

Implementation of Deep Feedforward Neu-
ral Network with CUDA backend
for Efficient and Accurate Natural Image
Classification
Convolutional Neural Network Applications

Master’s thesis in Complex Adaptive Systems

AUGUST VON HACHT

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2017

Master’s thesis 2017:NN

Implementation of Deep Feedforward
Neural Network with CUDA backend

for Efficient and Accurate Natural Image
Classification

Convolutional Neural Network Applications

AUGUST VON HACHT

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2017

Implementation of Deep Feedforward Neural Network with CUDA backend for Ef-
ficient and Accurate Natural Image Classification
Convolutional Neural Network Applications
AUGUST VON HACHT

© AUGUST VON HACHT, 2017.

Supervisor & Examiner: Mats Granath, Department of Physics

Master’s Thesis 2017:NN
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Implementation of Deep Feedforward Neural Network with CUDA backend for Ef-
ficient and Accurate Natural Image Classification
Convolutional Neural Network Applications
AUGUST VON HACHT
Department of Physics
Chalmers University of Technology

Abstract
Recent advancements in techniques for constructing and training deep feedforward
neural networks for classification tasks has enabled efficient training procedures lead-
ing to impressive results. This involves reducing overfitting due to over parameter-
ized models, using an adaptive learning rate for avoiding exploding and vanishing
gradients and symmetry breaking parameter initialization for efficient model opti-
mization. Utilizing these techniques, this thesis concerns with the implementation
of deep feedforward neural networks capable of efficient and accurate natural image
classification. Four feedforward neural network models were constructed with the
aim to classify tiny natural images from the CIFAR10 dataset. Having 3.274.634
trainable parameters for gray scale input and 4.259.274, 29.853.002 and 30.955.290
trainable parameters for rgb input, the training procedure utilizes a CUDA backend
for efficient parameter optimization. The handwritten digits were classified with
97.31% accuracy and the tiny natural images were classified, using the best model,
with 72.88% accuracy.

Keywords: Deep feedforward neural networks, Convolutional neural networks, CUDA,
Natural Image classification

v

Acknowledgements
I would like to thank my supervisor and examiner Mats Granath for the support
and encouragement in pursuing this thesis work.

I would also like to thank Chalmers Centre for Computational Science and Engi-
neering for allowing me to utilize their cluster computer as a basis for the demanding
computations. Thanks for a helpful support service center and a fruitful introduc-
tion to the cluster environment.

Without the MNIST and CIFAR10 dataset this work would not be possible and I
would therefore like to thank the maintainers of respective dataset.

Finally, I would like to take the opportunity to express my love and gratitude towards
my family for their endless support during the writing of this thesis.

August von Hacht, Gothenburg, June 2017

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Deep feedforward neural networks . 2

2 Theory 5
2.1 Supervised learning for optimizing deep neural networks 5
2.2 Optimization through gradient based learning 6

2.2.1 Backpropagation in feedforward neural networks 6
2.2.2 Gradient based learning rule 8
2.2.3 Adaptive moment estimation 8

2.3 Feedforward neural network layer components 9
2.3.1 Fully connected layer . 9
2.3.2 Convolutional layer . 10
2.3.3 Maxpooling layer . 11

2.4 Activation function . 13
2.4.1 Rectified linear unit . 13

2.5 Regularization . 13
2.5.1 Weight decay . 14
2.5.2 Dropout . 14

2.6 Weight initialization . 15

3 Methods 17
3.1 Implementation of deep feedforward neural network 17

3.1.1 Data representation . 17
3.1.2 Tensor representation as multidimensional array 17
3.1.3 Convolution as matrix multiplication 18
3.1.4 Convolution output to fully connected input conversion for

matrix multiplication . 19
3.1.5 The computational graph . 19
3.1.6 Context object pattern . 20

3.2 Efficient matrix multiplications . 21
3.2.1 OpenBLAS . 21
3.2.2 cuDNN and cuBLAS . 21

ix

Contents

3.3 Verify computations through gradient check 22
3.4 Implementation verification using the MNIST dataset 23

3.4.1 Pre-processing . 24
3.4.2 Network architecture . 24
3.4.3 Hyperparameters . 25

3.5 Challenging the CIFAR10 dataset . 25
3.5.1 Pre-processing . 26
3.5.2 Network architectures . 26
3.5.3 Hyperparameters . 28

3.6 Neural network architecture evaluations 28
3.6.1 Loss . 28
3.6.2 Accuracy . 28
3.6.3 Confusion matrix . 28
3.6.4 Weight visualization . 28

4 Results 31
4.1 MNIST classification . 31

4.1.1 Discussion . 33
4.2 CIFAR10 classification . 33

4.2.1 Model A . 34
4.2.2 Model B . 36
4.2.3 Model C . 38
4.2.4 Discussion . 40

4.2.4.1 Model A . 40
4.2.4.2 Model B . 41
4.2.4.3 Model C . 41
4.2.4.4 Comparison with the state-of-the-art 43

4.2.5 Pre-processing . 43
4.2.6 Optimizing the neural network architectures 44

5 Conclusions 45
5.1 Future work . 45

Bibliography 47

A Details to formulas in theory section I
A.1 Negative log-likelihood gradient . I
A.2 Backpropagation: Fully connected layer I
A.3 Backpropagation: Convolutional layer III
A.4 Gaussian weight initialization . IV

B Two hyperparameter trials VII
B.0.1 Model A trial one . VII
B.0.2 Model A trial two . IX

x

List of Figures

2.1 Negative log liklihood . 6

3.1 Two dimensional row-major ordering 18
3.2 Computational graph . 20
3.3 MNIST dataset . 23
3.4 MNIST dataset distribution . 24
3.5 CIFAR10 dataset . 25
3.6 CIFAR10 dataset distribution . 26

4.1 MNIST classification results . 31
4.2 MNIST learned weights . 32
4.3 MNIST confusion matrix . 33
4.4 CIFAR10 model A classification results 34
4.5 CIFAR10 Model A accuracy . 34
4.6 CIFAR10 model A learned weights 35
4.7 CIFAR10 Model A confusion matrix 36
4.8 CIFAR10 model B loss . 36
4.9 CIFAR10 Model B accuracy . 37
4.10 CIFAR10 Model B learned weights 37
4.11 CIFAR10 Model B confusion matrix 38
4.12 CIFAR10 model C classification results 38
4.13 CIFAR10 Model C accuracy . 39
4.14 CIFAR10 Model C learned weights 39
4.15 CIFAR10 Model C confusion matrix 40
4.16 Gabor filters . 41
4.17 von Neumann neighborhood . 42

xi

List of Figures

xii

List of Tables

3.1 Graphics card specifications . 22
3.2 MNIST architecture . 24
3.3 CIFAR10 model A . 26
3.4 CIFAR10 model B . 27
3.5 CIFAR10 model C . 27

4.1 MNIST hyperparameters . 31
4.2 CIFAR10 model A hyperparameters 34
4.3 CIFAR10 model B hyperparameters 36
4.4 CIFAR10 model C hyperparameters 38

xiii

List of Tables

xiv

1
Introduction

1.1 Motivation

The motivation behind this thesis stems from a guest lecture about the Never-
Ending language learner (NELL) [1] and the recent advancements in the field of
deep learning [2]. The NELL project aims at learning a set of relations between
nouns through reading text. As basic understanding of context usually requires ad-
ditional information inferred from prior knowledge, a system which learns a set of
prior knowledges, which has shown to be useful in interpreting text, would be inter-
esting to experiment with within the context of images and videos. With the recent
advancement in image recognition through deep learning such a pipeline seems ob-
tainable for interpreting basic context in images and videos. Especially, since most
deep learning networks generates a short vector of a complex representation, which
can easily and efficiently be stored in a database. However, it is unclear whether
the recent results are due to development of the deep learning algorithms or rather
a consequence of fine tuning, computational power and data specific techniques.
The recent impressive results are often attributed to the increase in computational
power and data, allowing for deeper neural networks to be tested. The computa-
tional power comes from utilizing the graphics processing unit (GPU) to perform
large parallel computations which drastically reduces the required optimization time.

It is in the interest of this thesis to delve into the implementation and details utilized
for learning to classify natural images. Gaining deeper insights in the techniques
behind the successful results may help to improve upon the current knowledge in
deep feedforward neural networks and their applications. Setting up a neural net-
work to automatically learn fundamental representations between nouns simplifies
the tedious work of doing so manually. This thesis is therefore concerned with the
following tasks

• Implement a deep feedforward neural network capable of natural image clas-
sification.

• Utilize the graphics processing unit to speed up the optimization process.
Using this implementation the follow research questions are studied

• What is a good way to construct a deep feedforward neural network for natural
image classification?

• Do these neural networks, using only mean subtraction on the data, obtain a
good accuracy?

• Does a deep feedforward neural network learn properties that generalize?

1

1. Introduction

With good accuracy means high accuracy > 90%.

Further details into how to construct a pipeline for learning relations in images and
video is beyond the scope of this thesis and will not be further addressed. The
deep feedforward neural network to investigate and implement is the convolutional
neural network and so this thesis intends its applications. The natural images to
apply the developed deep learning framework to is the CIFAR10 dataset [3]. The
dataset contains natural images of 10 mutually exclusive classes.

1.2 Deep feedforward neural networks
Deep feedforward neural networks are directed acyclic graphs (DAG) consisting of
layers of neurons, further referred to as computational units. The network is feed-
forward due to having layer connections which follows a DAGs topological ordering.
A layer in the network is defined as a set of computational units which together
with input x computes some function ~f(x;θ), where θ is a trainable parameter set
belonging to a layer (bold symbol and arrow indicates vector). A feedforward net-
work is constructed using an input layer, hidden layers and an output layer. Given
a network with N hidden layers this network computes a mapping y of the input x
as

y = ~f (N+1)(...(~f (2)(~f (1)(x;θ1);θ2))...;θN+1) (1.1)

This construction gives a deep feedforward neural network the ability to approxi-
mate a desired mapping through combining multiple layers which each computes a
function ~f (i) on their respective input and by tuning their parameters θi.

