
DF

3D Object Detection for Autonomous
Driving using Deep Learning
Master’s thesis in Computer Science - Algorithms, Languages and Logic

Olof Berg Marklund Oskar Hulthén

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019

3D Object Detection for Autonomous
Driving using Deep Learning

Olof Berg Marklund Oskar Hulthén

DF

Department of Electrical Engineering
Division of Signals Processing and Biomedical Engineering

Signal Processing Group
Chalmers University of Technology

Gothenburg, Sweden 2019

3D Object Detection for Autonomous Driving using Deep Learning
OLOF BERG MARKLUND, OSKAR HULTHÈN

© OLOF BERG MARKLUND, OSKAR HULTHÈN, 2019.

Supervisors: Karl Granström, Department of Electrical Engineering
Karl-Magnus Dahlén, Denso
Examiner: Karl Granström, Department of Electrical Engineering

Master’s Thesis 2019
Department of Electrical Engineering
Division of Signals Processing and Biomedical Engineering
Signal Processing Group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: 3D bounding box predictions on a LiDAR point cloud sample from the
nuScenes dataset made by a network implemented in this thesis, visualized through
projection into a camera image from the same sample.

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2019

iv

3D Object Detection for Autonomous Driving Using Deep Learning
OLOF BERG MARKLUND, OSKAR HULTHÈN
Department of Electrial Engineering
Chalmers University of Technology

Abstract
For an autonomous vehicle to truly succeed, there must be a way for the vehicle
to interpret its surrounding environment, both quickly and accurately. This master
thesis focuses on investigating improvements for a sub-problem of environmental per-
ception, namely 3D object detection, referring to localizing and classifying objects
of interest in a specified environment. The objects of interest in a traffic situation
are pedestrians and other vehicles.

Recently deep learning approaches have made significant progress in the field of
object detection, especially for two-dimensional data such as camera images. Thus,
several novel detection models have been developed for real-time tasks such as au-
tonomous driving. However, as images generally lack information about depth,
which is essential for environmental perception for autonomous vehicles, these camera-
based approaches struggle to perceive distances reliably. An alternative sensor to
the camera is LiDAR; it captures the surrounding area with reflected light, in the
form of 3D data points known as point clouds. The latest research regarding 3D
object detection in point clouds suggests both fast and accurate predictions by en-
coding the 3D point cloud representation in such a way that a 2D object detection
model can be applied.

This thesis investigates the performance of both the point cloud encoders and the
2D detection models used by the state-of-the-art 3D object detection models. The
thesis attempts to recreate encoders and detection models to make comparisons of
alternative implementations used to produce 3D detections in traffic situations. The
end-to-end deep learning models are ultimately trained to perform 3D detections.
The models were trained and evaluated on the recently released nuScenes dataset,
and the most promising model was able to accurately detect cars in real-time.

Keywords: Deep Learning, Machine Learning, Neural Networks, Autonomous Driv-
ing, Convolutional Neural Networks, Object Detection

v

Acknowledgements
First of all we would like to thank our supervisor, Karl-Magnus Dahlén for giving
us the opportunity of doing the master thesis at DENSO, along with Alexander and
Christopher for showing interest and support during the project.

We would also like to thank our supervisor Karl Granström for keeping the thesis
in an academically interesting perspective and for all the knowledge given in the field.

Lastly we would like to thank our friends and family for the support they have
provided during the last five years.

Olof Berg Marklund and Oskar Hulthén, Gothenburg, June 2019

vii

Contents

List of Figures xiii

List of Tables xix

1 Introduction 1
1.1 Background . 1
1.2 Problem Formulation . 2
1.3 Aim . 2
1.4 Limitations . 3
1.5 Ethical Aspects . 3
1.6 Thesis Outline . 4

2 Theory 5
2.1 Sensor Input . 5

2.1.1 Camera . 5
2.1.2 LiDAR . 5

2.2 Object Detection . 6
2.2.1 Feature Extraction . 6
2.2.2 Region Proposals . 7
2.2.3 Classification . 7
2.2.4 Regression . 7
2.2.5 Pruning . 8

2.3 Artificial Neural Networks . 9
2.3.1 Learning . 11
2.3.2 Optimizers . 11
2.3.3 Activation Functions . 13
2.3.4 Regularization . 15

2.4 Convolutional Neural Networks . 16
2.4.1 Convolutional Layer . 16
2.4.2 Pooling Layer . 18
2.4.3 Transposed Convolutional Layer 19
2.4.4 Unpooling . 19
2.4.5 Fully Connected Layers . 20

2.5 Transfer Learning . 21
2.6 Evaluation . 21
2.7 K-Means Clustering . 24

ix

Contents

3 Related Work 27
3.1 2D Object Detection . 27

3.1.1 Faster Region-based Convolutional Neural Network (Faster R-
CNN) . 27

3.1.2 Single Shot Multibox Detector (SSD) 30
3.1.3 You Only Look Once (YOLO) 31

3.2 3D Object Detection . 33
3.2.1 VoxelNet . 33
3.2.2 The Complex-YOLO . 34
3.2.3 PointPillar (PP) . 35

4 Methods 39
4.1 Tools . 39

4.1.1 Pytorch . 39
4.1.2 CUDA . 39
4.1.3 Numba . 40
4.1.4 Visdom . 40
4.1.5 nuScenes-devkit . 40

4.2 Datasets . 40
4.2.1 KITTI Vision Benchmark Suite 40
4.2.2 NuScenes Dataset . 41

4.3 Merging Classes . 44
4.4 Anchor Generation . 47

4.4.1 Averaging . 47
4.4.2 K-Mean Clustering for Anchor Sizes 48

4.5 Implementation . 49
4.5.1 Preprocessing . 50
4.5.2 Encoder - Birds Eye View (BEV) 50
4.5.3 Encoder - PP . 51
4.5.4 Decoder - YOLOv2 . 52
4.5.5 Decoder - SSD . 55

4.6 Training . 59
4.6.1 Initial Training . 59
4.6.2 Hyperparameters . 59
4.6.3 Hardware . 60

4.7 Postprocessing . 61
4.8 Visualization . 61
4.9 Evaluation . 61

4.9.1 Inference Time . 62
4.9.2 Accuracy Measurement . 62

5 Results 65
5.1 Teaser Dataset . 65

5.1.1 SSD . 65
5.1.2 YOLOv2 on BEV . 67

5.2 Full dataset . 68
5.2.1 Baseline . 68

x

Contents

5.2.2 Learning Rate Experiments 71
5.2.3 Varying Sweeps for One Class 73
5.2.4 Smaller Discretization for One Class 75

5.3 Comparison . 79
5.4 Best Performing Model . 80

5.4.1 nuScenes Official Evaluation 81

6 Discussion 85
6.1 Teaser Dataset . 85

6.1.1 SSD on PP . 85
6.1.2 SSD on BEV . 86
6.1.3 YOLOv2 on BEV . 87

6.2 Full Dataset . 88
6.2.1 Baseline Hyperparameters . 88
6.2.2 Learning Rate Experiments 88
6.2.3 Varying Sweeps for One Class 89

6.3 Comparison . 90
6.4 Final Model . 91
6.5 Future Work . 92

7 Conclusion 95

Bibliography 97

xi

Contents

xii

List of Figures

2.1 Graphical explanation of intersection over union between two rectan-
gles in 2D. The dark area shows the intersection and the sum of the
bright and the dark area yields the union of the two rectangles. . . . 8

2.2 (a) A representation of a neural network divided into three layers.
(b) The mathematical representation of one neuron in an ANN 10

2.3 Comparison of some of the most common activation functions used
in an ANN. 15

2.4 Example of the output depth when applying multiple filters. In this
case five filters are applied to a three channeled image, meaning that
the depth of the resulting feature map is five. 17

2.5 An example of a convolutional operation with a single filter of size
3×3 and an input image of size 6×6, applied with a stride of 1 without
padding. Yielding an output of size 4 × 4 by doing an element-wise
multiplication between the input image and the filter to be summed
for every location in the output feature map. 18

2.6 Example of the application of maxpooling with a size of 2 × 2 and
a stride of two on an input feature map of size 4 × 4. The highest
value in every 2× 2 section in the input feature map is yielded at the
corresponding position in the output. 19

2.7 An example of a transposed convolutional operation with a single
filter of size 3 × 3 and an input image of size 4 × 4, applied with a
stride of one and without padding. At each input location, the value
is multiplied by the entire filter and placed in the same location in
the output map. Overlaying values in the output map are summed
together, yielding a 6× 6 sized output feature map. 19

2.8 Example of the application of max pooling with a size of 2 × 2 and
a stride of two on an input feature map of size 4 × 4. The highest
value in every 2× 2 section in the input feature map is yielded as the
corresponding position in the output. 20

2.9 An illustration of a feature map of size 2×2×2 being connected with
a fully connected layer of four neurons. Note that the yellow circles
are the only neurons in the shown image, and thus the red lines
correspond to the present learnable weights. Moreover, the dotted
lines refer to the values from the second channel (red) in the input
feature map. 21

xiii

List of Figures

2.10 Example of the types of predictions that can be made by an object de-
tection model. The illustration consists of examples of True Positive
(TP), False Positive (FP) and False Negative (FN) predictions. 22

2.11 An example of a set of predictions with both the explained precision-
recall curves. The area under the graphs are the corresponding av-
erage precision value for the two curves. The example uses six recall
levels R ∈ (0, 0.2, 0.4, 0.6, 0.8, 1.0), 24

3.1 An illustration of the simplified flow from an input image to the out-
put bounding boxes in the Faster R-CNN method. A CNN produces
a feature map from the input image, that feature map is sent to the
RPN generating region proposals. The feature map is then merged
with the region proposals through RoI pooling, whereas the resulting
feature maps (one per region proposal) are subject to classification
and bounding box offset regression to produce the bounding boxes.
Finally, the produced bounding boxes are subject to NMS pruning,
generating the final outputs. 29

3.2 An example of creating initial region proposals through the use of
an RPN. The RPN applies the sliding-window technique on a feature
map, and for each sliding-window placement, predefined boxes called
anchors, are placed corresponding to the produced region proposals. . 29

3.3 An example of the SSD model placing anchors in two differently sized
feature maps. These anchor placements refer to bounding box predic-
tions on two different scales when overlayed with the original input
image. 30

3.4 A simplified view of the SSD model, showing an example of how SSD
extract feature maps from three different levels in the original CNN
architecture. Each feature map is divided into a grid where anchor
boxes are placed, which are then sent through a convolutional layer
yielding the classification and regressional values for the bounding
boxes. Finally, the produced bounding boxes are subject to NMS
pruning, generating the final outputs. 31

3.5 A simplified version of the network architecture of the YOLO model.
The input image is processed by the convolutional layer to extract a
feature map. The anchors are placed onto each grid of the feature
map, processed by classifier and regressor yielding the predictions. . . 32

3.6 A simple illustration of how point clouds are discretized into voxels. . 33
3.7 A simplified flow of the encoding of point clouds into a dense feature

representation for the VoxelNet. The voxel feature extractor refers to
a simple neural network taking a fixed set of points for each non-empty
voxel as input and produces a feature representation for each voxel.
The non-empty voxels from the point cloud input are sent through
the voxel feature extractor and then scattered, based on their original
position, into the encoded point cloud representation. 34

3.8 Illustration of how a point clouds is projected into a 2D Bird’s-Eye
View (BEV) representation. 35

xiv

List of Figures

3.9 Simplified illustration of how point clouds are discretized into pillars
for the PP model. 36

3.10 A simplified flow of the encoding of point clouds into a dense feature
representation for the PP model. The point feature extractor refers
to a simple neural network taking a fixed set of points as input and
produces a feature representation of the set. The non-empty pillars
from the point cloud input are sent through the point feature ex-
tractor and then scattered, based on their original position, into the
encoded point cloud representation. For pillars containing less points
than a set value, empty points are added. For pillars that are empty,
corresponding empty features are added into the encoded output. . . 36

4.1 Sample from the nuScenes dataset through the six different camera
positions around the vehicle. The positions of the pictures reflect the
corresponding camera positions, presented from the top: front, front
left, front right, back left, back right and back. The annotated ground
truth objects present in the pictures are three cars (orange bounding
boxes) and one motorcycle (red bounding box). 42

4.2 Two BEV representation of the LiDAR point clouds, from a nuScenes
sample. The left point cloud contains data from one sweep, meaning
that only the annotated sample data is represented. The right point
cloud contains data from 10 sweeps, meaning that the sample data is
overlayed by the previous 9 LiDAR data collections. 43

4.3 Examples of three different police vehicles present under the class
vehicle.emergency.police in the nuScenes dataset. The examples show
different types of police vehicles that overlap into other classes such
as cars and trucks. 46

4.4 The average IoU coverage of the dataset with respect to the k clusters
(anchors) generated from the k-means algorithm. 49

4.5 In every cell of the feature map, YOLOv2 outputs regression values,
confidence score, and class probabilities for every anchor. One class
probability is given for every class that the network should classify,
and the number of regression values depends on the number of posi-
tions the bounding boxes are expressed with. The number of regres-
sion values used in 3D object detection for YOLO are seven: center
position (x, y, z), width, length, height, and rotation. 54

4.6 In every cell of the produced feature map, SSD outputs regression
values, class probabilities, and rotational probabilities for every an-
chor. One class probability is given for every defined object class, one
rotational probability is given for every defined rotational class, and
the number of regression values depends on the number of positions
the bounding boxes are expressed with. The number of regression
values used in 3D object detection are seven: center position (x, y,
z), width, length, height, and rotation. 57

xv

List of Figures

5.1 The precision-recall curve based on range for the SSD decoder using
both the PP and BEV encoders. The training is performed on the
teaser data with the hyperparameters presented in Table 5.1, and the
evaluation is split based upon the distance from the ego vehicle as
shown in the above table. 66

5.2 Precision-recall curve based on the visibility for the two SSD models
using PP and BEV, trained with the hyperparameters in Table 5.1.
The models were trained and evaluated on the entire nuScenes teaser
dataset, where the evaluation was split based on the annotated ob-
jects visibility level. The corresponding AP for each visibility level is
presented in the table. 67

5.3 Precision Recall curve and mAP scores for the YOLOv2 model using
the BEV point cloud encoder. Both trained and evaluated on the
entire nuScenes teaser dataset, with the true positive metric set to a
distance of 2 meters. 68

5.4 Training and validation loss per epoch for SSD on PP and BEV during
training. The models were trained with the baseline hyperparameters
presented in Table 5.5, where the early stopping is set to 10 and 25
respectively for the PP and BEV models. 70

5.5 Precision-recall curve and mAP scores for SSD trained on PP and
BEV. The models were trained and evaluated on the full dataset with
the baseline hyperparameter presented in Table 5.5. The TPM was
set to a distance of 2 meters, and only predictions within a distance
of 35m from the ego vehicle is handled. 71

5.6 Training and validation loss per epoch for SSD on both PP and BEV
trained with lower learning rate and more milestones in comparison
to the baseline parameters presented in Table 5.5. 72

5.7 Precision recall curve and mAP for SSD trained on the PP and BEV
encoder, with more milestones (MM), and both more milestones and
lower learning rate (MMLR) compared to the baseline parameters
presented in Section 5.2.1 . 72

5.8 Precision-recall curve based on range for the SSD models using PP
and BEV. Trained and evaluated with a varying amount of sweeps as
input. The evaluation was split based on the objects annotated range
from the ego vehicle. The corresponding AP for each of the different
ranges is presented in the table. 74

5.9 Precision-recall curve based on visibility for the SSD models using
PP and BEV. Trained and evaluated with a varying amount of point
cloud sweeps as input. The evaluation was split based on the objects
annotated visibility level. The corresponding AP for each the different
visibility is presented in the table. 74

5.10 The precision recall curve based on visibility for the two SSD models
using the PP and BEV encoders. The models were trained with the
parameters presented in Table 5.10. The evaluation was split based
on the objects annotated visibility level, their respective AP can be
seen in the table. 76

xvi

List of Figures

5.11 The precision recall curve based on range for the two SSD models
using the PP and BEV encoders. The models were trained with the
parameters presented in Table 5.10. The evaluation was split based on
the objects annotated range from the ego vehicle, and the respective
AP can be seen in the table. 77

5.12 Produced bounding boxes from a LiDAR point cloud, with a con-
fidence score above 30% and an IoU overlapping below 0.25. Note
that the model does not use these images for training, the bounding
boxes are projected into the images for visualization purposes. The
model producing the bounding boxes is the SSD model using the PP
point cloud encoder, trained on only the car class with a reduced
discretization size. 78

5.13 Comparison of the accuracy on only cars (AP) and inference time
(Hz) for the SSD models based on PP (Triangles) and the SSD models
based on BEV (Circles). 79

5.14 Precision-recall curve and mAP score, for the best performing net-
work, trained and evaluated with the hyperparameter presented in
Table 5.13. The TPM was set to a distance of 2 meters, and only
predictions within 35m in range from the ego vehicle is handled. . . . 80

5.15 The final SSD-PP models produced bounding boxes from a test set
sample. A confidence score above 30% and an NMS IoU threshold of
0.4 were used in postprocessing. The blue bounding boxes denote car
predictions, while the orange bounding boxes represent the pedestrian
classifications. Only boxes within a range of 35m from the ego vehicle
are depicted. The produced bounding boxes enclose the majority
of the objects present in the sample with a notable exception of a
motorcycle in the front view and a pedestrian in the front-left view. . 82

5.16 The final SSD-PP models produced bounding boxes from a rainy
test set sample. A confidence score above 30% and an NMS IoU
threshold of 0.4 were used in postprocessing. The depicted bounding
boxes are within a range of 35m from the ego vehicle. The colors
of the bounding boxes refer to the classes of the predictions where
blue denotes cars, orange pedestrians and green trucks. Most objects
present in the sample are predicted with a few bicycles being missed
in the front-left view. Furthermore a false positive is present in the
back view in the shape of a mailbox being predicted as a pedestrian. . 83

5.17 The final SSD-PP models produced bounding boxes from a test set
sample, with a lower confidence score threshold set to 5% and an
NMS IoU threshold of 0.4 as the postprocessing settings. The de-
picted bounding boxes are within a range of 35m from the ego vehicle.
The colors of boxes depict predictions of differing classes where blue
denotes car, orange denotes pedestrian, green denotes truck, purple
denotes bicycle, and cyan denotes bus. There seem to be proper pre-
dictions present for all objects. However, there are false positives
present, such as in the back-right view where benches are predicted
as bicycles. 84

xvii

List of Figures

6.1 An example visualization of the predicted bounding boxes from the
SSD on PP model in a top-view format. The model is only trained
on one class, so all the shown bounding boxes are cars. Moreover, the
bounding boxes shown are the ones with confidence over 30% and are
not overlapping with another box by more than 0.4 in IoU. As shown,
all of the closer ground truths are predicted correctly while a few of
the objects further away are missed (using the mentioned thresholds). 86

6.2 BEV visualization of predicted bounding boxes for the car class from
the SSD on BEV model, the same scene as presented in Figure 6.1 is
visualized. The shown predicted bounding boxes have a confidence
exceeding 10% and no overlap with any other box over 0.1 IoU. Most
of the produced bounding boxes are close to the ego vehicle, and fairly
close to the ground truths, however, it is clear that the predictions
has few perfect matches with the ground truths. 87

xviii

List of Tables

4.1 The visibility level for an annotated object in relation to how much
of the object is visible through the ego vehicles cameras. 43

4.2 Range limit used in evaluation for each class of interest in the nuScenes
dataset, measured from the ego vehicle in meters. 44

4.3 Kept and merged classes, along with the classes respective annotation
count for the two dataset versions. The nuScenes merging column
presents the merging nuScenes released alongside the full dataset.
The final merging column shows the final merging used in this thesis,
resulting in 8 classes. 45

4.4 Smallest and largest objects in the dataset for each of the proposed
classes, presented as width, length and height in meters. 47

4.5 Average object size for each of the classes both before and after merg-
ing, along with the number of annotations of the corresponding class
in the dataset. The object sizes are presented as width, length and
height in meters. 48

4.6 The generated anchor boxes from the k-means algorithm, and their
respective average IoU coverage of the datasets ground truth boxes. . 48

4.7 The point feature net used to effectively learn the feature representa-
tion from the data. Each pillar sized 35× 9 is sent through this small
neural network yielding an output sized 35× 64. 51

4.8 The full YOLOv2 decoder architecture, presented in three sub-tables.
The downsampling and additional layers table present the feature
extraction from an input image with A input features. The detection
head extracts features from two different levels of the feature extractor
to be concatenated into the final feature map to make predictions on,
as well as make the actual predictions. 53

4.9 The full SSD decoder architecture, presented in three sub-tables. The
downsampling layers applies feature extraction on the input image
with A features. The upsampling layers extract features from different
levels in the downsampling network and concatenate them, producing
a feature map that the detection head uses to predict the classification
and localization of the objects. 56

5.1 Hyperparameters used for training the SSD model on both PP and
BEV. * The anchor used was taken from the original official PP
implementation[23]. 66

xix

List of Tables

5.2 The inference time for the two SSD models using PP and BEV,
trained with the hyperparameters presented in Table 5.1. The post-
processing stage used no confidence threshold, and the IoU threshold
was set to 0.25 and 0.1 for PP and BEV respectively. 66

5.3 Hyperparameters used for the implemented YOLOv2 model using
the BEV point cloud representation. *The anchors are from taking
average sizes of the five most occurring objects in the teaser dataset.
Note that the discretization and point cloud range is tuned to achieve
the input size required for the implemented YOLOv2 decoder. 67

5.4 The inference time for the the YOLOv2 model using the BEV en-
coder, trained with the hyperparameters presented in Table 5.3. The
postprocessing stage used no confidence threshold, and the IoU thresh-
old was set to 0.1. 68

5.5 Baseline hyperparameters used when training SSD on both PP and
BEV on the full training set. 69

5.6 Average training time per iteration for SSD on PP and BEV split
into sections. The time is calculated by training for one full epoch
and average the time spent in each section in the program per itera-
tion. The actual training was performed with the parameters found
in Table 5.5, with a batch size of two. 69

5.7 The inference time for the two SSD models using PP and BEV,
trained with the hyperparameters presented in Table 5.5. The post-
processing stage used no confidence threshold, and the IoU threshold
was set to 0.25 and 0.1 for PP and BEV respectively. 70

5.8 Average training time per iteration for SSD on PP and BEV, using
a varying amount of point cloud sweeps. The time is calculated by
averaging the time spent in each section during training for one full
epoch. 73

5.9 The inference time for the SSD models using PP and BEV, trained
with a varying amount of LiDAR sweeps per input point cloud. The
postprocessing stage used no confidence threshold, and the IoU thresh-
old was set to 0.25 and 0.1 for PP and BEV respectively. 75

5.10 Table of hyperparameters for SSD on PP and BEV with reduced grid
size. 75

5.11 Average training time per iteration for SSD on PP and BEV, trained
with a smaller grid size. The training was performed with a batch
size of two with the hyperparameters presented in Table 5.10. 76

5.12 The inference time for the SSD models using PP and BEV, trained
with a smaller discretization size. The postprocessing stage used no
confidence threshold, and the IoU threshold was set to 0.25 and 0.1
for PP and BEV respectively. 77

5.13 Table of hyperparameters for the final model using the PP encoder
with the SSD decoder. 80

5.14 Average inference time for the final model trained with the hyperpa-
rameters presented in Table 5.13. The IoU threshold in the postpro-
cessing stage was set to 0.25 and no confidence threshold was used. . 81

xx

List of Tables

5.15 Evaluation scores from the official nuScenes evaluation, on the overall
best performing network, SSD-PP as presented in Section 5.4. The
different AP columns use the differing TPMs presented, and the mean
column refers to the mean of all the different TPMs scores. The ad-
ditional ATE, ASE and AOE metrics refer to the average translation,
scale and orientation error for each of the classes. 81

xxi

Abbreviations
AD Autonomous Driving
ANN Artifical Neural Network
AOE Average Orientation Error
AP Average Precision
ASE Average Scale Error
ATE Average Translation Error
BEV Bird’s-Eye View
BN Batch Normalization
CEL Cross Entropy Loss
CNN Convolutional Neural Network
Faster R-CNN Faster Region-based Convolutional Neural Network
FoV Field of View
HOG Histogram of Oriented Gradient
IAP Interpolated Average Precision
IoU Intersection over Union
LiDAR Light Detection and Ranging
mAP Mean Average Precision
MSE Mean Squared Error
NDS nuScenes Detection Score
NMS Non-Maximum Suppression
RADAR Radio Detection and Ranging
RoI Regions of Interest
RPN Region Proposal Network
SIFT Scale Invariant Feature Transform
SOTA State-Of-The-Art
SSD Singe Shot Multibox Detector
TPM True Positive Metric
YOLO You Only Look Once

xxii

1
Introduction

Autonomous Driving (AD) represents one of the most notable challenges present in
modern computer science. The possibilities that AD may provide in peoples’ every-
day life are vast. Partly in terms of saving lives as most driving accidents have been
linked to the human error [4], but also in terms of lifestyle as time spent commuting
could, at least in theory, be spent more productively.

