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Abstract

The design of a detector for Rydberg Hydrogen atoms, capable of probing the dis-
tribution of n-states is investigated. The device is needed for the construction and
commissioning of the AEgIS-apparatus at CERN, aiming to measure the gravitational
interaction between matter and antimatter. The detector works by field ionizing the H
atoms and consequently detecting the liberated electrons. Information about the n-state
distribution can be extracted based on that different states field ionize at different field
strengths.

An analytical derivation of the electric field in the detector is obtained by solution of
Laplace’s equation. The process of field ionization is also discussed. Together, this allows
for the calculation of the ionization properties of the detector and hence the detection
efficiencies for different n-states given a design choice of the detector.

In the most extreme configuration, virtually all states with n ≥ 16 can be ionized
somewhere in the detector but the tightly bound states only ionize in a small region
where the electric field is the largest. The detection efficiency (which depends on the
area in which a state ionizes) for different n states goes approximately linearly from 100%
for n ≥ 27 to 0% for n ≤ 13. Ionization happens in a magnetic field of 1 T which should
guide the ionization products downstream for detection. Particle tracking simulations
show that this works well for electrons, which exhibit a very small cyclotron motion
while protons exhibit a comparatively large cyclotron motion that in effect renders them
inappropriate for detection.

Keywords: Rydberg atoms, AEgIS, CERN, Antigravity, Antimatter, Laplace’s equation,
Field Ionization, Particle Tracking, Cyclotron Motion
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1 Introduction

This project is about designing a particle detector to detect and analyze a beam of excited
hydrogen atoms. In this section, the project will be presented, along with a description
of the Antimatter Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) at which
this project was carried out.

1.1 CERN and some of its Experiments

The European Organization for Nuclear Research, abbreviated CERN, is an international
organization for experimentation in fundamental physics and houses the worlds largest
particle physics laboratory. Founded in 1954, CERN has since been home for the largest
and most highly energetic particle accelerators ever built. The Large Hadron Collider
(LHC) is the newest addition of accelerators and has recently had much recognition in
media. This circular machine was completed in 2008 and is built 100 m underground
with a circumference of 27 km. It is designed to accelerate two beams of protons and
collide them at a total energy of 14 TeV.

The initial purpose for CERN was to carry out experiments in nuclear physics. With
technological advancements it became possible to probe even smaller length scales and
hence study individual nucleons and eventually fundamental particles. Experiments in
other areas than nuclear physics started being carried out and today CERN is active in
a multitude of research areas. Figure 1.1 shows the chain of accelerators and beam lines
at CERN as well as the experimental sites.

ISOLDE is a center for experiments that study radioactive isotopes. n-ToF is a neutron
source. CNGS produces a neutrino beam for the OPERA experiment in Gran Sasso
to study neutrino oscillations. The North- and East Area are home for fixed target
experiments, such as the NA62 experiment that will measure ultra rare decays of charged
kaons.

Among the LHC experiments are the CMS and ATLAS. These are very large gen-
eral purpose detectors, designed to measure all products of particle collisions. On July
4th 2012, these two experiments independently announced a 5σ effect of a new boson
at 126 GeV, believed to be the Standard Model Higgs boson. The LHCb-experiment
specializes in b-physics to study the parameters in CP-violation of b-hadrons. Lastly,
ALICE studies collisions of heavy ions (Pb82+), specifically to study quark-gluon plas-
mas.

The Antiproton Decelerator (AD) is a particle accelerator that was completed in the
year 2000 with the purpose of decelerating antiprotons (ps) and delivering them to
experiments researching the properties of antimatter. The ps are created by extracting
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1 Introduction

Figure 1.1: The accelerator complex at CERN. Protons are accelerated from rest by
LINAC2 and lead ions by LINAC3. These particles then enter into a series
of accelerators and are delivered to the different experiments depending on
their needs.
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1.2 Antimatter research

bunches of 1.5 · 1013 protons from the Proton Synchrotron (PS) at a momentum of
26 GeV/c and colliding them into a fixed target of iridium. This produces a shower
of particles, where the charged particles are gathered in a magnetic horn and the ps
are separated from the rest by mass spectroscopy. The ps are fed into the AD and
decelerated from a momentum of 3.57 GeV/c to 100 MeV/c. The AD then produces a
pulse of 1.2 ·107 ps every 100 seconds. The ps are decelerated in a radio frequency cavity
and the beam is cooled with electron- and stochastic cooling.

Since the start of the AD, there have been six experiments using the facility, five
of which are active today. In 2002, ATHENA managed to produce 50000 atoms of
antihydrogen (H), which made them the first experiment ever to produce atoms of cold
antimatter [1]. ATHENA was disbanded in 2005 to form ALPHA and AEgIS. The goal
for ALPHA is to perform spectroscopy on trapped H and compare the spectrum with
that of regular hydrogen. In 2011, the ALPHA experiment became the first ever to trap
an atom of H, keeping it trapped for 1000 s [2]. ATRAP is also performing spectroscopy
on trapped H atoms. ASACUSA is measuring the hyperfine splitting of H. ACE is a
small experiment studying the effect of p radiation on organic tissue, as a means for
treating tumors.

1.2 Antimatter research

The existence of antimatter appears when combining Quantum Mechanics and Special
Relativity. Inherent in the equations of special relativity is the symmetry called “Strong
Reflection”, which corresponds to reflecting the four coordinates of spacetime in the
origin. The effect of this on the equations in electrodynamics is to change the sign of the
electric charge. This means that given a solution to the equations of motion, another
solution is allowed to exist if a particle with the opposite charge exists. This would be
the corresponding antiparticle.

The simplest relativistically invariant field equation is the Klein Gordon equation for
a scalar field φ [3]. In natural units it reads(

∂2 +m2
)
φ = 0 (1.1)

This equation describes spin-0 particles and the spectrum of its hamiltonian contains
two types of particles, both with mass m. In 1928, the English theoretical physicist Paul
Dirac searched for a first order relativistically invariant differential equation that implies
the Klein Gordon equation. As a result of this, Dirac was able to formulate the Dirac
equation, reading.

(−iγµ∂µ +m)ψ = 0 (1.2)

This equation has two linearly independent two-component solutions, corresponding to
the electron (e−) and its antiparticle, the positron (e+). The existence of the positron
was confirmed in 1932 by Carl D. Anderson, when in a bubble chamber with a magnetic
field, a particle with the same mass but opposite charge as the electron was observed.
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1 Introduction

This now provides the oppositely charged particles required for strong reflection to be a
symmetry [4].