These network ideas of connected neurons stems from inspiration from the fields of
neuroscience. Much of these neural network characteristics originates from simpli-
fied models of how the human brain has been observed to behave on the scale of
the biological neuron, e.g. the McCulloch-Pitts neuron [4]. However, these neuron
models omit many complications such as; biological neurons produces time series of
spikes as a response of continuous input, asynchronous updating of individual neu-
rons and nonlinear summations. Therefore, feedforward neural networks are better
thought of as a design aimed at achieving statistical generalization which has drawn
insight from the biological neurons behavior.

Despite these simplifications a neural network with a single hidden layer having m
neurons can approximate a wide variety of continuous functions on compact subsets
of Rn, under mild conditions on the activation functions [5, 6]. These theoretical
results only shows whether any particular function is computable or not, to which
the answer is always yes. However, for practical usage the question of what is a good
way to construct a neural network to compute a particular mapping has shown to
be difficult to answer. While in principle any well enough approximated mapping
can be found using a shallow neural network there are many practical reasons for
using deep neural networks. For instance in image recognition, learning not only

2

1. Introduction

the individual pixel values but also the structures of which a set of pixels can form
helps to understand complex concepts by forming hierarchies of abstractions, e.g.
geometrical shapes, and thus gaining a ’deeper’ representation of the data.

3

1. Introduction

4

2
Theory

This chapter outlines the deep feedforward neural network components used to con-
struct a deep learning model for image recognition of natural images.

2.1 Supervised learning for optimizing deep neu-
ral networks

Supervised learning is the task of inferring a function from supervised training ex-
amples. Given a set of N data points {(x1, y1), ..., (xN , yN)} where xi ∈ RD is a
vector representation of an instance of a class and yi ∈ 1...K is a class label, a
learning algorithm seeks a mapping f : RD → RK . It is common to represent f
using a score function g : RD ×RK → R such that the label y from the set of class
labels having the highest score is returned

argmax
y

g(x, y) (2.1)

While the score function simply makes a prediction of the class label based on the
neural network output, improvements on the parameterized computation resulting
in that output can be made through optimization. This is done via measuring the
error rate of the current prediction, before passing it through the score function, us-
ing a loss function L : R×RK → R. For a data point (xi, yi) the loss of predicting
output ŷ is L(yi, ŷ). The computation, in this case a forward pass through the deep
feedforward neural network, can therefore learn its parameters through minimizing
the loss function as this corresponds to optimizing the fit. Thus, the neural network
learns what a representation x corresponds to among the classes y through inferring
such a mapping from training data.

In many applications it is convenient for the output of the neural network, before it
is forwarded through the score function, to have some natural interpretation as this
make for an easier interpretation of the score function. In image classification tasks
converting the output into a probability distribution over the class labels gives the
interpretation of the highest scoring element as the label which the network believes
is most probable to associated with the image.

The transformation from the network output to a probability distribution is done

5

2. Theory

via the softmax function

p(ŷ)k = eŷk∑
j e

ŷj
(2.2)

As the neural network outputs a probability the error rate of this belief is measured
using the negative log likelihood

L(yi, ŷ) = −log(p(ŷ)yi
) (2.3)

Figure 2.1: Depending on the element at the index yi in the output vector, the
negative log likelihood returns a loss reflecting its error rate.

The kink at p(ŷ)yi
= 0 is counteracted by adding a small numerical constant which

does not affect the result during normal operation.

2.2 Optimization through gradient based learning
Given a poor prediction by the network, improving the fit can be done by tuning the
parameters θ. Due to the non-convex optimization problem, an iterative gradient-
based optimization scheme over the high dimensional parameter space is required.

2.2.1 Backpropagation in feedforward neural networks
Assume the following simple feedforward neural network

a0 a1 a2 L
w1 w2

where aj = f(zj) is the activation function f applied to the affine transformation
zj = wjaj−1 and L is the loss. A small change in ∆w1 will cause a change to a1 by

∆a1 ≈
∂a1

∂w1
∆w1 = f

′(z1)a0∆w1 (2.4)

6

2. Theory

this will in turn change z2 by

∆z2 ≈
∂z2

∂a1
∆a1 = w2∆a1 (2.5)

which will trigger a change in a2 by

∆a2 ≈
∂a2

∂z2
∆z2 = f

′(z2)∆z2 (2.6)

finally, this change causes

∆L ≈ ∂L

∂a2
∆a2 (2.7)

therefore, in this case, a change in the parameter w1 results in a change in L

∆L
∆w1

= f
′(z1)a0w2f

′(z2) ∂L
∂a2

(2.8)

Thus, given an error δ2 = ∂L
∂a2

at the output, running this procedure in reverse
gives the amount by which a parameter wj should be changed in order achieve a
smaller error. Usually deep feedforward neural network contains many layers with
different layer structures and weight connections why the above procedure scales
poorly. Instead given the intermediate changes or errors at a layer l, defining the
backpropagation procedure through the individual layers gives the same procedure
but in an iterative form. The error is therefore defined using the iterative form

δlj ≡
∂L

∂zlj
(2.9)

which instead implicitly holds all the errors from the previous layers. Defining the
error using the affine transformation instead of the activation function is for conve-
nience in the appendix derivations. The only change is having the derivative of the
activation function f ′(zj) showing up in the layer specific backpropagation equations.

The objective in optimizing the neural network is to minimize the loss function L
with respect to its parameters, which corresponds to optimizing the fit. This requires
non-convex optimization which is done via stochastic gradient descent or in other
words at each time step reducing the loss by taking a step in the direction of the
steepest descent in parameter space. This, as seen by eq. (2.8), requires the output
gradient which given a prediction ŷ and using the negative log likelihood eq. (2.3)
is

∂L(yi, ŷ)
∂ŷk

=
{
p(ŷ)k−1 if k = yi
p(ŷ)k otherwise (2.10)

where yi is the correct label associated with the input which results in the prediction
ŷ (details are in appendix A.1).

7

2. Theory

2.2.2 Gradient based learning rule
The stochastic gradient descent update rule for an individual neuron parameter at
time t is

θt+1 ← θt − ηt
∂Lt
∂θt

(2.11)

where ηt is the step size at time t, commonly called the learning rate, and ∂L
∂θ

is the
error in θ, defined as a chain of gradients, seen from eq. (2.8).

In deep feedforward neural networks the gradients in the update rule has shown
to be problematic due to long chains of gradients. Problems such as the vanishing
gradient problem where the gradients in the early layers are close to zero due to a
parameter somewhere in the later layers gets stuck when having to moving across a
saddle point, which causes the learning to stagnate for earlier layers. Therefore, it is
proposed to use an adaptive learning rate which bounds the gradients by the learning
rate, making the learning independent of these chain lengths. Additionally, it also
accounts for sparsity by updating infrequent occurrences stronger and scaling down
frequent occurring parameter updates. This has show to give a greater robustness
of the update rule when training to classify images.

2.2.3 Adaptive moment estimation
Adaptive moment estimation [7] maintains a history over an exponentially decaying
average of past gradients

mt = β1mt−1 + (1− β1)∂Lt
∂θt

(2.12)

vt = β2vt−1 + (1− β2)
(
∂Lt
∂θt

)2

(2.13)

wheremt and vt are estimates of the first moment (the mean) and the second moment
(the uncentered variance) of the gradients respectively. The authors (Kingma and
Ba) found that the zero initialization biased the estimates toward zero and therefore
counteracted this by computing bias-corrected first and second moment estimates:

m̂t = mt

1− βt1
(2.14)

v̂t = vt
1− βt2

(2.15)

thereafter the update rule eq. (2.11) is instead

θt+1 ← θt − ηt
m̂t√
v̂t + ε

(2.16)

where ε is a small numerical constant added to avoid division by zero. The step
θt+1 − θt taken in parameter space at time t is bounded by

|∆t| ≤ ηt

(
1− β1√
1− β2

)
if 1− β1 >

√
1− β2

|∆t| ≤ ηt otherwise
(2.17)

8

2. Theory

For further details of the bounds, see the authors paper (Kingma and Ba). This
update rule prevents the gradients from either exploding or vanishing, independently
of the neural network depth. A modification of this learning rule is implemented and
used. The modified version introduces weight decay and is presented in a section
2.5.1.

2.3 Feedforward neural network layer components
The feedforward neural network used contains two types of feedforward structures.
The first structure is the combination of one or more convolutional layer followed by
a maxpooling layer. Multiple such structures can be combined forming a ConvNet
structure which aims at simplifying an image by measuring activations from affine
transformations. The other structure is a combination of one or more fully connected
layers which aims at classifying these representations.

2.3.1 Fully connected layer
The fully connected layer is parametrized by weights and a bias. Similar to the
McCulloch-Pitts neuron the neurons in a fully connected layer forwards an activation
function f applied to the weighted sum over the inputs

alj = f

(∑
k

wljka
l−1
k + blj

)
(2.18)

where the activation alj of the jth neuron in the lth layer is related to the kth neuron
in the (l − 1)th layer via the weight wljk shown in the following diagram

al−1
k

alj

wljk

layer l − 1 layer l

The bias term is usually thought of as an extra neuron connected to the lth layer
via a weight of value one. The input to the activation function f is referred to as
the affine transformation of the input

zlj =
∑
k

wljka
l−1
k + blj (2.19)

and given a parameters setting resulting in an error ∆zlj this is backpropagated as

δl−1
k =

∑
j

wljkδ
l
jf
′(zl−1

k) (2.20)

9

2. Theory

Now given an error at a neuron the weight and bias gradients are given as

∂L

∂blj
= δlj (2.21)

∂L

∂wljk
= al−1

k δlj (2.22)

with the details in appendix (A.2).

