, a grand average can be constructed for each condition. That is 
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the average of the data from all the subjects performing the different tasks (no task, easy 
task and hard task). 
 

3.5 Measurements to indicate cognitive workload 

As seen in section 2.3.2 and 2.3.3 there are two common ways to measure cognitive 
workload with EEG: ERP components and frequency bands. However, in neither case it is 
easy to determine what band or component to focus on. For ERP components the ranges in 
which the components have been found also varies greatly, so it is not easy to know how to 
focus the search. In this section we will discuss how to measure the amplitude of ERP 
components and frequency bands and how we have chosen what factors to look at for 
measuring cognitive workload. The differences are also often seen at different sites of the 
scalp, so we will also discuss how we chose which electrodes to analyse.  
 

3.5.1 Measuring amplitudes of averaged ERPs 

When the averaged ERP waveforms have been obtained, we want to be able to measure 
the amplitude of different peaks, to obtain an indication of underlying ERP components, 
discussed in 2.3.2. However, there are a few different ways to measure the amplitude of an 
ERP peak. Here we will discuss the ones presented by Luck in “An introduction to the 
Event-Related Potential Technique” [31]. We will also discuss which ERP components that 
should be studied and how the latency window for measuring amplitude of different ERP 
components can be chosen. 
 

3.5.1.1 Choosing a method to measure amplitude 

One way of measuring the amplitude of a peak is to measure the biggest voltage within a 
given time interval. This is called peak amplitude. However, this technique is sensitive to 
the level of noise in the signal [31]. Since the level of noise depends on the number of 
epochs in the averaged waveform, it should only be used to compare conditions with an 
equal number of epochs [31]. This usually means having to use a subset of the epochs for 
some of the conditions and subjects, and thereby not use all available data. Peak amplitude 
also builds on the fact that there is something special about the peak voltage, while this is in 
fact not true since the peak only is an indication of underlying components (as discussed in 
section 2.3.2). 

Another possibility is to measure the mean amplitude over a given interval. Mean amplitude 
is not very sensitive to noise and can therefore be used to compare conditions and subjects 
using all available epochs. It is not affected by smaller changes in latency between different 
conditions or subjects but is sensitive to the choice of latency window.   

A third option is to measure something called signed area amplitude. This means that 
different sections of the ERP waveform integral are signed as either positive or negative 
[31]. That way one could for example chose to measure only the area above the baseline 
within a given interval. Since portions of data that are within this interval but below the 
baseline does not affect the result, this method is less sensitive to the choice of latency 
window compared to using mean amplitude. That also makes it superior when there are 
bigger latency differences between different subjects. This approach seems promising but 
has the drawback that it is relatively new and not frequently used. The tools in ERPLAB [70] 
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are not yet adapted for this method. Another drawback is that it is usually bigger than the 
actual value, since noisy waveforms tend to have larger values than clean [31].   

Considering the properties of the different measurement techniques, we have chosen to 
measure mean amplitude. Even though signed area amplitude is better in many aspects we 
have not found a formal comparison between the two. Mean amplitude is more commonly 
used (e.g. [19], [36]–[38], [44], [45], [62], [63]) which makes it more reliable, and using this 
method will make it easier to compare our results to others. It also makes it easier to be 
able to perform the measurements in ERPLAB. 
 

3.5.1.2 The choice of which ERP components to examine 

As discussed in section 2.3.2, several components have been shown to indicate cognitive 

workload, and the interval for where they have been found often varies greatly between 

different studies, as can be seen in Figure 4 and Figure 5. According to our literature 

research the components N1, N2, P2, P3, and LPP can all be used to measure cognitive 

workload. Since we are using complex, novel sounds together with simple tones we will 

most likely see the novelty P3, as discussed in section 2.3.2.4. 

Since this study is a pilot study in preparation for future work, we decided to use our own 

data to determine what components to examine. Therefore, we computed an average 

across all subjects, conditions and channels (electrodes) and chose components to 

examined based on which ones were visible in that waveform. 

 

3.5.1.3 The choice of latency window and electrode sites 

In the studies that we have read, it is rarely described why certain electrode sites were 
chosen, but common ones to use are the central channels Fz, Pz and Cz (e.g. [18], [19], 
[36], [37], [41]).  

Here, we wanted to investigate which of the 121 available channels (electrodes) would be 
best for our purpose. We again used the waveform averaged over all subjects, conditions 
and channels and used this to choose appropriate latency windows. These latency windows 
were then used to determine which channels to use for the analysis. The mean amplitude 
within each latency window of the average over all subjects and conditions were measured. 
By comparing this between the 121 channels, we could see at which electrode sites each 
peak was most prominent. A similar method was used by Dyke et al. [38]. 

We have also chosen to use clusters of electrodes (as e.g. [62]). By using the mean ERPs 
as captured by several electrodes, we should obtain a waveform with bigger signal-to-noise 
ratio than would be given by just one electrode. This also seems like a good way to take 
advantage of our 121 electrode channels and it makes the method sturdier against 
problems with some electrodes. If only one electrode is used and this does not end up 
having a good connection for some of the subjects, a lot of data would be useless. We also 
wanted to try using clusters of two different sizes, where the smaller clusters consisted of 
five electrodes and the larger of seventeen. Each cluster was centered around the area 
where the mean amplitude for each peak was largest.      

Now, it remained to measure the amplitude of the ERP waveform of each subject, by using 
these clusters. When measuring mean amplitude, the approach that seems most common 
is to use the grand average across all subjects and conditions to determine what latency 
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window to use for each electrode site (e.g. [19], [36], [38], [44], [45], [63]), or in our case 
electrode cluster. A time window is chosen for each component of interest at each electrode 
site and this latency window is then used for all subjects at that site. The width of this 
window varies between different studies, as can be seen in Figure 4 and Figure 5.  

We have chosen to follow a procedure presented by Handy [71] (and used by for example 
Miller et al. [18] and Deeny et al. [17]) to use small latency windows centered around the 
peaks in the grand average with a width of between 15 and 40 ms. We therefore chose to 
use an interval of 40 ms, centered around the latency of the peak amplitude of the relevant 
component in each cluster. This latency window was then used to measure each 
component for each subject and condition at the small and large electrode cluster. Another 
option would have been to select latency windows for each subject as well, but since we 
have not seen this method in the literature, we decided against it.  

Luck argues that using your own data to decide what latency windows to use creates bias 
that increases the chances of your experiment yielding the result you are looking for [31]. 
He instead recommends using latency windows from previous, similar studies. As seen in 
Figure 4 and Figure 5, this varies between studies, and it is not easy to decide which ones 
to use. However, Luck says that you can use your own data for deciding measurement 
parameters if you perform a follow-up experiment, where you use the same latencies [31]. 
Since this work is a pilot study for a future experiment, we have chosen to use our own data 
for determining the latency windows. This will give the following work good references to 
use when deciding their methods. The same argument also holds for using our own data to 
decide which electrode clusters to use.  
 

3.5.1.4 A compiled measurement for ERP 

The theory for ERP components state that the amplitude of the components should 
decrease as the difficulty of the primary task increases, as discussed in section 3.2. This is 
because the brain’s reaction to the sounds decrease as the primary task demands more 
attention. This means that we could construct a compiled measurement for ERP, by using 
the amplitudes for all assessed ERP components. We therefore constructed a compiled 
measurement by adding the measurements for all measured mean amplitudes, to see if 
that could be used to better assess the differences in cognitive workload between the 
different conditions. 
 

3.5.2 Measuring frequency bands 

Here we will motivate which frequency bands were measured and how we chose to 
measure these. 
 

3.5.2.1 The choice of which frequency bands to examine 

According to our literature study, described in section 2.3.3, the most successful frequency 
bands for assessing cognitive workload is Theta (3-8 Hz) and Broadband Alpha (8-13 Hz) 
sometimes divided into Low-Alpha (8-10 Hz) and High-Alpha (10-13 Hz). We have therefore 
decided to measure these frequency bands.  

For the quotient Theta/Alpha, there are several options for combining frontal and parietal 
measurements, as discussed in section 2.3.3.6. We have decided to use our measured 
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values for theta and broadband alpha, where the scalp region of these will be determined 
by where they are most prominent, as will be discussed further in this section. This means, 
using the same electrodes for measuring Theta and Alpha, and take the quotient 
Theta/Alpha in that area. 
 

3.5.2.2 Choosing a method  

A common way to analyze the frequency characteristics of EEG data is to compute the 
power spectral density (PSD) for the different frequency bands mentioned in section 2.3.3 
(e.g. [11], [14], [44], [72], [73]). Puma et al. [11] and Holm et al. [73] both conducted studies 
on cognitive workload during multitasking. The tasks in these studies included controlling 
events on a screen by joysticks and clicking buttons. In the studies carried out by Jaquess 
et al. [14], [72] the participants were to perform different scenarios in a flight simulator. The 
mentioned studies have in common that the participants are performing some kind of 
movement of the hands (i.e. a motor task). Common between the studies is also that they 
calculate the PSD and analyse the frequency bands alpha and theta. These studies all use 
approximately the same procedure for spectral analysis and achieve significant results, 
which shows that this method can be used for studies of different types. Therefore, we have 
chosen to follow the procedure for spectral power analysis carried out in these studies.  

The EEG data first went through the same processing steps as when computing ERP 
values (described above) i.e. offline referencing (section 3.4.1), filtering (3.4.3),  
ICA (3.4.5.2), epoching with baseline correction (3.4.4), and artifact rejection (3.4.5.3). To 
transform the data into the frequency domain and calculate the PSD we used Welch’s 
periodogram with 1 s Hamming windows and 50 % overlap and then calculated the 
absolute band power for the theta (3-8 Hz), broadband-alpha (8-13 Hz), low-alpha  
(8-10 Hz) and high-alpha (10-13 Hz) frequency bands. This was done over all three blocks 
at once for each condition. Lastly the spectral power for each frequency bandwidth was 
divided by the spectral power for the data’s entire frequency spectrum and natural log 
transformed before it went through statistical analysis. 
 

3.5.2.3 The choice of electrode sites 

As described for the calculation of ERPs in section 3.5.1, we wanted to investigate which of 
the 121 electrodes available in our measures that were the best to use for measuring the 
different frequency bands. This was done by calculating the average band power where all 
subjects and conditions were averaged together. The result for each electrode was plotted 
over the scalp and resulted in a scalp distribution. From this a small and a large cluster of 
electrodes corresponding to the area of highest band power for each frequency band were 
extracted. As for the ERP clusters, these areas were centered around the electrode 
corresponding to the highest band power for each frequency band. When measuring the 
band power for each frequency band, the absolute band power was averaged for the 
electrodes of the clusters. 
 