Shortly thereafter in 1937, the muon (µ) and its antiparticle the antimuon (µ) were dis-
covered. Following that in 1955, the antiproton was observed at the 6.2 GeV accelerator
Bevatron by colliding protons into nuclei and observing the reaction

p + p→ 3p + p. (1.3)

The understanding of antimatter has since been summarized in the formulation of the
Standard Model (SM) of Particle Physics, a Quantum Field Theory (QFT) describing
the electromagnetic-, weak- and strong force. In the SM, every particle has a corre-
sponding antiparticle with opposite charge that formally move backwards in spacetime
[3]. A central pillar of QFTs (such as the SM) is the CPT-theorem which states that
any local and Lorentz-covariant QFT is invariant under the combined discrete transfor-
mations C (Charge Conjugation: q → −q), P (Parity Transformation: x → −x) and
T (Time Reversal, t → −t). Notice that strong reflection corresponds to the combined
transformation PT (x → −x)1. Together with charge conjugation, the CPT-theorem
itself then requires the existence of antimatter.

1.3 The AEgIS-experiment

The AEgIS-experiment is one of the five experiments at CERN using the AD. The pri-
mary scientific goal is the direct measurement of Earth’s local gravitational acceleration
g on antihydrogen. This will constitute the first direct test of the weak equivalence prin-
ciple (WEP) with antimatter, which states that the behavior of a body in an external
gravitational field is independent of its composition. A number of attempts at measur-
ing gravity for antimatter has already been carried out, including measurements with
antiprotons and with positronium (Ps) [5]. These proved unsuccessful because of the
electromagnetic forces on the antiprotons and the low mass on the positronium [6]. At-
tempts of formulating QFTs of gravity suggest a non-identical gravitational interaction
between matter and antimatter. A difference in the sign of the interaction has also been
proposed as an explanation for dark matter [7]. Because of this, even a measurement of
rough precision is scientefically relevant.

The measurement will be done by observing the vertical displacement of the shadow
image produced after letting a pulsed beam of antihydrogen (H) pass through a moiré
deflecometer (a classical counterpart of a matter-wave deflectometer). The goal is a
gravity measurement with a 1% relative precision, which in turn will require H of about
100 mK to minimize the transversal momentum component as well as a position sensitive
detector after the deflectometer with a resolution ≤ 10µm.

The H-production process is shown in Fig. 1.2 and will happen according to the charge

1x denotes the four-vector xµ=̇(t,x)
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1.3 The AEgIS-experiment

Ps

laser
  excitation

antiproton
  trap

positronium
  converter

e
+

Ps

Ps*
Ps*

H*

H*
H beamH*

accelerating
  electric field

Figure 1.2: Ps is formed by e+s impinging on a nanoporous material. The Ps is LASER
excited to Rydberg states and reacts with the trapped ps according to reac-
tion (1.4) to form H∗. The excited H is then Stark accelerated to form the
beam.
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1 Introduction

exchange reaction

Ps∗ + p→ H
∗

+ e−. (1.4)

This production scheme for H comes with some advantages:

• The cross section for the reaction scales as the fourth power of the principal quan-
tum number of the positronium: σ ∝ n4Ps.

• The principal quantum number for the H is determined by nPs, which can be
controlled by LASER excitation.

• The resulting H temperature is given by the temperature of the ps.

The 100 MeV/c ps delivered by the AD are passed through a thin foil of aluminum,
called a degrader foil, to lower their energies even further. After that, the ps enter into a
cylindrical penning trap where trapping electrodes of around 20 kV and a magnetic field
of 5 T trap and store about 1% of the incoming bunches of 2 · 107 ps coming from the
AD. These ∼ 105 ps are then cooled by interaction with electrons injected into the trap
that in turn are cooled by their synchrotron radiation.

Positrons (e+s) are produced from a 22Na source and stored in a penning trap between
AD cycles. A total of 109 e+s are expected to be accumulated between AD cycles.
Positronium (Ps) is then formed by sending a pulse of e+s into a nanoporous material,
acting as a Ps-converter. Ortho-positronium (o–Ps) formed inside of the material drifts
towards the outside vacuum by following the nano channels, thermalizing in the process.
Ortho-positronium is unstable with a lifetime of 142 ns [8] for the ground state. This
can be greatly increased by exciting it to Rydberg states. This is done in a two-step
process. A LASER of 205 nm excites the Ps to n = 3 after which a tunable LASER
with 1650–1700 nm excites it to n = 10–25 which gives it a lifetime on the order of
milliseconds.

The particle traps require magnetic fields which are generated by superconducting
magnets. The AEgIS-apparatus consists of two such magnets. The first one is of 5 T
and houses the trap which traps ps and e+s. The second one is of 1 T and houses the
trap for producing H by mixing ps and Ps according to reaction (1.4). This trap is called
the Ultra Cold Trap.

The H-production then happens according to formula (1.4). The temperature of the
produced H needs to be on the order of 100 mK to reduce the transversal momentum
of the H-beam, otherwise contributing to an uncertainty in the gravity measurement as
well as making the beam more divergent. For this reason, the trap electrodes will be
cooled to 50 mK using a dilution refrigerator, conversely cooling the ps. In reaction (1.4)
all the binding energy of the Ps is given to the H which for nPs = 20 gives almost exactly
nH = 30. The Rydberg H (H∗) is then accelerated in an electric field gradient from some
10 m/s to around 500 m/s. This technique is called Stark acceleration and exploits the
large dipole moment of the Rydberg atom.

The gravity measurement is carried out by passing the beam of H through a classical
version of an interferometer, called a moiré deflectometer. The device consists of two
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1.3 The AEgIS-experiment

grating 1 grating 2

position-sensitive
detector

L Latomic
beam

Figure 1.3: The beam of H impinges on the first grating which blocks parts of the beam
and lets part of it through. In the space between the gratings, the beam
will fall due to gravity. Part of the beam will make it through the second
grating and produce a periodic pattern on the position sensitive detector.
The vertical shift of this pattern gives information about g.
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1 Introduction

gratings and a third plane which records the impinging atoms. The two gratings function
as a shadow mask, projecting a periodic pattern onto the position sensitive detector
with a periodicity equal to that of the gratings. The atoms that do not pass through
the gratings annihilate and mainly produce pions. The atoms that do pass though will
follow parabolas and exhibit a total deflection δy = gt2 where t is the amount of time
spent in the deflectometer, 2 ms for a 40 cm grating separation and 500 m/s Hs.

