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Modeling and simulation of creep in a thermal energy storage unit
ALEXANDER LINDVALL
Department of Industrial and Materials Science
Chalmers University of Technology

Abstract
Azelio is developing a solution for storing renewable energy in the form of a Thermal
Energy Storage (TES) unit. The TES unit, which holds an aluminium alloy, is made
out of the heat-resistant austenitic steel alloy 253MA. Due to the high temperatures
and the weight of the aluminium, it is of interest to evaluate the creep strains that
develop in the TES unit over the 25 year service life.

A creep model is constructed using primary creep data from 316LN steel and three
steady-state deformation mechanisms that describe the strain-generating movement
of defects throughout the crystal lattice. Some model parameter values are taken
from austenitic steel alloys, while some parameter values are obtained from fitting
to 253MA secondary creep rate data.

A limited validation of the creep model is performed, and the model is implemented
in ANSYS through a custom creep subroutine. Creep is simulated in the TES unit
over 25 years at the operational temperature of ~600 ◦C. The analysis results show
substantial stress relaxations, and that the largest creep strains develop in the sus-
pension blade welds.

The limited validation of the creep model against 1% creep strength data gave strain
values in the vicinity of the ideal values. However, some model parameter values
from other alloys are used, whose values may not apply to 253MA. The deformation
mechanism models are simplistic, and may not accurately reflect reality. In order to
gain a better understanding of creep in 253MA, and to properly calibrate the creep
model, more experimental data on 253MA is required.

Keywords: 253MA, Austenitic stainless steel, Thermal Energy Storage, Creep, Dif-
fusion creep, Dislocation creep, Deformation mechanism.
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1
Introduction

This introductory chapter gives a brief overview of the contents of this thesis. The
motivation behind the thesis is given, as well as a short introduction to the creep
phenomenon. The aim and limitations of the work are also defined.

1.1 Background
Azelio is a Swedish company headquartered in Gothenburg which is developing a
Stirling engine system for electricity production. The system includes a thermal
energy storage unit which heats the Stirling engine working fluid. Such a system
may for example be used to provide electricity at night using the stored energy
generated by a solar power system during the day.

Figure 1.1: Illustration of thermal energy storage units mounted in a container.
Source: [1]

The thermal energy storage (TES) unit (see Figure 1.1) is a pressurized steel tank
which contains a phase change material (PCM). The steel used is 253MA, an
austenitic stainless steel with heat-resistant properties. During operation, the PCM,
an aluminium alloy, is heated to circa 600 ◦C by the circulation of hot liquid sodium
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1. Introduction

around the bottom of the tank. This because the PCM stores and releases energy
by solidifying and melting at the phase change temperature. The service life of
the system is 25 years, or 219 000 hours. The tank will thus be subjected to high
temperatures, the weight of the PCM and pressurization over a long time period.

Creep is a phenomenon where inelastic deformation occurs over time in a material
when it is continually subjected to stress. Creep occurs below the yield strength and
becomes more severe with higher temperatures and stresses. Given long exposure
to stress, a component may fail due to creep rupture. At 600 ◦C, the creep rupture
strength for 253MA falls below the yield strength for operational times over 10 000
hours [2]. Some analyses have been performed on the tank where the risk of creep
rupture has been investigated, but none where actual creep strains have been calcu-
lated. A creep model is therefore pertinent in order to evaluate the creep behaviour
in the tank over the service life.

Figure 1.2: A creep curve showing the three stages of creep. Source: Adapted
from [3]

The creep behaviour of a material can be represented by creep curves, see Figure 1.2.
Creep curves describe the strain as a function of time and are obtained by uniaxial
tensile tests at constant stress and temperature. Creep in metals and alloys can
typically be divided into three stages [4]. An applied load gives an instantaneous
strain and the beginning of primary creep (Stage I). During primary creep, the
initially high strain rate decreases and approaches a constant value. Secondary
creep (Stage II) follows, where the strain rate is constant. The strain rate during
this stage is called the minimum creep rate. Eventually, the strain rate increases
due to accumulated damage and necking of the test specimen. This is the tertiary
stage (Stage III) of creep which eventually leads to creep rupture [5]. A good creep
model should accurately reproduce the strain versus time behaviour seen in the creep
curves.
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1. Introduction

1.2 Aim and outline
The aim of the thesis work is to model the creep behaviour of 253MA and perform a
creep analysis of the TES unit using ANSYS Mechanical APDL (ANSYS Parametric
Design Language). In order to fulfill the aim of the thesis, a literature review is
performed concerning the properties of austenitic stainless steels, creep models and
creep mechanisms. In the thesis the following sections are presented:

• An overview of creep modeling.

• The properties of austenitic steels and 253MA.

• The physical mechanisms of creep in austenitic steel at high temperatures.

• Modeling of such mechanisms.

• Fitting of model parameters and implementation in ANSYS.

• Results and discussion.

1.3 Limitations
The tertiary creep stage and creep rupture will not be modeled as it is deemed out
of scope for the thesis.
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2
Theory

This chapter presents the theoretical concepts used to build the creep model. Some
fundamental concepts of creep modeling are introduced, as well as the physical
phenomena behind creep deformation. Some relevant properties of austenitic steels
and 253MA are described. Finally, the physical mechanisms of high-temperature
creep and a set of models that describe these mechanisms are presented.

2.1 Overview of creep modeling
This section presents some fundamental concepts of creep modeling. The stress-
and temperature dependence of creep is presented, as well as the forming of the full
creep curve by summing of the separate creep stages. The concept of physical creep
modeling is also introduced.

2.1.1 Stress and temperature dependence
Creep models express the creep strain rate as a function of the applied stress. This
relationship is often non-linear, and can be represented as

ε̇ ∝ σn (2.1)

where n is a positive constant. If the model should cover a range of temperatures,
the temperature dependence can be described by an Arrhenius term:

ε̇ ∝ exp
(
− Q

RT

)
(2.2)

where Q is an activation energy, R is the ideal gas constant, and T is the temperature
in Kelvin. In chemistry, the Arrhenius term describes the temperature dependence
of chemical reaction rates. It is used in creep modeling to model the strain rate
variation with temperature. The relations (2.1) and (2.2) can be used to form a
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2. Theory

stress- and temperature-dependent expression for the creep strain rate. One of the
most common creep models is the Norton creep law [6]:

ε̇ = A

(
σ

σ0

)n
exp

(
− Q

RT

)
(2.3)

where A and σ0 are constants. The constant σ0 is inserted to simplify the dimension
of A, and may simply be set to 1 Pa. For a given set of strain data obtained at
different stress levels and temperatures, A, n and Q can be estimated using the
least-squares method.

2.1.2 Primary and secondary creep
The deceleration of the strain rate during primary creep is caused by work hardening
of the material as it deforms over time. This can be modeled by introducing a time
variable t to the creep expression [7]:

ε̇p = A

(
σ

σ0

)n(
t

t0

)m
exp

(
− Q

RT

)
(2.4)

where −1 < m < 0, and t0 is a constant that may be set to 1 s. Thus, as t
increases, Equation (2.4) will approach zero. Equation (2.4) is known as time-
hardening primary creep.

