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Position, Velocity and Orientation Estimation of Minesto’s Crossflow Underwater
Kite
LINN LYSTER
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
Crossflow underwater kites have shown promising potential to generate green energy,
with Minesto’s Deep Green on the front line. The power output is optimized when
the kite is following a figure-eight trajectory, where the motion is controlled by a
rudder on the kite. This work focuses on providing the control system with improved
input about position, velocity and orientation of the kite, with the use of inertial
sensors and knowledge of depth, in order to steer the rudder optimally. The sensor
signals were processed and filtered in order to handle problems of sensor and process
noise.

An algorithm was designed that combined the different sensors to predict the
pose and motion of the kite. This was done by first approximate the noise of the
sensors, which were used as input, into an extended Kalman filter for orientation
estimation, together with inertial measurements from a gyroscope and an accelerom-
eter. After an initial guess on position, based mainly on depth of kite, a steady-state
Kalman filter was applied in order to improve the position estimate and also obtain
velocity.

The result show that the sensor fusion performed has potential in predicting the
movement of the kite. However, the limited access to data prevents us from drawing
too big conclusions. Even if there are some challenges regarding bias drift and
robustness of the algorithm, it can be shown that the proposed algorithm produces
realistic output when it comes to physical constraints due to the tether length but
also in terms of periodicity of the orientation.

Keywords: pose estimation, cross-flow underwater kite, sensor fusion, Kalman
Filter, extended Kalman Filter.
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1
Introduction

The oceans contains a huge amount of energy. One example is the energy from tides,
where currents are created. This energy resource is advantageous compared to other
renewable energy resources when it comes to reliability, since tides are predictable.
The generation of energy from ocean currents can be obtained by crossflow under-
water kites. Those have showed great potential, with Minesto’s Deep Green on the
very cutting edge. The cross-current motion gives the kite a velocity significantly
higher than the flow, increasing the power output compared to a stationary tidal
plant.

First-generation tidal technologies have suffered from constraints in order to
be commercially viable, due to the dependence of strong tidal streams and spe-
cific installation depth [2]. Crossflow underwater kites do not suffer from those
constraints, since the crossflow motion makes it possible to operate at slow tidal
streams cost-efficiently.

The kite is joined to a tether which usually is attached to the seabed. In order
to maximise power output and avoid twisting of the tether, movement along a so
called figure-eight motion is preferred [3]. This requires knowledge of the where-
abouts of the kite, in order to be able to steer the kite along the desired path and
in that way optimise the power output.

The need of the kite’s position and orientation proposes us to use different
sensors. In this project inertial sensors, such as accelerometer and gyroscope will be
used together with a pressure measurement device, giving the depth. The sensors
are combined in so called sensor fusion. Examples of sensor fusion can be found in
many different areas, such as vehicle tracking systems with the use of camera and
radar. The camera is good at estimating the angle at where an object is located
but is bad at estimating distance to the object. However, the opposite holds for the
radar - it is good at measuring distance but not angle. Combining these sensors is
desired, giving a better estimate than from one unique sensor.

Another example is the case of estimating orientation with inertial sensors,
where the gyroscope gives a good measure on the kite’s angular velocity but is
exposed to drift when integrated to obtain angles. In order to correct the drift,
the measurement from an accelerometer is correcting the orientation by comparing
the acceleration with the gravitational acceleration as a ground truth. The sensor
signals are though subject to noise, whose impact is reduced by applying different
filters.
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1. Introduction

1.1 Aim and Research Question
The control system steers the kite in a predetermined figure-eight trajectory. In or-
der to steer the rudder optimally and efficiently, an estimation of the kite’s position
and orientation is needed. Today the kite’s control system is based on position and
heading of kite, but the estimation of those parameters is made without any com-
pensation for noise or systematic errors. It is therefore a desire to implement more
advanced filtering techniques. The position estimate used today is also dependent
on a speed measurement device, which is desirable to remove.

The aim for the project is to develop an algorithm that improves the estimate
of position and orientation of the kite and provides the kite’s velocity. In order
to successfully be able to extract those parameters, the data from the kites inertial
measurement unit (IMU) is used together with a pressure sensor indicating the depth
of the kite. This data is then processed and filtered in order to handle problems of
sensor and process noise.

With better estimation of position and orientation the power production in-
creases, by controlling the system to better follow the optimal trajectory. This gain
in energy generation is naturally a positive contribution in cost-efficiency. Also, in
the current system there is a speed measurement device mounted on the kite - which
will be superfluous if we can successfully extract this variable from the other sensors.
This device elimination is desirable in order to lower the production costs.

1.2 Delimitation
The project only focuses on estimating the input parameters to the control sys-
tem. Any work related to other parts of the control system, for example trajectory
planning or actuation control, will be disregarded.

There is some practical framework that limits the available data. Since there is
a generator mounted on the kite, the information from the IMUs magnetometer must
be discarded due to disturbances in the magnetic field when generator is operating.

1.3 Thesis Outline
The thesis starts with a background of ocean energy. The chapter also describes the
field of crossflow kites as well as pose estimation. In chapter 3, the theory of filtering
is presented, and the filters used in the report are described. Next chapter treats the
model of the system, where coordinate frames, measurements and parametrization
are described. Here also the system dynamics is presented. In chapter 5 the method
for solving the pose estimation problem is discussed in detail. Finally, the results
are presented, followed by a discussions and conclusions. Lastly future work is
proposed.
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2
Background

This section will give a short summary over the potentials in ocean energy. An
overview of crossflow kites will also be presented, with emphasis on Minesto’s Deep
Green and its functionality and structure. Also, the field of pose estimation will be
introduced.

2.1 Ocean Energy
The ocean contains a tremendous amount of energy. Minesto’s Deep Green is devel-
oped to efficiently produce energy out of tidal streams and ocean currents. Other
ocean energy resources, for example waves and salinity gradients, will be disregarded
in this report.

2.1.1 Tidal Streams and Ocean Currents
Tidal energy has a great potential for electricity generation in terms of reliability.
Tide is the periodic motion of sea waters, which is the result from the gravitational
pull from mainly the moon and the sun together with rotation of earth [4]. This
creates tidal streams, that contain an enormous amount of energy. Those forces are
not dependent on weather, but instead well-known cycles of the moon, sun and earth
and can thus be predicted accurately. This also means that the tide’s movement and
stream speed are known with great precision. In other words, the tides are more
reliable compared to other renewable resources, for example wind and sun-based
power.

Tidal energy has traditionally struggled with fairly high costs and limited ac-
cessibility of suitable locations with adequately high stream speed and tidal ranges.
However, over the last two decades there has been increased interest in this field
[5], with many technical innovations and improvements. This constant development
show that the aggregate accessibility of tidal energy might be greatly under esti-
mated [6]. Although it is not used extensively today, it has great future potential
[4], with economical and ecological viability on the horizon.

Ocean currents have a lot in common with tidal streams in terms of reliability,
but are created by geographical differences in salinity and temperature along with
the Coriolis effect [2]. In addition to the currents giving rise to continuous flow of
water in the same direction, they are also influencing the climate widely, especially
in Northern Europe.

In summary, the greatest advantages with tidal streams and ocean currents are
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2. Background

the predictability and reliability. Tidal streams and ocean currents are also global
energy resources, with minimal use of land [2].

2.1.2 Available power
The mass flow of a fluid trough a turbine of area A can be derived from the continuity
equation of fluid mechanics. This is a function of fluid density ρ and fluid velocity
U , according to equation (2.1). The power of the flow is given by equation (2.2). [7]

dm

dt
= ρAU (2.1)

P = 1
2
dm

dt
U2 = 1

2ρAU
3 (2.2)

As can be seen the power is a function of fluid speed, area of turbine and density
of fluid. However, not all of the available power can be harvested and therefore a
turbine power coefficient cp, needs to be included [8]. Thus, the available power can
be expressed as

Pturbine = cpP = 1
2cpρAU

3. (2.3)

It can also be noted that since water is a high-density fluid compared to for example
air, it requires smaller turbines in order to extract the same amount of power from
same velocity conditions.