It has been estimated that in order to achieve a 1% measurement of g, with 100 mK
antihydrogen atoms and 1µm position resolution, about 103 events will be needed [9]
which with the estimated production rate of AEgIS and the AD cycle delivering on the
order of 107 ps every 100 s will require several weeks to months of experimentation.

1.4 Hydrogen detector

From February 14th 2013 to late summer 2014, all accelerators at CERN will be turned
off in what is called Long Shutdown 1. This implies that ps will not be produced. In
order to keep developing AEgIS, the ps in reaction (1.4) will be exchanged for protons
(p), allowing for the creation of hydrogen (H) in the analogous reaction

Ps∗ + p→ H∗ + e+. (1.5)

This could allow for a gravity measurement to be done with a known outcome. As a step
towards this goal, it is desired to detect and analyze the resulting beam of H. This well
be important to test and develop the methods required for the experiment as a whole.
It is also of particular interest to measure the distribution of the quantum numbers n
of the produced H, since this is not completely known from the H-production process.
This project is about the design such a detector.

1.4.1 Principle of operation

During the design of the detector, a H beam of uniform flux, given velocity v and
some distribution of quantum numbers n was assumed. In reality, the flux of H in the
AEgIS-apparatus will initially be very low, for this reason some sort of signal amplifier
will be required for detection. The efficiency for H detection is higher if one is able to
ionize the H atoms and detect the liberated p or the e− (or both). Ionization will then
also provide a means by which some states can be ionized and detected and some not.
This principle will allow one to distinguish between different quantum states, given that
different quantum states ionize with different criteria. The ionization will be done with
electric fields which are produced by electrodes of some geometry. Figure 1.6 shows a
concept drawing of the detector.

The signal amplifier at the end will be a Microchannel Plate (MCP). This is a thin
circular plate (around 1 mm thickness) which works like an electron multiplier, capable of
amplifying signals from any charged- or ionizing particles. The principle is explained in
Fig. 1.7. The number of electrons emitted from the MCP due to one impinging particle
is called the gain of the MCP and is controlled by the bias voltage. A single MCP
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1.4 Hydrogen detector

i = 1 . . . N
j = 1 . . . N − 1

z

zfizsi L ≈15 cm

sj

Vi

li

a

Figure 1.6: Concept design of the H-detector. The cylindrical electrodes are biased to
produce an electric field to field ionize the H-atoms. The ionization products
are amplified by MCPs and subsequently detected.

Figure 1.7: The sketch shows an MCP and its function. An ionizing particle enters one of
the microchannels and liberates secondary electrons. The secondary electrons
are accelerated in the electric field generated by the bias voltage and liberate
additional secondary electrons resulting in an electron avalanche.
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1 Introduction

operating at full bias voltage has a gain of about 5 · 104. If a higher gain is desired, one
may combine two or more MCPs, one after the other to reach a gain of up to 107 or
more [10].

After the MCPs there will be a position sensitive detector that detects the output
from the MCPs. The choice of what kind of technology this will be is undecided at
the moment, although there are several options. Initially, a Delay Line Detector (DLD)
was foreseen as readout. A DLD consists of a wound up wire that is read out at both
ends. A signal is generated when a sufficiently large cloud of electrons hits the wire,
is absorbed and propagates to both ends. By comparing the time difference of when
the signal arrives at each end, one may calculate the position of impact. A DLD will
not work however since this technique relies on that the charge cloud exiting the MCPs
will be broadened before impinging on the Delay Line, which the magnetic field of 1 T
prevents. Another option is to use a segmented Faraday cup. This has the obvious
disadvantage that a good spatial resolution requires a large number of segments which
in turn will require a large number of channels. The preferred solution at the moment
is to have the charge cloud from the MCPs impinge on a phosphorous screen and read
out the light pattern with a camera.

Preceding the MCPs and the readout there will be a stack of ionizing electrodes called
“the trap” or “the trap electrodes”. There will be N such electrodes of lengths li, spaced
sj apart and biased at Vi where i = 1, . . . , N and j = 1, . . . , N − 1. The radius of the
electrodes is denoted by a and for the most part of this report, the radius will be fixed to
a = 2 cm. This is due to that MCPs come manufactured in that size and it is desirable
to use the whole area of the MCPs for detection. Cylindrical coordinates (ρ, θ, z) will
be used to describe the geometry. The ẑ-direction is taken to be along the beam, which
in Fig. 1.6 is incident from the left. The z-coordinates at which an electrode number i
starts and ends are denoted by zsi and zfi respectively (“s” for start and “f” for finish).

1.4.2 Modes of operation

Having many electrodes makes the device more versatile as it gives more degrees of
freedom in shaping the electric potential and hence the electric field inside the trap. In
all cases, an atom that ionizes will be split up into the p and the e−. These particles may
then individually be trapped, reflected or pushed downstream to be detected, depending
on the electric potential. An atom that does not ionize inside the trap will hit the MCPs
directly and ionize on the surface of the MCPs. This will produce a signal that is slightly
different from the ionization products hitting the MCPs. One major difference is that
the signal coming from Rydberg H (H∗) hitting the MCPs will be delayed significantly
compared signals from electrons since the electrons have a much higher speed. Assuming
a speed for the H of 100 m/s, the time of flight from the production point to the MCPs is
on the order of 1 ms, this may be compared with the time of flight for e−s which is on the
order of 100 ns (see Chapter 3). This enables one to detect both e−s and H∗ individually,
even though they both come from the same beam. Another important point comes from
the fact that a charged particle travelling in a strong enough magnetic field will follow
the field lines. The highly homogeneous field of 1 T inside of which the H∗ detector is

14



1.5 Purpose

mounted should then ensure that the p or e− stay at the ρ-coordinate at which the atom
was ionized. This will be investigated in Section 3.4.

In the simplest mode of operation, there is one peak in the electric field that ionizes
the H atoms as is shown in Fig. 1.8. This requires only two electrodes and is the simplest
since it is the bare minimum required for ionization. An atom that ionizes is broken up
into the p and the e− with thermal energies. The two particles will be pushed in different
z-directions with the p or the e− continuing downstream depending on the potential. In
this mode, only atoms that ionize will be detected. Varying the electric field strength
and hence ionizing more or less atoms will then make it possible to probe the distribution
of quantum states.