2.3.2 Convolutional layer
A convolutional layer is also parametrized by weights and a bias but introduces addi-
tional parameters through weight sharing. The weight sharing principle is shown in a
one dimensional case using a color scheme to showcase the same weight occurrences

|F|

layer l − 1 layer l

Unlike the fully connected layer where each neuron connects to the next layer via
a unique weight, the convolution layer use a set of weights called filters F which
is applied multiple times onto various spatial locations of the input I. As a result,
the number of weights in the one dimensional case remains constantly equal to the
filter size instead of O(nm), where n is the number of neurons in layer l and m is
the number of neuron is layer l − 1, as in the fully connected case.

The weight sharing introduces additional parameters called stride and padding. The
stride determines the step size by which the filters moves over the input, e.g. in the
diagram the stride equals to one. The padding is used to fill out the input’s spatial
domain such that the convolution is defined at the boarders for a certain filter size
and stride. These parameters are not learnable and instead used to define the spatial
output domain which is related to the spatial input domain through

nli =
⌊
nl−1
i − fi + 2pi

si

⌋
+ 1 (2.23)

where i denote the domain by which the filters acts, e.g. width or height of an
image. Note that the output domain before the floor function is preferably integer
valued. It is also preferred to have nli = nl−1

i ∀i since this makes the filters occur

10

2. Theory

at the same spatial locations in both the backward and forward pass.

The two operations performed in a forward and backward pass of a convolutional
layer are the discrete cross-correlation

Ccross
jk =

∑
j′

∑
k′
Ij+j′ ,k+k′Fj′k′ (2.24)

and discrete convolution

Cconv
jk =

∑
j′

∑
k′
Ij−j′ ,k−k′Fj′k′ (2.25)

which are related through a flipping operation applied onto the filters. During a
forward pass through the layer each output activation is formed by

aljk = f
(
wljk ∗ al−1

jk + bljk
)

(2.26)

= f

∑
j′

∑
k′
wlj′k′a

l−1
j−j′ ,k−k′ + bljk

 (2.27)

The input to the activation function f is again an affine transformation denoted by

zljk =
∑
j′

∑
k′
wlj′k′a

l−1
j−j′ ,k−k′ + bljk (2.28)

Now given an error ∆zljk this is propagated backwards according to

δl−1
jk = δljk ∗ rot180◦(wljk)f

′(zljk) (2.29)

Looking back at the one dimensional case in the diagram, the color scheme shows
that when forward propagating a value in layer l−1 to layer l this requires traversing
the weight connections according to red, green and blue order. When backward
propagating an error in layer l to layer l − 1 this requires traversing the weights
according to blue, green and red order. This is the reason for rotating the filters in
eq. (2.29). Given an error at each neuron in a convolutional layer the weights and
bias gradients are

∂L

∂wljk
= δljk ∗ f(rot180◦(zl−1

jk)) (2.30)

∂L

∂bljk
= δljk (2.31)

with the details in appendix (A.3).

2.3.3 Maxpooling layer
A maxpooling layer summarizes the output from a convolutional layer by grouping
output regions into a single representative candidate. This layer therefore does not
require any trainable parameters but has to describe the choice of the region used

11

2. Theory

by the max operator. A region is a two dimensional rectangular neighborhood with
side lengths rx and ry and when applied to the input space encloses some subset
of activation values. Multiple regions are spread either jointly or disjointly across
the input space which is decided by a striding and padding parameter. If the stride
size along a spatial domain is larger than the rectangular side length in that domain
then the regions won’t overlap otherwise they will. The output’s spatial domain is
obtained through eq. (2.23), but with fi → ri. Using a one dimensional case with
stride equals to two and padding zero results in the following diagram

a1

a2

a3

a4

max{a1,a2}

max{a3,a4}

layer l − 1 layer l

The particular form of weight sharing used in the convolutional layer has the prop-
erty of being equivariant to translation. Equivariance refers to the property of
changing input results in the output changing similarly. This means that first trans-
lating and then convolving is equal to first convolving and then translating, assuming
the translation keeps the object within the input domain,

[[LtF] ∗ I] (x) =
∑
y

F (y − t)I(x− y) (2.32)

=
∑
y′
F (y′)I(x− (y′ + t)) (2.33)

=
∑
y′
F (y′)I(x− y′ − t) (2.34)

= [Lt [F ∗ I]] (x) (2.35)

By summarizing the output from a convolutional layer using a maxpooling layer
the resulting representation of the activations is made approximately invariant to
small uniform translations in the input. If a small uniform translation in the input
occurs then this is canceled out by the max operator since the winning activations
maintain their relative positions. For image classification tasks this makes such a
layer combination invariant to where in the image an object of the same class is
positioned spatially.

The forward pass through a maxpooling layer is

aljk = max
({
al−1
jsy−py ,ksx−px

, al−1
jsy−py ,ksx+1−px

, ..., al−1
jsy+ry−py ,ksx+rx−px

})
(2.36)

where sx, sy are the striding parameters and px, py are the padding parameters of
respective domains.

12

2. Theory

Since there are no trainable parameters the errors propagated backwards from the
next layer is simply back propagated to the previous layer as is. However, for each
region only the winning activation obtains the error since the other activations did
not participate in the computation of the output mapping

δl−1
jk =

{
δljk if al−1

jk was max
0 otherwise (2.37)

2.4 Activation function

The activation function is used to restrict a neurons output within a certain range
and to expand the mapping f beyond linear regression. The consequence of using an
activation function is however that a non-constant derivative shows up in the gra-
dients. Confining the output range to [0, 1] using the sigmoid function or to [−1, 1]
using the hyperbolic tangent is useful for stabilizing the gradients during optimiza-
tion. However, near these boarders the gradients vanishes which is problematic for
deep neural networks since this will stagnate the learning for a neuron in a layer and
all neurons in earlier layers sharing connections to the output via this neuron, as
seen by eq. (2.8). Therefore, the rectified linear unit is used for optimizing deeper
neural networks.

2.4.1 Rectified linear unit

The rectified linear unit (ReLU) [8] is defined as

f(z) = max(0, z) (2.38)

where

f
′(z) =

{
1 if z > 0
0 otherwise (2.39)

which is a non-saturating non-linearity that has shown to be efficient in optimizing
deep neural networks.

2.5 Regularization

Deep feedforward neural networks are inherently overparametrized models aimed at
optimizing a fit to data points. Due to having more parameters then required the
neural network has to be regularized in order to avoid overfitting on non-generic
structures, such as noise. It is typically the case that the number of data points
available are orders of magnitude less than the number of parameters used by the
neural network. Therefore, two regularization schemes are adopted where the first
technique modifies the loss function whereas the second technique modifies the neu-
ral network architecture.

13

2. Theory

2.5.1 Weight decay
When trying to fit a high dimensional hyperplane to a number of data points the
probability of a unique optimal fit is very unlikely. Any infinitesimal change to
any of the hyperplane parameters has to worsen the fit which together with a finite
number of data points makes this certainly improbable. It is therefore a reasonable
assumption that there exists multiple sets of these parameters which optimizes the
fit. Moreover, when optimizing with a subset of the data various sets of parameters
might improve the fit due to utilizing local structures. A technique for selecting a
specific set of parameters and avoiding overfitting on local structures in the data so
that the generalization capabilities of the network improves is to introduce weight
decay.

Weight decay adds an additional term to the loss function

L(yi, ŷ) = −log(p(ŷ)yi
) + λ

2
∑
w

w2 (2.40)

where the sum is over all weights in the neural network and λ is the regularization
term. This L2-regularization tells the network to prefer smaller weights. Large
weight are only allowed if they make a large improvement to the loss function. The
reason it is called weight decay is because the regularization term introduces to the
gradient of the loss function, with respect to the weight, a decay term which equals
λw. The stochastic gradient descent update rule using adaptive moment estimation
is therefore modified to

wt+1 ← (1− ηtλ)wt − ηt
m̂t√
v̂t

(2.41)

2.5.2 Dropout
Dropout is a regularization technique used for reducing over fitting by approximat-
ing many different neural network architectures [9]. During optimization, a neurons
activation is randomly dropped temporarily by cutting off the weight connection
to the next layer. Over many training examples this corresponds to optimizing a
set of approximately different neural networks since having n units in a layer can
have 2n different arrangements of connections to the next layer. When predicting,
having each unit active, a weight connection is approximated by the expected value
of being active times the value to propagate forward.

Dropout can be modeled as a simple layer with non-trainable weights of value one.
It has one non-trainable parameter p , where 1 − p is the probability of setting a
weight to zero which effectively cut off the connection to the next layer. A forward
pass during optimization is

rlj ∼ Bernoulli(p) (2.42)
ŷlj = rljy

l
j (2.43)

14

2. Theory

and

ŷlj = E[rlj]ylj (2.44)
= pylj (2.45)

when predicting. The backward pass simply backpropagates an error through a
dropout layer depending on what r was in the forward pass

δl−1
j =

{
δlj if rlj was 1
0 otherwise (2.46)

2.6 Weight initialization
The weight initialization has shown to be crucial for optimizing deep feedforward
neural networks [10, 11]. Without proper weight initialization the variation of the
input signal and the error signal is exponentially scaled, which has shown to cause
learning to diverge or stall immediately after initialization. In the early stages of
optimization it has also been shown to benefit the neural network if the output
variation is uniformly spread across the outputs in any layer. This enhances learn-
ing through keeping larger parts of the neural network active with backpropagated
non-zero errors during the initial optimization steps.

The variance in the input using ReLU activation propagates forward through the
network as

Var[zl] = Var[z1]
(

L∏
2

1
2n

lVar[wl]
)

(2.47)

and backwards as

Var[δ2] = Var[δL+1]
(

L∏
2

1
2 n̂

lVar[wl]
)

(2.48)

where nl are the number of terms in the affine transformation of the forward pass, n̂l
are the number of terms in the affine transformation of the backward pass. A proper
weight initialization should avoid scaling the input signal exponentially, which leads
to the conditions

1
2n

lVar[wl] = 1, ∀l (2.49)
1
2 n̂

lVar[wl] = 1, ∀l (2.50)

It is sufficient to fulfill either of the two conditions since this leads to the other
condition not resulting in a diminishing number in many common feedforward neural
networks. The first condition is fulfilled by a zero-mean Gaussian distribution whose
standard deviation is

√
2
nl (details in A.4).