One key technology needed for succeeding in the field of AD is environmental per-
ception [30], specifying a way for vehicles to interpret their surroundings. It is
incredibly crucial for safe and reliable AD that this technology is both accurate
and fast. Firstly, accuracy is vital as the interpreted environment should reflect
the surroundings as correctly as possible. A system with accurate environmental
perception can better perform tasks such as route planning, avoiding objects, and
following the road. Secondly, the speed at which the perception is applied is also
vital as AD should be utilized in real-time. If a system is not fast enough the driving
situation may have changed from the last environment interpretation, making the
processed information irrelevant.

A subproblem to environmental perception is object detection. The proposed master
thesis focuses on investigating improvements for object detection in urban driving
situations. Object detection in simple terms refers to localizing and classifying spe-
cific objects in a given environment. In a driving situation, the objects that should
be localized are typically pedestrians and other vehicles. In essence, the objective is
to find unpredictable objects that are typically subject to movement from one time
step to another.

Due to driving situations being both complex and varying, there exists a problem
of generally and reliably recognize pedestrian and other objects, with their different
appearance. One of the most promising methods for solving this problem is deep
learning; the primary method that is explored further within this thesis.

1.1 Background
There has been significant progress in deep learning systems using neural networks
to produce accurate 2D object detection [5] [27] [38]. Typically the inputs to these
systems are single images, but when it comes to AD interest lies in 3D space as
the estimation of the distance to objects is of utmost importance. The field of 3D

1

1. Introduction

object detection has progressed as well [23], [45], [48], although there is a notable
performance gap when comparing to that of data with fewer dimensions, implying
that it is an open research field.

One of the most significant issues with training deep learning models is the need for
large amounts of annotated data. Annotated data is a term for data that is labeled,
i.e. data containing the supposed ground-truth output for each specific input. An-
notation in the case of 3D object detection means that the data is labeled with the
location, class, and size of the specific objects. Collecting and annotating data is
a time-consuming task. However, a public large-scale dataset called nuScenes [7]
containing annotated urban traffic scenes has recently been released and is used as
a source for training and evaluating deep learning models in this project. nuScenes
is a multi-modal dataset containing point clouds and images gathered by the differ-
ent sensors, such as; Light Detection and Ranging (LiDAR), Radio Detection and
Ranging (RADAR), and cameras respectively.

The project is performed at DENSO, a leading supplier of automotive technology
solutions. In previous work, the active safety department located in Gothenburg
has used filter techniques to track objects appearing in traffic whereas they are now
looking at a way to possibly improve their object detection system by introducing
deep learning to the task.

1.2 Problem Formulation
The problem of object detection for AD in urban environments has been a popular
research area in the last decade. Driving in an urban environment typically leads
to unpredictable scenarios, where one has to keep track of both other vehicles and
pedestrians moving around in different directions. The unpredictability and com-
plexity of these types of scenarios make it a particularly interesting and challenging
environment to research.

The specific techniques implemented in earlier research [27], [45], [8] are highly
dependent on the type of input data, or more explicitly, what type of sensors were
used to gather the data. In this thesis, the focus lies upon data gathered by a 3D
LiDAR, one of the most common sensory inputs for AD, that provides data in the
form of three-dimensional point clouds.

1.3 Aim
The thesis aims to compare the accuracy and time efficiency of State-Of-The-Art
(SOTA) network architectures for 3D object detection models, to ultimately produce
and train 3D object detection models with maximal performance when detecting ob-
jects in driving situations provided by the nuScenes dataset.

2

1. Introduction

The thesis further investigates and aim to answer the following questions:

• What performance can be achieved regarding object detection on nuScenes
using a LiDAR-only model whilst maintaining a real-time constraint?

• How do different point cloud encoders compare to one another?

• How do different real-time deep learning object detection models compare to
one another?

A real-time system is henceforth defined as a system with 100 milliseconds in in-
ference time, referring to the time it takes from receiving an input to producing an
output. In other words, a real-time system runs at a rate above 10Hz.

1.4 Limitations
As the tasks described in this thesis is centered around object detection, other sub-
tasks in environment perception, such as road detection or route planning, are not
considered.

This thesis focuses on performance in the trade-off between computational speed
and performance rather than achieving a commercially viable solution for AD. A
problem with the definition of absolute efficiency of a network is that it heavily relies
on the hardware it is running on. The hardware used by researchers is typically
high-end, meaning that the resulting absolute efficiency that researchers claim their
models achieve is tied to the high-end hardware. Furthermore, as the high-end
hardware is not expected to end up in commercially viable autonomous cars, the
question regarding what kind of performance one can expect in the actual vehicles
remains. To specify, this thesis is performed in the purpose of research, meaning
that commerciality is not taken into account.

1.5 Ethical Aspects
There is no denying that there are areas present in today’s means of transportation
that can be improved. One of the main negatives with today’s transportation system
is the frequency of traffic accidents occurring around the world. According to the
world health organization, approximately 1.2 million people die in traffic accidents
annually [2], and the U.S Department of Transportation stated that around 93% of
traffic accidents are due to human error [4]. The human error could be eliminated
through the implementation of fully AD.

Furthermore, AD is a potential time-saver. The U.S population spends around 120
million hours commuting to work each day [1], to put that into perspective, an

3

1. Introduction

average lifespan is approximately 650 thousand hours. In other words, the U.S pop-
ulation spends around 185 lifetimes each day commuting to work. People in the U.S
also spend, on average approximately 41 hours each year in traffic congestions [3],
where once again the most significant cause is due to human error. By utilizing AD,
all this time could be spent towards doing something productive instead.

With the environmental aspect in mind, AD could lead to increased travel due to
better accessibility. Increased travel leads to more emissions, and one could argue
that humankind would reduce their overall footprint by not promoting any trans-
portation at all. However, comparing a human-driven vehicle with an autonomous
one, the latter would drive more efficiently with the help of route planning and
calculated throttling, leading to less overall emission.

1.6 Thesis Outline
The outline of the rest of the thesis is structured as follows - Chapter 2 details rele-
vant theory explaining the underlying techniques and concepts for the project. The
chapter discusses sensory input, Artifical Neural Networks (ANNs), Convolutional
Neural Networks (CNNs), and ends with an explanation of the evaluation of object
detection models. The theory chapter is followed by descriptions of novel solutions of
2D and 3D object detection tasks in the related work Chapter 3. Chapter 4 presents
the method of how the project was executed; it starts by presenting the dataset
and data augmentation in the pre-processing stage, followed by the implementation
of the encoders and decoders. The chapter ends with presenting the evaluation
method used. The next two chapters in the thesis are Results 5 and Discussion 6,
they present and discuss the training and evaluation results for the object detection
models. The thesis ends with a Conclusion 7 of what has been accomplished, future
work, and takeaways.

4

2
Theory

This chapter presents the theoretical aspects that are the foundation of this thesis.
The chapter begins by describing the advantages of sensors for AD in Section 2.1
and a brief description of object detection in Section 2.2. This is followed by an
explanation of the basic concepts of ANN in Section 2.3 and CNN in Section 2.4.
The chapter ends with explaining the fundamentals of the evaluation methods for
object detection in Section 2.6.

2.1 Sensor Input
For a machine to be able to interpret the real world, there must be some information
to process. Gathering information from the real world is generally done with sensors,
and the type of sensor specifies the attributes of the data produced. This section
contains a brief explanation of the two sensors relevant to the project.

2.1.1 Camera
The camera is an intuitive and cheap option to use when gathering information
from the real world. Images are created by projecting the real-world scene onto a
2D plane by capturing the light intensity and frequency detected at each projected
location. The projected locations values are saved as RGB pixel values. This essen-
tially means that information about how far away objects are is lost, as there is no
depth in regular 2D images. Due to the distance to objects being one of the funda-
mental questions in environmental perception for AD, typically 3D object detection
models do not solely use cameras as sensory input.

Moreover, cameras as input sensors are sensitive to light variations and weather
conditions. As information is being stored in the form of the intensity of different
colors at each pixel in the images, two images of the same scene in different weather
can vary immensely.

2.1.2 LiDAR
LiDAR is a sensor commonly used in autonomous vehicle applications. It gathers
data by emitting laser light pulses and detecting the reflected pulses, creating a
3D image called a point cloud, where each data point corresponds to the location
in which the emitted light was reflected. Each located data point is saved as the

5

2. Theory

position in space (typically as cartesian coordinates x, y, z) along with the reflective
intensity (r). The position is calculated based on the direction of the emitted light
and the time it took until its reflection was received by the sensor, specifically half
the time between emission and detection divided by the speed of light. The reflec-
tive intensity is calculated based on the intensity of the light pulse being received,
in comparison to the one sent.

These types of sensors are also sensitive to some weather conditions for example,
rain or snow that might interfere with the emitted light pulses. However, they are
not sensitive towards light variations, as the information is stored as coordinates
rather than colors emitted from the wavelength of the light.

2.2 Object Detection
Humans are analyzing the world by continuously labeling, predicting, and recog-
nizing patterns of what they can see. Essentially making sense of the surrounding
environment, in the case of the human vision system, this is done subconsciously
and without much effort. Computer vision refers to the field of trying to automate
the tasks that the human visual system can perform, in a machine.

Object detection is a task closely related to computer vision. It refers to both classi-
fying and localizing objects of interest in an environment. The localization of objects
in the context refers to producing bounding boxes that try to enclose each of the
object of interest. Ideally, a bounding box should be as small as possible whilst
containing the entire object. Additionally, each produced bounding box contains
a label referring to the classification of the objects. The object detection problem
is partly a regression problem in terms of finding the placement and size of the
bounding box, and partly a classification problem in terms of labeling each of the
produced bounding boxes.

Deep learning approaches are well suited for the task of object detection [38], [27],
[39], where a deep neural network learns to extract features from the input data
and based on the features, predict bounding boxes labeled with the predicted class.
Deep learning object detection methods can generally be split into five parts; fea-
ture extraction, regional proposals, classification, regression, and pruning. All these
are described in this section, while the basics of how a neural network works are
presented in Section 2.3.

2.2.1 Feature Extraction
One of the most common data types for object detection applications are images.
Getting a computer to understand the contents of an image, which to a computer
is just a matrix of values, is a challenging task [12]. Especially as the image data
vary depending on changing variables like lighting conditions. The solution is to
learn general features from the actual data, to try to find some representation that

6

2. Theory

separates the object of interest from the background and from other objects.

Features within an image are typically represented through patches of pixels. Classi-
cal methods such as Histogram of Oriented Gradient (HOG) [9] and Scale Invariant
Feature Transform (SIFT) [29], [28] create, by looking at the colors of pixels within
patches, features from the direction of most change, also known as the oriented gra-
dient.

In the case of deep learning, the features are typically learned by using CNNs. These
types of networks can assign importance in the form of weights to specific proper-
ties in patches, creating more abstract feature representations. The networks are
trained by being shown examples of inputs and their supposed outputs. Finding
which properties in the input are essential to make the desired decisions. Given
enough examples, ideally, the network would be able to generally differentiate one
class from another through the help of the learned features. The specifics regarding
CNNs will be described in more detail in Section 2.4.

2.2.2 Region Proposals
One issue with object detection is that the number of objects in an environment can
vary, meaning that the target output can vary in size. There are several ways of
solving this problem. One of the more classical methods is called sliding window,
which consists of, as the name suggests, sliding a window across the input image and
extracting smaller sections, where each section is handled as a region proposal. The
technique handles objects of different sizes and scales, by scaling the input image
and then rerunning the sliding window. The generated region proposals can then be
interpreted as unclassified bounding boxes, essentially bounding boxes for the model
to further explore whether they contain objects or not. More modern methods for
handling region proposals are explained in Section 3.1.

2.2.3 Classification
Each of these aforementioned region proposals (bounding boxes) are subject to clas-
sification, to find whether the bounding box contains an object or not. The classi-
fication is done either through a separate classification system or as an integrated
part of the model generating the region proposals. The classification generally yields
a probability for each class to be present in the proposed bounding boxes. Typi-
cally, an additional class referring to background is added to discard bounding boxes
without objects in them.

2.2.4 Regression
As the generated region proposals are not expected to enclose the objects as closely
as possible, additional regression is typically applied. The regression is similarly

7

2. Theory

as the classification either done separately or as a more integrated part of the re-
gion proposals. The goal for the regression is to ultimately tighten (or loosen) the
proposed bounding boxes, by offset values, to better contain the objects.

2.2.5 Pruning
Each of the produced bounding boxes from the model is typically subject to prun-
ing. The most widely used method to do this is called Non-Maximum Suppression
(NMS). NMS consists of first removing all bounding boxes where the classification
probability output is below a set threshold, removing the predictions that the model
do not believe are objects. Generated bounding boxes that refer to the same object
are also removed. This is done by calculating the overlap between boxes, and if
the overlap is above a set threshold, then only the bounding box with the highest
classification certainty is kept.

Intersection over Union
A common metric used in object detection is Intersection over Union (IoU). It is
used to calculate the overlap between two shapes, and therefore typically applied
when matching region proposals boxes to ground truths, as overlap is something to
strive for in predictions. It does so by dividing the overlapping area between the
boxes with the total area of the boxes combined. The function can be described as
in Equation 2.1 and graphically in Figure 2.1.

IoU(b1, b2) = b1 ∩ b2

b1 ∪ b2
. (2.1)

Figure 2.1: Graphical explanation of intersection over union between two rectan-
gles in 2D. The dark area shows the intersection and the sum of the bright and the
dark area yields the union of the two rectangles.

One additional note is that the boxes do not need to be axis aligned. However, the
actual calculation of the IoU becomes much more complicated if the alignment differs
between the boxes. The reasoning why it becomes tricky is that the corresponding
shapes of both the intersection and union typically become irregular shapes with
complex areas.

8

2. Theory

Hard Negative Mining
Object detection is not only the task of finding objects of the specified classes,
but also the task of finding background. Generally, the amount of background in
an input heavily out-weighs the amount of objects of interest, meaning that there
are many background classifications made. Each bounding box that is classified as
background is called a negative prediction. Training a neural network is done by
feeding information about supposed outputs. So, to train an object detection model
properly one does not only need the positive predictions (actual objects) but also
examples of background.

Classifying whether a bounding box contains background or not can be surprisingly
hard, especially as every object class not included in the task is specified as back-
ground. If a model for instance is not looking for trams, all trams are considered
to be background. Hard negative mining is a common technique to put emphasis
on hard negative predictions. This is done during training when the model yields
some positive prediction on supposed background. Then that specific hard negative
example is fed back into the training process, thus yielding a network that is better
at correctly classifying background, and therefore better at correctly distinguishing
between objects and supposed background.

2.3 Artificial Neural Networks
Using neural networks for object detection has yielded exceptional results [12]. This
section describes the fundamentals of the theory behind how techniques for neu-
ral networks have improved its viability in a variety of tasks. The section includes
descriptions of different activation functions, optimizers and how to avoid common
issues in the training phase of a network [32].

ANNs are frameworks of machine learning techniques that loosely mimic the brain;
the fundamental idea is inspired by the Hebbian theory, which attempts to explain
the adaptation of a brains neurons on learning [16]. The main building block of an
ANN is the artificial neuron, the first computational model of the artificial neuron
was introduced by Walter Pitts and Warren McCulloch in 1943 [31].

The goal of an ANN is to perform analytic tasks learned by receiving feedback on
its performance during the so-called training phase. The feedback given is highly
dependent on the learning technique. This project falls under the category of super-
vised learning, meaning the network gets feedback from the training data containing
the desired output, also known as the ground truth. An ANN consists of a connec-
tion of computational nodes called neurons, which are usually divided into multiple
layers as seen in Figure 2.2 (a). These layers can be one of three types:

• Input layer: The samples fed to the network are first processed by the input
layer, which should have an appropriate form to represent the sample data.

9

2. Theory

This layer does not perform any computations. Its only task is to send the
data to the next layer.

• Hidden layer: The output from the input layer is then sequentially passed to
the hidden layers (layers of intermediate neurons in-between the input and
output layers). These layers are necessary for more complex non-linear tasks.
Here each neuron represents some abstract feature of the input helping to get
the correct output. (A neural network with at least one hidden layer can be
called a deep neural network (DNN). Hence the name deep learning.)

• Output layer: The last layer is called the output layer, the output from this
layer should have the form that represents the necessary data for the specific
task.

(a) Layers in a NN (b) Neuron in a NN

Figure 2.2: (a) A representation of a neural network divided into three layers. (b)
The mathematical representation of one neuron in an ANN

An artificial neuron calculates the weighted sum of its input, adds a bias and then
with the help of an activation function decides which information should be for-
warded. If the neuron decides to pass information forward, the neuron is considered
activated. The output of a neuron is calculated by the following mathematical for-
mulae presented as

Oi = g(
N∑

j=1
wijxj − bi), (2.2)

where, w is the learnable weights, x is the input, b is the bias. The function g()
is the activation function and N is the number of input values. All N inputs have
a weight wij attached to them, basically saying how much the current node should
listen to that specific input. The bias is another learnable parameter, used to better
represent the wanted function by enabling shifting. The activation function controls
the neurons output, an explanation of different activation functions and their role
can be found in Section 2.3.3. The process of calculating the output from an input
is called forward propagation. The actual learning is the update of the learnable
parameters, weights and bias, and is called backpropagation, an explanation of this
technique is presented in the following section.

10

2. Theory

2.3.1 Learning
As mentioned previously, the weights and the bias are the learnable parameters of
an artificial neuron. These parameters are commonly initialized with random values
and are iteratively updated with backpropagation in the training phase [17]. The
aim is to find the value of trainable parameters that achieve the lowest loss calculated
by the so called loss function. The loss function is a metric of how far off the neural
networks output was from the desired output. An example of a simple loss function
is the Mean Squared Error (MSE) presented as

MSE(O, Ô) = 1
N

N∑
i=1

(O − Ô)2, (2.3)

where O represent the output from the network, Ô the desired output, and N the
number of outputs.

Finding the weights and biases for all the neurons that achieves the lowest loss
becomes an optimization problem, where the objective is to find the global minimum
of the loss function. The update of the learnable parameter is done with an optimizer
based on gradient descent where the parameters are updated according to

θ = θ − ηOJ(θ), (2.4)

where η is the learning rate, θ is the parameter to be updated, and OJ(θ) is the
gradient of the loss function J(θ). In backpropagation, the gradient is calculated by
taking the partial derivative of the loss function with respect to the parameter to be
updated. The partial derivative for a specific weight depends on all the weights in
the following layers, therefore the backpropagation is performed from the last layer
and going backwards (hence the name). The specific dependencies are calculated
for each layers weights in the network by using the chain rule. The concept derives
from the fact that the neurons that affect the output the most should be updated
more.

The final product of the network produces an output based on a generalization
of its experience, i.e., the data that the network trained on. A common problem
when training a network is that the model learns the details of the training data
too well. This leads to the network performing really well on the training set but
gets significantly worse results on new data, this problem is known as overfitting.
In the training stage, the data available is commonly split into two sets: A training
set consisting of the majority of the data where the network updates its learning
parameters based on the loss, and a validation set used as metric for testing if the
network is generalizing.

2.3.2 Optimizers
There are different optimizers used to update the trainable parameters, each with
their advantages and disadvantages. The standard gradient descent explained in Sec-
tion 2.3.1, performs one update after the network has processed the entire dataset.

11

2. Theory

This means that the update is based on the average of the entire dataset, and it
therefore common to converge to a sub-optimal local minimum. There are variants
of optimizers based on the gradient descent that solves the aforementioned problem:

• Stochastic Gradient Descsent: Performs one update for each training sample.
With different input samples, this frequent update leads to a high variance
for the trainable parameters, hence the loss function. The high variance could
help discover a better local minimum than what the standard gradient de-
scent would. However, the oscillation could also complicate the convergence
and make the network overestimate its update value [6].

