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Automatic Spot Detection in Large-Scale Fluorescence Microscopy Image Datasets
MARCUS BJÖRKLUND
Department of Signals and Systems
Chalmers University of Technology

Abstract
In this thesis, we consider the problem of detecting spots that encapsulates biologi-
cal experiments printed on array plates. Our primary goal is to automatically detect
and annotate all individual experiment spots in fluorescence microscopy images for
further quantitative analysis. The proposed approach can be summarized as follows.
Initially, image data is decimated, enhanced and montaged into a single composite
image. Then, a k-NN classifier is used to segment the spots and sub-arrays are de-
tected with a k-means clustering approach. Each sub-array is analyzed individually
and a new gridding algorithm yields the automatic segmentation of the array image
into spot quadrants. In contrast to other methods, the gridding is based on intensity
profiles. Finally, the spots are detected within each quadrant by thresholding and
by computing centroids of connecting components. An extensive evaluation on sev-
eral data sets with ground-truth has been carried out. The results indicate that our
method efficiently detects the spots in array images and outperforms the currently
used method, which relies on pre-saved annotation coordinate data.

Keywords: fluorescence microscopy, spot detection, large-scale images, image seg-
mentation, image classification, array gridding
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Glossary

Array image is the whole set of component images from an array plate screening.
Array plate is a glass plate with printed gene silencing experiments.

Component image is a non processed tile image acquired from a fluorescence
microscope at a certain wavelength, row and column position.

Montage image is the whole set component images in an array image, montaged
into a single composite image.

Print map is an exact layout definition of the experiment spots in a certain print
number.

Print number is the name of a certain print map and each array plate has one.
Print type is how an array plate is printed. Single-sided types are printed in

one contact whilst double-sided types are printed in two contacts, where the
seconds contact is rotated 180◦ before printing.

Spot image is a multichannel image containing a single experiment spot, generated
by the detection framework.
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1
Introduction

In this thesis, the problem of detecting spots that encapsulates biological experi-
ments printed on array plates is considered. The aim of the project is to automati-
cally detect and annotate all individual experiment spots in fluorescence microscopy
images so they can be used for further quantitative analysis.

1.1 Background
An array plate is a technology developed by Persomics [1] that allows scientists
to perform thousands of parallel and unique cell biological experiments in an easy
to use consumable instead of using expensive robotic labs [2]. The gene silencing
experiments can printed in 350 µm spots [1] on a glass plate as the example provided
in Figure 1.1 and up to 3200 experiments can be printed on a single array. Gene
silencing is an important research tool but has up to this point been reserved for
large and well-funded laboratories [2]. This research tool can be democratized and
be brought up to the wider research community when an automatic detection of the
experiment spots is attained.

Figure 1.1: An array plate with one of the experiment spots enlarged and enhanced.
From Persomics [1], used with permission.

1.1.1 Array Plate
Each array plate has an attribute print number , which is the name of a certain
print map. The print map of an print number is the exact layout definition of
the experiment spots. It holds information about the radius r of each spot, the
horizontal (dh) and vertical (dv) spacing between spots and the number of spot rows
and spot columns. An example print map is illustrated in Figure 1.2.

1



1. Introduction

dh

dv r

Figure 1.2: An example of a print map with three columns and four rows. Each
array plate is defined by a print map with different horizontal (dh) and vertical (dv)
spacing, where each printed spot has a spot radius r.

The print map also specifies the print type of the array plate. There are currently
two print types, namely single and double-sided array plates as the example in Figure
1.3a. Single-sided types are printed in one single contact, whilst double-sided types
are printed in two contacts, where the second contact is rotated 180◦ before printing,
as the example in Figure 1.3b.

(a) There are currently two print types, double
and single-sided. The top array is a double-
sided array plate and the bottom array is a
single sided array plate.

28 329 230 1

25 626 527 4

22 923 824 7

19 1220 1121 10

16 1517 1418 13

13 1814 1715 16

10 2111 2012 19

7 248 239 22

4 275 266 25

1 302 293 28

(b) An example of a double-
sided array plate. The left
sub-array has the same content
as the right one and the right
sub-array is always rotated 180◦

compared to the left one.

All Persomics’ print maps have the same spot radius, horizontal and vertical spacing
with the exception of two prints, p74 and p86 whose vertical and horizontal spacing

2



1. Introduction

are doubled. The three printing parameters are specified in Table 1.1 for all print
numbers.

Print number r dh dv

p74, p86 350 µm 1100 µm 1000 µm
p67->p73, p75->p85 350 µm 550 µm 500 µm

Table 1.1: The spot radius and the vertical and horizontal spacings between spots
in all print maps. Two prints p74 and p86 have double spacings.

Persomics supports array plates with rows in range ∈ [16, 32] and columns in range
∈ [2, 100]. The currently smallest printed array is 32 rows x 2 columns and the
largest one is 32 rows x 38 columns.

1.1.2 Screening Procedure
Each printed spot in an array plate is labeled with a red dye. They also encapsulate
an RNA and other reagents that are needed for silencing a gene inside the cells that
are added to the experiment. The initial step is to add cells on top of the spots and
incubate between 48 to 120 hours [2]. The cells are then stained with a green fluo-
rescent antibodies dye and a blue hoechst dye. This colour labeling is used so each
cellular component easily is identified. The whole array of spots is then screened by
a fluorescent microscope at each dyes’ emission wavelength. Since a high resolution
image with a large field of view is desired, the whole array can not be imagined
in one step due to hardware limitations. The region of interest is subdivided into
multiple smaller sub-regions which are imaged individually, generating component
images. Figure 1.3 shows an example of three different component images screened
at the same position but at three different wavelengths. A more detailed description
over the screening procedure can be found in the screening protocol in [3].

(c) Component im-
age screened at the
wavelength where the
blue hoechst dye emits
light.

(d) Component image
screened at the wave-
length where the red
dye emits light.

(e) Component image
screened at the wave-
length where the green
antibodies dye emits
light.

Figure 1.3: Three different component images screened at the same position but at
three different wavelengths.
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1. Introduction

The whole data set of component images screened from an array plate is called
an array image. In some cases, an array image is combined to a large composite
montage image. Figure 1.4 shows an example of an array image generated from
screening a whole array plate for three different wavelengths.

Figure 1.4: To the left is an example of an array image that consist of (3 · 4 · 12 =
144 component images generated from screening a whole array plate for three different
wavelengths. To the right is a 3-channel composite montage image generated from
the component images that in total contains 256 experiment spots.

In order to apply further quantitative analysis on each individual experiment (within
each red spot), individual spot images has to be generated. In Figure 1.5, a spot
image is shown. To generate those images, a reliable, accurate and efficient spot
segmentation is required.

Figure 1.5: An enhanced 3-channel spot image.

4



1. Introduction

1.1.3 The Dataset
The dataset used in this thesis is provided by Persomics [1] and consists of 68
screened array images that holds 26660 experiment spots, where nine of the array
images are double-sided. Each component image has tiff file format and 16-bits per
pixel. The total amount of component images and the total disk size in this dataset
is approximately 24 000 files and 225GB respectively. A detailed summary of the
dataset is presented in Table 1.2.

Print number Rows Columns Spots Count Total Spots
p67 32 8 256 2 512
p68 32 8 256 5 1280
p69 32 8 256 2 512
p70 32 10 320 8 2560
p71 32 7 224 2 448
p74 16 12 192 16 3072
p76 32 5 160 2 320
p79 32 2 64 1 64
p80 16 10 160 5 800
p81 32 2 64 5 320
p82 32 12 384 2 768
p82-d 32 24 768 4 3072
p83 32 7 224 1 224
p84 32 19 608 5 3040
p84-d 32 38 1216 5 6080
p85 32 38 1216 3 3648
Sum 68 26720

Table 1.2: A detailed summary of the image dataset. Count is the number of array
images of respectively print number and the double-sided print types are denoted with
a ’d’ in the print numbers’ name.

The dataset comes with spots and image data of varying quality which is visualized
in Figure 1.6

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1.6: Different spot qualities and visibilities in descending order from (a) to
(j), where (a) is considered easiest to detect and (j) the hardest. The most common
qualities are in the range (c) to (g) for the whole dataset.
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1. Introduction

1.2 Aim
The master’s thesis aim is a developed program that successfully detects all individ-
ual spots and maps them to each corresponding experiment from the real fluorescent
microscope images in the provided dataset. The program should handle component
images as input, not rely on annotation coordinate data, handle disoriented array
images and displaced spots and efficiently process datasets of a very large size.

1.3 Limitations
This thesis will not deal with the issue when non-standard naming conventions of
component images are used, i.e, when the row, column and wavelength order is
completely unknown by analyzing file names. An assumption is also made that
there are no under- or overlapping regions between component images.
Moreover, a solution for disoriented array images is not covered in this study since
it is not possible to detect the orientation of single-sided print types.

1.4 Specification of Issue under Investigation
In this section, four research questions specified on the basis of the aim are presented.

RQ 1: What is an effective and robust way of identifying and cropping all
the experiment spots into individual spot images? Accurately detect-
ing spots in fluorescence microscopy images is of primary interest for further
quantitative analysis of the experiments such as counting and classification.

