
	
	
	

	
	
	

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

	

	
	
	
	
	
	
Scaling OpenStack Clouds Using
Peer-to-peer Technologies

Master’s thesis in Computer Systems and Networks	
	
XIN HAN

Master’s thesis 2016:NN

Scaling OpenStack CloudsUsing Peer-to-peer
Technologies

XIN HAN

Department of Computer Science and Engineering
Chalmers University of Technology And University of Gothenburg

Gothenburg, Sweden 2016

Scaling OpenStack CloudsUsing Peer-to-peer Technologies
XIN HAN

© XIN HAN, 2016.

Supervisors:
Vincenzo Gulisano, Department of Computer Science and Engineering
Joao Monteiro Soares, Ericsson
Fetahi Wuhib, Ericsson
Vinay Yadhav, Ericsson

Examiner:
Magnus Almgren, Department of Computer Science and Engineering

Master’s Thesis 2016:NN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Illustration of P2P OpenStack cloud system. Each cloud is a standalone
OpenStack cloud instance. Cloud instances are federated as one using P2P tech-
nologies.

Gothenburg, Sweden 2016

iv

Scaling OpenStack Clouds Using Peer-to-peerTechnologies
XIN HAN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
OpenStack is an open-source software platform for cloud computing, mostly de-
ployed as an infrastructure-as-a-service (IaaS) and has a user base in industry and
academia to date. Despite its popularity, OpenStack still has drawbacks in terms of
scalability of number of compute nodes (metal machines) in a single cloud instance.
More precisely, a single standard OpenStack cloud instance does not scale well and
fails to handle user request once its number of compute nodes reaches a particular
amount. The particular amount depends on how the cloud instance is deployed and
how many computing resources are provisioned to the cloud instance. This the-
sis proposes a solution that allows to scale up OpenStack cloud instances by using
peer-to-peer (P2P) technologies. The solution abstracts multiple OpenStack cloud
instances as one, providing the same user experience as using a single and standard
OpenStack cloud instance. This thesis was done at Ericsson Research Department
in Stockholm, Sweden. In the thesis, we design and develop a proof-of-concept of
the solution by implementing a software agent which runs on an OpenStack cloud
instance, working as a message broker and providing OpenStack services to users.
Association of agents is achieved by an inexpensive group membership protocol –
Cyclon. We evaluate our P2P-based solution by comparing its system performance
with a standard OpenStack deployment in terms of response time, failure resistance
and CPU utilization. Results show that it is feasible to integrate virtual resources
across multiple OpenStack cloud instances while abstracting them as a single cloud
instance. Moreover, it is also shown that the proposed approach has higher failure
resistance to certain operations (e.g. upload image and boot virtual machine). In
addition, the solution has no limitation on a number of cloud instances and its per-
formance, such as response time, failure resistance and CPU utilization, improves
with the increasing number of cloud instances.

Keywords: Cloud Computing, OpenStack, Peer-to-peer, Distributed Systems, Scal-
ability.

v

Acknowledgements

I would like to show my sincere gratitude to my supervisor Vincenzo Gulisano and
examiner Magnus Almgren and Joao Monteiro Soares, Fetahi Wuhib, Vinay Yadhav
at Ericsson for sharing their pearls of wisdom and assisting with my thesis work
during the whole process from proposing, planning, implementing to writing and
David Bennehag and Yanuar T. Aditya Nugraha for their comments on an earlier
version of the manuscript.

Xin Han, Stockholm, December 2016

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1

1.1.1 Peer-to-peer Overlay . 1
1.1.2 CYCLON Protocol . 2
1.1.3 RESTful API . 2
1.1.4 OpenStack . 2

1.2 Problem Description . 3
1.3 Motivation . 5

2 Agent Design 7
2.1 Agent . 7
2.2 System Architecture . 7
2.3 Integration with OpenStack . 8
2.4 Resource Federation . 9

3 Agent Implementation 11
3.1 Agent Architecture . 11
3.2 Agent DB . 12
3.3 Agent HTTP Server . 14

3.3.1 Agent API and Proxy Components 14
3.4 Implementation of CYCLON protocol 19
3.5 Cloud Selection Scheduler . 20

4 Evaluation and Result 23
4.1 Evaluation Framework . 23
4.2 Experimental Environment Setup . 23

4.2.1 Scenario One . 24
4.2.2 Scenario Two . 26

4.3 Experimental Results and Analysis 26
4.3.1 Scenario One . 26

4.3.1.1 Response Time . 27
4.3.1.2 Failure Rate . 29
4.3.1.3 CPU Usage . 29

ix

Contents

4.3.1.4 Distribution of VMs 31
4.3.2 Scenario Two . 32

4.3.2.1 Response Time . 32
4.3.2.2 CPU Usage . 32

5 Future Work 35

6 Related Work 37

7 Discussion and Conclusion 41
7.1 Societal and ecological contribution 41
7.2 Conclusion . 41

Bibliography 43

x

List of Figures

1.1 OpenStack Services Overview . 3
1.2 Example of Interaction Between OpenStack and Client via OpenStack

API . 3
1.3 Architecture of Standard Nova deployment 4

2.1 System Architecture of P2P OpenStack Clouds System 8
2.2 Integration with OpenStack . 9
2.3 Example of Resource Federation . 10

3.1 Agent Architecture . 11
3.2 Entity Relationship Diagram of Image, Network, Subnet and VM . . 13
3.3 Work Flow of Handling User Request by Agent API and Proxy Com-

ponents . 15

4.1 System Architecture of P2P testbed 25
4.2 System Architecture of Standard testbed 26
4.3 Create An Image and Boot A VM (P2P with 16 Cloudlets) 27
4.4 Create An Image and Boot A VM (Standard with 16 Compute Nodes) 28
4.5 Comparison of P2P System and Standard OpenStack Handling Bench-

mark of Creating An Image and Booting A VM 29
4.6 Failure Rate of P2P System and Standard OpenStack Handling Bench-

mark of Creating An Image and Booting A VM 30
4.7 Comparison of CPU Usage of P2P Testbed and Standard OpenStack

Testbed in Case of Various Concurrency 30
4.8 Comparison of CPU Usage of Controller Nodes in P2P Testbed and

Standard OpenStack Testbed in Case of Concurrency 128 31
4.9 Distribution of VMs over 25 Times of Handling Benchmark of Creat-

ing An Image and Booting A VM . 32
4.10 Response Time in Case of Fixed Concurrency and Varied System Size 33
4.11 CPU Usage in Cases of Varied System Size and Fixed Number of

Concurrency . 34

xi

List of Figures

xii

List of Tables

3.1 Mapping Between CRD And HTTP Methods 15
3.2 Mapping Agent Service APIs and Identity Service APIs 16
3.3 Mapping Between Agent Service APIs and Image APIs 16
3.4 Mapping Between Agent Service APIs and Networking APIs 16
3.5 Mapping Between Agent Service APIs and Compute APIs 17

4.1 Four Types of Node Configuration . 24
4.2 Services Run on Keystone Node, Controller Node and Compute Node

of P2P System . 24
4.3 Create An Image and Boot A VM (P2P System with 16 Cloudlets) . 27
4.4 Create An Image and Boot A VM (Standard OpenStack with 16

Compute Nodes) . 28
4.5 Create An Image and Boot A VM (P2P System with Varied System

Size in Case of Concurrency 16) . 33

xiii

List of Tables

xiv

1
Introduction

1.1 Background

Cloud computing is an Internet-based computing which provides shared and on-
demand computer processing resources in terms of networks, servers, storage and
services. It enables enterprises and users to store and process their data with elastic
capabilities. A cloud is a large-scale distributed system that dynamically provides
computing resources as a service. The services provided by cloud are generally
classified into di�erent models such as Infrastructure-as-a-Service(IaaS), Platform-
as-a-Service(PaaS) and Software-as-a-Service(SaaS) [1].

1.1.1 Peer-to-peer Overlay

Due to the growth of Internet in terms of size and speed in the past few years,
deployment of networks and services indicate a shift from traditional server-client
models to fully distributed Peer-to-peer(P2P) models. In P2P system, peers collab-
orate with each other, sharing duties and benefits. Peers are capable of operating
large-scale tasks in a simple and scalable way by distributing responsibilities among
participating peers, instead of depending on dedicated, expensive, and hard to man-
age centralized servers.

Presently, there are three main categories of P2P systems in terms of overlay man-
agement. One is structured P2P system which imposes a linkage structure among
peers such as Distributed Hash Table [2]. Notable distributed overlays which use
DHTs include the Kad network, the Coral Content Distribution Network, YaCy, the
Storm botnet, and BitTorrent’s distributed tracker [3]. Another one is unstructured
P2P system, peers are created either based on proximity metric probabilistically or
just randomly, instead of being imposed to be a particular structure on the overlay
network by design. Gnutella, Gossip, and Kazaa are examples of unstructured P2P
protocols [4]. The third category is the hybrid model which is a combination of
server-client and P2P models to have a central server that helps peers find each
other. Currently, the hybrid model is possession of better performance than either
pure structured overlays or pure unstructured overlays as certain functions, such
as searching, requires a centralized functionality but benefit from the decentralized
aggregation of nodes provided by unstructured networks [5].

1

1. Introduction

1.1.2 CYCLON Protocol
CYCLON is a gossip-based, highly scalable, robust, completely decentralized and
inexpensive group management protocol for unstructured overlays. CYCLON pro-
tocol is shown to construct graphs that have low diameter, low clustering, highly
symmetric node degrees, and that are highly resilient to massive node failures. More-
over, it is highly reactive to restoring randomness when a large number of nodes fail.
CYCLON protocol does not maintain any global information or require any sort of
administration, instead, each peer knows a small, continuously changing set of other
peers, named its neighbors and periodically contacts a neighbor with the highest
age from to exchange part of their neighbors.