• Mini Batch Gradient Descent: Updates the parameters after a set number
of samples (referred to as a batch) has been processed, the batch should be
smaller than the full training set. The idea is to process a batch of training
samples and then update the network by taking the average loss of the batch.
It reduces the variance which can lead to a stable convergence while still find-
ing the global minimum [25].

Still there are some challenges present using gradient descent and its variations, like
choosing the correct learning rate and avoiding sub-optimal local minimas. Here fol-
lows some techniques that further optimize gradient descent, diminishing the chal-
lenges mentioned above.

• Momentum, a technique made to soften the oscillation of the updates by adding
a fraction of the update vector from the previous step update V (t− 1) to the
current update V (t). The mathematical formula is presented as

V (t) = γV (t− 1) + ηOJ(θ),
θ = θ − V (t), (2.5)

where θ is the learnable parameter, η is the learning rate and γ is the momen-
tum rate, defining the fraction of the momentum from the previous step that
should be added in the update [43].

• Adaptive learning rate, is a technique which updates the learning rate η dif-
ferently for each learnable parameter. Here follows three of the most common
optimizers using adaptive learning rate.

– Adagrad, updates the learning rate for a specific parameter based on the
frequency in which that specific parameter is updated. In essence this
means that parameters that are rarely updated keeps a higher learning
rate in comparison to those that are frequently updated. By using this
type of updating implies that the need for manual tuning of the learning
rates diminish. Furthermore an disadvantage of using Adagrad is that it
calculates the learning rate by accumulating all calculated gradients in
the past, forcing the learning rate to always decrease, which can lead to
that the model cease to learn [10].

12

2. Theory

– Adadelta, is an extension of Adagrad which tends to solve the problem
of decaying learning rate. It does so by limiting the number of previous
gradients that defines the adaptive learning rate to a fixed number. The
learning rate is updated similarly to how the parameters are updated in
momentum: a fraction of the previous mean of gradients is added [46].

– Adaptive Moment Estimation (Adam), is a method that also computes
adaptive learning rates for each parameter similarly as Adadelta. How-
ever, it also stores an individual momentum for every parameter. This
means that Adam calculates both the individual momentum and the
learning rate for each learnable parameter, and thus avoids most chal-
lenges presented in this section [21].

2.3.3 Activation Functions
The role of the activation function denoted as g() in the Equation for the neuron
(2.2) is to limit the output from a neuron and to decide if the neuron should be
activated or not, i.e., if the other neurons should listen to this neuron’s output. Fur-
thermore the activation functions also make it possible to introduce non-linearities
into the neural networks, making it possible to solve complex non-linear problems.
There are several different types of activation functions with different properties.
All are appropriate depending on what task the network is designed to solve. This
subsection describes some pros and cons of the most common activation functions.

Sigmoid

The Sigmoid function is a widely used activation function for classification problems
[32]. It limits the neurons output to a range between zero and one. It is defined as

σ(x) = 1
1 + e−x

. (2.6)

During backpropagation, the weights are updated depending on the gradient in the
previous layer starting from the last layer going backward. As shown in Figure
2.3, the gradients are not that steep, towards each edge of the sigmoid function.
Thus, nodes in the last layers having small gradients could lead to minimal updates
for the nodes in the first layers. It makes the learning process for the network
prolonged or to stop completely. This problem is called vanishing gradient [19] and
was historically one of the biggest problems to get deeper networks to converge in a
reasonable time.

Hyperbolic Tangent (tanh)

The Hyperbolic Tangent activation function is commonly referred to as tanh, and it
is a scaled version of the sigmoid function, thus leading to a steeper gradient. The

13

2. Theory

Hyperbolic Tangent is also shown in Figure 2.3. It ranges from −1 to 1, allowing
the values to be zero-centered and is defined as

tanh(x) = 2
1 + e−2x

− 1, (2.7)

however the activation function still has the problem of vanishing gradient.

Rectified Linear Unit (ReLU)

ReLU is a widely used activation function for deeper networks [24]. It outputs zero
for negative number and outputs the input for positive numbers, as shown in Figure
2.3. ReLU is defined as

f(x) = max(0, x). (2.8)

Thus, ReLU is a non-linear activation function. Thanks to the gradient either being
zero or one diminishes the vanishing gradient problem [24]. Another aspect is that
the neurons with zero output can be ignored, thus lowering the number of computa-
tions needed, making the network more efficient. However, if the neuron has negative
weight and bias, meaning that the activation function would be at a zero gradient,
the update from the backpropagation would also be zero. This phenomenon means
that the neuron would need to be adjusted by an external factor to start outputting
anything other than zero again, a phenomenon known as the dying ReLU problem.

Another issue is that ReLU’s output is not limited, which could lead to activations
blowing up (becoming disproportionally big)[32]. On a positive note, the activation
function itself has a simpler mathematical formula than the previously mentioned
activation functions, further increasing the computation speed.

Leaky Rectified Linear Unit (LReLU)

A solution to the dying ReLU problem is the LReLU where the gradient for negative
numbers is changed to have a small gradient. The function is given by

f(x) = max(0, x)− αmax(0,−x), (2.9)

with α set to a small value close to zero. The LReLU is illustrated in Figure 2.3.

Softmax

A common activation in the output layer for classification problems with multiple
classes is softmax. It turns logits (the raw output scores from the last layer) into
probabilities that sum to one. It has the form

S(yi) = eyi∑c
j e

yj
(2.10)

where yi is the output probability for class i in the output layer and c is the number
of classes.

14

2. Theory

Figure 2.3: Comparison of some of the most common activation functions used in
an ANN.

2.3.4 Regularization
One way to achieve a generalized output and avoid overfitting is with a concept
called regularization. Regularization makes slight modifications to the network while
learning, to force the network to generalize better. One regularization technique is
called dropout; it prevents each neuron from updating its parameter and producing
an output with a probability P . Another common regularization technique is L2
regularization, which adds a term to the loss function to force the weights to decay
towards zero. The technique is presented as

Lnew = Lprev + λ

2m
∑
||w||2, (2.11)

where the Lnew is the total loss, Lprev is an arbitrary loss function, and the term to
the right of the plus sign is the L2 regulator. λ is the regularization parameter, w is
the learnable weights and m is the number of outputs. Thus, by differentiating the
loss function with regards to each weight, the gradient will be affected by the added
regularization.

An additional problem that can occur when training a neural network is that input
values can be disproportionate to each other, this leads to an unnecessary amount
of time before the network stabilizes. To counteract this, one can use normalization
to force features to values between zero and one. This is typically done in the input
layer when, for instance, one has different features of different scales. However,
normalizing inputs between layers, thus stabilizing the network has become more
common. This technique is called Batch Normalization (BN) and acts as a regulator
by adding two new trainable parameters to the layers of choice: A batch mean and a
batch standard deviation. These parameters subtract and divide every input to the
layer respectively, normalizing the input, allowing the layer to avoid disproportionate
input [20].

15

2. Theory

2.4 Convolutional Neural Networks

A CNN is a specific type of feed-forward neural network, where the architecture
is designed to take advantage of the structure of an input (typically images). The
networks are generally built up of mainly two building blocks, convolutional layers
and pooling layers, which are explained in more detail below. These building blocks
are used to represent the data in terms of features, by weighting and modifying
identifyiable characteristics of smaller patches within the inputs of each layer. The
overall idea behind using these building blocks is that the representation of the
input is gradually increased in abstraction as it progresses through the layers. Earlier
layers contain simpler structural information such as lines, whilst later layers contain
more complex information about how specific objects actually look.

2.4.1 Convolutional Layer

The convolutional layers are as any ANN composed of neurons with learnable weights
and biases. Each neuron in a convolutional layer receives some inputs and calculates
their output based on the learned weights and biases. However, the big difference
lies in the sharing of weights between neurons, where the weights can be visualized as
matrices called filters. These filters are applied on the input by the so-called convo-
lutional operation. The convolutional operation is executed by sliding the filter over
the input in both directions, rows and columns. At every location, an element-wise
multiplication is performed and summed together yielding the result to be placed in
the output feature map.

There are four parameters of significance in each convolutional layer:

• Firstly, the filter size, specifying how many weights are located within each
filter. Typically filters in the range of 3 × 3 to 5 × 5 is the norm as they can
handle smaller and local features of objects. Additionally, the depth of each
filter is matched with the number of channels present in the input to the layer.

• Secondly, the number of filters, specifying how many filters should be ap-
plied to the data within each layer. The number of filters decides the number
of channels that are present in the final output feature map from the layer.
A simple example of applying five filters on an image can be seen in Figure 2.4.

16

2. Theory

Figure 2.4: Example of the output depth when applying multiple filters. In this
case five filters are applied to a three channeled image, meaning that the depth of
the resulting feature map is five.

• Thirdly, the stride specifies how much the filter shifts in each step when sliding
through the input data. The example present in Figure 2.5 and (2.12) uses a
stride of one. If the stride is increased, the output feature map is significantly
reduced in size.

• Lastly padding, specifying how much the input should be padded in its borders.
Zero-padding is the most commonly used implying that additional columns
and rows are added to enclose the input map with zeros effectively increasing
the size of the input map. It is generally done to increase the performance,
as it enables better extraction of information from the original borders of the
input. Additionally, it is applied to preserve the input dimensions through the
output feature map, since the convolutional operation generally decreases the
output size.

Visualized in Figure 2.5 is the actual convolutional operation with a filter size of
3× 3 applied on an input of size 6× 6. For simplicity, the operation is applied with
a single filter (applied with a stride of one) without depth. However, convolutions
are generally performed with multiple filters where the input and filters both have
depth, such as in the input layer when using RGB colored images.

The same convolutional operation can be mathematically expressed as

Oi,j =
3∑
x

3∑
y

Fx,y Ii−1+x,j−1+y, (2.12)

where Oij denotes the output for position ij, F stands for the filter of size 3×3 and
I marks the input image.

As the weights are in the form of filters, this means that the actual filters are updated
in convolutional layers through the backpropagation. Furthermore, as the filters are
slid across the entire input data, features are handled the same no matter where in

17

2. Theory

the input data it is located, meaning that the method is translation invariant.

Figure 2.5: An example of a convolutional operation with a single filter of size
3× 3 and an input image of size 6× 6, applied with a stride of 1 without padding.
Yielding an output of size 4 × 4 by doing an element-wise multiplication between
the input image and the filter to be summed for every location in the output feature
map.

The dimensions of the output feature map for each layer can be expressed as

O = N − F + 2P
S

+ 1, (2.13)

where O is the output dimension for either rows or columns, N is the size of the
input map, F is the filter size, P is the number of padding rows/columns, and S is
the stride. If the resulting value is a fraction, the value is rounded towards zero to
the closest integer.

2.4.2 Pooling Layer

Pooling is used to downsample the size of the output feature map. This is done to
reduce the amount of parameters and computations in the network, and ultimately
reduce the amount of overfitting done in the entire network (as only the most promis-
ing features are kept). Max pooling is the most frequent type of pooling, it splits the
input feature map into equally sized regions and only the maximum value present in
each region is kept as output as shown in Figure 2.6. The size of the regions and the
stride in which the pooling is applied affects the output size as expressed in (2.13)
without padding.

18

2. Theory

Figure 2.6: Example of the application of maxpooling with a size of 2 × 2 and
a stride of two on an input feature map of size 4 × 4. The highest value in every
2 × 2 section in the input feature map is yielded at the corresponding position in
the output.

2.4.3 Transposed Convolutional Layer
Similarly to how convolutional layers reduce the size of the output feature map,
transposed convolutional layers can be used to do the opposite [11]. By applying
the convolutional operation in reverse, one can conduct upsampling of the feature
maps. Moreover, the weights are learnable and can similarly to convolutional layers
be visualized as filters. At every input location, the filter is multiplied by the input
value and placed in the corresponding location in the output map where overlaying
values are summed together. The operation for a 3 × 3 transposed convolution on
an example input of 4× 4 can be found in Figure 2.7.

Figure 2.7: An example of a transposed convolutional operation with a single
filter of size 3× 3 and an input image of size 4× 4, applied with a stride of one and
without padding. At each input location, the value is multiplied by the entire filter
and placed in the same location in the output map. Overlaying values in the output
map are summed together, yielding a 6× 6 sized output feature map.

2.4.4 Unpooling
As the transposed convolutional layers aim to do a reversion of convolutional layers,
unpooling layers aim to do the same reversion for pooling layers. Specifically, for
max pooling there is max unpooling to reverse the operation. It creates the reversion
by recording the locations of maximum activations during the max pooling [34], in

19

2. Theory

which positions the maximal values were found during downsampling. Thereafter
the unpooling reverses the maximum operation and fills the remaining entries with
zeroes. An example of max unpooling the same resulting feature map from Figure
2.6 can be found in Figure 2.8.

Figure 2.8: Example of the application of max pooling with a size of 2 × 2 and
a stride of two on an input feature map of size 4 × 4. The highest value in every
2 × 2 section in the input feature map is yielded as the corresponding position in
the output.

2.4.5 Fully Connected Layers

After features have been learned from convolutional and pooling layers, the high-
level reasoning from the features can be done through fully connected layers. The
use of fully connected layers heavily relies on the type of output aimed for, as it
allows the movement from a grid representation to single values. Moving the data
representation from a convolutional network into a feedforward network structure.
This is typically useful when performing classification or regression based on the
input as a whole.

The data translation happens through a flatten layer, that moves each individual fea-
ture map matrix value into a vector where each position in the vector is interpreted
as an input value to the following fully connected layers. An example visualization
of going from a feature map of size 2 × 2 × 2 to a connected layer containing four
neurons can be seen in Figure 2.9.

20

2. Theory

Figure 2.9: An illustration of a feature map of size 2 × 2 × 2 being connected
with a fully connected layer of four neurons. Note that the yellow circles are the
only neurons in the shown image, and thus the red lines correspond to the present
learnable weights. Moreover, the dotted lines refer to the values from the second
channel (red) in the input feature map.

2.5 Transfer Learning
A common understanding of deep learning methods is that they require a large
amount of data to be able to perform tasks well. While this understanding is true
when the size of neural networks is large, there is a workaround called transfer
learning. By using some pre-defined network architecture, it is possible to transfer
weights that are already trained on a model of the same architecture. Instead of
trying to create feature representations based on some data from scratch, one can
use transfer learning to use the feature extraction available from training on larger
sets of data. This, if applied correctly yields both a possible performance increase
but also training time can be cut down significantly.

There are requirements for transfer learning to be profitable; however, first and fore-
most, it relies on a big assumption that patterns extracted in the original dataset are
useful in the new data. Essentially that the data depicts the same type of things. For
instance, trying to classify whether tumors are benign or malign through scanned
images can typically not use information from another network trained on images of
cars. Additionally, the input should be of the same type; e.q, a BEV image typically
does not share much information with a front-facing one.

2.6 Evaluation
As mentioned in Section 2.2.2, object detection models generally yield a differing
amount of predictions depending on the input data. This varying amount of output
bounding box predictions means that evaluating such models is non-trivial. Gener-

21

2. Theory

ally, there are four types of predictions that can be made from an object detection
model.

• True positive (TP): A predicted bounding box that matches with a ground
truth object.

• True negative (TN): A correct prediction of background (no bounding box).

• False positive (FP): A predicted bounding box that does not match with any
ground truth object (or an additional overlapping prediction).

• False negative (FN): A missed ground truth.

What is considered as a match in the case of object detection varies from task to
task. Generally, each dataset has its definition of what defines a true positive de-
pending on what the dataset contains and what task it aims to solve. The two most
common metrics to define a match are distance and IoU, i.e, whether a prediction is
within a set threshold in terms of either distance or overlap to a ground truth object.

In Figure 2.10, the four possible types of predictions are demonstrated through the
relation between ground truths and actual predictions on an IoU metric with an
arbitrary threshold.

Figure 2.10: Example of the types of predictions that can be made by an object
detection model. The illustration consists of examples of True Positive (TP), False
Positive (FP) and False Negative (FN) predictions.

Furthermore, each prediction made has an associated score, referring to how con-
fident the model is of the prediction, as mentioned in Section 2.2.3. This score of
each prediction can then be used along with the actual predictions to express a
relation between how many predictions are correct and how many predictions are
made, above a set score threshold. This is known as the relation between precision

22

2. Theory

and recall. Precision refers to how many predictions out of the predictions made
that are correct, defined by

Precision = TP
TP + FP . (2.14)

Recall on the other hand, measures how many out of the total amount of ground
truth objects that are currently found, defined as

Recall = TP
TP + FN . (2.15)

Mean Average Precision
Mean Average Precision (mAP) is a common metric to measure the accuracy of
object detection models as a whole. The Average Precision (AP) is calculated by
taking the value of the precision achieved at different recall values. This is done
by successively decreasing the set confidence threshold, allowing more predictions
to be made until all ground truths are found (or until the model can’t find anymore).

The AP is generally calculated by taking the integral of the precision-recall curve as

AP =
∫ 1

0
P (R)dR, (2.16)

where R is the recall and P (R) is the precision achieved at that specific recall
value. An example of a set of predictions and their corresponding precision-recall
curve can be seen in Figure 2.11, with a table of the successive decrease in threshold.

In the PASCAL Visual Object Classes Challenge 2012 [12], Everingham et al. pro-
posed an Interpolated Average Precision (IAP) to achieve a steadier curve. IAP is
not as heavily punished for making wrong predictions with a high confidence. The
interpolated precision is calculated by taking the maximum precision of all the sub-
sequent recall values above the current recall. IAP is typically calculated through
numerical integration as

IAP = 1
N

N∑
n=1

max
n≤i≤N

P (Ri), (2.17)

where N is the number of recall levels and Ri is the recall value for level i. In the
PASCAL challenge Everingham et al. used eleven recall levels R ∈ (0, 0.1, 0.2, ..., 1).

The IAP could be graphically explained as the area under the interpolated precision-
recall curve in Figure 2.11(c), representing the interpolated precision on the same
data used to calculate the precision-recall curve.

23

2. Theory

Additionally, the mAP is calculated by taking the mean of the used AP for the
different classes. According to

mAP = 1
N

N∑
c

AP(c), (2.18)

where AP(c) is the used AP for class c and N is the number of classes.

(a) An example set of predictions with
corresponding confidence scores.

Threshold TP FP FN Recall Precision
0.90 1 0 4 0.2 1.0
0.80 1 1 4 0.2 0.50
0.70 2 1 3 0.4 0.66
0.60 3 1 2 0.6 0.75
0.50 3 2 2 0.6 0.6
0.40 4 2 1 0.8 0.66
0.30 5 2 0 1.0 0.71

(b) The precision and recall values for
different confidence thresholds on the
predictions presented in figure (a).

(c) Both the normal and interpolated precision-
recall curve based on the values in table (b).

Figure 2.11: An example of a set of predictions with both the explained
precision-recall curves. The area under the graphs are the corresponding aver-
age precision value for the two curves. The example uses six recall levels R ∈
(0, 0.2, 0.4, 0.6, 0.8, 1.0), .

2.7 K-Means Clustering
K-means clustering is a heuristic algorithm used to try to find a good statistical
partitioning of data. Input to the algorithm is the entire dataset to cluster along

24

2. Theory

with a k value; the actual k value attributes to how many clusters the algorithm
should partition the data into.

k-means clustering was used within the thesis to explore the used dataset. Specif-
ically to try to find default bounding box sizes that reflect the sizes of the objects
within the dataset as well as possible. The specifics regarding the usage of k-means
clustering for this purpose is detailed in Section 4.4.2.

The basic algorithm works by initially randomly selecting k cluster center points to
yield the initial clustering. Thereafter, the entire dataset is iterated, and each point
is assigned to the cluster with the center closest in terms of Euclidean distance given
by

d(a, b) =
√

(ax − bx)2 + (ay − by)2 + (az − bz)2. (2.19)

When each point in the dataset has been assigned to a cluster, then each cluster
center is recalculated to the average of the entire cluster. The entire algorithm, is
detailed in Algorithm 1 explaining the steps in pseudocode.

Algorithm 1 K-means clustering
input K, points : (x1, ...xn)
Place c1, ..., ck centroids randomly
while True do

for Every point xi do
for Every centroid cj do

Calculate d(xi, cj)
Find the nearest centroid min

j
d(xi, cj)

Assign the point xi to cluster j
for Every cluster j = 1 ... K do

Calculate new centroid cj = mean of all points xi assigned to cluster j
End loop if there was no update of centroids from previous iteration

25

2. Theory

26

3
Related Work

As mentioned in Section 1.1, recently deep learning techniques have made progress
in the field of object detection. This chapter aims to give an overview of the current
State-Of-The-Art (SOTA) methods for performing both 2D and 3D object detection.

3.1 2D Object Detection
The deep learning methods for 2D object detections can be divided into two differ-
ent types: single-stage, and two-stage detectors [42]. In two-stage methods, the first
stage refers to extracting features and proposing Regions of Interest (RoI), while
the second stage refers to computing the final bounding boxes and class probabili-
ties for each RoI. Conversely, single-stage methods do not create RoIs. Instead, the
regions used for further classification and regression are chosen deterministically in
beforehand.

One of the best performing SOTA two-stage detectors is Faster Region-based Con-
volutional Neural Network (Faster R-CNN). In general, two-stage methods achieve
higher accuracy than single-stage methods. However, they tend to be slower both
in terms of training and actual inference time.

Regarding one-stage methods, the current SOTA is commonly known as You Only
Look Once (YOLO) and Singe Shot Multibox Detector (SSD). These methods reach
lower accuracy but are faster in comparison to the two-stage methods. Due to the
speed being of such importance for AD, these types of methods are especially promis-
ing for the thesis objective. This section begins with explaining the fundamentals
for Faster R-CNN and ends with describing the two-stage detectors YOLO and SSD.

3.1.1 Faster Region-based Convolutional Neural Network
(Faster R-CNN)

As mentioned in Section 2.2.2 the original way of producing region proposals was
through the sliding-window method, where essentially all possible bounding box
placements are considered individual input images to a separate classifier. Girchich
et al. proposed a more practical approach in their original R-CNN paper [15]. The
approach was based on the selective search algorithm [44], which was used to re-
move region proposals unlikely to contain objects effectively. The selective search

27

3. Related Work

algorithm consists in simple terms of grouping similar regions of the input together
through basic color segmentation.

Further improvements were made by the same authors in two iterations, firstly
through the release of Fast R-CNN [14]. The fast R-CNN provided a significant
speedup in comparison to the original release. This speedup was achieved by extract-
ing features once for the entire input instead of extracting features for each region
proposal individually. To be able to extract feature maps of equal size from each
region proposal, an operation called RoI pooling is applied. RoI pooling projects
each region proposals into the entire feature map and then performs max-pooling
(with stride and size depending on the size of the regions) within each region, yield-
ing feature maps of a set size for every region proposal.

