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Sweden
Telephone: + 46 (0)31-772 1000
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Abstract

Acoustic spectrometry is a fast and noninvasive means of measuring liquid prop-
erties inside tubes in processing plants. Partial least squares regression is a popular
method in chemometrics used to treat such multivariate data. However, before apply-
ing the regression, various preprocessing techniques can be applied to the collected
data. A single preprocessing method or several ones in series can be used. The
usefulness of such an approach to acoustic spectrometry data is investigated in this
thesis. An optimization algorithm of the type called Genetic algorithm was devel-
oped and used in order to choose a maximum of 6 preprocessing techniques in series
out of a total of 31 available choices. The data used was acoustic spectrometry data
on black liquor collected at the Billerud paper mill in 2010. The Genetic algorithm
proved to perform well when solving the optimization problem. The results from the
optimization show that it is possible to improve the prediction error for a given data
set through the use of preprocessing, however, most of the selected preprocessing
sequences did not improve the prediction error when using data collected at different
times.

Keywords: Acoustic spectrometry, PLS, Partial Least Squares, preprocessing, Genetic
algorithm, optimization
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Sammanfattning

Akustisk spektrometri är ett snabbt sätt att mäta egenskaper hos vätskor inuti
rör i processindustrin utan att göra ingrepp p̊a ordinarie utrustning. Partial least
squares regression är en populär metod inom kemometri som används för att be-
handla och analysera s̊adan multivariat data. Innan regressionen kan datan förbe-
handlas, antingen med hjälp av en ensam metod eller med hjälp av flera metoder
applicerade efter varandra. Nyttan av s̊adana förbehandlingsmetoder applicerade
p̊a akustisk spektrometri-data undersöks i detta arbete. En optimeringsalgoritm
av typen Genetisk algoritm har utvecklats och använts för att välja ut upp till 6
stycken förbehandlingsmetoder av 31 tillgängliga alternativ. Datan som användes
var akustisk spektrometri-data som inhämtades p̊a Billeruds pappersbruk under
2010. Den Genetiska algoritmen visade sig prestera väl när det kom till att lösa
optimeringsproblemet. Resultaten fr̊an optimeringen visar att det är möjligt att
förbättra prediktionsfelet för ett givet dataset men de flesta av de utvalda förbe-
handlingssekvensenerna gav ingen förbättring när data som var insamlad vid andra
tidpunkter användes.

Nyckelord: Akustisk spektrometri, PLS, Partial Least Squares, förbehandling, Genetisk
algoritm, optimering
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1 Introduction

This report describes a Master’s thesis performed at the department of Signals and Systems
at Chalmers University of Technology during the spring and summer of 2011. It was part
of the company Acosense AB’s continuing work on refining the quality of their process
parameter measuring instrument.

1.1 Background

As more and more industries look to develop automated processes, the demand for fast,
accurate and reliable monitoring equipment is increasing. In addition, many industries han-
dle corrosive or in other ways aggressive liquids that might damage sensitive equipment.
In view of this development, the possibility of measuring process parameters without stop-
ping the process and without making contact with hazardous liquids is of great interest.
Acoustic spectroscopy is one technique that could meet these requirements.

When manufacturing paper pulp from pulpwood, a substance called black liquor is pro-
duced and this substance is normally incinerated in a furnace. In order for the furnace to
perform as efficiently as possible, it is important to know the percentage of dry matter con-
tent, the total solids, in the black liquor. Acoustic spectroscopy has recently been suggested
as a method for measuring this quantity within tubes in processing plants without stopping
the process itself [15]. Partial Least Squares (PLS) regression has successfully been used
to analyze the spectrum of the collected data, however, the usefulness of preprocessing the
data has yet to be evaluated.

Studies have suggested the possibility of combining PLS with different preprocessing tech-
niques in order to improve the Root Mean Squared Error of Prediction (RMSEP) of the
predictions as well as simplifying the PLS model [6]. Genetic algorithms have been used to
find suitable combinations of preprocessing steps performed in series as well as selecting
important frequency bands [6, 7].

Acosense AB develops and manufactures an instrument based on active acoustic spec-
troscopy called Acospector Acoustic Chemometer designed to measure and predict process
fluids [1]. In their work to further develop and understand the processes, an investigation
of preprocessing techniques was deemed valuable.

1.2 Purpose

This thesis aims to identify and investigate the impact of using a series of preprocessing
steps on active acoustic spectroscopy data before performing PLS regression. An optimiza-
tion algorithm will be developed and used to choose between the preprocessing methods
since an exhaustive search of all combinations would be much too time consuming.

1.3 Objective

The objective is to improve the existing measurement procedure. An improvement could
mean any of the following possibilities:

• Improvement of measurement accuracy
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• Faster/more efficient measurement procedure (less computational time)

• More reliable system (more robust PLS model)

1.4 Limitations

The PLS algorithm itself will not be the focus of the study, ready-made functions in the
MATLAB Signal Processing Toolbox will be used. The measurement setup will not be a
part of the study. Different excitation sounds will not be investigated and the acoustics
of liquids will not be considered. The preprocessing methods chosen in this study will be
standard signal processing techniques, custom methods will not be designed. Due to time
constraints, a complete investigation of the behaviour of the genetic algorithm will not be
performed.

2 , Signals and Systems, Master of Science Thesis 2011



2 Theory

This section aims to provide a theoretical background to the concepts used in this thesis.
To being with, acoustic spectrometry is introduced followed by a description of the Power
Spectral Density (PSD). Multivariate analysis concepts used in the thesis is subsequently
presented followed by the preprocessing methods and optimization with focus on genetic
algorithms.

Throughout the thesis, scalars are denoted by italics (x) and column vectors are denoted
by bold face (x). Matrices are denoted by bold face and capital letters (X) and transposed
vectors (row vectors) and matrices are denoted by a prime sign (x′ and X′). An asterisk
(∗) denotes complex conjugate if nothing else is specified. F{x(t)} denotes the Fourier
transform of x(t) and DF{x[n]} denotes the discrete Fourier transform of x[n]. For more
details on Fourier transforms, see appendix A.

2.1 Acoustic spectrometry

Acoustic spectrometry is the measurement of acoustic vibrations in order to obtain infor-
mation about the system interacting with or emitting the vibrations [8]. Two techniques
are commonly used, passive and active acoustic spectrometry.

In passive acoustic spectrometry, sensors listen to the vibrations produced by the system
itself. When measuring process fluids, an obstruction can also be used in order to create
additional turbulence in the liquid, generating more vibrations [15].

In active acoustic spectrometry, vibrations are sent into the system and sensors listen to the
vibrations sent out from the system. The recorded signal contains vibrations originating
from the system itself as well as those originating from the interaction between the system
and the vibrations sent into the system [15].

2.2 Power spectral density

The PSD shows the distribution of power among the frequencies in a signal. The definition
is given in equation 2.1, where ω is the angular frequency in radians per second, T is the
duration of the truncated time domain signal and X(ω) is the Fourier transform of x(t)
(see appendix A) [10].

P (ω) = lim
T→∞

1

T
|X(ω)|2 (2.1)

If the signal can be viewed as a Wide Sense Stationary (WSS) random process, the PSD
can be calculated according to equation 2.2, where RXX(τ) is the autocorrelation function
of x(t) (see appendix C) [9]:

P (ω) = F{RXX(τ)} (2.2)

In other words, by estimating the autocorrelation function, it is possible to obtain an
estimate of the PSD.

For discrete signals, an N-point sample based estimate r̂x,N [p] of the discrete autocorrelation
function rx[p] can be obtained using a truncated part of the original discrete signal x[n]

, Signals and Systems, Master of Science Thesis 2011 3



[10]:

r̂x,N [p] =
1

N

N−1∑
n=0

x[n]x[p+ n], p = 0, 1, . . . , N − 1 (2.3)

By using r̂x,N [p] in equation 2.2, a sample based estimate of the PSD called a periodogram
can be obtained. (The Discrete-Time Fourier Transform (DTFT) has to be used instead
of the continuous Fourier transform.)

The periodogram is a smoothed version of the actual PSD. The smoothing results from
using only N samples of the signal x[n] in equation 2.3. This truncation can be achieved
by multiplying x[n] by a window function w[n] and the choice of window function will
affect the smoothing of the PSD. Simply choosing N samples of x[n] is e.g. equivalent to
applying a rectangular window. The relationship between multiplication in the temporal
domain and smoothing by convolution in the frequency domain is further developed in
appendix B.

If the Discrete Fourier Transform (DFT) is used instead of the DTFT when calculating the
periodogram, a sampled version of the periodogram is obtained. This is the most common
application since the rightmost part of equation 2.4, which describes this operation, can
be efficiently calculated using the Fast Fourier Transform (FFT) [10]. X[k] in equation 2.4
is the DFT of x[n].

P [k] = DF{r̂x,N [p]} =
1

N
|X[k]|2 (2.4)

In order to ascertain the average power of a signal, the autocorrelation function at lag zero,
RXX(0), can be used. That value can be obtained by summing the values of the PSD and
possibly multiply with a constant, (see also appendix A and C).

2.3 Multivariate analysis

Multivariate analysis is a type of analysis where many variables are observed and treated
at a time. In this thesis, a power spectrum is used to characterize the properties of a liquid
at a certain time instant. The spectrum contains several variables describing the energy
content of the received signal at certain frequencies. In other words, for each time instant
there are several variables describing the properties of the liquid and multivariate analysis
can thus be used to analyse the spectra.

Principal Component Analysis (PCA), Principal Component Regression (PCR) and PLS
are popular techniques used in multivariate analysis and they are described in this section.
PCA is described more thoroughly since it is important for the understanding of the other
two techniques.