1.1.3 RESTful API
Representational state transfer (RESTful) web services provide interoperability be-
tween computing systems on the Internet. It is a software architectural design
pattern and a practical approach for web application development where a system
needs to scale out or needs a simple way to interact with independent components
[6]. An Application Programming Interface (API) that follows the RESTful fash-
ion is called a RESTful API. RESTful API uses Uniform Resource Identifier (URI)
to represent resources, it is scalable and stateless. The original HTTP verbs map
to operations on resources. GET method is used for getting the resources; POST
method is used for creating a new resource; PUT method is used for updating a
resource by resource’s id and DELETE method is used for deleting a resource or a
collection of resources.

1.1.4 OpenStack
OpenStack is an open source IaaS cloud computing platform widely used in industry
[7]. It consists of interrelated components that control hardware pools of computing,
storage and networking resources throughout a data center and empowers users
to provision resources. Notable users of OpenStack are NASA, PayPal and eBay.
OpenStack embraces a modular architecture and comprises a set of interrelated
services. Below is a quick breakdown of what they are called in OpenStack, and
what they do.

• Compute service(Nova): Nova is a component which allows users to create and
manage virtual machines (VMs) using machine images. It is the brain of a
cloud. Nova facilitates management of VMs through an abstraction layer that
interfaces with supported hypervisors.

• Identity service (Keystone): Keystone provides a central directory of users
mapped to the OpenStack services. It is used to provide an authentication
and authorization service for other OpenStack services throughout the entire
cloud infrastructure.

• Image service (Glance): Glance provides image discovery, registration and
delivery services to Nova, as needed.

• Networking (Neutron): A component for managing virtual networks. Neutron
provides various networking services to cloud users (tenants) such as IP ad-

2

1. Introduction

dress management, DNS, DHCP, load balancing, and security groups (network
access rules, like firewall policies).

• Dashboard (Horizon): Horizon provides a web-based user interface to Open-
Stack services including Nova, Swift, Keystone, etc.

Figure 1.1 provides an overview of main services of OpenStack.

Figure 1.1: OpenStack Services Overview

An endpoint is no more than a URL that can be used to access a service of Open-
Stack. A service is any OpenStack service such as Compute service, Image service
and Networking service. Through services, users are able to access and operate
computing resources on demand. OpenStack exposes endpoints of services of in-
ternal components, such as Nova, Glance, Neutron, Keystone, to external users by
OpenStack APIs. The APIs are RESTful interfaces in which requests are built as
URL paths, users can directly send URL requests to OpenStack services to issue
commands of managing resources in OpenStack cloud through cURL, OpenStack
command-line client and REST clients[12]. Figure 1.2 illustrates an example of
interaction between OpenStack and client via OpenStack API.

Figure 1.2: Example of Interaction Between OpenStack and Client via OpenStack
API

1.2 Problem Description
In OpenStack’s Nova component, a database is used to store current state of all
objects among compute nodes and a message queue is used for collaboration be-

3

1. Introduction

tween services in Nova such as nova-api, nova-conductor, nova-scheduler and nova-
compute. Figure 1.3 shows the architecture of a standard Nova deployment. Nova
services can be deployed on di�erent physical machines. The message queue can be
either RabbitMQ or Qpid and it is a central messaging component which enables
communication and interoperability between Nova components in a loosely couple
fashion.

Figure 1.3: Architecture of Standard Nova deployment

Despite OpenStack’s popularity, Nova still has limited scalability in terms of scaling
up amount of compute nodes. More precisely, the database and the message queue
of OpenStack Nova are identified as bottlenecks [8, 9]. In a test case of Cisco’s
testing report [9], the test was monitored using RabbitMQ management plugin and
was done by adding compute nodes to OpenStack cloud simultaneously. The finding
of this test case was that number of RabbitMQ Socket Descriptors was the limiting
factor at 147 compute nodes per cloud controller. From Cisco’s testing result, we
know that OpenStack does not scale well when a quantity of compute nodes reaches
a specific number.

As an open source project, OpenStack has been significantly developed for years,
however, the scalability drawback has not been perfectly solved yet. For the sake
of solving the scalability issue, one can look at this problem from di�erent angles.
One way to look at this problem is component wise. A solution could be fixing
the problem of each individual component, for instance, message queue of Nova
component. However, due to OpenStack’s complexity, solving scalability problem
in this way would be extremely complicated and would take a risk of a�ecting
integrity with other components. Besides, in order to scale an OpenStack cloud
instance (cloudlet) in terms of compute nodes, even if the message queue issue of
Nova is solved, all other components, such as Neutron and Glance, still need to be
scalable to satisfy service demand of increased number of compute nodes as well.
From another angle to look at this problem, instead of aiming to solve scalability
issue of an individual component, we can solve the scalability issue on a higher

4

1. Introduction

and abstracted level by associating multiple clouds instances as one cloud cluster,
regardless of the scalability properties of each cloud instance or individual OpenStack
component. A possible solution could be scaling OpenStack cloud instances using
P2P technologies and providing an abstraction of these collaborated cloud instances
as one in order to enable the abstracted system to allocate as many compute nodes
as all associated cloud instances could do so.

1.3 Motivation
This thesis aims to provide a solution for scaling OpenStack cloud instances on cloud
cluster level. Scaling standalone OpenStack cloud instances using P2P technologies
and abstracting these cloud instances as one without a�ecting end-user experience
are what we aim to solve in this thesis. In order to associate multiple OpenStack
cloud instances, an additional software agent is supposed to be implemented and
deployed on each cloud instance, working as a message broker and providing services
of its a�liated OpenStack cloud to end users. Agents on di�erent cloud instances
should be interconnected to each other to comprise a P2P network. By abstracting
OpenStack cloud instances through agents, physical resources such as computing
capacity, storage and network are capable of being shared across distinct cloud
instances. By scaling cloud instances using P2P technologies, an OpenStack cloud
instance is supposed to easily join or leave the P2P system without causing any
improper functioning and the whole system should be scalable and flexible.

This thesis report is structured as follows. Chapter 2 provides an overview of agent
design. Chapter 3 discusses the implementation of agent in details. Chapter 4
evaluates the proposed solution and shows evaluation results, whereas chapter 5
and chapter 6 provide a discussion of future work and related work, separately.
Finally, chapter 7 concludes this thesis.

5

1. Introduction

6

2
Agent Design

The chapter presents what the agent is for, the system architecture of our proposed
P2P system with agents plugged on each OpenStack cloud instance, how does the
pluggable agent integrate with OpenStack cloud instance and group membership
among cloud instances.

2.1 Agent
An agent is a message broker which is supposed to be implemented and plugged
on each OpenStack cloud instance. Agent acts as proxy between OpenStack cloud
instances and end users which enables resource federation and collaboration among
cloud instances. In standard OpenStack deployment, a single user request is not
feasible to forwarded across multiple cloud instances and virtual resources that a
user acquires on distinct cloud instances lacks relevant association. While in our
proposed P2P system, each agent runs on its a�liated OpenStack cloud instance
and provides its own dedicated RESTful service endpoints to serve end users. More
precisely, agent maps received user request to a standard OpenStack user request and
forwards the request to corresponding cloud instance’s RESTful service endpoint.
Besides, agent federates computing resources from cloud instances and is capable of
provisioning or allocating resources on-demand and it maintains associated relation
among resources that user acquires on distinct cloud instances. In addition, each
agent keeps possession of a list of cloud instances based on the CYCLON group
membership protocol that we will discuss in the following section. These cloud
instances on the list are called neighbors and the list is called neighbor list. From
an user’s view, an agent is an entry point of the abstracted P2P system and cloud
instances behind the agent are transparent. Instead of sending request to original
OpenStack service endpoints, user sends requests to agent’s service endpoints by the
same manner of using a standard OpenStack cloud instance. With agents, multiple
cloud instances act as one.

2.2 System Architecture
In OpenStack, a region is a logical fence used to group OpenStack services in close
proximity to one another [10]. In other words, an OpenStack cloud instance is an
independent region. With OpenStack multi-region deployment, the identity service
Keystone, which is used by all other OpenStack components for authentication and
authorization, is capable of serving multiple OpenStack cloud instances.

7

2. Agent Design

Our proposed solution constructs a hybrid P2P system that is based on the Open-
Stack multi-region deployment in which all cloud instances share identity service
provided by one centralized Keystone instance. With agents deployed, our solu-
tion abstracts a flat structure which consists of one Keystone instance and multiple
cloud instances without any hierarchical layers. Each individual cloud instance with
its a�liated agent acts as one peer in the P2P system. Except requiring identity
service from Keystone instance, every peer shares resources amongst each other.
Due to advantages of flat P2P structure, load is able to be uniformly distributed
to participating peers in a sense and each individual peer is easy to join or leave
the P2P system without a�ecting operation of any other peer [11]. From a user’s
perspective of view, the whole abstracted P2P system serves as same as a single
standard OpenStack cloud instance. Figure 2.1 illustrates the system architecture
of our proposed P2P system.

Figure 2.1: System Architecture of P2P OpenStack Clouds System

2.3 Integration with OpenStack

As we mentioned in previous chapter, making changes in OpenStack is complicated
and risky of causing cloud to work in improper way. To this point, agent is designed
to be integrated with OpenStack cloud instance by running as a stand alone service.
Since OpenStack exposes its APIs in RESTful fashion which allows a user to operate
actions via cURL, OpenStack command-line client, REST clients or OpenStack SDK
based program [12]. Consequently, agent is also capable of operating actions on
OpenStack cloud via OpenStack RESTful APIs as desired. In addition, agent is

8

2. Agent Design

designed to provide RESTful HTTP service to work as a message broker which sites
between its a�liated OpenStack cloud instance and users, and performs mapping of
agent service endpoints and cloud service endpoints. More precisely, agent listens
on a specific port and waits for requests from users. Figure 2.2 illustrates how agent
works as message broker between cloud instances and users. As shown in this figure,
user interacts with agent via RESTful request and agent acquires services from cloud
instances via RESTful request as well. By given an example, a user sends a request
to the service endpoint of agent, once the request is received by the agent, the agent
firstly do a mapping between its service endpoint and service endpoint of OpenStack
cloud instance, then it forwards the request to the corresponding cloud instance’s
service endpoint via OpenStack’s RESTful API.