As mentioned in Section 1.1, the secondary creep rate is constant with respect to
time. Equation (2.3) is an example of a secondary creep equation. Most creep
models found in the literature describe secondary creep, as it is often of greater
interest than primary or tertiary creep [8]. For example, the majority of creep
deformation in long-life applications such as power station components occurs in
the secondary stage [9]. In order to obtain the total creep strain εcr at time t,
the primary and secondary strain rate contributions ε̇p and ε̇s are integrated with
respect to time and summed:

εcr =
∫ t

0
ε̇p dt+ ε̇st (2.5)

2.1.3 Empirical and physical modeling
After fitting the unknown constants in a creep expression like Equation (2.3) to a
data set, an empirical model is obtained. The constants simply describe a math-
ematical curve and are not grounded in any physical phenomena. Without any
physical foundation, creep prediction may be poor when the model is extrapolated
outside of the fitting range [10].
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2. Theory

Crystalline solids such as metals contain microscopic defects, or interruptions in the
regular crystal lattice structure. When a load is applied, strain is generated by their
movement through the crystal lattice. Physical creep models describe the creep
strain rate as a function of the movement and interactions of these defects.

2.2 Crystal defects
This section presents some types of defects that are present in crystal lattices. In
this section, defects are presented according to their dimension; point, linear, planar
or bulk.

2.2.1 Point defects

Figure 2.1: Illustration of vacancies and interstitial defects in an atomic plane.
Source: [11]

Point defects are the size of a single atom. They can take the form of vacancies,
where an atom is missing from a lattice site. Other forms of point defects are
substitutional and interstitial defects. In a substitutional defect, a “host” atom has
been replaced by a foreign atom. In an interstitial defect, a foreign atom is present
in the space between lattice sites. These defects are introduced deliberately in solid
solution hardened alloys, where they improve the strength of the material.

2.2.2 Linear defects
Linear defects in crystals are called dislocations. The edge dislocation is an idealized
form of a dislocation. An edge dislocation can be visualised by an extra half-plane
of atoms that abruptly ends in the middle of the lattice, see Figure 2.2. The disloca-
tion line runs along the edge of this half-plane. The symbol ⊥ is used to represent a
dislocation, where the vertical line represents the extra atomic plane, and the hori-
zontal line represents the dislocation slip plane. Dislocations are a major contributor
to creep deformation as they can glide along the slip plane. When a shear stress
is applied, the dislocation line can travel by the breaking and rebonding of atomic
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2. Theory

bonds at the edge of the half-plane. This process can repeat until the dislocation
reaches the crystal surface [12].

Figure 2.2: An edge dislocation moving through a lattice by gliding on a slip
plane. Source: [13]

Figure 2.3: The lattice distortion caused by a dislocation. Source: [12]

The magnitude and direction of the lattice distortion caused by an edge dislocation
is given by the Burgers vector. The Burgers vector can be obtained by drawing a
closed atom-to-atom path MNOPQ around the dislocation, see Figure 2.3. In the
right image, the same path is drawn with the dislocation removed. The closure
failure QM gives the lattice distortion caused by the dislocation, and is thus the
Burgers vector. As can be seen, the Burgers vector direction is parallel with the slip
plane for edge dislocations.

2.2.3 Planar defects
In metals, the orientations of the microstructural grains are random. This creates
lattice discontinuities where the grains meet, see Figure 2.4. These grain boundaries
are a few atomic diameters thick, but can be classified as planar defects.

2.2.4 Bulk defects
Three-dimensional defects in crystals are called bulk defects. An example of bulk de-
fects is precipitates, which are solid impurities in the crystal lattice. Some alloys are
precipitation hardened by an aging treatment, where particles precipitate through-
out the microstructure when heat is applied. These particles increase the strength
of the material as they impede the movement of other defects such as dislocations.
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2. Theory

Figure 2.4: Boundaries between grains of different lattice orientation. Source:
[11]

2.3 Austenitic stainless steels and 253MA
Austenitic steels are characterized by their austenitic, or face-centered cubic (FCC)
crystal structure. Normally, the FCC phase of iron is stable only at temperatures
above 723 ◦C in plain-carbon steels [11]. But through the addition of austenite
stabilizers such as nickel and manganese, the FCC structure becomes stable at room
temperature. The most widely used sub-group of austenitic stainless steels is the
300-series, which achieve the austenite structure by nickel alloying. In addition to
stabilizing the austenite, nickel provides corrosion resistance and increased creep
strength at high temperatures [14].

During the 20th century, highly alloyed austenitic steels were developed to meet
the demands for use in more efficient power plants. These steels are typically high-
chromium, high-nickel and low-carbon, and exhibit high creep strength and oxida-
tion resistance at temperatures around 600 ◦C. The low carbon content minimizes
the formation of chromium carbide precipitates at high temperatures, which could
cause intergranular corrosion by chromium depletion [14].

Table 2.1: The chemical composition in wt. % of two 300-series austenitic steels
and 253MA. Source: [2], [15]

Type C Mn Si Cr Ni Mo N Other
316 ≤0.08 ≤2.0 ≤1.0 16-18 10-14 2.0-3.0 - -
316LN ≤0.08 ≤2.0 ≤1.0 16-18 10-14 2.0-3.0 0.10-0.16 -
253MA 0.08 ≤0.8 1.6 21 11 - 0.17 Ce 0.05

The steel used by Azelio in the TES unit is 253MA, a low-C, high Cr-Ni austenitic
stainless steel that is also alloyed with nitrogen. Nitrogen has been shown to improve
creep strength in austenitic steel [14]. 253MA also contains silicon and cerium.
They act as deoxidizers, reducing the amount of inclusions and thus increasing the
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2. Theory

strength of the steel [16]. The chemical composition of 253MA and some other
300-series steels can be seen in Table 2.1.

Figure 2.5: The octahedral void in the FCC unit cell. Source: [11]

An FCC unit cell can be seen in Figure 2.5. In 253MA, the atoms of alloying
elements are placed in the FCC lattice sites, with the exception for carbon and
nitrogen. They are interstitial solutes as their diameter is small enough to fit into
the octahedral void in the FCC cell [17]. 253MA is thus a solid solution hardened
alloy.

2.4 Deformation mechanisms
The mechanisms that drive creep are presented in this section. The deformation
map is also presented, by which the creep mechanisms present in a material can be
identified for a range of stresses and temperatures.

2.4.1 Mechanisms of creep
Creep mechanisms can roughly be divided into two groups: diffusion creep and
dislocation creep. Diffusion creep is dominant at lower stresses, and is caused by
the stress-activated movement of vacancies. The stress dependence (see Equation
(2.1)) is usually low with the stress exponent n ≈ 1. Dislocation creep is caused by
the movement of dislocations through the lattice. Dislocation creep is dominant at
higher stresses, and has a higher stress dependency with 3 < n < 7 or higher [6].

2.4.2 Deformation maps
A deformation map for 316 austenitic stainless steel can be seen in Figure 2.6.
The lower x-axis shows the temperature as a fraction of the melting temperature
T/TM and the left y-axis shows the applied shear stress normalized with the shear
modulus. The creep strain rate contours are drawn for above T/TM ≈ 0.4. In
the area marked diffusional flow where the stresses are low, the strain rate stress
dependence is roughly linear. With higher stresses, the power-law creep domain
is entered (n > 1). It can be deduced that both diffusional and dislocation creep
is present in austenitic steel. With an operational temperature of 600 ◦C, T/TM

10



2. Theory

Figure 2.6: A deformation map of 316 steel, showing the strain rate at different
stresses and temperatures. Source: [18]

is approximately 0.5 for the TES unit. At this temperature, both diffusion and
dislocation creep take place over the stress range. Modeling of both mechanisms is
thus required.