2.2 Crossflow Underwater Kites
A crossflow underwater kite energy system is a solid undersea wing attached by a
flexible tether to a support structure. The support structure can be located on the
seabed or the ocean surface [9]. It is an alternative to the underwater stationary
turbines, where the crossflow underwater kite has the advantage of higher potential
power output. This is because the kite is controlled to travel in cross-current motions
at a velocity significantly higher than the ocean flow [8]. The cross-current motion
is described in section 2.2.1.

Underwater kite systems have not been studied as much as the related problem
of generating power from wind by using kites. The concept of extracting power
using kite systems was first proposed by Loyd in 1980 [10] and using automatically
controlled tethered kites in order to generate power from high-altitude wind is still
a growing field [11]. The concept is often referred to as an Airborne Wind Energy
(AWE) system, where power output is given as a function of wind speed and the
lift to drag ratio [9]. Those studies have advanced our knowledge in modelling
and understanding kite-tether dynamics and design of critical system components,
among other [3]. Especially well-advanced is the autonomous control system to
handle kite trajectories for AWE systems, which is of great importance also in the
underwater kite systems in order to optimize power output [3]. The great advantage
of crossflow underwater kites compared to AWE systems is that they can be made
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2. Background

almost weightless, due to the forces of the high-density fluid. This can be one reason
why the AWE systems not yet have reached commercial potential.

Landberg [12] first proposed undersea kites similar to AWE systems, but gen-
erating power from water currents instead of wind. Since water is 832 times denser
than air [13], operating in a different environment gives the possibility to capture
more energy. This can be seen in equation (2.3). Landberg is the inventor of
Minesto’s Deep Green.

2.2.1 Figure-eight motion
It has been shown that power output is optimized when the kite moves in cross-fluid
motions, i.e. roughly perpendicular to the flow. For underwater kite systems, this
means cross-current figure-eight motion [3], described by a lemniscate. This motion
also prevents the tether from twisting.

Ideally the kite motion is confined to the surface of a sphere, and thus its
velocity is tangential to a sphere’s surface [14], whose radius is defined by the tether
length. The figure-eight motion can be expressed mathematically as consisting of
two small circle sweeps and two great circle sweeps which connect the small circles
[14], see figure 2.1.

zn

xn

yn

Figure 2.1: Figure-eight motion defined by the kite moving on the surface of
a sphere in a motion built up by two small curves (solid) and two bigger curves
(dashed).

2.2.2 Minesto’s Deep Green
Deep green is Minesto’s unique and patented tidal power plant, that can cost-
efficiently produce electricity from slow tidal streams and ocean currents [15].

Functionality

Deep Green is a crossflow underwater kite power plant, with a wing that pushes the
turbine trough the water in a figure-eight trajectory. The kite then sweeps a large
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2. Background

Figure 2.2: The different parts of the kite. Image from Minesto [1].

area at a relative speed several times the actual speed of the underwater current.
This property is what differs Deep Green from stationary marine turbines [8].

Where stationary plants need higher currents in order to be cost-efficient, Deep
Green can also handle low-velocity streams. The power density is dependent on the
cube of the velocity, see equation (2.3). This means that when the relative speed of
the turbine increases compared to a stationary one, the electricity produced by the
power plant is much greater.

When water flows through the turbine, the generator produces electricity. Elec-
tricity is then transferred trough a cable encapsulated in the tether. The cable con-
tinues on the seabed and then on to land, where the electricity is passed on to the
grid [1].

Kite Structure

A sketch of a kite can be seen in figure 2.2, where one can see the major parts of the
kite. It is built up by a wing (1) and a turbine (2) which is connected to a generator
in the nacelle (3). The control system and servo steer the rudder (4). The tether (6)
is fixed to the kite by the struts (5) and is connected to a bottom joint at seabed.
The tether carries cables for power distribution and communication.

Kite Control Today

The control system aims to steer the kite in a optimal trajectory along a lemniscate.
It is steered by a rudder and the rudder angle is provided by a track following
algorithm. The algorithm needs input from the kite position, heading and speed.

Today those inputs are estimated without accounting for noise. First the
azimuth and elevation angles are estimated, giving position of kite since constant
tether length is assumed. The elevation is computed from the depth given by the
pressure measurement device. The azimuth is dependent on kite heading and speed
in order to find closest point on the lemniscate. However, this approximation is not
very exact and the azimuth estimation is reset every now and then.

The heading is computed from the projection of acceleration vector, assuming
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2. Background

only gravitational and centripetal acceleration. The centripetal acceleration due
to circular motion, is subtracted from the acceleration measurement, by looking at
change in heading and speed. Depending on the gravitation vector, the heading is
estimated. For example, when gravitation is only in the kite’s positive z-direction,
the heading is assumed 0 and when the kite’s acceleration is directed in only x-
direction, 180 degrees is set.

The kite has multiple control modes and the control system acts differently
depending on mode. In this report, we only focus on the run and park mode. Modes
as in for example releasing the kite to the surface or steer the kite manually will not
be considered.

In the run mode, the kite delivers electricity to the grid by letting the turbine
spin. The control system takes input from the kite’s state, such as position or
angular velocity and tries to follow the optimal trajectory. In park mode, the kite
focuses on stable hovering in water without loosing control.

2.3 Pose Estimation and Inertial Sensors
Applications of inertial sensors and inertial navigation has been rapidly growing in
recent years. This can be explained by the development of micro electromechanical
sensors and better computer performance [16]. The term inertial sensor is used
to describe the combination of an accelerometer and a gyroscope, where devices
containing these sensors often are referred to as inertial measurement units (IMUs)
[17].

Pose estimation is the term describing the combined estimation of both posi-
tion and orientation. In order to successfully estimate pose, inertial sensors are used.
For example, those can be found in mobile devices, unmanned and autonomous aerial
and underwater vehicles. These sensors are also common in order to track human
body motions, often called motion capture [18]. Inertial sensor measurements can
be sampled at high frequencies and can be integrated in order to obtain position,
velocity and orientation. However, these measurements are typically suffering from
bias and noise. Therefore, the need of fusing data from the different sensors is crucial
in order to receive an optimal pose estimate, so called sensor fusion.

Lots of estimation algorithms fusing inertial and magnetic sensors have been
implemented, where the most used approaches are the complementary filter and
the extended Kalman filter (EKF) [18]. The Kalman filter (KF) and EKF are the
most recognized and adopted approaches, which is going to be explained in depth
in section 3.1.1. First, we start with an introduction to Bayesian statistics, which
the filters applied in this project is based upon.
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3
Filtering

In order to be able to extract the kite’s angular velocity and linear acceleration from
the noisy measurements, filtering has to be performed. This section gives a brief
review of the filtering methods used.

3.1 Bayesian Statistics and Filtering
Filtering can be defined as recursively estimate parameters of interest xk, also re-
ferred to as the state vector, based on measurements yk at time k. The objective is to
compute the posterior distribution p(xk|y1:k), where y1:k contains all measurements
up to time k.

Most dynamical systems can be described on a state space model form, from
where we often can find efficient algorithms to solve the filtering problems. A
discrete-time state space model can be described by a motion model (3.1) and a
sensor or measurement model (3.2),

xk = fk−1(xk−1,uk, qk−1), (3.1)
yk = hk(xk, rk), (3.2)

where q and r are motion and measurement noise, which are considered as additive
gaussian noise, and u is the control vector. We also assume that the initial prior
x0 ∼ p(x0) is known. The motion model (3.1) gives information about p(xk|xk−1)
and describes the dynamic of the system. The measurement model (3.2) provides
information about distribution p(yk|xk) and relate the observations to the state
vector.

Moreover, it is assumed that the models possess the Markov property. That
is for the state at time k being conditionally independent on all the previous mea-
surements and states, where all information up to time k is included in the state
[17].