In a more advanced mode there are three electrodes, allowing one to create a potential
well as shown in Fig. 1.9. The ps or e−s from the atoms that ionize are then either
trapped or reflected back depending on the potential. The signals from the atoms that
ionize are therefore effectively removed and one may detect the H∗ that hit the MCPs
directly. After this, one is free to release the trapped ps or e−s on to the MCPs for
detection. By varying the electric field strength between the shots, one has a means of
probing the distribution of quantum states by comparing the outcomes.

1.5 Purpose

There is a desire to detect and analyze a beam of H∗ created in the AEgIS-experiment.
The beam is pulsed and arrives about every 100 s with a known trigger. The distribution
of states is assumed to be the same in each bunch, the flux is assumed to be uniformly
distributed and all atoms are assumed to have the same velocity v = 600ẑm/s. This
project is about designing a detector for this end. The work will involve modeling and
understanding the physics behind the detection of H∗, as well as deciding on the design
and placement of the detector itself inside the AEgIS-apparatus.
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Electric Field Strength E(z)

Electric potential φ(z)

Detects ps Electric potential φ(z)

Detects e−s

Figure 1.8: This is the simplest configuration for H detection. The graphs show the
electric field strength (blue) and the electric potential (red and green, both
are valid) inside of the trap as a function of z for a fixed ρ. An atom travelling
through this configuration may or may not ionize due to the electric field. In
case of ionization either the p or e− will be pushed to downstream (to the
right) depending on the choice of the sign for φ.

Electric Field Strength E(z)

Electric potential φ(z)

Electric potential φ(z)

Traps ps

Traps e−s

Figure 1.9: This is the simplest trapping configuration for H detection. The graphs
show the electric field strength (blue) and the electric potential (red and
green, both are valid) inside of the trap as a function of z for a fixed ρ. An
atom travelling through this configuration may or may not ionize due to the
electric field. In case of ionization either the p or e+ will be trapped in the
potential well depending on the choice of the sign for φ. The other particles
will be reflected upstream.
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2 Analysis

This chapter will describe the physics governing the detector and give the relevant equa-
tions for understanding its behavior. In order to understand how the detector behaves
and performs, one must know the electric field E inside of the electrodes and understand
the process of field ionization.

2.1 Ionization

Below follows a derivation for calculating the probability that an excited Hydrogen atom
will ionize in the presence of an electric field. The approach will be quantum mechanical.

The process of ionizing an atom with a sufficiently strong electric field is called field
ionization or tunnel ionization. The Schrödinger equation in the presence of an electric
field E = F ẑ is

Eψ =
−~2

2m
∇2ψ +

(
−e2

4πε0r
+ eFz

)
ψ (2.1)

or in Hartree units (m = e = ~ = 1)

∇2ψ + 2

(
E +

1

r
− Fz

)
ψ = 0. (2.2)

where ψ is the wave function of the electron, E is its energy and r is the distance between
the electron and the proton.

Figure 2.1 shows the potential for the electron in one dimensional space. Field ioniza-
tion, or tunnel ionization, is the process of the electron escaping the proton by tunneling
through the potential barrier caused by the electric field. For stronger fields, the electric
potential Fz corresponds to a steeper line, effectively narrowing the potential barrier and
thus increasing the probability per unit time of ionization (called the tunneling rate).
For the three dimensional case, the potential barrier is three dimensional which makes
the math more complicated. In the case of a hydrogen atom, the three dimensional
problem (2.2) is reducible to a one dimensional problem in parabolic coordinates

x =
√
ξη cosφ, y =

√
ξη sinφ, z =

ξ − η
2

or conversely (2.3)

ξ = r + z, η = r − z, φ = tan−1
y

x
where (2.4)

r =
√
x2 + y2 + z2 =

ξ + η

2
. (2.5)
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2 Analysis

Effective potential
Electric field

Figure 2.1: Schematic of the potential for the bound electron. The potential consists of
the Coulomb well from the proton as well as the potential from the applied
uniform electric field. The electron can tunnel from the classically allowed
region near the proton through the potential barrier to the classically allowed
region far from the proton and drift along the electric field for to infinity. The
atom has then ionized.
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2.1 Ionization

Looking for solutions of the form

ψnn1n2m (ξ, η, φ) =
√
ξηu1(ξ)u2(η)e±imφ (2.6)

gives [11]

d2u1
dξ2

+

(
E

2
+
Z1

2
+

1−m2

4ξ2
− F

4
ξ

)
u1 = 0 (2.7)

d2u2
dη2

+

(
E

2
+
Z2

2
+

1−m2

4η2
+
F

4
η

)
u2 = 0 (2.8)

or in the field free case F = 0, looking for solutions of the form

ψnn1n2m (ξ, η, φ) = |nn1n2m〉 = u1 (ξ)u2 (η) eimφ (2.9)

gives the uncoupled one-dimensional equations [12]

d

dξ

(
ξ

du1
dξ

)
+

(
Eξ

2
+ Z1 −

m2

4ξ
u1

)
= 0 (2.10)

d

dη

(
η

du2
dη

)
+

(
Eη

2
+ Z2 −

m2

4η
u2

)
= 0. (2.11)

The separation parameters Z1 and Z2 are related by

Z1 + Z2 = 1. (2.12)

The states in the presence of an electric field are called Stark states and are described
by the quantum numbers n and m as well as the two parabolic quantum numbers n1
and n2 related according to

n = n1 + n2 + |m|+ 1. (2.13)

The quantum numbers are related to Zi by

Zi =
1

n

(
ni +

|m|+ 1

2

)
. (2.14)

The “old” quantum numbers n, l and m appear as a consequence of the spherical sym-
metry when separating Eq. (2.1) in the absence of an electric field. With an electric
field, the spherical symmetry is replaced with a parabolic symmetry, giving rise to the
“new” quantum numbers. Just as n enumerates the nodes along the radial coordinate
of a sphere in the field free case, n1 and n2 enumerate the nodes along the major and
minor axes in the parabolic symmetry. This means that a state |nlm〉 is a mixture of
Stark states with different n1 and n2.