With the release of the latest model iteration named Faster R-CNN [39], Girchich
et al. proposed the Region Proposal Network (RPN) to create the region propos-
als as a part of the network being trained. The RPN replaced the selective search
method, which was the computational bottleneck in the previous iterations, yielding
the entire (simplified) network shown in Figure 3.1.

The RPN works by applying the sliding-window method on the produced feature
map from the initial CNN feature extractor. At each grid location within the fea-
ture map, the network proposes multiple region proposals based on predetermined
bounding boxes sizes as can be seen in Figure 3.2. These predetermined bounding
box sizes are commonly known as anchors and serve as a default size for the region
proposals to assume. The RPN thus produces in totalW ×H×k anchor placements
where W and H is the width and height of the feature map, and k is the number of
anchor boxes used. For RPN to handle objects of differing scales, additional larger
anchor boxes must be placed. Furthermore, the RPN sends each of the initial anchor
placements through a simple classifier, to predict whether it contains an object or
not (binary classification). This simple classification determines whether the anchor
placement should be kept or not. Additionally, each positive anchor (those predicted
to contain objects) are sent through a simple regressor to refine the bounding box
placement generated from the anchor. Finally, the remaining positive anchors are
pruned through NMS as explained in Section 2.2.5, producing the final RoIs that
are sent further through the network.

The RoIs are then merged with the feature map through RoI pooling, producing
the regional feature maps. Finally, each regional feature map is sent through an
additional classifier as well as an additional regressor. The final classifier outputs
the classification probabilities for each possible class, with an additional background
class used to discard region proposals. The final regressor tries to, similarly as in
the RPN, further refine the location and size of the produced bounding boxes. The
refinement is done by trying the estimate the difference (in terms of both position
and size) between the proposed bounding box and the actual object.

28

3. Related Work

Figure 3.1: An illustration of the simplified flow from an input image to the
output bounding boxes in the Faster R-CNN method. A CNN produces a feature
map from the input image, that feature map is sent to the RPN generating region
proposals. The feature map is then merged with the region proposals through RoI
pooling, whereas the resulting feature maps (one per region proposal) are subject
to classification and bounding box offset regression to produce the bounding boxes.
Finally, the produced bounding boxes are subject to NMS pruning, generating the
final outputs.

Figure 3.2: An example of creating initial region proposals through the use of an
RPN. The RPN applies the sliding-window technique on a feature map, and for each
sliding-window placement, predefined boxes called anchors, are placed corresponding
to the produced region proposals.

29

3. Related Work

The training is done by first creating the target outputs, these targets are generated
through matching the anchors with the ground truths. The closest anchor both in
terms of placement and shape is matched to each ground truth. The corresponding
matched anchors are filled with the offset and class values, and the unmatched
anchors are set to the background class, together creating the supposed targets.
These targets are then used along with the actual outputs from the network in the
loss function, called multi-task loss[14], which is used to train the model.

3.1.2 Single Shot Multibox Detector (SSD)
In the SSD model, instead of first trying to propose regions which are then used for
predictions as in the two-stage methods, Anguelov et al. present a way of predicting
bounding boxes directly through a single deep neural network in their SSD model
[27]. The SSD encapsulates all computation into a single network, meaning that it
is significantly easier to train in comparison to two-stage methods were the different
stages typically have to be trained in multiple phases.

The SSD model does, similarly to the RPN as explained in Section 3.1.1, place
default sized anchor boxes on the produced feature map as shown in Figure 3.2.
However, the feature map produced in SSD is not taken as a direct output from
the initial CNN feature extractor. The feature map is rather created by extracting
features from different layers in the CNN architecture, yielding representations of
different scales. Thus, it enables the model to detect objects of different sizes by
placing anchors at different feature map scales as shown in Figure 3.3. The actual
anchor placements are done on the grid in each feature map. Yielding W ×H × k
anchor placements per feature map, where k is the number of anchor placements,
W and H is the width and height of the specified feature map.

Figure 3.3: An example of the SSD model placing anchors in two differently sized
feature maps. These anchor placements refer to bounding box predictions on two
different scales when overlayed with the original input image.

The number of feature maps, and at which scale, that are extracted differ between
implementations. An example, showing three feature extraction levels is shown in
Figure 3.4 along with a simplified structure of the entire SSD flow. The output

30

3. Related Work

yielded from the SSD model for every grid location in the feature maps is in the
form of k × (B + C), where k is the number of anchors, B is the number of values
defining a bounding box, and C is the number of classes.

Figure 3.4: A simplified view of the SSD model, showing an example of how SSD
extract feature maps from three different levels in the original CNN architecture.
Each feature map is divided into a grid where anchor boxes are placed, which are
then sent through a convolutional layer yielding the classification and regressional
values for the bounding boxes. Finally, the produced bounding boxes are subject to
NMS pruning, generating the final outputs.

Similarly to Faster R-CNN, the training consists of generating targets by matching
anchor boxes to ground truths. This matching is done in SSD by calculating the IoU
between the placed anchor boxes and the ground truths, all overlaps produced above
a set threshold is then considered a match. This means that the matching is not
done in pairs and that several boxes are allowed to predict the same object, which
is something that is commonly pruned in the postprocessing anyway, this simplified
the learning problem. The generated targets are then used along with the actual
outputs from the network in the loss function to optimize.

3.1.3 You Only Look Once (YOLO)
The first version of YOLO was released in 2016 by Redmon et al. [36], just like SSD
it is based on a single pass through one unified network. The produced feature map

31

3. Related Work

is split into a grid, and a set of bounding boxes is predicted for each grid location.
In the YOLOv2 [37] by the same authors, they introduce the predictions as offsets
from the anchor boxes to be placed within the grid locations similarly to both SSD
and Faster R-CNN.

The input image is processed by a CNN to extract the feature map, to later perform
the actual predictions on. The simplified network flow is presented in Figure 3.5
showing high similarity to the network flow of the SSD model. The output from the
YOLOv2 network for every grid location in the feature map has the form k(B+1+C),
where k is the number of anchors, B is the number of values defining a bounding
box, C is the number of classes, and 1 denotes the additional confidence score. The
additional confidence score refers to the probability that the specific anchor contains
an object regardless of class.

Figure 3.5: A simplified version of the network architecture of the YOLO model.
The input image is processed by the convolutional layer to extract a feature map.
The anchors are placed onto each grid of the feature map, processed by classifier
and regressor yielding the predictions.

The YOLO methods are mainly aimed towards applications that are in need of
fast runtime. Thus the CNN structure used in the models are designed thereafter.
YOLO has not achieved the highest accuracy, however, they pushed the limits of
low inference time when it comes to 2D object detection models. An additional im-
provement was made in the YOLO-series with the YOLOv3 model [38], it extracts

32

3. Related Work

features from several different layers in the CNN structure. By using feature maps
of different scales allows better accuracy regarding prediction on smaller objects,
which is one of the main issues with the previous versions in the YOLO-series.

3.2 3D Object Detection
As mentioned in Section 1.2 the problem with 3D data and most specifically point
cloud data is that the data is sparse, meaning that there does not exist data points
in every possible position. This leads to that convolutional filters (commonly used
for feature extraction) cannot be applied directly to the data. To counteract this,
the point clouds needs to be encoded into a representation such that values exist for
every location in the data.

Most SOTA 3D object detection methods exploit 2D object detection techniques
[23], [40], where the predicted bounding boxes used for matching are in 2D with the
values for the additional dimension added as extra regression targets. This section
describes three examples of promising networks using the 2D object detecting tech-
niques described in Section 3.1, on encoded 3D point cloud representations.

3.2.1 VoxelNet
VoxelNet, presented by Zhou & Tuzel [48], uses an RPN technique similar to that of
the SSD explained in Section 3.1.2, to generate 3D predictions on processed point
clouds. It solves the problem with sparse 3D point cloud data by discretizing the
point cloud into equally spaced voxels (3D pixels) as visualized in Figure 3.6.

Figure 3.6: A simple illustration of how point clouds are discretized into voxels.

The values of each voxel are based on the data points from the point cloud that are
located within the bounds of the voxel. A threshold is set on the number of points to
represent each voxel, and if the number of points exceeds the threshold, the points
to represent the voxel are randomly sampled. Furthermore, if a voxel contains less
point than the specified value, it are padded with zero-valued points. All non-empty
voxel is sent through a simple neural network, called the voxel feature extractor, to
go from each voxel being expressed as a set of point into a set of features as shown
in Figure 3.7.

33

3. Related Work

Figure 3.7: A simplified flow of the encoding of point clouds into a dense feature
representation for the VoxelNet. The voxel feature extractor refers to a simple neural
network taking a fixed set of points for each non-empty voxel as input and produces
a feature representation for each voxel. The non-empty voxels from the point cloud
input are sent through the voxel feature extractor and then scattered, based on their
original position, into the encoded point cloud representation.

For the empty voxel locations, the encoded point cloud is padded with zero-valued
features. Thus making the usually sparse point cloud data into a dense representa-
tion that a feature extractor can be applied to. The feature extractor used in the
VoxelNet implementation uses 3D convolutional layers that, conversely to the con-
volutional layers explained in Section 2.4.1, strides in three directions on the feature
map rather than two. The final produced feature map is then used by the RPN to
place three-dimensional anchor boxes, and make predictions. The predictions are
made by matching the anchor boxes similarly as in the single shot 2D object detec-
tion methods presented in Section 3.1 with the direction as an additional regression
target.

VoxelNet achieves a high accuracy but struggles in terms of inference time in compar-
ison to other methods. The reason for the slow inference time is the time consuming
3D convolutional operations. An additional issue with the voxel representation is
that, due to the sparsity of point clouds, a significant amount of the produced voxels
are empty causing a large number of unnecessary calculations.

SECOND, proposed by Yan et al. [45], is an additional model that is based on
VoxelNet as an improvement. As stated, one of the big issues with VoxelNet is that
the three dimensional convolutional operations are slow due to the sparsity of the
data remaining in the voxel representation. Therefore to solve this issue, SECOND
introduced sparse convolutions to the VoxelNet model. The sparse convolutions,
in simple terms, refer to skipping convolutional computations when there are not
enough points present in the corresponding region in the input point cloud. This
enables significant speedup in comparison to the original implementation .

3.2.2 The Complex-YOLO
Complex-YOLO, presented by Simon et al. [40], is a 3D object detection network
that expands the YOLOv2 network to handle 3D point cloud data. It handles the
issue with the sparsity in the point cloud representation by projecting the point
cloud into a two dimensional BEV grid, as shown in Figure 3.8.

34

3. Related Work

Figure 3.8: Illustration of how a point clouds is projected into a 2D BEV repre-
sentation.

The values for each projected grid location is based on the points contained within
each pillar being projected. In Complex-YOLO there are three values that are di-
rectly calculated, the maximum intensity, height along with a normalized density of
the points in the pillars. These three values are encoded as three different channels
in an image, creating an input that can be directly processed by 2D convolutions as
those in the YOLOv2 implementation presented in Section 3.1.3.

The model extends the YOLOv2 network by adding additional regressional targets
to refer to the height, z position, and direction of the 3D bounding boxes. The
directional regression is done through a complex angle, hence the name of the model,
containing two values, tim and tre where the angle α can be calculated through

α = arctan(tim
tre

). (3.1)

Simon et al. argue that predicting the angle in this way closes the mathematical
space of direction, making it easier for the network to converge towards good direc-
tional prediction. Conversely, mathematical space of direction is open in a network
that predicts the angle directly as it sees a great difference between i.e., 180° +180°,
and +540°, which effectively refer to the same orientation.

The Complex-YOLO pushes the limits of low inference while still achieving com-
parable results when it comes to 3D object detection. In comparison to other 3D
object detection methods presented in this section, it also uses a relatively simple
point cloud encoding.

3.2.3 PointPillar (PP)

PP presented by Lang et al. [23], is an additional 3D object detection method that
is based on the idea of VoxelNet presented in Section 3.2.1. Lang et al. argued that
to achieve both better inference time and accuracy, one could instead of voxels base
the representation on pillars. Effectively the voxel representation is still used, where
the height of each voxel equal the height of the entire point cloud. The point clouds
are discretized into equally spaced pillars as presented in Figure 3.9.

35

3. Related Work

Figure 3.9: Simplified illustration of how point clouds are discretized into pillars
for the PP model.

The values for each pillar is based on the point cloud data points that are enclosed
in each pillar. A value is introduced on the number of points to represent each pillar,
if there are more points present within a pillar they are randomly sampled, and if
there are fewer points present, then they are padded with zero-valued points.

Moreover, after the actual split into pillars has occurred, each remaining point is
augmented. The augmentation consists of adding the distance to the mean point in
the pillar it is located in (xm, ym, zm), along with the offset from the middle of the
pillar (xo, yo). This augmentation changes the dimensionality of each point from
four (x, y, z, r) to nine (x, y ,z ,r , xm, ym, zm, xo, yo).

All pillars that are not empty are sent through a simple neural network, called the
point feature extractor. The point feature extractor enables each pillar to go from
being represented as a set of points into a set of features. The full flow from the
pillar representation into the feature representation is presented in Figure 3.10. Ad-
ditionally, a limit is commonly introduced on the number of non-empty pillars being
sent to the point feature extractor, to limit the memory consumption for implemen-
tations.

Figure 3.10: A simplified flow of the encoding of point clouds into a dense feature
representation for the PP model. The point feature extractor refers to a simple
neural network taking a fixed set of points as input and produces a feature represen-
tation of the set. The non-empty pillars from the point cloud input are sent through
the point feature extractor and then scattered, based on their original position, into
the encoded point cloud representation. For pillars containing less points than a
set value, empty points are added. For pillars that are empty, corresponding empty
features are added into the encoded output.

36

3. Related Work

Due to how the encoded point cloud is structured, it can be interpreted as an
information-rich dense image with a depth equal to the number of features output
from the point feature extractor for each pillar. This makes it possible to effectively
process the entire feature map by 2D object detection methods. The decoder used
in the original PP implementation was a modified SSD. The modification added
regressional targets in the shape of height, z position and direction, along with an
additional binary classification for the direction. The purpose of the directional clas-
sification is to be able to predict the heading of an object in relation to the matched
anchor, thus being able to more effectively use the anchor boxes original orientation
as a point of offsets.

37

3. Related Work

38

4
Methods

In this chapter, the fundamentals of the methods used to create, train, and evaluate
the different model architectures produced in the thesis are described. The chapter
starts with explaining the tools and dataset used, followed by a description of the
data augmentation and anchor generation. Thereafter, the implementation section
contains specifics regarding the creation and configuration of the model architec-
tures. The chapter ends with an explanation of the training settings and evaluation
methods for the models.

4.1 Tools
Creating an object detection system entirely from scratch is a time-consuming task,
considering the sheer amount of concepts applicable to the deep learning task. Luck-
ily, there are existing libraries and frameworks available to speed up the implemen-
tation process. In this section, some of the more comprehensive tools used within
this thesis are explained.

4.1.1 Pytorch
The open-source machine learning library - Pytorch [35] is used to simplify the
implementation of the neural network models, The library is developed by Facebook
and contains functions to create, train and modify neural network architectures with
relative ease. By using the framework, most machine learning concepts explained
in Section 2.3 such as convolutional layers and backpropagation are implemented
with just a few lines of code. Moreover, the framework is optimized towards GPU
computations, yielding a significant speed-up to the training process when used in
unison with CUDA.

4.1.2 CUDA
CUDA is a parallel computing platform created by Nvidia [33]. CUDA enables users
to run parts of their code on the GPU rather than the CPU, to speed up execution.
The speed-up is achieved through exploiting the GPU for specific operations such as
matrix multiplication, that GPUs can perform more effectively than CPUs. Matrix
multiplication is used extensively when performing both forward and backpropaga-
tion through a neural network, meaning that CUDA enables significant speed-up
when training deep neural network.

39

4. Methods

4.1.3 Numba

Numba is a Python compiler that makes it possible to translate simple Python
functions into optimized machine code during runtime, thus making it possible to
write code that is comparable in speed to traditionally compiled languages (such
as C) [22]. The most prominent speed-up is achieved in loops that make heavy
use of arrays and scalars. In this thesis, Numba provided significant speed-up in
comparison to pure Python code by optimizing functions frequently used during
training.

4.1.4 Visdom

Visdom is a tool for creating plots and sharing live visualizations, created by the
research department at Facebook. Visdom makes it possible to have live plot updates
during training.

4.1.5 nuScenes-devkit

Along with the nuScenes dataset described in Section 4.2.2 came a Python develop-
ment kit for handling data samples and their annotations [7]. It provides essential
functions for loading data samples whilst keeping track of annotations belonging to
the specific sample. The development kit is also used to visualize 3D predictions
within the actual scenes, as seen in Figure 4.1 and 4.2.

4.2 Datasets

As mentioned in section 1.1, training a neural network typically requires a large
amount of data. Collecting and annotating this type of data takes a significant
amount of time. Fortunately, there are several public datasets available for research
purposes. This section introduces two of the largest publicly available datasets for
3D object detection, KITTI and nuScenes. KITTI was not explicitly used within
the project, however, it is presented here as virtually all related work presented in
Section 3.2 is based on it. The nuScenes dataset is used in this thesis mainly due to
the presence of significantly more data in comparison to KITTI.

4.2.1 KITTI Vision Benchmark Suite

The KITTI dataset was released in 2012, by the Karlsruhe Institute of Technol-
ogy and Toyota Technological Institute, and has been widely used as a standard
for comparing deep learning tasks within autonomous driving among researchers
since its creation [13]. The entire dataset consists of approximately 15000 data sam-
ples roughly split equally into a training and test set. The data was gathered in
Karlsruhe, Germany, with two front-facing cameras (stereo) and a 360° LiDAR.

40

4. Methods

Data Annotation

The KITTI benchmark suite contains annotations for the training set in the shape of
3D bounding boxes as well as class labels for six different classes such as cars, cyclists,
and pedestrians. The annotations have been made manually from the camera data,
and due to the cameras only being front-facing, less than half of each point cloud
contains annotations for present objects.

Evaluation

As the annotations for the test set is not publicly available, the evaluation of a
model on the official KITTI test set can only be done through the competition
available on the datasets website. However, by the time this thesis was carried
out, only submissions with significant novelty leading to a paper in a conference or
journal were allowed. KITTI explicitly stated that student research projects are not
permitted to use their test evaluation server.

4.2.2 NuScenes Dataset
The nuScenes dataset [7] was released throughout this thesis. The capturing of the
data was done with six cameras placed all around the vehicle, effectively yielding
a 360° Field of View (FoV), along with a 360° LiDAR scanner (and Radars). The
full dataset is provided by Aptiv Autonomous Mobility and includes 1000 scenes
each spanning for approximately 20 seconds. The 1000 scenes are collected from
dense traffic situations in both Singapore and Boston, the scenes are split into a
training set of 700, a validation set of 150 and a test set of 150 scenes. Each scene is
annotated with a frequency of 2Hz (2 annotations per second), meaning that there
are approximately 1000 · 20 · 2 = 40000 annotated samples in total.

Data annotation

Similarly to KITTI, the annotations contained for the training and validation set
is in the shape of 3D bounding boxes with classes. However, the annotation also
contains attributes such as whether a pedestrian is standing, sitting, or moving. In
total there are 23 classes present in the annotations (see the full list in Table 4.3).
The annotations are applied in 360° around the vehicle, meaning that in contrast to
KITTI the entire point cloud can be used. An annotated sample visualized through
the six different cameras around the vehicle can be seen in Figure 4.1.

Extending on the samples, the dataset also contains additional sweeps from in be-
tween the annotations yielding a total of approximately 400 000 LiDAR sweeps
(LiDAR captures data in 20Hz, whilst annotations are applied in 2Hz). A possibil-
ity to load up to 10 sweeps per annotated sample is implemented to get a denser
point cloud input that is subject to movement. In Figure 4.2 two LiDAR point
clouds are presented in a BEV format of the same sample presented in Figure 4.1,
the two point clouds are presented with a differing amount of sweeps.

41

4. Methods

Figure 4.1: Sample from the nuScenes dataset through the six different camera
positions around the vehicle. The positions of the pictures reflect the corresponding
camera positions, presented from the top: front, front left, front right, back left,
back right and back. The annotated ground truth objects present in the pictures
are three cars (orange bounding boxes) and one motorcycle (red bounding box).

42

4. Methods

Figure 4.2: Two BEV representation of the LiDAR point clouds, from a nuScenes
sample. The left point cloud contains data from one sweep, meaning that only the
annotated sample data is represented. The right point cloud contains data from 10
sweeps, meaning that the sample data is overlayed by the previous 9 LiDAR data
collections.

nuScenes annotation contains a visibility level for every object. The level is set to an
integer between one and four depending on the percentage of how much of the object
is visible through the camera sensors as presented in Table 4.1. This parameter is
used when exploring the evaluation to compare the performance of the models on
different visibility levels.

Level Visibility
1 0-40%
2 40-60%
3 60-80%
4 80-100%

Table 4.1: The visibility level for an annotated object in relation to how much of
the object is visible through the ego vehicles cameras.

Evaluation

With the release of the dataset, nuScenes introduced a new metric, the nuScenes
Detection Score (NDS), to balance all aspects of the detection performance [7]. Sim-
ilarly to KITTI, the evaluation on the test set is done through an evaluation server.
Access to this official evaluation server is limited. Thus a separate evaluation metric
was implemented. The separate evaluation is presented in Section 4.9, whereas only
the best model according to this metric is sent to the official evaluation server.

43

4. Methods

The NDS contains the mAP metric presented in Section 2.6, with a True Positive
Metric (TPM) set to a threshold of 2D center distance. An advantage of using dis-
tance as a TPM metric is that it is not as sensitive to small translation errors as
the TPM based on IoU for smaller objects such as pedestrians. The distance TPM
does not take orientation and scale into account; therefore these are evaluated in
separate metrics for the NDS expressed below.

• Average Translation Error (ATE), in terms of 2D Euclidean distance between
the centers of predictions and ground truths.

• Average Scale Error (ASE), calculated as 1 − IoU after aligning centers and
orientations of predictions and ground truths.

• Average Orientation Error (AOE), referring to the yaw angle difference be-
tween predictions and ground truths.