15

2. Theory

16

3
Methods

The chapter outlines the consideration made during the implementation of the com-
ponents outlined in the theory section, how the final implementation is verified, how
it is tested and how the results are evaluated.

3.1 Implementation of deep feedforward neural
network

The mapping eq. (1.1) is operating multiple times with various functions onto input
which initially is represented by a natural image. To efficiently propagate the data
throughout the neural network multiple consideration regarding the data structure
and data propagation was made. These are presented below.

3.1.1 Data representation

The neural network uses a tensor of fourth order to represent any type of data, e.g.
filters, biases, input images, weights etc. To describe the tensor a shape is used
which follows the row-major ordering meaning the rightmost index varies fastest. A
shape has the following structure

shape = [N,C,H,W] (3.1)

N can be the number of images feed to the neural network in a forward pass or the
number of filters used by a convolution layer. C is used to represent data channels
e.g. grayscale or RGB color channels. The last two dimensions are the data height
and width e.g. filter sizes or image sizes.

3.1.2 Tensor representation as multidimensional array

An efficient representation of a tensor is the n-dimensional array which maps a
certain index to a number on the line, the following figure shows how this line is
formed

17

3. Methods

Figure 3.1: Example of using row-major ordering for representing a tensor of order
two with a 2-dimensional array. In a 4-dimensional array each row in a matrix of
width W and height H is stacked after each other, i.e. H stacks of W elements
each. Thereafter, the next matrix corresponding to the next channel C, is converted
similarly to an array and is stacked afterwards. This is repeated for each number N .

The general formula for finding a certain tensor element on the line in an n-dimensional
array using row-major ordering is

line position =
n∑
i=1

i−1∏
j=1

Nj

ni (3.2)

In this case, n = 4 and each Nj ∈ {N,C,H,W} which is given by the tensor shape.
Many efficient matrix multiplication libraries requires a n-dimensional array with
row-major ordering, so for compatibility any data is stored in this format, but used
as if it was in the tensor format.

3.1.3 Convolution as matrix multiplication
Using the data representation eq. (3.1), an input to the convolutional layer has the
shape [1, C,H,W]. A filter has the shape [K,C, Fh, Fw] where K is the number of
filters and F is their width and height. In the affine transformation in the forward
pass eq. (2.28) each filter is applied multiple times over the input. The number of lo-
cations are founding using the filter size Fh, Fw, the stride and the padding according
to eq. (2.23) which is assumed to be V L for vertical locations and HL for horizontal
locations. By converting the input to have the shape [1, 1, C×Fh×Fw, V L×HL] =
[C×Fh×Fw, V L×HL] each column is effectively the locations which a filter is to mul-
tiply with, which requires each of those input values to be copied over to respective
column position. This is done using an image to column operations. The filters are
converted to [1, 1, K, C×Fh×Fw] = [K,C×Fh×Fw] and the multiplication follows
as [K,C×Fh×Fw]× [C×Fh×Fw, V L×HL] = [K,V L×HL] = [1, 1, K, V L×HL].
Using a column to image operations the input can be restored to [1, K, V L,HL].

The affine transformation in the backward pass eq. (2.29) follows by taking the er-
rors of shape [1, K, V L,HL] and convert to [1, 1, K×Fh×Fw, H×W] = [K×Fh×
Fw, H×W] using the same filter size, stride, padding and image to column operation.
This is then multiplied by the weights flipped 90o horizontally and then 90o verti-
cally; iterating through in row-major order would give the elements in backwards

18

3. Methods

order (recall the one dimensional color scheme diagram). These filters are converted
into rows [1, 1, C,K × Fh × Fw] = [C,K × Fh × Fw]. The multiplication follows as
[C,K × Fh × Fw]× [K × Fh × Fw, H ×W] = [C,H ×W] = [1, 1, C,H ×W]. Using
the inverse column to image operation the input shape is recovered as [1, C,H,W].
Given the error for each neuron in a layer the filter and bias gradients are found
using eq. (2.34) and eq. (2.35) in their matrix multiplication forms.

The above matrix multiplication does not correspond to a proper convolution. The
proper convolution requires the weights to be flipped in the forward pass and addi-
tionally flipped in the backward pass, just to restores the weights. To reduce this
overhead one can not flip the weights in the forward pass and effectively perform
cross-correlation. The backward pass then becomes a proper convolution. This is
done on the CPU. However, an optimized network using this set of weights rather
than the set obtain from convolving does yield the same loss. This because the
neural network optimization does not depend on the order of the weights, hence
the non-convex property of the parameter landscape. But using convolution with
flipped weights corresponds to using cross-correlation without flipping the weights,
so it is sufficient to use cross-correlation in both the forward and backward case.
This is done on the GPU.

3.1.4 Convolution output to fully connected input conver-
sion for matrix multiplication

With the data representation used, an input from a convolution [1, C,H,W] is con-
verted to a vector of shape [1, 1, C × H × W, 1] = [C × H × W, 1] with no addi-
tional computational cost, since it can be done by changing the constants Nj in eq.
(3.2). The weights shape is [1, 1, D,C × H ×W] = [D,C × H ×W], where D is
the output size. The affine transformation in the forward pass eq. (2.19) is then
[D,C ×H ×W]× [C ×H ×W, 1] = [D, 1]. The affine transformation in backward
pass eq. (2.20) is the error having shape [1, 1, D, 1] = [D, 1] multiplied according to
[D,C ×H ×W]T × [D, 1] = [C ×H ×W, 1] = [1, 1, C ×H ×W, 1] = [1, C,H,W].
Given the error for each neuron in a layer the filters and the bias gradients are found
using eq. (2.21) and eq. (2.2) in their matrix multiplication forms.

3.1.5 The computational graph
As suggested by [12], using template computations will reducing implementation
overhead when defining different neural network architectures. Therefore, a compu-
tational graph with template nodes is used.

The computations required by a fully connected layer, a convolutional layer, a max-
pooling layer, the activation function, the dropout regularization and the loss func-
tion are all thought of as nodes in a graph. A node in the graph takes input of a
specified shape and returns an output shape according to the nodes template pa-
rameter. Therefore, the only requirement for connecting these nodes, resulting in
a computation according to eq. (1.1), is to make the output shape of each node

19

3. Methods

compatible with the input shape of the next node. In order to support any param-
eter setting of a layer the nodes are specified according to a template describing its
parameters and input shape. The output shape for any layer can be deduced from
these, as in the following figure

Figure 3.2: Example of a computational graph with template nodes. The input to
the graph are 10 rgb images of size 32×32. These are convolved with 32 rgb filters of
size 5×5 using vertical and horizontal stride equal to 1 and padding equal to 2. The
output is therefore, using eq. (2.23), a [10, 32, 32, 32] tensor. The activation layer
activates the input which leaves the input shape unchanged. The maxpooling layer
uses pooling 2 and stride 2 why the output width and height are halved. Finally,
the fully connected layer converts the maxpooling output into an array of length
32×16×16 = 8192 which is multiplied with the weight matrix into a vector of length
5, where the 5 is chosen as example of a network that should make a prediction of
the input having 5 possible class labels.

The computations performed in the above example can be extended to handle any
input shape and parameter setting. Once this is implemented each node is reused
many times and the only limitation is making the input shape and output shape
compatible. For nodes which does not alter the input, this can be inferred from the
previous layer output.

3.1.6 Context object pattern
The context object pattern is useful for propagating context information between
different layers [13]. Each template node has an input edge and an output edge, as
seen by figure (3.2). The input to the convolution layer is stored at the input edge.
The context object takes the input at this edge, the parameters and a backend spec-
ification (CPU/GPU) and thereafter performs the computation as specified by the
template node and puts the result at the output edge to this node. The next node
thereafter has this output available by connecting its input edge to the previous

20

3. Methods

nodes output edge. The data is therefore propagated through the whole computa-
tional graph and put at the last nodes output, where is it given to the loss function.
The same procedure goes for the backward propagation but now the context object
also holds gradient data. The gradients are backpropagated from the output edge
to the input edge of the last node, making them available for the previous node to
backpropagate.

The separation of the computational specification with the computations performed
allows for a variety within an implemented template computation. This variety
could be using CPU instead of GPU or preferring another matrix multiplication
library etc.

3.2 Efficient matrix multiplications
The most expensive computations in the computational graph stems from matrix
multiplications of the affine transformations, as required by the fully connected lay-
ers and the convolution layers. There are many libraries which aims at optimizing
the computational speed of multiplying matrices for CPU and GPU calculations.
Matrix multiplications for both CPU and GPU are used (CPU in the case where no
GPU was available) where the library for CPU computations is OpenBLAS and the
library for GPU computations is cuDNN together with cuBLAS.

In practical applications a gain in matrix-matrix multiplications can be obtained by
computing multiple inputs at once. This is known as stacking input images into a
batch and yields increases performance over stochastic updating which uses only a
single input image. The result on the gradients is that it is instead averaged over
the batch such that the average steepest descend is taken. Due to the non-convex
parameters space, estimating the gradient over the entire dataset, i.e. batch size
equals to the full dataset, will not yield the globally optimal steepest descent and
it is therefore suggested to use a smaller batch size to increase optimization speeds.
The batch size, also called minibatch size when it is smaller than the full dataset
size, is regarded as a hyperparameter which can be optimized.

