
Batch Picking in Warehouse Logistics:
Trading Optimality for Feasibility

Master’s thesis in Computer science and engineering

LUDWIG HULTQVIST
MATHIAS LAMMERS

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Master’s thesis 2022

Batch Picking in Warehouse Logistics:
Trading Optimality for Feasibility

LUDWIG HULTQVIST
MATHIAS LAMMERS

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

Batch Picking in Warehouse Logistics: Trading Optimality for Feasibility

LUDWIG HULTQVIST
MATHIAS LAMMERS

© LUDWIG HULTQVIST, MATHIAS LAMMERS, 2022.

Supervisor: Jonah Brown-Cohen, Department of Computer Science and Engineering
Advisor: Martin Sigvardsson, Ongoing Warehouse
Examiner: Robin Adams, Department of Computer Science and Engineering

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Example of a generic warehouse

Typeset in LATEX
Gothenburg, Sweden 2022

iv

Batch Picking in Warehouse Logistics: Trading Optimality for Feasibility

LUDWIG HULTQVIST
MATHIAS LAMMERS
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
A significant cost in warehouse logistics is the act of traversing the warehouse to
collect orders, where a commonly applied heuristic to reduce this cost is picking
several orders at once. Partitioning the full order set into optimal batches is known
as the batch picking problem, which also involves solving the travelling salesman
problem. The travelling salesman problem is famously known as NP-hard, mak-
ing it most likely infeasible to optimally solve larger instances of the batch picking
problem in practice. This thesis, in collaboration with Ongoing Warehouse, aims to
study different algorithms to find close-to-optimal solutions while still being viable
in real-world applications.

For the evaluation to be as realistic as possible, the layout of a physical warehouse
was used as a model. This, in addition to multiple order sets and the item placements
used in the aformentioned warehouse, was supplied by Ongoing Warehouse. Various
algorithms for partitioning the order sets and providing necessary traversal paths
were implemented in C# and benchmarked with the use of the external library
BenchmarkDotNet, where the distance of the paths, memory usage and required
time were chosen as the evaluation metrics. The benchmarking results indicated
that partitioning the order set based on proximity and solving the traversal path
with conventional linear programming can be used for reducing the total traversal
distance, while still remaining feasible in practice.

Keywords: optimization, algorithms, batch picking, travelling salesman, warehouse,
logistics, graphs, benchmarking, complexity

v

Acknowledgements
We would like to thank Jonah Brown-Cohen and Robin Adams at the Department
of Computer Science and Engineering for acting as our supervisor and examiner
respectively, providing us with valuable feedback and guidance. We would also like
to thank our advisor Martin Sigvardsson and everyone else at Ongoing Warehouse
for supporting us while writing this thesis.

Ludwig Hultqvist & Mathias Lammers, Gothenburg, June 2022

vii

Contents

List of Figures xi

List of Tables xi

List of Algorithms xiii

List of Listings xiii

1 Introduction 1
1.1 Problem Description . 1
1.2 Research Questions . 2
1.3 Delimitations . 2
1.4 Contributions . 2

2 Theory 3
2.1 Warehouse Model . 3
2.2 Travelling Salesman Problem . 4

2.2.1 Nearest Neighbor . 5
2.2.2 Held-Karp Algorithm . 5
2.2.3 Christofides Algorithm . 6
2.2.4 Linear Programming . 6
2.2.5 Ant Colony Optimization . 7
2.2.6 Simulated Annealing . 8

2.3 Batch Picking Problem . 9
2.3.1 First In, First Out (FIFO) . 10
2.3.2 Greedy Batch Heuristic . 10
2.3.3 Greedy Partition Heuristic . 10
2.3.4 Proximity Heuristic . 11
2.3.5 Simulated Annealing . 11
2.3.6 Genetic Algorithms . 12

3 Method 13
3.1 Travelling Salesman Algorithms . 13
3.2 Batch Picking Algorithms . 13

4 Results 15
4.1 Implementation . 15

ix

Contents

4.1.1 Graph Namespace . 15
4.1.2 Model Namespace . 16
4.1.3 TSP Namespace . 17
4.1.4 BPP Namespace . 17
4.1.5 Benchmarks Namespace . 18

4.2 Travelling Salesman Performance . 18
4.3 Batch Picking Performance . 20

5 Discussion 27
5.1 Travelling Salesman Evaluation . 27
5.2 Batch Picking Evaluation . 28
5.3 Limitations . 29

5.3.1 Model Limitations . 29
5.3.2 Benchmarking Limitations . 29

5.4 Ethical Considerations . 30
5.5 Future Work . 30

5.5.1 Dynamic Model . 30
5.5.2 Solution Visualisation . 31
5.5.3 Extensive Benchmarking . 31

6 Conclusion 33

Bibliography 35

A Warehouse Model I
A.1 Warehouse Layout . I
A.2 Example of order dataset . I
A.3 Coordinate Mappings . IV

B Benchmark tables V
B.1 Travelling Salesman Performance . VI
B.2 Batch Picking Performance . VII

x

List of Figures

2.1 Two-dimensional grid of the warehouse layout defined in Listing A.1. 4
2.2 The genetic algorithm approximating the batch picking problem. . . . 12

4.1 Modular dependencies within the batch picking library. 15
4.2 Benchmark performance of travelling salesman algorithms. 19
4.3 Benchmark performance of the FIFO algorithm combined with trav-

elling salesman algorithms. 21
4.4 Benchmark performance of the greedy batching algorithm combined

with travelling salesman algorithms. 22
4.5 Benchmark performance of the greedy partition algorithm combined

with travelling salesman algorithms. 23
4.6 Benchmark performance of the proximity algorithm combined with

travelling salesman algorithms. 24
4.7 Benchmark performance of the simulated annealing algorithm com-

bined with travelling salesman algorithms. 25
4.8 Benchmark performance of the genetic algorithm combined with trav-

elling salesman algorithms. 26

List of Tables

4.1 Computational complexities of travelling salesman algorithms from
Section 2.2. Complexities marked with ∗ have a large constant factor. 18

4.2 Computational complexities batch picking algorithms from Section 2.3.
Complexities marked with ∗ have a large constant factor. 20

A.1 Order dataset consisting of 60 orders. II

B.1 Performance benchmarks of travelling salesman algorithms. VI
B.2 Performance benchmarks of batch picking algorithms. VII

xi

List of Tables

xii

List of Algorithms

2.1 The Held-Karp algorithm solving the travelling salesman problem. . . 6
2.2 The ant colony optimization algorithm approximating the travelling

salesman problem. 8
2.3 The simulated annealing algorithm approximating the travelling sales-

man problem. 9

List of Listings

4.1 Interface used for modelling warehouse layouts as complete weighted
graphs described in Figure 2.1. 16

4.2 Interface used for complete warehouse models described in Figure 2.1. 16
4.3 Abstract class used for implementing algorithms addressing the trav-

elling salesman problem, as described in Section 2.2 and Section 3.1. . 17
4.4 Abstract class used for implementing algorithms addressing the batch

picking problem, as described in Section 2.3 and Section 3.2. 17
A.1 Two-dimensional grid layout of a warehouse. I
A.2 Coordinate mappings from shelf identifiers to two-dimensional coor-

dinates. IV

xiii

List of Listings

xiv

1
Introduction

Efficient warehouses are undeniably essential to operate in the modern logistics
industry. In the last decade, the increasing demand for business-to-consumer ship-
ments has effectively pressured warehouses into establishing new methods for opti-
mizing their operations [1], [2]. A natural improvement is to streamline how ware-
house staff manually pick customer orders throughout a physical warehouse, since
picking orders can significantly impact operational warehouse costs, as a study in
the UK presented in 1988 [3].
A common approach to reduce picking costs is to shorten the walking distances of
staff by picking multiple orders at once in batches. Minimizing the picking distance
by dividing a set of orders into optimal batches is referred to as the batch picking
problem. The problem is believed to be computationally NP-hard, and there are
subsequently no currently known feasible algorithms for finding optimal solutions [4].
Nevertheless, one may wonder — is there an algorithm for nearly optimizing batch
picking that is feasible for logistics applications? To what extent may optimality be
traded for feasibility?
The research project is carried out in collaboration with Ongoing Warehouse, a
large provider of warehouse management software systems for the third-party lo-
gistics industry [5]. Modern warehouses utilize management systems for their daily
operations, including keeping track of stock and assigning picking tasks to staff.
With access to Ongoing Warehouse’s systems, optimization algorithms may be eval-
uated against real-world data. Their insights into the logistics industry are therefore
useful for finding feasible, yet close to optimal algorithms.

1.1 Problem Description
Two optimization problems are addressed in the research project – the batch picking
problem and the travelling salesman problem. In the batch picking problem, a
warehouse receives a set of incoming orders, each being several items stored in the
warehouse. The orders shall be partitioned into a set of batches that are picked
independently. The task is to choose a partition that minimizes the total walking
distance for picking all batches. Since batches are picked independently, the task
ultimately concerns minimizing the picking distances of single batches or instances
of the travelling salesman problem. The two optimization problems are formalized
in higher detail in Section 2.2 and Section 2.3.

1

1. Introduction

1.2 Research Questions
There are currently no known algorithms for solving the two optimization problems
with better-than-exponential complexity and such algorithms may not exist. On the
other hand, there may exist efficient algorithms producing solutions that outperform
more naive approaches in existing warehouse applications. The aim of the research
project is thus to investigate batch picking and travelling salesman techniques that
may be feasible in practice, by showing empirically low complexity while computing
close-to-optimal solutions. The aim is further formalized into two research questions:

1. How may the total travelling distance for picking a set of orders in a warehouse
be reduced by dividing the set into a set of optimal batches?

2. Is there a feasible algorithm for solving the batch picking optimization problem
in practice?

1.3 Delimitations
All algorithms are evaluated against real warehouse data encapsulated into models.
To enable a viable project execution, the scope of modelling realistic warehouses is
severely restricted. Limited availability of existing warehouse layouts requires ware-
house models to be manually crafted. Since this is a time-consuming task which
may limit the extent of researching algorithms, only one real-world warehouse is
modelled. Algorithm performance may as such be biased towards the selected ware-
house, causing results applicable in theory with implausible generalisation prospects
to real-world applications.

1.4 Contributions
Implementations of the viable algorithms solving the batch picking and travelling
salesman problems are encapsulated into a compact .NET library written in C#
using .NET Core. The library consists of a set of projects for computing warehouse
models and running optimization algorithms in isolation. Each project also contains
the required datasets for various problem instances. The library includes a bench-
marking suite for comparing algorithm performance on equal problem instances.

2

2
Theory

The following sections present how the chosen warehouse is modelled as a complete
graph and how the two problems are formalized as optimization problems. Char-
acteristics of all algorithms utilized throughout the project are further described in
depth using the problem formalization.