2.5 Diffusion creep
During diffusion creep, vacancies are transported through the material by changing
places with neighboring atoms in the lattice. The rate at which an atom diffuses
through a material can be described by a diffusion constant D:

D = D0 exp
(
− Q

RT

)
(2.6)

where D0 is a diffusion constant prefactor, and Q is the activation energy for diffu-
sion. Different diffusion constants are used based on how the atoms diffuse through
the material.

11



2. Theory

There are two main models that describe diffusion creep in metals. These are the
Nabarro-Herring and Coble models [6]. Both models treat the diffusion of atoms
through a single crystal, or grain. In the Nabarro-Herring model, atoms diffuse
through the ordered crystal lattice in the interior of the grain. In the Coble model,
the atoms instead diffuse through the grain boundaries. It has been found that the
activation energy for grain boundary diffusion is lower than the activation energy
for lattice diffusion in stainless steels [18]. This suggests that Coble creep is the
dominant diffusive mechanism in stainless steel at lower temperatures.

2.5.1 The Coble model
The Coble model [19] is based on the proposal that the equilibrium vacancy con-
centration in a crystal increases with the applied stress:

∆C = C0σΩ
kT

(2.7)

where C0 is the vacancy concentration in the stress-free crystal at temperature T , σ
is the applied stress, Ω is the atomic volume, and k is the Boltzmann constant. The
stress expands the lattice on boundaries perpendicular to the stress axis. For an
idealized spherical grain where the stress direction defines a polar axis, the increase
in vacancy concentration occurs at the poles. The difference in concentration drives
the diffusion of vacancies from the poles to the equator of the grain, where they
annihilate. The poles can thus be seen as a vacancy source, and the equator as a
vacancy sink. The following assumptions are now made:

• The generation and annihilation rates are equal.

• The vacancy sink and source areas are equal.

The boundary between equal areas on a half-sphere lies 60◦ below the pole, see figure
2.7. The average concentration gradient between the pole and the equator is

(C0 + ∆C)− C0

(2πr)/4 = ∆C
πr/2 (2.8)

where r is the grain radius. If secondary creep is assumed, the diffusion rate across
the 60◦ boundary is constant and can thus be given by Fick’s first law:

J = −Ddϕ
dx

(2.9)

where J is the diffusion flux per unit area and second, D is a diffusion constant and
dϕ/dx is the concentration gradient. The flux per second through the 60◦ boundary
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Figure 2.7: Coble model: Vacancies flow from the poles to the equator of a
spherical grain under load.

can thus be written as

J = DN

(
∆C
πr/2

)
W2πr sin 60◦ (2.10)

where N is a proportionality constant that relates the maximum concentration gra-
dient at the 60◦ boundary to the average gradient, and W2πr sin 60◦ is the cross-
sectional boundary area, with W being the grain boundary width. With the as-
sumptions listed above, the flux increases linearly with area away from the pole:

dJ = B dA = B2πr2 sin θ dθ (2.11)

and

Jθ = B2πr2(1− cos θ) (2.12)

for 0◦ ≤ θ ≤ 60◦. B is the rate of vacancy generation per unit area. For 60◦ ≤ θ ≤
90◦ we have

Jθ = B2πr2 cos θ (2.13)

13



2. Theory

Using Equation (2.9), (2.12), (2.13) and the expression for the boundary area, the
surface concentration gradient can be written as:

1
r

dC

dθ
= B2πr2(1− cos θ)

DW2πr sin θ (2.14)

for 0◦ ≤ θ ≤ 60◦, and

1
r

dC

dθ
= B2πr2 cos θ
DW2πr sin θ (2.15)

for 60◦ ≤ θ ≤ 90◦. The average gradient is

∆C
πr/2 = Br

DWπ/2

(∫ 60◦

0◦

(1− cos θ)
sin θ dθ +

∫ 90◦

60◦

cos θ
sin θ dθ

)
(2.16)

and the maximum gradient is

(
1
r

dC

dθ

)∣∣∣∣∣
θ=60◦

(2.17)

Dividing the maximum gradient by the average gradient gives N = 2.15. Inserting
this into Equation (2.10), the vacancy flux over the 60◦ boundary is obtained:

J = 7.4DW∆C (2.18)

At a pole, the vacancies diffuse from a uniform source of area πr2. The volume
change is thus

JΩ = πr2dr

dt
(2.19)

The strain rate is

ε̇ = 1
r

dr

dt
= JΩ
πr3 = 7.4DW∆CΩ

πr3 (2.20)

Substituting ∆C with Equation (2.7), the strain rate becomes a function of the
applied stress. Coble adds a stress relaxation factor of 5/2, giving the final expression
for Coble creep as
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2. Theory

ε̇ = 148σWΩ
d3kT

DGB (2.21)

where d is the grain diameter and DGB is the grain boundary diffusion coefficient:

DGB = D0,GB exp
(
− QGB

RT

)
(2.22)

where D0,GB is a prefactor and QGB is the activation energy for boundary diffusion.

2.6 Dislocation creep

Figure 2.8: A blocked dislocation climbing over an obstacle. Source: [20]

At higher stresses, creep in steel is dominated by dislocation movement. Dislocation
creep can be divided into two mechanisms: climb and glide. As a dislocation moves
along the slip plane, it encounters other defects that act as obstacles. Depending on
the stress level, the dislocation can pass the obstacle in two ways. At intermediate
stresses, the dislocation is stopped by the obstacle. In order to pass the obstacle,
the dislocation can then climb in a direction perpendicular to the slip plane [6]
through the diffusion of vacancies, see Figure 2.8. At higher stresses, the dislocation
can glide through obstacles, but experiences a resistance based on the obstacle type
and density [21]. Before presenting models for these mechanisms at the end of this
section, some concepts of dislocation slip and mechanisms of dislocation generation
and annihilation are introduced.

2.6.1 FCC slip
Dislocation slip occurs on slip planes with the highest planar density. The FCC
crystal lattice structure of austenitic steels is made up of close-packed atomic planes
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Figure 2.9: The close-packed atomic planes of the FCC unit cell. Source: [11]

Figure 2.10: The 12 slip systems in the FCC crystal. Source: [22]

stacked in a repeating ABC configuration, see Figure 2.9. Using Miller indices,
the unique close-packed planes correspond to the {111} family, which contains four
planes. In the close-packed planes, slip occurs in the <110> directions, as these
vectors give the shortest atom-to-atom path. This gives a total of 12 combinations
of slip plane and slip direction, or 12 possible slip systems in FCC crystals [23], see
Figure 2.10.