From Bayesian statistics, the posterior density of the collection of all state
vectors between start and time k can be obtained by using Bayes’ rule and the
Markov property,

p(x0:k|y1:k−1) = p(y1:k|x0:k)p(x0:k)
p(y0:k)

∝ p(x0)
k∏
i=1

p(yi|xi)p(xi|xi−1). (3.3)

Further, in order to obtain information about current state xk, marginalization with
respect to all previous states x0:k−1 is performed,

p(xk|y1:k) =
∫
p(x0:k|yk−1)dx0:k−1. (3.4)

9



3. Filtering

However, with increasing k, (3.3) and (3.4) are demanding to solve. Therefore recur-
sive filtering is proposed, for example Kalman filters, where p(xk|y1:k) is computed
from previous p(xk−1|y1:k−1). This is done by first predicting the next state, which is
used as a prior in order to update the state with the use of the current measurement.

In the prediction step the aim is to predict p(xk|y1:k−1) from p(xk−1|y1:k−1).
In order to get the prior distribution, the law of total probability is used to integrate
over previous state xk−1. This gives the Chapman-Kolmogorov equation,

p(xk|y1:k−1) =
∫
p(xk,xk−1|y1:k−1)dxk−1

=
∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (3.5)

Solving this integral gives the prediction step.
In the measurement update the state xk is updated with the new measurement

yk. More formally, computation of p(xk|y1:k) from p(xk|y1:k−1) is performed,

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1), (3.6)

where the normalization factor is omitted. As usual in Bayesian statistics, the
posterior distribution is proportional to the likelihood and the prior distribution.
The equations (3.5) and (3.6) are referred to as the filtering equations and are
applicable to all filtering problems. [19]

3.1.1 Kalman Filtering
The filtering equations (3.5) and (3.6) are generally tedious to solve. One reason
is that the posterior distribution p(xk|y1:k) can rarely be expressed analytically.
However, linear and Gaussian models are one exception, with state space model
expressed according to

xk = Ak−1xk−1 +Bkuk + qk−1, (3.7)
yk = Hkxk + rk, (3.8)

where qk−1, rk and x0 are all Gaussian with covariances Qk−1,Rk and P0|0 respec-
tively. Ak−1 is the transition matrix, Bk is the control-input model matrix applied
to the control vector uk andHk is the measurement model matrix. For those models
the distribution p(xk|y1:k) is also Gaussian. More generally this also holds for

p(xm|y1:n) = N (xm; x̂m|n,Pm|n) ∀m,n, (3.9)

where x̂m|n and Pm|n are the state estimate or mean and state covariances respec-
tively. The notation x̂n|m represents the estimate of x at time n given observations
up to m ≤ n.

The Kalman filter gives an analytic solution to the filtering equations (3.5),
(3.6) for linear and Gaussian models. The goal of the Kalman filter is to compute
the mean and covariance for m = k and n = k − 1, k recursively for k = 1, 2, 3...
The Kalman filter equations are derived using the properties of linear combination of
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3. Filtering

independent Gaussian variables together with conditional distribution of Gaussian
variables.

The prediction step in the Kalman filter is straightforward, with mean and
covariances computed according to

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bkuk (3.10)
Pk|k−1 = Ak−1Pk−1|k−1A

T
k−1 +Qk−1. (3.11)

The update step of the state x̂k|k is given by the prior state together with a correction
term depending on the new measurement. The covariance is updated by the prior
covariance along with a term depending on how informative the new measurement
is. This can be summarized in the following equations

x̂k|k = x̂k|k−1 +Kkỹk (3.12)
Pk|k = Pk|k−1 −KkSkK

T
k , (3.13)

where Kk, ỹk, and Sk are the so called Kalman gain, innovation and innovation
covariance respectively,

Kk = Pk|k−1H
T
k S
−1
k (3.14)

ỹk = yk −Hkx̂k|k−1 (3.15)
Sk = HkPk|k−1H

T
k +Rk. (3.16)

Steady-state Kalman Gain

Instead of recursively compute the Kalman gain K in the update step for Kalman
filtering, there exists a simplification when the change in noise covariance matrix Q
is expected to be approximately constant. We can then replace Kk and Pk|k−1 with
their steady-state values,

K := lim
k→∞

Kk P∞ := lim
k→∞

P (3.17)

The steady-state Kalman gain K can be computed only once, by solving the fol-
lowing equation,

K = AP∞H
T (HP∞HT +R)−1, (3.18)

where P∞ satisfies the Algebraic Riccati Equation (ARE),

P∞ = AP∞A
T −AP∞HT (HP∞HT +R)−1HP∞A

T +BQBT , (3.19)

obtained by setting Pk|k−1 = Pk|k. [20][21] This naturally reduces the computational
cost during operation, and using steady-state KF instead of the classical KF is faster.
The reduced estimation time can be of importance in many real-time applications.

Extended Kalman Filter

Sometimes dynamical systems cannot be modeled by linear state space models (3.7)
and (3.8) and generally the motion or measurement models are non-linear functions
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where no analytical solution for the filtering equations exists. Therefore, it is com-
mon to approximate the non-linear models, so an analytical solution can be found.
The extended Kalman filter (EKF) uses local linearization about the estimate of the
mean and covariance, in order to overcome the problem.

Instead of conditioning the motion and measurement model to be linear func-
tions, the state space model can be written as

xk = f(xk−1,uk) + qk−1, (3.20)
yk = hk(xk) + rk, (3.21)

where qk−1 and rk are the motion and measurement noise assumed Gaussian with
covariance Qk−1 and Rk respectively. The generally non-linear function f can be
used to compute the the predicted state estimate x̂k|k−1, but the same does not hold
for the predicted covariance estimate. Instead, the Jacobian of f with respect to x
is computed and evaluated at the last predicted state estimate. The same holds for
the function h. The Jacobians of f and h are instead plugged into the Kalman filter
equations, which linearizes the non-linear functions around the current estimate.
The Jacobians can be expressed as

Fk = ∂f(xk,uk)
∂xk

∣∣∣∣
xk=x̂k|k

, (3.22)

Hk = ∂h(xk)
∂xk

∣∣∣∣
xk=x̂k|k−1

. (3.23)

The prediction step can then be formulated as

x̂k|k−1 = fk−1(x̂k−1|k−1), (3.24)
Pk|k−1 = Fk−1Pk−1|k−1F

T
k−1 +Qk−1, (3.25)

and the update step similar to (3.12) and (3.13), but with Hk according to (3.23).

3.2 Exponential Moving Average
In order to smooth out the short-term fluctuations in signals, a moving average is
commonly used. This can be viewed as applying a low-pass filter. Using an exponen-
tial moving average (EMA), also known as exponential weighted average, decreases
the weight on previous measurements exponentially. The EMA for measurements Y
can be described by

Ŷt = αŶt−1 + (1− α)Yt, (3.26)

where Yt is the measured signal at time t and Ŷt is the EMA. The coefficient α is
the weighting decrease factor, representing how much weight to be put on earlier
measurements. The weighting coefficient α ranges between [0, 1], where high values
of α indicate more weight on the past.
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3.3 Other Filters
The EKF is common when estimating orientation. But the implementation of EKF
introduces a linearization error in the KF and increases the computational com-
plexity [22], which proposes using less complex filters if same end result could be
obtained. Therefore, other less complex filters were also considered in the orientation
estimation. The ones considered are going to be briefly explained below.

3.3.1 Complementary Filter
The accelerometer gives a good estimate of orientation in static conditions whereas
the gyroscope is good in dynamic conditions. This is used by the complementary
filter (CF). It needs input from two different sources - one from high-frequency noise
and the other from low-frequency noise [23]. In the case of orientation estimation the
filter combines the slow moving signal from the accelerometer and the fast moving
signal from the gyroscope.