2.1 Warehouse Model
From a bird’s-eye view, the layout of the selected warehouse consists of a two-
dimensional grid C, as displayed in Figure 2.1. Items stored in the warehouse are
defined as a mapping I → C from a set of identifiers I to warehouse coordinates C.
The identifiers are expressed in the format of A-01-02, referring to aisle A, column
1, and shelf 2, which are mapped to coordinates using the mappings displayed in
Listing A.2 in Appendix A. Further, let O ⊆ {O′|O′ ⊆ I} denote a set of orders
received by the warehouse, each being a subset of item identifiers. An example of
a order dataset is displayed in Table A.1. For every coordinate (x, y) ∈ C, let cxy

denote a binary variable which is equal to 1 if (x, y) is unoccupied by a shelf. Pickers
can only traverse coordinates (x, y) where cxy = 1, may only transition vertically,
horizontally, and diagonally between adjacent coordinates (x, y) and (x′, y′) if cxy =
cx′y′ = 1. The cost of transitioning between two coordinates is defined as their
euclidean distance, which is either 1 or

√
2 for adjacent coordinates.

The definition of the grid C creates a foundation to model the warehouse as a
complete weighted graph G = (V, E). V is a set of nodes computed using a one-
to-one mapping C → N from the coordinates in C to unique identifiers. The set of
weighted edges E further consists of one edge e for every pair of coordinates (x, y)
and (x′, y′), with a weight we of the minimal traversal distance between the two. E
may as such be computed in O(|V |3) time using Dijkstra’s algorithm, starting from
every coordinate in C [6]. The complete graph may finally be stored in O(|V |2). To
further simplify the notation of orders, they are mapped directly from item identifiers
to nodes in G and may as such be expressed as subsets of nodes O′ ⊆ V . The set of
orders is then re-defined in G as O ⊆ {O′|O′ ⊆ V }.

3

2. Theory

Figure 2.1: Two-dimensional grid of the warehouse layout defined in Listing A.1.

2.2 Travelling Salesman Problem
The travelling salesman problem is a recurring optimization problem first described
in the mid-20th century [7]. In the original definition, a salesman is tasked with
visiting a set of cities with known travelling distances between each pair of cities.
Starting from any city, the travelling salesman shall select a path of minimum dis-
tance that visits all cities exactly once and returns to the starting city. To formalize
the problem as an optimization problem, it is best defined as a graph problem.
Consider a weighted complete graph G = (V, E). For all pair of nodes u, v ∈ V , let
wuv = wvu be the travelling distance between u and v. Further, let P ⊆ E denote
any path P visiting all nodes in V exactly once. For all nodes v ∈ V , there must exist
exactly one edge e = (u, v) ∈ P entering v and exactly one edge e′ = (v, u′) ∈ P
exiting v. P is hence constrained by |{(v, u) ∈ P}| = |{(u′, v) ∈ P}| = 1. The
travelling distance of P is finally defined as ∑

(u,v)∈P wuv. The travelling salesman
problem is hence defined as the optimization problem TSP(G):

minimize
∑

(u,v)∈P

wuv P ⊆ E

subject to |{(u, v) ∈ P}| = 1 ∀v ∈ V

|{(v, u′) ∈ P}| = 1 ∀v ∈ V

4

2. Theory

While the problem is proven to be computationally NP-hard, there still exist many
methods for solving or approximating the problem [8]. A selection of common
techniques used in this project is briefly described in the upcoming sections.

2.2.1 Nearest Neighbor
The nearest neighbor algorithm is historically one of the first methods for addressing
the travelling salesman problem [9]. It utilizes a simple greedy heuristic to incre-
mentally compute an approximately minimal path. Starting from any node, the
path is iteratively extended with the edge from the last visited node to the near-
est unvisited node, until all nodes are visited. Since the nearest neighboring node
is found in O(|V |) time, the traversal path is computed in O(|V |2). Only O(|V |)
additional space is subsequently required for storing the computed path.
The polynomial complexity of the nearest neighbor algorithm makes it compelling
to utilize in practical applications. However, there is no known approximation ratio
to optimal solutions. For some instances, it can be proven that the algorithm has a
worst-case approximation ratio of O(log|V |), while for other instances, the algorithm
may compute the worst path [10]–[13].

2.2.2 Held-Karp Algorithm
The Held-Karp algorithm is a well-established dynamic programming algorithm for
optimally solving the traveling salesman problem [14], [15]. It utilizes the simple
assumption that if a path S between a starting node s ∈ V and any other node
u ̸= s ∈ V is optimal, then any sub-path of S is optimal. The optimal distance of
any path traversing all nodes in V may then be computed recursively. Let s ∈ V
be any starting node and consider any subset of remaining nodes S ⊆ V \ {s}. For
any node v ∈ S, the shortest distance of any s− v path traversing all nodes in S is
defined recursively as:

OPT(S, v) = min(OPT(S \ {u}, u)) + wuv u ∈ S \ {v}
OPT({u}, u) = ws,u

The optimal traversal distance of V is then defined as min({OPT(V \ s, u) + wus)
for y ∈ V \ s}. As outlined in Algorithm 2.1, the optimal solution is computed by
iteratively filling a table of optimal traversal distances for all subsets of sizes [1, |V |).
Using any starting node s ∈ V , the table is initialized with OPT({v}, v) = wsv, for
subsets {v} of length one for all nodes v ∈ V \ s. For all subsets S ⊆ V \ s, |S|= j,
of all lengths j ∈ [2, |V |), the table is subsequently expanded using the objective
function. The optimal traversal distance of V is finally returned.

5

2. Theory

Algorithm 2.1 The Held-Karp algorithm solving the travelling salesman problem.
1: for v ∈ V \ {s} do
2: OPT({v}, v) = wsv

3: for j = 2...n− 1 do
4: for S ⊆ V \ {s}, |S| = j do
5: for v ∈ S do
6: OPT(S, v) = min(OPT(S \ {v}, u) + wuv), u ∈ S \ {v})
7: return min(OPT(V \ {s}, v) + wvs), v ∈ V \ {s})

By reusing already computed optimal sub-paths, the Held-Harp algorithm solves
the travelling salesman problem exactly in O(|V |2 · 2|V |) time, a significant but still
infeasible improvement over the O(|V |!) brute force complexity [15]. However, the
improvement requires storing all optimal sub-paths using O(|V | ·2|V |) space, making
it impractical for large problem instances.

2.2.3 Christofides Algorithm
Christofides algorithm is a prominent 3/2-approximation algorithm for the travelling
salesman problem with the currently lowest known approximation ratio [16], [17]. It
computes an approximately optimal path in a few steps. A minimum spanning tree
T is first computed from G using algorithms such as Prim’s or Kruskal’s algorithm
[18], [19]. An Eulerian multigraph M is then obtained by adding edges between
the nodes with an odd degree in T , such that all nodes have even degrees. By
the handshaking lemma, there must be an even number of nodes with odd degrees.
An Eulerian circuit C traversing all edges in M is subsequently computed using
for instance Fleury’s algorithm. The minimum path traversing all nodes is finally
obtained from C, by selecting the nodes in the order they were traversed first in C.
The computational complexity of Christofides algorithm is upper bounded by the
choice of minimum spanning tree algorithm. It terminates in at most O(|V |3) time,
requiring O(|V |2) space in a complete graph.

2.2.4 Linear Programming
Already in the original definition of the travelling salesman problem, the problem
was formulated as an integer linear program [7]. A commonly used formulation
today is the Dantzig-Fulkerson-Johnson formulation, defined as follows [20]. For
every pair of nodes u ̸= v ∈ V , let the binary variable xuv denote if edge (u, v) is
selected in the minimal path. The distance of any path is then computed as the sum∑

u∈V

∑
v ̸=u∈V wuvxuv. Since every node u is visited exactly once, there is exactly

one selected edge entering and one selected edge exiting u. Hence, ∑
u∈V xuv =∑

u∈V xvu = 1 for v ̸= u ∈ V . To avoid forming sub-paths instead of one coherent
path traversing all nodes, a final constraint is also added. The integer linear program
is then expressed as:

6

2. Theory

minimize
∑
u∈V

∑
v ̸=u∈V

wuvxuv

subject to
∑
u∈V

xuv = 1 v ̸= u ∈ V∑
u∈V

xvu = 1 v ̸= u ∈ V∑
u∈Q

∑
v ̸=u∈Q

xuv ≤ |Q| − 1 ∀Q ⊊ V, |Q| ≥ 2

Note that the running times of algorithms solving linear programs are generally
unknown. It is however assumed that O(|V |2) space is required for storing variables
and constraints.

2.2.5 Ant Colony Optimization
Ant colony optimization is a probabilistic technique for optimization problems that
are reducible to graph traversal problems, such as the travelling salesman. It draws
inspiration from how real-life ants communicate through stigmergy [21]. That is,
leaving a trace of pheromones along their path for other ants to follow, where higher
pheromone levels indicate a higher probability of following that path. The ant colony
optimization technique is then formalized as follows. For every edge (u, v) ∈ E, de-
fine a visibility ηuv = 1/wuv, to favor edges with lower distance, and a pheromone
level τuv, which is updated iteratively. A colony of k ants then select a path in-
dependently by iteratively sampling a next edge (u, v) according to the probability
distribution p((u, v)|S), where S ⊆ V . Using τuv and ηuv, and constant parameters
α and β promoting either exploration or exploitation, p((u, v)|S) is defined as:

p((u, v)|S) =


τα

uvηβ
uv∑

v′ ̸∈S
τα

uv′ η
β

uv′
if v ̸∈ S

0 otherwise

As all k ants have finished sampling paths, τuv is updated is updated for each edge
(u, v) using the traversal distance Dk of path Sk and the evaporation rate ρ:

∆τ [k]
uv =


1

Dk
if ant k traversed edge euv

0 otherwise

τuv ← (1− ρ)τuv +
N∑

k=1
∆τ [k]

uv

The complete algorithm is summarized in Algorithm 2.2, where the procedure is
repeated for N iterations and the shortest sampled path is returned. Assuming
that k and N are static, the algorithm has a running time of O(|V |), but with a
large constant number of iterations. The algorithm further requires O(|V |) space
for storing the sampled paths.

7

2. Theory

Algorithm 2.2 The ant colony optimization algorithm approximating the travelling
salesman problem.