The theory for tunneling ionization was first treated by Landau and Lifshitz [13] for
ground state hydrogen in a weak field (see below) and was later extended by others to
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2 Analysis

excited states of Hydrogen and eventually general atoms and molecules. Great effort
has also been spent in understanding the ionization process in a rapidly oscillating field
such as when ionizing is done by a LASER [14]. In this case, the spherical symmetry is
somewhat restored and it becomes sensible again to talk about n, l and m.

In a static (non time varying) electric field, the atom always has the same probability
per unit time of ionizing, just as an unstable nucleus always has the same probability
per unit time to undergo radioactive decay. The probability of finding the electron still
bound to the proton in a Hydrogen atom therefore decreases exponentially in time with
a time constant τ called the lifetime [13, 15, 16]. In other words, the amount of time a
hydrogen atom remains bound in a static electric field is exponentially distributed with
parameter τ

P(ionizes during time t) =

∫ t

0

1

τ
e−

t′
τ dt′ = 1− e−

t
τ (2.15)

or conversely

P(doesn’t ionize during time t) = 1−
(

1− e
t
τ

)
= e−

t
τ . (2.16)

This formula has the correct behaviour in the limits t→ 0 and t→∞ with P (ionize)→
0 and P (ionize) → 1 respectively and its exponential behaviour is characteristic for
tunneling. The lifetime is a function of the magnitude of the electric field F and the
quantum numbers n1, n2 and m of the atom. In general, a strong field and loosely bound
states (naively this translates to high quantum numbers) will cause a short lifetime. It
is sometimes more natural to talk about the ionization rate ω = 1

τ instead, since ω is
increasing with increasing F .

Note that for a finite lifetime τ the atom will ionize with probability equal to one
after an infinite amount of time has passed. As will soon be shown, this means that any
nonzero electric field is enough to ionize an atom, given that enough time passes (albeit
this time might be extremely long, see Fig. 2.2).

2.1.1 Ionization rate

In Ref. [13] the ionization rate for ground state hydrogen in a weak field (F � 1) was
calculated by examining the wave function for large η and calculating the probability
current through an infinitely large plane perpendicular to the electric field. The answer
is

1

τ
= ω =

4ωAFA
F

exp

(
− 2F

3FA

)
(2.17)

where

ωA =
me4

(4πε0)
2 ~3

and FA =
m2e5

(4πε0)
3 ~4

. (2.18)

These constants are equal to unity in atomic units. The e
−2F
3 behaviour is found in all

generalizations of tunneling theory.
Damburg and Kolosov generalized the theory of tunneling ionization for hydrogen

20



2.1 Ionization

atoms in weak electric fields to arbitrary states by expanding u1 and u2 in power series
and solving the equations of motion, given in Eqs. (2.7) and (2.8)[17]. This allows for
an analytic determination of the energy width Γ of the resulting quasi-stationary states1

and thereby obtaining their lifetime. Γ depends on the energy E of the states, which
is calculated by perturbation theory after solving the field free equations of motion
Eqs. (2.10) and (2.11). The result to fourth order is

Enn1n2m =
−1

2n2
+

3

2
Fn (n1 − n2) +

−1

16
F 2n4

(
17n2 − 3 (n1 − n2)2 − 9m2 + 19

)
+

3

32
F 3n7 (n1 − n2)

(
23n2 − (n1 − n2)2 + 11m2 + 39

)
+

−1

1024
F 4n10

(
5487n4 + 35182n2 − 1134m2 (n1 − n2)2 +

+ 1806n2 (n1 − n2)2 − 3402n2m2 + 147 (n1 − n2)4 +

− 549m4 + 5754 (n1 − n2)2 − 8622m2 + 16211
)
. (2.19)

Further work by Damburg and Kolosov [11] enabled them to write down a semi-empirical
formula for the energy width Γ which in atomic units is numerically equal to the ioniza-
tion rate ω. Their result is

ω =Γnn1n2m =
(4R)2n2+m+1

n3n2! (n2 +m)!

exp

(
−2

3
R− 1

4
n3F

(
34n22 + 34n2m+ 46n2 + 7m2 + 23m+

53

3

))
(2.20)

where

R =
(−2Enn1n2m)3/2

F
. (2.21)

One must notice that Eq. (2.20) is only valid for small values of the electric field
strength. In the limit F → 0 one has

R
F→0−−−→ 1

F
⇒ (2.22)

ω
F→0−−−→ 1

Fn′
exp

(
−1

F
− F

)
F→0−−−→ 1/Fn

′

exp 1/F

F→0−−−→ 0 (2.23)

1For a discussion of quasi-stationary states, see Ref. [15] page 555.
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as it should. However for the limit F →∞ one has

R
F→∞−−−−→ Fn

′ ⇒ (2.24)

ω
F→∞−−−−→ Fn

′′
exp

(
−Fn′ − F

)
F→∞−−−−→ Fn

′′

expFn′
F→∞−−−−→ 0 (2.25)

which intuitively is wrong. n′ and n′′ above denote some positive numbers. A strong
electric field strength should yield a high ionization rate. This behavior is visualized in
Fig. 2.2.

2.1.2 Time varying Electric Field

The probability that a hydrogen atom survives (does not ionize) in a time varying electric
field E(t) during a time interval t is approximately equal to the product of the probabil-
ities that the atom survives the field during many small time intervals of length ∆t = t

N
during which the field is taken to be constant. In the limit N →∞ this approximation
becomes exact.

P(survives during time t) =
N∏
i=1

P(survives from (i− 1)∆t to i∆t) ≈

≈
N∏
i=1

exp

(
− ∆t

τ(i∆t)

)
= exp

(
−

N∑
i=1

∆t

τ(i∆t)

)
N→∞−−−−→ exp

(
−
∫ t

0

dt′

τ(t′)

)
(2.26)

or conversely

P(ionizes during time interval t) = 1− exp

(
−
∫ t

0

dt′

τ

)
. (2.27)

Thus all that is needed to calculate the probability of ionizing a hydrogen atom in a time
varying electric field is the integral of the ionization rate 1

τ = ω.