RQ 2: How can disoriented array images and displaced spots be han-
dled? Each spot is an individual experiment. Knowing which experiment that
belongs to a spot is trivial if all screened array images are oriented in the same
way, but that can not be guaranteed when users will screen with different im-
agers. If an array image, for instance, is screened upside-down, it is no longer
trivial knowing which experiments that belongs to the spots if the orientation
is unknown. Spots can also be displaced due to non perfect production of the
array plate. The challenge is mapping the detected spots to each corresponding
experiment for disoriented images and displaced spots.

RQ 3: How can images with different magnification and spots with dif-
ferent radius be handled? Different microscopy scanners will produce im-
ages of varying dimensions and magnifications which means that spots and
other features will not have a fixed size. Furthermore, production of the array
plates will not be perfect, which means that spots will vary in size on the same
array plate. The fundamental challenge here is processing images and spots of
unknown size.

RQ 4: What is an effective way of processing high resolution images of a
very large size? Fluorescence microscopy scanners are capable of producing
images of sizes up to several tens of gigabytes each. Complex image processing
operations applied on images of a very large size is not only a bottleneck for
spot detection, but also for efficient integration of extensive imaging data in
general research.

6



1. Introduction

1.5 Related Work
To this study, there are a lot of related work. The first subsection introduces the cur-
rently used detection framework developed by Persomics. The following subsection
describes others’ work that is related to the study in this thesis.

1.5.1 Current Detection Framework
The detection framework developed by Persomics can be summarized by following
steps: 1) use all image data in the red channel in a montage image and decimate
it into a smaller one, 2) enhance the spots with histogram equalization, 3) remove
noise with a median filter, 4) threshold the resulting image with Otsu’s method,
5) compute connected components, 6) remove component outliers, 7) calculate a
bounding rectangle box around the components and 8) calculate the spot positions
by transforming annotation coordinates from a database to cover the whole bounding
box. More details about this framework can be found at [1].
The greatest drawback with the current framework is that it rely on saved annotation
coordinates for each print number . To generate annotation data for a new print
requires many man-hours of work which is costly and inefficient. Other drawbacks
is that it can not handle component images as input as well as being sensitive to
noise, artifacts and contamination which is common in microscopy images. The
framework also heavily rely on the detected corner spots to generate the bounding
box: if any is missing or their centers are detected slightly wrong, the whole spot
detection will fail.

1.5.2 Relevant Research Articles and Literature Review Di-
rections

Beyond the current detection framework, there are a lot of related work to this
study. In [4] is a dozen of different spot detection methods provided with a thor-
ough evaluation of each method. Smal et al [4] is explaining that it is common to
first de-noise the image and enhance the signal (the spots) as image preprocessing
framework. Then, the minimum or maximum values of the spots are extracted. The
easiest method of spot detection in a gray-scale image is calculating the intensity
histogram and then thresholding the image intensities. By using methods such as
entropy minimization [5] or Otsu’s approach [6], automatic selection of the threshold
value can be carried out.
The images segmentation approaches in this thesis uses Otsu’s method and a sim-
plified version of the similarity search that is used in [7]. In [7], segmentation is
achieved by sampling the input image into tiles and searching for similar tiles from
a database. The retrieved tiles are processed with different descriptors that describes
specific image characteristics and multiple dissimilarity values are combined for each
descriptor into a segmented image. The method in this thesis does not process the
tiles, it uses the distances between tiles as dissimilarity values. One drawback with
both methods are that they have a relatively high computational complexity. Be-
yond similarity search, there are also other candidates for image segmentation such
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1. Introduction

as using haar Wavelet transform for feature extraction as in [8] or convolutional
neural networks as in [9]. Compared to these methods, neural networks are very
expensive to train, but once trained, it is relatively cheap to segment images, which
is an advantage [10].
When the image data is segmented, a common method to detect spots is gridding.
In [11], an approach for finding spot locations is proposed which uses a hill-climbing
method to maximize the energy of the spots and fit it to different probabilistic
models. Another gridding approach is mathematical morphology where the images
are represented as a function and morphological filters and erosion operators are
applied, which removes ridges and peaks from the image topological surface [12].
Furthermore, a two-stage gridding method has been proposed in [13] where sub-grid
locations are found by using optimal multilevel thresholding and the locations of
spots are found within each sub-grid.
In this thesis, a novel approach for spot detection is presented, which is based on
the two-stage gridding method, but instead of using optimal multilevel thresholding,
it generates its grid from detected peaks and valleys in the intensity profiles of
segmented images.

1.6 Outline
This thesis is structured as follows. The second chapter introduce the theoretical
foundations from the field of image processing. The third, forth and fifth chapters
describes the methodology used in the data structuring, image pre-processing and
spot detection frameworks respectively. The sixth chapter contains a detailed eval-
uation of the whole spot detection framework. Finally, the results and future work
are discussed in chapter seven.
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2
Theory

In this chapter, the theoretical foundations of digital imaging, image enhancement
and image segmentation are presented.

2.1 Image Representation
An image can mathematically be defined as a two-dimensional function, I(x , y),
where x and y are pixel coordinates and the amplitude of I at any pixel coordinate
(x , y) is called the gray level or intensity of the image at that pixel. When the pixel
coordinates and the intensity values are all discrete quantities, the image is called a
digital image [14, p. 23].
In image processing, it is important to pay attention to different coordinate system
conventions. The center of the upper-left pixel in an image is often considered as the
origin I(0 , 0). There is more variation in how the x and y axes are assigned. The
coordinate system in Figure 2.1, where the x-axis is pointing down and the y-axis
is pointing to the right is used in order to be consistent with the representation in
[14].

0 1 2 · · · · · · w − 1

h− 1

...

...

2

1

0

x

y

One pixel

Origin

Figure 2.1: The chosen image coordinate convention where the x-axis is pointing
down, the y-axis is pointing to the right and origin is defined as the upper-left pixel.

Digital images can be represented as matrices or arrays, which happens to be great
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2. Theory

for working with in Python. In equation form, a monochrome digital image can be
represented as an h x w numerical array as

I(x , y) =


I(0 , 0) I(0 , 1) · · · I(0 , w − 1)
I(1 , 0) I(1 , 1) · · · I(1 , w − 1)

... ... ...
I(h− 1 , 0) I(h− 1 , 1) · · · I(h− 1 , w − 1)

 , (2.1)

where h is the image height and w is the image width. A color image can be
given by c different monochrome (gray-scale) images in a h x w x c numerical
multidimensional array, each of them representing one dimension of the color data,
where each resulting image is denoted a color channel.

2.2 Image Enhancement
Image enhancement techniques are used for many different applications of image
processing. The methods are used to alter a digital image in order to enhance certain
aspects of it so the results are more suitable for further image analysis steps such
as spot segmentation. Examples of basic operations that can be applied on a gray-
scale image is multiplication and addition of the intensity values. Negative addition
would result in a darker image as each intensity value would decrease and positive
addition would result in a brighter image. Multiplication of a value > 1 increases
the contrast (the range of the intensity values) whilst multiplication with a value
∈ (0 , 1] results in an image with lower contrast. Those examples of operations can
be done pixel by pixel where each pixel’s change is totally independent of the other
pixels. There are also other operations which not is independent of the other pixels
values, which are described in following sub-sections where histogram equalization
is introduced.

2.2.1 Histogram
The histogram of an image can be seen as a graph with the frequency of every
intensity value in the image. For a digital image with intensity levels r ∈ [0 , L− 1],
the histogram is defined as a discrete function h(rk) = nk, where rk is the kth
intensity value and nk is the number of pixels in the image with intensity rk. A
histogram can thus be seen as a representation of an image where the pixel positions
are lost, but instead the amount of each possible intensity in the image is made
accessible for analysis [14, p. 142]. Histograms have several possible applications
in the fields of image segmentation and image processing. One of these will be
presented in the following sub-section, namely histogram equalization.

2.2.1.1 Histogram Equalization

Histogram equalization is a method that is usually useful in images with details of
interest that are either under or over-exposed. The method stretches the intensity
range in an image so the histogram is mapped into a more uniformly distributed one,
which results in an image where the overall contrast is improved and the intensity
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2. Theory

(a) Original image. (b) Image processed
with histogram equal-
ization.

Figure 2.2: Histogram equalization applied on an example image.

values are spreaded over the whole range. This equalization effect is achieved using
the the cumulative distribution function (cdf ) as remapping (more details is provided
in [14, p. 144]). The effects of histogram equalizing a low-contrast spot image can
be seen in Figure 2.2b.

2.3 Image Segmentation
A digital image given by a set of pixels is usually considered as low-level information,
the pixels only specifies their relative position and the local intensity of a scene.
The aim of image segmentation is to extract high-level information (information
about objects in an image) and alter the image representation into something more
meaningful. Since it is rarely possible to tell much about a scene by analyzing a
single pixel, a common approach is to group pixels into larger sets, called segments.
One example of this can be seen in Figure 2.3a, where an example image is segmented
into two pixel groups as in Figure 2.3c. One of the segmentation approaches used
in this thesis builds on a technique called thresholding.

2.3.1 Optimum Global Thresholding Using Otsu’s Method
Thresholding is an image segmentation method used for separating an image into
two or more groups (classes) where each class has a certain intensity level. Otsu’s
thresholding method is optimum in such way that it maximizes the between-class
variance and is based on the idea that the classes in a well-thresholded image should
be unambiguous with respect to their pixel intensity values [14, p. 764]. The ap-
proach includes iteration through all the feasible threshold values and computation
of a measure of spread for the pixel intensities for each side of the threshold. Its im-
plementation and methodology is described more thoroughly in [14, p. 765] and an
example of output is visualized in Figure 2.3b, where the foreground and background
pixels are segmented.
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2. Theory

(a) Original image. (b) Image processed
with Otsu’s method.