1: initialize τuv and ηuv for all edges (u, v) ∈ E.
2: initialize distance D ←∞
3: for N iterations do
4: for k ants do
5: sample Sk from p
6: D ← min(D, Dk)
7: τuv ← (1− ρ)τuv + ∑N

k=1 ∆τ [k]
uv for all edges (u, v) ∈ E

8: return D

2.2.6 Simulated Annealing
Simulated annealing is a probabilistic technique inspired by metallurgical practices of
rapidly heating metal before slowly cooling it, resulting in more desirable properties
[22]. It is used for approximating a global optimum in primarily large discrete
search spaces, such as in the travelling salesman problem, outlined as follows. Let
Tmin denote a constant minimal temperature and let T be the current temperature,
initialized to a high value. Initialize a solution S randomly, by selecting a random
path traversing all nodes. While T > Tmin, S is randomly modified into S ′ by
choosing a random segment of the path that is either reversed or transported to
another location in the solution. S ′ may then be accepted as a new solution according
to the Metropolis-Hastings algorithm [23]. That is, if S ′ has a shorter or equal
traversal distance DS′ than the traversal distance DS of S, S ′ is always accepted as
the new solution. However, if DS′ > DS, S ′ is accepted as the new solution with a
computed probability. The probability of selecting S ′ given S is hence defined as:

p(S ′|S) =

1 if DS′ ≤ DS

exp(DS−DS′
T

) otherwise

The procedure is repeated N times, before decreasing T by a cooling rate of c < 1,
subsequently decreasing the acceptance probability. This favors exploration while T
is high to avoid local optima, while exploitation is increasingly likely as T decreases.
The complete algorithm is outlined in Algorithm 2.3.

8

2. Theory

Algorithm 2.3 The simulated annealing algorithm approximating the travelling
salesman problem.

1: initialize T to a large temperature
2: initialize S at random
3: while T > Tmin do
4: for N iterations do
5: sample S ′ into S by reversing or transporting a random segment
6: update S using the Metropolis-Hastings algorithm
7: T ← T · c
8: return DS

Since Tmin, c and N are all constant, the algorithm has a running time of O(|V |)
with a large hidden constant factor, requiring O(|V |) space for storing S and S ′.

2.3 Batch Picking Problem
The batch picking problem is a recurring problem in the logistics industry that may
be expressed as a graph optimization problem. Consider the complete warehouse
graph G = (V, E) receiving a set of orders O ⊆ {O′|O′ ⊆ V }, as described in
Section 2.1. O shall be partitioned into a set of batches B ⊆ {B′|B′ ⊆ O}, where
every order is contained in a single batch and all batches are disjoint, i.e. B′∩B′′ =
∅,∀B′, B′′ ∈ B. Batches are further picked using a trolley with n compartments,
that may each store a single order in its entirety. The number of orders in each
batch may as such not exceed n.
Picking a batch B′ ∈ B requires traversing the nodes of all orders O′ ∈ B′, starting
and ending at a chosen origin s. By neglecting quantities of nodes occurring more
than once in a batch, picking a batch is considered as an instance of the travelling
salesman problem described in Section 2.2. For any batch B′, let VB′ = {s} ∪⋃

O′∈B′ O′ denote the set of nodes that must be traversed to pick B′. Let G[VB′] be
the resulting induced subgraph in G. The picking distance of B′ is then equal to
TSP(G[VB′]). Since batches are picked independently, the total picking distance of
B is defined as the sum of picking all individual batches B′ ∈ B. Batch picking may
then be formalized as an optimization problem BPP(G, O, n, s):

minimize
∑

B′∈B

TSP(G[VB′]) B ⊆ {B′|B′ ⊆ O}

subject to B′ ∩B′′ = ∅ ∀B′ ̸= B′′ ∈ B

|B′| ≤ n ∀B′ ∈ B

The techniques used for addressing the batch picking problem are described in the
following sections. Since all orders contain at most |V | nodes, O(|O| · |V |) space is
required for storing the sets of orders and the computed batches in all algorithms.

9

2. Theory

For easier comparison of complexities, only the additionally required space is hence
considered. Algorithms are subsequently only required to copy the keys of orders and
not the nodes contained in them. Running times and space requirements are further
substantially dependent on the techniques used for evaluating the picking distance
of single batches containing at most |V | nodes. To simplify the notations, let T and
S denote the space and time requirements for computing the picking distance of a
single batch. The computational complexities of all batch picking techniques are
hence expressed as functions of T and S.

2.3.1 First In, First Out (FIFO)
A simple approach often used in practice is to partition the set of orders according
to their creation timestamp, referred to as first in, first out or FIFO [24]. Notice
that the set is partitioned without performing any optimization, which may result in
poor picking distances. However, by partitioning orders by FIFO order, warehouses
ensure that all orders are guaranteed to be shipped in time, which may be more
important in practice.
Since no optimization is performed to partition the set of orders, they are partitioned
intoO(|O|) batches inO(|O|) time without requiring any additional space. However,
the picking distance of individual batches are still optimized in O(T) time and
O(S) space per batch. This results in a time complexity of O(|O| · T) and a space
complexity of O(S). The low computational costs of the algorithm are naturally
practical in real settings, but may likely result in poor optimality. However, the
algorithm provides a strong foundation to evaluate how the performance is affected
by only optimizing how orders are picked within batches.

2.3.2 Greedy Batch Heuristic
In a prior project at Ongoing Warehouse, Sigvardsson and Persson suggested a
greedy approach for finding a single best batch [25]. Starting from an empty batch,
the best batch was populated by iteratively adding the order resulting in the minimal
picking distance, until the batch was full. The same procedure can also be repeated
with the next batch until all orders are partitioned. The intuition behind this
approach stems from warehouses in practice, where staff are only concerned with
picking one batch at a time from a continuous order set, which is repeatedly updated
as the warehouse receives new orders.
Since the picking distances of single batches are evaluated for all ordersO(|O|) times,
the algorithm runs in O(|O|2 · T) and requires O(S) space. The procedure may be
beneficial for minimizing the total picking distance but can be biased against poor
orders. These may potentially be delayed indefinitely, resulting in a long picking
distance for later batches.

2.3.3 Greedy Partition Heuristic
The bias against poor orders introduced by the Greedy Batch heuristic may be
removed by simply flipping the greedy rule. Instead of iteratively selecting an order

10

2. Theory

to include in one best batch, each order can select the best batch to be included in.
The partition is computed as follows. Initialize a set of batches with a single order
each to avoid a bias against empty batches. For all remaining orders, choose the
non-full batch resulting in the shortest picking distance. The total picking distance
is finally returned.
Although the flipped rule removes the bias against poor orders, it may introduce a
new bias against poor batches. Orders may as such not be added to batches with
already high picking distances until all other batches are full. Notice that the greedy
rule is still applied the same number of times as the greedy batch heuristics without
any additional space. The greedy partition hence also requires O(|O|2 · T) time and
O(S) space for computing a solution.

2.3.4 Proximity Heuristic
Another issue with the two greedy heuristics is that both evaluate picking distances
O(|O|2) times. This may however be addressed by partitioning the set of orders using
the average proximity between batches instead of computing any exact distances.
For any two batches B′, B′′ ⊆ O, let AB′B′′ denote the average distance from all
nodes in B′ to all nodes in B′′, defined as:

AB′B′′ =
∑

u∈VB′

∑
v∈VB′′

wuv

|VB′ ||VB′′ |

The proximity heuristic is hence outlined as follows. Initialize a set of batches B,
each containing a single unique order. The batch B′ ∈ B with the minimum average
distance to itself, i.e. AB′B′ , is then selected. Subsequently select the other batch
B′′ ̸= B′ ∈ B with the minimum average distance AB′B′′ , such that |B′|+ |B′′| does
not exceed the batch size. If no such B′′ exists, B′ is marked as full, otherwise, it
is merged with B′′. The procedure is repeated until all batches in B are full. The
exact distance for picking B is finally computed once.
The average distance between any pair of batches is computed in O(|V |2). Since all
O(|O|) batches are combined with at most all other O(|O|) batches, the set of orders
is partitioned in O(|O|2 · |V |2) time using O(|O|) additional space. Evaluating the
total picking distance finally requires O(|O| · T) time and O(T) space, resulting in
a complexity of O(|O|2 · |V |2 + |O| · T) time and O(|O|+ S) space.

2.3.5 Simulated Annealing
Since the batch picking problem is an example of a problem with a large discrete
search space, the simulated annealing technique introduced is Section 2.2.6 is well-
justified to be utilized, with a few modifications. The set of orders is initially
padded with empty orders, such that all batches are filled completely. O may then be
modelled as a one-dimensional array of orders. The traversal distance is subsequently
redefined as the total distance for picking all batches. The algorithm outlined in
Algorithm 2.3 may then be applied to approximate the batch picking problem.

11

2. Theory

O is partitioned into O(|O|) batches, whose picking distance are evaluated in O(T)
time and O(S) space each. Per definition of Algorithm 2.3, simulated annealing
also requires O(|O|) additional space. The algorithm hence terminates in O(|O| · T)
time and O(|O|+ S) space with a large constant factor on the time bound.

2.3.6 Genetic Algorithms
Genetic algorithms consist of a set of techniques based on evolution and natural
selection [26]. They are often used for approximating problems when finding optimal
solutions tend to be computationally difficult. The technique is applied to the batch
picking as follows, which is influenced by a previous research project [27]. Let P
be a population of n initially random batch partitions, referred to as individuals.
For all individuals i ∈ P , let fi denote its fitness, i.e. the total picking distance.
The idea is to continuously improve the population fitness by iteratively selecting a
population P ′ with more fit individuals, using a few steps.
First, the fitness of every individual is evaluated. The current population is then
exploited by adding the most elite individual i ∈ P with the highest fi to P ′. A
random individual, referred to as an immigrant, is subsequently added to P ′, to
promote exploration and avoid local optima. The remaining n − 2 individuals of
the population are iteratively computed as follows. Two individuals i, j ∈ P are
first selected by tournament selection with a preset probability [28]. Crossover is
then performed on i and j with a preset probability, by swapping the location of a
random set of items from i to j. A mutation is subsequently performed on i and j by
randomly swapping an approximate number of items within each individual, before
adding them to P ′. This is repeated until P ′ is fully populated. A new population is
then iteratively selected for a preset number of iterations until the fittest individual
of the final solution is returned. The complete algorithm is outlined in Figure 2.2.

Figure 2.2: The genetic algorithm approximating the batch picking problem.

With a preset number of iterations and population count, the algorithm terminates
in a constant number of iterations. In each iteration, the picking distance of a batch
partitioning is evaluated in O(|O|T) time and O(|O|T). This results in a total
running time of O(|O| ·T) with a large constant factor, requiring O(|O|+S) space.

12

3
Method

All algorithms are evaluated to assess their optimality and feasibility of being ap-
plicable in practice. The following sections present how empirical performance eval-
uation was performed against the warehouse model defined in Section 2.1.