Figure 2.2: Integration with OpenStack

2.4 Resource Federation
Cloud based services are a growing business trend in the IT industry, where service
providers establish cloud and o�er computing resources (infrastructure, platform
and software) to consumers. Consumers often require virtual resources across mul-
tiple cloud instances, to settle their application needs. Single cloud provider may not
be able to address such requests because of lack of capacity or presence in multiple
cloud instances. Enterprises are adopting cloud based service to address their grow-
ing computing workload and they need resources across multiple cloud instances.
These instances sometimes span across multiple geographical locations. In this the-
sis work, the desired solution is to provide users an abstraction of OpenStack cloud
instances as one based on P2P overlay without a�ecting user experience. In order
to achieve this goal and e�ciently utilise virtual resources of various OpenStack
cloud instances, such as CPU, RAM, network, image file and storage, resources of
these cloud instances are supposed to be federated and provided altogether to users.
Resource federation is recognized as a promising mechanism aimed at the intercon-
nection of heterogeneous resources across several independent cloud infrastructures.
In order to provide a larger-scale and higher performance infrastructure, federation
enables on-demand provisioning of complex service and user can get access to much
larger pools of resources. However, OpenStack virtual resources are not feasible to
be shared across distinct clouds. For instance, an image file of cloud A can not
be used in cloud B when boots a VM in cloud B. In order to solve this problem,
the agent is designed to be capable of managing resources across distinct cloud in-
stances. Resource provisioning is required to e�ciently allocate limited resource on

9

2. Agent Design

resource provider cloud. Also, Provisioning is needed to provide sense of ownership
to end user. Agent is responsible for provisioning remote resources. It also maintains
provisioning information in a local database. The provisioning info will be used for
the purpose of resource info query. Figure 2.3 shows an example of resource feder-
ation, a user owns virtual resources from remote clouds on a local project through
an agent. One benefit of resource federation is that a user can use a single project
in host cloud to scope all the remote virtual resources across cloud instances.

Figure 2.3: Example of Resource Federation

10

3
Agent Implementation

This chapter discusses implementation details of the agent, including agent archi-
tecture, agent database, agent HTTP server, agent proxies and scope of OpenStack
APIs that the agent supports. The software agent is purely developed in Python
and mainly uses modules come with OpenStack installation.

3.1 Agent Architecture
The agent consists of multiple components, an Agent DB, an HTTP server, four
proxies, a CYCLON component in which a process of CYCLON protocol runs peri-
odically and a Scheduler component. The HTTP server provides service for Agent
API, Keystone Proxy, Glance Proxy, Neutron Proxy and Nova Proxy. Figure 3.1
shows agent architecture and responsibilities of each component are listed below.

Figure 3.1: Agent Architecture

• Agent DB: Runs MySQL database service and is responsible for storing user’s
resource allocation information.

• HTTP Server: Listens on a specific port, forwards request from a user to
OpenStack cloud and deliver response from OpenStack cloud to the user.

• Agent API: Exposes agent’s service endpoint to user by providing RESTful
APIs.

• Keystone Proxy: Works as proxy and maps agent’s service endpoint to Open-
Stack Identity service endpoint.

• Glance Proxy: Works as a broker and maps agent’s service endpoint to Open-
Stack Image service endpoint.

11

3. Agent Implementation

• Neutron Proxy: Works as broker and maps agent’s service endpoint to Open-
Stack Networking service endpoint.

• Nova Proxy: Works as broker and maps agent’s service endpoint to OpenStack
compute service endpoint.

• CYCLON: An implementation of Cyclon protocol. Maintains a list of its
a�liated agent’s neighbors and exchanges its view of neighbors with other
agents periodically.

• Cloud Selection Scheduler: Comprised of filters and weighers. When receives
a virtual resource creation request, selects an OpenStack cloud instance to
create requested virtual resource based on strategies of filters and weighers.

Every agent component collaborates with each other to serve users. Once user re-
quest arrives at agent HTTP server, Agent API component distributes the request
to Keystone proxy, Glance proxy, Neutron proxy or Nova proxy relevantly, waiting
for the response from the related proxy. These four proxies are brokers between
agent and OpenStack clouds, they receive mapped user request from Agent API
component and forwards the request to relevant OpenStack cloud according to in-
formation stored in Agent DB in the case of querying or deleting a virtual resource,
or decision made by cloud selection scheduler in the case of creating virtual resource
[14]. Once receives a request of creating or deleting a virtual resource, the Agent DB
is updated after the relevant request is successfully operated by OpenStack cloud.
The CYCLON component runs Cyclon protocol, periodically swaps neighbor list
with another agents in P2P system and provides neighbors’ information to its a�li-
ated agent when choosing an OpenStack cloud instance to create a virtual resource.
Details of agent components will be discussed in following sections.

3.2 Agent DB
The Agent DB components provides persistent data storing service. Instead of
directly using OpenStack database, in this solution, a dedicated database is used by
the agent to insert, delete and read data of users’ virtual resource information. As
a proof-of-concept, this solution only considers entities such as project, user, image,
network, subnet and VM. A project has multiple users and a user can belong to
multiple projects with various authorities; A project can have several networks and
a network can be shared with several projects; A network contains multiple subnets
and a subnet can be shared with multiple VMs; A project has multiple VMs and
an image boots several VMs. Except for VM, each entity such as image, network,
subnet has a unique id originally created by its a�liated OpenStack cloud instance,
called uuid_cloud in this solution, and a unique id created by its a�liated agent,
called uuid_agent in this solution. The uuid_cloud is only unique within entity’s
a�liated OpenStack cloud, while the uuid_agent is globally unique within the whole
P2P system. Since an entity excepts VM can be located at multiple OpenStack
cloud instances, so the relationship between uuid_agent and the uuid_cloud is one-
to-many. In other words, one uuid_agent can be mapped to multiple uuid_cloud.
Instead of sending a request with entity’s original unique id created by OpenStack
cloud instance when deleting or querying information of network, subnet or image,

12

3. Agent Implementation

user sends a request with the globally unique id created by the agent. As each VM is
globally unique and a VM is infeasible to be at multiple clouds, so it’s not necessary
to generate uuid_agent for VM. The unique id of a VM stored in agent database
is just the unique id originally created by its a�liated OpenStack cloud instance.
Figure 3.2 show an Entity-Relationship diagram (ER-diagram) of image, network,
subnet and VM.

Figure 3.2: Entity Relationship Diagram of Image, Network, Subnet and VM

The Agent DB stores data for entities such as image, network, subnet and VM, and
it is updated only in case of creating or deleting a virtual resource successfully. As
MySQL comes with OpenStack installation, so in this solution MySQL is used as the
dedicated database in Agent DB. The agent database contains four tables which are
Image table, Network table, Subnet table and VM table. A Python SQL toolkit and
Object Relational Mapper (ORM) – SQLAlchemy is used to interact with MySQL.
SQLAlchemy provides e�cient database access and it is able to classifies data set
into object models in a decoupled way [15]. As a virtual resource is possible in
multiple clouds, uuid_cloud holds the property of primary key.

Agent DB works as a supporting component to store user’s virtual resource allo-
cation information for this P2P solution. When the agent receives a request of
querying virtual resource information, it first looks up through its Agent DB and
maps uuid_agent to uuid_cloud, then forwards request to relevant OpenStack cloud

13

3. Agent Implementation

instance’s service endpoint by using the mapped uuid_cloud. The case of receiving
a request of deleting resource is similar to receiving a request of querying, the only
di�erence is if the virtual resource is successfully deleted by OpenStack cloud, the
agent updates its local database by removing the entry for the deleted resource. In
the case of receiving a request of creating a virtual resource, agent forwards the
request to service endpoint of chosen OpenStack cloud instance, if the request is
successfully operated by cloud instance, then agent generates a globally unique id
for the created virtual resource and update its local agent database by inserting a
new entry to the relevant data table.

3.3 Agent HTTP Server

Agent HTTP server is based on Python Web Server Gateway Interface (WSGI).
WSGI is capable of serving as interface between web applications and servers [16].
Conceptually, WSGI interface consists of "server" side and "application" side, where
the "application" side is invokable by the "server" side. In our solution, the agent
HTTP server is implemented using a Python library – Eventlet. Eventlet is a con-
current networking library for Python that provides built-in WSGI interface [17]
and uses libevent, an event notification library, for highly scalable non-blocking I/O
[18]. Apart from this two strengths, Evenlet is developed based on green threads
which are capable of doing networking tasks and work in cooperative fashion [19].
The agent HTTP server initiates a pool of green threads which pools control con-
currency at boot time. This is beneficial to limit amount of memory an application
can consume or make application behave consistently in the case of handling unpre-
dictable incoming connection. By default, the size of the green pool is 1000. Every
time, the agent HTTP server receives a RESTful request from a user, it firstly parses
this request based on requested API URL then invoke "application" side which is
the relevant callable proxy component, meanwhile, the user remains waiting until
gets any response. Once the relative operation is done by proxy component, the
agent HTTP server sends a response back to the user and terminates the connec-
tion between user and agent HTTP server. In addition, a waiting time is defined
at the server side, instead of making a user wait for unnecessary long time, if the
relevant proxy component does not respond after a timeout, the agent HTTP server
raises an exception and sends an error message back to the user and terminate the
connection.