2.6.2 The Taylor factor
The movement of dislocations on a slip plane is driven by the shear stress acting on
the plane. An applied uniaxial stress σ on a crystal is related to the shear stress
component τ on a given slip plane by:

τ = σ cosφ cosλ (2.23)

where φ is the angle between the stress axis and the normal to the slip plane, and
λ is the angle between the stress axis and the slip direction. cosφ cosλ is called the
Schmid factor. In a polycrystalline FCC material there are 12 possible slip planes,
and the grains in the microstructure are randomly oriented. The Taylor factor M
is an averaged inverse Schmid factor for polycrystalline materials that relates σ to
the average plane shear stress τavg:
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Figure 2.11: Slip in a cylindrical crystal. Source: [12]

τavg = σ

M
(2.24)

The Taylor factor takes the value M = 3.06 for FCC materials [24]. Consider an
incremental macroscopic strain dε in a polycrystal generated by an uniaxial stress
σ by the total slip dγ on the slip planes. The virtual work principle gives [25]:

σ dε = τavg dγavg (2.25)

where dγavg is the average plane slip. The average Taylor factor thus also gives a
relation between the average microscopic slip and the macroscopic strain:

M = γavg
ε

(2.26)

2.6.3 The Orowan equation
The Orowan equation is a fundamental equation in dislocation creep modeling that
gives the shear strain rate as a function of dislocation density and dislocation veloc-
ity. Consider a crystal with dimensions hld that contains edge dislocations. When
a shear stress is applied, the dislocations start to glide in the d direction. If a dislo-
cation reaches the edge of the crystal, it contributes one Burgers vector length b to
the total displacement D. The contribution made by a dislocation that moves some
distance xi through the crystal can be taken as the fraction xi/d of b. If the number
of dislocations in the crystal is N , the total displacement is
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Figure 2.12: Edge dislocations in a crystal. Source: [12]

D = b

d

N∑
i=1

xi (2.27)

and the macroscopic shear strain γ is

γ = D

h
= b

hd

N∑
i=1

xi (2.28)

The average distance x̄ moved by one dislocation is

x̄ = 1
N

N∑
i=1

xi (2.29)

and the mobile dislocation density ρm (dislocation line length per volume) is

ρm = Nl

hld
(2.30)

Combining Equation (2.28), (2.29) and (2.30) and taking the time derivative, the
Orowan equation is obtained:
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γ̇ = ρmbv̄ (2.31)

where γ̇ is the shear strain rate and v̄ is the average dislocation velocity [12].

2.6.4 Generation and annihilation

Figure 2.13: The operation of a Frank-Read source under an applied shear stress.
Source: [12]

A dislocation creep model can include sources and sinks to model steady-state creep.
An example of a dislocation generator is a Frank-Read source. A non-ideal disloca-
tion line may be only partly located in its slip plane, see Figure 2.13(a). When a
shear force per unit length τb is applied on the dislocation, the dislocation line will
bow outwards as it is pinned at points A and B. The line will continue to expand
until the two line segments meet (Figure 2.13(e)). The dislocation line splits off
into a dislocation loop that continues to expand in the slip plane, and a dislocation
between A and B that repeats the process.

Due to the extra half-plane, the lattice above and below a dislocation are in com-
pression and tension respectively, see Figure 2.14. The dislocations A and B will
attract each other as their stress fields are polar opposites. The two dislocations can
glide towards each other on the slip planes and join together to form a full atomic
plane, annihilating in the process [12]. This is an example of a dislocation sink.
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Figure 2.14: Two opposite dislocations on parallel slip planes. Source: [12]

2.6.5 The Weertman model
The Weertman model [26] is a creep model based on the generation, movement,
and annihilation of dislocations in an array of parallel slip planes, see Figure 2.15.
The head dislocations on parallel planes separated by a distance d block each other
and start to climb at the length L from the Frank-Read sources. At the end of the
climbing process, they annihilate as shown in Section 2.6.4. As the head dislocation
annihilates, dislocations previously trapped behind the head dislocation can glide
an average length of L/2 before the climb and annihilation process repeats.

Figure 2.15: The dislocation array in the Weertman model. Source: [26]

The Weertman model is based on the Orowan equation (Equation (2.31)). The
average velocity of a dislocation is

v̄ = L/2
tg + tc

(2.32)

where tg is the time it takes for the dislocation to glide over the distance L/2, and
tc is the time it takes for the dislocation to climb over an obstacle. Here, tc � tg.
The time for climb is

tc = d

2vc
(2.33)
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where vc is the climb velocity. Combining Equation (2.32) and (2.33), the average
velocity can be written as

v̄ = L

d
vc (2.34)

Dislocation loops are generated by the Frank-Read sources and expand to a maxi-
mum radius L before climbing. The average loop length is thus 2πL/2 = πL. The
number of climbing dislocation pairs per source is L/(βd) where β is a constant.
Thus, the mobile dislocation density is

ρm = ρFR
L

βd
πL = πρFRL

2

βd
(2.35)

where ρFR is the Frank-Read source density. Looking at the array in Figure 2.15,
the source density in a cylinder with the radius L and height d is unity:

ρFRπL
2d = 1 (2.36)

Inserting (2.36) into (2.35), the dislocation density can be rewritten as

ρm = 1
βd2 (2.37)

Inserting (2.34), (2.36) and (2.37) into the Orowan equation, we obtain

γ̇ = bvc
d3β
√
πρFRd

(2.38)

The driving force for climb in a dislocation pair is the attractive stress σd between the
areas of compression and tension as seen in Section 2.6.4. This is proportional to the
shear modulus and the distortion caused by a dislocation, and inversely proportional
to the distance between the parallel slip planes:

σd ∝
Gb

d
(2.39)

giving d as
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d ∝ Gb

σd
(2.40)

Figure 2.16: A dislocation line in the process of climb. Source: [27]

Dislocation climb is a diffusive process where the dislocation line is shifted by the
diffusion of vacancies, see Figure 2.16. A vacancy diffusing into the edge of the
half-plane creates a jog, which is a dislocation line step outside of the glide plane.
The velocity of a diffusing defect is described by the Einstein mobility relation [28]:

vc = F
D

kT
(2.41)

where F is a force acting on the defect, D is a diffusion coefficient, k is the Boltzmann
constant and T is the temperature. The driving force can be taken as the force acting
on a dislocation jog when a shear stress τ is applied. The force per unit length acting
on a dislocation is τb. If the dislocation jog is of height b, then the force is

F = τb2 (2.42)

Inserting Equation (2.40), (2.41) and (2.42) into (2.38), assuming σd ∝ τ and choos-
ing D as the lattice diffusion coefficient DL, the expression for Weertman creep is
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obtained:

γ̇ = τ 4.5

βkT
√
πbρFRG7DL (2.43)

where

DL = D0,L exp
(
− QL

RT

)
(2.44)

where D0,L is a prefactor and QL is the activation energy for lattice diffusion. Rieth
et al. provides an expression for Weertman creep without the unknown constant β
[29]:

γ̇ = π2τ 4.5

4kT
√
bρFRG7DL (2.45)

2.6.6 The glide model

Figure 2.17: Dislocations gliding through an array of obstacles. Source: [18]

At high stresses, dislocations will start to glide through obstacles, see Figure 2.17.
The passing of an obstacle requires a certain energy which is provided by the applied
stress as well as the thermal vibrations of the crystal atoms [12]. The average velocity
of a dislocation gliding through obstacles can thus be described by an Arrhenius term
[30]:

v̄ = κω exp
(
− ∆G
kT

)
(2.46)

where κ is the distance traveled by the dislocation while passing an obstacle, ω is
the Debye frequency, and ∆G is the activation energy for passing an obstacle. The
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Debye frequency is a characteristic frequency for crystals that describes the vibration
of the crystal atoms. Its value is based on the interatomic spacing and the speed of
sound in the crystal. Inserting (2.46) into the Orowan equation, we get

γ̇ = ρmbκω exp
(
− ∆G
kT

)
(2.47)

Frost and Ashby simplify (2.47) to

γ̇ = γ̇0 exp
(
− ∆G
kT

)
(2.48)

where γ̇0 = 106 1/s to fit with experimental data [18]. ∆G depends on the applied
stress and the obstacle characteristics. A array of uniformly spaced obstacles gives

∆G = ∆F
(

1− τ

τ̂

)
(2.49)

where ∆F is the activation energy required to pass an obstacle with no external
stress applied, τ is the applied shear stress and τ̂ is the obstacle parameter. ∆F and τ̂
take on different values depending on the obstacle strength and the spacing between
the obstacles, see Figure 2.18. ∆F and τ̂ take on higher values when obstacles are
strong, such as in precipitation hardened metals. τ̂ also grows with denser obstacle
arrays, as the obstacle spacing l is in the denominator. Medium strength obstacles
are other dislocations, and low strength obstacles are solute atoms. The crystal
structure thus needs to be considered when applying the model.