3.1 Travelling Salesman Algorithms
To measure the performance of all travelling salesman algorithms described in Sec-
tion 2.2, they are first evaluated in isolation before being applied in combination
with batch picking techniques. However, since the travelling salesman problem is
a heavily researched topic, the intention is not to evaluate already proven perfor-
mances in general. Only the optimality and feasibility of applying the techniques to
problem instances that may occur in existing warehouses are considered.
The performance evaluation of travelling salesman algorithms is encapsulated into
a benchmarking suite. Traversal distances, running times, and memory usage are
chosen as performance metrics. In the suite, all algorithms are benchmarked over
multiple runs on subgraphs of the warehouse model. Each subgraph respectively
consists of 4, 8, 16, 32, and 64 nodes. In each subgraph, the nodes are evenly spaced
by identifier index in the graph, to ensure that all algorithms are evaluated against
equal subgraphs. The sizes of subgraphs are subsequently chosen by the range of
nodes that commonly occurred in batches during early empirical testing of batch
picking algorithms. However, a node count of 64 is far greater than empirically
occurring sizes and is solely used as an upper bound. The performance benchmarks
are summarized in Section 4.2, while the raw benchmarking data is presented in
Appendix B.1.

3.2 Batch Picking Algorithms
Since the empirical performance of batch picking algorithms is highly dependent on
the chosen travelling salesman method, it is implausible to expect feasible perfor-
mance if both problems are optimized using techniques. The intention is hence to
evaluate if various combinations of techniques have enough optimality while being
feasible in practice. That is, finding the extent of how much reductions in picking
distances are worth increasing computational costs. A subsequent intention is to also
determine to what extent optimally and feasibility may be achieved by optimizing

13

3. Method

only one of the two problems.
The performance evaluation of batch picking algorithms is also encapsulated into a
benchmarking suite, where traversal distances, running times, and memory usage are
the sole performance metrics. All algorithms are benchmarked over multiple runs on
the warehouse model in combination with all travelling salesman techniques deemed
feasible in batch picking contexts. Each combination is subsequently benchmarked
on equal order sets of 60, 107, 223, and 769 orders respectively, the smallest of which
is displayed in Appendix A.2. Each set consists of historical order data from the
modelled warehouse, with a variety of sizes deemed sufficient for a fair evaluation
of the algorithms. A permanent starting coordinate was chosen as the bottom left
corner of the layout in Figure 2.1, to model a figurative packing area. The batch
size was further set to 16 nodes per batch since this was assumed to be a reasonable
size in practice.
A time limit was further set to 15 minutes for all runs before they are terminated.
The limit was chosen per informal discussions with Ongoing Warehouse, by the
approximate frequency an order set is updated with incoming orders in practice.
Any feasible algorithm must hence terminate before the order set is figuratively
updated. The benchmarks are summarized in Section 4.2, while the raw data is
presented in Appendix B.2.

14

4
Results

In this chapter, the implementation of the .NET library is described in further de-
tail, followed by the benchmarking performance of all algorithms. The performance
metrics are displayed in bar graphs for easy comparison of the performances, with
the raw data displayed in tables in Appendix B. All performance was further evalu-
ated on a laptop running a 64-bit build of Windows 10 with 32 GB of memory and
an Intel®CoreTM i7-8650U processor clocked at 1.90 GHz.

4.1 Implementation
The implementation of the .NET batch picking library is divided into a number of
modules displayed in Figure 4.1. Each encapsulates implementations of the algo-
rithms described in section Chapter 2, with datasets required for running various
components in isolation. Only the relevant interfaces, abstract classes, and static
factory classes are exposed, ensuring minimal modular dependencies. An overview
of all modules is briefly described in the following sections.

Figure 4.1: Modular dependencies within the batch picking library.

4.1.1 Graph Namespace
The core of modelling a warehouse as the complete graphs described in Section 2.1 is
composed in the Graph namespace. It consists of the IGraph interface displayed in
Listing 4.1, defining the required graph behavior. The interface dictates that a com-
plete graph exposes a set of unique nodes as integers, all of which are pairwise con-
nected with a single undirected weighted edge exposed by the method Weight(int,

15

4. Results

int). The NodeAt((int, int)) method further enables mapping coordinates to
nodes, as required for converting shelf mappings to nodes.

Listing 4.1 Interface used for modelling warehouse layouts as complete weighted
graphs described in Figure 2.1.
interface IGraph
{

IReadOnlyList<int> Nodes { get; }
double Weight(int, int);
int NodeAt((int, int));

}

The module contains one implementation of the IGraph interface, computing a com-
plete graph of a warehouse layout directly as described in Section 2.1. Note that
the implementation has a slight memory overhead for storing nodes, weights, and
coordinate mappings. This enable Weight and NodeAt to be performed in O(1)
time, and Nodes to be safely exposed without copying the set of nodes.

4.1.2 Model Namespace
The Model namespace is essentially wrapping the complete graph representation to
compose the full model instance from Section 2.1. Model instances are constituted
by the interface IModel displayed in Listing 4.2. It dictates models must expose the
underlying graph, a set of order identifiers, and a preset batch size. The node rep-
resentation of items in an order is further exposed using the method Subset(int).

Listing 4.2 Interface used for complete warehouse models described in Figure 2.1.
interface IModel
{

IGraph Graph { get; }
IReadOnlyList<int> Subsets { get; }
int Size { get; }
IEnumerable<int> Subset(int);

}

A single implementation of IModel is composed in the Model namespace. The model
instance is created using a pre-computed IGraph instance, and a set of orders and
shelf mappings defines in files such as in Appendix A.2 and Listing A.2. The order
set is modelled as a dictionary mapping identifiers to lists of nodes using the shelf
mappings and IGraph object. A copy of the order identifiers is further stored in a
separate list, enabling them and the nodes of an order to be fetched in O(1) time.
Given as input is also a batch size defining the maximum size of batches in a batch
picking instance, and an origin coordinate, which is mapped to a node and added
to each order, to model batches as instances of the travelling salesman problem.

16

4. Results

4.1.3 TSP Namespace
Implementations of all travelling salesman algorithms described in Section 2.2 are in-
cluded in the TSP namespace as inheritors of the abstract class TspSolver displayed
in Listing 4.3. It has a single non-abstract method (double, bool) Solve(IGraph,
IReadOnlyList<int>), computing the traversal distance of a set of nodes in a pro-
vided graph. A boolean is also returned to indicate if computations are termi-
nated due to a timeout. The solution itself is computed using the abstract method
Solve(CancellationToken), implemented by all inheritors of TspSolver to encap-
sulate the respective algorithm. To enable externally terminating the method, a
cancellation token is provided. Note that the IGraph, set of nodes, and computed
solution are written to private members, to simplify data access between the wrap-
ping and abstract methods. As the computations terminate, the wrapper method
finally verifies that the solution solves the problem in the given instance.

Listing 4.3 Abstract class used for implementing algorithms addressing the travel-
ling salesman problem, as described in Section 2.2 and Section 3.1.
abstract class TspSolver
{

private protected abstract void Solve(CancellationToken);
(double, bool) Solve(IGraph, IReadOnlyList<int>);

}

4.1.4 BPP Namespace
Algorithm implementations of batch picking algorithms described in Section 2.3
are provided in the BPP namespace by extending the abstract class BppSolver
in Listing 4.4. The only non-abstract method (double, bool) Solve(IModel,
TspSolver) computes the picking distance of an IModel instance, with a boolean is
indicating if computations are terminated due to timeout. A TspSolver is further
provided for solving instances of intermediate batches. Solutions are subsequently
computed by the method Solve(CancellationToken) implemented by inheritors
of BppSolver, with a cancellation token used for terminating the method. The
IModel instance, TspSolver instance, and solution are all written to private mem-
bers, for easier data access between the two methods. As computations terminate,
the solution is finally verified by the wrapper before the picking distance is returned.

Listing 4.4 Abstract class used for implementing algorithms addressing the batch
picking problem, as described in Section 2.3 and Section 3.2.
abstract class BppSolver
{

private protected abstract void Solve(CancellationToken);
(double, bool) Solve(IModel, TspSolver);

}

17

4. Results

4.1.5 Benchmarks Namespace
The Benchmarks namespace provides the implementations of the two benchmark-
ing suites outlined in Chapter 3, implemented using the BenchmarkDotNet package
[29]. This enables all algorithms to be easily benchmarked in equal settings, with
performance metrics automatically computed. A custom column was required to
display computed distances in the output since this functionality was not provided
by BenchmarkDotNet. Distances marked with ∗ indicate that a valid solution was
provided, but computations were terminated due to timeout. The units of empir-
ical computation times and memory usage were further post-processed, to enable
higher readability. The empirical benchmarks are summarized in Section 4.2 and
Section 4.3, with the raw data provided in Appendix B.

4.2 Travelling Salesman Performance
The following graphs and tables present a summary of theoretical and empirical re-
sults for the algorithms addressing the travelling salesman problem from Section 2.2.
Table 4.1 displays theoretical computational complexities as functions of the graph
size |V |, as formalized in Section 2.2. Algorithm complexities marked with (∗) indi-
cate that they have a large hidden constant factor.

Algorithm Time Space
Nearest Neighbor O(|V |2) O(|V |)

Held-Karp O(|V |2 · 2|V |) O(|V | · 2|V |)
Christofides O(|V |3) O(|V |2)

Linear Programming - O(|V |2)
Ant Colony Optimization O(|V |)∗ O(|V |)

Simulated Annealing O(|V |)∗ O(|V |)

Table 4.1: Computational complexities of travelling salesman algorithms from
Section 2.2. Complexities marked with ∗ have a large constant factor.

Performance metrics computed by all algorithms are displayed Figure 4.2. A com-
plete table of all empirical benchmarks is displayed in Table B.1. Since the Held-
Karp algorithm ran out of memory and was unable to run until completion for
graphs of 32 and 64 nodes, empirical statistics are only displayed for the smaller
graphs. Due to significant differences in the empirical running times and memory
usage, a logarithmic scale is used to enable higher readability. Termination delays on
timeout are also present in some algorithms, which occasionally results in running
times extending beyond the timeout boundary.

18

4. Results

4 8 16 32 64
0

100
200
300
400
500
600
700
800
900

D
ist

an
ce

(s
te

ps
)

Travelling Salesman Techniques

Ant Colony Christofides Linear Programming
Nearest Neighbor Simulated Annealing Held-Karp

4 8 16 32 64
102

103

104

105

106

107

108

109

T
im

e
(µ

s)

4 8 16 32 64
100
101
102
103
104
105
106
107
108
109

Number of nodes

M
em

or
y

(K
B)

Figure 4.2: Benchmark performance of travelling salesman algorithms.

19

4. Results

4.3 Batch Picking Performance
The following section presents a collection of graphs and tables summarizing theo-
retical and empirical results for the algorithms described in Section 2.3. Table B.2
displays the computational complexities described in Section 2.3 as functions of the
order count |O| and the complexity of travelling salesman algorithms. Algorithm
complexities marked with (∗) indicate that they have a large hidden constant factor.