3.3.1 Agent API and Proxy Components
Agent sits between its a�liated cloud and users, acting as a message broker, re-
ceiving RESTful requests from users, mapping Agent APIs to OpenStack APIs and
forwarding mapped request to OpenStack service endpoints. Agent exposes its inter-
nal services by providing RESTful APIs in the same manner as OpenStack RESTful
APIs. The only di�erence is that various OpenStack service endpoints listen on
their dedicated ports, instead, agent service endpoints listen on one specific port.
An Agent API scheme is shown below:

14

3. Agent Implementation

http://<agent-ip>:<agent-port>/<su�x>

Agent parses received request based on HTTP method and URL su�x, then forwards
the parsed request to the relevant proxy component. The mapping between agent
service endpoint and OpenStack service endpoint is operated by the relevant proxy
component such as Keystone Proxy, Glance Proxy, Neutron Proxy and Nova Proxy.
Each proxy component maps parsed request from Agent API to OpenStack service
endpoint and forwards mapped request to OpenStack service endpoint, waiting for
the response from OpenStack. Figure 3.3 illustrates the work flow of handling user
request by Agent API and relevant proxy components.

Figure 3.3: Work Flow of Handling User Request by Agent API and Proxy Com-
ponents

As a proof of concept, agent supports partial major OpenStack APIs which supports
Create, Read, Delete (CRD) operations of OpenStack Identity API, Compute API,
Image service API and Networking API. Each letter in the acronym CRD can map
to an HTTP method. Table 3.1 shows the mapping between CRD operations and
HTTP methods.

Table 3.1: Mapping Between CRD And HTTP Methods

Operation Method
Create PUT/POST
Read GET
Delete DELETE

Agent API is strictly based on RESTful API, and exposes agent’s service endpoints
to users. From a user’s perspective, the user just needs to send a request to Agent
API endpoint, instead of sending a request to standard OpenStack API endpoint.
As Agent API is in an OpenStack fashion, in which user has the same experience
ofV using standard OpenStack.

OpenStack Identity service generates authentication tokens that permit access to
OpenStack services’ REST APIs. Users obtain this token and the URL endpoints

15

3. Agent Implementation

for other service APIs by supplying their valid credentials to the authentication ser-
vice. Table 3.2 shows APIs mapping between OpenStack Agent service and Identity
service.

Table 3.2: Mapping Agent Service APIs and Identity Service APIs

Method Agent Service Endpoint Identity Service Public Endpoint Usage
POST :port/v3/auth/tokens :5000/v3/auth/tokens Authenticate identity and generates to-

ken
GET :port/v3/auth/tokens :5000/v3/auth/tokens Validate and show information for to-

ken

OpenStack Image service is responsible for storing virtual machine images and main-
taining a catalog of available images. Table 3.3 shows the mapping between Open-
Stack Image service APIs and Agent APIs.

Table 3.3: Mapping Between Agent Service APIs and Image APIs

Method Agent Service Endpoint Image Service Public Endpoint Usage
GET :port/v2/images :9292/v2/images List public virtual ma-

chine (VM) images
POST :port/v2/images :9292/v2/images Creates a virtual machine

(VM) image
GET :port/v2/images/{image_id} :9292/v2/images/{image_id} Show details for an image
DELETE :port/v2/images/{image_id} :9292/v2/images/{image_id} Delete an image
PUT :port/v2/images/{image_id}/file :9292/v2/images/{image_id}/file Upload binary image data
GET :port/v2/images/{image_id}/file :9292/v2/images/{image_id}/file Download binary image

data

OpenStack Networking API is used for managing virtualized networking resource
such as networks, subnets and ports. The APIs mapping between Agent service and
OpenStack Networking is shown in Table 3.4.

Table 3.4: Mapping Between Agent Service APIs and Networking APIs

Method Agent Service Endpoint Networking Public Endpoint Usage
GET :port/v2.0/networks :9696/v2.0/networks List networks
POST :port/v2.0/networks :9696/v2.0/networks Create a network
GET :port/v2.0/networks/{network_id} :9696/v2.0/networks/{network_id} Show network details
DELETE :port/v2.0/networks/{network_id} :9696/v2.0/networks/{network_id} Delete network
GET :port/v2.0/subnets :9696/v2.0/subnets List subnets
POST :port/v2.0/subnets :9696/v2.0/subnets Create subnets
GET :port/v2.0/subnets/{subnet_id} :9696/v2.0/subnets/{subnet_id} Show subnet details
DELETE :port/v2.0/subnets/{subnet_id} :9696/v2.0/subnets/{subnet_id} Delete subnet
GET :port/v2.0/ports :9696/v2.0/ports List ports
POST :port/v2.0/ports :9696/v2.0/ports Create ports
GET :port/v2.0/ports/{port_id} :9696/v2.0/ports/{port_id} Show port details
DELETE :port/v2.0/ports/{port_id} :9696/v2.0/ports/{port_id} Delete port

OpenStack Compute API is an interface of Compute service that provides server

16

3. Agent Implementation

capacity in the cloud. Compute servers come in di�erent flavors of memory, cores,
disk space, and CPU, and can be provisioned in minutes. Interactions with Compute
servers can happen programmatically with the OpenStack Compute API. Table 3.5
shows APIs mapping between Agent service and OpenStack Compute service.

Table 3.5: Mapping Between Agent Service APIs and Compute APIs

Method Agent Service Endpoint Networking Public Endpoint Usage
GET :port/v2.1/{tenant_id}/servers :8774/v2.1/{tenant_id}/servers List servers
POST :port/v2.1/{tenant_id}/servers :8774/v2.1/{tenant_id}/servers Create a

server
GET :port/v2.1/{tenant_id}/servers/detail :8774/v2.1/{tenant_id}/servers/detail List all

servers with
details

GET :port/v2.1/{tenant_id}/servers/{server_id} :8774/v2.1/{tenant_id}/servers/{server_id} Show details
for a server

DELETE :port/v2.1/{tenant_id}/servers/{server_id} :8774/v2.1/{tenant_id}/servers/{server_id} Delete a
server

GET :port/v2.1/{tenant_id}/flavors :8774/v2.1/{tenant_id}/flavors List flavors
POST :port/v2.1/{tenant_id}/flavors :8774/v2.1/{tenant_id}/flavors Create a fla-

vor
GET :port/v2.1/{tenant_id}/flavors/detail :8774/v2.1/{tenant_id}/flavors/detail List all fla-

vors with de-
tails

GET :port/v2.1/{tenant_id}/flavors/{flavor_id} :8774/v2.1/{tenant_id}/flavors/{flavor_id} Show details
for a flavor

DELETE :port/v2.1/{tenant_id}/flavors/{flavor_id} :8774/v2.1/{tenant_id}/flavors/{flavor_id} Delete a fla-
vor

GET :port/v2.1/{tenant_id}/os-hypervisors :8774/v2.1/{tenant_id}/os-hypervisors List hypervi-
sors

Proxy components work as message brokers. They are responsible for mapping
Agent API endpoint to OpenStack service endpoint, forwarding mapped request
to OpenStack cloud and delivering response sent from OpenStack cloud to user
via agent’s HTTP service. In the case of receiving a request of GET method,
involved proxy component map Agent API endpoint to OpenStack service endpoint
by looking up cloud IP address stored in agent database and appending appropriate
port number and URL su�x. Then the proxy component forwards the user request
with user’s token to mapped OpenStack cloud endpoint and delivers response sent
by the cloud to the user via agent’s HTTP service. A process of handling a request of
GET method by the proxy component is shown in WorkFlow 1. Handling DELETE
request is similar to handling GET request. WorkFlow 2 shows the process of
handling a request of DELETE method. In the case of handling a request of POST
method, there is one more step than then previous workflow. WorkFlow 3 shows
the process of handling a request of POST method.

17

3. Agent Implementation

Workflow 1 Handling Request of GET Method

1: Query cloud IP address in agent’s local database
2: Map to cloud service endpoint by appending appropriate service port number

and URL su�x to retrieved IP address
3: Forward user request with user’s token to mapped cloud service endpoint
4: Wait for response from cloud
5: Modify response received from cloud and deliver to user

Workflow 2 Handling Request of DELETE Method

1: Query cloud IP address in agent’s local database
2: Map to cloud service endpoint by appending appropriate service port number

and URL su�x to retrieved IP address
3: Forward user request with user’s token to mapped cloud service endpoint
4: Wait for response from cloud
5: If request is successfully operated by cloud, then update agent’s local database
6: Modify response received from cloud and deliver to user

Workflow 3 Handling Request of POST Method

1: Retrieve cloud’s virtual resource consumption information
2: According to cloud selection strategy, choose a cloud to allocate the virtual

resource.
3: Map to cloud service endpoint by appending appropriate service port number

and URL su�x to the chosen cloud’s IP address
4: Forward user request with user’s token to mapped cloud service endpoint
5: Wait for response from cloud
6: If request is successfully operated by cloud, then update agent’s local database
7: Modify response received from cloud and deliver to user

18

3. Agent Implementation

3.4 Implementation of CYCLON protocol

In CYCLON protocol[13], each peer is aware of a small continuously changing set
of other peers, named its neighbors. More formally, each peer maintains a neighbor
list in a fixed-size, small cache of c entries (with typical value 10, 50, or 100). Each
peer repeatedly initiates a neighbor exchange operation, called shu�e, with a subset
of l neighbors (1 <= l <= c) from its neighbor list, where l is a parameter, known
as shu�e length. In this solution, agent runs CYCLON protocol as a standalone
process. Neighbor list of an agent is stored in Memcached [21]. Memcached comes
with OpenStack installation and it’s a high-performance, distributed memory object
caching system which is capable of key-value store for small chunks of arbitrary data.
A neighbor data object has a key-value pair, key is neighbor’s IP address and value
is age which indicates the age of the neighbor since the moment it is created on
an agent’s neighbor list. Agent periodically initiates neighbor exchanges with its
neighbors at a fixed period T. The shu�ing operation of the initiating agent P is
shown in Workflow 4.