2.3.1 Principal Component Analysis

PCA is a well known technique used in many different fields. In the engineering community
it is perhaps more commonly known as the Karhunen-Loève Transform (KLT) [14]. The
general idea of PCA is to represent a data matrix X using a new collection of basis vectors.
The first basis vector in the new basis describes the direction in which the data has the
largest variance. The second basis vector describes the direction in which the data has the
second largest variance while being orthogonal to the first basis vector, and so on. In this
new basis, if one wants to reduce the dimensionality of the data, removing basis vectors
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starting from the end will ensure the smallest possible deviation from the original data.
The “principal component” itself is an infinite line through the origin along the direction
of a basis vector, the first principal component lies in the direction of the first basis vector
and so on.

A data matrix X of rank r whose rows can be viewed as points in space can be represented
by r matrices of rank 1 [3] as shown in equation 2.5. The points, or rows of X, will be
referred to as observations in the rest of this thesis. The reason for this name is that each
row will be a power spectrum recorded at a certain time, thus constituting an observation
of the characteristics of the liquid at a certain time.

X = M1 + M2 + ...+ Mr (2.5)

Each matrix Mh in 2.5 can be represented by a score vector th and a loading vector ph

[3]:

Mh = thp′h (2.6)

and the data matrix X can thus be written X = TP’ by using equations 2.5 and 2.6. If
all r components are not used, there is also a residual, E, consisting of a combination of
the components not used [3]:

X = TP′ + E (2.7)

p′h is a unit vector in the direction of principal component h. Its elements are the pro-
jections of ph onto the axes of the original coordinate system; p′h(1) = cos(α) where α is
the angle between component h and the first axis. This is illustrated in figure 2.1a. th
is the data projected onto component h; th(1) is the distance from the origin to the first
observation (point in space) projected onto component h as shown in figure 2.1b.

(a) A principal component as a dashed line, the
loading p1 as a vector

(b) Data projected onto the first principal com-
ponent, the double headed arrow shows t1(1)

Figure 2.1: Principal component analysis

In order to visualize the data, scores plots and loadings plots are often used [2]. Briefly,
the scores for the observations (rows of X) for component i is plotted against the scores
for component j. This helps determining correlations between the observations. The same
can be done for the loadings; the loadings plot shows correlations between the variables in
the observations [2, 13]. The variables are the elements of each row of X.
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2.3.2 Principal Component Regression

PCR is very closely related to PCA and to linear regression. In the univariate case, a linear
relationship between two variables can be described by the familiar formula y = kx+m. If
there are many observations of x, each can be stored in a vector resulting in the following
expression:

y = kx +m (2.8)

If the observations of x are associated with errors (the observations might be flawed, the
linear assumption itself might be erroneous), linear regression can be applied in order to
“fit” the data to a linear relationship; the observations of x are projected onto a straight
line in a two-dimensional space so that the error in some sense is minimized.

In the multivariate case, this notion is extended to multidimensional data. Instead of a
vector of observations for the scalar x, there is a matrix X, where each row is an observation

of the vector x’. For a single observation, y = b1x1 + b2x2 + . . . + bnxn + e =
n∑
i=1

bixi + e,

where xi is the ith entry of x′ and this can be written as in equation 2.9.

y = x′b + e (2.9)

If there are many observations, many vectors x′, a relationship similar to the one in equation
2.8 can be obtained:

y = Xb + e (2.10)

It is also possible to have several y-variables in which case the more general expression
becomes:

Y = XB + E (2.11)

where Y, B and E are also matrices. This is known as Multiple Linear Regression (MLR)
[3]. If instead of using the actual data matrix X, the scores T from a PCA analysis are
used to represent X, PCR can be performed [3]:

Y = TB + E (2.12)

2.3.3 Partial Least Squares

Originally designed to be used in economics, PLS is now one of the most popular calibration
methods in chemometrics [2, 3]. One of the benefits of using PLS instead of PCR or MLR
is that it does not assume the dependant variables Y to be without noise [2]. The basic
operation is explained below.

The Y matrix from equations 2.11 and 2.12 can be represented in the same way as the X
matrix in equation 2.7 [3]:

Y = UQ′ + F̃ (2.13)

where U,Q and F̃ are the scores, regression coefficients and the residual respectively. The
tilde in F̃ is used to distinguish it from the residual in equation 2.15. It can be shown
that there is a connection, an inner relation, between the score vectors for X and the
corresponding vectors for Y [3]:

ûh = bhth (2.14)

where bh describes the linear relationship between uh and th.
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The idea with PLS, and where it differs from PCR, is to substitute U in 2.13 with Û = TB
from 2.14 in order to arrive at the final expression:

Y = TBQ′ + F (2.15)

The same operation is made for X, i.e. it is given the scores for Y. By doing so, the covari-
ance between X and Y is maximized rather than the variance of X and Y independently,
as would be the case in PCR. The result is that the component, or latent variable following
the PLS terminology, expressing the strongest tie between X and Y is selected [3].

When predicting y-values, the x- and y-loadings p′ and q′, along with b is calculated using
some known x- and y-data. Then, new x-scores are calculated using new x-data without
any known corresponding y-values. These scores are then used in equation 2.15 in order
to predict the unknown y-values. The x-scores are calculated according to 2.16 where
equation 2.7 has been used and where weights w′ are used instead of the x-loadings p′.
The reason is that due to the interchange of scores between X and Y as described by
equation 2.15, the t values are not orthogonal in PLS as opposed to the t values in PCR.
They are normally orthogonalized by introducing weights which are used instead of p′.

T̂ = XW (2.16)

2.3.4 Measuring the quality of a model

Calculating the principal components in PCA or the latent variables in PLS and determin-
ing the relationship between X and Y is called building a model. Once a model has been
built or trained using some data, there is often a need to evaluate that model according
to some criterion. Two important measures are how well the model describes the data
used to build it and how good the model is at predicting new values. A common way of
describing how well a regression model fits the data is to use the R2 measure as defined in
equation 2.17.

R2 = 1− RSS

TSS
(2.17)

where RSS is the residual sum of squares and TSS is the total sum of squares:

RSS =
N∑
i=1

(yi − ŷi)2 (2.18)

TSS =
N∑
i=1

(yi − ȳ)2 (2.19)

yi is the ith observation of y and ȳ is the mean of y. Provided a functioning model, the
residual sum of squares is always smaller than the total sum of squares, so R2 is bounded
between zero and one. The closer R2 is to one, the better the model fits the data.

The Q2 measure is a variant of the R2 measure which is commonly used to describe how
well a model can predict new values.

Q2 = 1− RSSpredicted
TSSactual

(2.20)

Although defined as R2 in equation 2.17, Q2 can take negative values since there is no
guarantee that the residual sum of squares of the predicted values is smaller than the total
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sum of squares of the actual values. In fact, a model that is too specialized on the data
used to create it, i.e. has a high R2 value, might experience difficulties in predicting data;
it loses its generality. This is known as over-training a model. Typically, R2 will always
increase with training, e.g. by using more latent variables in PLS, whereas Q2 will increase
to a certain point and then start to decrease indicating that the model is becoming too
specialized and is losing its predictive capability. If the predicted values are simply the
average of the actual values, equations 2.18 and 2.19 will be the same and Q2 will be zero.

Other ways of measuring the quality of a model is to use the Mean Squared Error of
Prediction (MSEP) or RMSEP which is the square root of the MSEP.

MSEP =
1

N

N∑
i=1

(yi − ŷi)2 (2.21)

The downside of using the MSEP or RMSEP is that they do not take into consideration the
variance of the data which becomes important especially when using multiple validation
or test sets, e.g. in cross-validation. Intuitively, if a data set contains a lot of changes, has
a large variance, a larger error would be acceptable than for a data set in which the data
hardly changes at all. Variance is further explained in section 2.4.2.

2.3.4.1 Validation set and test set A way of avoiding over-training of a model is
to partition the data into a training set which is used to train the model, a validation set
which is used to evaluate the predictive ability of the model during the training, and finally
a test set which is used to evaluate the final model. Usually, one third of the total data is
used as test set and one third of the remaining data is used as validation set. The rest is
used as a training set.

2.3.4.2 Cross-validation Cross-validation is another way of avoiding over-training of
a model. The initial data set is divided into K subsets and for each subset, a model is
trained withholding the subset which is then used to evaluate the model.

2.4 Preprocessing

In this section, some of the preprocessing methods and the reasons for using them are
presented. The choices of preprocessing methods were to a large degree influenced by the
choices made by Jarvis and Goodacre in [6].

2.4.1 Savitzky-Golay smoothing and derivatives

Smoothing is a method used for reducing noise in data. A common way to smooth data
is to use Moving Average (MA) filters but they have the disadvantage of using a straight
line fit which risks deteriorating peaks in the data. An alternative is to use a polynomial
fit where a curve is fitted to the data within a window as the window slides along the
data. A simple and computationally efficient way of realizing this task involving simple
summations was devised by Abraham Savitzky and Marcel J. E. Golay in 1964 [2]. Within
the window, each datapoint is scaled with a predefined factor and then summed together.
The summed up value is the fitted value for the datapoint in the middle of the window.
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The filter is characterized by the window size and the order of the polynomial used for the
fitting.

Derivatives can be an effective way of detecting overlapping peaks in data [2]. The problem
is that they also amplify noise substantially. A way of counteracting this effect is to precede
the differentiation by a smoothing filter. Since convolution has the associative property
(see appendix B), the smoothing filter and the differentiation filter can be combined into
one filter and then applied to the data.

2.4.2 Scaling

Scaling is a quite simple way of preprocessing data but the effect can be significant [2, 6].
Measures such as the mean and variance are often used. The mean is simply the average
of the data; given a data sequence x[n] stored in a vector x, the mean can be calculated
by summing all of the elements in x and dividing by the number of elements. x can e.g.
be the samples of a signal or a spectrum. Mean centering a data series means subtracting
the mean so that the resulting data only describes the variation around this average value.
The expression for the mean is given in equation 2.22.

x̄ =
1

N

N∑
i=1

xi (2.22)

The variance gives a sense of the variability of the data, how much it is spread out around
the mean. A large spread around the mean gives a large variance and vice versa. It can
be calculated by summing the square of all elements in x after having removed the mean
and then dividing by the number of elements minus one. Sometimes the division is done
by exactly the number of elements, this however gives a biased estimate of the variance
meaning that its expected value is not the true variance (see appendix C) but N−1

N
σ2,

where σ2 is the true variance. As can be seen, the difference decreases as N increases.