The simplest implementation found of this is the following equationψkθk
φk

 =
(
1− α

)
ψk−1
θk−1
φk−1

+ T

 ωx,k
ωy,k
ωz,k−1


+ α

ax,kay,k
az,k

 , (3.27)

where the parameter α decides how much impact the different sensors should have
on the estimation. If α is small, more weight is given on the gyro measurement. The
CF implemented in the comparison is a bit more complex. Details can be found in
[23], but builds upon the same idea of weighting the sensors differently. Note the
need of choosing the tuning parameter α.

3.3.2 Mahony Filter
Mahony filter[24] is a so called explicit complementary filter. It uses a proportional-
integral controller to estimate the gyro bias [22]. This is done by computing the
error between the estimated orientation and the orientation obtained by looking
at the accelerometer. The error then corrects the gyroscope bias. The measured
angular velocity is updated according to

ω = ω̂ +Kpe(t) +Ki

∫
e(t′)dt′, (3.28)

where Kp and Ki are the coefficients of the proportional and integral term respec-
tively, which have to be decided. This is then used in order to obtain the change in
orientation dynamics,

q̇ = 1
2q ⊗ ω,

explained more in section 4.1.3.
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3.3.3 Madgwick Filter
The Madgwick filter [25] is built upon a gradient descent based algorithm [26],
which ensures good attitude estimation at low computational cost [27]. It uses the
orientation error obtained by a gradient descent algorithm to provide a gyroscope
drift compensation.

As in the CF, first the orientation is estimated from the gyro by integration.
Then a corrective step based on the gradient decent algorithm is obtained by mini-
mizing the orientation deviation from the assumed gravitational acceleration given
by the accelerometer. This correction is then subtracted from the estimated orien-
tation, scaled with a factor β. More details can be found in for example [26] and
[25].

In [26] it is proposed to use particle swarm optimization to determine the
control parameters in the Madgwick and Mahony filters.
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The section defines important notions and concepts, such as the coordinate frames,
the measurement outputs and how the dynamics can be described.

4.1 System Overview

4.1.1 Coordinate Frames
We start by defining the different coordinate frames. First, the body frame b is
moving with the kite and origins at the center of the accelerometer. The navigation
frame n is the stationary frame with its origin at the tether’s attachment to the
ground. The aim is to estimate the position and orientation of frame b with respect
to the navigation frame n. We also have the inertial frame i, originating at the
center of earth. It is with respect to frame i that linear acceleration from the IMU
is measured. A sketch of the coordinate system can be seen in figure 4.2.

In figure 4.1, the different orientation angles pitch θ, yaw φ and roll ψ are
defined. The xb-axis is aligned with the kite’s forward direction, the yb-axis points
to the right wing and the zb-axis refers to the upward direction of the kite, where
the subscript b indicates the body frame. For example, the position and velocity in
the navigation frame are denoted pn and vn.

Also, the kite’s position can be described by spherical coordinates, with tether
length r, azimuth φaz and elevation angle θel as in figure 4.3. The angle θel ∈ [0, π2 ]
is the angle between the xnyn-plane and vector r and φaz is the angle between the
xn axis and the projection of r onto the xnyn-plane.

4.1.2 Measurements
The angular velocity from the gyro and accelerometer measurement are extracted
from the IMU. A pressure measuring device mounted on the kite gives the depth of
the kite and furthermore information about the z-position in navigation frame pnz .

Angular Velocity

The angular velocity is measured by a gyroscope, more specifically angular velocity
of the body frame b with respect to the inertial frame i. Expressed in body frame b
the notion is then ωbib and can be expressed by

ωbib = Rbnωnin + ωbnb, (4.1)
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Figure 4.1: The rotation around xb-, yb- and zb are defined as the roll ψ, pitch θ
and yaw φ respectively.

where Rbn is the rotation matrix from frame n to b [17]. The so called earth rate
|ωin| = 7.29 ·10−5 rad/s, depends on how the earth rotates around its own axis. It is
assumed negligible since it is rather small. This assumption leads to that ωbib ≈ ωbnb.

The gyroscope measurement ω̂ is corrupted by slowly time-varying bias δω(t)
and measurement noise ηω(t), assumed Gaussian. Thus, the gyro measures

ω̂(t) = ωbnb(t) + δbω(t) + ηbω(t). (4.2)

The slowly time-varying bias is commonly modelled as a random walk, where ηbδω
is

Gaussian noise,
δbω(t+ 1) = δbω(t) + ηbδω

(t), (4.3)
but in many practical scenarios this bias is varying so slow that it can be approxi-
mated constant.

Acceleration

The accelerometer measures the specific force f in the body frame b. The accel-
eration due to the kite’s motion with respect to navigation frame, is obtained by
subtracting the offset due to gravity. The specific force can be expressed in terms
of the linear acceleration and the gravity vector as follows

f b = Rbn(anii − gn), (4.4)

where aii denotes the linear acceleration of the sensor and gn is the gravity vector,
both expressed in the navigation frame n. The subscripts of acceleration a denotes
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zn

xn

yn

xb

yb zb

Figure 4.2: Definition of the navigation and body frame. Navigation frame origins
at tether’s attachment to the ground and the body frame origin at the center of the
IMU.

which frame the differentiation is performed. Thus, in order to get the position in
the navigation frame n, denoted pn, we are interested in an expression for annn. From
[17] a relation between aii and ann is derived, see equation (4.5), where effects due
to the Earth’s rotation relative to the inertial frame i are considered,

anii = annn + 2ωnin × vnn + ωnin × ωnin × pn. (4.5)

The second term in equation (4.5) is the Coriolis acceleration and the third term
is the centrifugal acceleration due to earth’s rotation. The latter is dependent on
the earth rate and considered negligible. The magnitude of Coriolis acceleration is
relatively small compared to the linear acceleration and is also going to be assumed
negligible [17].

Similar to the gyroscope, also the accelerometers measurements are affected
by slowly time-varying bias δa(t) modelled as a random walk, and Gaussian noise
ηa(t). In summary, we can approximate the measurement from the accelerometer
according to

â(t) = Rbn(annn − gn) + δa(t) + ηa(t). (4.6)

Pressure

The pressure p increases linearly with depth, according to ∆p = ∆hρg, where ∆h
is the depth below the ocean surface and ρ is the density of the fluid, in this case
seawater. Providing the information of where the bottom joint is placed, either on
seabed or ocean surface, the difference in zn can be provided. In other words, the
distance from origo at the bottom joint to the kite in z-direction of the navigation
frame, pnz . The details on the conversions from pressure to depth is left out here.
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φaz

θel

zn

xn

yn

Figure 4.3: Definition of the spherical angles φaz and θel.

4.1.3 Quaternion Parametrisation
Orientation can be described by different parameterizations, for examples rotation
matrices or Euler angles. However, in pose estimation algorithms, a quaternion-
based representation is widely used [17]. Quaternion q is a vector in R4 that rep-
resent the rotation relation between the body frame b and the navigation frame n
[18].

Quaternion q is defined by

q = (q0 q1 q2 q3)T =
(
q0
qv

)
, (4.7)

where ||q||2 = 1 is the definition of an unit quaternion. A vector v in R3 can be
written as a pure quaternion by vq = (0 vx vy vz). It can be rotated by a quaternion
q using

vnq = q ⊗ vbq ⊗ q∗. (4.8)

This is equivalent to a rotation by a rotation matrix vn = Rnbvb. Note that the
symbol ⊗ represent quaternion multiplication and q∗ is the quaternion conjugate
given by

q∗ = (q0 − q1 − q2 − q3) =
(
q0
−qv

)
. (4.9)

The time derivative of a rotation of an object with angular velocity ω is given
by

q̇ = 1
2q ⊗ ω. (4.10)

It can be noted that the derivative of a quaternion is itself a quaternion. The
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derivative can be represented in matrix form by (4.11).

q̇ = 1
2


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0



q0
q1
q2
q3

 = 1
2


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0




0
ωx
ωy
ωz

 (4.11)

defining the matrices above as S(ω) and S̄(q),

S(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 (4.12)

S̄(q) =


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

 (4.13)

The advantages with using quaternions instead of for example Euler represen-
tation is that the number of parameters is decreased as well as the avoidance of
singlarity configurations. Those are some of the reasons why quaternion representa-
tion is used in most of the recent sensor fusion algorithms for orientation estimation
[28].