(c) Manually defined
ground-truth for image
segmentation.

Figure 2.3: Image segmentation with Otsu’s method on an example image, compared
with ground truth.
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3
Image Metadata Structuring

From a single array plate screening, thousands of component images can be pro-
duced with a total data size of several tens of gigabytes. Instead of generating a
huge montage image from all component images, it would be much more efficient
and satisfactory to come up with a framework that makes it possible to treat the
component images as if they were montaged. In this chapter, a framework for regex
parsing and a framework for data structuring and reading from the data structure
is presented.

Regex parsing
file names

Data struc-
turing

Figure 3.1: Overview flowchart of the metadata structuring framework.

3.1 Regex Parsing
Each component image from Persomics have multiple metadata of interest in its
file name, namely row and column position, channel, name and file name extension,
where channel, row and column are crucial information in order to read global image
data in an array image. This metadata can be seen in the following example file
name from Persomics where each metadata group is identified:

Name

Persomics 10X U2OS 72h p75_
Row

O 13
Column

_w
Channel

3 . TIF
Type

In order to acquire the substrings for each metadata group in a target string, a
regular expression can be used, which is a codified method of searching [15]. There
is useful terminology related to regular expressions defined in [15] which can be used,
namely;

Literal
Any character used in a search or matching expression. It is the string that is
literally being searched for.

Metacharacter
One or more special characters that have a unique meaning. They are not
used as literals in the search expression.

Target string
The string that should be parsed.
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Escape sequence
\(backslash) is used before one metacharacter to indicate that it should be
used as a literal.

As stated in [16], multiple primitive regular expressions can be merged into a new,
more complex regular expression. By using this method, the example target string
can found by eight primitive regular expressions, one defining ’Name’, first literal,
’Row’, ’Column’, second literal, ’Channel’, third literal and ’Type’, where the three
literals are ’_’, ’_w’ and ’ . ’ respectively. By using the methodology and some
of the metacharacters defined in [16], eight regular expressions can be combined
together into a final regular expression as in Table 3.1.

File convention Regular expression
Persomics (?P<Name>.*)_(?P<Row>[A-Z]{1,2})(?P<Col>[0-9]{2,3})

_w(?P<Channel>[0-9])\.(?P<Type>[A-Z]{3})

Table 3.1: A regular expression for parsing file names from Persomics.

3.2 Data Structuring
When a regular expression is applied to a target string, it is satisfactory to store the
metadata output in a data structure. To have an example to work with, the regular
expression for Persomics in Table 3.1 is applied to 12 different file names and the
result can be seen in Table 3.2 for the groups Row, Column and Channel.

File # File name Row Column Channel
0 ’Persomics 10X U2OS 72h p75_E11_w2.TIF’ E 11 2
1 ’Persomics 10X U2OS 72h p75_B10_w1.TIF’ B 10 1
2 ’Persomics 10X U2OS 72h p75_E10_w1.TIF’ E 10 1
3 ’Persomics 10X U2OS 72h p75_C10_w2.TIF’ C 10 2
4 ’Persomics 10X U2OS 72h p75_B10_w1.TIF’ B 10 1
5 ’Persomics 10X U2OS 72h p75_E10_w1.TIF’ E 10 1
6 ’Persomics 10X U2OS 72h p75_E11_w2.TIF’ E 11 2
7 ’Persomics 10X U2OS 72h p75_B11_w2.TIF’ B 11 2
8 ’Persomics 10X U2OS 72h p75_C11_w1.TIF’ C 11 1
9 ’Persomics 10X U2OS 72h p75_B11_w2.TIF’ B 11 2
10 ’Persomics 10X U2OS 72h p75_C11_w1.TIF’ C 11 1
11 ’Persomics 10X U2OS 72h p75_C10_w2.TIF’ C 10 2

Table 3.2: Some examples of component image file names from Persomics.

The metadata is chosen to be stored in the data structures list [17] and class [18]
since they are easy to implement in Python. Let’s denote the list of rows as R, the
list of columns as C and the list of channels as W from a regex parsing output. The
contents of these lists can be stored in a component image class. To make things
easier in Python where element indices starts at zero, it is satisfactory to convert
the content in each list to indices starting at 0 and upwards. An example is the row
list R = [E, B, E, C, B, E, E, B, C, B, C, C] which can be replaced with the indices
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[2, 0, 2, 1, 0, 2, 2, 0, 1, 0, 1, 1]. To achieve such output, the lists can be processed
as described in the next section.

3.2.1 Data Replacement in Regex Output
It it satisfactory to replace the contents in the lists R, C andW with indices (starting
at 0 and upwards). To replace the list contents, a first step can be to take the set of
each list, denoted {.}, where the set operator returns an unordered collection with
no duplicate elements [19] as the following example:

{1 , 2 , 4 , 4 , 4} = {1 , 2 , 4} . (3.1)

By using the set operator on the lists R, C and W , the output is {R} = {E, B, C},
{C} = {11, 10} and {W} = {2, 1}. After the set operation is applied, the output
can be sorted in ascending order. Let’s denote this sorting operator as sort(). By
applying this operator on each set, the results are sort({R}) = {B, C, E}, sort({C})
= {10, 11} and sort({W}) = {1, 2}. From each sorted set, an index dictionary D =
{{v0 , i0 = 0} , . . . , {vn , in = n}} can be generated where the first element vj is the
value in the sorted set, the second element ij is the index of the value in the sorted
set, n is the length of each sorted set and j is the range from 0 to n. The index
dictionaries of the sorted sets are generated as DR = {{B, 0}, {C, 1}, {E, 2}}, DC

= {{10, 0}, {11, 1}} and DW = {{1, 0}, {2, 1}}. The elements in the lists R, C
and W can finally be replaced by using the corresponding index dictionary, where
each list element which is equal to any of the first dictionary values vj is replaced
with corresponding index ij.

3.2.2 Read Data from Data Structure
When the file names of component images are parsed with regular expression, infor-
mation about their location and channel are extracted, which is crucial information
in order to read image data from a certain region in the global array image. A
“toy” example of an array image is illustrated in Figure 3.2 consisting of 8x8 = 64
component images Ici ,j in rows i = {0 , 1 , . . . , 7}, columns j = {0 , 1 , . . . , 7} with a
sub-region that is of interest for extraction. Lets call this extracted sub-region as
the region of interest image, denoted Iroi. This toy example can be used to come up
with a general method to extract image data from any set of component images in
an array image.
To keep track of indices, three different indexing systems can be implemented, one
for the array image, one for a local component image and one for the region of
interest image. The global indices are denoted with large letters, X , Y , and the
local indices in a component image x , y , and xroi , yroi for the region of interest image.
The height and width of the component images are defined as h and w respectively.
In the example image, the global starting indices are (Xs , Ys) = (2.5h , 0.5w) and the
ending indices (Xe , Ye) = (7.5h , 3.5w). As can be seen in Figure 3.2, the sub-region
starts in the center of the component image in row two, column zero and ends in
the center of row six, column three. The starting (rs , cs) and ending (re , ce) indices
can be calculated as
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Figure 3.2: An array image consisting of multiple component images in rows i and
columns j with a sub-region that should be extracted, highlighted in white.

rs =
⌊
Xs

h

⌋
, re =

⌊
Xe

h

⌋
, cs =

⌊
Ys

w

⌋
, ce =

⌊
Ye

w

⌋
, (3.2)

where row is denoted r and column c, and b.c is the floor operator, which returns
the largest integer less than or equal to a given number [20]. All component images
that have to be read are those who have a row and column index within the ranges

R = [rs , re] , C = [cs , ce] , (3.3)
where R are all the row indices and C are all the column indices.
The starting (xs , ys) and ending indices (xe , ye) that spans the region of interest
within each component image in R and C can be calculated as

xs(i) =

Xs −R[i] · h, if Xs > R[i] · h
0, otherwise ,

xe(i) =

h, if Xe > (R[i] + 1) · h
Xe −R[i] · h, otherwise ,

ys(j) =

Ys − C[j] · w, if Ys > C[j] · w
0, otherwise ,

ye(j) =

w, if Ye > (C[j] + 1) · w
Ye − C[j] · w, otherwise .

(3.4)

By using equation (3.4) on the example in Figure 3.2 for i = 0 , j = 0, i.e, R[0] and
C[0] (the most top left component image), the starting (xs , ys) and ending indices
(xe , ye) are calculated as
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xs(0) = 2.5h− 2 · h = 0.5h ,
xe(0) = 7.5h− 2 · h = 3.5h⇒ xe(0) = h ,

ys(0) = 0.5w − 0 · w = 0.5w ,
ye(0) = 3.5w − 0 · w = 3.5w ⇒ ye(0) = w ,

i.e, the ranges with the data of interest are x = [0.5h , h] and y = [0.5w ,w] inside
the component image in R[0] and C[0].
Finally, the starting (xroi ,s , yroi ,s) and ending indices (xroi ,e , yroi ,e) in the region of
interest image are calculated as

xroi,s(i) =

xroi,s(i− 1) + xe(i)− xs(i), if i > 0
0, otherwise ,

yroi,s(j) =

yroi,s(j − 1) + ye(j)− ys(j), if j > 0
0, otherwise ,

xroi,e(i) = xroi,s(i) + xe(i)− xs(i) ,
yroi,e(j) = yroi,s(j) + ye(j)− ys(j) .