3.6 Statistical analysis 

The statistical analyses of the results of the measured values for ERP components and 
frequency bands has been performed using a two-way ANOVA. The ANOVA analysis gives 
the significance, or p-value, of the results in a comparison. The p-value denotes the 
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probability that the results are due to random errors. If p = 0.05, that means that there is a  
5 % probability that the null hypothesis is true, i.e. that there is no real difference between 
the compared conditions. A smaller p-value thereby means that you can reject the null 
hypothesis with more confidence.     

This means that there is always some chance that the null hypothesis is falsely rejected, i.e. 
that you say that there is a difference between the conditions even though it is just by 
chance. This problem grows when performing multiple comparisons. If several factors are 
measured, the probability of at least one of them showing a statistically significant effect 
increases, compared to if just one factor is examined.  

In our case, one of our goals is to examine which factors should be used to assess 
cognitive workload (ERP components and frequency bands), and how this should be done 
(latency windows and electrode sites). This means that we need to face the problem of 
multiple comparisons. However, since this study is more exploratory, this is not seen as a 
problem. However, multiple comparisons is still a factor that needs to be considered when 
analysing the results of this study.  

The two-way ANOVA was computed using the MATLAB functions anova2 and 
multcompare. The ANOVA analysis returns a table showing, among other things, the  
p-value for comparisons across rows and columns in the table of interest. If the p-value is 
less than 0.05, this means that there is a significant difference between some of the 
rows/columns. However, the anova2 function does not say which rows or columns. To 
examine this, we have used multcompare that returns a comparison between the 
rows/columns. In our case, it will tell us if there is a significant difference between all 
conditions or only some of the conditions, for example no task might be significantly 
different from hard task. 
 

3.7 Design of force sensitive cube 

For the grasping task we needed an object for the subject to lift, which could be imaginarily 
broken repeatedly. The object is said to be broken when it is squeezed harder than a given 
limit and when the object is broken it should give some feedback to the subject. We decided 
that the feedback need to be visual, because auditory feedback can interrupt with the 
auditory stimuli from the oddball task and sensory feedback would possibly interrupt the 
lifting task by for example making the subject drop the object. We also had in mind that the 
object should later be used in a study where sensory feedback is removed using 
anaesthesia, and therefore using sensory feedback for when the object was broken was no 
alternative. Talking about sensory feedback, we also concluded that the sides of the object 
need to be fixed, such that the cube cannot be clamped. This to make gripping the object 
comparable between subjects with intact limbs and users of hand prostheses, which do not 
have finger perception in the same way as intact limb people. 

To clarify the characteristics needed for this object, design requirements together with their 
priority were set up. 
 

3.7.1 Design requirements 

The design requirements were divided into soft and hard criteria, depending on their level of 
priority. Here, hard criteria are the ones that need to be fulfilled, whereas the soft criteria 
are wanted but not needed. The hard criteria were: 
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• Size of object not bigger than 7cm x 7cm x 7cm 
• Object can measure how hard the object is pressed 

• Set limit for when the object is pressed too hard and give visual feedback 

• Sides of the object should be fixed 

• Level of difficulty for lifting the object should be easy to change manually 

• High friction on the gripping sides 

Further, soft criteria set up were: 

• Ability to save and send data wirelessly to a computer 
• Changing level of difficulty for lifting the object automatically during the experiment 

• Object can measure vertical lifting force 

• Electronics in object battery powered 

 

Figure 10. Final version of the force sensitive cube. On the sides are force sensors with sandpaper to gain higher friction. 
A LED bar on the top shows when the cube is broken i.e. pressed to hard. The cube has a box that can be drawn out and 

filled with weight. All electronics are fitted inside the cube together with a 9V battery. 

 

3.7.2 Design process 

The design process for the object resulted in four different versions, all of them were a 
development of the previous version. A description of all versions can be found in Appendix 
B. Firstly, it was decided that the object should be in the shape of a cube because it is an 
easy shape to construct and manage. We also decided that the level of difficulty for the 
cube should be given by its weight, which easily can be changed manually. Early in the 
process we also decided that we wanted the cube to be computerized, to make it easy to 
set and change limits for when the cube was broken. This also gives the opportunity to save 
measured data if wanted. For this we used a commercial microcontroller of the make 
Arduino because it is easily accessible and easy to implement. To measure when the cube 
is broken, we decided to use force sensitive sensors. The final version of the cube can be 
seen in Figure 10 and the material used are listed below. 

• LED-bar of 8 LEDs, NeoPixel 8 LEDs WS2812 
• Resistor of 560 Ω 

• 2x force sensor, Interlink FSR 406 
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• 3x resistor of 10 kΩ 

• Button to reset Arduino Micro 

• 3D-printed cube 63x63x68 mm 

• Arduino Micro 

• 9V battery 

• Coupling board, Luxorpart 45x34 mm 

• Cables 

• Sandpaper, grit size 120 

• Bluetooth transmission module, Velleman HC05 

The cube had two force sensors, one on each side for the subject to grip, and to increase 

the friction and make it easier for the subject to lift the cube without slipping we added 

sandpaper on the force sensors. To prevent the cube from gliding on the surface of the 

table, glue from a glue gun was put at the bottom of the cube. 

During the whole design process, the most challenging criterion was to keep the size of the 

cube within our set limits and at the same time fit all equipment inside the cube, as well as 

adapt the cube so that the level of difficulty could easily be changed. We also wanted the 

cube to be as light as possible when no weights were added, such that the change of 

weight between the two levels (see section  3.1 ) should be as big as possible. To easily be 

able to change the weight of the cube a box was included inside the cube and it could be 

pulled out and filled with weights. We ended up with a cube that weighted 109 g in its basic 

form, which corresponded to the easier level of difficulty, and 404 g when weight was added 

(corresponding to the harder level of difficulty). The force limit for breaking the cube was set 

such that the cube just could be lifted without getting broken on the hard level, which 

equalled 7.8 N. For information about how the cube was calibrated to get the force limits in 

Newtons, see Appendix B. 

To show if the cube was broken a visual feedback in the form of LED lamps was used. 

Early in the design process we used a single red LED, but after testing that version of the 

cube in a pilot test it was clear that it was hard for the subject to see when the LED lit up. 

Therefore, we changed the single LED to a LED bar of 8 LEDs, which made it much easier 

for the subject to see when the cube was broken. This also gives the possibility to show a 

grading of how hard the cube is pressed for the subject all the time if wanted. 

The number of times the cube was broken was counted both manually and automatically by 

the cube. To be able to display on an external computer when and how many times the 

cube was broken, a Bluetooth transmission module was included in the design. 

The variables that the cube can measure is listed below in Table 3, and a sketch of the 

measured force can be seen in Figure 11. 
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Table 3. Variables measured by the cube. 

 

VARIABLE  FUNCTION 

𝒄𝒐𝒖𝒏𝒕 Counts number of times the cube is broken 

𝑭𝟏, 𝑭𝟐 Normal forces on the force sensors when the subjects grip the cube 

 

 
Figure 11. Forces measured by the cube. If F1 and F2 surpassed a certain threshold, the cube would light up to indicate 
that it had been “broken”. 

  



 

 

43 

 

4 Results 
In this section we will present our results. We will start by mentioning some details in the 
execution of the experiment that did not go as planned, and how we have handled these 
problems when analysing the results. Then we present the results for the performance 
(number of lifts, success rate and oddball test accuracy) and perceived effort, since these 
indicate if the difficulty between the levels differed as planned. Then we move on to the 
results for ERP measurements, including latency bands and channel clusters, and 
frequency band, including channel clusters. Here, we also present the results of the 
conducted statistical analysis to see which methods gave significant results.  
 

4.1 Notes on the execution of the experiment 

There were some smaller problems during the execution of the experiment, that needs to 
be taken into consideration. First, the LED bar on the cube did not always lit up as planned 
when the cube was pressed too hard. Sometimes there was a very dim light that was hard 
to see for both the subject and the experiment leaders. This means that the counted 
number of breaks might not be accurate, and some subjects did not realise that they broke 
the cube and thereby did not alter their lifts after breaking it. Therefore, subjects were told 
how many breaks had been counted after each block and reminded to pay attention to the 
LED bar. The LED bar was also sensitive to the battery level, so the battery was changed 
often. The cables were also a bit unstable, so the cube was tested after each block, as an 
extra precaution. If it did not light up, the number of breaks within the block were marked as 
unknown. In some blocks we also had technical problems that meant that the number of 
lifts or breaks were not counted. More information about the data considered for each 
subject can be found in Table 4. 
 

Table 4. A summary of the data that was gathered for each subject, excluding the EEG data. “X” marks that data was 
collected and “-“ marks missing data.   

    ODDBALL TASK NUMBER OF LIFTS PER MINUTE 

    No task Easy task Hard task Easy task Hard task 

SUBJ. NASA-RTLX # Counted sounds Time # Lifts Time # Lifts 

1 X X X X X - X X 

2 X X X X X X X X 

3 X X X X X X X X 

4 X X X X X X X X 

5 X - X X X X X X 

6 X X X X X X X X 

7 X X - X - X X X 

8 X X X X X X X X 

9 X X X X X X X - 

10 X X X X X X X X 

 

This meant that all parameters were not measured for all subjects. We have chosen to use 
the available data as much as possible. This means for example that if the number of lifts 
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per minute was missing for one of the blocks, the remaining two were still used, and lay the 
basis for the overall average for that subject and condition. 

We also noticed during the experiment that some subjects sometimes hit the barrier, since 
they did not always lift the cube high enough. These misses were, however, not counted 
since the problem was only seen some way into the experiment period. 
    

4.2 Performance 

When the subjects performed the grasping task, the number of times they lifted the cube 
over the barrier was counted in order to get an indication of how well they accomplished the 
task during the different levels of difficulty. The number of lifts per minute for each subject 
and level of difficulty, together with the mean number of lifts for the two levels are shown in 
Figure 12a. In Figure 12b we can see the number of lifts for each block as well. Note that 
the trend is that the subjects lifted the cube less times per minute in the hard task than the 
easy task. When looking at the individual blocks we can see that subjects on average lifted 
the blocks more for each block during the easy task, but performed more or less the same 
number of lifts per minute for each block in the hard task condition.  