The square root of the variance is called the standard deviation. Dividing a data series with
its standard deviation (after removing the mean) results in both the standard deviation
and the variance being one. If this is done for two different data series, the effect is that
the variations around the mean for both data series will be roughly on the same scale
regardless of how they were related before. The expression for the variance is given in
equation 2.23.

σ̂2 =
1

N − 1

N∑
i=1

(xi − x̄)2 (2.23)

Often, mean centering a data series and dividing it by its standard deviation is referred to
as autoscaling. Another commonly used term is Standard Normal Variate (SNV) transfor-
mation. In this thesis, the term SNV is used only to describe autoscaling of the observations
(rows of a data matrix), autoscaling of the columns is referred to as autoscaling.

Another way of looking at a data series x with N elements is as a vector describing
the coordinates of a point in an N -dimensional space. The length of this vector can be
calculated according to equation 2.24. Dividing by x by its length makes it possible to
compare the direction of different vectors without taking their lengths into consideration.

|x| =

√√√√ N∑
i=1

x2
i (2.24)
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When different signals are compared, sometimes it is more informative to look at the
distribution of power among the frequencies when the average power is the same in all
signals. In order to achieve this, each sample of the PSD can be divided by the sum of all
samples according to what is described in section 2.2. Any constants will be the same for
all signals.

2.4.3 Decimation

Decimation consists of low-pass-filtering data followed by a downsampling. The low-pass-
filtering is performed in order to avoid aliasing of the signal when downsampling. Aliasing
is when a signal is distorted due to the sampling frequency being to low. The effect in
the frequency domain is illustrated in figure 2.2b. If the data is to be downsampled by
M , each M datapoint is retained, the rest are discarded. In order to avoid aliasing of the
signal, the cut-off frequency of the low-pass filter should be less than or equal to π

M
. The

reason for this is that after downsampling a time domain signal with M , the sampling
frequency is lowered by M . Since the frequency content of the original signal has not
changed, there will be an aliasing effect if there in the original signal was energy present
above half of this new sampling frequency, as is illustrated in figure 2.2. Figure 2.2a
displays the frequency spectrum of a signal before downsampling. The spectrum between
0 and π is mirrored around π and then repeated with the period 2π. Figure 2.2b displays
the frequency spectrum after downsampling by M . The spectrum is now mirrored around
π
M

so if there was energy above π
M

it will be added to the spectrum between π
M

and 0.
These overlapping parts are shown in grey in figure 2.2b. The frequency spectrum is then
repeated with the period 2π

M
. The final spectrum after adding the overlapping parts are

shown in figure 2.2c. In the figure, Ω = ωTs where ω is the angular frequency measured
in radians per second and Ts is the sampling interval. Consequently, 2π corresponds to
the original sampling frequency. The effect of the different steps in decimating a signal is
shown in figure 2.3 for a sample signal.
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Figure 2.2: The effect of aliasing on a signal
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Figure 2.3: The procedure of decimation illustrated in four steps
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2.4.4 Wavelets

The discrete wavelet transform has its origins in many different fields but was unified into
a single topic in the 1980s by Stéphane Mallat [16]. It has found applications in fields such
as image and video compression, numerical analysis and object recognition and is the basis
of the JPEG2000 standard. Although a mathematical tool, the operation of the transform
can be described as a bank of filters as shown in figure 2.4 [16]. The signal x[n] is fed as
input to a lowpass (LP) and a highpass (HP) filter. The output from the lowpass filter
is called an approximation of the signal xa[n] and the output from the highpass filter is
called the details of the signal xd[n]. In between the filters and the outputs, there is a
downsampling stage in order to keep the total number of samples constant. The frequency
content of the signal is kept since at the outputs of the filters, it is only half of that at the
inputs for the same sample rate (see also section 2.4.3).

By feeding the average signal xa[n] into yet another highpass-lowpass filter pair, the average
and detail of xa[n] is obtained. The procedure can then repeated for the new average signal
obtained in each stage. For a fixed number of samples at the input, the procedure can
be repeated until the final average signal contains only one sample which is related to the
average of the original signal. The procedure is referred to as multiresolution analysis [16].
By discarding some of the details, compression (and smoothing) can be realized.

x[n]

LP

HP

2

2

xa[n]

xd[n]

Figure 2.4: Wavelet transform as a bank of filters

2.5 Optimization

Haupt and Haupt describe optimization as “the process of adjusting the inputs to or
characteristics of a device, mathematical process, or experiment to find the minimum or
maximum output or result” [5]. An example of an optimization problem could be to adjust
the antenna of a portable radio. The device would be the radio, the input to the device
would be the antenna position and the output would be the sound quality. As the position
of the antenna (the input) is changed, the sound quality (the output) changes. The goal
or optimization problem would be to find the position of the antenna that produces the
best sound quality. In order to find the best set, or at least a good set of inputs to a
given experiment without trying all possible combinations, optimization algorithms are
used. Typically, the inputs are adjusted according to some rule in order to “search” the
cost surface (set of all possible output function values) for good solutions.

2.5.1 Genetic Algorithms

One such optimization technique is the Genetic Algorithm (GA). It was developed during
the 1960s and ‘70s by John Holland. The name “genetic algorithm” originates from its
inspiration from biology and natural selection. In short, a number of vectors are created

12 , Signals and Systems, Master of Science Thesis 2011



with symbols from an alphabet A. Random changes will be done within each vector with a
certain probability; in the binary case this translates to a certain probability of flipping a
bit. Two vectors can also be combined, e.g. by substituting one half of the content in each
vector thus generating two new ones. After each random change and/or recombination,
the resulting new vectors are evaluated against a cost function in order to determine their
individual suitability. Thereafter a new set is created where each vector is selected from
the old set, including the newly generated vectors, according to some scheme taking into
consideration their individual suitability [12].

Drawing from its biological inspiration, the vectors are called chromosomes, each position
within the chromosomes is called a gene, the values that the symbols can take are called
alleles and the set of chromosomes is called a population. The random changes in a
chromosome are called mutations and the evaluation and deletion according to the cost
function is called selection. The cost function itself is called fitness function referring
to the evaluation of the fitness of each individual, whose traits are determined by the
chromosome. The process of selection, recombination and mutation is called reproduction,
and each population is called a generation [12].

2.5.1.1 Population size It is difficult to make statements about the parameters as-
sociated with a genetic algorithm as the settings seem to be very problem specific, as is
described in by Reeves and Rowe in [12]. It is however suggested in the same literature that
the minimum size of the population is chosen in such a way that the entire search space
can be reached from the initial population by crossover only. This means that an instance
of each allele should be present at all gene locations somewhere within the population.
That is to say, when looking at a certain position (gene) using all the chromosomes within
the population, one should be able to find at least one of each of all possible alleles.

For binary chromosomes of length l in a population of N individuals (chromosomes), the
probability of being able to reach the entire search space is [12]

P =
(

1− (1/2)N−1
)l

(2.25)

For a q-ary alphabet, q being the number of letters in the alphabet, this probability becomes
[11]

P =

{
q!S(N, q)

qN

}l
(2.26)

where S(N, q) is the Stirling number of the second kind which can be calculated according
to equation 2.27 using the initial conditions in equations 2.28, 2.29 and 2.30 [4].

S(N, q) = S(N − 1, q − 1) + qS(N − 1, q) (2.27)

S(n, n) = S(n, 1) = 1, n ≥ 1 (2.28)

S(n, 0) =

{
1 if n = 0
0 if n > 0

(2.29)

S(n, k) = 0, if k < 0 or k > n (2.30)
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3 Method

In this section, the implementation of the project is described. To begin with, the initial
literature study leading up to the choice of method is briefly described followed by a
description of how the data was collected. Then the process of constructing data sets is
described followed by a description of how the preprocessing methods were implemented.
The last section covers the implementation of the genetic algorithm. The MATLAB version
used in this project was 7.12.0.635 (R2011a), 64 bit. The computer used for the MATLAB
calculations was a 64 bit Windows 7 computer equipped with dual Intel R© Xeon R© processors
at 2.40 GHz and 8 GB of RAM. Some of the multivariate analysis was performed using
the multivariate analysis software Simca-P+ 12.

3.1 Literature study

The literature study undertaken at the beginning of the project aimed at finding similar
investigations that had been undertaken previously and if found, to assess if the same
ideas could be applied in this project. The literature study was performed using resources
available through the Chalmers Library such as books and scientific databases, most no-
tably Scopus, a large database containing publications from many different disciplines, and
also by using standard internet search engines. It turned out that there were quite a few
studies regarding preprocessing methods for PLS regression, however, not many treated
acoustic spectrometry data. The method of using a genetic algorithm to select a sequence
of preprocessing methods as is done by Jarvis and Goodacre in [6] was deemed applicable
for this project as the problem was the same but the type of data was different. Another
factor that weighed in when selecting a genetic algorithm as optimization method was the
concern that the cost surface would be rather complex when evaluating many different
types of preprocessing methods. This could make conventional optimization techniques
difficult to use [5].

3.2 Measurement setup

The measurement equipment used to record the data at the Billerud Gruvön paper mill is
described below. It was already installed at the mill and the design of this system is not
a part of this thesis.

The system consisted of a shaker and two accelerometers fastened on a tube containing
black liquor just after the evaporation stage at the mill. The shaker consisted of a piezoelec-
tric disk between two copperplates connected to a voltage source. Outside the copperplates
there were two isolating distances. The shaker was attached to the tube with a clamp. The
two accelerometers were glued directly to the opposite side of the pipe. The inner diameter
of the pipe was 350 mm.

The computer responsible for collecting the data and controlling the shakers was placed
adjacent to the pipe. Data acquisition cards from National Instruments were used in order
to send and receive signals. These cards and other equipment is listed below.