The concluding NDS is a weighted sum of the above mentioned separate metrics, in
this sum, there are additional metrics that are outside of the thesis’ scope, includ-
ing velocity and attribute accuracy. One thing to note is that the mAP within the
benchmark is calculated only above 10% in both precision and recall, reducing the
noise for the measurements.

Considering that the amount of points in a point cloud diminishes with increas-
ing radius from the gathering sensor, an upper bound in terms of range is set on
the evaluated predictions. The upper bound varies depending on the class and is
presented in Table 4.2.

Detection class Detection range
Bicycle, Motorcycle, Pedestrain 40m
Car, Bus, Construction, Trailer, Truck 50m

Table 4.2: Range limit used in evaluation for each class of interest in the nuScenes
dataset, measured from the ego vehicle in meters.

Version 0.1 - Teaser set

Initially as the project started the full nuScenes dataset was not released, however,
a teaser dataset consisting of approximately 10% of the full dataset was available.
Out of the total of 1000 scenes, 100 scenes were released as version 0.1. As the
project began with using this set, the initial experiments are trained on the teaser
data rather than the full dataset.

4.3 Merging Classes
Since the dataset was gathered from real-world situations, an expected class imbal-
ance issue arose. The amount of instances present in the nuScenes dataset for each

44

4. Methods

class is varying from approximately 50 to 500 000 instances for the ambulance and
car class respectively, implying a difference of four orders of magnitude between the
classes. This imbalance is expected, as one would not expect to see as many ambu-
lances as cars while driving. Based on an imbalance of classes in terms of training
an object detection model, one can not expect to achieve good results on a class
that is extremely rare in the data.

Therefore decisions were made to merge and remove redundant classes in the dataset,
to simplify the object detection problem as a whole. The problem is generally
simplified by giving the model less classes to choose from in terms of classification.
Presented in Table 4.3 are the result of the merging of the 23 classes along with the
counts of annotation for the two different versions of the dataset. Note that the final
merging differs from the merging proposed by nuScenes, the reason is that movable
objects was deemed out of scope for this thesis.

General Class: Teaser
Count

nuScenes
Merging

Full
Count

Final
Merging

animal 6 Ignore 787 Ignore
movable_object.debris 500 Ignore 3016 Ignore
movable_object.pushable_pullable 583 Ignore 24605 Ignore
movable_object.barrier 18449 Barrier 152087 Ignore
movable_object.trafficcone 7197 Traffic_Cone 97959 Ignore
static_object.bicycle_rack 192 Ignore 2713 Ignore
human.pedestrian.stroller 40 Ignore 1072 Ignore
human.pedestrian.wheelchair 5 Ignore 503 Ignore
human.pedestrian.personal_mobility 24 Ignore 395 Ignore
human.pedestrian.adult 20510 Pedestrian 208240 Pedestrian
human.pedestrian.child 15 Pedestrian 2066 Pedestrian
human.pedestrian.police_officer 39 Pedestrian 638 Pedestrian
human.pedestrian.construction_worker 2400 Pedestrian 9161 Pedestrian
vehicle.bicycle 1685 Bicycle 11859 Bicycle
vehicle.motorcycle 1975 Motorcycle 12617 Motorcycle
vehicle.construction 1889 Construction 14671 Construction
vehicle.car 32497 Car 493322 Car
vehicle.bus.rigid 1115 Bus 14501 Bus
vehicle.bus.bendy 98 Bus 1820 Bus
vehicle.trailer 2383 Trailer 24860 Trailer
vehicle.truck 8243 Truck 88519 Truck
vehicle.emergency.ambulance 19 Ignore 49 Ignore
vehicle.emergency.police 88 Ignore 638 Ignore

Table 4.3: Kept and merged classes, along with the classes respective annotation
count for the two dataset versions. The nuScenes merging column presents the
merging nuScenes released alongside the full dataset. The final merging column
shows the final merging used in this thesis, resulting in 8 classes.

Following is a brief summary of the annotation instructions for some classes in Table
4.3 that are deemed to have names that are non-self explanatory:

45

4. Methods

• Movable object: Refers to different types of movable inanimate objects that
are typically present in traffic situations, such as trash bins and traffic cones.

• Human pedestrian personal mobility: Explained within the annotation as self-
propelled vehicles such as skateboards or scooters, on which a person typically
travels in an upright position.

• Vehicle emergency police: Refers to all different types of police vehicles, mean-
ing a class containing both motorcycles, cars, and vans.

• Static object bicycle rack: A class added to handle many bicycles at the same
location, thus removes the need to annotate each bicycle in the rack individ-
ually.

An issue present with classes such as police vehicles is that there are too few ob-
jects present in the dataset for them to be adequately trained as individual classes.
Additionally, the police vehicles are hard to merge into other classes as they overlap
several different classes (trucks and cars) as shown in Figure 4.3. Moreover, accord-
ing to the annotation instructions above, police motorcycles are supposed to belong
to this class, which would cause a greater class overlap issue.

Figure 4.3: Examples of three different police vehicles present under the class
vehicle.emergency.police in the nuScenes dataset. The examples show different types
of police vehicles that overlap into other classes such as cars and trucks.

Worth noting is that there are additional attributes present in the dataset for cer-
tain objects, such as vehicles (moving, stopped, parked), pedestrians (sitting/lying,
moving, standing) and bicycles (with rider, without rider). However, predicting at-

46

4. Methods

tributes was not taken into consideration, and each used annotation was limited to
a bounding box with the corresponding class.

4.4 Anchor Generation
Anchor boxes are as explained in Section 3.1 used as a starting point for the shapes
of objects. Thus the models do not predict the actual size of the objects, but rather
a prediction of how much an anchor should be offset to match the size. The usage of
anchor boxes is especially effective when objects have a similar shape as the anchors,
implying that the needed offset becomes smaller[47]. Therefore, it is important to
choose anchor box sizes that represent the objects in the data well.
As the nuScenes dataset is using real-world coordinates instead of any projection (as
in 2D image detectors) all objects should have a fairly similar shape. The difference
in size for pedestrians are for instance at the maximum in the range of ±1m as
can be seen in Table 4.4 along with the smallest and largest object for each of the
used classes. However, considering the amount of objects in the dataset the ranges
presented in the table are based on possible outliers.

Class Smallest Object Largest Object
Pedestrian [0.30, 0.41, 0.62] [1.19, 1.59, 2.98]
Bicycle [0.36, 0.92, 0.75] [0.93, 3.04, 2.00]
Motorcycle [0.76, 0.72, 1.22] [1.82, 4.41, 2.00]
Construction [0.68, 1.37, 1.13] [4.79, 15.89, 9.00]
Car [0.65, 2.02, 1.38] [2.71, 11.52, 4.49]
Bus [2.48, 4.41, 2.00] [5.11, 21.30, 3.77]
Trailer [1.23, 1.96, 1.39] [3.57, 34.42, 4.60]
Truck [1.70, 2.64, 2.00] [3.44, 22.47, 4.68]

Table 4.4: Smallest and largest objects in the dataset for each of the proposed
classes, presented as width, length and height in meters.

One additional aspect to have in mind when choosing anchors is the quantity, as
the number of anchor boxes to place linearly increases the number of predictions
the model outputs. This means that the number of anchors directly influences the
number of calculations in the model, and thus the training and inference time. In
essence, the chosen anchors should be aimed to cover the shape of the data as well
as possible whilst minimizing the quantity.

4.4.1 Averaging
The most straight forward approach to calculating anchors, that should have good
coverage of the dataset, is to take the average of each annotation size for each class
individually. The resulting anchors for each class can be found in table 4.5. How-
ever, due to some classes having similar shapes, such as buses and trailers, there

47

4. Methods

should be a possibility to decrease the number of anchor boxes further while still
covering the shape of the data.

Class Avg Box Size Count Merged Class: Avg Box Size Count
Adult [0.67, 0.73, 1.77] 208240 Pedestrian [0.67, 0.73, 1.77] 220105
Child [0.51, 0.53, 1.38] 2066 - | | -
Police officer [0.73, 0.69, 1.83] 638 - | | -
Construction worker [0.72, 0.72, 1.74] 9161 - | | -
Bicycle [0.60, 1.70, 1.28] 11859 Bicycle [0.60, 1.70, 1.28] 11859
Motorcycle [0.77, 2.11, 1.47] 12617 Motorcycle [0.77, 2.11, 1.47] 12617
Construction [2.85, 6.37, 3.19] 14671 Construction [2.85, 6.37, 3.19] 14671
Car [1.95, 4.62, 1.73] 493322 Car [1.95, 4.62, 1.73] 493322
Bus rigid [2.93, 11.23, 3.47] 14501 Bus [2.93, 11.08, 3.47] 16321
Bus bendy [2.96, 9.83, 3.45] 1820 - | | -
Trailer [2.91, 12.29, 3.87] 24860 Trailer [2.91, 12.29, 3.87] 24860
Truck [2.51, 6.93, 2.84] 88519 Truck [2.51, 6.93, 2.84] 88519

Table 4.5: Average object size for each of the classes both before and after merging,
along with the number of annotations of the corresponding class in the dataset. The
object sizes are presented as width, length and height in meters.

4.4.2 K-Mean Clustering for Anchor Sizes

The k-means clustering algorithm can also be used to find appropriate anchors to
cover the annotations of the dataset. As the goal of the anchor generation is to
find the shapes that best represent the data, the metric between the points and the
centroids is changed in the algorithm, from the Euclidean distance (2.19) to the IoU
(2.1).

Due to the algorithm starting with picking k random boxes means that the output
of the algorithm is stochastic. Hence to counteract the randomness, the algorithm
is run multiple times to yield a better result. The best result for a specific k value
is decided by the average IoU between the resulting anchors and the datasets anno-
tations. The algorithm’s average IoU with five repetitions from running for k values
between one and ten is presented in Figure 4.4, while the resulting boxes for the five
first k values are presented in Table 4.6.

K value Boxes: Avg IOU
1 [1.73 4.34 1.45] 54.95%
2 [1.99 4.68 1.77], [0.66 0.73 1.77] 75.73%
3 [1.95 4.60 1.72], [0.66 0.73 1.77], [2.86 9.21 3.61] 79.65%
4 [1.86 4.44 1.64], [0.65 0.73 1.77], [2.89 9.94 3.69], [2.10 4.92 1.88] 81.58%
5 [1.86 4.45 1.64], [0.60 0.61 1.75], [2.89 9.95 3.69], [2.11 4.94 1.88], [0.74, 0.91, 1.78] 83.59%

Table 4.6: The generated anchor boxes from the k-means algorithm, and their
respective average IoU coverage of the datasets ground truth boxes.

48

4. Methods

Figure 4.4: The average IoU coverage of the dataset with respect to the k clusters
(anchors) generated from the k-means algorithm.

What is especially noteworthy from the graph in Figure 4.4 is that the average IoU
reaches almost 80% after representing all shapes by only two anchor boxes. How-
ever, considering the imbalance of classes in the dataset this is to be expected, as the
generated anchors are most likely covering the over-represented classes; pedestrians
and cars. This is further verified by the anchor boxes presented in Table 4.6 as the
first two k-mean generated anchors are closely related to the average size for the car
and pedestrian class calculated in Table 4.5.

The specific anchors used in the implemented models are dependent on the classes
to be predicted. The anchors used for each model are presented in Section 5. Gen-
erally, the models trained with multiple classes use multiple anchors, these models
use k-mean generated anchors. The models trained on a single class use the average
object size for that class as anchor. The reason is that by applying the k-mean
algorithm with a k value of one, would yield the average of the data and not the
average of the object looked for.

4.5 Implementation
For a convolutional neural network to be able to process a 3D LiDAR point cloud,
the data needs to be represented more densely. This is done by encoding the 3D
point cloud into two-dimensions. This section starts by describing the two imple-
mented encoders; BEV and the PP encoder.

The data representation, created by the encoders, is interpreted with feature ex-
tractors in the shape of convolutional layers in different configurations. The neural
network configuration depends on what type of decoder is used to produce predic-
tions.

There are mainly three different SOTA 2D object detection methods presented in

49

4. Methods

Section 3.1 in the shape of one two-stage detector (Faster R-CNN) and two one-
stage detectors (YOLO and SSD). A decision was made to focus on the one stage
detectors as they promised faster running time in comparison [18]. Specifically, the
presented running times are fast enough to be applied in real time. This section
further presents the implementation of the specific model architectures in terms of
decoders used in the thesis.

4.5.1 Preprocessing
Due to how a LiDAR gathers point cloud data, there are generally fewer points per
object the longer the distance from the sensor to the object is. The more empty
space implies more unnecessary calculations when trying to extract features. Limits
are introduced to the point cloud to counteract the issue with empty space. The
point clouds are redefined as only the points within a fixed grid (for instance, 40×40
meters in Figure 4.2). Furthermore, the actual limitation of the point cloud is based
on the chosen discretization, as the networks expect the input to be of a specific size
according to

size = point cloud range
discretization . (4.1)

This means that the relationship between the total point cloud range and the dis-
cretization must be kept static for a specific input shape. Additionally, points closer
than 1m to the sensor are ignored, as these points are generally reflections from the
ego vehicle.

As mentioned in Section 4.2.2, the LiDAR captures data in 20Hz while the an-
notations are applied in 2Hz, meaning that nine additional LiDAR sweeps can be
overlayed for every annotation sample. This overlaying is done by translating and
rotating the entire point cloud for a specific sweep based on the offset in ego vehicle
position and rotation between the sweep and the annotated sample and then adding
all the points into the original sample point cloud.

4.5.2 Encoder - Birds Eye View (BEV)
BEV is one of the simplest ways of representing a 3D point cloud densely. It does so
by discretizing the ground plane and then represent each grid position by features
calculated from the points within that grid. The baseline features for the imple-
mented BEV representation were the same as presented by Simon et al. in their
Complex-Yolo paper [40].

The BEV encoder receives a point cloud that is limited in directions x, y, z and has
a discretization size of xd, yd. The point cloud is discretized along the ground plane
creating a grid of size x range

xd
× y range

yd
, where there is a set of points Pij = [x, y, z, r]T

for every position ij in the grid. From each set of points within a grid (visualized

50

4. Methods

as a pillar) three features are calculated:

• Height, the height of the highest point inside a grid.

• Intensity, the maximum intensity of a point found within a grid.

• Density, a normalized expression for the amount of points within a grid.

The three features constitutes the baseline used in the BEV point cloud encoder.
The features are calculated for each grid position ij according to

Fheight(i, j) = max(Pij · [0, 0, 1, 0]T)

Fintensity(i, j) = max(Pij · [0, 0, 0, 1]T)

Fdensity(i, j) = min(1.0, log(N+1
32)) N = |Pij| ,

(4.2)

where Pij is the set of points and N is the number of points within the set. These
values are then entered into the grid, creating an image of size x range

xd
× y range

yd
× 3

encoding the information from the point cloud.

4.5.3 Encoder - PP
The point pillar encoder is significantly more complex compared to the straight for-
ward BEV approach. The specifics are explained in Section 3.2.3, but in essence,
the encoder receives a point cloud that has been limited in the directions x, y, z and
has a discretization size of xd, yd.

The ground plane is split based on the discretization into pillars, where two limits
are introduced. Firstly, a limit on the number of points within a pillar set to 35. If
the number of points exceeds this limit, the points are randomly sampled. Secondly,
a limit on pillars set to 10000, and similarly if the number of pillars generated ex-
ceeds its limit, the pillars are randomly picked.

Thereafter each point is extended with additional information from the pillars as
explained in Section 3.2.3, extending the four original features to nine. This yields
a total point cloud representation of size 10000× 35× 9, whereas each pillar is sent
through a simple neural network called point feature net as presented in Table 4.7.

Layer Activation function Regularization Input size Output size
Linear layer ReLU BatchNorm 35× 9 35× 64

Table 4.7: The point feature net used to effectively learn the feature representation
from the data. Each pillar sized 35 × 9 is sent through this small neural network
yielding an output sized 35× 64.

51

4. Methods

The point feature net applies a linear transformation of the incoming data x as

y = xAT + b, (4.3)

where A and b are learnable parameters. These learnable parameters are updated
through the loss function specified by the chosen decoders, explained in the following
sections. The point feature net transforms each pillar from a point to a feature
representation of size 64, yielding a point cloud representation of size 10000×35×64.
Thereafter a max operation is applied to each pillar only keeping the highest value
found for each of the 64 features in the pillar, producing a point cloud representation
of 10000 × 64. Finally, each pillar represented by the features is scattered into a
grid, based on their original position in the discretized grid. Yielding an encoded
point cloud representation as an image of size x range

xd
× y range

yd
× 64.

4.5.4 Decoder - YOLOv2
In the YOLOv2 paper [37], they recommend using an input size such that the re-
sulting feature map is of an odd size. As the feature map is divided into a grid, an
odd size would yield a prediction in the middle of the input. A center prediction
is of interest, as objects are commonly placed in the center of an image. However,
when using the point cloud representations as input, the middle of the feature map
typically contains the car collecting the data which is neither annotated or interest-
ing, therefore an input of size 448x448 from the original YOLO [36] is used. Since
YOLOv2 convolutional layers downstream the input size of a factor of 32, the model
yields a feature map with a size of 14× 14 to make predictions on.

The entire network architecture of the implementation can be found in Table 4.8
and is based on the architecture from the original YOLOv2 paper [37]. It consists
of a downsampling network that produces features from the input image and a de-
tection head. The detection head layers extract features from different levels of the
downsampling network to create the feature map.

For each grid position in the produced feature map anchors are placed. As the
thesis implementation aims towards predicting the orientation of the objects, every
generated anchor is placed twice, once horizontally and once vertically (effectively
multiplying the number of anchors by 2). All objects can be rotated 360°, thus by
placing two anchors; the maximal direction target offset can be reduced by half.

The targets for the YOLO model to learn, are defined by the offset from the an-
chors. The targets are yielded by first finding which grid position is closest to each
annotated ground truth center. Secondly, the anchors that best resembles the shape
of the ground truth bounding boxes is considered the target boxes. Finally, those
target boxes are filled with values to offset for the difference between the anchors
and the target boxes size, orientation and class.

The final predictions from the YOLOv2 decoder are made in the shape of

#Anchors× (#Classes + #Localization targets + 1). (4.4)

52

4. Methods

This means that predictions are made for every anchor used in each grid position
in the resulting feature map sized at 14 × 14. Each prediction yields a probability
for every class, a set of localization offset values and a confidence score visualized in
Figure 4.5.

Downsampling:
#: Layer Filters Size Stride Pad Activation Regularization Input Output
1: Convolutional 32 3 x 3 1 1 Leaky ReLU BatchNorm 448x448x(A) 448x448x32
2: Maxpooling 2 x 2 2 448x448x32 224x224x32
3: Convolutional 64 3 x 3 1 1 Leaky ReLU BatchNorm 224x224x32 224x224x64
4: Maxpooling 2 x 2 2 224x224x64 112x112x64
5: Convolutional 128 3 x 3 1 1 Leaky ReLU BatchNorm 112x112x64 112x112x128
6: Convolutional 64 1 x 1 1 0 Leaky ReLU BatchNorm 112x112x128 112x112x64
7: Convolutional 128 3 x 3 1 1 Leaky ReLU BatchNorm 112x112x64 112x112x128
8: Maxpooling 2 x 2 2 112x112x128 56x56x128
9: Convolutional 256 3 x 3 1 1 Leaky ReLU BatchNorm 56x56x128 56x56x256
10: Convolutional 128 1 x 1 1 1 Leaky ReLU BatchNorm 56x56x256 56x56x128
11: Convolutional 256 3 x 3 1 1 Leaky ReLU BatchNorm 56x56x128 56x56x256
12: Maxpooling 2 x 2 2 56x56x256 28x28x256
13: Convolutional 512 3 x 3 1 1 Leaky ReLU BatchNorm 28x28x256 28x28x512
14: Convolutional 256 1 x 1 1 1 Leaky ReLU BatchNorm 28x28x512 28x28x256
15: Convolutional 512 3 x 3 1 1 Leaky ReLU BatchNorm 28x28x256 28x28x512
16: Convolutional 256 1 x 1 1 1 Leaky ReLU BatchNorm 28x28x512 28x28x256
17: Convolutional 512 3 x 3 1 1 Leaky ReLU BatchNorm 28x28x256 28x28x512
a
18: Maxpooling 2 x 2 2 28x28x512 14x14x512
19: Convolutional 1024 3 x 3 1 1 Leaky ReLU BatchNorm 14x14x512 14x14x1024
20: Convolutional 512 1 x 1 1 1 Leaky ReLU BatchNorm 14x14x1024 14x14x512
21: Convolutional 1024 3 x 3 1 1 Leaky ReLU BatchNorm 14x14x512 14x14x1024
22: Convolutional 512 1 x 1 1 1 Leaky ReLU BatchNorm 14x14x1024 14x14x512
23: Convolutional 1024 3 x 3 1 1 Leaky ReLU BatchNorm 14x14x1024 14x14x1024
24: Convolutional 1024 3 x 3 1 1 Leaky ReLU BatchNorm 14x14x1024 14x14x1024
25: Convolutional 1024 3 x 3 1 1 Leaky ReLU BatchNorm 14x14x1024 14x14x1024
b
A = the number of input features

Additional layers:
#: Layer Filters Size Stride Pad Activation Regularization From Input Output
26: Convolutional 64 1 x 1 1 0 Leaky ReLU BatchNorm *a* 28x28x512 28x28x64
27: Reshaping 28x28x64 14x14x256
c

Detection Head:
#: Layer Filters Size Stride Pad Activation Regularization From Input Output
28: Concatenation 1280 *b* & *c* 14x14(256+1024) 14x14x1280
29: Convolutional 1024 3 x 3 1 1 Leaky ReLU BatchNorm 14x14x1280 14x14x1024
30: Convolutional O 1 x 1 1 0 None None 14x14x1024 14x14xO
O = # Anchors ×(#Classes+ #Localization targets+ 1)

Table 4.8: The full YOLOv2 decoder architecture, presented in three sub-tables.
The downsampling and additional layers table present the feature extraction from
an input image with A input features. The detection head extracts features from
two different levels of the feature extractor to be concatenated into the final feature
map to make predictions on, as well as make the actual predictions.

53

4. Methods

Figure 4.5: In every cell of the feature map, YOLOv2 outputs regression values,
confidence score, and class probabilities for every anchor. One class probability is
given for every class that the network should classify, and the number of regression
values depends on the number of positions the bounding boxes are expressed with.
The number of regression values used in 3D object detection for YOLO are seven:
center position (x, y, z), width, length, height, and rotation.