4.2 Dynamics
The discrete representations of the dynamical models are presented below.

4.2.1 Orientation Dynamics
In order to discretize the motion model in (4.11), we use that t ∈ (tk−1, tk] with time
step T , along with the derivation in appendix B. This gives the discrete expression
with first order Taylor expansion,

qk = exp
(T

2 S(ω̂k−1)
)
qk−1 ≈

[
I + T

2 S(ω̂k−1)
]
qk−1, (4.14)

where S is defined in (4.12). It has previously been discussed that the gyroscope
measurement ω̂k−1 contains zero-mean Gaussian noise ηω,k−1. With separation of
noise [22] one can write the motion model as

qk =
[
I + T

2 S(ωk−1 + ηk−1)
]
qk−1

=
[
I + T

2 S(ωk−1)
]
qk−1 +

[
T

2 S̄(qk−1)
]
ηω,k−1,

(4.15)

where the last equality is obtained from (4.11) and (4.13). The process noise can
then be formulated as

νk−1 =
[
T

2 S̄(qk−1)
]
ηω,k−1.
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4.2.2 Position and Velocity Dynamics
In order to describe the movement of the kite in the navigation frame, an estima-
tion of the linear acceleration in the navigation frame ânnn, or more compact ân, is
assumed to be known. This can be obtained by rotating the accelerometer measure-
ment vector from the kite body frame to the navigation frame with the estimated
orientation, according to equation (4.8).

The estimate of the acceleration can be considered as

ân(t) = an(t) + ηa,t, (4.16)

where ηa,t ∈ R3 is the estimation error. The estimate ân can be treated as input
to a steady-state Kalman filter, where the state space model can be described by
a discretized linear system [29]. In one dimension and if acceleration is assumed
constant between samples with sampling time T , we have that

pk = pk−1 + Tvk−1 + T 2

2 ak−1

vk = vk−1 + Tak−1.

In 3-D matrix form, the motion model can be described by[
pnk
vnk

]
=
[
I3 TI3
03 I3

] [
pnk−1
vnk−1

]
+
[
T 2

2 I3
TI3

]
ânk−1, (4.17)

where k is the discrete time variable, I3 is the identity matrix and 03 is the null
matrix, both in three dimensions.

In [29] it is assumed that an estimate of position is known, obtained by for
example an GPS or line angle sensor. For the case of Minesto’s Deep Green those
sensors are not available and an estimate of position has to be obtain by other
techniques, discussed in section 5.4.1. If we assume that we have an estimate of the
position p̂nk at k, the measurement model can be defined as follow,

p̂nk = [I3 03]
[
pnk
vnk

]
+ ηp,k. (4.18)

The noise ηa,k and ηp,k are assumed to be independent Gaussian processes with
covariance Q and R respectively. Assuming the process noise change slowly, the
steady-state Kalman filter approach can be chosen, which makes the algorithm
faster. Translating this to the Kalman equations from section 3.1.1, we have that

xk =
[
pnk
vnk

]
, Ak =

[
I3 TI3
03 I3

]
, Bk =

[
T 2

2 I3
TI3

]
, Hk = [I3 03]. (4.19)

Those equations are then used in the steady state Kalman filter.
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This chapter include an overview of the workflow, before going more into details.
Explanation of how to handle estimation of initial conditions, orientation, spherical
angle and lastly position and velocity will be given.

5.1 Overview
The approach to obtain an estimation of the kite’s pose and motion can be seen in
figure 5.1. The sensors utilised are the gyroscope, accelerometer and pressure mea-
surement device. The conversion from the pressure measurement output to depth
is provided by Minesto, giving information about the variable pnz . This estimation
can be considered rather accurate, since pressure sensors can provide resolution of
2mm [30].

The signals from the gyroscope and the accelerometer are first filtered. This
is done by applying an exponential running mean, which can be seen as a lowpass
filter. The parameter α, responsible for how much weight should be put on previous
samples, is set to α = 0.5 for both gyroscope and accelerometer signal.

Initial orientation is estimated when kite is in parking mode. In parking mode,
only gravitational acceleration is assumed and no significant linear acceleration due
to movement of kite. When initial orientation is found and flight mode is entered,
the estimate of orientation is given by an EKF with quaternion states. First, the
approximated linear dependence on angular velocity is updating the quaternion
states before measurement from the accelerometer is correcting the predicted state,
depending on direction of gravitational vector.

When the orientation is estimated, we can use the result in order to split up
the measurement from the accelerometer into gravitational and linear acceleration.
The linear acceleration is used as input to a Kalman filter (KF), whose goal is to
estimate the kite’s position and velocity. Also, the KF needs a prior guess of the
kite’s position. Due to that only the depth is given by the pressure sensor, an
algorithm for estimating position in all three Cartesian components is developed
and used as input to the KF. The KF outputs position and velocity given the linear
acceleration and the prior position estimate.
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ω̂k, âk
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Figure 5.1: Block diagram of filter design.

5.1.1 Sensor Signals
Sensor signals from the accelerometer and gyroscope are modelled as

â = Rbn(annn − gn) + ηa (5.1)
ω̂ = ωbnb + ηω, (5.2)

where the noise ηa,ηω are assumed Gaussian with covariance Σa,Σω respectively.
Every sensor is also influenced by a time varying bias. However, since those can be
assumed to change slowly [31], they are not taken into account here.

5.1.2 Research Methodology
The choice to implement an EKF for the orientation estimation instead of other
filters, was founded by comparing the performance with three other common filters
- the complementary, Mahony and Madgwick filter. This was done by using the gy-
roscope and accelerometer measurement from an Android device, collected online by
an app available at Google Play, called Sensor Fusion and developed by Linköpings
University [32]. The data was streamed to a PC where the different filters were
implemented in Matlab. Also the orientation given by the estimation implemented
in the Android device was streamed and used as a ground truth.

By comparing the output of the filters visually with the ground truth, when
moving the Android device around it was clear that the best performance was ob-
tained by the EKF. However, one of the shortcomings of the comparison with the
other filters was that they had control parameters that needed to be tuned before
applying the algorithms [26]. This was not rigorously investigated, but a span of
parameters were tried, all pointing in favor for the EKF. Note also that the com-
putational time was not considered here, which could be an disadvantages with the
EKF, see for example in [22]. The choice of the KF filter in the position and velocity
estimate was a natural choice considering the straight forward implementation.
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5.2 Initial Condition and Noise Characteristics
The kite has different operational modes. In parking mode, we treat the kite as
approximately stationary, with no linear acceleration (annn ≈ 0). The accelerome-
ter is under this assumption only showing the specific force from the gravitational
acceleration. This means that the pitch angle θ can be determined by using that
the gravitational vector in navigation frame is gn = [0, 0, −1]T . When in parking
mode, the initial orientation is updated once every second, so that it has not drifted
when entering running mode.

In every update except from the first one, averaging over previous acceleration
measurements is performed. This is done in order to reduce the impact of fluctua-
tions from noise. The averaging length is dependent on how long the kite has been
parked. A maximum history of averaging is set to 2000 samples, or around 8 seconds
with a sampling frequency of 250Hz. If for instance the kite has been parked for
only 100 samples, averaging is done only over those.

The averaged accelerometer history in parked mode is denoted āparked. In
Euler notation, the start pitch angle can then be found as

θ0 = − arctan
( āparkedx

āparkedz

)
. (5.3)

Unfortunately, the roll and yaw angles are not related to the sensors at hand. If
the magnetometer was not too disturbed by the generator, the direction of the
magnetic north could have been extracted. This would give the initial yaw angle,
also referred as heading. With two known axes, the last orthogonal axis could
be obtained. However, for the time being the roll and yaw are both set to 0. It
should therefore be emphasised that the orientation is the relative orientation from
this initial orientation. The initial quaternion q0 is then computed from the Euler
angels.