• DAQ NI PCI-4461

• DAQ NI PCI-6351
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• HP Z 600 Work station

• Western Digital MyBook Elite external hard disk drives

• Four Brüel&Kjær DeltaTron 4396 accelerometers

• Custom signal amplifier from 41 Hz Audio

• Two Brüel&Kjær 2647-A Charge-to-DeltaTron R© Converters

• Shakers constructed from piezoelectric disks from Piezomechanik GmbH

The 6351 card was used as signal generator and was connected to the shaker through a
custom amplifier made by 41 Hz Audio. The accelerometers were connected to the com-
puter via the 4461 card through the Charge-to-DeltaTron R© converter. Data acquisition,
signal generation and calculation of PSD spectra was performed using National Instru-
ments’ software LabVIEW

TM
. The sampling rate used was 102,400 samples per second.

8192 samples were used in order to calculate each PSD which consequently contained 4096
samples. Each final PSD was obtained from averaging 100 subsequent PSD’s using an
exponential moving average. Only data from one of the accelerometers was used in this
thesis.

3.3 Data sets

The data used in this thesis comes from Billerud Paper mill in Gruvön and was collected
during 2010 and 2011 using the methods and equipment described in section 3.2. Each
power spectrum corresponds to a certain time and several spectra were stored as rows
in a matrix. Following the terminology introduced in section 2.3.1, these spectra will be
referred to as observations of a variable x′. The y-data is total solids in percent. Two
different data sets were used for the optimization, one spanning a long time period with
low resolution (few observations) and the other spanning a shorter period in time but with
higher resolution.

3.3.1 Low resolution data set

This data set was constructed using 73 observations taken during a rather large time
period spanning most of 2010 and early 2011. The observations were unevenly distributed
throughout this period as can be seen in figure 3.1 and this resulted in a very low resolution
over time although it at certain narrow time intervals was good, at the end of March e.g.

Figure 3.1: Red sections show periods covered by observations, purple sections show the
distribution of observations within red sections.

Three validation sets were created. As can be seen by the horizontal arrows at the bottom
of figure 3.1, they overlap somewhat and together they do not cover all observations. The
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first two were selected in order to be easier to predict since they are in the middle of all
observations. They also represent fairly continuous series of observations. The last one
was selected to be the most difficult one since it is at the very end of all observations.

3.3.1.1 Decimated data set A variant of the low resolution data set was created by
performing decimation on each spectrum. This was done in MATLAB using the parameters
described in section 3.4.3. The resulting data set contained 1024 variables for each of the
same observations as in the original low resolution data set. The same validation sets were
used.

3.3.2 High resolution data set

This data set included observations collected in February 2011. Originally, observations
were taken one minute apart covering the whole month of February. This made the data set
very large and time consuming to work with. There were also other issues such as missing
and faulty y-values. The preparations needed to overcome these issues and construct a
workable data set are described below. All preparations were done using MATLAB except
the PCA analysis which was done using Simca-P+.

During certain times the system in the paper mill is flushed in order to clean out deposits
in the pipes. During these flushings, and during other stops in production, the recorded
values for the total solids dropped quite drastically. However, the refractometer used
for the measurements had a threshold and showed all values below 50 as being 50. The
phenomenon is shown in figure 3.2. Since the y-values were faulty during these times, all
observations for which the y-values were below 50.5 were deleted. Some y-values were also
missing completely and the corresponding observations for these times were deleted as well.
In total, 808 deletions were made as a result of these criteria. One additional observation
was deleted after being judged as being an outlier in the PCA analysis as seen in figure
4.5. Within the observations there were also 7 missing values (within individual spectra).
These values were interpolated using the average of the two adjacent frequency bins.

Figure 3.2: Example of y-values not going below 50

In order to reduce the computation time when working with the data set, a smaller subset
was used. One week of continuous data was chosen starting the 2nd of February 00:00 and

16 , Signals and Systems, Master of Science Thesis 2011



ending on the 8th of February 23:59. In order to further decrease the amount of data, not
all observations were used. The choice of which observations to use was made by analyzing
how much the y-values changed between samples. If the cumulative change in absolute
values between data points in y did not exceed a threshold, every 5th observation was used,
i.e. one observation every five minutes. If the cumulative change was above the threshold,
all 5 observations were used. In order to avoid small fluctuations in the y-values influencing
the decision, a polynomial fit was used on the y-values before making the decision. This
however modelled the sharp peaks resulting from flushings in the system poorly, so in order
to keep the peaks, it was decided to switch from the fitted y-curve to the actual one if the
difference between them grew to big. The final threshold for switching between the fitted
values and the actual ones was determined by visually inspecting the result of a number of
trial thresholds. The threshold that applied to the cumulative change in y-values was also
determined visually through trials by verifying that important traits were not lost when
choosing a lower sampling rate. The fitting of the y-values is shown in figure 3.3 where a
switch from the smoothed curve to the actual one and back can be seen. The sampling of
the edited data is shown in figure 3.4 for the same observations and it can be seen that the
desired effect is achieved where all data points are used for the sharp drop, but only every
fifth one where the curve changes only a little between data points. It was decided to not
use less than one observation every five minutes since even though the y-values might have
allowed for it at certain intervals, the x-observations might contain errors as well.
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Figure 3.3: Smoothing of the y-data, zoomed in view

The data was then divided into one work set and one test set containing 2/3 and 1/3 of
the observations respectively. The work set was then further partitioned into a training set
and a validation set containing 2/3 and 1/3 of the work set respectively. The validation
set was used for testing the PLS-model during the optimization and determine the fitness
of a certain individual. The test set was used to evaluate the results of the optimization
after it was completed. The data set partitions are shown in figure 3.5 using the y-values.

3.3.2.1 Wavelet coefficient data set A wavelet coefficient data set was also con-
structed using a discrete wavelet transformation on observations in the high resolution
data set after the data reduction described above had been performed. The method is
described in section 3.4.4. The coarsest detail level retained was level 4 containing 512
samples out of an original 4096. The percentage of sum of squares of the original spectra
retained was 97 %. Although the reduction of variables would have allowed for an increase
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Figure 3.5: Data set partitions showing the y-values

in the number of observations in comparison with the original high resolution data set, the
same observations were kept in order for the results to be comparable.

3.3.3 Summary - data sets

The four data sets are summarized below in table 3.1.

Table 3.1: Summary of the different data sets

Data set Collected Obs. Sampl/obs. Val. sets Test sets

Low res. Feb 2010 - Jan 2011 73 4096 3 0
Low res., decim. Feb 2010 - Jan 2011 73 1024 3 0
High res. Feb 2011 2553 4096 1 1
High res., wav. Feb 2011 2553 512 1 1
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3.4 Preprocessing

In this section, implementation aspects of some of the preprocessing methods are presented.
All methods are summarized in table 3.2. With the exception of wavelet transformations
which were performed using Simca-P+ 12, all preprocessing was done in MATLAB.

3.4.1 Savitzky-Golay smoothing and derivatives

In order to apply the Savitzky-Golay smoothing, sgolayfilt in the MATLAB Signal
Processing Toolbox was used. Savitzky-Golay derivatives were applied using the sgolay

command in the same toolbox. The input signal was shortened by W − 1 samples after
taking the derivative, where W is the window size of the filter, since the first and last
(W − 1)/2 samples contained transients after the filtering. W is always odd in Savitzky-
Golay smoothing.

3.4.2 Scaling

When performing the column based operations such as column centering, a specific variable
was isolated and treated as the samples of a signal in time, across the observations. An
issue with these methods is that during operation in a real life scenario, predictions are
made using a single observation where no column (variable) averages exist. One option is
to use a fixed average, another option could be to recalculate statistics such as the average
and variance as new observations arrive, continuously or at given intervals. For simplicity,
the first choice with a fixed average and variance was used in this work.

That meant that no observations from the validation or test sets were allowed to influence
column operations. As described above, they represented future observations and thus
could not be allowed to influence the construction of the model which was going to be
used for prediction. As a result, when performing e.g. column centering as preprocessing,
the average of the training set variables had to be subtracted from the validation or test
set variables. The same principle applied in the actual PLS-regression stage, where the
average of the training variables had to be used when centering the validation and test set
variables.

When scaling the average power to be equal for all spectra, the values had to be transformed
to linear scale first since they were stored in decibel units. After the transformation and
normalization, the values were recalculated and stored in decibel units again.

3.4.3 Decimation

Early results from the low resolution data set suggested that smoothing might be an effec-
tive means of preprocessing the data. Also, using Simca-P+, it was possible to ascertain
that most of the variance within the data set was located within the slow variations of
the spectra. It is important to note that this does not mean that it was located at low
frequencies since the data was already in the frequency domain. It did however suggest
that it might be possible to represent most of the differentiating features in the data using
fewer samples for each individual observation (spectrum). The resulting spectra would
contain fewer frequency bins spaced further apart from one another in frequency. A way
of realizing this would be to simply use every M sample in each spectrum, but that would
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not lower the computational burden when actually constructing the spectra. Another way
of lowering the resolution in the frequency domain would be to use a smaller temporal
window when constructing the spectra. As this would decrease the computational load it
was judged interesting enough to investigate.

Since constructing new spectra from the time domain data would be a very time consuming
task (due to the way this data was stored), it was decided that the effect of using a smaller
window would be simulated by using decimation on the existing spectra. This will not
perfectly simulate the effect of using a smaller window size in the time domain since
changing the window size will not only change the resolution in the frequency domain, but
also change the windowing effect. Some further descriptions of time domain and frequency
domain operations are given in appendix B. The objective however was only to determine
if using different window sizes would be worth investigating or not, and for this reason, an
exact simulation of the effect was not necessary.