By subtracting the number of times the cube was broken (pressed too hard) from the 
number of lifts and computing the percentage of successful lifts, we got the success rate for 
each subject. This is presented in Figure 13. As for the number of lifts per minute, we 
observe that the success rate decreased when the level of difficulty increased which again 
indicate that the hard task is more difficult than the easy task. From this we can tell that not 
only did the subjects perform less lifts per minute in the hard task condition, they also had 
lower success rate. 

 
a) The number of lifts per minute for the easy and hard 
condition for each subject. 

 
b) The number of lifts per minute for each of the three 
blocks within the easy and hard condition. 

Figure 12. These plots show the subjects’ performance in the grasping task, counted as number of lifts per minute. The 
black line represents the average as taken over all subjects. Note that the subjects generally perform fewer lifts in the hard 
task than in the easy task. There is also a trend within the easy task, that subjects lift more every block. This pattern is, 

however, not seen for the hard task blocks.  
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Figure 13. Plot of the success rate as a function of the number of lifts per minute. The black line represents the average as 
taken over all subjects. Note that almost all subjects performed less lifts per minute with a lower success rate for the hard 
task (o) compared to the easy task (+). 

For the oddball task the subjects were told to count the rare sounds at the same time as 
they performed the primary task, i.e. the grasping task for the easy and hard condition. 
During the no task condition the task only consisted of counting sounds and focusing their 
glance at a plus sign at the computer screen. The absolute value of the difference between 
the number of rare sounds counted by the subject and the number of played rare sounds 
are presented in Figure 14a, for all conditions and subjects. The mean value for each 
condition is also plotted, in black. Note that the general trend is that the subjects 
miscounted more in the easy and hard condition than in the no task, but with only a small 
change between easy and hard. This again indicates that an increased level of difficulty 
impairs the subject’s performance of the task, although we can see a bigger variation for 
each subject. Some subjects performed better in the hard task than in the easy and no task. 
In Figure 14b, depicting the accuracy of the oddball task for each block in the different 
conditions, we can see no clear pattern.  



 

 

46 

 

 
a) The accuracy of the oddball task for the three 
conditions. 

 
b) The accuracy of the oddball task for each of the three 
blocks within each condition. 

Figure 14. These plots show the performance of the subjects as measured by the accuracy of the oddball task, the 
absolute value of the difference between counted and played sounds. The black line represents the average as taken over 
all subjects. Note that subjects generally performed best during the no task condition, while there is only a slight increase 
between easy and hard. There seems to be no clear pattern between the different blocks of each condition. 
 

4.3 Perceived effort  

After they performed each condition the subjects got to estimate the effort to perform the 
tasks by filling in the NASA-RTLX form, and the average task load index was computed as 
described in section 3.3.3. The resulting average task load index for each condition and 
subject is plotted in Figure 15, together with the mean task load index for each condition. 
We observe that most of the subjects estimated that they had to put more effort into the 
hard task than into the easy task and no task. Most of them also estimated that their effort 
was lowest in the no task condition. Again, the average for each condition indicates that the 
hard task is harder than the easy task and that no task is easiest to perform. As for the 
oddball task we see some variation in which task the subjects thought they had to put in 
most effort. 
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Figure 15. Average task load index from the self-assessment questionnaire NASA-RTLX. The black line represents the 
average as taken over all subjects. Although there are individual differences, note that the average line shows that the 
subjects as a group experienced less effort for the no task condition and most for the hard task condition. The easy task is 
in between. 
 

4.4 ERP components 

Note that Subject 9 was removed from the ERP component analysis, due to too much 

artifacts in the data.  

The grand average wave, averaged over all subjects, conditions and electrodes can be 

seen in Figure 16. Here we can clearly see peaks that seems to be corresponding to N1 

(peaking at around 100 ms), P2 (around 225 ms), and novelty P3 (around 310 ms), all 

marked in the figure and with latencies similar to those found in the literature, see section 

2.3.2. The N2 component, between P2 and novelty P3, is not very prominent so we decided 

to focus on measuring N1, P2, (novelty) P3 and LPP. Since there is no risk of confusion 

between different versions of the P3 component, we will henceforth denote the novelty P3 

as P3, when the extinction is not necessary. Using the grand average over all subjects, 

conditions and electrodes (shown in Figure 16), we also decided on a latency window 

around each component to be examined. The latency windows chosen were:  

N1: 80-150 ms, P2: 200-250 ms, P3: 250-350 ms, and LPP: 500-650 ms and are also 

marked in Figure 16. These clusters were then used to determine which electrode clusters 

that were to be used for measuring each component, by measuring the mean amplitude 
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over these latency windows for the average over all subjects and condition for each 

electrode. 

 

Figure 16. The ERP waveform averaged over all subjects, conditions and channels (electrodes). We can see the 
components N1 (around 100 ms), P2 (around 225 ms), (novelty) P3 (around 310 ms) and LPP (around 600 ms). The 
latency windows that were used to determine which clusters of electrodes to use for each component is marked with 
yellow, and the border between the latency windows for P2 and P3 is marked with a dotted line. 
 

Figure 17 shows how the mean amplitude of the average across subjects and conditions 
vary over the scalp for each of these latency windows. From this, we have constructed two 
clusters for each component, one small (five electrodes) and one larger (seventeen 
electrodes) around the areas where the amplitude is highest for each component. A 
description of which electrodes that were used for each cluster can be found in Appendix F. 
As expected from the theory (2.3.2), N1, P2 and P3 are all most prominent in the fronto-
central region of the scalp. P3 was expected to be centro-parietal, but is in our study more 
prominent in the occipital region.  
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Figure 17. Plots showing the electrodes as distributed over the scalp, as shown from above with the nose facing upwards 
in the figure. The colors represent the distribution over the scalp of the mean amplitude of the grand average over subjects 
and conditions for ERP components N1 (80-150 ms), P2 (200-250 ms), (novelty) P3 (250-350 ms), and LPP (500-650 
ms). Note that N1, P2 and P3 are all quite symmetric, and most prominent over the frontal/parietal parts of the scalp. LPP 
is also more or less symmetric, but is most prominent over the occipital areas.   
 

The grand average over all subject at the different clusters can be seen in Figure 18. Since 
the clusters are chosen around the area where each component is largest, we can see that 
each component is most prominent in its respective clusters. Here we can see that the 
amplitude is generally largest for the hard task condition, second largest for the easy task 
condition and smallest for the no task condition, just as expected. 
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Figure 18. The grand average over all subjects as shown in the different clusters for the different conditions, small (S) and 
large (L). The clusters have been chosen to best show each component: N1, P2, P3 and LPP. The latency windows that 
has been used to measure the mean amplitude of each peak within each latency window are marked with yellow. Notice 
that the amplitudes of the peaks are generally largest for no task and smallest for hard task. The easy task is generally in 
the middle. In the bottom right corner, we can also see the different conditions when measured over all electrodes. 
 

For each cluster the peak amplitude of the average over subjects and conditions was 
measured for the relevant component. This resulted in latencies (for the S/L clusters):  
N1 (102/103 ms), P2 (232/231 ms), P3 (298/300 ms), and LPP (602/600 ms). A latency 
window of 40 ms centered around these latencies was then used to measure the mean 
amplitude of each component in the small and large clusters for each subject. The latency 
windows are marked with yellow in Figure 18. The resulting amplitudes for each condition 
are shown in Figure 19 (small clusters), and Figure 20 (large clusters). Here we can see 
that there is some variance between different subjects, but that the mean amplitudes of 
components P2, P3 and LPP all decrease with increasing task difficulty, in accordance with 
what was discussed in section 3.2. However, the opposite is seen for the amplitude of N1, 
that increases with increasing task difficulty. Finally, we constructed the compiled 
measurements by adding the amplitudes of all measured components: N1, P2, P3, and 
LPP.  
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Figure 19. The amplitude of each ERP component (N1, P2, P3, and LPP) for each condition, as measured in the assigned 
small clusters for each component. The black line represents the average as taken over all subjects. Note that, although 
there is some variance between different subjects, the mean amplitude for components P2, P3, and LPP all decrease with 
increasing task difficulty. For N1, the change is in the opposite direction. Note that Subject 9 was removed from the ERP 
component analysis, due to too much artifacts in the data. 

 
After performing a two-way ANOVA analysis to calculate the p-value for each component 
and cluster, and the compiled measurement, we could see that only P3 shows a significant 
effect between all three conditions. The compiled measurement showed a significant 
difference between no task and hard task. The results for the small clusters generally gave 
a smaller p-value than the large clusters, but not always. The resulting ANOVA tables and 
pairwise comparisons for each component can be found in Appendix E.  
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Figure 20. The amplitude of each ERP component (N1, P2, P3, and LPP) for each condition, as measured in the assigned 
large clusters for each component. The black line represents the average as taken over all subjects. As for the small 
clusters, there is some variance between different subjects, but the mean amplitude for components P2, P3, and LPP all 
decrease with increasing task difficulty and N1 changes in the opposite direction. Note that Subject 9 was removed from 
the ERP component analysis, due to too much artifacts in the data. 

 

4.5 Frequency bands  

Note that Subject 9 was removed from the frequency band analysis, due to too much 
artifacts in the data. 

As mentioned in section 3.5.2 we measured the power of the frequency bands in small and 
large clusters of electrodes. These clusters were constructed by averaging the power over 
all subjects and conditions and plotting the result for each electrode as a scalp distribution, 
the result can be seen in Figure 21. We notice that the power scalp distribution for Low-
Alpha, High-Alpha and Broadband-Alpha (all mentioned as the Alpha frequency bands from 
here) are approximately the same, therefore the same clusters are used for all Alpha 
bands. We constructed one small cluster of five electrodes and one large cluster of 
seventeen electrodes (sixteen for Alpha, for symmetry reasons) for all examined frequency 
bands according to the scalp distribution. We then measured the absolute PSD for each 
condition averaged over the electrodes in each cluster. The result can be seen in Figure 22 
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and Figure 23. More information about the clusters can be seen in Appendix F. In 
compliance with the literature (see section 2.3.3), we see that the power of the Alpha bands 
decrease for an increasing level of difficulty. However, the Theta power seems to also 
decrease which is not in compliance with the literature. 

 

  

  
Figure 21. Scalp distributions of the spectral power density, as shown from above with the nose facing upwards in the 
figure. The colors represent the distribution over the scalp of the mean amplitude of the grand average over subjects and 
conditions for the frequency bands Theta (3-8 Hz), Broadband-Alpha (8-13 Hz), Low-Alpha (8-10 Hz), and High-Alpha  
(10-13 Hz). Note that all are quite symmetric, and that the Theta band is most prominent at the frontal/parietal regions of 
the scalp, while the alpha bands are most prominent over the occipital areas. 