Compared to most problems solved with deep learning, object detection answers
more than one question, specifically regression and classification within the same
network. In the YOLO model, there are three significantly different outputs pro-
duced, two classifying and one regressional output.

• The regressional output refers to several values corresponding to the position
and direction of the outputted bounding box.

• The confidence score refers to the probability that the specific bounding box
center is located within the specific grid position. Essentially a classification
score on how confident the network is that the produced bounding box is cor-
rect.

• The class probabilities refer to how confident the network is for each class that
a specific bounding box should be classified as.

Loss function

A comparison of the produced output with the supposed target is made through the
loss function, to find how much the weights in the network should be updated. The
loss function used in the YOLOv2 implementation is divided into three smaller loss
functions, one for each part of the output.

54

4. Methods

• Regressional loss, that uses the MSE expressed as

LReg(x, y) = 1
n

n∑
j

(xj − yj)2, (4.5)

where x is the produced output for the regressional values for each prediction,
y is the target output and n is the total number of predictions.

• Confidence loss, also uses the MSE loss according to

LCnf (x, y) = 1
n

n∑
j

(xj − yj)2, (4.6)

where x is the confidence score for the each prediction, y is the target confi-
dence, and n is the number of predictions.

• Classification loss, uses the Cross Entropy Loss (CEL) expressed as

LCls(X, y) = 1
n

n∑
j

− log eXj [yj]∑c
i e

Xj [i] , (4.7)

where X is the produced class probabilities for each prediction, y is the target
class, c is the total number of classes, and n is the total number of predictions.

The resulting three losses are weighted and summed based on their importance in
the network according to

LT ot = LReg + LCnf + 2.0 · LCls. (4.8)

The doubled weight towards the classification loss is added to try to remedy the
imbalance of classes in the dataset.

4.5.5 Decoder - SSD
The original SSD implementation uses a modified VGG16 architecture [27], however
most related works within 3D object detection [23], [45], [48] use the same feature
extraction network that was originally implemented as a part of the Faster R-CNN
implementation[39] by Ren et. al and improved in VoxelNet[48] by Zhou & Tuzel.
As the usage of this architecture has been widespread, it became a clear choice as
architecture for the SSD implementation in the project.

The resulting model architecture can be expressed as three blocks of fully convolu-
tional layers that downsample the input image. The output from each block is sent
through a transposed convolutional layer and are concatenated together to yield the
feature map on which the predictions are made. The full architecture for the SSD
implementation is presented in Table 4.9, the input and output sizes presented in
each layer are based on an input size of 320x400, which was the most common input
size used in the project.

55

4. Methods

Downsampling:
#: Layer Filters Size Stride Pad Activation Regularization Input Output

1: Convolutional 64 3 x 3 2 1 ReLU BatchNorm 320x400x(A) 160x200x64
2: Convolutional 64 3 x 3 1 1 ReLU BatchNorm 160x200x64 160x200x64
3: Convolutional 64 3 x 3 1 1 ReLU BatchNorm 160x200x64 160x200x64
4: Convolutional 64 3 x 3 1 1 ReLU BatchNorm 160x200x64 160x200x64
a
5: Convolutional 128 3 x 3 2 1 ReLU BatchNorm 160x200x64 80x100x128
6: Convolutional 128 3 x 3 1 1 ReLU BatchNorm 80x100x128 80x100x128
7: Convolutional 128 3 x 3 1 1 ReLU BatchNorm 80x100x128 80x100x128
8: Convolutional 128 3 x 3 1 1 ReLU BatchNorm 80x100x128 80x100x128
9: Convolutional 128 3 x 3 1 1 ReLU BatchNorm 80x100x128 80x100x128
10: Convolutional 128 3 x 3 1 1 ReLU BatchNorm 80x100x128 80x100x128
b
11: Convolutional 256 3 x 3 2 1 ReLU BatchNorm 80x100x128 40x50x256
12: Convolutional 256 3 x 3 1 1 ReLU BatchNorm 40x50x256 40x50x256
13: Convolutional 256 3 x 3 1 1 ReLU BatchNorm 40x50x256 40x50x256
14: Convolutional 256 3 x 3 1 1 ReLU BatchNorm 40x50x256 40x50x256
15: Convolutional 256 3 x 3 1 1 ReLU BatchNorm 40x50x256 40x50x256
16: Convolutional 256 3 x 3 1 1 ReLU BatchNorm 40x50x256 40x50x256
c
A = the number of input features

Upsampling:
#: Layer Filters Size Stride Pad Activation Regularization From Input Output

17: Trans Conv 128 1 x 1 1 0 ReLU BatchNorm *a* 160x200x64 160x200x128
a

18: Trans Conv 128 2 x 2 2 0 ReLU BatchNorm *b* 80x100x128 160x200x128
b

19: Trans Conv 128 4 x 4 4 0 ReLU BatchNorm *c* 40x50x256 160x200x128
c

Detection Head:
#: Layer Filters Size Stride Pad Act / Reg From Input Output

20: Concatenate 384 *a*, *b*, *c* 160x200x(128×3) 160x200x384
d

21: Convolutional (B) 1x1 1 0 None *d* 160x200x384 160x200x (B)

22: Convolutional (C) 1x1 1 0 None *d* 160x200x384 160x200x (C)

23: Convolutional (D) 1x1 1 0 None *d* 160x200x384 160x200x (D)

Layer 21 predicts the classification; B = # Classes
Layer 22 predicts the regression values; C = # Anchors ×#Regression targets
Layer 23 predicts the direction classification; D = # Anchors ×#Rotation classes

Table 4.9: The full SSD decoder architecture, presented in three sub-tables. The
downsampling layers applies feature extraction on the input image with A features.
The upsampling layers extract features from different levels in the downsampling
network and concatenate them, producing a feature map that the detection head
uses to predict the classification and localization of the objects.

56

4. Methods

The final predictions produced from the SSD detector is in the form

#Anchors× (#Classes + #Regression targets + #Rotation classes), (4.9)

where every anchor placement is subject to three different types of predictions.
Firstly in terms of class, what the object actually is. Secondly, the regression, to
predict the (3D) bounding box in terms of position, size, and angle. Lastly, a rota-
tion classification, to determine the heading of the object within the anchor.

These predictions are made for every position in the resulting feature map sized
160x200 (assuming an input of 320x400) yielding the output as described in Figure
4.6. This means that the SSD implementation yields 32 000 placements per anchor.
Considering the relatively small space that each of the feature map grids occupies,
with a point cloud as input, one could expect that many of the anchor locations do
not contain any points. Therefore additional masking of anchors is implemented,
to ignore all anchor placements that are made on locations that do not contain any
points in the original point cloud, significantly reducing the effective number of total
predictions.

Figure 4.6: In every cell of the produced feature map, SSD outputs regression
values, class probabilities, and rotational probabilities for every anchor. One class
probability is given for every defined object class, one rotational probability is given
for every defined rotational class, and the number of regression values depends on
the number of positions the bounding boxes are expressed with. The number of
regression values used in 3D object detection are seven: center position (x, y, z),
width, length, height, and rotation.

57

4. Methods

Even though the anchor masking helps to reduce the number of predictions made,
there is still an issue present regarding background to class imbalance. To solve this
issue the original implementation of SSD[27] uses hard negative mining as explained
in Section 2.2.5.

Another approach to solving the background to class imbalance was introduced in
the paper presented by Lin et al. [26]. The approach evolved around a newly intro-
duced loss function called focal loss. It is a variation of the standard CEL function,
where the loss for the predictions with a high probability is reduced. Thus focal loss
makes the network update the weights more for the harder predictions, and less for
the obvious predictions, such as common background.

Loss function
The SSD detector produces three types of output, divided into localization, classi-
fication, and directional classification.

• Classification loss, uses the aforementioned focal loss to try to solve the class
imbalance issue. The loss is expressed as

Lcls(X, y) =
n∑
j

{
−α · ((1− σ(Xj))γ − log(σ(Xj)) if y = Xj

−(1− α) · (σ(Xj))γ − log(1− σ(Xj)) otherwise
, (4.10)

where σ() denotes the sigmoid function, X is the predicted class probabilities,
y is the supposed class, n is the number of classes, and γ & α are both free
variables. Considering the sheer dominance of background examples in com-
parison to actual objects in the nuScenes dataset, the variables α = 0.25 and
γ = 2 is used, as recommended by Lin et al.

• Localization loss, uses the following smooth l1 loss, introduced in the Fast
R-CNN implementation [14],

Lreg(X, Y) =
n∑
j

{
0.5 · (Xj − Yj)2 if |Xj − Yj| < 1
|Xj − Yj| − 0.5 if |Xj − Yj| ≥ 1 , (4.11)

where X is the predicted regressional values, Y is the target output and n is
the number of regressional targets.

• Directional loss, is handled twice, once within the localization loss and once as
a classification. The directional classification is done to be able to differentiate
objects of opposite heading. Each anchor is placed twice, once horizontally and
once vertically. The direction as a regression target handles the offset from
the initial rotation (maximum of 45°), whilst the direction as a classification
handles which way an object is facing (± 180°).

The issue with generating targets based on IoU between the anchor and the
ground truth, is that it does not take the heading of the ground truth into

58

4. Methods

account. Because there is no difference between IoU for both headings, the
directional classification is added as a target. The directional classification
loss is calculated by using CEL expressed as

Ldir(X, y) = 1
n

n∑
j

− log eXj [yj]∑c
i e

Xj [i] , (4.12)

where X is the predicted class probabilities, y is the supposed direction, c(=2)
is the number of directions within each anchor, and n is the number of pre-
dictions.

Furthermore, the total loss of the network is the weighted sum of each of the three
individual losses. The factors purpose is to focus the networks updating its weights,
based on the importance of the different categories. The total loss is expressed as

Ltot = 2.0 · Lreg + 1.0 · Lcls + 0.2 · Ldir, (4.13)

where the regression loss is multiplied by 2, the classification loss is multiplied by 1,
and the direction loss is multiplied by 0.2. The specifically chosen weights are based
on the previous implementations using a similar loss implementation [45] [23].

4.6 Training
This section describes the hyperparameters and hardware used when training the
implemented models.

4.6.1 Initial Training
Since the full dataset was not released as the thesis began, the initial training was
done on the teaser dataset, to show that the implemented models were, in fact,
capable of learning the proposed task of object detection. Due to the objective of
this experiment was to solely verify the learning capability, no validation or test set
was used. Thus, the initial models were trained and evaluated on the same dataset,
meaning that the results from the evaluations presented in Section 5.1 is based on
previously seen data. The evaluations are therefore skewed, as the models are pos-
sibly overfitted towards the same data used for evaluation.

To note, is that if the teaser dataset had been the only source of data in the thesis, a
split into training, validation and test sets would have been performed on the teaser
dataset. However, this was not the case considering that the full dataset (with a
predefined split) was released in time.

4.6.2 Hyperparameters
Hyperparameters are the values which are set on a neural network model before
training. Hyperparameter optimization can be a tricky task, it is an iterative pro-
cess as it requires training the networks to analyze the used hyperparameters. This

59

4. Methods

is especially tricky due to the implemented networks being complex, as it takes a
significant amount of time to train different configurations, limiting the number of
hyperparameters that can be explored. In an effort to save time while exploring the
hyperparameters, models were simplified such as changed to detect a single class,
reduced point cloud range, and increased discretization. Visdom was used to catch
to misleading experiments in earlier stages through the plotted losses.

Each implemented model used a batch size of two, as a bigger batch size would re-
quire more memory than available in the used GPUs. The networks used the Adam
optimizer, as it has shown great promise for training deep neural networks, and as
it simplifies the learning rate tuning. Some additional setting that varied between
the implementations was:

• Classes, was set to either the eight classes defined in Section 4.3 or only the
car class.

• Anchors, depending on the class configurations different anchor boxes were
used.

• Discretization defines the quantity of information sent to the network in the
form of the encoded point cloud.

• Point cloud range, was changed depending on the discretization, such that the
networks receive a functioning input size.

• Inital learning rate, was configured in attempts to find a global minimum in
the loss functions.

• Milestones was introduced to force the learning rate to decay every set number
of epochs, in attempts to find the global minimum in the loss function.

• The number of sweeps, was configured to explore the effects of having a richer
point cloud as input.

• Early stopping, is used to stop training after a set amount of epochs if the
validation loss has not decreased.

4.6.3 Hardware
As various networks with different configurations were trained, using multiple ma-
chines enabled time efficiency by parallelization. The machines at our disposal were:

• Machine one had an Intel Core i7 CPU, and a GTX 970 GPU with 8GB video
memory.

60

4. Methods

• Machine two had an Intel Xeon CPU, and a Nvidia k5200 GPU with 8 GB
video memory.

• Machine three and four were rented from Google Cloud Platform containing
a Nvidia Tesla k80 with 12GB video memory, and an Intel Xeon CPUs.

All the models’ inference time presented in Chapter 5 was measured on machine two
to get a comparable measurement between the models. Furthermore, the training
times were measured with Machine one, by averaging the time spent in different
parts of the training phase in an entire epoch.

4.7 Postprocessing

Object detection models commonly output plenty of predictions. The objective of
the postprocessing stage is to remove redundant predictions and is done by using
NMS, as explained in Section 2.2.5. The NMS contains two thresholds, a confidence
threshold, and an IoU threshold. The confidence threshold is set differently depend-
ing on how confident a model is in its predictions. Generally, the threshold refers to
how many predictions that should be kept. The IoU threshold is applied to remove
boxes that supposedly refer to the same object, and should be tuned depending on
the nature of the outputted predictions of a model.

4.8 Visualization

The nuScenes data contains several different positioning systems with different ori-
gins and axle orientations. As the thesis is based on the LiDAR point cloud data,
this is considered the positional system in which the models make predictions. When
visualization (or the official evaluation) is made, the predictions must be translated
into the positional system of interest. This translation was done with simple affine
transformations based on the calibration information for each positional system,
containing the required rotation and translation to move from one positional system
to the other.

4.9 Evaluation

As mentioned in Section 4.2 nuScenes provide their own evaluation service. However,
the number of evaluations to be performed on this service was limited. Therefore,
a separate evaluation method was implemented to find the best performing model
to then send to the official evaluation service. This section describes how inference
time and accuracy were calculated for the implemented evaluation method.

61

4. Methods

The postprocessing stage used during the evaluation had no probability threshold,
and the IoU NMS threshold was set to 0.25 for the models that used the PP encoder
and 0.1 for the models that used the BEV encoder.

4.9.1 Inference Time
The inference time is the time it takes for the model to produce its output from an
input. More specifically, it is the time from when the model receives the point cloud
to when the final predictions are complete. The steps performed in the inference
time evaluation is divided into:

• Encoding, the time it takes to create the encoded representation from the point
cloud input.

• Forward propagation, the time it takes to forward propagate the encoded point
cloud representation through the model.

• Postprocessing, the time spent in the postprocessing stage.

The inference time was calculated by taking the average time it took to process the
samples in the validation set, while evaluating the system. The first ten samples
was disregarded in the inference time calculation, to avoid the start-up-time of the
model.

4.9.2 Accuracy Measurement
To find the best performing model two different evaluation methods were imple-
mented. One method evaluating the average precision of only cars at three different
ranges from the ego vehicle, and four different difficulties defined by the visibility
parameter mentioned in Section 4.2.2. The other method evaluates the average
precision for the eight classes mentioned in Table 4.3. Each evaluation method is
performed on the prediction after the postprocessing stage has been applied. The
implementation limits the range of the evaluated prediction to 35 meters from the
ego vehicle.

As discussed in Section 2.6 there exist different thresholds that define a true positive
prediction; this implementation has the option of choosing either distance or IoU as
the TPM. With distance as the TPM, a true positive is when the distance between
the centers of the prediction and ground truth is less than two meters apart. With
IoU as the TPM, a true positive is when the IoU between the prediction and the
ground truth is higher than 0.3.

The evaluation is divided into two steps. In the first step, the predicted bounding
boxes from the validation set are stored separately depending on their predicted
class. The predictions are sorted in descending order of their predicted probability.

62

4. Methods

The second step iterates over all the predictions for each class, starting with the
prediction with the highest confidence. The prediction is compared to all the ground
truth bounding boxes for the specific sample. If the prediction is considered a true
positive match by the TPM, then the ground truth is removed to ensure that it
can not be matched again. All predictions not fulfilling the TPM are set to false
positives. When the entire validation set has been processed, the average precision
is calculated by taking the area under the precision-recall curve for each class as
mentioned in Section 2.6. Finally, the mAP is calculated by taking the mean of the
achieved average precisions for each class.

63

4. Methods

64

5
Results

In this thesis, two different detectors were trained - SSD and YOLOv2. SSD was
trained with two different point cloud encoders PointPillar (PP) and the BEV rep-
resentation, while YOLOv2 was solely trained on the BEV representation (PP was
skipped due to the achieved results). This chapter starts by presenting the results for
the aforementioned models trained and evaluated on the teaser dataset. Thereafter
sections are presented for each SSD model trained on the full dataset, with differing
hyperparameters. Each model section presents the specific parameters used, and the
resulting evaluation scores. Finally, the chapter ends with a comparison between
all the different models, where the best-resulting model is evaluated by nuScenes
evaluation service

5.1 Teaser Dataset

The models presented under this section were trained on the entire nuScenes teaser
dataset. Thus no validation or test set was used as more intricately explained in
Section 4.6.1. All models presented here were trained for roughly 48 hours, resulting
in approximately 90 epochs on the teaser dataset, corresponding to around the same
amount of iterations as training 12 epochs on the training set from the full release.
All evaluations presented were performed with a TPM of two meters in distance.

5.1.1 SSD

The SSD model were trained with both the PP and BEV point cloud encoders, this
was done with the hyperparameters presented in Table 5.1. Furthermore, the model
trained on the PP encoder achieved an AP of 94.8% for the car class, and conversly
the model trained on BEV achieved an AP of 37.2%. The precision-recall curves for
both models based on range and occlusion, along with tables of the corresponding
AP is presented in Figures 5.1 and 5.2. Additionally, the inference times of the
implemented models are shown in Table 5.2.

65

5. Results

Hyperparameters
Parameter Value
Classes Only Cars
Number of sweeps 1
Discretization 0.16m× 0.16m
Point cloud range ±34.56m×±39.68m
Final input size 432× 496
Initial learning rate 0.0002
Milestones Every 15th epoch
Anchor (in meters) [1.6, 3.9, 1.56]*

Table 5.1: Hyperparameters used for training the SSD model on both PP and BEV.
* The anchor used was taken from the original official PP implementation[23].

Range PP AP BEV AP
≤ 10m 97.1% 66.4%
> 10m and ≤ 20m 96.0% 44.8%
≤ 35m 94.8% 37.2%

Figure 5.1: The precision-recall curve based on range for the SSD decoder using
both the PP and BEV encoders. The training is performed on the teaser data with
the hyperparameters presented in Table 5.1, and the evaluation is split based upon
the distance from the ego vehicle as shown in the above table.

Inference time
Section PP runtime BEV runtime
Encoding 16.1ms 19.1ms
Decoding 4.7ms 5.7ms
Postprocessing 75.5ms 67.1ms
Total 96.3ms 91.9ms
In Hertz 10.4Hz 10.9Hz

Table 5.2: The inference time for the two SSD models using PP and BEV, trained
with the hyperparameters presented in Table 5.1. The postprocessing stage used
no confidence threshold, and the IoU threshold was set to 0.25 and 0.1 for PP and
BEV respectively.

66

5. Results

Visibility Level PP AP BEV AP
4 95.2% 38.5%
3 89.6% 22.5%
2 88.9% 18.2%
1 90.0% 22.4%
Total AP 94.8% 37.2%

Figure 5.2: Precision-recall curve based on the visibility for the two SSD models
using PP and BEV, trained with the hyperparameters in Table 5.1. The models were
trained and evaluated on the entire nuScenes teaser dataset, where the evaluation
was split based on the annotated objects visibility level. The corresponding AP for
each visibility level is presented in the table.

5.1.2 YOLOv2 on BEV
The model using the YOLOv2 decoder was only trained using the BEV point cloud
encoder, with the hyperparameters presented in Table 5.3. The model managed to
achieve a mAP of 16.8% on all the merged classes with an AP of 1.6% on the car
class. The Precision-recall curve and a table with the corresponding mAP for the
model is presented in Figure 5.3. Furthermore, the inference time from running the
evaluation is presented in Table 5.4.

Hyperparameters
Parameter Value
Classes All merged classes
Number of sweeps 1
Discretization 0.178m× 0.178m
Point cloud range ±40m×±40m
Final input size 448× 448
Initial learning rate 0.0002
Milestones Every 15th epoch
Anchors 5 avg teaser set*

Table 5.3: Hyperparameters used for the implemented YOLOv2 model using the
BEV point cloud representation. *The anchors are from taking average sizes of the
five most occurring objects in the teaser dataset. Note that the discretization and
point cloud range is tuned to achieve the input size required for the implemented
YOLOv2 decoder.

67

5. Results

Class AP
Pedestrain 0.1%
Car 1.6%
Motorcycle 0.5%
Bicycle 0.0%
Bus 69.6%
Truck 6.1%
Construction 2.4%
Trailer 54.4%
Total mAP 16.8%

Figure 5.3: Precision Recall curve and mAP scores for the YOLOv2 model using
the BEV point cloud encoder. Both trained and evaluated on the entire nuScenes
teaser dataset, with the true positive metric set to a distance of 2 meters.

Inference time
Section BEV runtime
Encoding 11.6ms
Decoding 5.0ms
Postprocessing 77.0ms
Total 93.6ms
In Hertz 10.7Hz

Table 5.4: The inference time for the the YOLOv2 model using the BEV encoder,
trained with the hyperparameters presented in Table 5.3. The postprocessing stage
used no confidence threshold, and the IoU threshold was set to 0.1.

5.2 Full dataset
Considering the poor performance of the implemented YOLO models, all networks
presented in this section were trained using the SSD detector on both the PP and the
BEV point cloud encoders. The networks were trained on the training set containing
approximately 28000 samples and validated with the validation set of 6000 samples
from the full dataset. The full dataset also includes a test set, however as the
annotations for this set are not publicly available the evaluations in this section
are performed on the validation set. All evaluation presented in this section were
performed with a TPM of two meters in distance, and the postprocessing settings
presented in Section 4.9.

5.2.1 Baseline
The initial training for the models on the full dataset was done with the hyperpa-
rameters presented in Table 5.5 with the training and validation losses presented in
Figure 5.4. The only differing parameter between the two was the number of epochs
required for early stopping; it was set to 10 for PP and 25 for BEV.