3.2.1 OpenBLAS
OpenBLAS is an open source implementation of Basic linear algebra subprograms
(BLAS) which implements common linear algebra operations as low-level routines
optimized for the specific CPU at hand. The subroutine sgemm performs the
matrix-matrix operation C = αAB + βC with A and B being row-major ordered
n-dimensional arrays, which with α = 1 and β = 0 gives the desired matrix multi-
plication. The result is a n-dimensional array in row-major ordering.

3.2.2 cuDNN and cuBLAS
The computations on the GPU requires a NVIDIA supported graphics card together
with CUDA software libraries [14]. The graphics card used is shown below

21

3. Methods

Manufacturer PNY Technologies Inc.
Modell Quadron K4200

Cuda cores 1344
Memory 4 GB

Memory bandwidth 173.0 GB/s

Table 3.1: Graphics card used throughout this thesis.

Among the software development kits is the Deep neural network library (cuDNN)
and cuBLAS for GPU-accelerated computations. These computations uses paral-
lelism on the graphic processing unit in order to speed up the affine transformation
calculations.

cuDNN provides the convolution operations, maxpooling operations and activa-
tion operations for tensors stored as n-dimensional arrays in row-major ordering
(NCHW). These operations are both the forward propagation and backward prop-
agation through a layer. The fully connected operations are not available in the
cuDNN software kit, but can be implemented using cuBLAS routines. The same
matrix-matrix operations as in BLAS is available on the GPU, now called cublasS-
gemm. The matrix multiplication is again defined for two n-dimensional arrays in
row-major ordering as; C = αAB + βC. Using α = 1 and β = 0 results in the
desired matrix multiplication, but performed in parallel on the GPU.

3.3 Verify computations through gradient check
Given a correct implementation of the forward pass, any parameter gradient can be
verified by the following procedure. Assume the problem of minimizing L(θ) as a
function of θ. Suppose L : R→ R so θ ∈ R. Assume the following gradient descent
update rule

θ ← θ − η∂L
∂θ

(3.3)

Now if there is a function g(θ) which numerically computes ∂L
∂θ

such that

θ ← θ − ηg(θ) (3.4)

then g(θ) can be approximated using

∂

∂θ
L(θ) = lim

ε→0

L(θ + ε)− L(θ − ε)
2ε (3.5)

with a sufficiently small ∆

g(θ) ' L(θ + ∆)− L(θ −∆)
2∆ (3.6)

Any implemented backward propagation can therefore be verified to be correct by
comparing the parameter gradients obtained from using the implemented backprop-
agation functions to the parameter gradients obtained when approximating every

22

3. Methods

individual gradient by perturbing the respective parameter by ±∆. Given a param-
eter gradient from the backpropagation functions and an approximated gradient
these are compared using a relative error

∣∣∣f ′a − f ′n∣∣∣
|f ′a + f ′n|

(3.7)

where f ′a represents the approximated parameter gradient and f
′
n represents the

numerically computed parameter gradient. Summing over the relative error of each
parameter gradients the result should be small, order of ∼ 10−7− 10−9, in order for
the computation to be numerically stable.

3.4 Implementation verification using the MNIST
dataset

The MNIST database is a set of gray scale images of handwritten digits from 0 up
to 9. The database contains a total of 60000 labeled training examples and 10000
test images.

Figure 3.3: A few examples from the MNIST dataset.

Each example is a 28×28 image of black and white pixels, where white is foreground
of value 0 and black is background of value 255. Each image contains a digit, which
is centered using the center of mass of the pixels. The data in the set is stratified
with approximately equally many occurrences of each class as seen by the following
two dataset histograms.

23

3. Methods

(a) Training set (b) Test set

Figure 3.4: Figure (a) shows the histogram over the classes in the training set.
Figure (b) shows the histogram over the classes in the test set.

3.4.1 Pre-processing
The Gaussian initialization assumes a zero centered symmetric distribution so each
pixel value is transformed between −1 and 1. The mean value and standard devia-
tion, computed over all training examples, is subtracted respectively divided by for
each image. During testing, the same transforms are applied to each test example.

3.4.2 Network architecture
The architecture used is inspired from the LeNet-5 architecture [15] used for recog-
nizing handwritten characters, but is modified by using only convolution, maxpool-
ing and fully connected layers. The number of filters and their sizes are also modified
by using only 5× 5 filtering and increasing the number of filters from 6→ 32 in the
first convolution layer and 16→ 64 in the second convolution layer. For regulariza-
tion purposes a dropout layer is added between the two fully connected layers. The
architecture follows below.

Input size Layer type Parameters
1× 28× 28 Convolution 5× 5, 32 filters, stride 1, padding 2
32× 28× 28 ReLU
32× 28× 28 Maxpooling pooling size = 2, stride = 2, padding = 0
32× 14× 14 Convolution 5× 5, 64 filters, stride = 1, padding = 2
64× 14× 14 ReLU
64× 14× 14 Maxpooling pooling size = 2, stride = 2, padding = 0

3136 Fully connected Output = 1024
1024 ReLU
1024 Dropout p = 0.5
1024 Fully connected Output = 10
10 Softmax

Table 3.2: Architecture used for MNIST classification.

24

3. Methods

3.4.3 Hyperparameters

The hyperparameters: learning rate, regularization strength, minibatch size and
dropout rate were obtained through trial and error. The initial guessed learning
rate, regularization strength, minibatch size and dropout rate were obtained from
empirical estimations from previous reported results. The decay rates where initial-
ized according to the authors (Kingma and Ba) suggestions.

3.5 Challenging the CIFAR10 dataset

The CIFAR10 dataset consists of 60000 color images of size 32 × 32 spread across
10 classes. The dataset is split into 50000 training images and 10000 test images.

Figure 3.5: A few examples from the CIFAR10 dataset.

The classes are mutually exclusive such that there is no overlap between the classes.
This might seem like a great simplification however the score function can be mod-
ified such that the neural networks can rank the output probabilities. Thus, being
able to accurately classify a mutual exclusive image can be generalized into more
complex scenarios. The data in the set is stratified with equally many number from
each class.

25

3. Methods

(a) Training set (b) Test set

Figure 3.6: Figure (a) shows the histogram over the classes in the training set.
Figure (b) shows the histogram over the classes in the test set.

3.5.1 Pre-processing
The pixel values of each color channel R, G and B are between 0 and 255. These
are scaled between −1 and 1 and the mean image obtained from the training set is
subtracted for each training and testing example.

3.5.2 Network architectures
Three architectures are used where in an attempt to gain high accuracy. The first
one, Model A, is similar to the MNIST architecture except that it now takes RGB
input. The second architecture, Model B, is an attempt to extend this model using
more filter maps and an additional fully connected layer. The final model, Model
C, is an extention of model B by using an additional convolution layer before each
maxpooling layer.

Input size Layer type Parameters
3× 32× 32 Convolution 5× 5, 32 filters, stride 1, padding 2
32× 32× 32 ReLU
32× 32× 32 Maxpooling pooling size = 2, stride = 2, padding = 0
32× 16× 16 Convolution 5× 5, 64 filters, stride = 1, padding = 2
64× 16× 16 ReLU
64× 16× 16 Maxpooling pooling size = 2, stride = 2, padding = 0

4096 Fully connected Output = 1024
1024 ReLU
1024 Dropout p = 0.5
1024 Fully connected Output = 10
10 Softmax

Table 3.3: Model A used for CIFAR10 classification. This model required 670MiB
of GPU memory to run.

26

3. Methods

Input size Layer type Parameters
3× 32× 32 Convolution 5× 5, 96 filters, stride 1, padding 2
96× 32× 32 ReLU
96× 32× 32 Maxpooling pooling size = 2, stride = 2, padding = 0
96× 16× 16 Convolution 5× 5, 192 filters, stride = 1, padding = 2
192× 16× 16 ReLU
192× 16× 16 Maxpooling pooling size = 2, stride = 2, padding = 0

12288 Fully connected Output = 2048
2048 ReLU
2048 Dropout p = 0.5
2048 Fully connected Output = 2048
2048 ReLU
2048 Dropout p = 0.5
2048 Fully connected Output = 10
10 Softmax

Table 3.4: Model B used for CIFAR10 classification. This model required 2475MiB
of GPU memory to run.

Input size Layer type Parameters
3× 32× 32 Convolution 5× 5, 96 filters, stride 1, padding 2
96× 32× 32 ReLU
96× 32× 32 Convolution 5× 5, 96 filters, stride 1, padding 2
96× 32× 32 ReLU
96× 32× 32 Maxpooling pooling size = 2, stride = 2, padding = 0
96× 16× 16 Convolution 5× 5, 192 filters, stride 1, padding 2
192× 16× 16 ReLU
192× 16× 16 Convolution 5× 5, 192 filters, stride 1, padding 2
192× 16× 16 ReLU
192× 16× 16 Maxpooling pooling size = 2, stride = 2, padding = 0

8 ∗ 8 ∗ 192 Fully connected Output = 2048
2048 ReLU
2048 Dropout p = 0.5
2048 Fully connected Output = 2048
2048 ReLU
2048 Dropout p = 0.5
2048 Fully connected Output = 10
10 Softmax

Table 3.5: Model C used for CIFAR10 classification. This model required 2493MiB
of GPU memory to run.

27

3. Methods

3.5.3 Hyperparameters
The hyperparameters: learning rate, regularization strength, mini-batch size and
dropout rate were obtained through trial and error (two trials attempt and how to
see when the hyperparameters are incorrectly chosen are display in the appendix
B). The initial learning rate, regularization strength, minibatch size and dropout
rate were similar to that of the successful MNIST trials. The decay rates where
initialized according to the authors (Kingma and Ba) suggestions.

3.6 Neural network architecture evaluations
Evaluation of each individual model is made using four different measurements.

3.6.1 Loss
The loss is evaluation of the negative log likelihood after each parameter update.
This evaluation continues throughout every parameter update until the loss has sta-
bilized around some value. This commonly happens after a few iterations through
the entire dataset, where each iteration is referred to as an epoch. For clarity only
each fiftieth loss evaluation is shown.