Algorithm 4 Shu�ing

1: Increase the age of all neighbors on P’s neighbor list by one
2: Choose a subset containing a neighbor Q with the highest age among all neigh-

bors on P’s neighbor list, and l-1 other random neighbors.
3: Replace Q’s entry with a new entry of age 0 and with P’s IP address
4: Send the updated subset to agent Q
5: Receive a subset from Q and remove Q’s entry on P’s neighbor list
6: Discard entries pointing at P and entries already contained on P’s neighbor list
7: Update P’s neighbor list to include all remaining entries, by firstly using empty

neighbor slot (if any), and secondly replacing entries among the ones sent to Q

On reception of a shu�ing request, agent Q responds by sending back a random
subset of at most l of its neighbors, and update its own neighbor list based on
received entries. The receiving agent Q does not increase any neighbor’s age until
it is its turn to initiate a shu�e. In the case of adding nodes and removing nodes
in this P2P system, the implement is strictly based on CYCLON protocol.

Since agent is able to actively initiate a shu�ing operation and handle a shu�ing
operation initiated by other agent concurrently. As well as, Memcached is frequently
queried during the shu�ing period, thence lock mechanism is used to avoid write-
read conflict. Lock is acquired right after agent initiate a round of shu�ing, more
precisely, the lock is acquired before step 1 in Workflow 4, and released after the
shu�ing operation is done. Lock mechanism brings a possibility of causing dead
lock, for instance, agent P shu�es with agent Q, agent Q shu�es with agent L,
while agent L shu�es with agent P. In order to avoid dead lock, a fixed waiting time
is set between step 4 and step 5 in Workflow 4. If the waiting time is exceeded, then
the agent release its lock and interrupt shu�ing operation.

19

3. Agent Implementation

3.5 Cloud Selection Scheduler
As a proof-of-concept, agent only supports creating virtual resources of images and
VMs. When agent receives a request of creating an image or booting a VM, it has
to decide where to create the requested virtual resource among those OpenStack
cloud instances on its neighbor list. Therefore, cloud selection scheduler is essential
to be implemented at agent to improve resource utilization. A cloud selection sched-
uler consists of two parts: filter and weigher. To prevent resource wastage either
from excessive occupation or through idling, cloud selection scheduler must predict
a virtual resource’s consumption and choose a suitable OpenStack cloud instance
before the virtual resource is created. The cloud selection scheduler is in charge
of scheduling decisions and taking into consideration of available OpenStack cloud
instances which may be characterized by di�erent resource capacities and features.
When a virtual resource creation request is received by agent, filter is applied to
determine if an OpenStack cloud instance has the adequate free capacity to meet
the requested resource parameters. After filtering, weigher is applied to score all the
filtered OpenStack cloud instances to pick the best one to create requested virtual
resource.

Filters and weigher are designed and implemented as pluggable modules on agent.
As a proof-of-concept, agent currently has two filters and three weighers. More
cloud selection strategies can be complemented in the future. These two filters are
categorized as follows:

• Resource-based filter: Retrieve information of resource capacity from all Open-
Stack cloud instances which are on agent’s neighbor list and filter cloud in-
stances which have an adequate free capacity to meet required resource pa-
rameter regarding memory, disk, CPU cores, and so on.

• Randomness-based filter: Filter OpenStack cloud instances based on a random
two choices function[14]. The random function simply picks two OpenStack
cloud instances from agent’s neighbor list. According to [14], pick two at
random has a signification improvement in system performance.

After filtering, the scheduler weighs available OpenStack cloud instances by apply-
ing weighers and select the best rated cloud instance to create virtual resource. In
this implement, there are three weighers named disk-based weigher, memory-based
weigher and image-based weigher separately. They are shown as follows:

• Disk-based weigher: Rates a cloud instance higher according to free disk. The
more free disk a cloud instance has, the higher is its rate.

• Memory-based weigher: Scores a cloud instance higher based on available
memory. A higher rated cloud instance has more free memory.

• Image-based weigher: Rates an OpenStack cloud instance relatively higher
scores which have the required image in the case of booting a VM.

Weighers are used in di�erent cases and multiple weighers can be used together

20

3. Agent Implementation

while weighting. In case of creating an image, the disk-based weigher is prior to be
used. While in case of booting a VM, the memory-based weigher and the image-
based weigher are supposed to be applied. Workflow5 shows a combination usage
of randomness-based filter, memory-based weigher and image-based weigher in case
of booting a VM.

Workflow 5 Combination Usage of Randomness-based Filter, Memory-based
Weigher and Image-based Weigher

1: If agent’s neighbor list is empty, then boot a VM at its a�liated cloud instance.
2: If there is only one neighbor on agent’s neighbor list, then apply memory-based

weigher and image-based weigher among the neighbor and agent’s a�liated cloud
instance. The one with higher score is chosen to boot VM.

3: If more than two neighbors are on agent’s neighbor list, first filter neighbors and
a�liated cloud instances then apply memory-based weigher and image-based
weigher among the two filtered cloud instances. The one with a higher score is
chosen to boot VM.

21

3. Agent Implementation

22

4
Evaluation and Result

In this chapter, the evaluation results and comparison of the proposed P2P system
and standard OpenStack are presented and discussed. The experimental environ-
ment setup will be discussed followed by result discussion and analysis.

4.1 Evaluation Framework
In this evaluation, in order to generate simulated loads and retrieve results from
simulations, Rally is chosen as the evaluation framework. Rally is a benchmarking
tool for validating, performance testing and benchmarking OpenStack at scale [22].
Rally’s benchmarking engine allows to write parameterized benchmark scenarios
and automatically perform tests under simulated real user loads. Results of these
tests and benchmarks, such as average/maximum response time and failure rate are
presented by Rally in a human readable form.

Rally enables user to customize benchmark scenarios. Benchmark scenarios are
what Rally actually uses to test the performance of an OpenStack deployment.
Each benchmark scenario performs a small set of atomic operations, thus testing
some simple use case, usually that of a specific OpenStack project. For example,
the "create_image_and_boot_instances" benchmark scenario allows to benchmark
the performance of a sequence of only several simple operations: it first creates
tenants and users per tenant, then creates an image and boots instances (or VMs)
per user (with customizable parameters), finally clean up resource created by this
benchmark.

4.2 Experimental Environment Setup
The experimental environment is not setup on bare metal machines, it is setup on
VMs of an OpenStack cluster instead which is hosted by 10 Ericsson’s GEP5-64-
1200 rack servers. Each GEP5-64-1200 consisted of 2 Intel Xeon E5-2658 v2 @
2.40GHz processors, 64 GB of RAM, 10 x 400 GB Intel SSD DC S3700 disk drives.
Experimental VMs are given various types of configurations in terms of the num-
ber of virtual CPUs (VCPUs), RAM. Table 4.1 shows four types of configuration.
VMs of controller node and compute node are comprised of 2 VCPUs and 4 GB of
RAM. VMs of Rally client node consisted of 1 VCPU and 2 GB of RAM. VMs of
Keystone node type are given a relatively larger number of VCPUs and RAM to

23

4. Evaluation and Result

Table 4.1: Four Types of Node Configuration

Configuration Keystone Node Controller Node Compute Node Rally Client Node
Number of VCPUs 8 2 2 1

RAM 16 GB 4GB 4GB 2GB
Disk 160 GB 10GB 10GB 10GB

Operating System Ubuntu LTS 14.04 Ubuntu LTS 14.04 Ubuntu LTS 14.04 Ubuntu LTS 14.04

reduce e�ects of Keystone to system performance. Each node has di�erent Open-
Stack services running, Table 4.2 shows services run on Keystone node, controller
node and compute node. Number of VMs we run in experiments based on testing
scenarios. The OpenStack version chosen in this evaluation is Liberty. The CY-
CLON protocol parameters are set as follows. The length of the neighbor list is c
= 4, shu�e length is l = 2, and fixed shu�ing interval is T = 30s. In addition, the
cloud selection scheduler applies a randomness-based filter for filtering. In the case
of creating an image, disk-based weigher is used. Whereas in the case of booting a
VM, memory-based weigher and image-based weigher are used.

Table 4.2: Services Run on Keystone Node, Controller Node and Compute Node
of P2P System

Type of Node Service
Keystone Node mysql, rabbitmq, keystone

Controller Node
agent, rabbitmq, mysql, keystone, nova-api,

nova-certificate, nova-object-store, nova-conductor, nova-scheduler,
nova-certificate-authentication, neutron, glance-api, glance-registry

Compute Node nova-compute, nova-network

Rally benchmark scenario chosen in this evaluation is the one discussed before -
"create_image_and_boot_instances" with customized parameters. Due to limited
resources in terms of number of VCPUs, RAM and storage in this experimental
environment, the image file used in this benchmark is an empty image file and using
empty image file does not cause any error to the process of booting instances on
OpenStack. In addition, the virtual hardware template for instances, called flavor,
is created as follow: 1 VCPU, 1 MB of RAM and 10 GB of disk. In the chosen
benchmark scenario, the number of tenants, users per tenant and instances per user
all are one. In other words, the sequence of atomic operations of the chosen scenario
is creating a tenant, creating a user of that tenant, creating an image and booting
an instance.

4.2.1 Scenario One
In scenario one, two testbeds are set up for the purpose of comparison. One is for
the proposed P2P system, one is for standard OpenStack. The performance of these
two systems is aimed to be evaluated and compared in terms of a varied number of
concurrent user loads against system (we use concurrency as alias in following text)
and fixed system size.

24

4. Evaluation and Result

Figure 4.1: System Architecture of P2P testbed

Figure 4.1 shows system architecture of the P2P testbed which is comprised of one
centralized Keystone node and sixteen cloudlets, each cloudlet consists of one con-
troller node and one compute node. Besides, each cloudlet runs one agent on the
controller node. All the cloudlets share identity service provided by the Keystone
node. Besides, Rally client nodes are created in the case of di�erent concurrency
and each Rally client is on pair with one agent. Rally clients concurrently send
requests to agents under the "create_image_and_boot_instances" benchmark sce-
nario. From an overall system perspective, these concurrent requests are uniformly
distributed to sixteen agents. For instance, in the case of concurrency 16, sixteen
Rally clients send requests to the P2P system, more precisely, sixteen Rally clients
send requests to sixteen agents and each Rally client executes the benchmark sce-
nario and only send requests to the agent that they are on pair with.