The situation of an atom travelling through an electric field may now be treated using
this theory for time varying fields. The time integral may be converted to a path integral
by the relation

v =
dx

dt
. (2.28)

For a particle travelling along a path x(t′) from x1 to x2 parametrized by the time t′ in
a total time t, the integral in equation (2.27) may be written∫ t

0

dt′

τ (E (t′))
=

∫ x2

x1

ds/v(x)

τ (E (x))
. (2.29)

For a particle travelling only in ẑ-direction at a fixed radial coordinate ρ with a constant
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2.1 Ionization

speed v, the integral becomes∫ t

0

dt′

τ (E (t′))
=

∫ z2

z1

dz/v

τ (E (ρ, z))
. (2.30)

2.1.3 Conditions for ionization or survival

The ionization rate ω exhibits an extreme dependence on F as shown in Fig. 2.2. In the
classical case, the lifetime is infinite up to some quantum number n at which it drops to
zero. In quantum theory, this is not the case; any state has a finite lifetime in a non-zero
field. The extreme field strength dependence arises as a consequence of the tunneling
process, which is extremely sensible to the width and the height of the potential barrier.
This means that the integral (2.30) is mostly either very small or very large, so that
the ionization probability will either be very small or very close to one. This allows for
approximations to be done to determine whether or not an atom ionizes during its flight
through the trap. Figure 2.3 shows the approximations for the two cases.

Because of the inherent statistical process of a quantum mechanical treatment of field
ionization, the statement “an atom will ionize” will henceforth be defined as “the atom
ionizes with some probability Pcrit or higher.” Similarly, the statement “an atom will not
ionize” will be defined as “the atom ionizes with some probability 1−Pcrit or lower”. Pcrit

is then taken as for example Pcrit = 0.01. This means that the situation may sometimes
be such that an atom is in the twilight zone, where it is unclear whether the atom “will”
or “will not” ionize.

Firstly, to construct a criterion for when an atom does not ionize in a varying electric
field, the spatially varying field at a given ρ is replaced by a constant field equal to the
maximum value of the varying field (red graph in Fig. 2.3). If this is not enough to ionize
the atom, then the varying field will not ionize the atom either. Mathematically this is
written

P (ionize) =1− exp

(
−
∫ T

0
ω(t)dt

)
≤ 1− exp

(
−
∫ T

0
max
t∈[0,T ]

ω(t)dt

)
= (2.31)

=1− exp

(
−T max

t∈[0,T ]
ω(t)

)
≤ Pcrit ⇒

ln (1− Pcrit)

−T
≥ max

t∈[0,T ]
ω(t) ⇔ The atom will not ionize. (2.32)

The criterion for when at atom does ionize is constructed in a similar way. In this
case, the spatially varying field is replaced with a square field with a peak value slightly
less than the maximum of the electric field (green graph in Fig. 2.3). Mathematically,
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Figure 2.2: The plots to the left show lifetimes in an electric field of given field strength
for states with different quantum number n. The ground state has an ex-
tremely long lifetime of 10600000 s. For the states with 23 ≤ n ≤ 30, the
lifetime changes over 20 orders of magnitude. The plots to the right show
the ionization rate ω as calculated by Damburg and Kolosovs empirical for-
mula (2.20) for a given state at different field strengths. The top plot shows
the extreme orders of magnitude spanned by the ionization rate as well as
how formula (2.20) breaks down for large field strengths, as the approxima-
tion with quasi-stationary states is only valid for small field strengths. The
bottom plot illustrates that there is only a small window in F for which the
state has a reasonable ionization rate of about 108 s−1.
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2.2 Electric field in the trap

Electric Field Strength E(z)

Figure 2.3: The top graph (dotted) approximates the electric field strength (solid) by
replacing it with its highest value everywhere. If this is not enough to ionize
at atom, then the varying electric field (solid) will not ionize the atom either.
Similarly, the square graph (dashd) approximates the electric field from be-
low. If this is enough to ionize an atom, then the varying electric field will
also be enough to ionize the atom.

this is written

P (ionize) =1− exp

(
−
∫ T

0
ω(t)dt

)
≥ 1− exp

(
−
∫ t2

t1

min
t∈[t1,t2]

ω(t)dt

)
= (2.33)

=1− exp

(
− (t2 − t1) min

t∈[t1,t2]
ω(t)

)
≤ 1− Pcrit ⇒

min
t∈[t1,t2]

ω(t) ≥ lnPcrit

− (t2 − t1)
⇔ The atom will ionize. (2.34)

Here, [t1, t2] is a short interval containing the maximum of ω(t) (or equivalently the
maximum of E(t). Choosing [t1, t2] will affect to what extent states appear in the
twilight zone where one is unsure whether or not they ionize.

Another, easier approach is to simply choose a critical ionization rate ωcrit and regard
states as having ionized if they exhibit an ionization rate greater than ωcrit. A suitable
choice could be ωcrit = 108 s−1. This means that if the atoms are moving at v = 100 m/s
and the field can be regarded as constant around its peak for a length of v/ωcrit = 1µm,
the atoms only have a probability of e−1 ≈ 0.37 of survival just from this small part
of the filed alone. This approach is used for the results presented in this thesis, unless
stated otherwise.

2.2 Electric field in the trap

If the boundary conditions for the trap are known, then obtaining the electric potential
φ and thus the electric field E through

E = −∇φ (2.35)
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2 Analysis

is just a matter of solving Laplace’s equation

∇2φ = 0 (2.36)

with the specified Dirichlet boundary conditions. Because of the cylindrical symmetry,
Eq. (2.36) will be solved in cylindrical coordinates ρ, ϕ, z. Reference [18] has treated the
problem with trap electrodes of geometries for which the electrostatic Dirichlet Greens
function are known by using the method of quasi-Greens functions. Such a treatment
will not be necessary here since the electrodes making up the trap are just cylindrical
shells.