Due to the different number of parameters in the three CIFAR10 models, a novel
normalization scheme is implemented to make the models loss curves comparable.
The scheme is simply dividing each data point by the first loss value.

3.6.2 Accuracy
The accuracy is measured using a set of validation or test data and comparing the
predicted and actual class label. The result is divided by the set size to obtain
a probabilistic representation of the accuracy. Again for clarity, only the fiftieth
accuracy evaluation is shown.

3.6.3 Confusion matrix
A useful way to evaluate the model is to check which classes are accurately predicted
and which are not. This gives an estimation of the performance of the model when
predicting a certain class among all classes, which may hindsight a possible model
improvements. The measurement is performed by constructing a n × n matrix M
where n is the number of classes. Given a predicted class label ŷ and the actual
label yi, a one is added to the matrix at M(ŷ, yi). This is done for each example in
the test set. To get a probability, each row is divided by its total amount. The ideal
case is therefore to have a one at the diagonal and zero at each off diagonal element.

3.6.4 Weight visualization
One way to understand what the neural network has learned is to visualize the
weights. There are techniques for how to visualize each weight in a network, how-

28

3. Methods

ever in this work only the filters in the first convolutional layer are displayed. These
filters are applied directly onto the input image and are therefore easy to interpret.

The weights are both regularized and operates onto pre-processed data, why the
coloring scheme is based on representing relative differences in weight values for
each filter. For each filter, this set of weights w are normalized by

w = w −min (w)
max (w)−min (w) (3.8)

thereafter the appropriate scaling is applied. For grayscale each value is scaled within
the interval [0, 255], where 0 is represented by a black pixel and a 1 represents a
white pixel. The rgb images are made by first transforming the values to the lie on
the interval [0, 1] and thereafter concatenate each red, green and blue channel. The
following table shows which color is obtained for a few combinations of color values.

Red Green Blue Color
1 1 1 white
0 0 0 black
1 0 0 red
0 1 0 green
0 0 1 blue
1 1 0 yellow
1 0 1 pink
0 1 1 light blue
0.5 0.5 0.5 gray

29

3. Methods

30

4
Results

4.1 MNIST classification

The training (optimization) consists of using the entire dataset but splitting 75%
into a training set and the rest into a validation set. For each training batch a
corresponding validation batch is used to estimate the ability for the neural network
to generalization to unseen data. The validation batches are chosen with a random
starting point in the validation set. Thereafter, the number required by the batch
size is selected as each example following this randomly chosen one. The reason is
to maintain stratified data of approximately equal many classes.

Hyperparameter Value
Learning rate (η) 0.0001
Regularization (λ) 0.001
Decay rate 1 (β1) 0.9
Decay rate 2 (β2) 0.999
Minibatch size (B) 100
Dropout rate (p) 0.75

Table 4.1: Hyperparameters used for MNIST classification.

(a) Loss

2

(b) Accuracy

Figure 4.1: Result from testing on the MNIST dataset. Figure (a) shows the loss.
Figure (b) shows the accuracy.

31

4. Results

Running the trained neural network architecture on the test data yields and accu-
racy of 97.31%.

The 32 filters used by the first convolution layer are applied directly onto the input
image. These gives a good intuition about what the neural network tries to use for
classification and are shown in figure (4.2).

Figure 4.2: The first 32 filters which the neural network learned to use when
classifying handwritten digits.

The confusion matrix over the predicted and actual classes are shown in figure (4.3).

32

4. Results

Figure 4.3: MNIST confusion matrix.

4.1.1 Discussion

Deep neural networks has shown to handle the MNIST dataset with ease and it is by
todays standard viewed as a toy example. Similar results, and better ones, have been
reported on the dataset using similar neural network architectures, so the accuracy
was expected. However, the dataset is useful in verifying that multiple implementa-
tion details such as the weight initialization and the gradient check are reasonable
for the network architecture at hand. For the architecture used, a numerical error
of the order ∼ 10−9 on both the CPU and GPU were observed when using ∆ = 10−4.

Moreover, the learned filters by the first convolution layer contains many different
kinds of horizontal, vertical and diagonal edges which makes intuitive sense since
different types of edge detectors seems like a useful measurement in classifying the
digits. But, there also seems to exists multiple occurrences of the same filter and
whether or not they are useful needs further investigation. It could be the case that
there are more filters then necessary.

4.2 CIFAR10 classification

The training is performed using the whole dataset and splitting 90% into a training
set and the rest into a validation set. Same validation batch strategy is used as this
will keep the data stratified with approximately equally many classes in each batch.

33

4. Results

4.2.1 Model A

Hyperparameter Value
Learning rate (η) 0.0005
Regularization (λ) 0.001
Decay rate 1 (β1) 0.9
Decay rate 2 (β2) 0.999
Minibatch size (B) 100
Dropout rate (p) 0.5

Table 4.2: Hyperparameters used for CIFAR10 classification using model A.

(a) Loss (b) Normalize loss

Figure 4.4: Result from training model A. Figure (a) shows the unnormalized loss.
Figure (b) shows the normalized loss.

Figure 4.5: The accuracy during training.

34

4. Results

The trained neural network architecture obtains an accuracy of 70.39% when run
on the test data.

The 32 filters used by the first convolution layer is shown in figure (4.6).

Figure 4.6: The first 32 filters which the neural network learned from classifying
the CIFAR10 classes.

The confusion matrix over the predicted and actual classes are shown in figure (4.7).

35

4. Results

Figure 4.7: Model A confusion matrix.

4.2.2 Model B

Hyperparameter Value
Learning rate (η) 0.0005
Regularization (λ) 0.001
Decay rate 1 (β1) 0.9
Decay rate 2 (β2) 0.999
Minibatch size (B) 100
Dropout rate (p) 0.5

Table 4.3: Hyperparameters used for CIFAR10 classification using model B.

(a) Loss (b) Loss normalized

Figure 4.8: Result from training model B. Figure (a) shows the unnormalized loss.
Figure (b) shows the normalized loss.

36

4. Results

Figure 4.9: The accuracy during training.

The trained neural network architecture obtains an accuracy of 72.64% when run
on the test data.

The 96 filters used by the first convolution layer is shown in figure (4.10).

Figure 4.10: The first 96 filters which model B learned from classifying the CI-
FAR10 classes.

37

4. Results

The confusion matrix over the predicted and actual classes are shown in figure (4.11).

Figure 4.11: Model B confusion matrix.

4.2.3 Model C

Hyperparameter Value
Learning rate (η) 0.0005
Regularization (λ) 0.001
Decay rate 1 (β1) 0.9
Decay rate 2 (β2) 0.999
Minibatch size (B) 50
Dropout rate (p) 0.5

Table 4.4: Hyperparameters used for CIFAR10 classification using model C.

(a) Loss. (b) Normalized loss.

Figure 4.12: Result from training model C. Figure (a) shows the unnormalized
loss. Figure (b) shows the normalized loss.

38

4. Results

Figure 4.13: The accuracy during training.

The trained neural network architecture obtains an accuracy of 72.88% when run
on the test data.

The 96 filters used by the first convolution layer is shown in figure (4.14).

Figure 4.14: The first 96 filters which model C learned from classifying the CI-
FAR10 classes.

39

4. Results

The confusion matrix over the predicted and actual classes are shown in figure (4.15).

Figure 4.15: Model C confusion matrix.

4.2.4 Discussion

4.2.4.1 Model A

During the first 5 epoch the loss drops from about 4.5 to 1.5 where after it remains
stable through the rest of the epochs. Similarly, the accuracy stabilizes around 0.7
for the both training and validation set. There is no sign of overfitting yet, which
indicates a good combination between dropout and regularization strength but can
be a result of the small validation set.

Similarly to the MNIST filters there exists clear structures in the model A filters.
Both horizontal (e.g. second and fourth in the first row), vertical (first in the third
row) and diagonal types of edge detection are found among the filters. Despite the
introduction of red, green and blue colors the edge detectors remains gray meaning
they value edges independently of color. The color variety also introduces filters of
different periodicity. The second last filter in the third row displays this character-
istic. This periodicity will be returned to in the next model discussion. A sign of
fitting to local structure exists in the filters displaying a single to two colors. These
filters would not exists in a gray scaling setting of the images.

The confusion matrix shows clearly which classes were difficult to classify. Dogs and
deers ended up being classified no better than fifty-fifty. Interestingly, the airplanes
showed some difficulty to classify. The overall result of ∼ 70% reflects the difficulty
in classification among the dog and deer classes.

40

4. Results

4.2.4.2 Model B

The loss drops from about 10.5 to 2 in the first 5 epochs where after it remains sta-
ble. A slight sign of overfitting is shown at the end where the training loss remains
on average more often below the validation loss. The accuracy stabilizes around
0.75 where it remains throughout the training.

The filters display, similarly to the previous model, vertical, horizontal and diagonal
edges. In general there are simply more of each filter compared to the previous
model. But, with the additional filters the model seems to prefer to measure peri-
odicity. Again there seems to be fitting to local structures by having filters of one
to two colors. A slight improvement of 2.25% was obtained over the previous model
by mainly increasing the correct classification rate of the cat class. A claim why
the neural networks tries to learn various periodicity’s and why this improves the
accuracy is made.

Claim; The periodicity’s has a correspondence with Gabor filters, which are models
of the ’simple’ cells in the visual cortex of mammalian brains [16, 17]. Thus, analyz-
ing images using Gabor filters is thought to be similar to perception in the human
visual system.

Figure 4.16: Gabor filters of various orientations.

From the assembling of the dataset it is easy to conclude that the human visual
system is very efficient at distinguishing the classes in the natural images and so it
makes sense that the neural network aims at utilizing similar distinguishing tech-
niques in its classification scheme. However, whether this correspondence claim is
true or not remains to be more thoroughly investigated, through e.g. pre-processing
the images by applying various forms of Gabor filters and see how this affects the
final accuracy. Additionally, the final model did not exhibit any similar structure in
its learned weights and whether Gabor filter is the most optimal strategy or most
generalizable strategy also remains to further investigate.