The noise characteristics of the sensors are also determined when the kite is in
parked mode. First of all, the different axes of the sensors are assumed uncorrelated,
giving an diagonal covariance matrices with squared variances,

Σω = I3 [σ2
ω,x σ2

ω,y σ2
ω,z]T ,

and similarly with Σa. The variances are found by looking for the deviation around
mean of every sensor axis measurement in park mode.

5.3 Orientation Estimation
In order to estimate orientation, an EKF is designed, with 4-D quaternion state
vector and 3-D accelerometer measurement vector. The motion model is derived in
4.2.1 and its first order Taylor approximation can be summarized as

qk =
[
I4 + T

2 S(ωk−1)
]
qk−1 + νk−1, (5.4)
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where I4 is the identity matrix in four dimensions and νk−1 is the motion noise.
The matrix S is defined in (4.12). In the orientation estimation, linear acceleration
is neglected, and the measurement model in the EKF can be expressed as

yEKF,k = ya,k = −Rbngn + ηa,k. (5.5)

It can be noted that the state space model is nonlinear. However, if using an
EKF local linearization can be performed around the state estimate. For that the
Jacobians (3.22) and (3.23) need to be computed,

Fk = ∂f(qk)
∂qk

= I4 + T

2 S(ωk), (5.6)

Hk = ∂h(qk)
∂qk

=
∂Rbn

k|k−1

∂qk|k−1
gn. (5.7)

The derivation of Hk can be found in appendix A. The EKF is performed in two
steps, described in section 3.1.1. The time update is given by

q̂k|k−1 =
[
I4 + T

2 S(ω̂k)
]
q̂k−1|k−1, (5.8)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1. (5.9)

The noise covariance [31] is

Qk−1 = E[νk−1ν
T
k−1] = T 2

4 S̄(q̂k−1|k−1)ΣωS̄(q̂k−1|k−1)T , (5.10)

where Σω is the covariance matrix of the gyro measurements noise. The update step
is performed as described in 3.1.1 with Hk according to (5.7). The measurement
covariance Rk is given by the acceleration measurement noise Rk = Σa. In order
to achieve a stable filter [22], the covariance matrix P0 should be chosen a large
positive value, initially set to P0 = 10 · I4.

However, when updating the quaternion state, it was found that too much
weight was put on the accelerometer measurement when in flight mode. The as-
sumption of only acceleration from gravity was considered not completely true, so
an extra parameter γ = 0.01 was added in the quaternion update, to give less im-
pact on the acceleration correction. The quaternion measurement update was then
adjusted to

q̂k|k = q̂k|k−1 + γKkỹk. (5.11)

From the EKF, the estimated orientation q̂k is extracted. The accelerometer mea-
surement can then be rotated to the navigation frame, from where the gravitational
acceleration can be extracted. This is done by first expressing the measurement as
a quaternion, âq,k = (0 âk) and then rotate with the orientation,

ânnn,k = q̂k ⊗ âq,k ⊗ q̂k. (5.12)
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âk ≈ −Rbngn

Pk|k = Pk|k−1 − KkSkK
T
k
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ỹk = ya,k Hkq̂k|k−1
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Figure 5.2: An overview of the extended Kalman filter algorithm used for orien-
tation estimation.

5.4 Estimation of Position and Velocity
Note that the position and velocity estimations are only performed when the kite is
in running mode. When it is parked, the position is assumed to be pn = [0 0 pnz ]T
and the kite is assumed stationary vn = [0 0 0]T .

This section describes how the spherical azimuth angle is estimated in order
to obtain an approximate position of the kite. The Kalman filter uses this position
estimate and the linear acceleration.

5.4.1 Spherical Angle Estimation
The kites position can be expressed in the navigation frame by position vector
pn = [pnx pny pnz ]T . It can also be expressed by spherical coordinates r, θel, φaz, see
figure 4.3.

The tether length is assumed to be constant. This means that the length
of vector |pn| from origin of navigation frame to the kite can be assumed to have
constant length

|pn| =
√

(pnx)2 + (pny )2 + (pnz )2 = r = (L+ l). (5.13)

The tether length is denoted L and l is the distance between the top joint and the
center of the IMU.

From the pressure sensor, the position pnz is indirectly provided. Since it is
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5. Method

assumed a constant tether length, the spherical elevation angle θel can be calculated,

θel = arcsin pnz√
(pnx)2 + (pny )2 + (pnz )2

= arcsin p
n
z

r
. (5.14)

The aim is to be able to give a position input to the Kalman filter and thus obtain pnx
and pny . For this, we need the azimuth angle φaz. The relation between the azimuth
angle and the Cartesian coordinates can be described by

φaz = arctan py
px
. (5.15)

In order to estimate the azimuth φaz we study the figure-eight motion of the
kite. The subscript is dropped for convenience, but should not be mixed with yaw
angle of kite.

It can be noted that the kite passes the average depth, z̄mean, 4 times during a
loop. Assuming kite is moving to the left in figure 5.3, it is first passing φmean, then
continuing to φmin, where it turns back and again crosses φmean. At last it passes
φmax before reaching the starting point, ready for next loop.

The illustration shows that when z̄mean is passed, three possible azimuth angles
can be assumed, either φmin, φmean or φmax. The details how to decide which of these
possibilities to choose will be presented below.

First, a start value of z̄0,mean is set by the user, denoted as the target elevation.
After some loops, the mean depth z̄k,mean is updated by averaging over the actual
measures of pnz .

Choosing angle at mean depth

When the kite is close enough to mean depth z̄mean, within a tolerance of δ = 0.015m,
it is considered that one of the three extremes of φ is reached, denoted φi. In order
to decide which of the three angles is reached, we first look on how the depth
is changing. We know that around φmean the kite is on its way down, meaning
a negative change, ∆z < 0. The opposite holds for φmin and φmax. The depth
change is the difference between the current depth and the depth ∆k samples ago,
∆z = pz,k−pz,k−∆k, where ∆k = 20 is chosen to be enough to avoid fluctuations due
to noise. If depth change is positive at pnz ≈ z̄mean, either φi = φmin or φi = φmax.

In order to differentiate between those two extremes, we use the linear accel-
eration in y-direction. Intuitively, when the kite is approaching φmin, the maximum
value of pny is reached before turning, meaning that the kite’s acceleration is pointed
in the negative y-direction. The opposite holds for φmax. We could therefore dis-
tinguish the two extremes by looking at the acceleration in y. Since the orientation
estimation introduces estimation error, the mean acceleration is not approximately
zero as expected over time. Instead of comparing in terms of negative and positive
y-direction, relation to the mean of the acceleration in y, denoted āy, is used. Note
that the mean only is calculated over data point when in running mode. In conclu-
sion, if any < āy, we assumed to have reached φi = φmin and otherwise φi = φmax.
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Figure 5.3: Projection of the kites figure-eight motion on the xy-plane and yz-
plane, where different values of φaz are marked.

Interpolation

The numerical values of φmin, φmean and φmax are obtained from computational fluid
dynamics (CFD) models of the kite, provided by Minesto. In those computations,
the angles of interest are approximated to −π

8 , 0 and π
8 respectively.

When the kite has passed an extreme or is outside of the tolerance interval
δ around the mean, the azimuth angle needs to be interpolated. This is done by
looking at the two previous reached extreme points. If the most recent extreme
point passed was φi, the table 5.1 shows the next predicted extreme φi+1, along
with the total change between the points.

One problem is that the number of samples varies between every extreme
point, since the change of φ depends on the velocity and the distance travelled
varies. However, for simplicity constant step size ∆ is chosen between two extreme
points. The number of samples between two extremes, referred to as the interval
length Iφ, is first set to a default value of Iφ,0 = 600. It is though continuously
updated by the mean interval when more extremes have been reached.