By visually inspecting the frequency content of the spectra, a cut-off frequency of 0.1 was
decided upon, where the Nyqvist frequency is 0.5.1 Since M was restricted to be a power
of 2 in order to maintain the window size a power of 2 when constructing the spectra, this
allowed for a downsampling of 4 (see section 2.4.3). It was important to keep the window
size since the FFT was used for when constructing the spectra as described in section 2.2.
The type of filter used was a 66th order linear-phase finite impulse response filter designed
using the firpm command in the MATLAB Signal Processing Toolbox.

3.4.4 Wavelets

The wavelet transformations were performed using Simca-P+ 12. The type of wavelet used
was Symlet of order 10. The choice was made since this was the type of wavelet currently in
use by Acosense. The first wavelet coefficient is as discussed in section 2.4.4 related to the
average of the original signal. As a result, this coefficient was very different in size than the
other ones. Since this would affect most row operations negatively when preprocessing was
applied, the first coefficient was excluded from row operations unless the variables, being
the columns of the data matrix, were autoscaled first. Two versions of autoscaling was made
available, the ordinary one plus a new one that would allow subsequent row operations to
include the first wavelet coefficient. Since the observations were no longer PSD spectra in
decibel units but wavelet coefficients, preprocessing S6, scale average received power to 1,
would not perform its intended task. Therefore it was substituted for the new autoscaling
method when wavelet coefficient data was used, as seen in table 3.2.

3.4.5 Summary - preprocessing

In total, 31 choices of preprocessing methods were made available: 7 scaling methods, 14
pure Savitzky-Golay smoothing and 10 Savitzky-Golay smoothing with derivatives. All
methods are summarized in table 3.2 which also explains the codes used to describe the
preprocessing sequences in the results.

1The “sampling frequency” was in samples/Hertz since the “signals” were in the frequency domain
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Table 3.2: Preprocessing methods and their encoding

Category Enc. no.a Codeb Preprocessing Attributes

- 0 - No further steps -

Scaling

1 S1 Column centering -
2 S2 Row centering -
3 S3 Column variance to 1 -
4 S4 Column autoscale -
5 S5 Row lengths to 1 -
6 S6 Scale power to 1c -
6d S6w Row variance to 1 -
7 S7 SNVe transformation -

S-G smoothing

8 G1

Smoothing using a
Savitzky-Golay
smoothing filter

Wf = 7, Og = 3
9 G2 W = 11, O = 3
10 G3 W = 15, O = 3
11 G4 W = 19, O = 3
12 G5 W = 23, O = 3
13 G6 W = 33, O = 3
14 G7 W = 43, O = 3
15 G8 W = 7, O = 4
16 G9 W = 11, O = 4
17 G10 W = 15, O = 4
18 G11 W = 19, O = 4
19 G12 W = 23, O = 4
20 G13 W = 33, O = 4
21 G14 W = 43, O = 4

22 D1

1st order derivatives
after smoothing using
a Savitzky-Golay
smoothing filter

Wf = 15, Og = 3
23 D2 W = 21, O = 3
24 D3 W = 27, O = 3
25 D4 W = 37, O = 3

S-G differentiation 26 D5 W = 47, O = 3
(1st order) 27 D6 W = 15, O = 4

28 D7 W = 21, O = 4
29 D8 W = 27, O = 4
30 D9 W = 37, O = 4
31 D10 W = 47, O = 4

a Encoding number used for the optimization algorithm (translated to decimal numbers)
b Used in the Results section
c Only scales average power to 1 when selected as the first preprocessing method
d Used on wavelet coefficient data set, on other data sets S6 was used
e Standard Normal Variate transformation
f Window size of filter
g Order of polynomial

3.5 Genetic Algorithm

In this section, the implementation of the GA is described. Everything was done using
MATLAB. The Genetic Algorithm in the MATLAB Global Optimization Toolbox was not
used since it was not available to the author.
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The final algorithm allowed for quite a lot of variables to be set such as the population
size, crossover rate, mutation rate, elite count etc. In addition, different types of crossover,
mutation and selection functions could be specified. Thoroughly investigating the effect
of all of these parameters and functions for this particular application would have been
quite time consuming and was also regarded as being outside the scope of the project.
Consequently, it is quite possible that a better combination of parameters than that which
is used in this project exists, but no further work was done to investigate this.

3.5.1 Pseudocode

The pseudocode for the GA is presented below. Here, it realizes a minimization; the smaller
the fitness score, the better.

Algorithm 1 Pseudocode for the Genetic Algorithm

popSize = K;
create initial population
evaluate initial population
currentGen = 0;
maxGen = N;
stallGen = 0;
stallGenMax = M;
tolerance = t;
improvement = 0;
prevBestScore = “large”;
while currentGen < maxGen AND stallGen < stallGenMax do

select subset of population for crossover
recombine selected individuals
mutate parents and offspring, elite individuals excluded
evaluate entire population
keep the K most fit individuals
improvement += prevBestScore - currentBestScore;
prevBestScore = currentBestScore;
if improvement < tolerance then

stallGen++;
else

improvement = 0;
stallGen = 0;

end if
end while

3.5.2 The chromosomes

The chromosomes consisted of preprocessing methods in the order they were to be applied
to the data. To code the preprocessing methods, each was assigned a number and a
sequence of these numbers in their binary form formed a chromosome, as is shown in figure
3.6. The decimal number zero was used as a stop character so that all steps after the zero
were neglected. This meant that any number of preprocessing steps up to a maximum
number, which could be set as a variable in the code, could be chosen by the algorithm.

22 , Signals and Systems, Master of Science Thesis 2011



The chromosomes were stored as rows in a matrix, as is shown in figure 3.7, which made
up the population.

Figure 3.6: A sequence of preprocessing steps stored in a binary vector (3 bits per decimal
number)

Figure 3.7: A population of ten individuals, each individual is a binary vector as in fig. 3.6

3.5.3 The population

The initial population was created randomly as a default but it was also possible to choose
all or some of the individuals in the population. This possibility however was used very
conservatively, as there are cautions against using this technique in both [5] and [12].
Care had to be taken since the random number generator in MATLAB is initialized to
the same state every time MATLAB starts up. This means that the rand command,
used for generating all random numbers in the algorithm (for initial population, selection,
crossover points, mutation. . . ), will generate the same sequence of numbers in each session
if the state is not changed. This will cause the genetic algorithm to produce the same
solution each time a session is initiated. This was avoided by generating different number
of random numbers at the start of each session before the genetic algorithm was initiated.
The sequence of numbers was still the same but different parts of the sequence were used
in different places of the genetic algorithm which meant that each solution was unique and
not just a copy of a previous result.

In order to get some guidance as to the size of the population, equation 2.26 had to be
used instead of 2.25. The reason was that the crossover points were limited to locations
between two numbers in their decimal form making the number of possible “letters” 32.
The reasons behind this limitation to the crossover point locations will be explained in
section 3.5.4. This however meant that the population size had to be increased considerably
when compared to the purely binary case. A graph showing the probability of covering the
entire search space from the initial population as a function of population size is shown in
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figure 3.8. In the graph, the chromosome length (the maximum number of preprocessing
steps), l, is 6. The number of letters in the alphabet, q, is 32. This was the setup used
for the final tests. As can be seen, an initial population of size 260 would give a 95%
probability of covering the entire search space using only crossover (figure 3.8a) and this
was used for the low resolution data set. A population size of 240 would give slightly more
than a 90% probability (figure 3.8b) and this was used for the high resolution data set due
to the large size and long computation time for that data set.
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Figure 3.8: Probability of reaching the entire search space from the initial population using
only crossover

3.5.4 Crossover

In order to select individuals for crossover, a crossover rate was set. This was the ratio
of the population used for crossover. Once set, Stochastic Universal Sampling (SUS) was
used to select the individuals. The same technique is used by Jarvis and Goodacre in [6],
and it is also what is recommended in by Reeves and Rowe in [12]. It should however be
noted that other possibilities such as roulette wheel and tournament selection exist [5, 12],
but they were not investigated.

The process of SUS is illustrated in fig 3.9. All individuals in the population were evaluated
for their fitness and given a ranking score. For simplicity, the ranking score was simply the
inverse of the fitness score. A low fitness score meant a good preprocessing sequence as
will be described in section 3.5.6. The only restriction was that all fitness scores had to be
positive. Using the fitness score to calculate the ranking score is known as cost ranking.
The individuals were then sorted according to their ranking score, from highest to lowest.
This is shown in figure 3.9a where the circle represent the sum of the ranking scores, R, and
the size of each sector in the circle represents the ranking score of an isolated individual.
The boundaries between sectors are the cumulative ranking scores, i.e. boundary two is
located at ranking score 1 plus ranking score 2.

Next, the first individual for crossover was to be selected. The first step in doing so was to
divide the cumulative ranking score R for all individuals by the number of individuals to
be selected K. Figure 3.9b shows this when R is 1 and K is 3. The next step in choosing
the first individual was to generate a starting point, a random number within the range
from zero to R/K. The individual corresponding to the cumulative ranking score indicated
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by the starting point was then selected. If e.g. the starting point were to end up between
zero and the first circle sector boundary in figure 3.9a, individual 1 would be selected.
The second individual was chosen by adding R/K to the first random number, the third
by adding 2R/K and so on. The operation is equivalent to turning the pointers in figure
3.9b by the amount determined by the starting point. This is illustrated for two different
starting points in figures 3.9c and 3.9d.

(a) The number represents the ranking of
the individuals

(b) Three equally spaced “selection
points”, R/K = 1/3

(c) Starting point: 0.06, selection outcome:
1 1 2

(d) Starting point: 0.24, selection out-
come: 1 2 4

Figure 3.9: Illustration of Stochastic Universal Sampling

For the actual crossover, single point crossover as illustrated in fig. 3.10 was used. The
choice was made primarily due to its simplicity and the fact that it is easy to understand
what is happening. When using single point crossover, care had to be taken to make
sure that the crossover point was always located between two groups of bits representing
a decimal number, otherwise new preprocessing methods not belonging to either of the
parents would have been introduced.
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Figure 3.10: The process of single point crossover; the top two chromosomes are the
“parents” and the bottom two their “offspring”.