4.2.4.3 Model C

The loss drops from about 10.5 to 2 in the first 2 epochs where after it slowly con-
verges to around 1.5. Due to the slower convergence the training was run for 40

41

4. Results

epochs rather than 20. Due to reduced minibatch size there is an increase in ampli-
tude of the deviation from the average. The accuracy stabilizes around 0.7 with a
slight sign of overfitting.

The filters however have changed and there are no more periodicities. When using
two convolutional layers before the maxpooling layer there seems to be a tendency
to instead learn pixelwise neighborhoods rather than edges or set of pixel struc-
tures. There are multiple diagonal edge detectors but they seem to correspond to
local structure since they are color dependent. A small improvement of 0.24 was
obtained over the previous model. It is difficult to attribute this to any specific
improvement among the classes.

Performing an exhaustive search by binarizing each region via correspondence of
individual pixel neighborhoods is naturally a valid approach and it seems as if this
neural network model tries to perform something similar. The filters without colors
having a black or white pixel in the center, seems to be using mainly a von Neumann
neighborhoods of Manhattan distance r = 1.

Figure 4.17: von Neumannn neighborhood of Manhattan distance r = 1.

When using a stride equal to 1 in both the vertical and horizontal direction each
affine transformation will correspond to a pixelwise neighborhood summation. Us-
ing black, gray and white pixel neighborhoods the first convolutional layer can check
whether a pixel at a location, within the neighborhood around a center in the input,
is absent or not and if so, by what amount.

There are two distinct filter types of this characteristics. The first type contains a
black pixel at the center and various gray levels at the four neighborhood locations.
A few of these types have off centered black pixels but despite this the neighbor-
hood has the same four neighbors. The affine transformation used by this filter type
measures the surrounding pixels at each location around the current center since
the center term is canceled. The neighbors are weighted differently which indicates
an attempt to break the neighborhood symmetry between these filter types. The
second type completely cancels the surrounding pixels and keeps only a small subset.
The affine transformation used by this filter type therefore measures only within the
von Neumann neighborhood. Again, symmetry between the filters is broken by us-
ing only three out of four neighborhood locations. Both filter types also exists with

42

4. Results

some colors but colors are non-generic properties and it is difficult to evaluate how
these related to the specific data. By extracting the distribution of colors images
of the same class should reveal if a bias infers color dependencies. It should also
be noted that the von Neumann neighborhood with r = 1 only requires 9 pixels
for the two types of filters discussed above. Therefore, it could be useful to reduce
the filter size to 3 × 3 instead of 5 × 5, however attempts with this filter sizes was
not successful (in terms of accuracy which was ∼ 50% and with high amount of
overfitting) and needs further experimentation.

Furthermore, it is difficult to say how this information is utilized by later layers
in the neural network using the current visualization scheme. Thus, an extension
of the visualization scheme is required in order to gain more insight into what the
neural network has learned.

4.2.4.4 Comparison with the state-of-the-art

The current state-of-the-art on the CIFAR10 dataset is the Fractional-Maxpooling
neural network [18] with an accuracy of 96.53%, surpassing the estimated human
level performance of ∼ 94%. This was obtain through using a twelve layer deep
convolutional neural network where the number of filters increases linearly by 160n,
where n is the layer number. Due to memory limitations of the graphics card used,
a model with similarly many filters and layers could not be attempted. The learned
weights of the state-of-the-art layers was not shown either and such a comparison
could not be performed. Nonetheless, there is a clear improvement to be made
on the models to reach these accuracies, some improvements are discussed in the
following sections.

4.2.5 Pre-processing
The amount of pre-processing is a debatable topic since it may or may not affects
the information content confined within the data. But, as indicated by the learned
filters from the MNIST dataset, edge detection seems useful for the neural network
to learn. With many data transforms aimed at highlighting edges and textures,
pre-processing the images in this manner might lead to better performance on the
dataset. If such a local performance boost also increases the general performance is
difficult to answer and needs further experimentation across several datasets.

Another pre-processing technique, which is mainly aimed at reducing overfitting, is
data augmentation. The idea is to randomly crop, rotate and mirror the data to
generate new data from the existing set. This has show to reduce overfitting and
also increase accuracy slightly. This technique should however be evaluated before
use, since it would be rather risky to apply for a dataset like MNIST.

Finally, using RGB color space where the intensity is mixed into the R, G and
B values could be reconsidered. Using for example the YCbCr color space where
the intensity is separated from the colors could prove more useful as the image
classification should be independent of the intensity level.

43

4. Results

4.2.6 Optimizing the neural network architectures
Evaluating the neural network architectures is mainly up to the computational power
available. The training of the model B took ∼ 6 hours and model C took ∼ 60 hours
and so performing an optimization scheme over several neural network architectures
was not a possibility under the current circumstances. With more computational
power multiple neural networks could be run simultaneously where after the best
performing once are iterated further upon etc. This evaluation scheme was however
not possible to perform.

A scheme showing whether the computational power available was fully used would
be to measure neuron activity. Deep neural networks contains millions of neurons
and whether a single neuron is active during the entire training and testing process
could indicate how the neural network architecture performs. With a high ratio of
inactive neurons, GPU memory is unused and neural network structure could be
reconsidered.

Another scheme which comes with a bit more computational power is to perform a
hyperparameter search to optimize these, which has shown to give an improvements
of a few percentages. However, with the large gap up to the current state-of-the-art
due to more computational power and larger neural network architectures, trying
to optimize the performance of the current models is not of highest priority.

Comparing model A, model B, model C and the current state-of-the-art there seems
to show a general pattern of increased number of filters improves the performance.
Whether this is true in general remains to investigate.

44

5
Conclusions

Deep feedforward neural networks shows great capabilities in handwritten digit clas-
sification and a good potential in natural image classification. The accuracy aimed
for was obtained for clear distinguishable classes however not on classes involving
many similarities such as dogs, deers and cats. Higher accuracy has been reported
before this work, but despite this the question in how to construct these neural net-
works still remains open. By trying different models I address the question of what
is and can be learned by the neural network. The neural network does learn desired
features known to be effective in general for natural image classification but does
also try to optimize non-generic structures. Regarding the ability to generalize, the
models used shows both the ability to learn general features, such as edges, but do
largely learn non-generic strictures.

The common understanding and criticism of deep learning remains in the black-box
perspective and by addressing the various components and their very specific role in
the neural network together with showing what is learned, this thesis gives a better
understanding of the potentials. If the neural network truly learns Gabor filters,
which do have a correspondence with other biological components without given the
explicit knowledge about those, then the field shows great potential in being applied
in various natural image classification task. However, with the amount of time
having to be invested into the technical details in their optimization, the amount of
data required and having to close to ’guess’ different neural network models there
is still more elaborate work to be performed before they are ’algorithmic’ enough to
straight forward implement and use. Additionally, the thesis has given results which
a theoretical model has to be able to exhibit under the same neural network model
settings.

5.1 Future work

As for future work it would be interesting to study the role of Gabor filters in learning
to classify natural images as they seem to contain important information. It would
also be interesting to develop knowledge behind the choice of the neural network
to use von Neumann neighborhood connections and what that would biologically
correspond to, if such a correspondence exists. Which of the two choices is ’right’
or better in general would also be interesting to further investigate.

With increased computational power, such that neural network architecture opti-

45

5. Conclusions

mization could be performed efficiently, many more models, filter sizes and other
hyperparameters could be investigated. This could improve understanding in the
development of deep feedforward neural network models and what is important to
optimize, which might lead to new areas of applications.

46

Bibliography

[1] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson,
B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mo-
hamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang,
D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling. Never-
ending learning. In Proceedings of the Twenty-Ninth AAAI Conference on Ar-
tificial Intelligence (AAAI-15), 2015.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[3] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from
tiny images. 2009.

[4] Warren S. McCulloch andWalter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.
ISSN 1522-9602. doi: 10.1007/BF02478259. URL http://dx.doi.org/10.
1007/BF02478259.

[5] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals and Systems, 2(4):303–314, 1989. ISSN 1435-568X.
doi: 10.1007/BF02551274. URL http://dx.doi.org/10.1007/BF02551274.

[6] Michael A. Nielsen. Neural networks and deep learning. Determination Press,
2015.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

[8] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814, 2010.

[9] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Aistats, volume 9, pages 249–256, 2010.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep

47

http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02551274
http://arxiv.org/abs/1412.6980

Bibliography

into rectifiers: Surpassing human-level performance on imagenet classification.
CoRR, abs/1502.01852, 2015. URL http://arxiv.org/abs/1502.01852.

[12] Yoshua Bengio. Practical recommendations for gradient-based training of deep
architectures. CoRR, abs/1206.5533, 2012. URL http://arxiv.org/abs/
1206.5533.

[13] Arvind S Krishna, Douglas C Schmidt, and Michael Stal. Context object a
design pattern for efficient information sharing across multiple system layers.

[14] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable par-
allel programming with cuda. Queue, 6(2):40–53, March 2008. ISSN 1542-
7730. doi: 10.1145/1365490.1365500. URL http://doi.acm.org/10.1145/
1365490.1365500.

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE, 86
(11):2278–2324, 1998.

[16] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of physiology,
160(1):106–154, 1962.

[17] David H Hubel and Torsten N Wiesel. Receptive fields and functional archi-
tecture of monkey striate cortex. The Journal of physiology, 195(1):215–243,
1968.

[18] Benjamin Graham. Fractional max-pooling. CoRR, abs/1412.6071, 2014. URL
http://arxiv.org/abs/1412.6071.