The step size can then be expressed as

∆ = ∆φ
Iφ
, (5.16)
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5. Method

which then gives φk = φk−1 + ∆. When a new extreme is reached, the angle is set
to that value, φk = φi.

An indication of the algorithm correctness is performed by comparing the out-
put compared with CFD data, seen in figure 5.4. As can be seen, the initial interval
length does not match the true interval length completely, giving a discontinuity
when a new extreme point is found. This evens out when averaging over more inter-
val lengths and the discontinuities shrink. It can be noted that the estimate starts
when the first extreme point is found. When φk = φaz,k is found, conversion of
position from spherical to Cartesian coordinates can be performed,

pnx = r cos θel cosφaz
pny = r cos θel sinφaz
pnz = r sin θel.

(5.17)

Figure 5.4: The estimated azimuth angle φest and azimuth angle extracted from
CFD data.

Table 5.1: Scheme of how to predict next extreme point so that interpolation step
size can be chosen.

φi−1 φi φi+1 ∆φ
mean max mean −π/8
mean min mean +π/8
min mean max +π/8
max mean min −π/8

5.4.2 Kalman Filter Design
From the EKF, the orientation is extracted and the acceleration is rotated and
the linear acceleration is separated from gravitation. As discussed in the model
description, the acceleration can be used as an input to a KF togheter with the
estimated position from the spherical angle estimation.
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5. Method

A block diagram of the process can be seen in figure 5.5, where the assumption
of a constant covariance matrix Q is made [20]. We can then use the steady state
Kalman gain K and state covariance P∞.

The covariance matrix Q is the covariance of the accelerometer, assumed to
vary slowly over time. This can be confirmed when looking closer at the noise
variance in park mode. The position estimation covariance matrix R is designed
manually. Considering that the pressure sensor is giving a good estimate of pnz ,
the variance of this signal should be relatively small. The estimations of pnx, pny on
the other hand, come from the azimuth angle estimate and should not be trusted
as much, indicating higher variances. After some tuning, where the constraints of
constant tether length is weighted against not trusting the azimuth angle estimation
too much, R is set to

R =

0.5 0 0
0 0.5 0
0 0 (0.02)2

 (5.18)

Pk|k = P∞

x̂k|k = x̂k|k−1 + K
(
p̂nk − C x̂k|k−1

)
Measurement Update

P∞, K

Pk|k−1 = P∞

x̂k|k−1 = Ak−1 x̂k−1|k−1 +Bkâ
n
k

Time Update

Linear acceleration
ânk

Prior position
p̂nk

Steady state
computation

P∞

Figure 5.5: Overview of the KF used for estimating position and velocity.
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6
Results

This section provides the results from the estimation algorithm, together with some
interpretation of the results. The data was collected in weak flow in February
2020 by Minesto, with the use of an old test kite. The use of an old test kite in
combination with weak tide lead to lower kite velocities, but still serves as valuable
data to perform this analysis on. In the logs analysed, the tether was attached to
a barge on the ocean surface instead of a bottom joint on the seafloor. In the log
presented, kite is in parking mode the first 4 minutes before it enters flight mode
for approximately 20 minutes. The tether length was approximately 16 m.

6.1 Orientation Estimation
The resulting orientation estimation can be seen in figure 6.1 and is presented in
Euler angles. The start pitch was set to approximate 60◦. As can be noted, all
three angles drift slightly over time. With the current approach, the gyro bias and
noise are treated as process noise instead of measurement noise, since the gyro data
is treated as input. The chosen approach is reducing the state vector and leading
to efficient filter implementation [33], but leads to less exact drift estimation. This
shows that it can be favorable to also add the gyro’s drift in the state vector and
implement a 7-D state vector in the EKF, done in for example [34].

In figure 6.2 an arbitrary smaller interval have been chosen. It can be seen
that all angles follow the elevation in some sense. The maximum and minimum of
the roll ψ can be found to coincide roughly with maximum of elevation. The pitch
follows the same periodicity as the elevation, but slightly in advance.

The yaw is the angle which has the greatest span, between approximately
±120°. It can also be seen that the yaw φ ≈ 0 at approximately z̄mean, which
according to the changes in elevation indicate that this happens at φaz,mean, in other
word at the center of the loop. This is in line with the assumptions in the control
system today - the yaw should be zero in the middle of the eight and also according
to CFD data. The maximum and minimum yaw angles φ are also found at z̄mean,
in spherical coordinates at φaz,min and φaz,max. This is also in line with CFD data.

6.2 Linear Acceleration
The result of the linear acceleration can be seen in figure 6.3. One can note that when
the kite is in park mode, the acceleration is approximately zero, which is expected
if the gravitational acceleration compensation has been done successfully. When in
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6. Results

Figure 6.1: Orientation in euler angles roll ψ, pitch θ and yaw φ.

flight mode, the mean of the acceleration in the log is ā ≈ [0.04, 0.29, 0.00], but some
drift can be seen. The drift can be partly explained by the noise of the accelerometer,
but also due to the orientation error. The error in the orientation propagates to the
linear acceleration when compensating for gravitational acceleration.

Note that the centripetal acceleration has not been compensated for. However,
this should not explain the drift. The centripetal acceleration give rise to varying
errors depending on location along the loop and velocity.

6.3 Position and Velocity Estimation
First, the result of the azimuth angle estimate is shown, followed by the obtained
position and velocity.

6.3.1 Azimuth Angle Estimate
The azimuth angle estimation can be seen in figure 6.4, over the whole time span
and a time interval between the minutes 5 − 10. In this smaller interval we can
see that the azimuth estimation is behaving as expected, going from φmax, passing
φmean and then continuing to φmin. However, at earlier and later time instances,
there are some issues keeping this pattern, where φmax and φmin are mixed up.

At t < 5 min the angle estimation performs poorly. This can be explained by
assuming that the mean elevation z̄mean has not yet settled to the target elevation.
Also there is an initial phase before the cross-current motion stabilises. At later time
instances, approximately at t > 17 min, we can see a change in behaviour. It seems
like the estimation algorithm tends to have problems in distinguishing between φmax
and φmin.

This can be linked with the slowly varying bias affecting any to drift and that
the assumption of any > āy : φi = φmax and otherwise φi = φmin, is not robust
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6. Results

Figure 6.2: Orientation in Euler angles roll ψ, pitch θ and yaw φ. Extraction of
approximately three loops during approximately half a minute. Here the elevation
is also included to be able to relate to position on the loop.

enough for bias. Different strategies to overcome this issue have been investigated
without any improvement reached. The best result obtained has been the approach
explained here.

6.3.2 Position Estimate
The position estimated by the steady state Kalman filter can be seen in figure 6.5.
It can be noted that there is a transient when the kite switches from park mode to
flight mode and that the position in especially x-direction drifts slightly.

After approximately 17 minutes, the position in y-direction change behaviour.
This is related to when the azimuth angle estimation is bad differentiating between
φmax and φmin, discussed earlier.

In figure 6.6 a 3-D plot of the kite can be seen, around time t ≈ 10 min. From
the figure it can be seen that the kite is following a figure eight-up motion, even
though some drift occur, especially in x-direction. However, it is promising that we
have been able to imitate the expected behaviour of the kite - namely that the kite
is moving in a figure-eight pattern.

6.3.3 Velocity Estimate
The velocity estimate can be seen in figure 6.7. Like the position estimate, there is a
transient when kite switches from park to flight mode and the velocity drift slightly
especially in x-direction. Since velocity is directly correlated to position change, this
is not surprising, since also position in x drifts.

Figure 6.8 shows the direction of the velocity vector at different positions at
one randomly chosen loop in the time interval t = 460 − 468s. According to CFD
data, the power output is maximum when kite is on its way to the middle, and
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Figure 6.3: Acceleration in navigation frame with gravitational component ex-
tracted.

thus the same with the speed. But this result show that the maximum velocity is
obtained in the outer parts of the pattern. This can be partly explained by the fact
that the centripetal acceleration has not been compensated for. However, even if
the magnitude of the velocity vector needs to be further looked into, the direction
seems realistic.