3.5.5 Mutation

After the crossover, all individuals, parents and offspring alike, except a certain number of
elite individuals were mutated. The elite individuals were the best parents, i.e. the best
individuals from the previous generation. Since they were the best ones, these individuals
were allowed to pass unaffected through the mutation phase. The number of individuals
used as elite individuals could be set, but two was used as a standard.

Since the chromosomes were binary, a mutation was simply the flipping of a single bit.
This was done with a certain probability, the mutation rate. The mutation rate was set
globally for the whole set of individuals subjected to mutation, meaning that the individuals
subjected to mutation was seen as a binary matrix, and the mutation rate applied to the
matrix as a whole. As a consequence, it was not possible to explicitly select the ratio of
individuals that were going to be mutated. However, given a certain mutation rate, the
average probability of flipping a certain number of bits per individual could be ascertained
through simulations. The result is shown in figure 3.11 for the input mutation rate used in
the final tests. As long as the probability of not flipping any bits was not too small, there
would be individuals unaffected by the mutation. This was important since having too
much mutations would undo much of the results from the crossover phase. After mutation,
all individuals were ranked and the least fit ones were discarded in order to keep a constant
population size. In general for genetic algorithms, the process of crossover will cause the
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Figure 3.11: The average probability of getting different number of mutations per individual

algorithm to converge on a solution (possibly suboptimal), and the mutation counteracts
this convergence by introducing an additional degree of randomness. The successfulness
of the optimization depended to a large extent on finding a suitable combination of the
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parameters associated with these two processes, and this proved to involve some trial and
error.

3.5.6 Fitness function

The fitness of a certain individual was based on the predictive ability of the PLS model built
on the data after preprocessing. The preprocessing methods specified in the chromosome
were performed on the data and the MSEP was calculated according to equation 2.21. In
order to take the variance of the validation or test set into consideration, the MSEP was
then divided by the variance of the validation or test set at hand:

Measure of quality =
MSEP

σ2
(3.1)

This expression is simplified when using the biased estimator for the variance

σ̂2 =
1

N

N∑
i=1

(yval,i − ȳval)2 (3.2)

where yval,i is the ith observation of y from the validation set and ȳval is the mean of the
validation set observations of y. Substituting σ2 in equation 3.1 for σ̂2 from equation 3.2,
and using equation 2.21 for the MSEP, the following expression is obtained:

Measure of quality =

N∑
j=1

(yval,j − ŷval,j)2

N∑
i=1

(yval,i − ȳval)2

(
=

RSS

TSS

)
(3.3)

where ŷval,j is the predicted y-value. The Residual Sum of Squares (RSS) and Total Sum
of Squares (TSS) are defined in equations 2.18 and 2.19.

This measure of quality, hereafter referred to as the normalized mean squared error of
prediction, is very closely related to the Q2 value in equation 2.20 but it is always positive
which was convenient when using cost ranking as described previously in section 3.5.4.

The normalized MSEP values for the PLS model using a certain number of latent variables
up to a maximum were saved. If more than one validation set was used, a model was built
for each set and the normalized MSEP from the different validation sets were added latent
variable-wise. That is to say, the normalized MSEP for all models using n latent variables
were added together. This method was used since in a real life scenario, a model with a
fixed number of latent variables would most often be used. Finally, the lowest normalized
MSEP, or the lowest average if several validation sets were used, was saved and used as
fitness score for an individual. The procedure is summarized in equation 3.4,

Fitness score = min
m

1

K

K∑
j=1

ej,m, m = 1, . . . ,M (3.4)

where ej,m is the normalized MSEP from validation set j using m latent variables. K is
the number of validation sets.

3.5.6.1 Low resolution data set For the low resolution data set, a variant of cross-
validation as described in section 2.3.4.1 with partially overlapping subsets was used. A
maximum of 10 latent variables was decided upon after some initial trials.
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3.5.6.2 High resolution data set For the high resolution data set only one validation
set as described in section 2.3.4.2 was used due to computation time. A maximum of 15
latent variables was decided upon after some initial trials.

3.5.7 Calculation cost

The number of evaluations of the fitness function for the initial population is the number of
individuals in the population, Npop. For subsequent generations, the number of evaluations
depends on the population size, the crossover rate, the mutation rate and the number of
elite individuals. This leads to the following total number of fitness function evaluations:

Neval = Npop +Ngen(R̃mut(Npop(1 +Rcross)−Nelite)) (3.5)

where R̃mut denotes the average ratio of mutated individuals per generation. This differs
from the input mutation rate in this implementation of the GA as is described in section
3.5.5. Because of the way mutation was performed, the number of individuals mutated in
each generation changed a bit but an average could be obtained through simulations.

For comparison, it is helpful to be able to calculate the total number of possible combina-
tions of preprocessing methods. This would be the number of fitness function evaluations
needed in an exhaustive search. Looking only at the first step, there are q possible choices
of letters, q being the alphabet size (the number of preprocessing methods plus the stop
character). The stop character denotes the “do nothing” option which will also forbid
further steps. Consequently, there are q − 1 possibilities that allow for a second step. The
second step also offers q possible choices of letters, however, the stop character again simply
states that there are no further steps, leaving the letter chosen in the first step as the only
preprocessing method; {a, 0} = {a}, a being the first step. Since this option was already
accounted for in the first step, there are only q − 1 choices of letters after the first step
that translates into new combinations of preprocessing methods. This means that after
two steps, there are q+ (q− 1)(q− 1) or 1 + (q− 1) + (q− 1)(q− 1) possible combinations.
These calculations are formalized in equation 3.6, where l is the length of the chromosome
in decimal form, i.e. the maximum number of preprocessing steps.

Npreproc comb =
l∑

k=0

(q − 1)k (3.6)
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4 Results

In this section, results from the investigations are presented. Some brief comments are
also included but the main discussion can be found in later sections. For the preprocessing
results, one important note is that the data was always mean centered along the columns
before PLS regression. This was a built in trait in the plsregress command which was
used for PLS regression in MATLAB. Consequently, when chosen as the final step before
regression, scaling the column variance to one (S3 ) and autoscaling the columns (S4 )
resulted in the same operation.

4.1 Low resolution data set

The explained variance for the original low resolution data set and the decimated low
resolution data set without any preprocessing is shown in figure 4.1. As can be seen, there
does not seem to be any negative effects resulting from the decimation. However, all values
of Q2 are negative suggesting poor predictive capabilities of the model (the residual sum
of squares after prediction is greater than the total sum of squares of the actual values).

The corresponding explained variance for each of the three validation sets used in the cross-
validation is shown in figures 4.3a and 4.3b. It is evident that there is no real consistency in
the optimum number of latent variables across the validation sets, especially not between
validation set 3 and the other two sets. This no doubt contributes to the poor results but
even for the individual validation sets, the values for the explained variance are negative.

4.1.1 Optimization

The results from the optimization are given in tables 4.1 and 4.2. For both the original and
the decimated data, the common denominator amongst the chosen preprocessing sequences
is the use of derivatives. The optimization on the decimated data set did not provide
any conclusive results, almost every optimization run produced a different result. Still,
the chosen sequences can roughly be divided into two groups: derivatives followed by
smoothing and derivatives followed by scaling. The last group contains only one sequence,
D8, S5, S3, and this is also the only sequence that was chosen more than once by the
algorithm. Three sequences do not fall into either of these categories; two contain both
smoothing and scaling in addition to derivatives and one sequence starts with smoothing
followed by derivatives. It can also be noted that column autoscaling is the final step in the
top five solutions. Based on these results, there seems to be a possibility of increasing the
quality of the model built on the decimated data set, however, no particular preprocessing
sequence was heavily favoured by the algorithm. In addition, the model is still very poor
after preprocessing with negative values for the explained variance. Therefore, the analysis
that follows will be focused on the original low resolution data set.

For the original data set, the sequence D2, G7, G7, G7 was chosen most frequently by
the algorithm. D2 represents derivatives using a 3rd order Savitzky-Golay smoothing filter
with a window of size 21, and G7 represents Savitzky-Golay smoothing using a 3rd order
filter of size 43 which was also the maximum window size available to the algorithm. The
explained variance of the data set before and after this preprocessing sequence is shown
in figure 4.2. In order to display the effect on the individual validation sets, the explained
variance for the individual validation sets is displayed in figure 4.3c. It seems as if fewer
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latent variables are needed in order to obtain the best possible model when compared to
not using preprocessing. The model is however still very poor as indicated by the negative
values of Q2.

Table 4.1: Results from the optimization on the original data

Preprocessing Score Penalty MSEPnorm

- - - - - - 1.767 - 1.767

D1 D1 S5 G6 G7 G7 1.104 0.09 1.014
D2 S3 G7 S5 G7 - 1.163 0.05 1.113
D2 G7 G7 G7 - - 1.164 0.01 1.154
D2 G7 G7 G7 - - 1.164 0.01 1.154
D2 G7 G7 G7 - - 1.164 0.01 1.154
D2 G7 G7 G7 - - 1.164 0.01 1.154
D2 G7 G7 G7 - - 1.164 0.01 1.154
D7 G6 G7 G7 - - 1.170 0.01 1.160
D7 G7 G7 G6 - - 1.184 0.01 1.174
D7 G7 G7 - - - 1.197 - 1.197

Table 4.2: Results from the optimization on the decimated data

Preprocessing Score Penalty MSEPnorm

- - - - - - 1.682 - 1.682

D6 G13 S7 S3 - - 1.121 0.01 1.111
D8 S5 S3 - - - 1.164 - 1.164
D8 S5 S3 - - - 1.164 - 1.164
D8 S5 S4 - - - 1.164 - 1.164
D3 S5 G9 S3 - - 1.174 0.01 1.164
D1 G2 G3 - - - 1.187 - 1.187
D1 G2 G12 - - - 1.191 - 1.191
G2 D1 G3 - - - 1.192 - 1.192
D6 G3 G2 - - - 1.193 - 1.193
D1 G11 G3 - - - 1.193 - 1.193
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Figure 4.1: Explained variance for the original and decimated low resolution data sets
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Figure 4.2: Explained variance before and after preprocessing (original low resolution data
set)
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(b) Decimated data set without preprocessing
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(c) Preprocessed original data set (D2, G7, G7, G7 )