Algorithm Time Space
First In, First Out O(|O| · T) O(S)
Greedy Batching O(|O|2 · T) O(S)
Greedy Partition O(|O|2 · T) O(S)

Proximity O(|O|2 · |V |2 + |O| · T) O(|O|+ S)
Simulated Annealing O(|O| · T)∗ O(|O|+ S)

Genetic O(|O| · T)∗ O(|O|+ S)

Table 4.2: Computational complexities batch picking algorithms from Section 2.3.
Complexities marked with ∗ have a large constant factor.

The empirical benchmarks of all batch picking algorithms are summarized in the fol-
lowing figures. A complete table of all empirical data is displayed in Table B.2. Each
figure displays the performance metrics computed by one algorithm in combination
with various travelling salesman algorithms, on order sets of several sizes. Since the
performance of the Held-Karp algorithm was infeasible even on small batches, it was
excluded from all benchmarks. Distances of zero further indicate that the algorithm
was unable to compute a solution before the timeout was reached. Due to significant
differences in the empirical running times and memory usage, a logarithmic scale is
used to enable higher readability. Termination delays on timeout are also present in
some algorithms, which occasionally results in running times extending beyond the
timeout boundary.

20

4. Results

60 107 223 769
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

·104

D
ist

an
ce

(s
te

ps
)

FIFO

Ant Colony Christofides Linear Programming
Nearest Neighbor Simulated Annealing

60 107 223 769

103

104

105

106

107

T
im

e
(µ

s)

60 107 223 769

102

103

104

105

106

107

Size of order set

M
em

or
y

(K
B)

Figure 4.3: Benchmark performance of the FIFO algorithm combined with trav-
elling salesman algorithms.

21

4. Results

60 107 223 769
0

0.2

0.4

0.6

0.8

1

1.2

1.4
·104

D
ist

an
ce

(s
te

ps
)

Greedy Batch

Ant Colony Christofides Linear Programming
Nearest Neighbor Simulated Annealing Timeout

60 107 223 769
104

105

106

107

108

109

T
im

e
(µ

s)

60 107 223 769

104

105

106

107

108

109

Size of order set

M
em

or
y

(K
B)

Figure 4.4: Benchmark performance of the greedy batching algorithm combined
with travelling salesman algorithms.

22

4. Results

60 107 223 769

0.2
0.4
0.6
0.8

1
1.2
1.4

·104

D
ist

an
ce

(s
te

ps
)

Greedy Partition

Ant Colony Christofides Linear Programming
Nearest Neighbor Simulated Annealing Timeout

60 107 223 769
103

104

105

106

107

108

109

T
im

e
(µ

s)

60 107 223 769

103

104

105

106

107

108

109

Size of order set

M
em

or
y

(K
B)

Figure 4.5: Benchmark performance of the greedy partition algorithm combined
with travelling salesman algorithms.

23

4. Results

60 107 223 769
0

0.2

0.4

0.6

0.8

1

1.2
·104

D
ist

an
ce

(s
te

ps
)

Proximity Batching

Ant Colony Christofides Linear Programming
Nearest Neighbor Simulated Annealing

60 107 223 769

104

105

106

107

T
im

e
(µ

s)

60 107 223 769

104

105

106

107

Size of order set

M
em

or
y

(K
B)

Figure 4.6: Benchmark performance of the proximity algorithm combined with
travelling salesman algorithms.

24

4. Results

60 107 223 769
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
·104

D
ist

an
ce

(s
te

ps
)

Simulated Annealing

Ant Colony Christofides Linear Programming
Nearest Neighbor Simulated Annealing Timeout

60 107 223 769

107

108

109

T
im

e
(µ

s)

60 107 223 769
106

107

108

109

Size of order set

M
em

or
y

(K
B)

Figure 4.7: Benchmark performance of the simulated annealing algorithm com-
bined with travelling salesman algorithms.

25

4. Results

60 107 223 769
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8
·104

D
ist

an
ce

(s
te

ps
)

Genetic Algorithm

Ant Colony Christofides Linear Programming
Nearest Neighbor Simulated Annealing Timeout

60 107 223 769
106

107

108

109

T
im

e
(µ

s)

60 107 223 769

106

107

108

109

Size of order set

M
em

or
y

(K
B)

Figure 4.8: Benchmark performance of the genetic algorithm combined with trav-
elling salesman algorithms.

26

5
Discussion

From Chapter 4, it is evident that certain techniques perform better than others.
Although great care has been taken to implement efficient algorithms, the perfor-
mance is heavily dependent on implementation details and improvements can be
made. The results were further produced on an ordinary laptop, which can look
differently using high-performance computing clusters, as an example. In the end,
however, better hardware should not be a replacement for well-thought-out algo-
rithms, which is why studies on such matters are meaningful.

5.1 Travelling Salesman Evaluation
Figure 4.2 displays how the Held-Karp algorithm finds optimal solutions to problem
instances of sizes up to 16 nodes. However, due to its exponential computational
costs, huge amounts of time and memory are required already at 16 nodes. As such,
the algorithm is unable to a find solution in larger instances, as anticipated, making it
infeasible in practice. The linear programming algorithm also finds optimal solutions
to smaller instances while providing the shortest distances to the large ones. Since
optimal solutions to the larger instances are unknown, the optimality of the linear
programming algorithm is indeterminable. Nevertheless, it is plausible that it is
close to optimal. It also presents relatively low time and memory requirements with
linear growth, making it reasonably feasible for batch picking instances.
The simulated annealing and ant colony techniques present comparable, yet slightly
longer distances than the linear program. Although they experience linear com-
putational growth, they require considerably higher time and memory already on
smaller instances. They may as such not be feasible when applied repeatedly on
batch picking instances. Using a linear program for addressing the batch picking
problem over these techniques may hence be justified already.
Christofides algorithms and the nearest neighbour techniques provide the worst dis-
tances overall. Their polynomial complexities do however result in considerably
cheaper computational costs than other methods. While longer distances may re-
sult in poor optimality of batch picking techniques, the low computational costs may
permit a larger selection of batch picking techniques.

27

5. Discussion

5.2 Batch Picking Evaluation
Figure 4.3 displays that both distances and computational costs of FIFO experience
similar characteristics as travelling salesman techniques do in isolation. This is not
surprising, since the techniques are applied repeatedly on equal instances to com-
pute a solution. This subsequently results in the same performance characteristics
across the various problem sizes. While the heavier techniques further require higher
computational costs, all are far from being infeasible in practice.
The greedy batch heuristics in Figure 4.4 presents overall shorter distances than
FIFO across all problem instances. However, all but the polynomial techniques be-
come unable to compute solutions for the larger datasets. Nevertheless, with the
polynomial techniques, the heuristic still outperforms the best combination with
FIFO as the dataset grows. Figure 4.5 further displays that the greedy partition
heuristic computes similar distances with polynomial traversal techniques. The no-
ticeable decrease in computational costs also permits utilizing techniques on the
larger datasets, which results in slightly shorter distances. The improvement may
however not be worth the perhaps infeasible computational costs.
Figure 4.6 displays how proximity batching results in overall superior distances
across all datasets. This is evident for the largest dataset, where its worst perfor-
mance with the nearest neighbor technique beats all but a few of all other method
combinations. The best combination with a linear program is subsequently even bet-
ter, with only slight increases in computational costs. Similar to FIFO, proximity
batching only utilizes traversal techniques for evaluating the final picking distances.
As such, their computational performances are nearly identical and far from being
infeasible. This further implies that computational performance is highly dependent
on the selection of traversal techniques, but computing a good partition of batches
is perhaps not.
Figure 4.7 and Figure 4.8 display how simulated annealing and the genetic algo-
rithm both suffer from extremely high computational costs, with picking distances
not outperforming even FIFO. The timeout limit is further reached for all but the
polynomial techniques across the datasets. While this is permitted, it also results
in infeasibly large memory overheads to achieve no picking distance improvements.
The high computational times even with polynomial techniques without distance
improvements subsequently make the two methods infeasible.
A continuous trend across all batch picking techniques is that combinations with
a linear program tend to result in the shortest distances, with feasible increases in
computational costs in most cases. Combinations with simulated annealing and ant
colony optimization generally require infeasibly high computational costs to achieve
no improvements in the distance. The polynomial techniques further tend to achieve
noticeably better computational performance, whilst producing slightly longer dis-
tances. In the choice of technique combinations, the most important feasibility con-
sideration is hence to balance how lower distances produced by a linear program are
worth the computationally higher costs than using polynomial techniques. However,
since the superior proximity batching achieves the shortest distances whilst being

28

5. Discussion

computationally feasible with either technique, it is evident that a linear program
is the better choice.

5.3 Limitations
Considering all constraints of real-world batch picking, the project scope is naturally
limited. How the chosen limitations may have affected the project execution is
described in the following sections.

5.3.1 Model Limitations
The several model simplifications may substantially affect the applicability of batch
picking techniques in real warehouses. For instance, neglecting sizes, weights, and
fragility of orders may result in batches which cannot be picked at once in practice.
However, some warehouses are only concerned with handling small items, such as
jewelry. While the batch picking techniques may hence not be applicable in all
warehouses, they may still be valid in some.
Since warehouses often guarantee that orders are shipped within certain ranges of
time, certain orders are of higher picking priority to be delivered on time. However,
the timestamps of orders are ignored in the model and orders of high priority may
hence be left unpicked indefinitely. As this is not permitted in practice, the applica-
bility of the picking techniques may be questionable. Nevertheless, one may argue
they are still applicable on order sets of already prioritized orders.
Modelling warehouses as graphs further requires the assumption that pickers can
move freely within the warehouse. Most often than not, several pickers are traversing
the aisles simultaneously in reality, which can result in pickers blocking each other.
Since this is not considered in the model, the techniques may only be applicable in
warehouses with only a single picker or where all pickers can move around without
interference.

5.3.2 Benchmarking Limitations
The distance, time and memory usage displayed in Appendix B have all been aver-
aged over three benchmarking runs for all technique combinations. This was deemed
sufficient for the deterministic algorithms, as they produced identical distances with
approximately equal computational costs in each run. However, the performance of
stochastic techniques may likely benefit from additional runs. It was hence consid-
ered to expand the number of runs to twelve, another option from BenchmarkDotNet,
but was deemed out of scope due to limitations of time.
Since all algorithms were further evaluated against only a single warehouse, they may
not generalize well. Different layouts, item placement schemes, or item distributions
within orders can notably impact technique performance. A significant detail of
the batch picking benchmarking suite is subsequently the limited sizes of order sets.
Although multiple sets of various sizes were used in the one model, more data may be
required to make decisive conclusions on algorithm performance and generalisation.