Figure 6.9 shows the absolute velocity of the estimation and speed from an
external speed measurement device mounted on the kite1. It can be noted that the
trend is that the estimated velocity is slightly smaller than measured. However, one
important distinction between the two is that the device measures speed through
water and not speed over ground, which is what |vn| measures. This means that an
offset due to the flow velocity is expected.

Except from the offset, by looking at a smaller interval in figure 6.9, it can
be seen that the peaks are correlated. However, the estimated speed is fluctuating
more than the measured speed.

1The low kite speed seen in figure is due to use of an old test kite in combination with weak
tide.
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Figure 6.4: The estimated azimuth angle from pnz from pressure sensor and esti-
mated acceleration in y-direction âny . Note the two different x axes in figures, where
bottom figure shows a smaller time interval.

Figure 6.5: The kite’s position in navigation frame.
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Figure 6.6: The kite’s position in navigation frame, seen from 3-D perspective.

Figure 6.7: The kite’s velocity in navigation frame.
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Figure 6.8: The kite’s velocity vector during a loop with weak flow in navigation
frame.

Figure 6.9: The kite speed and the measured speed mounted on the kite at weak
flow. Note the two different time scales, where the bottom plot is a zoom.
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Closure

7.1 Conclusion
The result is promising when it comes to estimating pose and velocity of the kite. It
can be seen that the position and velocity estimates are constrained and even if there
are biases in the measurement, the estimations are held within a realistic interval.
If position and velocity would be obtained directly by integration of acceleration,
those values would drift way more, several meters every minute. The same holds for
the orientation, where the EKF give rise to much less drift than just integrating the
gyro measurement. This proves the necessity of using filters in order to handle the
noise.

Given that there is no ground truth data available, it is hard to quantify the
result. In the end, power output is the best measure in order to obtain a result of
the performance. If the developed pose estimation is giving higher power output
than the current system, it can be stated that the algorithm is more successful in
following the optimal trajectory and thus better in estimation pose. However, the
algorithm has not yet been implemented and tested during operation, so no such
comparison could be done.

Even if the result only could be evaluated on a small amount of data, the
orientation is periodic and follows the elevation in an expected manner. When
rotating the accelerometer according to the estimated orientation and compensating
for gravitational acceleration, the resulting acceleration is close to zero mean, which
is expected if orientation estimate has been done successfully.

However, drift occur over time. In order to battle this drift, also including the
bias in the state vector is proposed, with the drawback of more computational heavy
algorithm. Access to more data is also crucial in order to evaluate the robustness
of the algorithm along with better estimate of how the noise of the sensors can be
determined.

When it comes to position and velocity estimate, after the initial transient
when entering flight mode, the result is that the kite is moving in a figure-eight
pattern, where the velocity vector is directed in a realistic manner, approximately
tangential to the figure eight pattern. However, the azimuth angle estimation per-
formed is not robust enough to be able to distinguish the azimuth angle extreme
points for a longer time period. When the azimuth angle estimation is performing
badly, the position and velocity estimates are directly affected. This means that in
order to get a more robust position and velocity estimation, more effort need to be
done with developing the azimuth angle estimate.
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7.2 Future work
This work should be seen as an introduction to sensor fusion in Minesto’s Deep
Green and more work needs to be done in order to get an ideal pose and motion
estimation. This includes investigating the azimuth angle estimation more in depth
to make it more robust against noisy data. Also evaluating the system on more data
to see if there are some common pitfalls and problems with the system that could
not be found by the limited data available.

Also, in this work the magnetometer data has been fully discarded. Even if
the generator is influencing and disturbing the magnetic field greatly in flight mode,
it could possibly be used in parking mode in order to estimate the initial heading.
The magnetometer can ideally give information of the magnetic north, the same
way as the gravitational acceleration gives information of the direction of the center
of earth.

As mentioned earlier, it would be interesting to see if including the gyro bias in
the state vector would reduce the drift in orientation. Including the bias estimation
is crucial in order to get a better orientation estimation. Since the orientation error
propagates to the other estimates, the overall performance could improve signifi-
cantly due to reduced drift.

Another source of error in the orientation estimation besides the bias, is the
linearization error when applying the EKF. A first-order linearization of the nonlin-
ear system is performed, which introduces errors. An alternative approach is instead
to use a Unscented Kalman filter (UKF), which reduces the linearization error by
achieving third-order accuracy. Instead of using derivatives, the state distribution
is represented by so called sigma points, a minimal set of carefully chosen samples
[35]. For the interested reader, further discussions of the differences between the
EKF and UKF can be found in [36].
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A
Derivation of Jacobians in EKF

Quaternion q can be converted to a rotation matrix R by the following relation

R =

2q2
0 + 2q2

1 − 1 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 2q2

0 + 2q2
2 − 1 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q2
0 + 2q2

3 − 1

 (A.1)

Differentation of this expression gives,

Q0 = ∂R
∂q0

= 2

2q0 −q3 q2
q3 2q0 −q1
−q2 q1 2q0

 , (A.2)

Q1 = ∂R
∂q1

= 2

2q1 q2 q3
q2 0 −q0
q3 q0 0

 , (A.3)

Q2 = ∂R
∂q2

= 2

 0 q1 q0
q1 2q2 q3
−q0 q3 0

 , (A.4)

Q3 = ∂R
∂q3

= 2

 0 −q0 q1
q0 0 q2
q1 q2 2q3

 . (A.5)

The expression H used in the EKF then becomes

Hk = ∂

∂qk
Rbn
k g

n =
∂Rbn

k|k−1

∂qk|k−1
gn =

[
Q0 Q1 Q2 Q3

]T
gn. (A.6)
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B
Orientation Dynamics

The expression (4.10) can be integrated in order to obtain the orientation at time
step t+ T , with the assumption that the angular velocity is constant in the interval
(t, t+ T )[37]. The result is then the following expression,

qt+1 = qt ⊗ exp
(T

2 ωt
)
. (B.1)

This expression is going to be derived and approximated next. The continuous
orientation change is described by equation (4.10) or on matrix form by (4.11). In
order to discretize the model we assume that t ∈ (tk−1, tk] and thus starts with (B.2),

q̇(t) = 1
2S(ωt)q(t) = Aq(t). (B.2)

The solution to this equation is a non-linear function, meaning that in general we
have no analytical solution to the filtering equations given above. However, we can
construct an approximate solution that is linear. By multiplying the expression with
exp(−At) and moving equality one can simplify the expression using the chain rule
in reverse,

exp (−At)q̇(t)− exp (−At)Aq(t) = 0 ⇒ d

dt
exp (−At)q(t) = 0, (B.3)

and when integrating the expression one gets,∫ t+T

t

d

dt
exp (−At)q(t)dt =

[
exp

(
− A(τ)

)
q(τ)

]τ=t+T

τ=t

= exp
(
− A(t+ T )

)
q(t+ T )− exp (−At)q(t) = 0.

(B.4)

By multiplication of exp(At) and rearranging the terms along with first order Taylor
expansion, we get the following expression,

q(t+ T ) = exp (AT )q(t) ≈ (I + AT )q(t). (B.5)
We now have a discrete approximated linear model. Measurements k = 1, ..., N from
the gyro is assumed to be obtained every T time step, which means that t+ T = k
and t = k − 1. It has previously been discussed that the measurements from the
gyroscope contains process noise ν. At step k the gyro signal therefore consists of
ωk + νk. Inserting this into (B.5) gives,

qk =
[
I + AT

]
qk−1 =

[
I + T

2 S(ωk−1 + νk−1)
]
qk−1

=
[
I + T

2 S(ωk−1)
]
qk−1 + T

2 S̄(qk−1)νk−1,

(B.6)

where the last equality is obtained from (4.11).

III
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