Figure 2.18: Values for ∆F and τ̂ (µ is the shear modulus). Source: [18]
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3
Model and simulation setup

This chapter describes the setup of the creep model and ANSYS analysis. The
selection of model constant values and fitting of model parameters is described, as
well as a limited validation against 253MA creep data. The implementation of the
creep model in ANSYS and the ANSYS TES unit analysis setup is described.

3.1 Creep model setup
The full creep model should cover both primary and secondary creep. Therefore,
the time-hardening primary equation (Equation (2.4)) is combined with the con-
tributions from the three creep mechanisms (Equations (2.21), (2.45), and (2.48))
described in the Theory chapter:

ε̇cr = A

(
σ

σ0

)n(
t

t0

)m
exp

(
− Q

RT

)
+ ε̇Coble + ε̇Weertman + ε̇Glide (3.1)

where

ε̇Coble = 148σWΩ
d3kT

DGB (3.2)

ε̇Weertman =
π2τ 4.5

avg

4MkT
√
bρFRG7DL (3.3)

ε̇Glide = 106

M
exp

(
− ∆F
kT

(
1− τavg

τ̂

))
(3.4)

where the average FCC Taylor factor has been applied to the dislocation creep
models to convert from applied stress σ to average slip plane shear stress τavg, and
from average planar shear strain rate γ̇avg to macroscopic strain rate ε̇.
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3.1.1 Constant values
The values chosen for the model constants will now be presented, beginning with
secondary creep. The shear modulus G is calculated as

G = E

2(1 + ν) (3.5)

where E is the Young’s modulus and ν is the Poisson’s ratio. The temperature-
dependent Young’s modulus is taken from the Sandvik 253MA datasheet [2], and
the Poisson’s ratio is assumed to be ν = 0.3. As slip occurs in the close-packed
planes in FCC crystals, the Burgers vector b is taken as twice the radius 140 pm of
an Fe atom [31]. The atomic volume Ω is taken as the volume of a sphere with the
radius of an Fe atom.

Rolled Alloys gives the grain size range ASTM3-6 for 253MA [32], which corresponds
to between 45 and 127 µm. The average of this range, 86 µm, is taken as the grain
size d. The grain boundary widthW is assumed to be 1 nm. The Frank-Read source
density ρFR is taken as 100/µm2, which is a typical value found in the dislocation
dynamics literature [33].

Diffusion constant values for 253MA have not been found in the literature. There-
fore, constant values that have been found for similar austenitic steel alloys are used
(see Table 2.1). The boundary diffusion prefactor is given for 316LN by Rieth et al.
as D0,GB = 6.0·10−6 m2/s. An experiment by Sritharan on a 316 steel with the grain
size 9 µm gave an approximate value for the strain rate change with applied stress
dε̇/dσ at 600 ◦C for stresses below 10 MPa [34]. Assuming that 316 and 253MA have
the same shear modulus at 600 ◦C, and that Coble creep is the dominant mechanism
at these stresses (ε̇Coble � ε̇Weertman and ε̇Coble � ε̇glide), a value for the boundary
diffusion activation energy QGB = 189 kJ/mol is obtained.

The lattice diffusion prefactor D0,L and the glide model activation energy term ∆F
is given by Frost and Ashby for 316 steel as 3.7 · 10−5 m2/s and 0.5Gb3 respectively.
In accordance with Figure 2.18, τ̂ is then chosen as Gb/l. This leaves the lattice
diffusion activation energy QL in the Weertman model and the obstacle distance l
in the glide model to be fitted to experimental secondary creep data.

Sandvik provides the secondary creep rate for 253MA at 600 ◦C for stresses above
roughly 120 MPa. Secondary creep data for 316LN at 600 ◦C from Rieth et al. shows
that the stress exponent is roughly 4 in the 60-100 MPa range, which suggests that
dislocation climb is a dominant creep mechanism for austenitic stainless steels in
this range. The fitting range is thus chosen as 60 to 140 MPa, where 140 MPa is
the yield strength for 253MA at 600 ◦C [2]. The 253MA data is extrapolated down
to 60 MPa, and the fitting is done using the MATLAB function nlinfit, giving
QL = 322 kJ/mole and l = 125 nm. The fitted secondary creep model can be seen
in Figure 3.1.
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Figure 3.1: The secondary creep model at 600 ◦C and 700 ◦C versus Sandvik
253MA data.

Figure 3.2: The fitted primary creep vs. experimental 316LN data.
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Primary creep data for 253MA has not been found in the literature. However, Rieth
et al. provide full creep curve data for 316LN at various temperatures and stresses.
Equation (2.5) is globally fitted to a set of primary stage curves obtained between 60
MPa and 120 MPa as shown in Figure 3.2 using the time-hardening primary creep
equation (σ0 = 1 Pa, t0 = 1 s) and the secondary creep rate values determined by
Rieth et al. This gives the optimal parameter values A = 1.375·10−23 1/s, n = 4.006,
m = −0.580 and Q/R = 31107. The constants used in the creep model and their
values are presented in list format in Table 3.1.

Table 3.1: The constants used in the creep model.

Constant Value Description
A 1.375 · 10−23 1/s Primary creep constant
n 4.006 Primary creep stress exponent
m -0.580 Primary creep time exponent
Q/R 31107 Primary creep constant
W 1 nm Grain boundary width
Ω 1.149 · 10−29 m3 Fe atomic volume
d 86 µm Grain diameter
D0,GB 6.0 · 10−6 m2/s Boundary diffusion constant prefactor
QGB 189 kJ/mole Boundary diffusion activation energy
M 3.06 Average Taylor factor for FCC polycrystallines
b 280 pm Burgers vector magnitude
ρFR 100/µm2 Frank-Read source density
D0,L 3.7 · 10−5 m2/s Lattice diffusion constant prefactor
QL 322 kJ/mole Lattice diffusion activation energy
l 125 nm Obstacle distance

3.1.2 ANSYS creep subroutine
In order to implement the creep model in ANSYS, a Fortran subroutine Usercreep
is written, compiled and linked to ANSYS. Usercreep uses the custom creep sub-
routine template provided by ANSYS, where the creep model is extended to three
dimensions by using a calculated equivalent stress to calculate an equivalent creep
strain. The procedure ANSYS uses [35] for calculating the creep strain in an inte-
gration point will now be presented.