  



 

 

54 

 

  

  
Figure 22. The absolute spectral amplitude of each frequency band: (Theta, Broadband Alpha, Low-alpha and High Alpha) 
for each condition, as measured in the assigned small clusters for each component. Note that the mean amplitude for all 
alpha bands (broadband, low and high) decrease with increasing difficulty, as would be expected. Theta, however, 
decrease between no task and easy task, but then increase slightly for the hard task while it would be expected to 
increase with increasing workload. Note that Subject 9 was removed from the frequency band analysis, due to too much 

artifacts in the data. 
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Figure 23. The absolute spectral power amplitude of each frequency band: (Theta, Broadband Alpha, Low-alpha and High 
Alpha) for each condition, as measured in the assigned large clusters for each component. Note that the mean amplitude 
for all alpha bands (broadband, low and high) decrease with increasing difficulty, as would be expected. Theta, however, 
decrease between no task and easy task, but then increase slightly for the hard task while it would be expected to 
increase with increasing workload. Note that Subject 9 was removed from the frequency band analysis, due to too much 
artifacts in the data. 
 

A two-way ANOVA analysis revealed that none of the frequency bands showed a significant 
difference between all conditions. However, all Alpha bands showed significance between 
some conditions. For the large clusters, the Alpha bands showed a significant difference 
between no task and hard task, while no task differed significantly from both easy task and 
hard task for the small cluster measurements. The full ANOVA tables and pairwise 
comparisons can be seen in Appendix E. 
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5 Discussion 
Here we will discuss our results, starting with thoughts about the experiment execution. 
After that we move on to discuss that factors measuring performance and perceived 
workload seems to indicate that we achieved the wanted difference in difficulty between the 
conditions. Lastly, we will address the EEG measurements (ERP components and 
frequency band) and discuss what can be said about the different measurements and 
cognitive workload. As discussed in section 2.1, learning can be indicated either by a 
decrease in cognitive workload or an increase of performance, and this will also be 
discussed. 

Since the individual variance for all measurements is quite large, we will only discuss the 
mean values here. However, we will finish with a discussion about individual differences.  
 

5.1 Experiment execution 

As mentioned in section 4.1, there were some flaws involved in the execution of the 
experiment. However, we still chose to use all available data. This gives more data for the 
analysis, but also adds to the uncertainty of the results. This, however, only applies to the 
data measuring the performance.  

One flaw was that it was sometimes hard to see when the cube was broken. This was 
mainly because the cube lit up and went out again very fast sometimes, so fast that it was 
hard to see. This was partly resolved by reminding the subject to look closely when they did 
not see as many breaks during a block as the experiment leaders. This also made it hard to 
count all the breaks and some might have been missed. This means that the counted 
number of breaks, and thereby the success rate, cannot be completely trusted. With the 
exception of the very first block of the grasping task, before subjects learnt that they needed 
to look more closely at the LED, we estimate the error to be below 20 % between the 
number of breaks counted by us, and the number of breaks seen by the participants. So, all 
in all, this is not believed to have been a big problem and we still believe that analyzing this 
data might give some valuable information about the subjects’ performance. It is also 
believed to not have had a big effect on the subjects’ effort. It would be possible for the 
subject to lower the attention when they did not see the cube break, but this is believed to 
be counteracted by the fact that the subjects now had to focus more to see when the cube 
broke. However, this problem should be fixed in future experiments using the cube. 

As described in section 3.7 the cube was equipped with a Bluetooth-module, with the 
purpose to be able to send data (such as the number of times the cube was broken) from 
the cube to a computer. However, when the battery got low the Bluetooth-module was the 
first thing of the cube’s equipment that got instable and stopped working. It was mainly 
because of the instable behavior of the Bluetooth-module that we also counted the number 
of times the cube broke manually, but also to get an indication of if the automatic counting 
worked as we wanted. During the measurements we recognized that the automatic 
counting of the number of breaks implemented in the cube counted more broken cubes 
than the experiment leader did. The reason for this we found out to be that the cube 
counted every time the value from the force-sensors reached above the set force limit. The 
problem with this is that since the cube updates these values with a baud rate of 9600 (i.e. 
9600 times per second) and lights up the cube only for the time the value is above the force 
limit, this might be for a very short time, so short that the subject and the experiment leader 
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might not see it. This can of course be solved by lighting up the cube for a longer time every 
time it is broken and count the number of times the cube lights up instead, which would 
solve the problem mentioned above that it was hard to see when the cube was broken. 

During the measurements we also noticed that he output of the cube varied a bit over time 
and between each measurement session, which means that the force needed to break the 
cube could have small variations between subjects. However, since the variation was small 
this didn’t seem like a big problem, but still the variation was there. Therefore, more 
investigation on how the sensors are used needs to be done to increase the robustness of 
the values the cube outputs and to make sure that all subjects get equally hard tasks. This 
problem could perhaps be solved by computing a baseline for the output from the sensors 
when no force is applied to the force sensors and subtract this from the force limit used, 
before each measurement session. During the calibration of the cube (see Appendix B) we 
also noticed that if a heavy weight was applied to the force sensors, it took some time for 
the force sensors to adjust the output values after the weight was removed. 

Another problem was the fact that some subjects hit the barrier in some of the lifts, when 
they did not lift the cube high enough. This should be added to the evaluation of the 
success rate in future experiments. It is also possible that losing the sensory feedback (in 
the future study using anesthesia or in using a prosthesis without sensory feedback) might 
cause the subject to drop the cube, so the number of drops per minute could also be worth 
counting. However, this was not a problem in our case.     
 

5.2 Performance  

The performance has been evaluated using the number of lifts per minute, the success rate 
of the lifts and the accuracy of the oddball task. It was also collected for each of the three 
blocks for each condition. That means that this data can be used to compare the different 
conditions, but also to see differences to indicate learning within each condition. It is also 
interesting to note the variance in the number of lifts per minute and the success rate of 
each participant, so this will also be discussed. 
 

5.2.1 Comparison of conditions 

As can be seen in Figure 12a, the general trend was that the number of lifts per minute 
decreased between the easy and hard task. This was the case for most subjects, to some 
degree, with the only exception being subject 8. The differences in performance of the 
subjects as a group indicates that there was a difference in difficulty between the different 
conditions, as planned.  

The same conclusion can be drawn by looking at Figure 13. Here we can see that the 
subjects generally not only lifted the cube less times per minute for the hard task compared 
to the easy task, but also had a lower success rate. The accuracy of the oddball task also 
increased with increasing difficulty, although the difference between the easy and hard 
condition is small. This could indicate that the main problem was adding the lifting task to 
the oddball task, while the difference between easy and hard did not affect the ability to 
count the sounds as much. 

Although a greater difference between the easy and hard grasping task might have been 
desired, such a change of the method might not improve the results. The reason is that 
increasing the difficulty of the hard task or lowering that of the easy task would have 
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increased the risk of some of the subjects reaching boredom or frustration. This would 
affect their ability to keep focused on the task, as discussed in section 2.1 and 2.3.4.   
 

5.2.2 Assessment of a learning process within each condition 

In Figure 12b we take a closer look at lifts per minute by looking at the blocks within each 
condition. There is some variance between the different subjects, but the average over all 
subjects might give some information. For the easy task, it is quite clear that the subjects in 
general lifted more as a function of time, here grouped in consecutive blocks. Although we 
do not know if the workload decreased between the blocks (since we have not analyzed the 
EEG data for each block), this increase might be indicating a learning process. However, 
this change cannot be seen during the hard task condition. One explanation for this might 
be that the subjects were tired by then, and perhaps the harder task was more tiresome as 
well. Another might be that the learning had been saturated and the performance was by 
then limited by the difficulty of the task or that the easy level represented the optimal level 
for learning as suggested by Winnie et al. [50], see section 2.1.  

For the oddball task, no pattern can be seen between the blocks in each condition, see 
Figure 14b. Perhaps this can be explained by the fact that this is a risky way of assessing 
cognitive workload, as discussed in section 3.2.2, since there are several different factors 
that can affect the count. 
 

5.3 Perceived difficulty of the different conditions 

As can be seen in Figure 15 the subjects as a group experienced an increase of difficulty 
between the conditions no task, easy task, and hard task. The general trend of rising 
perceived difficulty indicates that the difficulty of different conditions did increase as 
planned, although it is again arguable if greater differences between easy and hard would 
have been desirable, as discussed in section 5.2.1.  

It is also worth mentioning that it was impossible to hide our intentions regarding the 
differences between the levels from the subjects. They all new that adding the grasping 
task to the oddball task was meant to increase the difficulty, and that adding weight to the 
cube would further raise the effort of the task. This might have affected their perceived 
effort. 
 

5.4 ERP components 

As discussed in section 3.2, the general idea of using a dual task paradigm is that the 
amplitude of the components should be greater for an easier task than a hard one. This is 
because the brain should pay less attention to the sounds of the oddball task if the primary 
task is more demanding. For both the small and large clusters, Figure 19 and Figure 20, we 
can see that this is in fact the case for the average of components P2, P3 and LPP. Their 
mean amplitude is highest for the no task condition, lower for the easy task, and lowest for 
the hard task. However, for the N1 peak, a slight effect in the opposite direction can be 
seen.  

We also saw that, out of the four ERP components that were measured, only P3 passed 
below the 5 % threshold and showed a significant difference between all of the conditions. 
The compiled method (the sum of all mean amplitudes) also proved to give p<0.05, but only 



 

 

59 

 

when comparing the no task condition to the hard task. The fact that P3 showed the most 
promise for measuring cognitive workload is not surprising, since it has previously shown to 
be very effective for this purpose, as discussed in section 2.3.2.4. It is also the biggest 
component, and therefore needs less epochs to yield a sufficient signal-to-noise ratio, as 
mentioned in section 3.3.4.  

When comparing the small and large clusters, the smaller does generally generate smaller 
p-values, which might indicate that they are more probable to give significant results. Since 
the small clusters are more concentrated around the highest peak amplitudes, this was 
expected. However, with the problem of multiple comparisons (discussed in section 3.6), 
one needs to be careful when drawing conclusions from this, and therefore these 
differences only offer an indication of which cluster size might be better than the other. It is 
also worth considering that a larger cluster makes the method less sensitive to faulty 
channels, for example if one channel shows large amounts of noise because of a bad 
connection to the scalp. 