(3.5)

Those indices corresponds to the region inside the region of interest image that
maps the data extracted from the component image. By using Equation 3.5 on the
example in Figure 3.2 for the most top left component image in R[0] and C[0], the
region of interest indices can be calculated as

xroi,s(0) = 0 ,
yroi,s(0) = 0 ,
xroi,e(0) = 0 + xe(0)− xs(0) = 0.5h ,
yroi,e(0) = 0 + ye(0)− ys(0) = 0.5w .

To extract all data into the region of interest image, this process has to be repeated
for all component images in R and C as

Iroi(xroi,s(i) : xroi,e(i), yroi,s(j) : xroi,e(j)) = Ic
i,j(xs(i) : xe(i), ys(j) : ye(j)) ,

for i ∈ R , for j ∈ C ,
(3.6)

which can be implemented in Python as in Appendix A.2.
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4
Image Preprocessing

The input to the image preprocessing framework are red-channel component images
read from the data structure in the previous chapter. The reason why only data
from the red channel is chosen is since they are screened at the wavelength where
the red dye in the spots emits light. The component images are downsampled and
montaged into a composite image. The output is an enhanced, quantized composite
image.

Image Dec-
imation

Image En-
hancement

Image Quan-
tization

Figure 4.1: Overview flowchart of the image preprocessing framework.

4.1 Image Decimation
Fluorescence microscopy scanners are capable of producing image datasets of sizes
up to several tens of gigabytes each and complex image processing operations is a
bottleneck for spot detection. In order to reduce the computational complexity, one
efficient way is to decrease the amount of samples by using image decimation and
perform spot detection in the downsampled data.

4.1.1 Decimation Factor
In image decimation, the decimation factor M used for downsampling is the ratio of
the input rate to the output rate. It means using M keeps only every Mth sample of
the input [21]. When image decimation is used, it should be noted that the uncer-
tainty where spots are located increases with the decimation rate. The fundamental
tradeoff in the choice of decimation rate is the resulting reduced computational com-
plexity versus the amount of data needed to accurately represent the locations of
spots. The decimation rate is empirically determined as the integer value closest to
10% of the average spot radius in pixels for the provided dataset.

4.1.2 Decimation Algorithms
An image can be downsampled with several different approaches. From a computa-
tional standpoint, the easiest decimation algorithm to implement is nearest neighbor
interpolation, where each pixel is given the value of the sample which is closest to
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it [22]. Nearest neighbor interpolation causes high-frequency signal components to
be misinterpreted, which results in an image with undesirable jaggedness which is
a form of distortion called aliasing. An example of jaggies are diagonal lines, which
shows a "stairway" shape in the nearest neighbor interpolated image [23]. There
are other decimation methods that can be used which suppress the aliasing to an
acceptable level. In [24], different image interpolation algorithms are compared for
speed and quality after downsizing. From this comparison, it can be concluded that
pixel area relation is not the fastest method, but it yields the best image quality and
avoids aliasing. Pixel area relation is therefore chosen as decimation method for the
component images.

4.2 Image Enhancement
To enhance the spot signal, histogram equalization can be used as described in Sec-
tion 2.2.1.1. As stated by Richard Kirk which is a contributor to Image J’s contrast
enhancer plug-in, histogram equalization can in some cases enhance meaningless
detail and hide important but small high-contrast features [25]. The proposed ap-
proach is to use his method, which is a modified version of the histogram equalization
algorithm where the square root is applied on the histogram values, resulting in ef-
fects that are less extreme. The output differences between the two methods are
visualized for an example image in Figure 4.2.

(a) Histogram equal-
ization

(b) Richard Kirk’s
histogram equalization

Figure 4.2: Histogram equalization and Richard Kirk’s histogram equalization ap-
plied on an example image.

4.3 Image Quantization
To reduce the computational complexity for spot detection, quantization can be
used. When an image is quantized, pixel amplitude values are replaced with ap-
proximate values taken from a finite set of allowed values [26]. One of the basic
choices in quantization is the number of discrete quantization levels to use. The
fundamental tradeoff in this choice is the resulting signal quality versus the amount
of data needed to represent each sample. A simple quantizer that can be used is
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the uniform quantizer, which is described thoroughly in [26], where the transition
and reconstruction levels are all equally spaced. Figure 4.3 show an example of the
effects of reducing the number of bits to represent the gray levels in an image by
using uniform quantization.

256 levels 32 levels 16 levels

8 levels 4 levels 2 levels

Figure 4.3: Quantizing a gray-scale image with different quantization levels by using
uniform quantization.

The chosen method is to decrease from 65535 gray levels (16-bits per pixel) to
256 gray levels (8-bits per pixel) by using uniform quantization. 8-bits are usually
sufficient to represent the intensity.

21



4. Image Preprocessing

22



5
Spot Detection

The input to the spot detection framework is the processed composite montage
image from the previous chapter. The composite image is first segmented with a
k-NN classifier, generating a classification map with estimates of where spots are
located. If the print type of the array image is double-sided, the sub-array regions
are detected. A global grid is generated by grid fitting and spots are finally detected
within each grid region.

Spot segmen-
tation with

k-NN classifier

Detect
sub-arrays

Generate
fitted grid

Detect spot
center within

each grid region

Figure 5.1: Overview flowchart of the spot detection framework.

5.1 Spot Segmentation with k-NN

The proposed spot segmentation approach is based on the methodology in [7]. The
input to the spot segmentation algorithm is the decimated histogram equalized
montage image from the image processing framework in the previous chapter. The
output of the algorithm is a classification map with the same size as the input. The
classification map contains, for each pixel, a likelihood that the pixel belongs to a
spot. In Figure 5.2, the classification map is visualized with white colors and the
likelihood is represented with their brightness. The darker the color, the lower is
the likelihood that the pixel contains spot. The spot segmentation can be divided
into the following steps:

1. The input image is sampled into smaller square regions (called tiles).
2. For each sampled tile, the most similar tiles of known spots and background

are retrieved from a training database by using k-NN query. The retrieved
data is processed and the likelihood that the tile from input image contains
spot is estimated.

3. The classification result of each tile is combined into a classification map.
4. The classification map is up-sampled to the same size as the input montage

image.
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Figure 5.2: Illustration of the spot segmentation procedure. a) Tiles T1, T2 and T3
are generated from the input image. b) The most similar tiles are retrieved from the
training database for each sample tile by using k-NN query (k = 3). The likelihood that
the sample tile contains spot is estimated and the results of each tile is combined. c)
Classification map, which contains, for each pixel, the likelihood that the pixel belongs
to a spot. The higher intensity, the more likely.
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5.1.1 Sampling of Input Image
The input image is divided into regular square tile regions with an overlap between
the tiles. The tile size 32 × 32 px with a step size s = 10px, resulting in an overlap
of 22 px is chosen. Moreover, a zero padding z = 16px (half the tile size) is used for
straightforward implementation of the upsampling process. The sampling procedure
is illustrated in Figure 5.3.

16px

10px
32px

22px

Figure 5.3: Segmentation of the input image into tiles of size 32 x 32px. An overlap
of 22px is used which is achieved by moving the region with a step size s = 10px. A
zero-padding z = 16px (half the tile size) is used.

By using this sampling approach, it can happen that a tile may contain both spot and
background regions. As stated in [7], it should not be an issue since the similarities
of the retrieved tiles from the database are combined together. Overlaps are used
in order to reduce uncertainties in the resulting classification map. The tile size is
determined empirically in such way that they contain enough characteristic features
for classification of spots and background. A too small sample would tend to not
contain enough visual features and the amount of samples would be rather high.
A too large tile would contain more than one spot or too many different features,
which could decrease the classification performance.

5.1.2 Classification with k-NN
For each generated tile, the k most similar training images are retrieved from the
training database by using k-NN query as in [7]. Let Ti denote the ith tile from
the image sampling. The output from the k-NN(Ti , k) query contains k dictionaries
{Di

1 , D
i
2 , . . . , D

i
k}. Each output dictionary Di

j can be written in a form of a set Di
j

= {tij , di
j , c

i
j}, where tij represents the training image from the training database, di

j

denotes distance to the sampled tile image Ti and ci
j ∈ [0 , 1] is the class to which

the sample tij belongs, where 0 is background and 1 is spot. The distance can be
calculated as
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di
j(Ti , t

i
j) =

h∑
x=0

w∑
y=0
|Ti(x , y)− tij(x , y)| , (5.1)

where h and w are the tile image height and width [10]. A simple example using
pixel-wise differences is given in Figure 5.4.
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→ 437︸︷︷︸
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Figure 5.4: A simple example of using pixel-wise differences to compute the distance
in Equation 5.1. The two images are subtracted element-wise and all differences are
added to a single number.

Based on each output dictionary {tij , di
j , c

i
j}, the likelihood pi

S that the sampled tile
Ti contains spot is determined as

pi
S =

k∑
j=0

ci
j

k
. (5.2)

With this definition, the prediction pi
S can only have a value ∈ [0, 1].