48

http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1206.5533
http://arxiv.org/abs/1206.5533
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
http://arxiv.org/abs/1412.6071

A
Details to formulas in theory

section

A.1 Negative log-likelihood gradient

∂L(yi, ŷ)
∂ŷk

= ∂

∂ŷk
(−log(p(ŷ)yi

) (A.1)

= ∂

∂ŷk

(
−log

(
eŷyi∑
j e

ŷj

))
(A.2)

= ∂

∂ŷk

−ŷyi
+ log

∑
j

eŷj

 (A.3)

= −∂ŷyi

∂ŷk
+ ∂

∂ŷk
log

∑
j

eŷj

 (A.4)

=
{
p(ŷ)k − 1 if k = yi
p(ŷ)k otherwise (A.5)

A.2 Backpropagation: Fully connected layer

By definition

δl−1
k = ∂L

∂zl−1
k

(A.6)

giving

δl−1
k = ∂L

∂zl−1
k

(A.7)

=
∑
j

∂L

∂zlj

∂zlj
∂zl−1

k

(A.8)

=
∑
j

∂zlj
∂zl−1

k

δlj (A.9)

I

A. Details to formulas in theory section

and

zlj =
∑
k

wljka
l−1
k + blj (A.10)

=
∑
k

wljkf(zl−1
k) + blj (A.11)

the differentiation simplifies to

∂zlj
∂zl−1

k

= ∂

∂zl−1
k

∑
k′
wljk′f(zl−1

k′
) + blj

 (A.12)

= wljkf
′(zl−1

k) (A.13)

since only the term where k = k
′ is non-zero. Substituting into eq. A.7 yields

δl−1
k =

∑
j

wljkδ
l
jf
′(zl−1

k) (A.14)

Analogously,

∂L

∂wljk
= ∂L

∂zlj

∂zlj
∂wljk

(A.15)

=
∂zlj
∂wljk

δlj (A.16)

where

∂zlj
∂wljk

= ∂

∂wljk

∑
k′
wljk′f(zl−1

k′
) + blj

 (A.17)

= f(zl−1
k) (A.18)

since only the term where k = k
′ is non-zero. Substituting into eg. (A.10) yields

∂L

∂wljk
= f(zl−1

k)δlj (A.19)

= al−1
k δlj (A.20)

Lastly,

∂L

∂blj
= ∂L

∂zlj

∂zlj
∂blj

(A.21)

= δlj (A.22)

since

∂zlj
∂blj

= 1 (A.23)

II

A. Details to formulas in theory section

A.3 Backpropagation: Convolutional layer
By definition

δl−1
jk = ∂L

∂zl−1
jk

(A.24)

giving

δl−1
jk = ∂L

∂zl−1
jk

(A.25)

=
∑
j′

∑
k′

∂L

∂zl
j′k′

∂zl
j′k′

∂zl−1
jk

(A.26)

=
∑
j′

∑
k′

∂zl
j′k′

∂zl−1
jk

δlj′k′ (A.27)

and

zlj′k′ =
∑
j′′

∑
k′′
wlj′′k′′a

l−1
j′−j′′ ,k′−k′′ + blj′k′ (A.28)

the differentiation becomes

∂zl
j′k′

∂zl−1
jk

= ∂

∂zl−1
jk

∑
j′′

∑
k′′
wlj′′k′′a

l−1
j′−j′′ ,k′−k′′ + blj′k′

 (A.29)

= ∂

∂zl−1
jk

∑
j′′

∑
k′′
wlj′′k′′f(zl−1

j′−j′′ ,k′−k′′) + blj′k′

 (A.30)

= wlj′−j,k′−kf
′(zl−1

j,k) (A.31)

since only the terms where j = j
′ − j ′′ and k = k

′ − k′′ are non-zero. Substituting
into eq. A.25 yields

δl−1
jk =

∑
j′

∑
k′
wlj′−j,k′−kδ

l
j′k′f

′(zl−1
j,k) (A.32)

= δljk ∗ wl−j,−kf
′(zl−1

j,k) (A.33)
= δljk ∗ rot180◦(wljk)f

′(zl−1
j,k) (A.34)

Analogously,

∂L

∂wljk
=
∑
j′

∑
k′

∂L

∂zl
j′k′

∂zl
j′k′

∂wljk
(A.35)

=
∑
j′

∑
k′
δlj′k′

∂zl
j′k′

∂wljk
(A.36)

III

A. Details to formulas in theory section

the differentiation becomes
∂zl

j′k′

∂wljk
= ∂

∂wljk

∑
j′′

∑
k′′
wlj′′k′′a

l
j′−j′′ ,k′−k′′ + blj′k′

 (A.37)

= ∂

∂wljk

∑
j′′

∑
k′′
wlj′′k′′f(zl−1

j′−j′′ ,k′−k′′) + blj′k′

 (A.38)

= f(zl−1
j′−j,k′−k) (A.39)

since only the terms where j = j
′′ and k = k

′′ are non-zero. Substituting into eq.
A.35 yields

∂L

∂wljk
=
∑
j′

∑
k′
δlj′k′f(zl−1

j′−j,k′−k) (A.40)

= δljk ∗ f(zl−1
−j,−k) (A.41)

= δljk ∗ f(rot180◦(zl−1
jk)) (A.42)

Lastly,
∂L

∂bljk
= ∂L

∂bl
(A.43)

=
∑
j′

∑
k′

∂L

∂zl
j′k′

∂zl
j′k′

∂bl
(A.44)

=
∑
j′

∑
k′
δlj′k′ (A.45)

since
∂zl

j′k′

∂bl
= 1 (A.46)

A.4 Gaussian weight initialization
Following the authors arguments [8], but considering any affine neuron with ReLU
activation instead:

Consider an affine transformation

zl =
n∑
i=1

wlia
l−1
i = wl1a

l−1
1 + w2a

l−1
2 + ...+ wna

l−1
n (A.47)

where wl are the weights in layer l and al−1 is the activated output from layer l− 1.
The same assumptions as the authors are made; the weights wl and the input al−1

are all mutually independent and share the same zero-centered distribution. The
variance in the output is therefore related to the variance in the input by

Var[zl] =
n∑
i=1

Var[wlial−1
i] (A.48)

IV

A. Details to formulas in theory section

The variance in any term wlia
l−1
i is

Var[wlial−1
i] = E[(wlial−1

i)2]− (E[wlial−1
i])2 (A.49)

= E[(wli)2]E[(al−1
i)2]− (E[wli])2(E[al−1

i])2 (A.50)
= Var[al−1

i]E[wli]2 + Var[wli]E[al−1
i]2 + Var[al−1

i]Var[wli] (A.51)
= Var[wli]E[(al−1

i)2] (A.52)

If wl−1 has a symmetric distribution around zero, then al−1 has zero mean and is a
symmetric distribution around zero. This leads to,

E[(al−1
i)2] = 1

2Var[z
l−1] (A.53)

since ReLU activation halves a symmetric distribution with zero-mean. With eq.
(A.49) this becomes

Var[wlial−1
i] = 1

2Var[w
l
i]Var[zl−1] (A.54)

So with L layers put together,

Var[zl] = Var[z1]
(

L∏
l=2

1
2nVar[w

l]
)

(A.55)

and maintaining the variance leads to the condition

1
2nVar[w

l] = 1 ∀l (A.56)

Therefore, wl should be initialized to a zero-mean Gaussian distribution whose stan-
dard deviation is √

2
n

(A.57)

where n is the number of incoming weight connections to each output activation.
For the first layer, which does not have an activation function applied onto the input,
the Xavier initialization is valid.

V

A. Details to formulas in theory section

VI

B
Two hyperparameter trials

The two following trials showcase the indications given whenever the learning rate
parameter is too high or low.

B.0.1 Model A trial one

Hyperparameter Value
Learning rate (η) 0.0001
Regularization (λ) 0.001
Decay rate 1 (β1) 0.9
Decay rate 2 (β2) 0.999
Mini-batch size (B) 100
Dropout rate (p) 0.5

VII

B. Two hyperparameter trials

VIII

B. Two hyperparameter trials

Test accuracy: 49.35%.

B.0.2 Model A trial two

Hyperparameter Value
Learning rate (η) 0.00005
Regularization (λ) 0.001
Decay rate 1 (β1) 0.9
Decay rate 2 (β2) 0.999
Mini-batch size (B) 100
Dropout rate (p) 0.5

IX

B. Two hyperparameter trials

Test accuracy: 43.10%.

X

	List of Figures
	List of Tables
	Introduction
	Motivation
	Deep feedforward neural networks

	Theory
	Supervised learning for optimizing deep neural networks
	Optimization through gradient based learning
	Backpropagation in feedforward neural networks
	Gradient based learning rule
	Adaptive moment estimation

	Feedforward neural network layer components
	Fully connected layer
	Convolutional layer
	Maxpooling layer

	Activation function
	Rectified linear unit

	Regularization
	Weight decay
	Dropout

	Weight initialization

	Methods
	Implementation of deep feedforward neural network
	Data representation
	Tensor representation as multidimensional array
	Convolution as matrix multiplication
	Convolution output to fully connected input conversion for matrix multiplication
	The computational graph
	Context object pattern

	Efficient matrix multiplications
	OpenBLAS
	cuDNN and cuBLAS

	Verify computations through gradient check
	Implementation verification using the MNIST dataset
	Pre-processing
	Network architecture
	Hyperparameters

	Challenging the CIFAR10 dataset
	Pre-processing
	Network architectures
	Hyperparameters

	Neural network architecture evaluations
	Loss
	Accuracy
	Confusion matrix
	Weight visualization

	Results
	MNIST classification
	Discussion

	CIFAR10 classification
	Model A
	Model B
	Model C
	Discussion
	Model A
	Model B
	Model C
	Comparison with the state-of-the-art

	Pre-processing
	Optimizing the neural network architectures

	Conclusions
	Future work

	Bibliography
	Details to formulas in theory section
	Negative log-likelihood gradient
	Backpropagation: Fully connected layer
	Backpropagation: Convolutional layer
	Gaussian weight initialization

	Two hyperparameter trials
	Model A trial one
	Model A trial two