For the N1 component, that showed an unexpected pattern, this might be explained by the 
difference between peaks and components discussed in section 2.3.2. Since the P2 and P3 
components both give rise to large, positive peaks close to the latency of the N1 
component, it is expected that they would increase the overall amplitude of that latency 
window. This can explain the fact that the negative N1 amplitude seems to have decreased 
with increasing workload, since the positive P2 and P3 increased. 

The compiled method shows promise to be a useful tool when assessing cognitive 
workload. As discussed in section 3.5.1.4, it should be a way to emphasize the effect of all 
components’ increasing amplitude for increasing workload. However, with the problem of 
P2 and P3 overlapping with N1 to create a reverse effect for this component, the method 
was not as effective as one might have expected.  

There also is the factor of how possible fatigue affects the results. As mentioned in section 
3.3.4, the three hour study by Trejo et al. [58] showed significant effects for P2, but not for 
N1 and P3. This, together with our shorter total time and the many breaks where the 
subjects could decide when they were ready to start again, should mean that fatigue is not 
a large effect in our measurements. However, for P2 and thereby also the compiled 
measurement, it is still a factor. Also, we cannot know that our tasks would imply the same 
level of fatigue as the one studied by Trejo. We would therefore recommend future studies 
to counterbalance the order of the different conditions across subjects. 
 

5.5 Frequency bands 

As discussed in section 2.3.3, several studies have shown that the Alpha power in general 
decreases when a more difficult task is performed and that the Theta power increases. This 
means that the Theta/Alpha power ratio is expected to increase with the level of difficulty. In 
Figure 22 and Figure 23 we can see that the Alpha power does in fact increase for a more 
difficult task for our measurements for Broadband Alpha (8-13 Hz), Low-Alpha (8-10 Hz), 
and High-Alpha (10-13 Hz). Averaged over all subjects the alpha power is highest for no 
task, lower for easy task and lowest for hard task. The two-way ANOVA also showed that 
the effect was significant for the Alpha bands between some of the conditions. The no task 
differed significantly from both easy task and hard task for the small clusters, while the large 
cluster measurements only showed a significant effect between no task and hard task. We 
also noticed that neither the Theta power nor the Theta/Alpha ratio follows the pattern from 
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the theory. Neither are these effects significant. If we look closely on the graph of the Theta 
power we can see a slight increase between the easy and hard task, however between the 
no task and easy task condition we see a clear decrease in power. A possible explanation 
to this could be the placement of the electrode sites we used for these measures. As 
explained in section 2.3.3.2 the Theta power is expected to be most prominent at frontal 
scalp sites. However, in our scalp distribution we got a higher Theta activity at more central 
sites and the cluster we used for our measures was therefore more centrally distributed on 
the head. Possibly the result for both Theta power and Theta/Alpha power ratio would be 
slightly different if measured at only frontal scalp sites. Also, since the studies in our 
literature review only used one electrode to calculate the power of the frequency bands and 
the Theta/Alpha ratio, the fact that we are using clusters might also be a reason that we do 
not get the same results as previous studies. Therefore, a comparison between measuring 
frequency bands in clusters and measuring them from only one electrode is recommended 
to study further in a future study. However, the Alpha powers are expected to be most 
prominent in the occipital areas, which are included in our chosen clusters for the Alpha 
power measurements. This together with that the resulting Alpha power decreased for 
higher level of difficulty as expected shows that the clusters we chose to measure the 
power for were good choices. 

As for fatigue, there is a risk that this affected these results, since both Alpha and Theta has 
been shown to be affected by fatigue in the three hour study by Trejo et al. [58]. With the 
same reasoning as for the ERP components in section 5.4, the effects here should be 
smaller because of our experiment design, but we cannot say for sure how big they are. 
Therefore, this is another reason to recommend a future study to counterbalance the order 
of the different conditions across subjects. 

Another thing that might have an effect on the result for the frequency bands are the 
heterogeneity of the grasping task. The tasks performed in the studies discussed in section 
3.5.2.2 are all motor tasks, but with a more varying behavior than ours. This might be a 
reason that we do not get the same results as presented in those studies. An alternative 
way to analyze the data is to compute event-related spectral perturbation (ERSP) instead of 
PSD, which calculates the event-related changes in spectral power. By computing ERSP 
for all relevant epochs and averaging the data over all epochs only the frequency content 
related to the event (in our case the oddball task) will be left, and this might lower the effect 
of the heterogeneity of the grasping task on the measuring of frequency bands. This kind of 
analysis have been carried out by Aliakbaryhosseinabadi et al. [61] who performs a study 
were the participants are to perform 90 trials of ankle dorsiflexion. They showed 
that attention to a task can be classified from EEG time-frequency features gotten from 
ERSP. Since their task also have a high heterogeneity it indicates that ERSP might be a 
good way to analyze the frequency bands for our task in a future study.  
 

5.6 Differences between individuals 

All of our results vary between different individuals, and there is always at least one subject 
that does not follow the pattern shown by the average. These differences could arise from 
physical or physiological differences, as discussed in section 2.3.4. Here we want to 
discuss these differences further. 

When looking at performance, some difference could be explained by the different abilities 
of the subjects. However, bigger differences could indicate that the subjects interpreted the 
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task differently and put different weight on the two statements of the task: “lifting the cube 
as many times as possible” and “without breaking it”. We can see in Figure 13 that the 
subjects differ in both number of lifts per minute and success rate. Subjects in the upper left 
corner of this plot have played it safe (many lifts with big success rate) the lower right 
corner would indicate high risk-taking (many lifts and low success rate). Here we can see 
that most of the subjects have played it rather safe, or have been successful in their risk-
taking (performing many lifts with high success rate). The latter is also a sign that these 
subjects might have had abilities that made them better suited for the task, while the subject 
in the lower left corner of the plot have had some trouble (lifting few times with low success 
rate).  

So, we conclude that there was a difference in how the subjects interpreted the task. 
However, all subjects seemed to understand that they should not break the cube, although 
there were individual differences between risk taking and abilities. There also might have 
been some differences in motivation to perform the task as well as possible. 

However, even though the room for interpretation might be decreased, it can never be 
eliminated. One possible way would be to use gamification theory and introduce some kind 
of points, such that the subject was informed that each lift gave a point but each break took 
away a number of points. However, there are always differences between people, for 
example how willing they are to take risks. So, as we see it, these differences always have 
to be taken into consideration when performing these kinds of experiments, as well as the 
differences in abilities, engagement to the task and differences and the causes for 
differences in ERP data, discussed in section 2.3.4.  

When looking at the perceived effort, see Figure 15, there were also some subjects that 
differed from the average pattern by experiencing a decrease of workload between the easy 
and hard task. A possible explanation is that to Subject 4, who represents the most extreme 
case, the mere idea of having to perform two tasks simultaneously might have been 
difficult. But once having practiced this with the easy task it felt easier or similarly easy to do 
it again, even though the difficulty of the primary task was increased. To explain the results 
for Subject 2, there is a possibility that they felt that they learnt how to perform the oddball 
task successfully during the no task condition. When they later moved on to adding an easy 
grasping task, this might not have been seen as an increase of difficulty. Similar patterns 
can be seen for the accuracy of the oddball task in Figure 14 for Subject 4 and 9 (who 
made more errors in the easy task then the other two conditions) and Subject 1 and 10 
(who made the same number of errors in the no task and easy task conditions). 
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6 Conclusions 
We will present our conclusions by answering our research questions. 

1) Will the subjects experience the expected difference in difficulty between the different 

conditions, on group and/or individual level, as indicated by…  

a) …the perceived effort, given by the scores on the NASA-RTLX? 

b) …the performance, given by number of lifts, success rate and accuracy of the 

oddball task? 

On a group level, we could establish that both perceived effort and performance reflected 

the expected difficulty between the different conditions, where the no task condition was 

easiest and the hard task hardest, just as planned. However, the individual variance was 

too big to draw conclusions from individual measurements. 

2) Can the proposed method be used to measure differences in cognitive workload, on 

group and/or individual level as indicated by…  

a) …event-related potential (ERP) components? And if so, which components? 

b) …frequency bands? And if so, which frequency bands?  

Several of the proposed EEG measurements shows promise to be an indication of cognitive 
workload. For ERP data, the (novelty) P3 and the compiled measurement (the sum of the 
mean amplitude of N1, P2, P3, and LPP) both showed a significant difference between the 
conditions while N1, P2, and LPP did not show significant effects. However, only P3 was 
able to show a significant difference between easy task and hard task. This is important for 
the future study comparing workload with and without sensory feedback, since these 
conditions where here simulated with the easy and hard conditions. However, we also have 
no idea of knowing if the difference between our easy and hard task are smaller or larger 
than the difference between with and without sensory feedback. The compiled 
measurement shows promise to be a new way of assessing cognitive workload and might 
be of use if more subjects were examined.  

For the frequency bands, we could see some promising result for indication of cognitive 
workload. The Alpha power for both Low-Alpha (8-10 Hz), High-Alpha (10-13 Hz) and 
Broadband Alpha (8-13 Hz) frequency bands showed a significant difference between some 
level, such that the power decreased for higher demanding tasks. For the large clusters 
there was a significant effect between no task compared to hard task, while the small 
clusters showed significance between no task compared to both easy task and hard task. 
The Alpha frequency bands thereby show promise to be of use, but more subjects would be 
needed to see a significant effect between all levels. There was, however, no significant 
effect for either Theta (3-8 Hz) nor the quotient Theta/Alpha.  

None of these measurements seems reliable for individual analysis. 

3) Which latency windows (for ERP components only) and electrode sites should be used 

to examine the differences in cognitive workload with ERP components and frequency 

bands?  

The latency window for each ERP component (for small/large clusters) were 40 ms wide 
and centered around: N1 (102/101 ms), P2 (232/231 ms), P3 (298/300 ms), and LPP (602-
600 ms). They N1, P2 and P3 components were all measured in the fronto-central region of 
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the scalp, although the exact locations of the clusters differ between them. LPP was 
measured in the occipital region. When comparing the p-values of the small and large 
clusters, there seems to be a slightly greater chance of significance when using a smaller 
cluster. However, both gave similar results, and using smaller clusters also means that the 
measurement is more sensitive to faulty channels. That concludes research question 3) for 
ERP components, by giving a recommendation for latency windows and scalp regions for 
all components. We also provided more information to decide on the size of cluster, 
although we cannot give a clear answer of what is best.  