68

5. Results

The average time it took to train each iteration for SSD on both PP and BEV is
presented in Table 5.6. SSD on PP trained for 30 epochs with the lowest validation
loss achieved being 2.067 at epoch 20. SSD on BEV trained for 41 epochs with the
lowest validation loss of 3.408 at epoch 26.

Hyperparameters
Parameter Value
Classes All merged classes
Number of sweeps 1
Discretization 0.25m× 0.25m
Point cloud range ±40m×±50m
Final input size 320× 400
Initial learning rate 0.0002
Milestones Every 15th epoch
Early stopping 10 / 25
Anchors 3rd entry in Table 4.6 (k-means)

Table 5.5: Baseline hyperparameters used when training SSD on both PP and
BEV on the full training set.

Average Training Time
Section PP runtime BEV runtime
Dataloader: 244ms 232ms
- Load point clouds from files 141ms 115ms
- Split point clouds 52ms 73ms
- Generate targets 51ms 44ms
Load into GPU 8ms 9ms
Forward propagation 54ms 20ms
- Generate features from pillars 8ms —
- Generate image from features 24ms —
- Image to prediction 22ms 20ms
Calculating loss 41ms 37ms
Backpropagation 161ms 40ms
Update step 106ms 92ms
Total 614ms 430ms

Table 5.6: Average training time per iteration for SSD on PP and BEV split into
sections. The time is calculated by training for one full epoch and average the
time spent in each section in the program per iteration. The actual training was
performed with the parameters found in Table 5.5, with a batch size of two.

69

5. Results

Figure 5.4: Training and validation loss per epoch for SSD on PP and BEV during
training. The models were trained with the baseline hyperparameters presented in
Table 5.5, where the early stopping is set to 10 and 25 respectively for the PP and
BEV models.

The SSD model was trained with the PP and BEV encoders with the baseline
parameters presented in Table 5.5. The model trained on PP achieved a mAP of
31.2% for all classes, and an AP of 76.7% for cars. The model trained on BEV
achieved a mAP of 0.2% for all classes, and an AP for cars at 1.6%. The Precision-
recall curve with the corresponding mAP scores for both models is presented in
Figure 5.5, and the inference time for the models is shown in Table 5.7.

Inference time
Section PP runtime BEV runtime
Encoding 17.9ms 15.6ms
Decoding 4.6ms 4.2ms
Postprocessing 75.5ms 56.8ms
Total 98.0ms 76.6ms
In Hertz 10.2Hz 13.1Hz

Table 5.7: The inference time for the two SSD models using PP and BEV, trained
with the hyperparameters presented in Table 5.5. The postprocessing stage used
no confidence threshold, and the IoU threshold was set to 0.25 and 0.1 for PP and
BEV respectively.

70

5. Results

Class PP AP BEV AP
Car 76.7% 1.6%
Pedestrain 41.0% 0.3%
Truck 31.6% 0.0%
Motorcycle 17.1% 0.0%
Bicycle 1.1% 0.0%
Construction 7.4% 0.0%
Bus 50.3% 0.0%
Trailer 24.1% 0.0%
Total mAP 31.2% 0.2%

Figure 5.5: Precision-recall curve and mAP scores for SSD trained on PP and
BEV. The models were trained and evaluated on the full dataset with the baseline
hyperparameter presented in Table 5.5. The TPM was set to a distance of 2 meters,
and only predictions within a distance of 35m from the ego vehicle is handled.

5.2.2 Learning Rate Experiments

Two different types of networks with varying initial learning rate and milestone fre-
quency were trained. The first type was trained with more milestones (MM), and
the second type was trained with more milestones and lower initial learning rate
(MMLR). No improvement in terms of mAP was achieved in comparison to the
baseline models.

The networks under this category were trained using the same hyperparameters as
the baseline models, presented in Table 5.5, with exception for the initial learning
rate and the milestone frequency. The learning rate was decreased by a factor of 20,
and the milestones were changed to occur every other epoch instead of every 15th.
The best performing BEV based SSD model trained for 30 epochs and achieved a
lowest validation loss of 3.581 at epoch 20. The best performing PP based SSD
model trained for 31 epochs and achieved a lowest loss of 2.378 at epoch 21. The
training and validation losses per epoch are presented in Figure 5.6.

71

5. Results

Figure 5.6: Training and validation loss per epoch for SSD on both PP and BEV
trained with lower learning rate and more milestones in comparison to the baseline
parameters presented in Table 5.5.

The best performing model based on PP achieved a mAP of 23.6% for all classes,
and an average precision for cars at 73.6%. The best performing model based on
BEV achieved a mAP of 0.2% for all classes, and an average precision for cars at
1.3%. The Precision-recall curve for both models and a table of the mAP score
for all models under this category is presented in Figure 5.7. The two additional
models presented in the table below used the same learning rate as the baseline
hyperparameters, but with solely the above mentioned milestone frequency change.

Class PP AP MMLR PP AP MM BEV AP MMLR BEV AP MM
Car 73.5% 69.8% 1.3% 1.2%
Pedestrain 22.6% 36.6% 0.0% 0.0%
Truck 23.2% 27.2% 0.0% 0.0%
Motorcycle 8.6% 10.4% 0.0% 0.0%
Bicycle 0.1% 0.6% 0.0% 0.0%
Construction 3.1% 1.0% 0.0% 0.0%
Bus 40.9% 40.1% 0.0% 0.0%
Trailer 16.7% 23.3% 0.0% 0.0%
Total mAP 23.6% 26.1% 0.2% 0.2%

Figure 5.7: Precision recall curve and mAP for SSD trained on the PP and BEV
encoder, with more milestones (MM), and both more milestones and lower learning
rate (MMLR) compared to the baseline parameters presented in Section 5.2.1

72

5. Results

5.2.3 Varying Sweeps for One Class

In this experiment the models were limited to only detect cars (to reduce the train-
ing time), they used the same hyperparameters as presented in Table 5.5, except
that they used a varying amount of LiDAR sweeps per sample. Three different SSD
models based on the PP encoder were trained with 1, 5, and 10 sweeps respectively.
Two SSD models based on the BEV encoder were trained with 1 and 5 sweeps re-
spectively.

The model using the PP encoder that achieved the lowest validation loss used ten
sweeps per sample. It trained for 34 epochs and achieved a total average loss of
1.050 on the validation set. Conversely, the model using the BEV encoder achieved
the lowest validation loss when using one sweep per sample with a final average loss
of 1.981 on the validation set in 19 epochs before early stopping. In Table 5.8 the
training time for the different networks are presented.

Average Training Time
Section PP1S PP5S PP10S BEV1S BEV5S
Dataloader 220ms 914ms 1711ms 174ms 940ms
- Load point clouds from files 132ms 650ms 1218ms 105ms 615ms
- Split point clouds 76ms 253ms 482ms 60ms 315ms
- Generate targets 12ms 11ms 11ms 9ms 10ms
Load into GPU 4ms 14ms 15ms 7ms 7ms
Forward propagation 45ms 50ms 51ms 21ms 20ms
- Generate features from pillars 9ms 6ms 6ms — —
- Generate image from features 16ms 25ms 26ms — —
- Image to prediction 20ms 19ms 19ms 21ms 20ms
Calculating loss 38ms 38ms 38ms 34ms 34ms
Backpropagation 112ms 112ms 112ms 40ms 40ms
Update step 95ms 95ms 95ms 90ms 90ms
Total 514ms 1178ms 1927ms 366ms 1131ms

Table 5.8: Average training time per iteration for SSD on PP and BEV, using a
varying amount of point cloud sweeps. The time is calculated by averaging the time
spent in each section during training for one full epoch.

The best performing PP based model according to the evaluation used five sweeps
per sample and achieved an AP of 80.3% on the car class. The best performing BEV
based model used one sweep and achieved an AP of 9.0%. The precision-recall curve
from the best performing model for each encoder presented by range in Figure 5.8
and visibility in Figure 5.9. The inference time for all models trained in this section
is presented in Table 5.9.

73

5. Results

(a) PP 5 sweeps Range (b) BEV 1 sweep Range

Range PP1S AP PP5S AP PP10S AP BEV1S AP BEV5S AP
≤ 10m 95.4% 94.2% 94.0% 25.1% 6.0%
> 10m and ≤ 20m 88.1% 88.4% 86.4% 5.2% 1.0%
≤ 35m 79.4% 80.3% 79.8% 9.0% 2.6%

Figure 5.8: Precision-recall curve based on range for the SSD models using PP
and BEV. Trained and evaluated with a varying amount of sweeps as input. The
evaluation was split based on the objects annotated range from the ego vehicle. The
corresponding AP for each of the different ranges is presented in the table.

(a) PP 5 sweeps Visibility (b) BEV 1 sweep Visibility

Visibility Level PP1S AP PP5S AP PP10S AP BEV1S AP BEV5S AP
4 79.7% 79.5% 78.2% 7.3% 1.8%
3 61.8% 62.1% 60.1% 1.9% 0.4%
2 58.0% 59.6% 56.0% 1.7% 0.3%
1 60.4% 62.3% 60.2% 3.3% 0.7%
Total AP 79.4% 80.3% 79.8% 9.0% 2.6%

Figure 5.9: Precision-recall curve based on visibility for the SSD models using PP
and BEV. Trained and evaluated with a varying amount of point cloud sweeps as
input. The evaluation was split based on the objects annotated visibility level. The
corresponding AP for each the different visibility is presented in the table.

74

5. Results

Inference time
Section PP1S PP5S PP10S BEV1S BEV5S
Encoding 17.6ms 60.3ms 109.3ms 12.6ms 67.1ms
Decoding 4.2ms 4.1ms 4.1ms 4.2ms 4.2ms
Postprocessing 75.5ms 48.9ms 50.7ms 36.7ms 48.6ms
Total 97.3ms 113.3ms 164.1ms 53.5ms 129.9ms
In Hertz 10.2Hz 8.8Hz 6.0Hz 18.7Hz 7.7Hz

Table 5.9: The inference time for the SSD models using PP and BEV, trained
with a varying amount of LiDAR sweeps per input point cloud. The postprocessing
stage used no confidence threshold, and the IoU threshold was set to 0.25 and 0.1
for PP and BEV respectively.

5.2.4 Smaller Discretization for One Class
In this section the models were also limited to only detect cars, the objective was
to explore how the discretization effect the accuracy. One PP based and one BEV
based model were trained with the hyperparameters presented in Table 5.10.

The PP based model trained for 26 epochs and achieved a lowest validation loss of
0.8165 at epoch 16. The BEV based model trained for 21 epochs and achieved a
lowest loss of 1.708 at the 11th epoch. The average training time for both models
is presented in Table 5.11. Note that the losses is not comparable to other imple-
mentations considering the unique point cloud range, as the loss is only based on
objects that are located within the range.

Hyperparameters
Parameter Value
Classes Only Cars
Number of sweeps 1
Discretization 0.16m× 0.16m
Point cloud range ±25.6m×±32m
Final input size 320× 400
Initial learning rate 0.0002
Milestones Every 15th epoch
Early stopping 10
Anchor Average Car size in Table 4.5

Table 5.10: Table of hyperparameters for SSD on PP and BEV with reduced grid
size.

The PP based network achieved an AP of 82.7% on cars, while the BEV based
network achieved an AP of 9.8%. In Figure 5.10 and Figure 5.11, the precision-
recall curve and AP based on visibility and range is shown respectively. The models
inference times is presented in Table 5.12.

75

5. Results

Average Training Time
Section PP BEV
Dataloader 176ms 172ms
- Load point clouds from files 110ms 103ms
- Split point clouds 51ms 50ms
- Generate targets 15ms 19ms
Load into GPU 5ms 7ms
Forward propagation 51ms 22ms
- Generate features from pillars 8ms —
- Generate image from features 21ms —
- Image to prediction 22ms 22ms
Calculating loss 38ms 34ms
Backpropagation 116ms 42ms
Update step 103ms 94ms
Total 489ms 371ms

Table 5.11: Average training time per iteration for SSD on PP and BEV, trained
with a smaller grid size. The training was performed with a batch size of two with
the hyperparameters presented in Table 5.10.

Visibility level PP AP BEV AP
4 81.6% 7.8%
3 68.2% 3.2%
2 67.4% 4.5%
1 69.8% 5.5%
Total 82.7% 9.8%

Figure 5.10: The precision recall curve based on visibility for the two SSD models
using the PP and BEV encoders. The models were trained with the parameters
presented in Table 5.10. The evaluation was split based on the objects annotated
visibility level, their respective AP can be seen in the table.

76

5. Results

Range PP AP BEV AP
≤ 10m 96.3% 36.8%
> 10m and ≤ 20m 90.0% 4.6%
≤ 35m 82.7% 9.8%

Figure 5.11: The precision recall curve based on range for the two SSD models
using the PP and BEV encoders. The models were trained with the parameters
presented in Table 5.10. The evaluation was split based on the objects annotated
range from the ego vehicle, and the respective AP can be seen in the table.

Inference time
Section PP time BEV time
Encoding 17.0ms 10.6ms
Decoding 4.7ms 4.4ms
Postprocessing 46.9ms 44.2ms
Total 68.7ms 59.2ms
In Hertz 14.6Hz 16.9Hz

Table 5.12: The inference time for the SSD models using PP and BEV, trained with
a smaller discretization size. The postprocessing stage used no confidence threshold,
and the IoU threshold was set to 0.25 and 0.1 for PP and BEV respectively.

To further strengthen the results, an example of bounding boxes from the SSD-PP
model for a point cloud from the test set is visualized through projection into the
different camera images in Figure 5.12. The shown boxes have a postprocessing
confidence above 30% and an IoU overlapping to other boxes below 0.25.

77

5. Results

Figure 5.12: Produced bounding boxes from a LiDAR point cloud, with a confi-
dence score above 30% and an IoU overlapping below 0.25. Note that the model
does not use these images for training, the bounding boxes are projected into the
images for visualization purposes. The model producing the bounding boxes is the
SSD model using the PP point cloud encoder, trained on only the car class with a
reduced discretization size.

78

5. Results

5.3 Comparison

The network based on PP that achieved the highest average precision for cars and
had the fastest inference time was the network with smaller discretization, it achieved
an AP of 82.7% and had an inference time at 14.6 Hz.

The network based on BEV that achieved the highest average precision for cars and
was the network with the smaller discretization, it achieved an AP of 9.8%. The
fastest BEV based network used one sweep and achieved a 18.7 Hz inference time.

Presented in Figure 5.13 are the AP for cars and the inference time in hertz for all
the networks trained on the full dataset. The SSD models that were trained on the
PP encoder is represented by triangles and the SSD models that were trained on
the BEV encoder is represented by circles. Note that the first six presented models
are trained with eight classes in comparison to the latter that is only trained with
one class. However, the baseline models and one sweep models are trained with the
same configuration except for the number of classes.

Model AP Cars Average Runtime
PP Baseline 76.7% 10.2Hz
BEV Baseline 1.6% 13.1Hz
PP MMLR 73.5% 13.4Hz
BEV MMLR 1.2% 12.2Hz
PP MM 69.8% 12.8Hz
BEV MM 1.3% 14.5Hz
PP One sweep 79.4% 10.2Hz
BEV One sweep 7.5% 18.7Hz
PP Five sweeps 80.3% 8.8Hz
BEV Five sweeps 0.2% 7.7Hz
PP Ten sweeps 79.8% 6.0Hz
PP Smaller discretization 82.7% 14.6Hz
BEV Smaller discretization 9.8% 16.9Hz

Figure 5.13: Comparison of the accuracy on only cars (AP) and inference time
(Hz) for the SSD models based on PP (Triangles) and the SSD models based on
BEV (Circles).

79

5. Results

5.4 Best Performing Model

The most promising model overall, according to the thesis implemented evaluation
was the SSD model using the PP encoder with a decreased discretization size. A
model using the same concept except for the point cloud range and number of
classes was trained, to be evaluated on the official nuScenes evaluation service. The
hyperparameters presented in Table 5.13 was used for the final setup. The network
trained for 42 epochs with the lowest validation loss of 2.04 at epoch 32. Note that
the loss is not directly comparable to any other model considering that it handles
a unique range of annotations. The resulting trained model achieve an accuracy
presented in Figure 5.14, and inference time presented in Table 5.14. The model
was also evaluated by the official evaluation, presented in Section 5.4.1.

Hyperparameters
Parameter Value
Classes All merged classes
Number of sweeps 1
Discretization 0.16m× 0.16m
Point cloud range ±51.2m×±51.2m
Final input size 640× 640
Initial learning rate 0.0002
Milestones Every 15th epoch
Early stopping 10
Anchor 3rd entry in Table 4.6 (k-means)

Table 5.13: Table of hyperparameters for the final model using the PP encoder
with the SSD decoder.

Class PP AP
Car 76.4%
Pedestrain 46.7%
Truck 31.6%
Motorcycle 18.2%
Bicycle 0.2%
Construction 2.9%
Bus 52.0%
Trailer 18.7%
Total mAP 30.8%

Figure 5.14: Precision-recall curve and mAP score, for the best performing net-
work, trained and evaluated with the hyperparameter presented in Table 5.13. The
TPM was set to a distance of 2 meters, and only predictions within 35m in range
from the ego vehicle is handled.

80

5. Results

Inference time
Section PP time
Encoding 18.1ms
Decoding 4.9ms
Postprocessing 125.5ms
Total 148.5ms
In Hertz 6.7 Hz

Table 5.14: Average inference time for the final model trained with the hyperpa-
rameters presented in Table 5.13. The IoU threshold in the postprocessing stage
was set to 0.25 and no confidence threshold was used.

To further illustrate the results, produced bounding boxes from the final model on
different samples from the test set are visualized in Figures 5.15, 5.16 and 5.17. The
first and second example shown in Figures 5.15 and 5.16 depicts bounding boxes
that have a confidence above 30%, no IoU overlap to other boxes over 0.4, and is
within 35m range from the ego vehicle. The third example, shown in Figure 5.17,
illustrate bounding boxes above a significantly lower confidence threshold of 5%.

5.4.1 nuScenes Official Evaluation
The trained model was used to predict all bounding boxes for the entire test set to
be sent to the official evaluation server. The response from the evaluation is shown
in Table 5.15. The evaluation uses four different TPMs of 0.5, 1, 2 and 4 meters,
which are averaged together in the ’mean’ column. Furthermore, the ATE, ASE,
AOE scores refer to the average translation, scale and orientation error for each of
the classes as explained in Section 4.2.2.

nuScenes Official Evaluation Results
Object Class 0.5m AP 1.0m AP 2.0m AP 4.0m AP mean ATE ASE AOE
Car 41.4% 50.7% 56.7% 60.0% 52.2% 0.24m 0.16 1.15
Pedestrian 32.0% 33.5% 35.7% 39.0% 35.0% 0.20m 0.31 1.52
Truck 3.4% 9.3% 13.1% 14.7% 10.1% 0.45m 0.22 1.25
Motorcycle 8.0% 11.6% 12.9% 13.1% 11.4% 0.35m 0.27 1.77
Bicycle 0.0% 0.0% 0.0% 0.0% 0.0% — — —
Construction 0.0% 0.0% 0.1% 0.5% 0.1% 0.83m 0.41 1.81
Bus 3.1% 19.5% 23.9% 27.2% 18.4% 0.53m 0.19 1.25
Trailer 0.0% 0.0% 3.5% 6.9% 2.6% 0.97m 0.21 1.74
Total mAP 11.0% 15.6% 18.2% 20.2% 16.2% — — —

Table 5.15: Evaluation scores from the official nuScenes evaluation, on the overall
best performing network, SSD-PP as presented in Section 5.4. The different AP
columns use the differing TPMs presented, and the mean column refers to the mean
of all the different TPMs scores. The additional ATE, ASE and AOE metrics refer
to the average translation, scale and orientation error for each of the classes.

81

5. Results

Figure 5.15: The final SSD-PP models produced bounding boxes from a test set
sample. A confidence score above 30% and an NMS IoU threshold of 0.4 were used
in postprocessing. The blue bounding boxes denote car predictions, while the orange
bounding boxes represent the pedestrian classifications. Only boxes within a range
of 35m from the ego vehicle are depicted. The produced bounding boxes enclose
the majority of the objects present in the sample with a notable exception of a
motorcycle in the front view and a pedestrian in the front-left view.

82

5. Results

Figure 5.16: The final SSD-PP models produced bounding boxes from a rainy
test set sample. A confidence score above 30% and an NMS IoU threshold of 0.4
were used in postprocessing. The depicted bounding boxes are within a range of
35m from the ego vehicle. The colors of the bounding boxes refer to the classes of
the predictions where blue denotes cars, orange pedestrians and green trucks. Most
objects present in the sample are predicted with a few bicycles being missed in the
front-left view. Furthermore a false positive is present in the back view in the shape
of a mailbox being predicted as a pedestrian.

83

5. Results

Figure 5.17: The final SSD-PP models produced bounding boxes from a test
set sample, with a lower confidence score threshold set to 5% and an NMS IoU
threshold of 0.4 as the postprocessing settings. The depicted bounding boxes are
within a range of 35m from the ego vehicle. The colors of boxes depict predictions
of differing classes where blue denotes car, orange denotes pedestrian, green denotes
truck, purple denotes bicycle, and cyan denotes bus. There seem to be proper
predictions present for all objects. However, there are false positives present, such
as in the back-right view where benches are predicted as bicycles.

84

6
Discussion

This chapter discuss the result achieved from the models presented in Chapter 5.
The chapter starts by discussing the evaluation results for the models trained with
the teaser dataset. The teaser data section is followed by a discussion about the
evaluation results for the models trained on the full dataset. The chapter ends by
discussing the final network submitted to nuScenes official evaluation service and
potential future work.

6.1 Teaser Dataset
As previously mentioned, the full dataset was not released until the second half of
the master thesis, thus the initial model design was iteratively implemented with
just the teaser dataset in mind. The goal was to implement models that could be
verified to have the capability of learning the task at hand, and to later use the same
model configuration with the release of the full dataset.

The objective of the experiment was to show that the loss could be decreased and
that the reduction of loss correlated to better performance in actually finding the de-
fined objects. This was done by training and evaluating on the entire teaser dataset,
where the actual results are not of value in other aspects than the verification of
which models were capable of learning and should be further investigated.