29

5. Discussion

As displayed in Appendix B.2, certain combinations of techniques, such as the ge-
netic algorithm combined with simulated annealing in Figure 4.8, appear to con-
sume unreasonable amounts of memory for the standard laptop running them. The
arguably misleading performance is derived from how BenchmarkDotNet monitor
memory usage. It measures the total allocated memory over the several runs of
a combination, without considering how C# performs garbage collection. Nev-
ertheless, if minimal memory usage is crucial, opting for other techniques is still
preferred.

5.4 Ethical Considerations
As with all optimization, the consequences of using it in practice must always be
thoroughly analyzed. Since all algorithms produce warehouse locations to visit in
specific orders, it is arguably unrealistic that human pickers may directly navigate
the locations without difficulties or external interruptions. The presented optimiza-
tion techniques may hence be better suited for robotic pickers in automated ware-
houses. If proven more cost-efficient than using human pickers, reduced operational
costs may potentially see warehouse staff being replaced.

5.5 Future Work
The project does by no means cover every aspect of the batch picking problem
and its role in warehouse logistics. Several extensions to consider are hence briefly
discussed below.

5.5.1 Dynamic Model
Since a highly simplified model is utilized throughout the project, a considerable ex-
tension is to model the dynamic aspects of warehouse characteristics. One example
is to utilize continuous order sets that are frequently updated with incoming orders
since warehouses in reality do not stop receiving orders while existing orders are
picked. A subsequent extension is to also consider the timestamps of orders since
warehouses are generally obligated to guarantee ranges of delivery dates to ensure
customer satisfaction. To enable the extensions, all algorithms would require mod-
ifications with more extensive solution verification, which may restrict the overall
performance.
Another dynamic is to also model the behaviour of pickers since most warehouses
are operated by humans. Picking orders may for instance require time and effort
beyond just traversal distances, such as correctly navigating the layout, climbing
shelves, or stopping to make conversation. Probabilistic traversal costs could hence
be introduced to the warehouse model, to simulate various scenarios, or agents
traversing the layout can be utilized to simulate how batches are picked.

30

5. Discussion

5.5.2 Solution Visualisation
Since batches and picking paths are currently outputted solely as numbers, verifying
the plausibility of solutions is generally counter-intuitive. Visualizing the picking
paths of batches and how orders are distributed in warehouses would hence be
beneficial to further evaluate the feasibility of using the techniques in practice. By
also visualizing how simulated pickers traverse the warehouse, one may verify how
intuitive solutions are for human pickers.

5.5.3 Extensive Benchmarking
Since the limited scope of benchmarking against only a single warehouse model may
result in techniques not being able to bridge the gap into practice, it is evident
that more exhaustive evaluation may be required. An extension would hence be to
streamline how warehouse models are created, to enable evaluation against a more
vast variety of warehouses. This may however be restricted by the limited availability
of warehouse layout data. On the other hand, since batch picking is in essence a
special case graph problem, it may be enough to generate problem instances from
a variety of existing graphs. This could further enable evaluating how well batch
picking algorithms generalize to graphs beyond warehouse layouts.

31

5. Discussion

32

6
Conclusion

In isolation, the Held-Karp algorithm is optimal in small instances but quickly grows
infeasible for usage in batch picking applications. Whilst comparably short paths
were produced by several methods, using a conventional linear program was superior.
It produced optimal paths on small instances and the best paths on instances with
unknown optimality. Unlike other heavier techniques, the computational costs of a
linear program were also clearly feasible for most batch picking applications. How-
ever, the computational requirements of the polynomial methods are substantially
better than all others, with the disadvantage of slightly worse paths. Choosing a
technique to work best in practice is hence to balance the optimality of a linear pro-
gram with the low computational costs of polynomial methods. Proximity batching
is overall the superior choice. The shortest distances are produced in combination
with a linear program, but the choice of technique matters not in terms of com-
putational costs that are feasible in practice. While other heuristics also produce
short distances, their high computational costs limit the selection of feasible combi-
nations. The probabilistic approaches generally perform poor, producing the longest
distances with infeasible computational costs for usage in practice. FIFO further
produce surprising short distances, since no optimization is performed to partition
the batches. However, since proximity batching utilizes equally low computational
costs as FIFO, it’s the evident choice of technique.
Overall, picking distances of order sets can be substantially reduced by applying
a variety of batch picking techniques. Whilst most methods reduce picking dis-
tance, only a few are feasible in practice. In the selection of feasible methods, the
task at hand is primarily to balance optimality with computational performance.
Heavier optimization methods generally gain less in optimality than they lose in
computational performance. On the contrary, lighter techniques tend to lose only
a little distance, while achieving incredibly cheap computational costs. Heuristics
handcrafted from domain knowledge further tend to perform better than generalized
algorithms.

33

6. Conclusion

34

Bibliography

[1] N. Boysen, R. de Koster, and F. Weidinger, “Warehousing in the e-commerce
era: A survey,” European Journal of Operational Research, vol. 277, no. 2,
pp. 396–411, 2019. doi: 10.1016/j.ejor.2018.08.023.

[2] P. Yang, Z. Zhao, and H. Guo, “Order batch picking optimization under dif-
ferent storage scenarios for e-commerce warehouses,” Transportation Research
Part E: Logistics and Transportation Review, vol. 136, p. 101 897, 2020, issn:
1366-5545. doi: 10.1016/j.tre.2020.101897.

[3] J. Drury, “Towards more efficient order picking,” IMM monograph, vol. 1,
no. 1, pp. 1–69, 1988.

[4] L. Pansart, N. Catusse, and H. Cambazard, “Exact algorithms for the order
picking problem,” Computers & Operations Research, vol. 100, pp. 117–127,
2018, issn: 0305-0548. doi: 10.1016/j.cor.2018.07.002.

[5] Ongoing warehouse, https://ongoingwarehouse.com/, Accessed: 2021-12-02.
[6] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,”

Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.
[7] M. Flood, “The traveling-salesman problem,” Operations Research, vol. 4,

pp. 61–75, 1956. doi: 10.1287/opre.4.1.61.
[8] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of

computer computations, Springer, 1972, pp. 85–103.
[9] M. Bellmore and G. L. Nemhauser, “The traveling salesman problem: A sur-

vey,” Operations Research, vol. 16, no. 3, pp. 538–558, 1968.
[10] S. Hougardy and M. Wilde, “On the nearest neighbor rule for the metric

traveling salesman problem,” Discrete Applied Mathematics, vol. 195, 2014.
doi: 10.1016/j.dam.2014.03.012.

[11] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, “Approximate algorithms
for the traveling salesperson problem,” in 15th Annual Symposium on Switch-
ing and Automata Theory (swat 1974), 1974, pp. 33–42. doi: 10.1109/SWAT.
1974.4.

[12] G. Gutin, A. Yeo, and A. Zverovich, “Traveling salesman should not be greedy:
Domination analysis of greedy-type heuristics for the tsp,” Discrete Applied
Mathematics, vol. 117, no. 1, pp. 81–86, 2002, issn: 0166-218X. doi: 10.1016/
S0166-218X(01)00195-0.

[13] G. Gutin and A. Yeo, “The greedy algorithm for the symmetric tsp,” Algo-
rithmic Operations Research, vol. 2, no. 1, pp. 33–36, 2007.

35

https://doi.org/10.1016/j.ejor.2018.08.023
https://doi.org/10.1016/j.tre.2020.101897
https://doi.org/10.1016/j.cor.2018.07.002
https://doi.org/10.1287/opre.4.1.61
https://doi.org/10.1016/j.dam.2014.03.012
https://doi.org/10.1109/SWAT.1974.4
https://doi.org/10.1109/SWAT.1974.4
https://doi.org/10.1016/S0166-218X(01)00195-0
https://doi.org/10.1016/S0166-218X(01)00195-0

Bibliography

[14] M. Held and R. M. Karp, “A dynamic programming approach to sequencing
problems,” Journal of the Society for Industrial and Applied Mathematics,
vol. 10, no. 1, pp. 196–210, 1962. doi: 10.1137/0110015.

[15] R. Bellman, “Dynamic programming treatment of the travelling salesman
problem,” J. ACM, vol. 9, no. 1, pp. 61–63, 1962, issn: 0004-5411. doi: 10.
1145/321105.321111.

[16] N. Christofides, “Worst-case analysis of a new heuristic for the travelling sales-
man problem,” Carnegie-Mellon Univ Pittsburgh Pa Management Sciences
Research Group, Tech. Rep., 1976.

[17] R. van Bevern and V. A. Slugina, “A historical note on the 3/2-approximation
algorithm for the metric traveling salesman problem,” Historia Mathematica,
vol. 53, pp. 118–127, 2020, issn: 0315-0860. doi: 10.1016/j.hm.2020.04.003.

[18] R. C. Prim, “Shortest connection networks and some generalizations,” The
Bell System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[19] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling
salesman problem,” Proceedings of the American Mathematical society, vol. 7,
no. 1, pp. 48–50, 1956.

[20] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale traveling-
salesman problem,” Journal of the operations research society of America,
vol. 2, no. 4, pp. 393–410, 1954.

[21] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE
Computational Intelligence Magazine, vol. 1, no. 4, pp. 28–39, 2006. doi: 10.
1109/MCI.2006.329691.

[22] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by simulated
annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[23] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.
Teller, “Equation of state calculations by fast computing machines,” The jour-
nal of chemical physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[24] O. Warehouse, Using FIFO in practice, Verbal communication: 2022-02.
[25] M. Sigvardsson and C. Persson. “Walk less, pick more: Choosing optimal

batches of orders in a warehouse.” (2020), [Online]. Available: https://hdl.
handle.net/20.500.12380/301743.

[26] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.
[27] C.-M. Hsu, K.-Y. Chen, and M.-C. Chen, “Batching orders in warehouses by

minimizing travel distance with genetic algorithms,” Computers in Industry,
vol. 56, no. 2, pp. 169–178, 2005, issn: 0166-3615. doi: 10.1016/j.compind.
2004.06.001.

[28] B. L. Miller, D. E. Goldberg, et al., “Genetic algorithms, tournament selection,
and the effects of noise,” Complex systems, vol. 9, no. 3, pp. 193–212, 1995.

[29] Benchmarkdotnet, https://github.com/dotnet/BenchmarkDotNet, Accessed:
2022-02-01.