A modified total strain (also denoted elastic strain) tensor for the current timestep
n is computed:

ε′n = εn − εpln − εthn − εcrn−1 (3.6)

where the plastic and thermal contributions of the current timestep and the creep
contribution of the previous timestep are subtracted from the total strain. An
equivalent modified total strain is defined as:
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εet = 1√
2(1 + ν)

[
(ε′x − ε′y)2 + (ε′y − ε′z)2 + (ε′z − ε′x)2

+3
2(γ′xy)2 + 3

2(γ′yz)2 + 3
2(γ′zx)2

]1/2 (3.7)

An equivalent von Mises stress σe is obtained as:

σe = Eεet (3.8)

An equivalent creep strain increment ∆εcr is now calculated by Usercreep by in-
tegrating the creep expression over the current time increment using σe in place
of σ. The Usercreep code can be found in Appendix A.1. A creep ratio Cs (a
measurement of creep strain increment) is now calculated for the integration point:

Cs = ∆εcr
εet

(3.9)

and the scalar equivalent creep strain increment is converted to a tensor:

∆εcrx = Cs
(2ε′x − ε′y − ε′z)

2(1 + ν) (3.10)

∆εcry = Cs
(2ε′y − ε′z − ε′x)

2(1 + ν) (3.11)

∆εcrz = −∆εcrx −∆εcry (3.12)

∆εcrxy = Cs
3

2(1 + ν)γ
′
xy (3.13)

∆εcryz = Cs
3

2(1 + ν)γ
′
yz (3.14)

∆εcrxz = Cs
3

2(1 + ν)γ
′
xz (3.15)

The total creep strains for the current timestep can now be calculated (only showing
the x-component here):
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(εcrx )n = (εcrx )n−1 + ∆εcrx (3.16)

3.1.3 Verification and validation

Figure 3.3: 1% creep strength data for 253MA. Source: [2]

As full experimental creep curves for 253MA are not available, the model can not be
properly validated. For a limited validation, the MATLAB creep model is compared
to 1% creep data given in the Sandvik 253MA data sheet, see Figure 3.3, where for
some given temperature, the stresses that generate a 1% creep strain after 10 000
h and 100 000 h respectively are given. A comparison is made with the 600 ◦C and
625 ◦C data, see Table 3.2.

Figure 3.4: The virtual tensile test specimen.

In order to verify Usercreep, a tensile test specimen is modeled in Mechanical
APDL, see Figure 3.4. A rectangular bar is meshed with 10 elements in the z-
direction. The nodes in one end are fixed, and a tensile force is applied on a massless
node connected to the four nodes on the other end by rigid links. This prevents
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boundary effects that would otherwise occur if applying the force directly on the
end nodes, thus giving a more accurate strain measurement. Usercreep was tested
using the virtual tensile test with the 1% creep strength data as input, and was
found to give the same output as the MATLAB model, see Table 3.2.

Table 3.2: Resulting creep strains from the 1% creep strength comparison.

MATLAB model Tensile test
with Usercreep

600 ◦C,
117 MPa,
10 000 h

1.060% 1.060%

600 ◦C,
70 MPa,
100 000 h

0.822% 0.822%

625 ◦C,
93 MPa,
10 000 h

1.256% 1.256%

625 ◦C,
55 MPa,
100 000 h

0.971% 0.971%

3.1.4 Norton model

Figure 3.5: A comparison of the main model secondary creep rates and the fitted
Norton model.

For comparison purposes, the Norton secondary creep model is implemented in a
separate TES unit analysis. Equation (2.3) with σ0 = 1 Pa is fitted to the 600 ◦C and
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625 ◦C 1% creep strength data points by logarithmizing the equation and performing
a linear regression. The following constants are obtained: A = 8.973 · 10−30, n =
4.432, and Q/R = 32711. The secondary creep strain rates of the main model
(Equation (3.1)) and the fitted Norton model at 600 ◦C are plotted together in
Figure 3.5. The Norton model is available as a predefined creep function in ANSYS.
A custom ANSYS subroutine is thus not required for implementation.

3.2 TES unit analysis setup
The TES unit model includes the 253MA tank suspended from a fixed octagonal
frame by four suspension blades. A cross-section of the tank can be seen in Figure
3.6. The interior of the tank holds the PCM material. Hot liquid sodium that
melts the PCM circulates in a bottom compartment. This bottom compartment
along with a pump & heater system on the side of the tank is called the Charge
system. The stored energy in the PCM heats the liquid sodium in the Discharge
compartment that in turn heats the Stirling engine working gas. A bottom view
of the tank showing the suspension blades and the Charge surface temperature
distribution can be seen in Figure 3.7.

Figure 3.6: Cross-section of the tank at operational temperature (scale in
Kelvin). 1. PCM. 2. Charge. 3. Discharge.

The TES unit model contains contact conditions on the suspension blades and a
support bracket for the Charge system. The ANSYS option for nonlinear analysis
NLGEOM is therefore enabled. The analysis consists of several steps. Initially,
temperatures from CFD analysis are mapped onto the tank surfaces to simulate
operational conditions. In the first load step, a thermal analysis is performed, solving
for the thermal expansion.
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Figure 3.7: A bottom view of the tank at operational temperature. The Charge
inlet and outlet and the pump system can be seen in the bottom right.
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In the second step, a pressure of 0.1 bar above ambient pressure is applied in the
PCM, Charge and Discharge compartments, and the weight of the PCM and the
liquid sodium is applied as hydrostatic pressures on the inside surfaces of the tank.
The PCM, Charge and Discharge systems contain nitrogen which is inert. They are
kept above ambient pressure in order to prevent air from leaking into the system
and reacting with the contents. The elastic strains are now solved for.

In the third step, the plastic strains are solved for, using multilinear isotropic hard-
ening with yield stress values taken from the Sandvik data sheet [2]. For example, at
600 ◦C the yield strength is 140 MPa at 0% plastic strain, 165 MPa at 0.8% plastic
strain, and 340 MPa at 40% plastic strain, where 340 MPa is the ultimate tensile
strength at 600 ◦C and 40% is the elongation at failure. ANSYS linearly interpolates
the yield stress values between temperature levels. A sequence of timesteps follows
where creep is enabled and the equivalent creep strains are solved for over the 25
year service life.

As the tank starts to creep, the added strains in the tank will cause stresses to relax.
In order to obtain an accurate solution with resolved stress relaxation while saving
computational resources, the load step size successively increases according to Table
3.3.

Table 3.3: The load steps of the ANSYS TES unit analysis.

Load step Time
1. Thermal instant
2. Elastic instant
3. Plastic instant
4. Creep 100 h
5. Creep 250 h
6. Creep 500 h
7. Creep 1 000 h
8. Creep 2 500 h
9. Creep 5 000 h
10. Creep 10 000 h
11. Creep 25 000 h
12. Creep 50 000 h
13. Creep 100 000 h
14. Creep 150 000 h
15. Creep 219 000 h
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Results and Discussion

In this chapter, the results of the ANSYS creep analysis are presented. The model
setup and the results are then discussed.

4.1 Analysis results
In order to visualise the results, a set of nodes are chosen for which the von Mises
stress and creep strain history is plotted. These are a selection of nodes located
in areas that experience the highest stresses and temperatures, and thus develop
the largest creep strains. Looking at the results from the plastic analysis, some
points of interest can be identified, see Figure 4.1. Four of these are welds or in
close proximity to a weld, one is located in the Charge inlet and one is located on
the upper rim of Discharge. Their stress and strain histories are plotted in Figures
4.2-4.7, and their initial and final stress values are given in Tables 4.1 and 4.2.