6.1.1 SSD on PP
As can be seen in Section 5.1.1, the final SSD model achieved promising results
when using the PP point cloud encoder, with an AP for cars of approximately 95%.
Ultimately showing expected results from a well-performing network, whereas the
closer objects are easier to find than those further away, and the objects with the
easiest visibility attribute also being the easiest to find. However, considering the
data used in the evaluation, this result can only be interpreted as an indication that
the implementation works, as it is most likely overfitted towards the same data used
for the evaluation. A top-view visualization of produced bounding boxes for a point
cloud, that depicts a parking lot, from the model can be seen in Figure 6.1.

85

6. Discussion

(a) Predictions (b) Ground truth

Figure 6.1: An example visualization of the predicted bounding boxes from the
SSD on PP model in a top-view format. The model is only trained on one class, so
all the shown bounding boxes are cars. Moreover, the bounding boxes shown are the
ones with confidence over 30% and are not overlapping with another box by more
than 0.4 in IoU. As shown, all of the closer ground truths are predicted correctly
while a few of the objects further away are missed (using the mentioned thresholds).

6.1.2 SSD on BEV

The results in Section 5.1.1 for the SSD using the BEV point cloud encoder show
that it achieved an AP of 37% on the car class. Furthermore, there is a significant
difference in terms of accuracy for the different visibility levels, suggesting that the
BEV encoder struggles to encode proper information when objects are somehow
occluded. A hypothesis is that the issue with the low performance lies with the
model not being confident enough in its produces predictions, as most (actually cor-
rect) predictions do not exceed 20% in confidence. Implying that the model has not
learned to differentiate between background and objects as clearly as the implemen-
tation using the PP encoder has.

An example of a visualization of produced bounding boxes from this model in a
top-view is presented in Figure 6.2. By looking at the figure, it is noticeable that
the BEV model lacks confidence in comparison to the predictions made by the PP
model on the same point cloud input, as shown in Figure 6.1. The extra predictions
are mainly due to the confidence threshold is set to a significantly lower value of
10%. However, if the same threshold as PP is used, then no predictions would have

86

6. Discussion

been shown. The predictions are generally close to the ground truths, but only a
few would be considered perfect matches.

(a) Predictions (b) Ground truth

Figure 6.2: BEV visualization of predicted bounding boxes for the car class from
the SSD on BEV model, the same scene as presented in Figure 6.1 is visualized. The
shown predicted bounding boxes have a confidence exceeding 10% and no overlap
with any other box over 0.1 IoU. Most of the produced bounding boxes are close to
the ego vehicle, and fairly close to the ground truths, however, it is clear that the
predictions has few perfect matches with the ground truths.

6.1.3 YOLOv2 on BEV
Looking at the results for the YOLOv2 implementation using the BEV representa-
tion in Figure 5.3, a conclusion was made that this specific network implementation
was not meant for the task. The conclusion was drawn, mainly due to the struggle
present when trying to localize smaller objects. As shown in the results, it is clear
that there is a correlation between the size of the classes and the performance on
that class. To draw a stronger conclusion the YOLOv2 should ideally have been
trained with the PP encoder as well. However, considering the extent of the subpar
performance on the BEV encoder, this was decided against.

The problem could lie with the use of real world coordinates, whereas most objects
are relatively small in comparison to the input point cloud size. Further, the main
issue with the implementation is the small produced feature map in which predic-
tions are made, sized at 14 × 14. The feature map size defines how many anchors

87

6. Discussion

are placed, and by having such a small feature map in relation to the point cloud
range of 80×80m anchors are placed every 80

14 ≈ 5.7meters in each x-y direction. As
each placement in the feature map covers such a larger area, the target generation
struggles to match objects. The ground truth objects are not typically placed with
such sparsity, thus the sparse anchor placements require significant offset to match
the ground truths, especially if the object class is small.

The newer version YOLOv3 [38] make predictions on three different scales of the
input and is stated to perform better than YOLOv2 at detecting small objects.
However considering that most objects looked for are small, a decision was made to
focus on models based on the SSD model, to be further explored on the full dataset.
Mainly due to the produced feature map in the SSD implementation being signifi-
cantly larger, circumventing the issue present with finding the small objects.

6.2 Full Dataset
With the full release of the dataset, training was initiated to try to find the best
hyperparameters for the implemented SSD on BEV and PP models. The validation
set was used for evaluations, thus the results are skewed towards better accuracy.
This is because the weights are saved during training when the lowest loss on the
validation set is achieved. Thus by evaluating the model on the same dataset that
stopped the training, implies that the evaluation data is not under the definition of
what a test set should be; never before seen data.

6.2.1 Baseline Hyperparameters
The first baseline experiment used parameters chosen mainly to minimize training
time while still being able to get results for every class. The baseline using the PP
encoder produced a promising result for the Car class with an AP of 74%, how-
ever, the remaining classes fell short in terms of precision and the mAP for all eight
classes became 24%, as shown in Figure 5.5. One reason for the low score is due
to how mAP is defined (shown in Section 2.6), as every class’ average precision is
weighted equally even though there are for instance significantly more cars than
bicycles present in the data.

6.2.2 Learning Rate Experiments
Considering the plot of the loss function during the baseline training in Figure 5.4,
the initial reaction was that the loss stabilized unexpectedly early and plateaued.
The theory became that the initial learning rate in the baseline was too high, causing
the training to get stuck in a local minimum [41]. Thus experiments were conducted

88

6. Discussion

on the learning rate by both reducing the initial learning rate and increasing the
frequency in which the learning rate was forcefully decayed.

As shown in Figure 5.7, these experiments performed worse in terms of average pre-
cision across the board compared to the baseline in Figure 5.5. The dataset used
when training the model is huge, and since the loss is plotted for every epoch instead
of for every set number of iterations, it was concluded that the loss curve looked
reasonable. This further strengthened the case that the loss had reached a fairly
good minimum. As an afterthought, by plotting training and validation loss after a
set amount of iterations instead of every epoch, it would have been easier to validate
the learning rate settings.

6.2.3 Varying Sweeps for One Class
To explore the effects of having more input information, experiments were conducted
by having a varying amount of sweeps as input per point cloud sample. By training
on only one class, the problem is simplified, making the training converge faster,
allowing more parameters to be tested. Furthermore, it also seem to increase the
AP for the specific class slightly, as seen in Figure 5.3. Specifically, the one sweep
models have the exact same configuration as the baseline models with an exception
for the number of classes, where the one sweep only uses the car class.
The lowest validation loss from the PP models showed the expected pattern of
achieving a lower loss if more sweeps per sample were used. Interestingly enough,
the PP model that achieved the lowest validation loss did not achieve the best eval-
uation score. The PP model that achieved the highest AP was the model that used
five sweeps per sample, while the PP model that achieved the lowest validation loss
was the model that used ten sweeps per sample.

The lowest loss not yielding the highest performance in the evaluation is most likely
due to the implemented evaluation (using the TPM of distance) not taking object
size or orientation into account, while the loss function did. In other words, the
lowest loss (which takes rotation and size into account) achieved when training the
models, does not necessarily perform the best on the implemented evaluation.

Looking at the BEV based models, using multiple sweeps performed worse than
using one sweep. This was not expected, however can be explained by looking at
the channels defining the implemented BEV representation. The highest point and
the maximum intensity channels would typically not be changed when introducing
additional sweeps, the only changing channel would be the one referring to the den-
sity of the points within the grid. This implies that by using more sweeps, nothing
is added to the feature map in terms of additional information except for noise from
the different collection sweeps, making it harder for the network to produce mean-
ingful features. This claim is strengthened by looking at the number of epochs it
took to achieve the lowest validation loss, 19 epochs with one sweep and 34 epochs
with five sweeps.

89

6. Discussion

This experiment showed that using more than one sweep leads to a higher AP for
the PP models, with the cost of a significantly slower inference time. Conversely for
the BEV models, increasing the number of sweeps became worse in regards to both
the AP and the inference time. The experiment also showed that using more sweeps
per sample increased the encoding time, but decreased time spend in postprocessing
stage for the PP models, the phenomenon is further discussed in Section 6.3.

6.3 Comparison

Looking at the inference time presented for each model, it is clear that the time
spent in the postprocessing stage dominates. The postprocessing settings that were
used, were aimed towards achieving the highest mAP. Thus, the confidence threshold
was set to zero. Without the initial pruning threshold, no predictions are initially
removed, leading to a lot of time-consuming IoU computations for the overlap prun-
ing. These postprocessing settings used in the evaluations are typically not the
postprocessing threshold one would use when actually applying the system, as for
instance predictions with a confidence below 40% would not be reliable. This means
that the presented inference times would be significantly faster when using a proper
confidence threshold, tuned for the application task.

Due to the postprocessing stage dominating the inference time, the models that
performed fewer predictions, achieved a somewhat fast inference time, even though
their encoding time was significantly slower. This is something that is displayed
in the varying sweeps inference time Table 5.9. One would expect that using more
sweeps would take more time, but thanks to a higher confidence of background pre-
dictions, the postprocessing stage becomes notably faster.

The comparison plot and table presented in Figure 5.13 clearly shows that the best
performing models, in regards to AP of detection cars were based on the PP encoder
(as apparent from all previous experiments). The best performing overall model was
the SSD-PP model that used the baseline parameters with a smaller discretization.

Due to the best performing model also producing the least amount of predictions,
leading to a faster postprocessing stage, makes it also the fastest of the implemented
models using the PP encoder.

In conclusion, the models using the BEV encoder seems to lack information to be
able to produce distinguishing features such that appropriate predictions could be
made. The best performing BEV model in regards to AP of detecting cars was once
again the model that used the smaller discretization size. However, since the BEV
model’s confidences were so low, no real relation between high AP and fewer predic-
tions can be drawn, thus the fastest BEV model was also the simplest (classifying
only cars with one sweep).

90

6. Discussion

6.4 Final Model

The best performing model was retrained with an input of ±51.2 meters in range,
and was first evaluated on the thesis implemented evaluation method before sending
the models prediction to nuScenes official evaluation service.

The implemented evaluation yielded a slightly lower mAP than that of the baseline.
Due to the final model being trained on a significantly larger input makes the evalu-
ation not directly comparable. As the final model is trained on a larger point cloud
area, means that it must generalize the features better as there are fewer points
available for objects further away from the ego vehicle. Thus, by increasing the
point cloud range, the additional objects to find are commonly harder to predict.
The reason for the final model being trained on a larger input is as explained in
Section 4.2.2, that the official evaluation is ran within a range of 50m for the larger
objects, and 40m for the smaller ones. Implying that the model must be trained for
an input corresponding to at least the size of this larger range.

The reason for the final model showing worse performance in terms of AP on the
nuScenes official evaluation service compared to evaluation method implemented in
the thesis, specifically for the 2m TPM, is mainly due to two factors, the differing
range and the restriction nuScenes have applied to their AP calculation. Firstly the
differing range, which is a significant factor due to the official evaluation considering
every prediction within a range of 50m while the other evaluation only considers the
predictions within 35m. An expected behaviour of a object detection model is that
it should perform worse the further away objects are located, thus a loss in terms
of accuracy is expected when increasing the range. The second factor for the lower
accuracy is the AP calculation restriction, referring to that the nuScenes evalua-
tion service calculates its AP by taking the area on the precision-recall curve of the
predictions over 10% recall and precision, while the thesis implemented evaluation
calculates the AP by taking the whole area under the precision-recall curve.

Furthermore the bounding boxes presented in Figures 5.15, 5.16 and 5.17 are not
completely as intended. This is due to the annotations that were considered in the
project being based on the point cloud gathering LiDAR sensors coordinate system,
while the projections into images were performed through the global coordinate sys-
tem. Thus when translating the predictions from the LiDAR system into the global
system, an unwanted pitch and roll are introduced on the predictions equal to that
of the relative pitch and roll of the LiDAR sensors mounting position. This is espe-
cially clear in the back-left camera view in Figure 5.16.

91

6. Discussion

6.5 Future Work

During the evaluation of the implemented models in the thesis, some clear improve-
ments and variations that would be interesting in future work came to mind. Some
possible improvements and issues of the implemented models, that could be inves-
tigated further are:

• One clear issue, that was realized during the evaluation stage of this thesis, is
that the ignored classes according to Table 4.3 were directly handled as back-
ground. This was not ideal, as for instance the bikes that were stationed in a
bike rack were handled as background, while the individually annotated bikes
were handled as objects. Thus, for a model to achieve a high AP on bikes it
must be able to not only find bikes but also differentiate bikes from bikes in
racks. In essence this means that it is not surprising that all the implemented
models are lousy at predicting bikes. The same problem goes for the police
and ambulance vehicles, that are similar to the car and truck class.

To solve this issue, one could instead of directly using the ignored classes as
background, preprocess the point clouds by removing all the points that are
located within the annotated bounding boxes for the ignored objects.

• As mentioned in Section 6.4 the predictions of the object were made in the
LiDAR coordinate system. By changing the predictions to be made directly
into the global coordinate system or alternatively the ego vehicles coordinate
system would make the predictions better represent the real world.

• Using additional sweeps per sample showed higher AP for the PP model, and
using a smaller discretization proved to also give better results. A further
investigation of using more sweeps and smaller discretization in combination
would be interesting. This specific configuration was tested, but seemed to
require a larger amount of GPU video memory than was available in the ma-
chines at our disposal.

• The BEV based models performed far below expectations, a possible reason
for this are the chosen feature channels. Thus it would be interesting to see
the affects of different and additional feature channels. Perhaps some feature
similar to that used in the PP implementation with the mean position within
the pillar.

• As is apparent from the results, none of the hyperparameters were exhaustively
explored. For instance only 0.25m and 0.16m in grid size was used, where the
only conclusion that can be drawn is that the smaller one performs better. It
would certainly be interesting to find the optimal grid size, and the same goes
for all settings, to ultimately find the optimal model configurations. However,
considering the sheer amount of time required for each training this is sadly a
nearly impossible task.

92

6. Discussion

• As mentioned in 6.3, the presented inference times are not really representative
of how fast the models would produce their predictions in an actual applica-
tion with a optimized confidence threshold. Thus, a potential improvement of
the thesis would be to find confidence thresholds for each model providing a
good trade-off between the number of outputted predictions and accuracy. To
conclusively produce inference time that better

Following are some of the potentially interesting future work that was deemed out
of the scope for the carried out project.

• Implementing versions of additional decoders, such as YOLOv3 [38] and Faster
R-CNN [39], would make the comparisons of models more comprehensive.

• An additional interesting future work would be the use of sensor fusion. Both
in terms of early fusion, merging the actual input together, and late fusion,
merging feature representations. To ultimately investigate how merging addi-
tional sensory inputs would affect both accuracy and inference time.

93

6. Discussion

94

7
Conclusion

The future and security of autonomous vehicles are heavily dependent on environ-
mental perception, and its sub-task 3D object detection which is the focus of this
thesis. The field has blossomed the last few years with papers like [23] and [40] push-
ing the limit of the SOTA. This thesis attempts to recreate the SOTA encoders and
detection models to make comparisons of alternative implementations that produce
3D detections of frequently occuring objects in traffic situations, such as pedestrians
and other vehicles.

In this thesis, the decoders SSD and YOLOv2 were implemented along with the en-
coders PP and BEV. Different hyperparameters were investigated to try to find the
best performance for the SSD model. An implemented evaluation system showed
that PP highly outperformed the BEV encoder in regards to mAP. The experiments
performed in the thesis further showed that both PP and BEV achieved a higher
accuracy when a relatively small discretization size was used, the experiments also
showed that PP performed favorably by using more than one sweep per sample as
input. The best performing overall model was evaluated by nuScenes evaluation ser-
vice, and showed great promise, specifically for the detection of cars, while having
a reasonable inference.

95

7. Conclusion

96

Bibliography

[1] Christopher Ingraham, The astonishing human potential wasted on commutes
2016. https://www.washingtonpost.com/. Accessed: 2019-01-25.

[2] Global status report on road safety. World Health Organization, 2015.
[3] Katie Pyzyk, Gridlock Woes: Traffic congestion by the numbers, 2018. https:

//www.smartcitiesdive.com/. Accessed: 2019-01-25.
[4] National Highway Traffic Safety Administration. National Motor Vehicle Crash

Causation Survey. 2008.
[5] Shivang Agarwal, Jean Ogier Du Terrail, and Frédéric Jurie. Recent advances

in object detection in the age of deep convolutional neural networks. CoRR,
abs/1809.03193, 2018.

[6] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[7] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Li-
ong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Bei-
jbom. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint
arXiv:1903.11027, 2019.

[8] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object
detection network for autonomous driving. CoRR, abs/1611.07759, 2016.

[9] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human de-
tection. In international Conference on computer vision & Pattern Recognition
(CVPR’05), volume 1, pages 886–893. IEEE Computer Society, 2005.

[10] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[11] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for
deep learning. arXiv preprint arXiv:1603.07285, 2016.

[12] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes (voc) challenge. Interna-
tional journal of computer vision, 88(2):303–338, 2010.

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012.

[14] Ross Girshick. Fast r-cnn. In The IEEE International Conference on Computer
Vision (ICCV), December 2015.

[15] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Pro-

97

https://www.washingtonpost.com/
https://www.smartcitiesdive.com/
https://www.smartcitiesdive.com/

Bibliography

ceedings of the IEEE conference on computer vision and pattern recognition,
pages 580–587, 2014.

[16] D.O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Tay-
lor & Francis, 2005.

[17] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural
networks for perception, pages 65–93. Elsevier, 1992.

[18] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama,
and Kevin Murphy. Speed/accuracy trade-offs for modern convolutional object
detectors. In The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), July 2017.

[19] Hidenori Ide and Takio Kurita. Improvement of learning for cnn with relu
activation by sparse regularization. In 2017 International Joint Conference on
Neural Networks (IJCNN), pages 2684–2691. IEEE, 2017.

[20] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[22] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based
python jit compiler. In Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, LLVM ’15, pages 7:1–7:6, New York, NY,
USA, 2015. ACM.

[23] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and
Oscar Beijbom. Pointpillars: Fast encoders for object detection from point
clouds. arXiv preprint arXiv:1812.05784, 2018.

[24] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[25] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient mini-
batch training for stochastic optimization. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 661–670. ACM, 2014.

[26] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Fo-
cal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988, 2017.

[27] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E.
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: single shot multibox
detector. CoRR, abs/1512.02325, 2015.

[28] David G Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational journal of computer vision, 60(2):91–110, 2004.

[29] David G Lowe et al. Object recognition from local scale-invariant features. In
iccv, volume 99, pages 1150–1157, 1999.

[30] Thorsten Luettel, Michael Himmelsbach, and Hans-Joachim Wuensche. Au-
tonomous ground vehicles—concepts and a path to the future. Proceedings of
the IEEE, 100(Special Centennial Issue):1831–1839, 2012.

98

Bibliography

[31] Warren S. McCulloch andWalter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, Dec
1943.

[32] B. Mehlig. Artificial neural networks. CoRR, abs/1901.05639, 2019.
[33] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel

programming with cuda. Queue, 6(2):40–53, March 2008.
[34] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution

network for semantic segmentation. In Proceedings of the IEEE international
conference on computer vision, pages 1520–1528, 2015.

[35] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NIPS-W, 2017.

[36] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi.
You only look once: Unified, real-time object detection. CoRR, abs/1506.02640,
2015.

[37] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. CoRR,
abs/1612.08242, 2016.

[38] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[39] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN:
towards real-time object detection with region proposal networks. CoRR,
abs/1506.01497, 2015.

[40] Martin Simon, Stefan Milz, Karl Amende, and Horst-Michael Gross. Complex-
yolo: Real-time 3d object detection on point clouds. CoRR, abs/1803.06199,
2018.

[41] Leslie N Smith. A disciplined approach to neural network hyper-parameters:
Part 1–learning rate, batch size, momentum, and weight decay. arXiv preprint
arXiv:1803.09820, 2018.

[42] Petru Soviany and Radu Tudor Ionescu. Frustratingly easy trade-off optimiza-
tion between single-stage and two-stage deep object detectors. In The European
Conference on Computer Vision (ECCV) Workshops, September 2018.

[43] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the
importance of initialization and momentum in deep learning. In International
conference on machine learning, pages 1139–1147, 2013.

[44] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM
Smeulders. Selective search for object recognition. International journal of
computer vision, 104(2):154–171, 2013.

[45] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional
detection. Sensors, 18(10):3337, 2018.

[46] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[47] Yuanyi Zhong, Jianfeng Wang, Jian Peng, and Lei Zhang. Anchor box opti-
mization for object detection. CoRR, abs/1812.00469, 2018.

[48] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based
3d object detection. CoRR, abs/1711.06396, 2017.

99

	List of Figures
	List of Tables
	Introduction
	Background
	Problem Formulation
	Aim
	Limitations
	Ethical Aspects
	Thesis Outline

	Theory
	Sensor Input
	Camera
	LiDAR

	Object Detection
	Feature Extraction
	Region Proposals
	Classification
	Regression
	Pruning

	Artificial Neural Networks
	Learning
	Optimizers
	Activation Functions
	Regularization

	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layer
	Transposed Convolutional Layer
	Unpooling
	Fully Connected Layers

	Transfer Learning
	Evaluation
	K-Means Clustering

	Related Work
	2D Object Detection
	Faster Region-based Convolutional Neural Network (Faster R-CNN)
	Single Shot Multibox Detector (SSD)
	You Only Look Once (YOLO)

	3D Object Detection
	VoxelNet
	The Complex-YOLO
	PointPillar (PP)

	Methods
	Tools
	Pytorch
	CUDA
	Numba
	Visdom
	nuScenes-devkit

	Datasets
	KITTI Vision Benchmark Suite
	NuScenes Dataset

	Merging Classes
	Anchor Generation
	Averaging
	K-Mean Clustering for Anchor Sizes

	Implementation
	Preprocessing
	Encoder - Birds Eye View (BEV)
	Encoder - PP
	Decoder - YOLOv2
	Decoder - SSD

	Training
	Initial Training
	Hyperparameters
	Hardware

	Postprocessing
	Visualization
	Evaluation
	Inference Time
	Accuracy Measurement

	Results
	Teaser Dataset
	SSD
	YOLOv2 on BEV

	Full dataset
	Baseline
	Learning Rate Experiments
	Varying Sweeps for One Class
	Smaller Discretization for One Class

	Comparison
	Best Performing Model
	nuScenes Official Evaluation

	Discussion
	Teaser Dataset
	SSD on PP
	SSD on BEV
	YOLOv2 on BEV

	Full Dataset
	Baseline Hyperparameters
	Learning Rate Experiments
	Varying Sweeps for One Class

	Comparison
	Final Model
	Future Work

	Conclusion
	Bibliography