Figure 4.3: Explained variance for the three validation sets
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4.2 High resolution data set

In order to visualize the observations in the high resolution data before any data reduction,
a PCA analysis was performed. The data was mean centered before the PCA. A score
plot for the first two components is shown in figure 4.5. In these two components, the
observations are highly structured, a large part of them describing an “arc looking” pattern.
This structure is somewhat correlated with the time when the observations were made.
This can be seen coloring the observations according to the date when they were collected.
Due to the large number of observations, this is only shown after the data reduction in
figure 4.6. The observations seem to be grouped according to the time when they were
recorded and they seem to “drift” with time along the first component. An exception is
the observations recorded at the 2nd of February, which are grouped in two separate areas.
One possible reason for this time correlation could be the accumulation of deposits on the
inside of the tube. These deposits absorb some of the vibrations and the received signal
power decreases over time as the deposits accumulate. This effect is shown in figure 4.4a
where the mean of the observations is plotted over time. The dotted vertical lines indicate
when the system has been flushed, actions which clean the pipe from deposits. The graph
clearly shows that the received signal power increases directly after the flushings and then
decreases over time. This difference in magnitude of the observations might be what is
captured in the first components of the PCA score plot. In figures 4.4b and 4.4c, which
show how two single variables (PSD magnitudes at different frequencies) evolve over time,
it can be seen that the effect of the deposits differ for different frequencies and is not as
simple as that which is suggested by simply looking at the mean of each observation (mean
of PSD magnitudes over all frequencies at a given time).
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Figure 4.4: Different frequency bins over time
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4.2.1 Data reduction

A PCA score plot for the observations after the data reduction described in section 3.3.2
is shown in figure 4.6. When comparing figures 4.6 and 4.5, it is clear that the data
reduction has an adverse effect on the detail level; much of the structure in the third and
fourth quadrant of figure 4.5 has disappeared in figure 4.6. No outliers are present in the
first components in the reduced data set.

Figure 4.5: PCA score-plot of the high resolution data set before data reduction, encircled:
outlier

Figure 4.6: PCA score-plot of the high resolution data set after data reduction
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4.2.2 Optimization

The results of the optimization on the high resolution data set can be seen in table 4.3.
They differ from those in the previous section where the use of derivatives was the common
denominator. For the high resolution data set, different scaling methods are dominating.
The sequence S1, S5, S3 in particular was chosen six out of ten times. As a reminder,
whether S3 or S4 was chosen as the final step made no difference since the data was always
mean centered before PLS regression by default. The same sequence can also be found
in three of the remaining four solutions, accompanied by an additional step. In the last
remaining solution, an additional step has been inserted inside the sequence S1, S5, S3.
The sequence S1, S5, S3 (S1, S5, S4 ) denotes column centering, scaling of row vector
length to one and autoscaling of columns.

It is somewhat surprising to see S6 as the final step for the best candidate as it only
performs the intended average power normalization when it is located in the first position.
During testing however, it was discovered that adding S6 after S1, S5, S3 had very little
effect on the predicted y-values.

The results of the optimization on the wavelet coefficient high resolution data set can be
seen in table 4.4. For this data set, the results show that the preprocessing methods tested
in this thesis hardly improves the quality of the model at all. It can also be seen that when
compared to the high resolution data set without preprocessing, there does not appear to
be any significant adverse effect from using wavelet coefficients and discarding some of the
coefficients describing the details.

A comparison between the explained variance for the original high resolution data set and
the wavelet coefficient high resolution data set is given in figure 4.7. The values are similar
up until around eleven to twelve latent variables.

Table 4.3: Results from the optimization on the original data

Preprocessing Score Penalty MSEPnorm

- - - - - - 0.717 - 0.717

S1 S5 S3 S6 - - 0.594 0.01 0.584
S1 S5 S2 S3 - - 0.601 0.01 0.591
S6 S1 S5 S3 - - 0.606 0.01 0.595

G13 S1 S5 S3 - - 0.612 0.01 0.602
S1 S5 S3 - - - 0.614 - 0.614
S1 S5 S3 - - - 0.614 - 0.614
S1 S5 S3 - - - 0.614 - 0.614
S1 S5 S3 - - - 0.614 - 0.614
S1 S5 S4 - - - 0.614 - 0.614
S1 S5 S4 - - - 0.614 - 0.614
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Table 4.4: Results from the optimization on the wavelet compressed data

Preprocessing Score Penalty MSEPnorm

- - - - - - 0.722 - 0.722

S1 G9 - - - - 0.707 - 0.707
G9 S1 - - - - 0.707 - 0.707
S2 - - - - - 0.715 - 0.715
S2 - - - - - 0.715 - 0.715
S2 - - - - - 0.715 - 0.715
S2 - - - - - 0.715 - 0.715
S2 - - - - - 0.715 - 0.715
S2 - - - - - 0.715 - 0.715
S2 - - - - - 0.715 - 0.715
S2 - - - - - 0.715 - 0.715
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Figure 4.7: Explained variance for the original and wavelet coefficient high resolution data
sets (test set)

4.2.3 Testing

Some of the best models from the optimization were chosen for testing in order to determine
how well they would predict a different data set as an assessment of their generality. The
model built on data without preprocessing was also tested and used for comparison.

For the high resolution data set, three sequences were chosen for testing. The first one
was S1, S5, S3, S6, chosen since it obtained the highest optimization score. The second
sequence was S1, S5, S3, chosen since it was selected by the genetic algorithm six out of
ten times. The last sequence used for testing was S6, S1, S5, S3, chosen since it is easy to
understand the effect of using S6 as the first method. The explained variance from these
tests are shown in the graph in figure 4.8a. The only preprocessing sequence that improves
the results for both the validation set and the test set is S6, S1, S5, S3. The other ones
chosen for testing do not perform better than the non-treated data.

For the wavelet coefficient high resolution data set, all three sequences selected by the
algorithm were chosen for testing. Since S1, G9 and G9, S1 were found to produce the
same results, only those for S1, G9 are displayed in the figures and graphs that follow.
The explained variance is shown in the graph in figure 4.8b. It is only S2 that improves
the results for both the validation set and test set. For S1, G9, there is a large difference
between the results for the validation set and the test set. Using the validation set, a model
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built with ten latent variables produced the best model whereas the best model for the
test set was built using only four latent variables.

In order to further compare the chosen preprocessing sequences, the predicted y-values
were plotted together with the actual y-values for the test set. The results are shown in
figures 4.9 and 4.10 for the high resolution and wavelet coefficient high resolution data set
respectively. The optimum number of latent variables according to the results using the
validation set was used for each sequence.

For the high resolution data set, the improvements compared to the non-preprocessed data
are mainly on how well peaks are predicted. In all predicted y-observations resulting from
preprocessed data depicted in figure 4.9, the peaks seem to be modelled better. This is
especially evident right in the beginning, between observations 1850 and 2050, and at the
peak around observation 2420. In the range between observation 2050 and 2250 however,
the predicted y-values after preprocessing are consistently too low. An interesting range
is between observation 2430 up to the end, since this is where the different preprocessing
sequences differ the most from one another. Whereas S1, S5, S3 and S1, S5, S3, S6
seem to exaggerate the variations, S6, S1, S5, S3 seem to handle them better and this is
probably the main source of its success when looking at the overall prediction error.

For the wavelet coefficient high resolution data set, using preprocessing S2 does not change
the predicted y-values much, as can be seen by comparing the graphs in figures 4.10a and
4.10c. However, using the sequence S1, G9 gives a result that is different from the other
two as can be seen in the graph in figure 4.10b. Peaks, valleys in particular, are not
predicted as well as in the other two graphs. However, the predicted values seem closer
to the actual ones towards the beginning and the end of the y-value curve. The fact that
the predicted values using S1, G9 might differ was also hinted by the explained variance
in figure 4.8b. The Q2 values for no preprocessing using eleven latent variables and those
for preprocessing S2 using twelve latent variables are quite similar whereas the explained
variance for S1, G9 using ten latent variables is much lower. Ten latent variables produced
the best results for S1, G9 for the validation set. By comparing figures 4.9a and 4.10a, it
can also be seen that without further preprocessing, the predictions made using a model
built on the wavelet coefficient high resolution data set are very similar to those obtained
from using a model built on the original high resolution data set.

The comparisons in figures 4.9 and 4.10 also show the difficulty in describing the quality
of a model. The normalized MSEP e.g. is an objective measure not taking into account
the type of deviation (small peaks, offsets e.g.) or where the deviation occurs.
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Figure 4.8: Explained variance for the test set using different preprocessing sequences
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4.3 Summary - optimization results

For this summary, given in table 4.5, only one preprocessing sequence has been selected for
each data set. The selection was made by considering not only the optimization score but
also the complexity of each sequence. For the high resolution data sets, the results from
the testing were considered rather than those from the training.

Table 4.5: Summary of the tests on different data sets

Data set Preprocessing Q2
val Q2

test RMSEPtest Latent var.

High res. - 0.283 0.349 3.13 11
High res. wav. - 0.278 0.335 3.16 11
Low res. - -0.767 - - 4
Low res. decim. - -0.682 - - 3

High res. S6, S1, S5, S3 0.404 0.410 2.98 11
High res. wav. S2 0.285 0.343 3.14 12
Low res. D2, G7, G7, G7 -0.154 - - 2
Low res. decim. D8, S5, S3 -0.164 - - 2

4.4 Calculation cost

For all data sets, a total of 10 optimization runs were performed. Using equation 3.5, the
total number of evaluations of the fitness function can be estimated. The actual figure
will be lower since the algorithm saves the result for all evaluated chromosomes in order to
avoid remaking the same calculation twice. R̃mut, the average ratio of mutated individuals
per generation was obtained through simulations for a mutation rate of 0.035 which was
used for all optimization runs. The results, seen in figure 3.11, shows the probability of
having no mutations in a chromosome to be approximately 0.34, giving an R̃mut value of
0.66. The crossover rate was 0.8, the number of elite individuals was 2 and the population
sizes were 260 and 240 for the low resolution and high resolution data sets respectively.
The number of generations needed for the algorithm to reach the stopping criterion is given
in table 4.6 along with the estimated number of evaluations of the fitness function rounded
up to the nearest thousand. As a reference, the total number of fitness function evaluations
using an exhaustive search would be approximately 9 · 108, using equation 3.6 with q = 32
and l = 6.