In this treatment the trap electrodes constitute equipotential surfaces with specified
potentials Vi, i = 1, . . . , N . The potential in the small gaps between the trap elec-
trodes is approximated to vary linearly between the potentials of the two neighboring
electrodes. In order to check the validity of this approximation, the potential was calcu-
lated numerically with the Finite Element Method in the program Comsol Multiphysics.
With infinitely long grounded end cap electrodes (electrodes 1 and N) the potential on
the surfaces z = 0 and z = L will be 0. However with finite end cap electrodes this
will not be the case. The issue of approximating the system with grounded planes at
the end surfaces has been investigated mathematically in Ref. [19], stating that endcap
electrodes with a length of three times their inner radius suffices to suppress deviations
in the trap’s electrical properties to below 1% [18, 19]. At the end of the traps there
will anyway be an MCP at a fixed potential VT acting as such an equipotential surface.
The first endcap will most likely be grounded, but even if it is at a nonzero potential
VB, an equipotential surface at z = 0 is still a good approximation. Thus, the boundary
conditions are therefore taken as

φ(a, φ, z) = f(z) =

Vi, zsi ≤ z ≤ z
f
i

z(Vi+1−Vi)−zfi Vi+1+z
s
i+1Vi

zsi+1−z
f
i

, zfi ≤ z ≤ zsi+1

(2.37)

and
φ(ρ, φ, 0) = VB and φ(ρ, φ, L) = VT . (2.38)

The Dirichlet problem (2.36) with azimuthal boundary conditions and equipotential
endcap surfaces is solved in appendix A. The solution is given in equation (A.41) as a

Fourier-Bessel series. The integral
∫ L
0 sin mπz

L f(z) has to be evaluated for the boundary
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2.2 Electric field in the trap

condition given by Eq. (2.37). This is a straightforward calculation and the result is

EIm =

∫ L

0
sin

mπz

L
f(z) dz =

=
1

tm

(
−

N∑
i=1

Vi
[
cos tmz

′]zfi
zsi

+

N−1∑
j=1

1

zsj+1 − z
f
j

((
zfj Vj+1 − zsj+1Vj

) [
cos tmz

′]zsj+1

zfj
+

(Vj+1 − Vj)
[

sin tmz
′

tm
− z′ cos tmz

′
]zsj+1

zfj

))
(2.39)

with
tm =

mπ

L
. (2.40)

The potential inside of the trap is now given as

φ(ρ, z) =
∞∑
m=1

(
ETmJ0

(u0mρ
a

)
sinh

u0mz

a
+ ESmI0 (tmρ) sin tmz+

)
VB (2.41)

with coefficients

ETm =2
VT − VB
u0m

1

J1 (u0m) sinh u0mL
a

(2.42)

ESm =2
EIm − VB

tm
(1− (−1)m)

LI0 (tma)
. (2.43)

The electric field is now given as the negative gradient of the potential

E =−∇φ = −
(
∂φ

∂ρ
ρ̂+

∂φ

∂z
ẑ

)
=

−
∞∑
m=1

(
ρ̂
(
ETm

u0m
a
J1

(u0mρ
a

)
sinh

u0mz

a
+ EsmtmI1 (tmρ) sin tmz

)
(2.44)

+ẑ
(
ETm

u0m
a
J0

(u0mρ
a

)
cosh

u0mz

a
+ EsmtmI0 (tmρ) cos tmz

))
.

The magnitude of the electric field E (called F in the field ionization calculations) is
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now given as

E =|E| =

√(
∂φ

∂ρ

)2

+

(
∂φ

∂z

)2

=( ∞∑
m=1

((
ETm

u0m
a
J1

(u0mρ
a

)
sinh

u0mz

a
+ EsmtmI1 (tmρ) sin tmz

)2
(2.45)

+
(
ETm

u0m
a
J0

(u0mρ
a

)
cosh

u0mz

a
+ EsmtmI0 (tmρ) cos tmz

)2)) 1
2

.

Figure 2.4 shows the electric field strength E as well as the electric potential φ resulting
from one example design of the detector. The values are compared with a Finite Element
simulation done in Comsol Multiphysics of the same design. In the simulation, the
detector was placed inside a grounded cylinder corresponding to the space with length
294.55 mm in Fig. 1.5.

2.3 Solid angle

The H production is assumed to happen at one point inside the ultra cold traps, just
upstream of the position for the Hydrogen detector. The radius of the mixing traps is
r = 5 mm and the distance from the H production point to the opening of the ultra cold
traps is l = 40 mm. This means that the H is emitted in a cone subtending an angle θ
such that

tan
θ

2
=
r

l
⇔ θ = 2 arctan

r

l
= 14.25◦ ≈ 0.2487. (2.46)

Figure 2.6 shows a sketch and the relevant quantities. The trap electrodes should now
ideally be positioned at a distance s from the Ultra Cold Traps such that the cone of
H-atoms fully illuminates the gap between the first and second electrodes. A simple
calculation gives

s =

(
l

r
− 3

)
a− l (2.47)

which is plotted in Fig. 2.7. One may notice that this is an upper limit. Choosing this
value of s has the advantage of utilizing the maximal area on the MCPs (a disc with
radius a).

2.4 Summary

To summarize the preceding discussion of field ionization, the prescription for deter-
mining whether or not an atom ionizes in its journey through the traps will be given
here.
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Figure 2.4: These plots show the electric potential φ and electric field strength E as
functions of z for a fixed ρ. The quantities were calculated for three electrodes
with potentials 0 V, 1000 V, 0 V, lengths 6 cm, 1 cm, 6 cm, spacings of 2 mm
and radii of 2 cm respectively. Overlaid with the plots are the results from a
Finite Element simulation (dots).
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Figure 2.5: This figure shows the discrepancy between the postulated boundary condition
in Eq. (2.37) (line) and the potential at the boundary calculated by a Finite
Element simulation in Comsol Multiphysics (circles) for the same setup as
that described in Fig. 2.4. This discrepancy explains the difference in E and φ
between theory and simulation seen for the value ρ = 0.95a-level in Fig. 2.4.
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Figure 2.6: This figure shows the how the H-atoms exit through the Ultra Cold Trap
where they are formed and enter into the ionizing electrodes. The relevant
quantities for calculating the optimal distance s are defined.
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Figure 2.7: This plot shows the required distance between the end of the Ultra Cold
Traps and the first ionizing electrode required for the cone of H-atoms to
spread out fully and illuminate the whole detector area.
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2 Analysis

Firstly, the electric field strength inside the trap electrodes has to be known. This
is given by equation (2.45). The relevant coefficients are given by Eqs. (2.39), (2.40),
(2.42) and (2.43) and Appendix A.1.1. The probability for ionization is then given by
Eq. (2.27) where for a particle with constant velocity parallel with the ẑ-axis the integral
is calculated according to Eq. (2.30). The ionization rate ω is given by Eq. (2.20) together
with Eqs. (2.19) and (2.21).

This treatment is exceptionally hopeless to do analytically and a numerical evaluation
of the ionization probability is also demanding. For this reason, the criteria Eqs. (2.32)
and (2.34) were derived and may be used instead.