Figure 4.1: Points of interests: (1) Charge inlet suspension weld. (2) Area below
Charge inlet suspension weld. (3) Charge-Discharge weld. (4) Upper rim of

Discharge. (5) Charge inlet. (6) Charge outlet suspension weld. Scale shows σvM .
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Figure 4.2: The stress and creep strain history in the suspension weld near the
Charge inlet.

Figure 4.3: The stress and creep strain history in the area below the Charge inlet
suspension weld.

36



4. Results and Discussion

Figure 4.4: The stress and creep strain history in the Charge-Discharge weld.

Figure 4.5: The stress and creep strain history at the upper rim of Discharge.
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Figure 4.6: The stress and creep strain history in the Charge inlet.

Figure 4.7: The stress and creep strain history in the suspension weld near the
Charge outlet.
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Table 4.1: Usercreep: Temperatures, initial and ending von Mises stress values,
and final von Mises creep strains for the points of interest.

Point of interest T [◦C] σvM,init [MPa] σvM,end [MPa] εcrvM,end

1 618 136.3 46.4 1.11%
2 614 89.5 37.0 0.42%
3 609 29.9 37.9 0.24%
4 577 46.7 24.6 0.02%
5 620 109.5 37.4 0.50%
6 600 134.8 52.2 0.75%

Table 4.2: Norton model: Temperatures, initial and ending von Mises stress
values, and final von Mises creep strains for the points of interest.

Point of interest T [◦C] σvM,init [MPa] σvM,end [MPa] εcrvM,end

1 618 136.3 44.8 1.10%
2 614 89.5 35.7 0.41%
3 609 29.9 36.8 0.25%
4 577 46.7 25.4 0.02%
5 620 109.5 36.2 0.48%
6 600 134.8 49.2 0.77%

4.1.1 Discussion of the analysis

The highest creep strain 1.11% after 25 years (from the Usercreep analysis) is
found in the suspension weld near the hot Charge inlet. Overall, the resulting creep
strains from the two different models are very similar. What is noticable in the
history figures is the stress relaxation that occurs due to the generated creep strain.
At time zero, the stresses in the sampled suspension weld nodes are close to the
600 ◦C yield limit, but rapidly decrease over the first timesteps. After around 10
000 hours, the stresses in both welds are in the 60-70 MPa range. This drastically
lowers the creep strain rate from an initially high value. Looking at the higher stress
primary creep curves in Figure 3.2, one can see that the high stress primary creep
contribution is cut short by the stress relaxation. It should be noted that the tank
FE model is a global model where e.g. the welds are not modeled in detail. This
may affect the accuracy of the results. In order to properly resolve the stresses and
creep strains in these areas, further analyses should be performed using submodels
with finer meshes.

Figure 4.8 shows areas of up to 0.1% plastic von Mises strain around one of the
suspension welds. Due to the hardening rule used in the model, stresses in this
region that drive creep may rise above the 600 ◦C yield limit. Due to the small size
of the plastic strains and the substantial stress relaxation that quickly happens in
the welds during creep, this is deemed to have a negligible effect on the total creep
strain over the service life.
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Figure 4.8: von Mises plastic strains around the Charge outlet suspension weld
seen after the plastic load step.

4.1.2 Discussion of the creep models
Usercreep and the Norton model gave very similar results in the TES unit analysis.
Looking at Figure 3.5, the secondary creep rates at 600 ◦C are similar in most of
the stress range. The exception is for stresses below roughly 25 MPa, where the
Coble model predicts higher strain rates than the fitted Norton model. These strain
rates are however not of great practical interest, as generating a creep strain on the
order of 1% in this stress range would take hundreds or thousands of years. In an
application such as the TES unit where stresses are able to relax, the primary creep
stage will not play as much of a role compared to a situation where high stresses are
sustained over time. The simpler Norton model is therefore deemed to be a good
substitute for Usercreep in this application.

The model parameters that were fitted to 253MA secondary creep data were the
lattice diffusion activation energy QL = 322 kJ/mole and the obstacle distance
l = 125 nm. Abe gives QL ≈ 300 kJ/mole for austenitic iron [14]. Garofalo et al.
found QL = 314 kJ/mole for 316 steel [36]. The fitted value for the lattice diffusion
activation energy thus appears to be in accordance with similar alloy data in the
literature.

Following Frost and Ashby, the activation energy 0.5Gb3 for a dislocation passing
an obstacle in 316 steel corresponds to obstacles in the form of dislocations or small
precipitates. 253MA is solid solution hardened with carbon and nitrogen, but the
impact of these solute atoms on dislocation movement in austenitic stainless steel
has been shown to be weak [37]. Assuming that the precipitation of chromium
carbides is negligible due to the low carbon content of 253MA, other dislocations
are thus the main obstacle for gliding dislocations. Assuming a uniform obstacle
array of straight dislocations, l = 125 nm corresponds to a dislocation density of
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1/l2 = 6.4 · 1013/m2. Pesicka et al. report a dislocation density between 1012 and
1014 in 12% Cr steel during creep at 650 ◦C [38], which is in agreement with the
optimized value of l. A uniform array of dislocations is a significant simplification
however, as dislocation structures are much more complex in reality. The obstacle
distance being a constant is also a simplification, as it is known that the dislocation
density is dependent on the applied stress [39].

The limited validation of the model (Table 3.2) gave strain outputs in the vicinity of
the ideal 1% value. This may be good enough to give an indication of creep behaviour
in a full analysis, but should not be trusted completely. The models of the creep
mechanisms are fairly simplistic, and experimental constants from other similar
alloys have been used. The secondary creep model was fitted to extrapolated 253MA
data, which may not represent the physical strain rate behavior. A proper validation
against full creep curves needs to be done to see if the model truly represents 253MA
creep behaviour.
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5
Conclusion

The aim of this thesis work was to build a 253MA creep model and perform a 25-
year service life analysis of the Azelio TES unit. A model was built consisting of
316LN primary creep, as well as three physical deformation mechanisms that cover
diffusion-based and dislocation-based secondary stage creep. Due to the lack of
253MA data in the literature, model parameter values of other similar austenitic
stainless steel alloys were used in the model. A limited validation against 253MA
1% creep strength data was performed, and the model was successfully implemented
in a TES unit ANSYS simulation with the custom subroutine Usercreep.