The Alpha frequency bands were all measured over the occipital scalp region, and Theta 
over the fronto-central region. The smaller clusters showed a significant effect between no 
task compared to both easy task and hard task for Alpha bands, which means that the 
small clusters again show greater promise to measure cognitive workload. However, as for 
the ERP components, the sensitivity of the method should be considered when choosing 
cluster size. Also, further investigation needs to be done to see if clusters gives comparable 
results to studies that used only one electrode to measure the frequency bands. 

4) Can a learning effect be observed during each condition by comparing the performance 

for each of the three blocks?  

We have been able to see some signs of a learning process within each condition, by 
comparing the number of lifts between the blocks. Accuracy in the oddball test did, 
however, not show any trend between the blocks.  

Also, we would recommend a future study to counterbalance the order of the different 
conditions across subjects, to assure that fatigue does not affect the results. 
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7 Future work 
Here we will provide some ideas for future work, to further investigate the concept of 
cognitive workload. 
 

7.1 Experiment with anesthesia 

We have, by this study, provided a starting point for performing a similar study using 
anesthesia to mimic the loss of sensory feedback that many prosthetic users experience. 
That way, it might be possible to show the cognitive benefits of cognitive workload, and 
thereby facilitate the development of this technique. Aside from using the results and 
conclusions of this work, there is also a possibility to further investigate and analyze the 
data. Since gathering data for EEG analysis is very time consuming, this could be a way to 
investigate other methods without having to conduct more measurements. However, for 
future studies the order of the conditions should be counterbalanced across subjects, to 
minimize the effects of fatigue. 
 

7.2 Possible improvements of the cube 

As discussed above there were some technical problems with the force sensitive cube 
during the measurements and there are several things that could be improved. To begin 
with the counting of how many times the cube is broken, together with the lighting of the red 
LED bar has room for improvement. As it is now, the cube counts every time the force on 
one of the sensors rises above a set limit. However, this could be for a so short time that 
the subject does not have the possibility to see the LED bar light up. This could be solved 
by updating the algorithm for when the cube counts a break so that it is based on a larger 
amount of values from the sensors or such that it does not count more than once if the cube 
is broken several times within a short time range. Also, the LED bar can be set to light up 
for a fixed amount of time every time the cube is broken. The design of the cube can also 
be improved in terms of size and weight distribution. Space in the cube can be gained by 
developing a circuit card for the electronics and using a smaller battery. The weight 
distribution of the cube can be improved by using plane weights put in the bottom of the 
cube, instead of the box used now which only spreads over approximately half of the cube. 
A more even weight will keep the cube from rotating when the subjects lifts it and thereby 
make it easier to lift. 

Another improvement worth working on is to install a load cell at the bottom of the cube. 
This could both be used to measure the vertical lifting force, as well as for counting the 
number of times the cube is lifted (which was counted manually in our study). 
 

7.3 Examination of the usefulness of EEG to evaluate learning processes 

It is possible that the EEG data could be used to evaluate differences between the different 
blocks as well. This could make it possible to further investigate the process of for example 
learning to use a prosthesis. However, this would lower the number of epochs for each 
measurement, since each block only contains about a third of the epochs used for each 
condition. Using a combination of all the assessments made in this work might make it 
possible to still deduct information from less data, according to a suggestion by Brouwer et 
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al. 2012 [40]. This would be one step further compared to the compiled ERP measurement 
calculated in this work. Enabling this kind of analysis could lead to a better understanding of 
how the physical therapy should be executed to best help patients learn to use a prosthetic 
hand.   
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Appendix A: Experiment protocol 
Before participants arrives 

• Put the battery on charge 
• Set up EEG equipment 
• Plug in g.TRIGbox to g.GIamp, laptop and sound 
• Connect the Krios 
• Open audio script. Set search path. Run it to make sure it is working correctly.  
• Set up the grasping task: cube, weights and barrier 
• Make sure there are enough copies of the self-report, and a pen 
• Prepare two copies of the two different Informed consent (for the variation study and for 

resting state).  One for the participant to keep and one with the signature for the lab 
• Prepare Photo agreement to obtain permission to take pictures and videos of the participant 
• Prepare Waterloo form 
• Open the picture of the cross on the laptop and make sure that it is on soundless 
• Open g.Recorder software. Admin mode. Make sure you are recording from all the 128 

electrodes at 2400 Hz. No filters. 
• Prep syringes and paper towels 
• Take out shampoo and a clean towel 
• Reset cube and count-button 
• Untangle the EOG electrodes and put adhesive labels on them 

 

Prepare the participant 
• Ask the patient to read and sign the informed consent. Answer possible questions 
• Ask the participant to sign the photo agreement 
• Ground yourself and the participant before starting 
• Fit the participant with cap 

• Put on the cap. Measure the distances between nasion and inion and the two 
preauricular points with your fingers to make sure that Cz is correctly placed in the 
center  

• Insert gel into electrodes 1-128 (26, 34, 61 and 62 excluded) and check impedances. 
They should all be green or yellow 

• Clip 63 and 64 at ear lobes with some gel. Check impedances.  
• Add eye electrodes, insert gel and check impedances. 

•  
• Take a screenshot of the impedance page and save as “YYYYMMDD Name before” 
• Take pictures of the participant fitted with the cap from different angles. Channel 

numbers should be visible 
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• Do electrode digitization with Krios. 
• Make sure electrode cables are not covering the reflective labels of the electrodes 
• You should scan a total of 133 electrodes 
• Probe the anatomical landmarks (nasion, left and right auricular points) 
• Probe additional points at known location to make the labelling easier 

• Cz 
• T8 
• T7 
• FPz 
• (POz) 

• Export the document on the desktop without labels (for backup reasons, in case you 
delete something during the labelling) 

• Label the probed points 
• Apply template. Check that the labels seems to be ok 
• Save as “Name Labelled” 

• Ask the participant to close the eyes in order to see alpha, chew in order to see EMG and 
move the eyes around to see EOG. Also make sure the channels are recording independent 
signals. 

 

Before the tasks 
• Make sure the participant is sitting comfortably, that their phone is on soundless and that the 

patient can reach everything 
• Secure the sound cables to the table with tape 
• Instruct the participants of the tasks 

• Explain that the tasks are divided into 3 trials, and each trial consists of 3 blocks 
• Each block is ~4 minutes 
• At least one minute break between each block 
• A sound will be played at the beginning and end of each block 
• ~5 min break between each trial 
• Lastly: Resting state 

• 7 minutes closed eyes 
• 7 minutes open eyes 

• Inform the participant of the audio stimuli 
• Play one of each type of stimuli (more if requested) 
• Ask the participant to adjust the audio 
• Instruct the participant to quietly count the high pitch tones and that the 

answer will be collected after each block 
• Explain the grasping task 

• Move the cube as many times as possible without breaking or dropping it 
• Touch the middle between every lift, to make sure you let go off the cube 

completely  
• Let them try to break the egg a few times to get a sense of its sensitivity  
• If the cube is broken, put it down, touch the middle and try again 
• Emphasise that this is the main task 

• Trials  
• Trial 1: No grasping task, only oddball task 
• Trial 2: Grasping task, easy + oddball task 
• Trial 3: Grasping task, difficult + oddball task 

• Inform the participant that they will be asked to fill out a self-assessment 
questionnaire after each trial 

• Show the questionnaire and explain the questions and how it is to be filled out 
• Check that the stimuli is both heard by the patient and seen in the EEG-data 
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• Put a post-it on the door that there is an EEG measurement 

 

Without task 
• Ground yourself and the participant again 
• Place the laptop with the image of the cross in front of the participant 
• Ask the patient to focus on the cross and count the high pitch tones 
• Start the EEG recording. Name the file with patient name (avoid ÅÄÖ) and “no task”  
• Ask the participant to begin the first trial and start the audio script. Name the file with date, 

patient name and “no task” 
• At the end of each block, ask how many high pitch tones they counted and tell them that 

there will be one minute break. Stop the EEG recording. 
• When 1 minutes has passed, ask the participant if he or she is ready to start the next block 
• Start the EEG and continue the audio script 
• When all blocks are finished, stop the EEG recording 
• Ask the participant to fill out the questionnaire 
• Control that the impedances are still ok 

 

With task 
• The same procedure is used for both conditions (easy and hard) 
• Ground yourself and the participant again 
• Start the camera 
• Remind the participant of the task and let him or her try the sensitivity of the cube 
• Start EEG recording. Name the file with patient name and “easy task”/”hard task” 
• Ask the participant to begin and start the audio script. Name the file with date, patient name 

and “easy task”/”hard task” 
• At the end of each block, ask how many high pitch tones they counted and tell them that 

there will be one minute break. Stop the EEG recording 
• When 1 minutes has passed, ask the participant if he or she is ready to start the next block 
• Start the EEG and continue the audio script 
• When all blocks are finished, stop the EEG recording and the camera 
• Ask the participant to fill out the questionnaire 
• Control that the impedance is still ok 

 
 

Resting state 
• Make sure the participant is sitting comfortably and that their phone is on soundless 
• Ground yourself and the participant again 
• First part, closed eyes 

• 7 minutes 
• Ask the patient to sit with closed eyes and move as little as possible 
• Set the time and name the file 
• Turn out the light 
• Start the measurement 
• Leave the room and put a post-it on the door that there is an EEG measurement 

• Second part, open eyes 
• 7 minutes 
• Place the laptop with the image of the cross in front of the participant 
• Ask the participant to sit still and focus on the cross 
• Start the measurement 
• Leave the room and put a post-it on the door that there is an EEG measurement 
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After the final trial 
• Take a screenshot of the impedance page 
• Move everything to the correct folder 
• Remove the cap and the electrodes and clean them 
• Bring the towel and shampoo and show the participant to the shower 

 

• Take at least one picture during a fake trial asking the participant to pretend to do the task. It 
is important not to do this during the trial in order to avoid making noise that might generate 
ERP similar to the ones generated by the auditory probes. 