Figure 4.2 shows system architecture of the standard OpenStack testbed which con-
sists of one centralized Keystone node, one cloudlet which consists of one controller
node and sixteen compute nodes. The Keystone node provides identity service for
this testbed and the sixteen compute nodes are connected to the controller node to
provide nova-compute service. Rally client nodes are also created in case of di�er-
ent concurrency and all the Rally clients are bonded to the controller node of the
standard OpenStack system. In other words, all Rally clients execute the bench-
mark scenario and send requests to the controller node concurrently. For instance,
in the case of concurrency 16, sixteen Rally clients send requests to the standard
OpenStack system, more precisely, sixteen Rally clients concurrently execute the
benchmark scenario and send requests to the controller node.

In every case of varied concurrency, the benchmark is executed repeatedly 25 times
on both the P2P system and the standard OpenStack system.

25

4. Evaluation and Result

Figure 4.2: System Architecture of Standard testbed

4.2.2 Scenario Two

In scenario two, one P2P testbed is set up at a size of one Keystone node, varied
number of cloudlets. Precisely, each cloudlet is comprised of one controller node, one
compute node and one agent running on the controller node. The P2P testbed is
essentially the same as the P2P testbed in scenario one, while system performance
in scenario two is aimed to be evaluated regarding varied system size and fixed
concurrency. The fixed concurrency is set as 16 and system size is scaled from 1
up to 16. In addition, Rally client nodes are created in the case of di�erent system
size and each Rally client is on pair with one agent. The benchmark in scenario
two is the same as the one in scenario one. For every system size, the benchmark is
repeatedly executed 25 times on the P2P testbed.

4.3 Experimental Results and Analysis

This section shows experimental results and analysis of scenario one and scenario
two separately.

4.3.1 Scenario One

Evaluation results of scenario one are presented and discussed in this subsection
regarding response time, failure rate, CPU usage and distribution of VMs.

26

4. Evaluation and Result

4.3.1.1 Response Time

Table 4.3 shows the response time of the P2P system with 16 Cloudlets handling
Rally benchmark of creating an image and booting a VM in the case of various
concurrency. The confidence interval for average response time is 95%. The total
time of creating an image and booting a VM increases quickly when concurrency is
more than 16. Figure 4.3 shows plotted result of this measurement. As concurrency
increases, the response time of creating an image, booting a VM or total grow
linearly. Specifically, the response time of creating an image is getting considerably
longer than the response time of booting a VM as concurrency increases. When
concurrency is larger than 8, the response time of creating an image is always longer
than the response time of booting a VM.

Table 4.3: Create An Image and Boot A VM (P2P System with 16 Cloudlets)

Concurrency Create An Image Boot A VM Total
Standard
Deviation

Margin
of Error Average Standard

Deviation
Margin
of Error Average Standard

Deviation
Margin
of Error Average

1 0.139 ±0.055 3.227 1.023 ±0.401 4.489 1.031 ±0.406 7.716
2 0.130 ±0.026 3.576 1.123 ±0.220 4.149 1.144 ±0.224 7.725
4 0.186 ±0.036 4.078 1.148 ±0.225 4.206 1.181 ±0.232 8.284
8 0.356 ±0.049 4.752 1.307 ±0.181 4.592 1.384 ±0.192 9.345
16 1.251 ±0.123 6.020 1.644 ±0.161 5.244 2.404 ±0.236 11.264
32 5.039 ±0.349 15.036 4.715 ±0.327 13.244 7.578 ±0.525 28.280
64 11.831 ±0.583 33.059 8.027 ±0.395 22.206 17.073 ±0.841 55.264
128 29.739 ±1.032 76.199 19.676 ±0.683 39.679 45.304 ±1.572 115.878

Figure 4.3: Create An Image and Boot A VM (P2P with 16 Cloudlets)

27

4. Evaluation and Result

Table 4.4 shows evaluation result of the standard OpenStack with 16 compute nodes
handling Rally benchmark of creating an image and booting a VM in the case of
various concurrency. The confidence interval for average response time is 95%.
The total time of creating an image and booting a VM increases sharply when
concurrency is 8. Figure 4.4 shows plotted result of this measurement. The response
time of booting a VM is always longer than the response time of creating an image.

Table 4.4: Create An Image and Boot A VM (Standard OpenStack with 16 Com-
pute Nodes)

Concurrency Create An Image Boot A VM Total
Standard
Deviation

Margin
of Error Average Standard

Deviation
Margin
of Error Average Standard

Deviation
Margin
of Error Average

1 0.085 ±0.033 2.707 0.204 ±0.080 4.122 0.234 ±0.091 6.829
2 0.116 ±0.032 2.992 0.405 ±0.112 4.553 0.445 ±0.123 7.545
4 0.319 ±0.062 3.148 0.453 ±0.089 6.142 0.587 ±0.115 9.289
8 1.008 ±0.139 4.825 1.131 ±0.157 11.132 1.600 ±0.222 15.957
16 1.353 ±0.133 10.933 5.414 ±0.531 24.103 6.171 ±0.605 35.036
32 6.044 ±0.419 27.843 17.504 ±1.213 49.989 20.722 ±1.436 76.832
64 8.565 ±0.422 58.708 31.539 ±1.554 86.636 38.158 ±1.881 145.344
128 28.279 ±1.188 113.696 62.687 ±2.632 149.202 81.488 ±3.422 262.898

Figure 4.4: Create An Image and Boot A VM (Standard with 16 Compute Nodes)

Figure 4.5 shows a comparison of the response time of the P2P system with 16
cloudlets and standard OpenStack with 16 compute nodes handling Rally bench-
mark of creating an image and booting a VM in terms of a various number of
concurrency. From Figure 4.5, it is obvious that the P2P system performs better

28

4. Evaluation and Result

than the standard OpenStack system as concurrency increases. More precisely, for
the standard OpenStack system, it takes relatively more time handle the whole
benchmark than the P2P system when concurrency grows. Figure 4.5 also shows
that for the standard OpenStack system, when concurrency increases, the perfor-
mance of booting a VM markedly a�ect the result of total response time. However,
for the P2P system, the response time of booting a VM rises steadily compared
to the standard OpenStack system, the response time of creating an image mainly
a�ects the result of total response time instead.

Figure 4.5: Comparison of P2P System and Standard OpenStack Handling Bench-
mark of Creating An Image and Booting A VM

4.3.1.2 Failure Rate

Figure 4.6 shows the failure rate of the P2P system and standard OpenStack han-
dling Rally benchmark of creating an image and booting a VM in the case of di�erent
concurrency. The failure rate is defined as if the process of booting an image and
creating a VM can be successfully handled by the system. When concurrency is less
than 64, the failure rate of both systems is 0%. However, both systems start to drop
requests when concurrency is 64. When concurrency is up to 128, the failure rate
of the standard OpenStack system is significantly higher than the failure rate of the
P2P system.

4.3.1.3 CPU Usage

In this measurement, CPU usage of a controller node is periodically recorded every
3 seconds. Figure 4.7 demonstrates a comparison of CPU usage of controller node

29

4. Evaluation and Result

Figure 4.6: Failure Rate of P2P System and Standard OpenStack Handling Bench-
mark of Creating An Image and Booting A VM

Figure 4.7: Comparison of CPU Usage of P2P Testbed and Standard OpenStack
Testbed in Case of Various Concurrency

30

4. Evaluation and Result

of the P2P system and the standard OpenStack system handling Rally benchmark
of creating an image and booting a VM in the case of various concurrency. As
for the P2P system, the controller node whose a�liated cloudlet is most frequently
chosen to boot VMs at one round of execution is picked to represent CPU usage.
From Figure 4.7, it is clear that CPU usages of the controller node of the standard
OpenStack system in most cases reach 100% and stay around over a period. As
for the P2P system, CPU usages of a controller node never reaches 100%, instead,
rarely goes above 80% and does not stay around at a high percentage.

Figure 4.8 shows a comparison of CPU usage of controller node of the P2P system
and the standard OpenStack system handling Rally benchmark of creating an image
and booting a VM when concurrency is 128. As for the standard OpenStack system,
it is obvious that CPU usage of the controller node quickly goes up to 100% and
constantly remains over a long period until the benchmark is finished. The figure
at bottom illustrates CPU usages of all sixteen controller nodes of the P2P system
handling benchmark of creating an image and booting a VM when concurrency is
128. Although CPU usages of controller nodes in the P2P system also quickly goes
up, they do not peak at close to 100% and stay around at a high percentage over a
long period.

Figure 4.8: Comparison of CPU Usage of Controller Nodes in P2P Testbed and
Standard OpenStack Testbed in Case of Concurrency 128

4.3.1.4 Distribution of VMs

Figure 4.9 shows the distribution of VMs in the P2P system over 25 times of exe-
cution of handling benchmark of creating an image and booting a VM in cases of

31

4. Evaluation and Result

concurrency is 16, 32 and 64. It can be seen that VMs are fairly distributed to var-
ious OpenStack cloudlets. There is no striking diversity of VM distribution among
all the OpenStack cloudlets.

Figure 4.9: Distribution of VMs over 25 Times of Handling Benchmark of Creating
An Image and Booting A VM

4.3.2 Scenario Two
Evaluation results of scenario two are presented and discussed in this subsection in
terms of response time and CPU usage.

4.3.2.1 Response Time

Table 4.5 shows the response time of the P2P system at various scales handling
Rally benchmark of creating an image and booting a VM when concurrency is 16.
The confidence interval for average response time is 95%. Figure 4.10 shows plotted
results of this evaluation. It is obvious that the response time of booting a VM
drops significantly when system size scales from one to two which leads to a shorter
response time of finishing the whole benchmark scenario. As system size scales from
two to sixteen, the response time of booting a VM decreases steadily and response
time of creating an image fluctuates slightly.