The most time consuming data set was the high resolution data set. The total calculation
time for that data set was roughly 5 days running two optimization algorithms at the same
time on parallel processes. This motivates the use of the optimization algorithm since the
number of calculations was reduced over 6000 times compared to an exhaustive search. An
exact number for the time consumption of an exhaustive search is not possible to obtain
from these calculations since the evaluation time of a preprocessing sequence depended
on the length of the sequence and the type of preprocessing. Thus, the reduction in total
number of evaluations is not necessarily proportional to the reduction in computation time.
It is however evident that the reduction in computation time was considerable and that an
exhaustive search would not have been feasible.

The complexity of the cost surface is hinted in figure 4.11 showing the cost surface for two
preprocessing steps on the high resolution data set. Even if only two steps are used, there
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are several local minima making the optimization task more difficult. In addition, some of
the minima are very small, suggesting that they may be very difficult to find.

Table 4.6: The number of generations needed for the different tests

Data set Min Max Average Eval. of fitness funct.

High res. 32 79 49 140,000
High res. wav. 15 25 19 55,000
Low res. 28 49 37 115,000
Low res. decim. 20 46 29 88,000

Cost surface, two preprocessing steps
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Figure 4.11: Cost surface for two preprocessing steps, high resolution data set. The colorbar
values are normalized MSEP.
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5 Discussion

The investigation of the genetic algorithm developed in this project was limited. Although
not treated in this report, there are e.g. other types of selection, crossover and mutation
which might have performed better. Also, ones these parameters had been fixed, inputs
such as mutation rate and crossover rate were largely decided on a trial and error basis. It
is therefore likely that the performance of the genetic algorithm could be improved by a
more thorough investigation towards that end.

One such problem that could have an interesting solution is how to generate the initial
population. Due to the high cardinality of the alphabet used for the chromosomes (there
are 31 different preprocessing methods to choose from), the required population size for
sufficient sampling of the cost surface becomes quite big. It is however possible to provide
better sampling by generating initial populations using codes instead of random values
[11]. This might improve the performance of the genetic algorithm since the population
sizes used in this thesis are small for such a high cardinality alphabet.

When it comes to how the genetic algorithm was used in this thesis, the choice of how
many times the optimization was performed on each data set could be discussed. Using
ten runs was decided upon based on the time consumption of the largest data set (the high
resolution data set). It would however have been possible to use considerably more runs
for the smaller data sets and this might have produced clearer results. The reason for why
this was not done was to provide consistency between the investigations on the different
data sets.

As to the results from the optimization, having a good resolution of observations is clearly
preferable as seen when comparing the results from the high and the low resolution data
sets. But even for the high resolution data set, the fact that most of the preprocessing
sequences that performed well when using the validation set performed poorly for the test
set, raises some doubts regarding the sequences that performed well for both sets. It is
possible that these sequences were particular to those two particular sets and that a cross-
validation approach would have been a better choice. The reason for why this was not used
was, as mentioned before, the time it would have taken to evaluate the high resolution data
set.

The preprocessing methods investigated in this thesis are standard ones, not adapted
specifically for this type of data. Developing more specialized preprocessing methods,
feature extraction e.g., might give better results. Also, the investigation was limited by
the default column centering performed by the plsregress command in MATLAB.

The way the quality of a model was determined in this thesis was also quite standard.
Using a more specialized measure of quality could help focusing on specific traits such as
peak characterization or steady state offsets.

There was not enough time to investigate how the accumulation of deposits affected the
recorded signal and whether this knowledge could be used to improve the predictions.
This could be the basis for future work. Using more information as input, such as fluid
temperature, might also help improve the predictions.

Another subject that was not considered due to time constraints was the possibility of
obtaining a model that used fewer latent variables to achieve a similar predictive capability
to that of a model based on non-preprocessed data. This would alleviate some of the
computational burden of the digital signal processor used in the Acospector.

42 , Signals and Systems, Master of Science Thesis 2011



6 Conclusions

It has been shown in this thesis that using a genetic algorithm in order to select prepro-
cessing methods for PLS regression of acoustic spectroscopy data works and provides good
solutions for the optimization problem as it is stated. The main difficulty lies in finding a
good measure of quality for a prediction model in order to use in the fitness function.

Further investigation of the settings in the genetic algorithm is needed to provide a faster
optimization and possibly more accurate results.

The results from the optimization show that it is possible to improve the prediction error
for a given data set. However, most preprocessing sequences seem to be specific to that
particular data set. Consequently, it cannot be said that a preprocessing sequence was
found that could improve the prediction results in general or that could provide a more
robust model.

There does seem to be possibilities of creating a faster measurement procedure by adjusting
the size of the temporal window when constructing the PSD spectra. Using wavelet com-
pressed spectra would also improve the time used for calculating the regression, although
the benefit of this depends on the time needed for calculating the wavelet transformation.
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A Fourier transforms

The following equations describe some basic properties of the Fourier transform. All infor-
mation was collected from [10].

The continuous Fourier transform and its inverse:

F{x(t)} = X(ω) =

∫ ∞
−∞

x(t)e−jωt dt (A.1)

F−1{X(ω)} =
1

2π

∫ ∞
−∞

X(ω)ejωt dω (A.2)

The discrete-time Fourier transform and its inverse:

DT F{x[n]} = X(Ω) =
∞∑

n=−∞

x[n]e−jnΩ, x[n] = x(nTs), Ω = ωTs (A.3)

DT F−1{X(Ω)} =
1

2π

∫
2π

X(Ω)ejnΩ dΩ (A.4)

where Ts is the sampling interval in seconds.

The discrete Fourier transform and its inverse:

DF{x[n]} = X[k] =
N−1∑
n=0

x[n]e−j2πkn/N , k = 0, 1, . . . , N − 1 (A.5)

DF−1{X[k]} =
1

N

N−1∑
k=0

X[k]ej2πkn/N , n = 0, 1, . . . , N − 1 (A.6)

If a continuous time signal x(t) is sampled at intervals nTs, the sampled signal is xs(t) =
∞∑

n=−∞
x(nTs)δ(t− nTs) and its Fourier transform is F{xs(t)} which using A.1 becomes:

F{xs(t)} =
∞∑

n=−∞

x(nTs)e
−jnωTs (A.7)

This gives rise to the Discrete-time Fourier transform given in A.3, where Ω is a continuous
variable, periodic with period 2π. X(Ω) is as a result a continuous function, and cannot be
handled in a computer unless it is sampled. If one period of X(Ω) is sampled at intervals

2πk/N , the sampled function is XS(Ω) =
N−1∑
k=0

X(2πk/N)δ(Ω − 2πk/N). This function

can be obtained directly from the sampled time domain signal x[n], and the transform for
doing so is the Discrete Fourier transform given in A.5.
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B Convolution

The following equations describe some basic properties of convolution. All information was
collected from [10].

The convolution integral:

x(t) ∗ h(t) =

∫ ∞
−∞

x(τ)h(t− τ) dτ (B.1)

The associative property of convolution:

(x ∗ h1) ∗ h2 = x ∗ (h1 ∗ h2) (B.2)

Convolution and Fourier transforms:

F{x(t) ∗ h(t)} = X(ω)H(ω) (B.3)

F{x(t)h(t)} = X(ω) ∗H(ω) (B.4)

where X(ω) is the Fourier transform of x(t).
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C Random processes

The information in this appendix is collected from [9].

A random variable X can be described as a function whose values are the result of some
experiment. A coin flipping experiment could e.g. generate a random variable with two
possible outcomes. A random process X(t) is much the same, only each outcome of the
experiment results in a function (in time e.g.) x(t). The coin flipping experiment could
e.g. give rise to two sinusoids with different frequencies.

The mean function µX(t) of a random process X(t) is the expected value of the process,
E[x(t)] as defined by

E[X(t)] =

∞∫
−∞

xfX(x; t) dx (C.1)

where fX(x; t) is the probability density function of X(t). Basically, it is a weighted average
of all the possible values that X(t) can take, more probable values having a larger weight.

The variance, σ2, of X(t) is E[(x(t)− µx(t))2], where µx(t) = E[x(t)]:

σ2 =

∞∫
−∞

(x− µX)2fX(x; t) dx (C.2)

The autocorrelation function RXX(t, t+ τ) of a random process X(t) is defined by

RXX(t, t+ τ)

∞∫
−∞

x1x2fX1,X2(x1, x2; t, t+ τ) dx1dx2 (C.3)

where fX1,X2(x1, x2; t, t+ τ) is the joint probability density function of X(t1) and X(t2). It
describes the relationship between two samples of a random process.

If µX(t) is constant, and RXX(t, t+ τ) is a function of only τ , RXX(τ), the random process
X(t) is said to be wide sense stationary.

In order to calculate µX(t) and RXX(t, t + τ), an ensemble average, an average over all
realizations of a random process, is needed. If however a wide sense stationary process is
ergodic, then the time average and time-average autocorrelation function for one realization
of the process, given in equations C.4 and C.5, are the same as the ensemble averages and
can be used instead of C.3 and C.1.

x(t) = lim
T→∞

1

T

T/2∫
−T/2

x(t) dt (C.4)

RXX(τ) = lim
T→∞

1

T

T/2∫
−T/2

x(t)x(t+ τ) dt (C.5)
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