36

https://doi.org/10.1137/0110015
https://doi.org/10.1145/321105.321111
https://doi.org/10.1145/321105.321111
https://doi.org/10.1016/j.hm.2020.04.003
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/MCI.2006.329691
https://hdl.handle.net/20.500.12380/301743
https://hdl.handle.net/20.500.12380/301743
https://doi.org/10.1016/j.compind.2004.06.001
https://doi.org/10.1016/j.compind.2004.06.001

A
Warehouse Model

A.1 Warehouse Layout

Listing A.1 Two-dimensional grid layout of a warehouse.
##
#...##################################
#.###########################.#################################.##################################
#.###########################...................................##################################
#.............................########################....................########################
#.###########################.###.########################
#.###########################...########################
#.............................###.########################
#.###########################.###.########################
#.###########################...########################
#.............................###.########################
#.###########################.###.########################
#.###########################...########################
#.............................###........................#
#.............................###.######################.#
#..#
#.............................###############.########################....######################.#
#.............................###############.########################....######################.#
#..#
#.............................###############.########################.###########################
#...###############..........###########################
#...####################################
#...###############.####################################
#...###############.####################################
#...####################################
#...###############.####################################
#...###############.####################################
#...####################################
#...###############.####################################
#...###############.####################################
#..#################################
#...##################.#################################
#..#################################
##

A.2 Example of order dataset

I

A. Warehouse Model

Table A.1: Order dataset consisting of 60 orders.

Order ID Item ID Order ID Item ID Order ID Item ID
159413 I-38-02 185777 G-02-03 185858 E-08-04
181958 K-21-02 185777 PB-11-02 185858 E-10-03
181958 J-05-03 185777 K-18-06 185858 E-09-02
181958 K-21-05 185777 K-18-06 185858 E-07-03
181958 J-17-04 185777 X 185858 E-15-02
181958 K-22-01 185815 G-23-04 185858 E-09-04
181958 E-13-05 185816 I-10-01 185858 E-10-03
181958 E-13-06 185816 PB-02-01 185858 I-01-02
181958 PG-04-01 185816 X 185858 E-10-01
181958 G-16-05 185816 X 185858 A-05-03
181958 PH-10-01 185818 H-20-03 185858 E-07-03
181958 H-14-05 185818 PB-06-01 185858 E-08-03
181958 G-15-02 185818 PC-13-01 185858 E-08-04
181958 H-22-01 185818 B-11-03 185858 E-08-05
182749 K-18-06 185818 PB-36-02 185860 TF-14
182749 J-18-05 185818 H-07-06 185862 TC-02
182749 K-18-06 185818 X 185864 F-13-03
182749 F-30-02 185818 PG-06-01 185864 D-32-03
182749 K-18-06 185818 E-13-04 185864 F-10-05
182749 PG-04-01 185818 PJ-04-01 185864 F-05-05
182749 G-15-02 185818 X 185868 G-02-01
182749 H-14-05 185820 G-38-04 185868 E-26-04
182749 H-22-01 185820 E-42-05 185868 K-22-04
182749 G-16-05 185820 G-04-02 185868 TE-04
182749 E-13-06 185820 G-02-03 185868 E-36-02
182749 E-13-05 185822 TF-05 185868 F-23-01
182749 PH-10-01 185823 G-13-05 185869 H-04-05
182903 J-18-06 185824 PF-04-02 185872 F-25-02
182903 G-14-02 185824 PK-05-01 185872 F-25-02
182903 PB-11-01 185824 A-24-06 185872 F-25-02
182903 PB-06-01 185824 F-36-03 185873 F-06-06
182903 G-04-02 185824 I-04-03 185875 F-18-03
182903 G-07-05 185824 G-03-03 185875 F-17-04
182903 G-02-04 185824 E-13-06 185875 I-04-03
182903 TC-19 185824 F-19-06 185878 G-43-03
182903 TE-04 185824 G-04-05 185878 B-18-06
182903 PH-10-01 185825 TH-01 185879 G-20-06
183396 G-08-03 185842 F-23-01 185879 A-26-05
183396 H-06-02 185842 E-36-02 185883 E-04-02
183396 PA-31-02 185842 E-43-04 185883 X -
183396 H-06-02 185842 E-30-05 185884 B-19-03
183396 G-02-05 185843 TH-07 185884 X -

Continued on next page

II

A. Warehouse Model

Table A.1 continued from previous page

Order ID Item ID Order ID Item ID Order ID Item ID
183396 G-15-06 185843 D-35-01 185885 PC-08-01
183396 G-08-04 185848 B-11-03 185886 PI-04-02
183396 H-06-01 185850 E-34-05 185887 PA-33-01
183396 H-16-02 185851 PA-33-01 185887 L-11-06
183396 G-02-04 185851 PI-04-01 185888 G-22-03
183396 G-05-02 185851 PI-04-01 185888 PE-18-02
183396 G-14-05 185851 L-11-06 185888 F-18-03
183396 TC-09 185852 X 185890 G-13-02
184608 X 185853 H-26-01 185890 G-02-01
184608 X 185854 PI-11-02 185891 X -
184616 G-32-06 185855 PJ-18-02 185891 X -
184616 X 185855 X 185891 G-20-03
184901 H-35-01 185856 K-02-04 185891 PJ-04-01
184901 X 185857 TE-05 185891 PG-06-01
185268 X 185857 X 185891 X -
185308 X 185858 E-10-06 185893 PB-17-01
185345 X 185858 E-08-04 185894 PB-22-02
185354 TF-14 185858 B-05-04 185895 X
185354 X 185858 E-08-01 185895 TE-05-
185363 X 185858 C-19-02 185896 G-08-02
185495 X 185858 D-04-04 185896 G-08-04
185559 X 185858 C-19-04 185896 G-08-04
185589 X 185858 E-09-01
185641 X 185858 E-10-04

III

A. Warehouse Model

A.3 Coordinate Mappings

Listing A.2 Coordinate mappings from shelf identifiers to two-dimensional coordi-
nates.
{

"A": [{"Row": 3 , "Column": 31, "Start": 1 , "End": 33}],
"B": [{"Row": 3 , "Column": 31, "Start": 1 , "End": 24}],
"C": [{"Row": 6 , "Column": 31, "Start": 43, "End": 1 }],
"D": [{"Row": 6 , "Column": 31, "Start": 43, "End": 1 }],
"E": [{"Row": 9 , "Column": 31, "Start": 1 , "End": 43}],
"F": [{"Row": 9 , "Column": 31, "Start": 1 , "End": 43}],
"G": [{"Row": 12, "Column": 31, "Start": 43, "End": 1 }],
"H": [{"Row": 12, "Column": 31, "Start": 43, "End": 1 }],
"I": [{"Row": 15, "Column": 31, "Start": 1 , "End": 43}],
"J": [{"Row": 15, "Column": 74, "Start": 1 , "End": 22}],
"K": [{"Row": 15, "Column": 74, "Start": 1 , "End": 22}],
"L": [{"Row": 18, "Column": 74, "Start": 22, "End": 1 }],
"PA": [{"Row": 15, "Column": 31, "Start": 1 , "End": 24},

{"Row": 15, "Column": 46, "Start": 28, "End": 42}],
"PB": [{"Row": 18, "Column": 31, "Start": 42, "End": 28},

{"Row": 18, "Column": 46, "Start": 24, "End": 1 }],
"PC": [{"Row": 18, "Column": 31, "Start": 42, "End": 28},

{"Row": 18, "Column": 46, "Start": 24, "End": 1 }],
"PD": [{"Row": 21, "Column": 46, "Start": 4 , "End": 18}],
"PE": [{"Row": 21, "Column": 46, "Start": 4 , "End": 18}],
"PF": [{"Row": 24, "Column": 46, "Start": 18, "End": 4 }],
"PG": [{"Row": 24, "Column": 46, "Start": 18, "End": 4 }],
"PH": [{"Row": 27, "Column": 46, "Start": 4 , "End": 18}],
"PI": [{"Row": 27, "Column": 46, "Start": 4 , "End": 18}],
"PJ": [{"Row": 30, "Column": 46, "Start": 18, "End": 4 }],
"PK": [{"Row": 30, "Column": 46, "Start": 18, "End": 1 }],
"TA": [{"Row": 1 , "Column": 2 , "Start": 1 , "End": 27}],
"TB": [{"Row": 4 , "Column": 2 , "Start": 1 , "End": 27}],
"TC": [{"Row": 4 , "Column": 2 , "Start": 1 , "End": 27}],
"TD": [{"Row": 7 , "Column": 2 , "Start": 27, "End": 1 }],
"TE": [{"Row": 7 , "Column": 2 , "Start": 27, "End": 1 }],
"TF": [{"Row": 10, "Column": 2 , "Start": 1 , "End": 27}],
"TG": [{"Row": 10, "Column": 2 , "Start": 1 , "End": 27}],
"TH": [{"Row": 13, "Column": 2 , "Start": 1 , "End": 27}],
"X": [{"Row": 26, "Column": 30, "Start": 1 , "End": 1 }]

}

IV

V

B. Benchmark tables

B
Benchmark tables

B.1 Travelling Salesman Performance

Table B.1: Performance benchmarks of travelling salesman algorithms.

Nodes TSP Algorithm Distance Time Memory
4 Ant Colony 184 24.8 ms 31.6 MB
4 Christofides 184 294 us 13 KB
4 Held-Karp 184 183 us 14 KB
4 Linear Programming 184 2.3 ms 34 KB
4 Nearest Neighbor 195 240 us 5 KB
4 Simulated Annealing 184 4.4 ms 4.3 MB
8 Ant Colony 238 52.8 ms 51.4 MB
8 Christofides 276 353 us 30 KB
8 Held-Karp 238 2.7 ms 1.9 MB
8 Linear Programming 238 2.2 ms 55 KB
8 Nearest Neighbor 296 156 us 5 KB
8 Simulated Annealing 238 16.1 ms 10.2 MB
16 Ant Colony 339 141.2 ms 126.2 MB
16 Christofides 390 322 us 77 KB
16 Held-Karp 338 6:36 m 329.5 GB
16 Linear Programming 338 4.4 ms 152 KB
16 Nearest Neighbor 423 155 us 6 KB
16 Simulated Annealing 339 53.6 ms 21.5 MB
32 Ant Colony 431 687.1 ms 484.7 MB
32 Christofides 585 653 us 167 KB
32 Held-Karp - - -
32 Linear Programming 415 24.6 ms 558 KB
32 Nearest Neighbor 494 173 us 9 KB
32 Simulated Annealing 422 188.8 ms 44.6 MB
64 Ant Colony 655 1.8 s 1.4 GB
64 Christofides 849 1.6 ms 435 KB
64 Held-Karp - - -
64 Linear Programming 623 85.2 ms 2.1 MB
64 Nearest Neighbor 800 244 us 13 KB
64 Simulated Annealing 648 615.9 ms 90.1 MB

VI

B. Benchmark tables

B.2 Batch Picking Performance

Table B.2: Performance benchmarks of batch picking algorithms.