5.1.3 Classification Map
When all likelihoods are computed, a classification image can be generated from the
likelihood values. Since a step size > 1 is used, the size of the classification map will
be smaller than the input image. Up-sampling with nearest-neighbor interpolation
is used, which is replacing every pixel with multiple pixels of the same color. The
up-sampling factor U is chosen to be equal to the step size s. With this method,
the resulting up-sampled classification map will then be of same size as the input
image.

5.2 Sub-array Detection
If the screened array is a double-sided array with two sub-arrays, it is satisfactory
to separate those sub-arrays and perform spot detection within each sub-array and
merge the result together after detection. The proposed approach to detect sub-
arrays is visualized in Figure 5.5.
The first step is to threshold the classification image with Otsu’s method, generat-
ing a binary image. In the binary image, all connected components are computed
with 4-connectivity. The components whose width and height ratio is T% larger or
smaller than 1 are removed and the centroid for each component that is left is com-
puted. K-means clustering is applied on the centroid coordinates and two clusters
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Figure 5.5: Overview flowchart of the sub-array detection.

are generated, one for the left and one for the right sub-array. From the k-mean
clustering result, the classification image can be cropped into two separated images
with one sub-array in each image.

5.2.1 Thresholding
In order to identify the two sub-arrays, the first step in this approach is applying
Otsu’s thresholding on the classification map, which returns a binary image where
the spots are segmented from background. Otsu’s method is described in Section
2.3.1.

5.2.2 Connected Components
In the thresholded binary image, there are multiple connected regions which are
composed of foreground pixels. Those connected regions can be grouped into in-
dividual objects, called connected components {C0 , C1 , . . . , Cn−1 , Cn}, where each
component object Ci holds all pixel coordinates of its connected pixels.
Two foreground pixels p and q are said to be connected pixels in Ci if there is a
sequence of foreground pixels (p0 , p1 , pn) of Ci where p0 = p , pn = q and pi is a
neighbor of pi−1 for all i = 0 , 1 , . . . n [27, p. 2].
Pixels can be connected in multiple different ways and pixel connectivity defines the
pixel neighbourhood, which is the set of all touching pixels. In Figure 5.6, the effects
of different pixel connectivity on pixel neighborhood are shown.

p

(a) 4-connectivity,
which is the neighbour-
hood with only directly
touching pixels.

p

(b) d-connectivity,
which is the neighbour-
hood with the pixels
that do not touch it, i.e
the diagonal pixels.

p

(c) 8-connectivity,
which is the
union of the 4-
neighbourhood and
the d-neighbourhood.

Figure 5.6: Different pixel connectivity types.
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A pretty straightforward method to find connected components is the recursive algo-
rithm. It takes a pixel and checks all its neighbours for connectivity. The drawback
with this method is that it is inefficient and the computational complexity grows
rather quickly with the image size [28]. Details of this algorithm is therefore not
covered. A more promising method is the classical algorithm designed by Rosenfeld
and Pfaltz in 1966. It consists of two passes. In its first pass, it iterates through all
pixels. For each current pixel, it checks the pixel to the left and above. By using
these two pixel’s labels, it labels the current pixel. In the second pass, it refines the
result by removing multiple labels for connected regions [28]. The classical algorithm
is described more thoroughly in [27, p. 4].
To generate the set of connected component C = {C0 , C1 , . . . , Cn−1 , Cn} in the
thresholded binary image, the proposed method is to use an already developed
version of the classical algorithm, found in an Open-CV library [29]. This algorithm
is used with 4-connectivity as pixel connectivity.

5.2.3 Filter Components
Among the connected components in C, there might be outliers that are not similar
to the size and shape of the experiment spots. A perfect circular spot has a width
and height ratio equal to 1. To remove component outliers which definitely not are
spots, one way is to filter out all components whose width and height ratio is outside
a certain filtering range Rf = [T−1

f , Tf ], where Tf ∈ [1 ,∞) is a threshold parameter.
By putting a bounding box around each component, the horizontal and vertical size
of each component can be computed. The bounding box coordinates of a component
Ci can simply be calculated as

xi
1 = min(Ci

x) ,
xi

2 = max(Ci
x) ,

yi
1 = min(Ci

y) ,
yi

2 = max(Ci
y) ,

(5.3)

where Ci
x are all x-coordinates of the components and Ci

y are all y-coordinates of
the components. The height and width of a component Ci can be calculated from
the bounding box coordinates as

hi = xi
2 − xi

1 ,

wi = yi
2 − yi

1 .
(5.4)

5.2.4 Compute Centroids
In computer vision and related fields, image moments are commonly used to describe
objects after segmentation. Examples of object properties that can be found with
image moments are object area, its total intensity, its centroid and orientation [30].
In this case, image moments can be used in order to compute the centroid coordinate
ci of each connected component Ci.
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According to the OpenCV documentation in [31], the spatial moments mji in a
gray-scale image I(x , y) can be computed as

mij =
∑

x

∑
y

xiyjI(x , y) , (5.5)

and the centroids as

x̄c = m10

m00
, ȳc = m01

m00
. (5.6)

The proposed method is to use the pixel data from each connected component as
input to equation (5.5) and calculate the centroid coordinates for each component
as in equation (5.6).

5.2.5 Separate Sub-Arrays with K-mean Clustering
When the centroid coordinates are computed for the components that are left after
filtering, the fundamental challenge is to separate the component centroids into two
different groups, one for each sub-array.
One method that can be used is K-means clustering, which is a centroid based
clustering algorithm. K is an input parameter and represents the number of clusters,
which are two in this case. Each centroid among the data of centroids is assigned to
a cluster center with the smallest distance to it. There are two key steps in the task
of clustering, 1) find the cluster centers and 2), assign each centroid element to the
cluster based on its distance. The two steps are iterated until the algorithm converge
to a local optimum [32]. The proposed method is to use an already developed K-
means clustering algorithm, which is thoroughly described in [33]. When the clusters
have been found, a separation coordinate ys can be calculated, that horizontally
separates the sub-arrays in a classification map. The separation coordinate can be
calculated as

ys = max(C1
y ) +

max(C1
y ) + max(C2

y )
2 , (5.7)

where C1
y are all y-coordinates of the centroids in the first cluster and C2

y are all
y-coordinates of the centroids in the second cluster.
Figure 5.7 shows an example when K-means clustering is being applied on the cen-
troids found in a classification map.

5.3 Grid Fitting
The input to the proposed grid fitting algorithm is a classification map (or two sub-
classification maps from K-means clustering) and the output is a fitted grid with
one experiment spot in each sub-grid. The gridding approach is first to calculate
the intensity profiles of the classification image. From the intensity profiles, peaks
and valleys are detected, where peaks indicates regions where spots are located and
valleys indicates regions between spots. The detected valleys are refined by centering
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Figure 5.7: The left figure is a classification map of a double-sided array. The right
figure is the result of k-means clustering centroids in filtered connected components.
The k-mean clustering returns two labeled clusters, where the first cluster is colored
green and the second colored red. The blue line is the horizontal separation coordinate
where the two clusters are separated and its position is exactly in between the right
most centroid in the first cluster and left most centroid in the second cluster.

them between peaks and valley outliers are removed. The final step is to add missing
valleys, if any, and generate a global grid from the valley coordinates.

5.3.1 Intensity Profiles
In MATLAB [34], intensity profiles can be used to analyze the intensity values
acquired in regularly spaced points along a line segment in an image. This approach
can be applied for detection of spot regions by using vertical and horizontal line
segments and compute the mean intensity of each line segment. The mean intensity
of a horizontal row x and vertical column y in an image can be calculated as

x̄(x) =
w∑

y=0

I(x , y)
w

, ȳ(y) =
h∑

x=0

I(x , y)
h

, (5.8)

where I(x , y) is the image, h is the image height and w is the image width. The
mean intensity profiles X̄ and Ȳ of an image are calculated by computing x̄(x) for
all x ∈ [0 , h] and ȳ(y) for all y ∈ [0 , w]. In Figure 5.8, the mean intensity profiles
of an example classification map are plotted.

5.3.2 Peak and Valley Detection
In the classification map image, the spot regions can be extracted from the mean
intensity profile arrays X̄ and Ȳ by detecting peaks and valleys. As stated by
Eli in [35], a common peak detection approach is the zero-derivative method, but
it can yield false detection due to accidental zero-crossings of the first derivative.
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Figure 5.8: Mean intensity profiles calculated over columns and rows in a classifica-
tion map image.

Another approach is smoothing the input with a low-pass filter, but it usually kills
the original signal at the same time. The proposed method is to use Eli’s approach
for peak and valley detection, which is based on the fact that a peak has lower points
around it. In his approach, a point is considered as a peak coordinate (x+ , y+) if
it has the maximal value and was preceded (to the left) by a value lower than a
difference threshold ∆. The opposite goes for valleys, where a point is considered
as a valley coordinate (x− , y−) if it has the minimal value and was preceded by a
value higher than ∆. Let’s denote the set of detected peak coordinates as X+ =
{x+

0 , x
+
1 , . . . , x

+
n }, Y + = {y+

0 , y
+
1 , . . . , y

+
n } and the set of valley coordinates as

X− = {x−
0 , x

−
1 , . . . , x

−
m}, Y − = {y−

0 , y
−
1 , . . . , y

−
n }. By applying the proposed peak

and valley detection method on the mean intensity profiles in Figure 5.8, valley
coordinates are detected as in Figure 5.9.
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Figure 5.9: Mean intensity profiles calculated over columns and rows in the classifi-
cation image in Figure 5.8. The local minimums are plotted as red points. As can be
seen, an outlier is detected in X− and the local minimums are not perfectly centered
between between the peaks.