While the aim of the thesis was fulfilled, the model may be flawed due to parameter
values that do not physically represent the behavior of 253MA, simplistic model-
ing of the deformation mechanisms, or insufficient validation. In order to gain a
better understanding of creep in 253MA, and to build a better creep model, more
experimental data is needed.
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A
Appendix 1

A.1 Usercreep.F

*deck,usercreep USERDISTRIB parallel gal
SUBROUTINE usercreep (impflg, ldstep, isubst, matId , elemId,

& kDInPt, kLayer, kSecPt, nstatv, nprop,
& prop , time , dtime , temp , dtemp ,
& toffst, Ustatev, creqv , pres , seqv ,
& delcr , dcrda)

c**************************************************
c *** primary function ***
c Define creep laws when creep table options are
c TB,CREEP with TBOPT=100.
c Demonstrate how to implement usercreep subroutine
c
c Creep equation is
c dotcreq := k0 * seqv ^ n * creqv ^ m * exp (-b/T)
c
c seqv is equivalent effective stress (Von-Mises stress)
c creqv is equivalent effective creep strain
c T is the temperature
c k0, m, n, b are materials constants,
c
c This model corresponds to primary creep function TBOPT = 1
c
c gal 10.01.1998
c
c**************************************************
c Copyright ANSYS. All Rights Reserved.
c
c input arguments
c ===============
c impflg (in ,sc ,i) Explicit/implicit integration
c flag (currently not used)
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c ldstep (in ,sc ,i) Current load step
c isubst (in ,sc ,i) Current sub step
c matId (in ,sc ,i) number of material index
c elemId (in ,sc ,i) Element number
c kDInPt (in ,sc ,i) Material integration point
c kLayer (in ,sc ,i) Layer number
c kSecPt (in ,sc ,i) Section point
c nstatv (in ,sc ,i) Number of state variables
c nprop (in ,sc ,i) size of mat properties array
c
c prop (dp ,ar(*),i) mat properties array
c This array is passed all the creep
c constants defined by command
c TBDATA associated with TB,CREEP
c (do not use prop(13), as it is used
c elsewhere)
c at temperature temp.
c time Current time
c dtime Current time increment
c temp Current temperature
c dtemp Current temperature increment
c toffst (dp, sc, i) temperature offset from absolute zero
c seqv (dp ,sc , i) equivalent effective stress
c creqv (dp ,sc , i) equivalent effective creep strain
c pres (dp ,sc , i) hydrostatic pressure stress, -(Sxx+Syy+Szz)/3
c note that: constitutive consistency is not

accounted for
c if creep strains are function of pressure
c
c input output arguments input desc / output desc
c ====================== ========== ===========
c Ustatev (dp,ar(*), i/o) user defined iinternal state variables at
c time ’t’ / ’t+dt’.
c This array will be passed in containing the
c values of these variables at start of the
c time increment. They must be updated in this
c subroutine to their values at the end of
c time increment, if any of these internal
c state variables are associated with the
c creep behavior.
c
c output arguments
c ================
c delcr (dp ,sc , o) incremental creep strain
c dcrda (dp,ar(*), o) output array
c dcrda(1) - derivitive of incremental creep
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c strain to effective stress
c dcrda(2) - derivitive of incremental creep
c strain to creep strain
c
c local variables
c ===============
c Emod Young’s modulus (temp. dependent)
c Gmod Shear modulus (temp. dependent)
c primcr Time hardening primary creep rate
c coblcr Coble creep rate
c weercr Weertman creep rate
c glidcr Glide creep rate
c
c
c**************************************************
c
c --- parameters
c
#include "impcom.inc"

DOUBLE PRECISION ZERO
PARAMETER (ZERO = 0.0d0)

c
c --- argument list
c

INTEGER ldstep, isubst, matId , elemId,
& kDInPt, kLayer, kSecPt, nstatv,
& impflg, nprop
DOUBLE PRECISION dtime , time , temp , dtemp , toffst,

& creqv , seqv , pres
DOUBLE PRECISION prop(*), dcrda(*), Ustatev(nstatv)

c
c --- local variables
c

DOUBLE PRECISION Emod , Gmod , dseqv , delcr , delcr2 ,
& primcr , coblcr , weercr , glidcr , pi
c
c**************************************************
c
c *** skip when stress and creep strain are all zero
c

if (seqv.LE.ZERO.AND.creqv.LE.ZERO) GO TO 990
c
c *** Young’s modulus interpolation & shear modulus calculation
c

if (temp.gt.673.15d0 .and. temp.le.873.15d0) Emod = 170.0d9 -
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& (170.0d9-155.0d9)*(temp-673.15d0)/(873.15d0-673.15d0)
c

if (temp.gt.873.15d0 .and. temp.le.1073.15d0) Emod = 155.0d9 -
& (155.0d9-135.0d9)*(temp-873.15d0)/(1073.15d0-873.15d0)
c

Gmod = Emod/(2.0d0*(1.0d0+0.3d0))
c
c *** Stress increment for numerical differentiation
c

dseqv = 1.0d-5
c
c *** Define pi, calculate creep rates
c

pi = 4.0d0*atan(1.0d0)
c

primcr = 1.37522722422862d-23 * seqv**4.006d0 *
& time**(-0.580d0+1.0d0)/(-0.580d0+1.0d0)*exp(-31107.0d0/temp) -
& 1.37522722422862d-23 * seqv**4.006d0 *
& (time-dtime)**(-0.580d0+1.0d0)/(-0.580d0+1.0d0)*exp(-31107.0d0/temp)
c

coblcr = 148.0d0 * 1.0d-9 * seqv * 1.149404032193386d-29
& / (8.6d-5**3 * 1.381d-23 * temp) * 6.0d-6 *
& exp(-189.0d3/(8.314d0*temp))
c

weercr = 1.0d0/(3.06d0) * 0.25d0 * pi**2.0d0
& * (seqv/(3.06d0))**4.5d0 * 3.7d-5 * exp(-322457.976515788d0/(8.314d0*temp))
& / ((2.8d-10*1.0d14*Gmod**7.0d0)**0.5d0 * 1.381d-23 * temp)
c

glidcr = (1.0d0/3.06d0) * 1.0d6 *
& exp(-(0.5d0*Gmod*2.8d-10**3.0d0 / (1.381d-23 * temp))
& * (1.0d0-seqv/(3.06d0*Gmod*2.8d-10/1.24572533822601d-7)))
c

delcr = primcr + (coblcr + weercr + glidcr) * dtime
c
c *** Calculate delcr(seqv+delseq) for the stress derivative
c

primcr = 1.37522722422862d-23 * (seqv+dseqv)**4.006d0 *
& time**(-0.580d0+1.0d0)/(-0.580d0+1.0d0)*exp(-31107.0d0/temp) -
& 1.37522722422862d-23 * (seqv+dseqv)**4.006d0 *
& (time-dtime)**(-0.580d0+1.0d0)/(-0.580d0+1.0d0)*exp(-31107.0d0/temp)
c

coblcr = 148.0d0 * 1.0d-9 * (seqv+dseqv) *
& 1.149404032193386d-29 / (8.6d-5**3 * 1.381d-23 * temp) * 6.0d-6
& * exp(-189.0d3/(8.314d0*temp))
c

weercr = 1.0d0/(3.06d0) * 0.25d0 * pi**2.0d0 *
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& ((seqv+dseqv)/(3.06d0))**4.5d0 * 3.7d-5 *
& exp(-322457.976515788d0/(8.314d0*temp))
& / ((2.8d-10*1.0d14*Gmod**7.0d0)**0.5d0 * 1.381d-23 * temp)
c

glidcr = (1.0d0/3.06d0) * 1.0d6 *
& exp(-(0.5d0*Gmod*2.8d-10**3.0d0
& / (1.381d-23 * temp)) *
& (1.0d0-(seqv+dseqv)/(3.06d0*Gmod*2.8d-10/1.24572533822601d-7)))
c

delcr2 = primcr + (coblcr + weercr + glidcr) * dtime
c
c *** derivative of incremental creep strain to effective stress
c

dcrda(1)= (delcr2 - delcr) / dseqv
c
c *** derivative of incremental creep strain to effective creep strain
c

dcrda(2)= 0
c
c *** write the effective creep strain to last state variable for verification
c

if (nstatv .gt. 0) then
Ustatev(nstatv) = creqv

end if
990 continue

return
end
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