 

Total time: 
Prepare participant for EEG: 75 min 
Explaining the task:  10 min 
3 trials á 3x5 min:  45 min 
Breaks+questionnaire: 20 min 
Resting state:   15 min 
Buffert:    15 min 

 

→ 3 h with participant 

 

Setting up:   30 min 
Cleaning:   30 min 

 

→ 4 hours total time 
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Appendix B: Earlier versions of the force sensitive 
cube 

 

Version 1 

The first version of the cube can be seen in Figure 24 and consisted of the following parts 

• Red LED lamp 
• Resistor of 230 Ω 

• Force sensor Interlink FSR 406 

• Resistor of 10 kΩ 

• 3D-printed cube 55x55x55 mm 

• Arduino UNO 

• 9V battery 

• Coupling board Luxorpart 45x34 mm 

• Cables 

The weight of this cube was 181 g including some filling of 45 g that kept the equipment 

inside the cube from moving. The force limit for breaking the cube was set to 8.1 N. 

It was clear that an Arduino UNO is too big for this application and therefore we looked for a 
smaller one for later versions. The cube was also too small to fit the 9V battery inside. A 
simple red LED lamp was used for the visual feedback to the subject when the cube is 
broken. 

 

Figure 24. Version 1 of the force sensitive cube, including a red LED, one force sensor, an Arduino UNO and were 
driven by a 9V battery. 
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Version 2 

The second version of the cube can be seen in Figure 25 and consisted of the following 
parts 

• LED bar of 8 LEDs: NeoPixel 8 LEDs WS2812 
• Resistor of 560 Ω 

• 2x Force sensor Interlink FSR 406 

• 2x Resistor of 10 kΩ 

• 3D-printed cube 55x55x55 mm 

• Arduino Micro 

• 9V battery 

• Coupling board Luxorpart 45x34 mm 

• Cables 

The weight of this cube was 164 g including some filling of 45 g. The force limit for breaking 

the cube was set to 6.6 N. 

In this version of the cube the Arduino UNO from the previous version was replaced with an 

Arduino Micro, which could easily be fitted inside the cube. No new cube was 3D-printed for 

this version and therefore the battery still did not fit inside the cube. In the previous version 

of the cube it was a bit hard to recognize when the red LED was lit up and therefore it was 

replaced with a LED bar of 8 LEDs. This also gives the possibility to show a grading of how 

hard the cube is pressed for the subject all the time if wanted. The second version of the 

cube also had two force sensors instead of one to make it possible to measure both sides 

of the subjects’ grip. 

 

 

Figure 25. Version 2 of the force sensitive cube, including a LED bar with 8 LEDs, two force sensors, an Arduino Micro 
and were driven by a 9V battery. 
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Version 3 

Picture of the third version of the cube is missing, but the parts that it consisted of is listed 
below  

• LED-list of 8 LEDs NeoPixel 8 LEDs WS2812 
• Resistor of 560 Ω 

• 2x Force sensor Interlink FSR 406 

• 2x Resistor of 10 kΩ 

• 3D-printed cube 59x59x55 mm 

• Arduino Micro 

• 9V battery 

• Coupling board Luxorpart 45x34 mm 

• Cables 

• Sandpaper, grit size 120 

• Bluetooth transmission module Velleman HC05 

The weight of this cube could be changed by adding weights inside it. The weight of the 

light cube, which corresponded to an easier level of difficulty, was 126 g. For the heavy 

cube the weight was 232 g. The force limit for breaking the cube was set to 4.1 N. 

To fit all equipment inside the cube, a bigger version was 3D-printed. Sandpaper was put 
over the force sensors to make the friction higher such that the cube was easier to grip and 
lift. Also, a Bluetooth transmission module was included to make it possible to send data 
from the cube to a computer. This was used to display how many times the cube was 
broken. 
 

Calibration of the cube 

When the values from the force sensors were read by the Arduino, values between 0 and 
1023 was given. To be able to convert these values into more understandable values in unit 
Newton, a rough calibration was done by adding weights in the range zero to 1147 g to the 
force sensors. The resulting values from the Arduino was plotted against the weight, which 
can be seen in Figure 26. The graph was seen to be approximately logarithmic and 
therefore a logarithmic curve fit was done, which also can be seen in Figure 26. This 
resulted in the curve fit with equation  

𝑦 = −47.4 + 145.5 ⋅ 𝑙𝑛(𝑥) 

were y being the value from the Arduino and x being the weight. By calculating the weight x 
corresponding to the force limit 925 (Arduino units) and multiplying by the gravitation 9.82 
𝑚/𝑠2 we got the force limit 7.8 N. 
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Figure 26. Calibration of the force sensitive cube. A logarithmic curve fit was done to be able to calculate the force limit 
925 (Arduino units) in Newton. The limit was calculated to 7.8 N. 

 

Appendix C: Informed consent 

 

Informed Consent 

 

Title: Comparison of cognitive workload between individuals and between 

different difficulties of the same task 

 

You will hereby receive a request to participate in the research study, “Comparison of cognitive 

workload between individuals and between different difficulties of the same task”, led by Associate 

Professor Max Ortiz Catalan, at Biomechatronic and Neurorehabilitation Laboratory (BNL) at 

Chalmers University of Technology. 

 

Purpose of the study 

The purpose of the study is to test a method to investigate the cognitive workload of the brain at the 

execution of a simple task where an object is to be lifted and moved a short distance. The object must 

not be pressed with too much force and the difficulty of the task will be varied by changing the weight 

of the object. 

 
Participant Selection 
You are invited to participate in this research study because you are healthy without motorical 

difficulties with your dominant hand, you have normal or corrected to normal vision and functioning 

hearing.  

 

Voluntary participation 

Your participation in this study is entirely voluntary. If you volunteer to be in this study, you may 

withdraw at any time without consequences of any kind. You may also refuse to answer any questions 

you do not want to answer. There is no penalty if you withdraw from the study (and you will not lose 
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any benefits to which you are otherwise entitled).You should read the information below and ask 

questions about anything you do not understand, before deciding whether or not to participate. 

 

Procedures 

If you decide to volunteer for this study, we will ask you to participate in a research session at BNL 

lab at Chalmers University of Technology in Gothenburg. The session will last about 3 hours including 

pauses between the activities.  

 

First, you will be asked to fill out a form, that inquire the extent of you having a dominant hand or 

foot, respectively. You will fill out this yourself, but the scientist will be available for answering 

questions if anything is unclear. After that you will be asked to participate in an experimental session.  

 

You will sit down in a chair and be prepared with EEG equipment where electrodes will be placed 

on your head using a cap. After that a connection will be made between each electrode and your 

scalp by using a water-soluble gel. You will also get electrodes attached to your earlobes and next to 

your eyes. The exact position of all the electrodes will be scanned and we will ask you to blink, close 

your eyes and chew to control the equipment. 

 

The trial will consist of three trials with each three blocks. Each block is about four minutes. Between 

each block you will get at least a minute rest and between each trial you get a five-minute break. In 

the first trial you will be asked to count a certain kind of sound as you focus your eyes on a picture of 

a plus sign on a screen. In the following two trials we will ask you to lift a force sensitive cube back 

and forth over a low barrier at the same time that you are counting the sound signals. If you press the 

cube to hard a diode will light up to indicate that the cube has been “broken”. Your goal is to lift the 

cube as many times as possible without “breaking” it or dropping it. In one of the trials the cube will 

be light weight and that corresponds to the easy level, and in the next trial it will be heavier to increase 

the difficulty. After each trial you will be given five minutes to rest when you shall also say how many 

signals you heard and fill out a self-estimation of your cognitive effort during the trial. 

 

Potential risks and discomfort 

This study will not pose any risks to you as a study participant. Furthermore, we expect that if any 

discomfort or discomfort would arise after all, they will be of an extremely marginal nature. If, after 

all, the discomfort is perceived as a problem, you are free to finish the activity or your participation in 

the study at any time. Only standardized, electrically insulated, bioelectric signal registration apparatus 

will be used for EEG registration. We will include breaks between activities to minimize the risk of 

mental and physical fatigue. 

 

You will get water soluble gel in your hair, that should be easy to wash away with water, but you will 

need to shower after the session. 

 

Potential benefits for study participants/or society in general 

Participation in the study will not give you any direct benefits to you as an individual. However, the 

results from this study will be used in a study that will investigate how sensory feedback affects the 

cognitive workload in similar trials as in this study. That way this study is a step towards further 

investigate how the sense of touch affects the performance of simple tasks. That result could therefore 

be a part of pushing the development of better feedback for hand prostheses.  

 

Compensation for participation 

Through your participation in the study, you will receive 1 movie theatre ticket as a reward. 
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Privacy 

This section describes how BNL uses the personal data and the collected experimental data. 

 

BNL at Chalmers University of Technology processes information in accordance with the General 

Data Protection Regulation (GDPR). Written consent must be obtained in order to collect and process 

personal data. Information in this form will be processed safely and will only be used for research 

purposes (see purpose of the study). 

 

We collect the following personal information: Name, date of birth, photos, EEG data and the results 

of the form and self-estimations mentioned above. 

 

Researchers Max Ortiz Catalan and Eva Lendaro will use the information collected in this way we 

consider best suited for publication or education. Information used for public email will not identify 

you as an individual. 

 

How we store your data 

BNL stores your data securely on the self-owned "network attached storage" (NAS) hard drive 

located at Chalmers University of Technology. Only laboratory members have access to this storage 

unit. Your data will be stored under a pseudonym. Only one person at BNL has access to the list 

where the pseudonym connects you to your name. This list is saved offline, separate from the 

collected data. We will save your personal data for a maximum of 10 years. 

 

What are your data security rights? 

You have the right to request copies of your personal data as well as the right to request that your 

personal data be transferred to another organization. Furthermore, you can request bnl to modify 

information that you believe is incorrect or incomplete. You also have the right to oppose and limit 

the processing of your personal data. Finally, you have the right to request BNL to delete your personal 

data. 

 

If you would like to exercise any of these rights, please contact maxo@chalmers.se 

 

You also have the right to contact the Swedish Data Protection Authority for complaints about how 

BNL handles your personal data. 

 

Share results 

Nothing you tell us today will be shared with someone outside bnl's research group, and nothing will 

be linked to you with your name. Some research results may be shared with another research group, 

but it will be pseudonymized data, which means you cannot be identified from the data. 

 

Right to refuse or terminate participation 

You are not obliged to participate in this research study. Whether you choose to participate in the study 

or not, will not affect you in any other respect. You are free to terminate your participation in the study 

at any time.  

 

Identification of investigators 

If you have any questions or concerns about the research, please contact Forskningskontakt 

Max Ortiz Catalan 

+46708461065 

maxo@chalmers.se 

mailto:maxo@chalmers.se
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Certificate of consent 
 

Project:____________________________________________________________ 

 

Date:_____________________________________________________________ 

 

Certificate of study participants: 

I have read the above information, or have received it read out to me. I have had the opportunity to ask 

questions about it and the questions I have asked and have been answered to my satisfaction. I give 

my consent to voluntarily participate in this study. 