As can be seen in Figure 5.9, there is a detected outlier (the left most minimum) in
X−, which has to be removed. Furthermore, the local minimums are not perfectly
centered between between the peaks. If the non-centered minimums would be used
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for generating the global grid, there is a chance that sub-grids would intersect with
misplaced spots. Is is therefore satisfactory to refine the local minimums and center
them in between the peaks as described in the following section.

5.3.3 Refinement of Valley Coordinates
The proposed refinement procedure is to first remove outliers in X− and Y − and
center all detected local minimums in between the peaks in X+ and Y +. In Figure
5.10 is an example when this proposed method is applied on the detected valleys in
Figure 5.9.
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Figure 5.10: The local minimums are plotted as red points. Here, outliers are
removed and the minimums are centered in between the peaks. However, two local
minimums are not detected (the very first valley in both X̄ and Ȳ .

5.3.3.1 Remove Outliers

Outliers can be detected by analyzing the distances between valley coordinates in
X− and Y −. If the distance between a point to another is larger than the median
distance times a distance threshold Td , the point is detected as an outlier and is
removed. The median distances d̄x and d̄y in X− and Y − can be calculated as

d̄x = median({x−
1 − x−

0 , . . . , x
−
n − x−

n−1}) ,
d̄y = median({y−

1 − y−
0 , . . . , y

−
n − y−

n−1}) .
(5.9)

5.3.3.2 Center Local Minimums

Each local minimum that is left after removing all outliers, is centered in between
its two neighboring peaks, except for the very last and very first valleys that only
have one neighboring peak. For the case when a local minimum has two neighboring
peaks, the peak indices are calculated as the index of the maximum value one median
distance backwards and one median distance forwards of the local minimum. To
give an example, for the local minimum x−

1 , the index i0 of the maximum value in
X̄[x−

1 − dx : x−
1 ] and the index i1 of the maximum value in X̄[x−

1 : x−
1 + dx] are

computed. x−
1 is then replaced with the index that is in between those two indices,

which is calculated as
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inew = i0 + round
(
i1 − i0

2

)
. (5.10)

For the case when a local minimum only has one neighboring peak, there are two
cases: (1) when the neighboring peak has a lower index than local minimum and
(2) when the neighboring peak has a higher index than the local minimum. For
case (1), the new local minimum is calculated as the the median distance subtracted
from the index i1 of the maximum value one median distance backwards of the local
minimum as

inew = i1 − d̄x . (5.11)

Analogously for case (2), the new local minimum is calculated as the the median
distance added to the index i0 of the maximum value one median distance forwards
of the local minimum as

inew = i0 + d̄x . (5.12)

5.3.4 Add Missing Valleys
The final step is adding missing valley points that were not detected, if any. The
proposed method for this is to use the set of edge valleys {x−

0 , x
−
n } and {y−

0 , y
−
n } and

search for peaks in the regions defined by rx0 = [x−
0 − d̄x , x

−
0 ] , rx1 = [x−

n , x
−
n + d̄x]

and ry0 = [y−
0 − d̄y , y

−
0 ] , ry1 = [y−

n , y
−
n + d̄y]. The maximum intensity value is

calculated in each region and the region that has the largest maximum is used for
calculating the new valley points. The new valley point is calculated as in equation
(5.11) if the first region was most significant or as in equation (5.12) if the second
region was most significant.
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Figure 5.11: The local minimums are plotted as red points. Here, the missing
minimums in Figure 5.10 are added.

When all missing local minimums are found, a global grid can be generated from
the valley coordinates as the example in Figure 5.12.

33



5. Spot Detection

0 500 1000 1500 2000 2500 3000 3500

0

200

400

600

800

1000

1200

Figure 5.12: An example of a gridded classification map.

5.4 Spot Detection in Grid Regions
The final step in the spot detection framework is to threshold each grid region with
Otsu’s method and compute the centroid coordinate of the connected component
within each thresholded image and use the centroid coordinate as spot coordinate.
If the print type is double-sided, the previously computed centroids are used to avoid
re-computation. In some cases, more than one connected component might be found
in a grid region, as the example in Figure 5.13.

(a) An example grid
region in a classifica-
tion map.

(b) The grid region
thresholded with
Otsu’s method.

(c) Two connected
components are found
in the grid region,
marked with red and
blue labels.

Figure 5.13: An example with multiple connected components in a grid region.

Multiple connected components can be found in some cases when the spots are dis-
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placed, when the alignment of grid regions are not perfectly centered between spots
or when contamination and distortions are not successfully removed by the k-NN
segmentation. The fundamental problem is to choose the correct component among
the set of found components. The proposed method for selection is to compare
the height and width of each component and pick the component whose size is the
closest to the median size of all global components that are found in a classification
map.

5.4.1 Compute Spot Radius

When all computed centroid coordinates are assigned to all spots, a global spot
radius is calculated as

r = round
(
w̃ + h̃

2

)
, (5.13)

where w̃ is the median component width, h̃ is the median component height and
round(·) rounds the element to the nearest integer. An example of a spot detection
result from the grid in Figure 5.12 can be seen in Figure 5.14.
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Figure 5.14: Spot detection result of the classification map in Figure 5.12.

5.4.2 Generate Spot Images from Global Array Image

When the centroids are computed as well as the spot radius, each experiment spot
can be extracted and saved in a spot image. The data in each spot image has to
be read from the component images in the array image, which can be achieved by
using the methodology in Section 3.2.2. Before a spot image can be extracted, the
global bounding box coordinates of a spot has to computed, which can be done as
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xi
1 = round((Ci

x − r · λ) ·M) ,
xi

2 = round((Ci
x + r · λ) ·M) ,

yi
1 = round((Ci

y − r · λ) ·M) ,
yi

2 = round((Ci
y + r · λ) ·M) ,

(5.14)

where M is the decimation rate the array image was downsampled with and λ is a
spot extension parameter. In cases where the centroids are not perfectly centered,
a spot extension λ > 1 can be used to make the spots fit inside the spot images. A
drawback with a large λ is larger spot images which is costly, λ should therefore be
chosen as close to 1 as possible.
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6
Results

In this chapter, the final framework structure is presented as well as a detailed evalu-
ation of the spot segmentation and spot detection performance in various measures.

6.1 Final Framework Structure
The detection program is developed in Python and consists of the data structur-
ing framework, the image processing framework and the spot detection framework
described in Chapters 3, 4 and 5. An overview flowchart of the whole framework
structure is illustrated in Figure 6.1.

Regex parsing
file names

Data struc-
turing

Image dec-
imation

Image en-
hancement

Image quan-
tization

Spot segmen-
tation with

k-NN classifier

Detect
sub-arrays

Generate
fitted grid

Detect spot
center within

each grid region

Generate
spot images

Figure 6.1: Overview flowchart. The black arrows indicates in which order each step
is processed. The blue boxes is the data structuring framework, the green is the image
processing framework and the red is the spot detection framework.

6.2 Chosen Parameter Values
All parameter values used throughout this thesis are found in Table 6.1.

Parameter Description Value
M10x Decimation rate 25
k k-NN hyperparameter 10
s Sampling step size 10 px
z Sampling zero padding 16 px
Tf Filter threshold 1.6
Td Distance threshold 1.5
∆ Difference threshold 2
λ Spot extension 1.4

Table 6.1: Chosen design parameters.

The decimation rateM was chosen as the integer value closest to 10% of the average
spot radius in pixels for Persomics’ dataset, which was deemed to be sufficient in
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order to represent the locations of spots. For component images screened at 10X,M
was determined as a value of 25 since the average spot radius was close to 250px. No
rigorous test were performed in order to find an optimal k-NN hyperparameter or
filter threshold Tf . The sampling step size s was chosen as 10px so the classification
maps had at least five sample regions over each spot diameter, which turned out to be
sufficient data for gridding. A step size smaller than 10 did not yield any significant
improvement on the spot detection result. Moreover, the distance threshold Td was
chosen as a ratio greater than (but close to) the maximum offset from the median
distances between rows and columns in array images. In cases where the threshold
was lower than the maximum offset, true valleys were filtered out in arrays with large
rows or columns offsets. Furthermore, the difference threshold ∆ was empirically
determined as a value of 2, which was the ∆ resulting in the highest amount of
true valleys. A too low ∆ resulted in many falsely detected valleys and a too high
one resulted in many missing true valleys. The effects of choosing a few different
difference thresholds are presented in Appendix B.1. Finally, the spot extension λ
was set to 1.4 which was enough to make poorly detected spots to fit inside the
generated spot images.

6.3 Training Database
The tile images in the training database were semi-automatically generated in the
following way. A computer program generated random positions and extracted tiles
with the size of 32 x 32 px from three different downsampled and enhanced array
images (from print p67, p68 and p74). Each tile whose region overlapped more
than 80% with a spot or background area in the ground truth was included into the
training database. The ratio of 80% was empirically determined. Some tiles were
manually discarded that contained contamination or over-exposed regions. After this
process, 81 background tiles and 75 spot tiles were stored in the training database.
The amount of tiles turned out to be sufficient and no rigorous test were performed
to find a minimum size of the training database. Some of the tiles that were chosen
are visualized in Figure 6.2.