Orders BPP Algorithm TSP Algorithm Distance Time Memory
60 FIFO Ant Colony 1646 2.0 s 2.2 GB
60 FIFO Christofides 1906 2.3 ms 528 KB
60 FIFO Linear Programming 1639 218.2 ms 2.5 MB
60 FIFO Nearest Neighbor 2013 344 us 39 KB
60 FIFO Simulated Annealing 1671 668.5 ms 176.7 MB
60 Genetic Algorithm Ant Colony 1495* 15:6 m 1.0 TB
60 Genetic Algorithm Christofides 1662 10.3 s 5.2 GB
60 Genetic Algorithm Linear Programming 1382* 15:4 m 4.1 GB
60 Genetic Algorithm Nearest Neighbor 1687 1.2 s 601.5 MB
60 Genetic Algorithm Simulated Annealing 1545* 15:23 m 219.4 GB
60 Greedy Batching Ant Colony 1262 3:28 m 216.7 GB
60 Greedy Batching Christofides 1974 116.4 ms 80.2 MB
60 Greedy Batching Linear Programming 1302 11.1 s 223.8 MB
60 Greedy Batching Nearest Neighbor 1701 14.4 ms 7.1 MB
60 Greedy Batching Simulated Annealing 1312 1:3 m 32.2 GB
60 Greedy Partition Ant Colony 1493 32.2 s 29.7 GB
60 Greedy Partition Christofides 1844 20.4 ms 14.0 MB
60 Greedy Partition Linear Programming 1564 4.3 s 44.0 MB
60 Greedy Partition Nearest Neighbor 1946 3.2 ms 1.3 MB
60 Greedy Partition Simulated Annealing 1601 10.5 s 5.4 GB
60 Proximity Ant Colony 1300 1.5 s 1.8 GB
60 Proximity Christofides 1558 4.7 ms 3.2 MB
60 Proximity Linear Programming 1287 89.7 ms 4.5 MB
60 Proximity Nearest Neighbor 1620 3.10 ms 2.8 MB
60 Proximity Simulated Annealing 1310 635.7 ms 156.1 MB
60 Simulated Annealing Ant Colony 1587* 15:4 m 951.7 GB
60 Simulated Annealing Christofides 1315 33.2 s 19.0 GB
60 Simulated Annealing Linear Programming 1579* 15:0 m 3.9 GB
60 Simulated Annealing Nearest Neighbor 1377 3.6 s 1.2 GB
60 Simulated Annealing Simulated Annealing 1597* 15:1 m 241.4 GB
107 FIFO Ant Colony 2391 1.8 s 1.8 GB
107 FIFO Christofides 2827 2.2 ms 682 KB
107 FIFO Linear Programming 2390 50.5 ms 1.7 MB
107 FIFO Nearest Neighbor 3075 564 us 50 KB
107 FIFO Simulated Annealing 2396 620.4 ms 226.6 MB
107 Genetic Algorithm Ant Colony 2358* 16:25 m 1.0 TB
107 Genetic Algorithm Christofides 2656 20.9 s 10.4 GB
107 Genetic Algorithm Linear Programming 2259* 15:1 m 2.8 GB
107 Genetic Algorithm Nearest Neighbor 2676 2.5 s 762.1 MB

Continued on next page

VII

B. Benchmark tables

Table B.2 continued from previous page

Orders BPP Algorithm TSP Algorithm Distance Time Memory
107 Genetic Algorithm Simulated Annealing 2392* 15:23 m 325.0 GB
107 Greedy Batching Ant Colony 1954 3:27 m 263.6 GB
107 Greedy Batching Christofides 2516 223.0 ms 131.8 MB
107 Greedy Batching Linear Programming 1944 15.3 s 153.5 MB
107 Greedy Batching Nearest Neighbor 2438 23.4 ms 15.0 MB
107 Greedy Batching Simulated Annealing 2015 49.5 s 42.6 GB
107 Greedy Partition Ant Colony 2257 50.6 s 93.0 GB
107 Greedy Partition Christofides 2654 46.3 ms 23.3 MB
107 Greedy Partition Linear Programming 2012 2.5 s 69.4 MB
107 Greedy Partition Nearest Neighbor 2798 6.9 ms 2.9 MB
107 Greedy Partition Simulated Annealing 2244 18.3 s 11.0 GB
107 Proximity Ant Colony 1994 1.8 s 1.5 GB
107 Proximity Christofides 2367 9.2 ms 7.4 MB
107 Proximity Linear Programming 1992 86.3 ms 8.7 MB
107 Proximity Nearest Neighbor 2508 7.7 ms 6.9 MB
107 Proximity Simulated Annealing 2015 567.2 ms 203.4 MB
107 Simulated Annealing Ant Colony 2509* 15:5 m 940.1 GB
107 Simulated Annealing Christofides 2235 41.2 s 27.9 GB
107 Simulated Annealing Linear Programming 2482* 15:2 m 2.8 GB
107 Simulated Annealing Nearest Neighbor 2266 4.1 s 1.8 GB
107 Simulated Annealing Simulated Annealing 2552* 15:1 m 301.8 GB
223 FIFO Ant Colony 5862 8.7 s 8.4 GB
223 FIFO Christofides 6917 7.7 ms 2.1 MB
223 FIFO Linear Programming 5831 511.8 ms 10.0 MB
223 FIFO Nearest Neighbor 7148 1.6 ms 123 KB
223 FIFO Simulated Annealing 5957 2.7 s 693.8 MB
223 Genetic Algorithm Ant Colony 5709* 21:1 m 1.3 TB
223 Genetic Algorithm Christofides 6505 1:33 m 38.9 GB
223 Genetic Algorithm Linear Programming 5604* 16:6 m 4.4 GB
223 Genetic Algorithm Nearest Neighbor 6623 4.1 s 1.1 GB
223 Genetic Algorithm Simulated Annealing 5770* 15:20 m 228.4 GB
223 Greedy Batching Ant Colony - 15:12 m 1.0 TB
223 Greedy Batching Christofides 5592 842.10 ms 674.8 MB
223 Greedy Batching Linear Programming 4356 7:53 m 1.1 GB
223 Greedy Batching Nearest Neighbor 5559 130.8 ms 72.6 MB
223 Greedy Batching Simulated Annealing 4470 6:31 m 246.3 GB
223 Greedy Partition Ant Colony 5154 4:52 m 364.9 GB
223 Greedy Partition Christofides 5770 203.8 ms 117.3 MB
223 Greedy Partition Linear Programming 4750 20.5 s 420.7 MB
223 Greedy Partition Nearest Neighbor 6431 22.10 ms 14.9 MB
223 Greedy Partition Simulated Annealing 5251 1:28 m 33.2 GB

Continued on next page

VIII

B. Benchmark tables

Table B.2 continued from previous page

Orders BPP Algorithm TSP Algorithm Distance Time Memory
223 Proximity Ant Colony 4702 5.4 s 6.3 GB
223 Proximity Christofides 5684 53.4 ms 40.8 MB
223 Proximity Linear Programming 4697 523.3 ms 47.2 MB
223 Proximity Nearest Neighbor 5806 47.0 ms 39.3 MB
223 Proximity Simulated Annealing 4803 2.4 s 619.0 MB
223 Simulated Annealing Ant Colony 5842* 15:23 m 965.8 GB
223 Simulated Annealing Christofides 5691 2:32 m 90.5 GB
223 Simulated Annealing Linear Programming 59024* 15:7 m 4.0 GB
223 Simulated Annealing Nearest Neighbor 5767 17.4 s 4.9 GB
223 Simulated Annealing Simulated Annealing 5931* 15:4 m 232.4 GB
769 FIFO Ant Colony 13278 13.2 s 13.6 GB
769 FIFO Christofides 15320 7.6 ms 3.5 MB
769 FIFO Linear Programming 13234 739.0 ms 14.7 MB
769 FIFO Nearest Neighbor 15795 3.5 ms 306 KB
769 FIFO Simulated Annealing 13425 4.6 s 1.5 GB
769 Genetic Algorithm Ant Colony 15029* 23:34 m 1.4 TB
769 Genetic Algorithm Christofides 16987 1:13 m 60.3 GB
769 Genetic Algorithm Linear Programming 14954* 16:49 m 2.6 GB
769 Genetic Algorithm Nearest Neighbor 17500 16.6 s 5.8 GB
769 Genetic Algorithm Simulated Annealing 15167* 15:55 m 328.6 GB
769 Greedy Batching Ant Colony - 15:5 m 1.2 TB
769 Greedy Batching Christofides 12382 7.0 s 4.6 GB
769 Greedy Batching Linear Programming - 15:35 m 171.1 MB
769 Greedy Batching Nearest Neighbor 12766 841.6 ms 667.7 MB
769 Greedy Batching Simulated Annealing - 15:0 m 990.5 GB
769 Greedy Partition Ant Colony 11921* 29:15 m 1.8 TB
769 Greedy Partition Christofides 12045 930.6 ms 802.2 MB
769 Greedy Partition Linear Programming 11383* 10:11 m 1.7 GB
769 Greedy Partition Nearest Neighbor 13998 202.1 ms 142.3 MB
769 Greedy Partition Simulated Annealing 12379 6:30 m 293.1 GB
769 Proximity Ant Colony 10498 9.5 s 8.9 GB
769 Proximity Christofides 11494 264.6 ms 353.2 MB
769 Proximity Linear Programming 10478 1.0 s 363.2 MB
769 Proximity Nearest Neighbor 11781 271.4 ms 351.0 MB
769 Proximity Simulated Annealing 10633 3.1 s 1.3 GB
769 Simulated Annealing Ant Colony 13967* 15:22 m 947.8 GB
769 Simulated Annealing Christofides 15022 4:47 m 171.4 GB
769 Simulated Annealing Linear Programming 14735* 15:15 m 2.6 GB
769 Simulated Annealing Nearest Neighbor 15695 37.5 s 13.7 GB
769 Simulated Annealing Simulated Annealing 14579* 15:8 m 296.8 GB

IX

	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Introduction
	Problem Description
	Research Questions
	Delimitations
	Contributions

	Theory
	Warehouse Model
	Travelling Salesman Problem
	Nearest Neighbor
	Held-Karp Algorithm
	Christofides Algorithm
	Linear Programming
	Ant Colony Optimization
	Simulated Annealing

	Batch Picking Problem
	First In, First Out (FIFO)
	Greedy Batch Heuristic
	Greedy Partition Heuristic
	Proximity Heuristic
	Simulated Annealing
	Genetic Algorithms

	Method
	Travelling Salesman Algorithms
	Batch Picking Algorithms

	Results
	Implementation
	Graph Namespace
	Model Namespace
	TSP Namespace
	BPP Namespace
	Benchmarks Namespace

	Travelling Salesman Performance
	Batch Picking Performance

	Discussion
	Travelling Salesman Evaluation
	Batch Picking Evaluation
	Limitations
	Model Limitations
	Benchmarking Limitations

	Ethical Considerations
	Future Work
	Dynamic Model
	Solution Visualisation
	Extensive Benchmarking

	Conclusion
	Bibliography
	Warehouse Model
	Warehouse Layout
	Example of order dataset
	Coordinate Mappings

	Benchmark tables
	Travelling Salesman Performance
	Batch Picking Performance