 

Name of Participant____________________________________________________ 

                                          

Signature of Participant _____________________________________________________ 

       

Statement by the researcher/person taking consent 

I have accurately read out the information sheet to the potential participant, and to the best of my 

ability made sure that the participant understands the study purpose and procedure. 

 

I confirm that the participant was given an opportunity to ask questions about the study, and all the 

questions asked by the participant have been answered correctly and to the best of my ability. I confirm 

that the individual has not been coerced into giving consent, and the consent has been given freely and 

voluntarily.  

 

Name of Researcher/person taking the consent_________________________                                  

 

Signature of Researcher /person taking the consent__________________________ 

 

Annex to consent to participate in research 

 

Notification/Consent for the collection and use of study data 

 

This research will collect data about you that can identify you, refer to as Personal Data. The General 

Data Protection Regulation (GDPR) requires researchers to provide this Notification to you when we 

collect and use Personal Data from people in a State belonging to the European Union or the European 

Economic Area (EEA). 

 

Study title 

Comparison of cognitive workload between individuals and between different difficulties of the same 

task 

 

Purpose of the study 

The purpose of the study is to test a method to investigate the cognitive workload and compare this 

between different individuals and different levels of difficulty. 



 

 

XII 

 

 

Personal data 

The research team will collect and use the following type of personal data for this research: 

• Contact information 

• Name 

• Date of birth 

• Information about dominant hand and rot 

• Photographs 

 

Photographs / video files / audio files 

Photographs, video files and audio files are also counted as personal data. This data will be protected 

and processed according to the same GDPR requirements used for the rest of the collected study data. 

 

Potential risks 

We do not foresee any risks regarding the safety of your personal information. All your personal data 

will be pseudonymized and will be stored in a protected file to which only the lead researcher has 

access. 

 

Potential benefits for study participants/or society in general 

The personal data is collected to understand the state and foundations of this research and to perform 

the purpose described above in the consent document. 
 

Privacy 

Any information obtained in connection with this study and that may be identified with you will be 

kept confidential and will only be displayed with your permission or as required by law. The 

confidentiality of your data will be ensured with a password-protected computer stored in 

Biomechatronics and Neurorehabilitation Laboratory (BNL) at Chalmers University of Technology. 

In addition, the file will be password protected and only the lead researcher will have access to it. To 

minimize the identification of your personal data, you will be named with a pseudonym which only 

the lead researcher can identify using the password-protected file. Data and consent documents will 

be stored for five years from the completion of the data collection and then shredded or completely 

deleted. 

 

This research will keep your personal data for 10 years from the end of the research. 

 

Access to Personal Data 

The following categories of individuals may receive personal data collected or created about you: 

• Members of the research group at Biomechatronics and Neurorehabilitation laboratory (BNL) 

at Chalmers University of Technology so that they can properly carry out the research 

• Data controller, Dr. Max Ortiz Catalan, who is reviewing the study and analyzing the data. 

 

The research team strives to protect the confidentiality of your personal data. Additional information 

about our protection of your personal data l is included in the consent document.   

  

Right to your Personal Data 

GDPR gives you rights regarding your personal data including the right to: 

• Access, correct, or delete your Personal Data. On the other hand, the research team may need 

to retain personal data if necessary to carry out the purpose of the research 

• Limiting the type of activities the research group can do with your Personal Data. 
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• Object to using your Personal Data for specific types of activities. 

• Withdraw your consent  to use your Personal Data for the purpose, described in the consent 

document and in this document (Please understand that you can withdraw your  consent to use 

new Personal Data but Personal Data already collected will continue to be used as described in 

the Informed consent document and in this Notification). 

 

If you want to know how your personal data is used, or if you feel that we have used your personal 

data in a way that violates the agreement or applicable legislation, please contact the lead researcher. 

If you have complaints about how Biomechatronics and Neurorehabiliation Laboratory at Chalmers 

University of Technology processes your personal data, you have the right to contact the Swedish Data 

Protection Authority. 

 

Identification of investigators 

Biomechatronics and Neurorehabilitation Laboratory (BNL) at Chalmers University of Technology, 

commissioned by Dr. Max Ortiz Catalan, is responsible for the use of your Personal Data for this 

research 

 

You can contact Dr. Max Ortiz Catalan by phone +467 08461065 or by email maxo@chalmers.se  If 

you have any: 

  

• Questions about this Notification 
• Complaints about the use of your Personal Data 

• If you have a request regarding the rights listed above. 

 

Signature of research participant or legal representative 

I understand the procedures described above. I also give consent for the use of my Personal Data for 

the purposes outlined in this notice; for my Personal Data to be transferred overseas pursuant to the 

terms, conditions and limits specified at Section 43 of Legislative Decree n. 196/2003 as well as under 

the provisions of article 49 of the EU GDPR. 

  

My questions have been answered to my satisfaction, and I agree to participate in this study.  I am over 

the age of 18 years and have been given a copy of this form. 

  

Name of Participant:_____________________________________________________ 

  

          

Signature of Participant or Legal Representative:________________________________              

     

  

Signature Investigator 
  
In my judgement the participant is voluntarily and knowingly giving informed consent and possesses 

the legal capacity to give informed consent to participate in this research study. 

  

Name of investigator:_____________________________________________________ 

  

          

Signature of investigator:________________________________________________ 

mailto:maxo@chalmers.se
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Appendix D: Artifact management details 
Table 5. The components that were removed from each subject and condition following ICA analysis. The minimum is one 
component and the maximum 22. The mean number of removed components is 4.7. 

SUBJECT NO TASK EASY TASK HARD TASK 

1 1 1,2,3,16 1, 2 

2 1 1, 2, 3 1, 2, 12, 53 

3 1, 2, 3, 4, 7 1, 2, 51 1, 2, 3, 11, 16 

4 1, 4 1, 3 1, 2 

5 1, 6, 10 1, 2 1 

6 1 1, 2 1, 3 

7 1, 3, 5, 9 1, 2 1, 4, 6, 7, 8, 9, 11, 12, 
15, 22, 39 

8 1 1, 3 1, 2 

9 1, 4, 6, 22 1, 2, 3, 9, 10, 11, 12, 14, 
15, 16 

1, 2, 3, 5, 8, 9, 11, 13, 
16, 17, 19, 22, 23, 29, 
30, 33, 34, 36, 38, 39, 
91 

10 1, 5 2, 4, 6, 7, 8, 12, 13, 15, 
16, 18, 20, 22, 23, 24, 25, 
26, 29, 40, 41, 44, 53, 55, 
120 

1, 4, 5, 6, 8, 9, 11, 12, 
16, 17, 19, 23, 29, 45, 
46 
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Table 6. The number of epochs that were accepted after artifact rejection. In parenthesis is the percentage of how many of 
the total number of epochs that were accepted. Note that subject 9 was removed from further analysis because less than 
50 % of the epochs were accepted. The number of accepted epochs remaining for analysis varied between 37 and 72 

(mean 60.7) while the percentage of accepted trials ranged between 59.7 and 100 % (mean: 92.5 %) 

SUBJECT NO TASK EASY TASK HARD TASK 

1 61 (98.4 %) 60 (95.2 %) 67 (97.1 %) 

2 58 (96.7 %) 57 (87.7 %) 63 (92.6 %) 

3 72 (100 %) 64 (94.1 %) 62 (93.9 %) 

4 65 (97 %) 57 (83.8 %) 61 (96.8 %) 

5 60 (98.4 %) 61 (95.3 %) 64 (98.5 %) 

6 64 (98.5 %) 56 (87.5 %) 59 (86.8 %) 

7 54 (81.8 %) 37 (59.7 %) 60 (93.8 %) 

8 64 (97 %) 61 (93.8 %) 68 (95.8 %) 

9 45 (67.2 %) 9 (14.8 %) 0 (0 %) 

10 64 (98.6 %) 60 (87 %) 61 (91%) 
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Appendix E: Two-way ANOVA analysis 
 

 ANOVA table Pairwise comparisons 

N1 (S) 

  

N1 (L) 

  

P2 (S) 

  

P2 (L) 
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P3 (L) 
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Appendix F: Electrode clusters 
Table 7. Description of the construction of each of the small (five electrodes) and large (seventeen electrodes) electrode 
clusters chosen for measuring each of the components N1, P2, P3 and LPP. 

CLUSTER NAME SCALP SECTION ELECTRODES 

N1 (S) Central, right 119, C2, C4, 131, FC2 

N1 (L) Central FC3, FC1, FCz, FC2, FC4, 115, 116, 117, 118, 119, 
120, C3, C1, Cz, C2, C4 

P2 (S) Frontal/Parietal FCz, 105, 106, 117, 118 

P2 (L) Frontal/Parietal F1, Fz, F2, 104, 105, 106, 107, FC1, FCz, FC2, 116, 
117, 118, 119, C1, Cz, C2 

P3 (S) Frontal/Parietal Fz, 105, 106, FCz, 118 

P3 (L) Frontal/Partietal 172, 95, 96, 173, F1, Fz, F2, 104, 105, 106, 107, FC1, 
FCz, FC2, 117, 118, Cz 

LPP (S) Occipital Pz, P1, 154, 152, 153 

LPP (L) Occipital 150, 151, 152, 153, 154, 155, 156, 157, PO3, POz, 
PO4, PO7, 162, 163, 164, 165, PO8 

 

Table 8. Description of the construction of each of the small (five electrodes) and large (seventeen or sixteen electrodes) 
electrode clusters chosen for measuring the frequency bands Theta and Alpha (Broadband, Low-, and High-). 

CLUSTER 
NAME 

SCALP SECTION ELECTRODES 

THETA (S) Frontal/Parietal 105,106, 117, 118, FCz 

THETA (L) Frontal/Parietal 104,105,106, 107, 116, 117, 118, 119, FCz, FC1, FC2, 
Fz, F1, F2, Cz, C1, C2 

BROADBAND, 
LOW AND HIGH 
ALPHA, (S) 

Occipital, right 154, 155, 156, P2, PO4 

BROADBAND, 
LOW AND HIGH 
ALPHA (L) 

Occipital 151, 152, 153, 154, 155, 156, 162, 163, 164, 165, Pz, 
P1, P2, POz, PO3, PO4 

 



 

 

 

 

 
 

 

 

 

 

 

 

 

 

 