6.4 Spot Segmentation Performance
By viewing actual segmentations from array images in Persomics’ dataset, a better
understanding of the results might be provided. A somewhat good segmentation is
found in Figure 6.3a. Here it can be seen that all spots are successfully segmented.
There is, however, an edge distortion that is interpreted as a spot which can be
seen in the left part of the image. There is also a small contamination in the
lower right part that is segmented as a spot. Most of the segmentations of array
images in Persomics’ dataset yields similar performance as this example, but there
are a few outliers. An incredibly poor segmentation is found in Figure 6.3b. Here,
about a quarter of the spots are not segmented at all and many spots are barely
segmented. Furthermore, there are features and contamination in the background
that are interpreted as spots. As can be seen in the original image, the image quality
of the spots can vary a lot, where some spots are barely visible to the human eye
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(a) (b)

Figure 6.2: Some examples of images stored in the training database: (a) tiles of
spot class and (b) tiles of background class.

and some spots are smeared or noisy.

6.5 Spot Detection Performance
The detection performance of the spot detection is evaluated by applying it to the
full Persomics image set of 68 array images and comparing the results to a ground
truth. The performance is also compared with the current detection framework
developed by Persomics, that was presented in related work. An experiment spot
is counted as detected if a predicted spot circle covers at least 80% of the spot, if
less, it is counted as not detected. Moreover, a predicted spot is counted as correct
prediction if 100% of it covers an experiment spot. An example of how predictions
are evaluated is illustrated in Figure 6.4.

Figure 6.4: Examples of spot detection predictions. In the blue circles to the left,
the spots are counted as detected and in the red circles to the right, the spots are
counted as both detected and correctly predicted.

Based on this, the precision of the spot detection is computed and the results are
presented in Table 6.2 and Figure 6.5. An example of a good and a poor spot
detection is provided in Figure 6.3a and 6.3b respectively.
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(a) An example array (1) with good segmentation (2) and detection (3).

(b) An example array (1) with poor segmentation (2) and detection (3).

Figure 6.3: Segmentation and detection results for a p67 (a) and a p83 array (b).
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Print number Total Spots Detected spots Correct prediction
Our method Old method Our method Old method

p67 512 512 512 507 448
p68 1280 1280 0 1247 0
p69 512 512 0 501 0
p70 2560 2560 1605 2554 1585
p71 448 448 448 448 375
p74 3072 3072 2304 2545 2263
p76 320 320 320 320 257
p79 64 63 44 36 16
p80 800 641 27 637 4
p81 320 320 62 316 7
p82 768 768 0 766 0
p82-d 3072 3072 0 2999 0
p83 224 191 181 73 18
p84 3040 3040 1938 3008 1684
p84-d 6080 6080 3912 6057 2561
p85 3648 3648 1368 3633 1023
Sum 26720 26527 (99.27%) 12721 (47.61%) 25647 (95.98%) 10241 (38.33%)

Table 6.2: Summary of the detection results. "Our method" is the framework pre-
sented in this thesis and "Old method" is the framework developed by Persomics.
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Figure 6.5: Summary of the detection results. "Our method" is the framework
presented in this thesis and "Old method" is the framework developed by Persomics.

Framework Time [ms] per spot
Our method Old method

Data structuring 0.021 –
Image decimation 22.53 –
Image enhancement 1.18 2.44
Image quantization 0.094 0.094
Spot segmentation 28.90 1.20
Sub-array detection 2.08 –

Grid fitting 8.83 –
Spot detection 0.54 121.35

Generate image files 56.67 908.73

Table 6.3: Average run-time per spot for different frameworks. "Our method" is our
framework and "Old method" is the framework developed by Persomics.
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6.6 Computational Performance
The computational performance of each framework is evaluated by computing the
average run-time on the array images per spot. The computational run-time results
are presented in Table 6.3 for both our framework and the framework developed by
Persomics.
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7
Discussion and Conclusions

The following chapter describes and presents future improvements and conclusions
about the study.

7.1 Discussion and Future Improvements

Even though the methodology provided in this study is fully functional for many
array images, there are still ways to improve the spot segmentation and spot detec-
tion. One improvement would be to add more tiles from different array images to
the training database to improve the segmentation results. That would, however,
result in larger computational complexity of the segmentation. Due to this, it is
worth considering using another classifier that might have a better computational
performance, such as deep neural networks that was brought up in related works.
Neural networks are very expensive to train, but once trained, it is relatively cheap
to classify tiles, which clearly is an advantage. To improve the spot detection, one
way would be to tune the design parameters even further in order to find optimal
values.
Moreover, as can be seen from the results, two of the most computationally intensive
parts of the detection program is the spot segmentation and image decimation. As
one easily can see, both approaches processes images that are independent of the
others, which means that the processing could be done in parallel to improve the
computational performance.
Another remark is that the developed framework cannot handle disoriented array
images that are rotated, which is one of the problems specified in the research
questions. A disadvantage with single-sided print type is that orientation cannot
be detected and compensated for, which is why a solution to this problem was not
covered in this study. To detect orientation, orientation markers have to be added
to the print map, which are distinguishable spot patterns (for instance intentionally
removed spots and varying spacings between spots). This have been discussed with
the company and will be added to upcoming array plate prints. An advantage with
the double-sided print type is that it does not need any orientation markers which
is due to the rotation symmetry of spots in the print map.
Finally, it is worth evaluating the sub-array detection thoroughly on more image
data since it was only tested on nine double-sided arrays, which is insufficient in
order to draw any accurate conclusions.
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7. Discussion and Conclusions

7.2 Conclusions
In this study, a program for spot detection in fluorescence microscopy images has
been designed, implemented and tested. It has been shown that the spot detection
program can handle component images of different magnification as input, as well
as outperforming the currently used method, which relies on pre-saved annotation
coordinate data for spots. The framework is capable of detecting sub-arrays, but it
cannot handle disoriented array images that are rotated. Furthermore, it manages
to segment spots quite well, but at the price of a relatively high computational
complexity since classifying a tile requires a comparison to every single tile in the
training database. The spot detection fails for some cases as a result of a poor
segmentation.

44



Bibliography

[1] Persomics, Home page, http://www.persomics.com, accessed: 2017-03-14.
[2] Persomics, Build research tools for cutting-edge biotech, http://www.

chalmers.se/en/departments/s2/education/masters-programmes/
Documents/Build%20research%20tools%20for%20cutting-edge%
20biotech.pdf, accessed: 2017-01-28.

[3] Persomics, Persomics Lab Protocol Template, http://www.persomics.com/
hubfs/Documents/Persomics_Protocol_Template.pdf, accessed: 2017-
05-09.

[4] I. Smal, M. Loog, W. Niessen, E. Meijering, “Quantitative comparison of spot
detection methods in fluorescence microscopy”, IEEE Trans. Med. Imag., vol.
29, no. 2, pp. 282–301 (Feb. 2010).

[5] K. Prasanna, W. Dick, A. Thomas, “Threshold selection using minimal his-
togram entropy difference”, Opt. Eng., vol. 36, no. 7,pp. 1976–1981 (Jul. 1997).

[6] N. Otsu, “A threshold selection method from gray-level histograms”, IEEE
Trans. Syst., Man, Cybern., vol. 9, no. 1, pp. 62–66 (Jan. 1979).

[7] R. Stoklasa, P. Matula, “Road Detection Using Similarity Search”, In Proceed-
ings of 2nd International Conference on Robotics in Education (RiE 2011).
Vienna, Austria, September, pp. 95-102. INNOC - Austrian Society for Inno-
vative Computer Sciences. (2011).

[8] A. Gavlasová, A. Procházka, M. Mudrová, “Wavelet Based Image Segmen-
tation”, Proceedings. of 14th Annual Conference Technical Computing 2006,
pages GPM/1-7 (Jan. 2006).

[9] E. Shelhamer, J. Long, T. Darrell, “Fully Convolutional Networks for Semantic
Segmentation”, CoRR, abs/1411.4038 (May. 2016).

[10] A. Karpathy, Image Classification: Data-driven Approach, k-Nearest Neigh-
bor, train/val/test splits, http://cs231n.github.io/classification/,
accessed: 2017-05-08.

[11] L. Rueda, V. Vidyadharan, “A Hill-Climbing Approach for Automatic Gridding
of cDNA Microarray Images”, IEEE Transactions on Computational Biology
and Bioinformatics, 72–83. 10.1109/TCBB (Mar. 2006).

[12] J. Angulo, J. Serran, “Automatic Analysis of DNA Microarray Images Us-
ing Mathematical Morphology”, Bioinformatics 19(5):553–562. 10.1093/bioin-
formatics/btg057 (Apr. 2003).

[13] L. Rueda, I. Rezaeian, “A fully automatic gridding method for cDNA microar-
ray images”, BMC Bioinforma. 12:1–17 (2011).

[14] G. Rafael, W. Richard, Digital Image Processing, 3rd Edition, Prentice-Hall,
2008.

45

http://www.persomics.com
http://www.chalmers.se/en/departments/s2/education/masters-programmes/Documents/Build%20research%20tools%20for%20cutting-edge%20biotech.pdf
http://www.chalmers.se/en/departments/s2/education/masters-programmes/Documents/Build%20research%20tools%20for%20cutting-edge%20biotech.pdf
http://www.chalmers.se/en/departments/s2/education/masters-programmes/Documents/Build%20research%20tools%20for%20cutting-edge%20biotech.pdf
http://www.chalmers.se/en/departments/s2/education/masters-programmes/Documents/Build%20research%20tools%20for%20cutting-edge%20biotech.pdf
http://www.persomics.com/hubfs/Documents/Persomics_Protocol_Template.pdf
http://www.persomics.com/hubfs/Documents/Persomics_Protocol_Template.pdf
http://cs231n.github.io/classification/


Bibliography

[15] xytrax, Regular Expressions - User Guide, http://www.zytrax.com/tech/
web/regex.htm#brackets, accessed: 2017-05-10.