4.3.2.2 CPU Usage

In this measurement, CPU usage of a controller node is also periodically recorded
every 3 seconds. Figure 4.11 demonstrates the comparison of CPU usage of controller

32

4. Evaluation and Result

Table 4.5: Create An Image and Boot A VM (P2P System with Varied System
Size in Case of Concurrency 16)

System Size Create An Image Boot A VM Total
Standard
Deviation

Margin
of Error Average Standard

Deviation
Margin
of Error Average Standard

Deviation
Margin
of Error Average

1 Cloulet 2.274 ±0.322 8.02 6.06 ±0.857 20.714 8.022 ±1.135 28.735
2 Cloudlets 1.509 ±0.148 6.096 6.016 ±0.598 10.069 6.716 ±0.658 16.165
4 Cloudlets 1.719 ±0.169 7.572 4.046 ±0.397 7.416 4.739 ±0.464 14.988
8 Cloudlets 1.077 ±0.106 7.349 2.238 ±0.233 5.883 2.612 ±0.256 13.232
16 Cloudlets 1.251 ±0.123 6.020 1.644 ±0.161 5.244 2.404 ±0.236 11.264

Figure 4.10: Response Time in Case of Fixed Concurrency and Varied System
Size

node of the P2P system handling Rally benchmark of creating an image and booting
a VM in cases of varied system size and concurrency is 16. At one round of execution,
the controller node whose a�liated cloudlet is most frequently chosen to boot VMs
is picked to represent CPU usage. From Figure 4.11, it can be seen that only
when system size is one, CPU usage of controller node goes up to 100% and stay
around for a while then starts fluctuating till benchmark is finished. When system
size is 2, 4, 8 or 16, CPU usage of chosen controller node just peaks at one point
but never stay around for a period. When system size is one, the system takes a
longer time to handle benchmark of creating an image and booting a VM, as the
CPU of controller node is overloaded. Overloaded CPU essentially a�ects system
performance by taking longer execution time.

From the above measurements, by scaling cloud instances through agents, the pro-

33

4. Evaluation and Result

Figure 4.11: CPU Usage in Cases of Varied System Size and Fixed Number of
Concurrency

posed P2P solution is feasible to create virtual resource across OpenStack cloud
instances and shows significantly lower response time when handles concurrent re-
quests by executing request at each OpenStack cloud instance separately and avoid-
ing CPU on controller node being overloaded. Moreover, compared to standard
OpenStack deployment, the P2P solution is more failure-resistant and e�cient in
terms of creating an image and booting a VM. Without considering a�ection of
identity service - Keystone, the P2P solution has no limitation on the number of
cloud instances and its performance improves with the increasing number of cloud
instances.

34

5
Future Work

This thesis report has discussed design and implement of a P2P solution for scaling
OpenStack cloud instances. Although VMs owned by one project are feasible to be
created on distributed OpenStack cloud instances, these VMs can not functionally
communicate with each other. Besides, the agent currently only support proxying
OpenStack’s services such as compute service, network service, image service and
identity service. An important next step will be to enrich agent’s functionality by
implementing more proxies for other OpenStack services. Also, the current solution
is not fully distributed, as cloud instances in this P2P network share a centralized
Keystone node which provides identity service. The Keystone node would be a po-
tential bottleneck, if the whole P2P system is going to scale massively. Therefore,
one important subject of future work will be the replacement of the centralized iden-
tity service with a distributed identity service. We envisage this replacement will
lead to a better system reliability and performance. Moreover, in the cloud selection
scheduler of our prototype, we kept strategies as simple as possible. Another im-
portant subject will be implementing more filters and weighers based on optimized
algorithms to improve virtual resource utilization. We believe that optimized cloud
selection scheduler will bring on better utilization of virtual resources and improved
system performance regarding response duration.

35

5. Future Work

36

6
Related Work

The problem of scaling cloud instances has been studied for the past decade in both
industry and academic area. This chapter discusses work related to our study.

Cells is a built-in functionality of Nova which could scale an OpenStack cloud in
a more distributed fashion. When this functionality is enabled, compute nodes in
an OpenStack cloud are partitioned into groups called Cells [23]. Cells essentially
provides the means to create logical fences around OpenStack resources such as
compute nodes. However, Cells is still considered experimental and it’s not an option
for Ericsson, since Ericsson desires a solution which supports as many OpenStack
default features as possible, such as Security Group, Availability Zones and Server
Groups in which Cells does not support.

Besides Cells, OpenStack cascading solution is another concept proposed by Huawei
[24]. Huawei’s solution is to map the underlying OpenStack to a compute node and
use a parent OpenStack to orchestrate child OpenStack cloud instances. Huawei’s
idea is innovative. However, the cascading solution works like fractal [25], it scales
in a hierarchical structure. Due to its attribute, it would be complex and expensive
to implement and manage when the whole cloud system is growing larger. Another
drawback of the cascading solution is that, although the child OpenStack cloud
instances are still accessible even if the parent OpenStack cloud instance is down,
the consistency will be lost between the parent instance and child instances once
the parent instance is up again.

Brasileiro et al.[26] present a middleware, called Fogbow, designed to support federa-
tions of independent IaaS cloud vendors. Fogbow consists of three main components:
membership manager, allocation manager and messaging service. The membership
manager is for member discover. The allocation manager runs at a given cloud and
operates actions to its a�liated cloud. The messaging service runs at a particular
site and allocation managers and membership managers communicate through this
messaging service. However, no redundancy support for the messaging service which
could be a single-point failure when the federated system scales up.

In [27], Buyya et al. propose InterCloud framework in which the federated network
of clouds is interceded by a Cloud Exchange. Every cloud runs a Cloud Coordinator
which is responsible for publishing o�ers according to the service the cloud provides.
The Cloud Brokers requests the required capacity and bids on the o�ers. End users
are associated with a cloud instance, which is responsible for fulfilling user demands.

37

6. Related Work

However, the Cloud Exchange is a potential single-point failure and it leaves each
cloud instance responsible for user identification.

In [28], Celesti et al. introduce a horizontal cross-federation solution based on the
Cross-Cloud Federation Manager which is a placeable component in cloud infrastruc-
ture and consists of three sub-components: discovery agent, match-making agent and
authentication agent. The discovery agent is responsible for discovering all available
foreign clouds, the match-marking agent manages the process of choosing the best
cloud instance to deploy virtual resources and the authentication agent takes duties
to build security context among federated clouds. However, system performance
evaluation of this solution is not presented and limitation of sharing resources on
cloud owner’s demand is still a challenge behind this solution.

[29] and [30] propose the Reservoir virtualization architecture which consists of two
main parts: service provider and infrastructure provider. The service provider lease
virtual resources from infrastructure provider and matches user needs by finding
resources that the user’s application requires. The infrastructure provider man-
ages physical infrastructure and o�ers pool of resources such as computing capacity,
network and storage to service providers. Resources on an infrastructure site are
virtualized and partitioned into virtual execution environments (VEEs). A service
application is capable of using several VEEs across infrastructure providers. How-
ever, transfer tasks from one provider to another is still a challenge for Reservoir.

The Contrail project [31] is build on the results of Reservoir project by adding verti-
cal integration of PaaS and Iaas models. It provides users with a single access point
to resources belonging to various cloud providers. Contrail acts as a broker between
users and cloud provider and it is composed of three layers: interface layer, core
layer and adapters layer. The interface layer exposes a way to interact with the fed-
erated systems via CLI and HTTP interfaces. The core layer contains modules that
are responsible for identity management, application deployment and Service Level
Agreement (SLA) coordination. The adapters layer enables access to infrastructure
providers. Whereas, the single access point of Contrail is a potential single-point
failure.

A layered service model of SaaS, PaaS and IaaS is proposed in [32]. The inter-Cloud
federation is implemented at every service layer and delegated by broker specific to
the entities at that layer. The top SaaS layer handles requirements of executing
applications and maps performance metrics of applications to resources at the PaaS
layer. The PaaS layer represents as a bridge between applications requirements
and infrastructure resources. The IaaS layer provides resources such as computing
capacity, storage and network to layers above it. Information flow between these
three layers are delegated and translated by brokers. However, the layered model
brings complexity to the case of scaling horizontally at each layer.

Compared to Huawei’s Cascading solution[24] and the layered service model[32],
our proposed solution scales horizontally, no hierarchical relation between cloud in-

38

6. Related Work

stances and system architecture is flat, by which the solution enables cloud instances
to easily join or leave without a�ecting proper functioning. Di�erent from [26] and
[31], the centralized Keystone component in our solution is feasible to be redun-
dant. In contrast to [27], user identification is handled by the dedicated component
Keystone instead of by each cloud instance in our solution. In [28], limiting sharing
resources on cloud owner’s demand is a challenge for the cross-federation solution,
conversely, our solution enables cloud owner to elastically share resources. In [29]
and [30], the Reservoir has a challenge of transferring tasks from one cloud instance
to another, however, in our solution, tasks of uploading an image or creating a VM
is able to be transferred across cloud instances.

39

6. Related Work

40

7
Discussion and Conclusion

7.1 Societal and ecological contribution
Cloud computing is bringing benefits to our lives in many ways. It is a fundamen-
tal infrastructure to cutting-edge technologies in areas of Internet of Things, au-
tonomous driving, artificial intelligence and others. Besides, cloud providers, such
as Amazon’s AWS, Microsoft’s Azure and Google cloud platform, are becoming
more and more popular with startup companies or small firms as the first choice to
deploy their online services. From a societal aspect, by our solution, geographically
distributed cloud instances are possible to be federated as one and the federated
P2P system is able to be more economic and serve more users with lower cost on
bare metals. From an ecological perspective, compared to standard OpenStack de-
ployment, our P2P solution needs less machines but behaves more e�cient which
leads to produce less carbon dioxide, consumes less electricity.