[16] Python, 6.2. re - Regular expression operations, https://docs.python.org/
3/library/re.html, accessed: 2017-05-10.

[17] Python, 5. Data Structures, https://docs.python.org/2/tutorial/
datastructures.html, accessed: 2017-05-18.

[18] Python, 9. Classess, https://docs.python.org/2/tutorial/classes.
html, accessed: 2017-05-18.

[19] Python, 8.7. sets — Unordered collections of unique elements, https://docs.
python.org/2/library/sets.html, accessed: 2017-05-18.

[20] Wikipedia, Floor and ceiling functions, https://en.wikipedia.org/wiki/
Floor_and_ceiling_functions, accessed: 2017-05-18.

[21] Wikipedia, Decimation (signal processing), https://en.wikipedia.org/
wiki/Decimation_(signal_processing), accessed: 2017-05-18.

[22] J. A. Parker, R. V. Kenyon, D. E. Troxel, “Comparision of Interpolating Meth-
ods for Image Resampling”, IEEE Transactions on Medical Imaging, vol. MI-2,
NO. 1 (Mar. 1983).

[23] Wikipedia, Image scaling, https://en.wikipedia.org/wiki/Image_

scaling, accessed: 2017-05-16.
[24] A. Tanbakuchi, Comparison of OpenCV Interpo-

lation Algorithms, http://tanbakuchi.com/posts/
comparison-of-openv-interpolation-algorithms/, accessed: 2017-
05-13.

[25] ImageJ, ContrastEnhancer plugin, https://imagej.nih.gov/ij/
download/tools/source/ij/plugin/ContrastEnhancer.java, accessed:
2017-02-19.

[26] S. R. Kulkarni, Lecture Notes for ELE201 Introduction to Electrical Signals and
Systems: Sampling and Quantization (1999), https://sisu.ut.ee/sites/
default/files/imageprocessing/files/digitizn.pdf, accessed: 2017-
05-06.

[27] T. Kong, A. Rosenfeld, Topological Algorithms for Digital Image Processing,
North Holland, 1996.

[28] A. Shack, Connected Component Labelling), http://aishack.in/
tutorials/connected-component-labelling/, accessed: 2017-05-18.

[29] OpenCV, Structural Analysis and Shape Descriptors, http://docs.opencv.
org/3.1.0/d3/dc0/group__imgproc__shape.html, accessed: 2017-05-16.

[30] Wikipedia, Image moment, https://en.wikipedia.org/wiki/Image_

moment, accessed: 2017-05-02.
[31] OpenCV, Structural Analysis and Shape Descriptors, http://docs.opencv.

org/3.0-beta/modules/imgproc/doc/structural_analysis_and_

shape_descriptors.html, accessed: 2017-05-02.
[32] L. Miao, “Comparative Analysis of Two Clustering Algorithms: K-means and

FSDP (Fast Search and Find of Density Peaks)”, SJSU ScholarWorks, Master’s
Projects. Paper 427 (2015).

46

http://www.zytrax.com/tech/web/regex.htm#brackets
http://www.zytrax.com/tech/web/regex.htm#brackets
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/2/tutorial/datastructures.html
https://docs.python.org/2/tutorial/datastructures.html
https://docs.python.org/2/tutorial/classes.html
https://docs.python.org/2/tutorial/classes.html
https://docs.python.org/2/library/sets.html
https://docs.python.org/2/library/sets.html
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Decimation_(signal_processing)
https://en.wikipedia.org/wiki/Decimation_(signal_processing)
https://en.wikipedia.org/wiki/Image_scaling
https://en.wikipedia.org/wiki/Image_scaling
http://tanbakuchi.com/posts/comparison-of-openv-interpolation-algorithms/
http://tanbakuchi.com/posts/comparison-of-openv-interpolation-algorithms/
https://imagej.nih.gov/ij/download/tools/source/ij/plugin/ContrastEnhancer.java
https://imagej.nih.gov/ij/download/tools/source/ij/plugin/ContrastEnhancer.java
https://sisu.ut.ee/sites/default/files/imageprocessing/files/digitizn.pdf
https://sisu.ut.ee/sites/default/files/imageprocessing/files/digitizn.pdf
http://aishack.in/tutorials/connected-component-labelling/
http://aishack.in/tutorials/connected-component-labelling/
http://docs.opencv.org/3.1.0/d3/dc0/group__imgproc__shape.html
http://docs.opencv.org/3.1.0/d3/dc0/group__imgproc__shape.html
https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment
http://docs.opencv.org/3.0-beta/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html
http://docs.opencv.org/3.0-beta/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html
http://docs.opencv.org/3.0-beta/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html


Bibliography

[33] scikit learn, K-Means clustering, http://scikit-learn.org/stable/
modules/generated/sklearn.cluster.KMeans.html, accessed: 2017-05-
16.

[34] MATLAB, Intensity Profile of Images, https://se.mathworks.com/help/
images/intensity-profile-of-images.html, accessed: 2017-05-02.

[35] E. Billauer, peakdet: Peak detection using MATLAB, http://billauer.co.
il/peakdet.html, accessed: 2017-03-18.

47

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://se.mathworks.com/help/images/intensity-profile-of-images.html
https://se.mathworks.com/help/images/intensity-profile-of-images.html
http://billauer.co.il/peakdet.html
http://billauer.co.il/peakdet.html


Bibliography

48



A
Implementation in Python

A.1 Data Structuring
Following Python code parses component image file names from Persomics and stores
the metadata in a Component class.

1 class Component:

2 def __init__(self, filename, name, file_type, col, row, channel):

3 self.file = filename

4 self.name = name

5 self.file_type = file_type

6 self.col = col

7 self.row = row

8 self.channel = channel

9

10 regex = ’(?P<Row>[A-Za-z]{1,*})(?P<Col>[0-9]{1,2})_0’ +

11 ’_(?P<Channel>[0-9])_RFP_001\.(?P<Type>[A-Z]{3})’

12

13 cols, rows, channels, components = [], [], [], []

14 for file in files:

15 match = re.search(regex, file)

16 cols.append(match.group(’Col’))

17 rows.append(match.group(’Row’))

18 channels.append(int(match.group(’Channel’)))

19

20 name = match.group(’Name’)

21 file_type = match.group(’Type’)

22

23 col_unique = sorted(set(cols))

24 row_unique = sorted(set(rows))

25 channel_unique = sorted(set(channels))

26

27 col_indices = [col_unique.index(c) for c in cols]

28 row_indices = [row_unique.index(r) for r in rows]

29 channel_indices = [channel_unique.index(ch) for ch in channels]

30

31 for i in range(0, len(files)):

32 components.append(Component(filename, name, file_type, col, row, channel))
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A. Implementation in Python

A.2 Read from Component Images
To read data from a set of component images in Python, one way is to create an
empty 2D-array image with height and width of the region of interest calculated as

hroi = Xe −Xs + 1 wroi = Ye − Ys + 1 (A.1)

where 1 is added to the height and width due to indexing. The next step is then to
loop though all the indices in R and C, read the component images that have those
indices, and with the help of Equation 3.4 and 3.5 extract the data and store it into
the empty 2D-array image. Following Python code reads the region of interest from
any set of component images, where the input component_paths is a 2D-array of
file paths to the component images:

1 import numpy as np

2 import tifffile

3 from math import floor

4 def read_component_data(X_s, X_e, Y_s, Y_e, w, h, component_paths):

5 r_s, r_e = int(floor(X_s / h)), int(floor(X_s / h))

6 c_s, c_e = int(floor(Y_s / w)), int(floor(Y_e / w))

7 h_roi, w_roi = X_e - X_s + 1, Y_e - Y_s + 1

8 img = np.zeros((w_roi, h_roi))

9 x_s_roi = 0

10 for row in range(r_s, r_e + 1):

11 y_s_roi = 0

12 for col in range(c_s, c_e + 1):

13 if Y_s > col * w: y_s = Y_s - col * w

14 else: y_s = 0

15 if X_s > row * h: x_s = X_s - row * h

16 else: x_s = 0

17 if Y_e > (col + 1) * w: y_e = w

18 else: y_e = Y_e - (col) * w

19 if X_e > (row + 1) * h: x_e = h

20 else: x_e = X_e - (row) * h

21 im = tifffile.imread(component_paths[row][col])

22 im = im[x_s:x_e, y_s:y_e]

23 img[x_s_roi:x_s_roi + (x_e - x_s),

24 y_s_roi:y_s_roi + (y_e - y_s)] = im

25 y_s_roi += (y_e - y_s)

26 x_s_roi += (x_e - x_s)

27 return img
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B
Results

B.1 Effects of different difference thresholds

In Figure B.1 and B.2, the found valleys in two intensity profiles are visualized for
different difference thresholds ∆.
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Figure B.1: Found valleys for different difference thresholds ∆.
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Figure B.2: Found valleys for different difference thresholds ∆.
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