7.2 Conclusion
We have presented a solution and its prototype for scaling OpenStack cloud instances
by using P2P technologies. The P2P solution is motivated by a centralized message
queue of a standard OpenStack cloud instance which causes scalability issue when
a number of compute nodes at the cloud instance reaches its limitation. Instead of
solving this problem by fixing the centralized message queue, we proposed a P2P
solution on cloud cluster level which abstracts multiple OpenStack cloud instances
as one, providing the same user experience as using a single standard OpenStack
cloud instance. The abstraction of cloud instances is achieved by deploying a soft-
ware agent on each cloud instance which works as a message broker, sitting between
its a�liated cloud instance and end users. The agent exposes its dedicated API
to end users and maps its API to standard OpenStack service endpoint. Besides,
these agents form a P2P network and association of agents is based on an inexpensive
group membership protocol - Cyclon and distributed search. Our experiment results
show that it is feasible to integrate virtual resources across multiple OpenStack cloud
instances while abstracting them as a single cloud instance. Compared to a stan-
dard OpenStack deployment with same system size, the proposed P2P solution has
higher failure resistance to certain operations. We conclude that without consider-
ing a�ection of the centralized identity service - Keystone, the P2P approach has
no limitation on the number of cloud instances and its performance improves with
an increasing number of cloud instances. Also, system performance and resource

41

7. Discussion and Conclusion

utilization of the P2P solution can be enhanced by implementing optimized cloud
selection strategies. Replacing the centralized identity service with a distributed
solution remains open for further exploration.

42

Bibliography

[1] Rimal Bhaskar Prasad and Eunmi Choi. (2011). A service-oriented taxo-
nomical spectrum, cloudy challenges and opportunities of cloud computing.
International Journal Of Communication Systems, 25(6), pp.796-819. doi:
10.1002/dac.1279.

[2] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica. (2003). Looking up data in P2P systems. Commun. ACM 46(2), pp.43-
48. doi: 10.1145/606272.606299.

[3] Korzun, D. and Gurtov, A. (2013). Structured peer-to-peer systems. 1st ed.
New York, NY: Springer. ISBN: 978-1-4614-5483-0.

[4] Al-Sakib Khan Pathan, Muhammad Mostafa Monowar and Zubair Md. Fadlul-
lah. 2013. Building next-generation converged networks (1st ed.). Boca Raton,
FL: CRC Press. ISBN: 1466507616 9781466507616.

[5] Beverly Yang, Hector Garcia-Molina. (2001). Comparing hybrid peer-to-peer
systems, Proceedings of the 27th International Conference on Very Large Data
Bases, Rome, Italy, September 11-14, 2001. San Francisco, CA, USA: Morgan
Kaufmann Publishers.

[6] Xiang-Wen Huang, Chin-Yun Hsieh, Cheng Hao Wu and Yu Chin Cheng.
(2015). A Token-Based User Authentication Mechanism for Data Exchange
in RESTful API, 18th International Conference on Network-Based Information
Systems, Taipei, Taiwan, September 2-4, 2015. Washington, DC, USA: IEEE
Computer Society.

[7] Open source software for creating private and public clouds. (2016). OpenStack.
Retrieved from https://www.openstack.org/

[8] Remove DB between scheduler and compute nodes : Blueprints : Open-
Stack Compute (nova). (2016). Blueprints.launchpad.net. Retrieved from
https://blueprints.launchpad.net/nova/+spec/no-db-scheduler

[9] OpenStack Havana Scalability Testing. (2016). Cisco. Retrieved from
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/
OpenStack/Scalability/OHS/OHS2.html

[10] Openstack Docs: Architecture. (2016). OpenStack. Retrieved from
http://docs.openstack.org/

[11] Quang Hieu Vu, Mihai Lupu and Beng Chin Ooi. (2010). Peer-to-Peer Com-
puting (1st ed.). Berlin, Heidelberg: Springer-Verlag. ISBN: 978-3-642-03513-5.

[12] OpenStack Docs: OpenStack API Documentation. (2016). OpenStack. Re-
trieved from http://developer.openstack.org/api-guide/quick-start/index.html

43

Bibliography

[13] Spyros Voulgaris, Daniela Gavidia and Maarten van Steen. (2005). CYCLON:
Inexpensive Membership Management for Unstructured P2P Overlays. Netw
Syst Manage, 13(2), pp.197-217. doi: 10.1007/s10922-005-4441-x.

[14] Michael Mitzenmacher. (2001). The power of two choices in randomized load
balancing. IEEE Transactions on Parallel and Distributed Systems, 12(10),
pp.1094-1104. Piscataway, NJ, USA: IEEE Press.

[15] SQLAlchemy - The Database Toolkit for Python. (2016). Sqlalchemy.org. Re-
trieved from http://www.sqlalchemy.org/

[16] PEP 333 – Python Web Server Gateway Interface v1.0. (2016). Python.org.
Retrieved from https://www.python.org/dev/peps/pep-0333/

[17] Eventlet Networking Library. (2016). Eventlet.net. Retrieved from
http://eventlet.net/

[18] Libevent – an event notification library. (2016). Libevent.org. Python.org. Re-
trieved from http://libevent.org/

[19] Eventlet 0.19.0 Documentation. (2016). Eventlet.net. Retrieved from
http://eventlet.net/doc/basic_usage.html

[20] Holger Giese, Stephan Hildebrandt and Leen Lambers. (2012). Bridging the
gap between formal semantics and implementation of triple graph grammars.
Software and Systems Modeling (SoSyM), 13(1), pp.273-299. Secaucus, NJ,
USA: Springer-Verlag New York, Inc.

[21] Memcached - a distributed memory object caching system. (2016). Mem-
cached.org. Retrieved from https://memcached.org/

[22] Rally - OpenStack. (2016). Wiki.openstack.org. Retrieved from
https://wiki.openstack.org/wiki/Rally

[23] OpenStack Docs: OpenStack Operations Guide. (2016). Docs.openstack.org.
Retrieved from http://docs.openstack.org/openstack-ops/content/scaling.html

[24] OpenStack cascading solution - OpenStack. (2016). Wiki.openstack.org. Re-
trieved from https://wiki.openstack.org/wiki/OpenStack_cascading_solution

[25] Nathan Lazarus, Christopher D. Meyer and Sarah S. Bedair. (2014). Fractal
Inductors. IEEE Transactions on Magnetics, 50(4), pp.1-8. doi: 10.1109/T-
MAG.2013.2290510.

[26] Francisco Brasileiro, Giovanni Silva, Francisco Araújo, Marcos Nóbrega, Igor
Silva and Gustavo Rocha. (2016). Fogbow: A Middleware for the Federation
of IaaS Clouds. 2016 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), Cartagena, Colombia, May 16-19, 2016.
Piscataway, NJ, USA: IEEE Press.

[27] Rajkumar Buyya, Rajiv Ranjan and Rodrigo N. Calheiros. (2010). InterCloud:
Utility-Oriented Federation of Cloud Computing Environments for Scaling of
Application Services. Proceedings of the 10th international conference on Al-
gorithms and Architectures for Parallel Processing, 1, pp.13-31. Berlin, Heidel-
berg: Springer-Verlag. doi: 10.1007/978-3-642-13119-6_2.

[28] Antonio Celesti, Francesco Tusa, Massimo Villari and Antonio Puliafito. (2010).
How to Enhance Cloud Architectures to Enable Cross-Federation. 2010 IEEE
3rd International Conference on Cloud Computing, Miami, Florida, USA, July
5-10, 2010. Piscataway, NJ, USA: IEEE Press.

44

Bibliography

[29] Benny Rochwerger, David Breitgand, Eliezer Levy, Alex Galis, Kenneth Na-
gin, Ignacio M. Llorente, Rubén Santiago Montero, Yaron Wolfsthal, Erik Elm-
roth, Juan A. Cáceres, M. Ben-Yehuda, Wolfgang Emmerich and Fermín Galán.
(2009). The Reservoir model and architecture for open federated cloud comput-
ing. IBM Journal of Research and Development, 53(4), pp.4:1-4:11. Riverton,
NJ, USA: IBM Corp.

[30] Benny Rochwerger, David Breitgand, Amir Epstein, David Hadas, Irit Loy,
Kenneth Nagin, Johan Tordsson, Carmelo Ragusa, Massimo Villari, Stuart
Clayman, Eliezer Levy, Alessandro Maraschini, Philippe Massonet, Henar
Munoz and Giovanni Tofetti. (2011). Reservoir - When One Cloud Is Not
Enough. Computer, 44(3), pp.44-51. Los Alamitos, CA, USA: IEEE Computer
Society Press.

[31] Emanuele Carlini, Massimo Coppola, Patrizio Dazzi, Laura Ricci and Giacomo
Righetti. (2011). Cloud Federations in Contrail. Proceedings of the 2011 in-
ternational conference on Parallel Processing, pp.159–168. Berlin, Heidelberg:
Springer-Verlag.

[32] David Villegas, Norman Bobro�, Ivan Rodero, Javier Delgado, Yanbin Liu,
Aditya Devarakonda, Liana Fong, S. Masoud Sadjadi, Manish Parashar. Cloud
federation in a layered service model. Journal of Computer and System Sciences,
78(5), pp.1330–1344. Orlando, FL, USA: Academic Press.

45

	List of Figures
	List of Tables
	Introduction
	Background
	Peer-to-peer Overlay
	CYCLON Protocol
	RESTful API
	OpenStack

	Problem Description
	Motivation

	Agent Design
	Agent
	System Architecture
	Integration with OpenStack
	Resource Federation

	Agent Implementation
	Agent Architecture
	Agent DB
	Agent HTTP Server
	Agent API and Proxy Components

	Implementation of CYCLON protocol
	Cloud Selection Scheduler

	Evaluation and Result
	Evaluation Framework
	Experimental Environment Setup
	Scenario One
	Scenario Two

	Experimental Results and Analysis
	Scenario One
	Response Time
	Failure Rate
	CPU Usage
	Distribution of VMs

	Scenario Two
	Response Time
	CPU Usage

	Future Work
	Related Work
	Discussion and Conclusion
	Societal and ecological contribution
	Conclusion

	Bibliography