2.5 Discussion

With the above results, it is clear that the electric field strength E for a given z has a
minimum in the center and grows with increasing ρ. This is to be expected since near
the electrodes the potential changes more rapidly, resulting in a stronger electric field.
It is also observed that the electric field is strongest in the gaps between the electrodes,
which again is expected since that is the region where the potential changes the most.

It is also worthwhile to note that the solid angle consideration above is a simplification.
In reality, the H production does not happen just in one point inside the Ultra Cold Traps,
but is rather spread out as a needle of a few centimeter length.

32



3 Results

This chapter will use the above results to examine the field ionization capabilities of
different designs of the trap. This will enable one to optimize the design, i.e. choose
values for Vi, si, li and a to get the desired performance of the detector.

3.1 Field Ionization: First Results

The relevant calculations may now be done to examine what quantum states ionize
with a given trap design. Firstly, the simple design given in Fig. 2.4 is examined. A
quantitative description of the field ionization properties of such a detector is given in
Fig. 3.1. This figure shows what states ionize and where the ionization happens. Based
on these plots, one may decide if this particular design is suitable or not for what one
wants to measure.

If neither of the ionization criteria (2.32) or (2.34) are satisfied, it is unknown with
what probability a given state ionizes. This naturally introduces an uncertainty into
the calculation of where and if states ionize. A histogram showing the uncertainty for
the examined states is shown in Fig. 3.2. This uncertainty of course depends on how
one chooses the interval [t1, t2] in criteria (2.34), which is another reason to not use this
approach.

3.2 Choosing N

It is reasonable to think that including more electrodes will allow one to shape the
potential φ in such a way that the performance of the device is optimized. It is however
desirable to keep the number of electrodes N to a minimum, since more electrodes
generally means a longer device which is bad from a deexcitation point of view and also
requires more electrical vacuum feedthroughs.

In order to examine whether or not increasing N is justified in terms of better per-
formance, Monte Carlo simulations were done to compare the behaviour of a detec-
tor with N = 3, 4, 5. In the simulation, the endcap electrodes were kept constant at
l1 = lN = 6 cm and V1 = VN = 0 V and a radius a = 2 cm. The extra electrodes
had lengths distributed according to lj ∼ U(5, 30) mm, spacings distributed according
to sj ∼ U(3, 7) mm and voltages distributed according to Vj ∼ U(400, 800) V where
j = 2, . . . , N − 1.

For each randomly generated detector design, a scalar value B called badness was
produced, giving a measure on how bad that particular design is. By generating a large
number of designs and finding the one with the lowest badness value, the optimal design
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3 Results
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a = 20.0 mm, Vi = (0, 1000, 0) V, li = (60.0, 10.0, 60.0) mm, si = (2.0, 2.0) mm

Figure 3.1: These graphs summarize the performance of the detector design given in
Fig. 2.4. The bottom left graph shows the fraction of states with a given
quantum number n that ionize anywhere in the trap (blue) as well as the
fraction that ionize but require a field stronger than that in the center of the
trap (red). The top left graph shows the position of ionization for the fraction
of states with a given n that ionize (blue), given by the bottom left graph.
It also shows the position of ionization when disregarding 10% of the states
with the most extreme positions of ionization n (red). The bottom right
shows the detection efficiency for states of different n, taking into account
the area at which states ionize (top left graph) as well as the fraction of states
with the given n that ionize (bottom left). The top right graph shows the
number of states that ionize at a given radius or below (blue) and compares
this with a parabola (red).
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3.2 Choosing N
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Figure 3.2: The histogram shows the range of ρ for which neither of the ionization criteria
(2.32) or (2.34) are fulfilled, for each state in the design given in Fig. 3.1.
This range in ρ corresponds to a region where it is unknown whether or not
the states have ionized.

can then be found. One can compare badness values for designs of different N to learn
how adding more electrodes changes the performance.

The badness value B was calculated by taking into account five aspects of the ioniza-
tion properties of a given design. The design is optimized for probing a given range of n
states and the five characteristics that contribute to the badness of the design are:

• The number of states that never ionize.

• The number of states that ionize at ρ = 0.

• In case no states ionize at ρ = 0, the distance to the first point in ρ where states
begin to ionize.

• How much the graph for cumulative ionized states deviates from a parabola. Since
the detection area grows with ρ2, one wants to distribute cumulative number of
ionized states in a similar fashion.

• The amount of uncertainty associated with the design.

Each of the above items gave rise to a scalar value which were summed together with
some weights giving the total badness. The resulting distribution of badness values for
the three simulations are shown in Fig. 3.3. It is clear that the lowest achievable badness
value does not change dramatically with the number of electrodes. In fact the lowest
obtained badness value was achieved with N = 3. This leads one to conclude that one
does not benefit noticeably by adding more electrodes and hence the design of the traps
is fixed at N = 3.
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Figure 3.3: The three histograms show the distribution of badness values for detector
designs with N = 3, 4, 5.

36



3.3 Realistic simulation

3.3 Realistic simulation

Since this detector is to be used for actual measurements, real world effects must be
taken into account. The final calculation of the ionization of states should therefore be
based on a numerical solution with a realistic geometry instead of the ideal theoretical
case, for which the calculations have been done so far.

The immediate modification that has to be done to the calculation is to take into
account that the electrodes will not be sharp at the edges, but have some small radius
of curvature. Sharp edges in electrostatics give rise to divergences in the electric field
[20], and to avoid the risk of discharges, a sharp edge should therefore be rounded off.
Figure 3.4 shows the results from a simulation analogous to that in Fig. 2.4 but with
electrodes having a thickness and radius of curvature. It is reasonable to assume that
this will affect the potential (and hence the electric field) close to the edge, but not far
inside of the trap. This behavior is confirmed in Fig. 3.4.

Figure 3.5 shows a field map of the three rounded electrodes. As expected, the field is
largest close to the electrodes. To avoid discharges, one must make sure that the electric
field strength never exceeds the breakdown field strength in vacuum which is on the
order of 20 MV/m

In order to get an idea of the most extreme performance of the detector, a simulation
was done with the most extreme yet realistic parameters of the traps. Since a lower gap
between two electrodes will produce a higher field, minimizing the gap will be one step
towards the most extreme field strengths achievable. A gap of sj = 0.5 mm is feasible
from a construction point of view. Furthermore, it is reasonable to put a voltage of
5000 V on a single electrode. The reason for wanting to produce a very large field is to
ionize as much as possible and thereby detect as much as possible. For this reason, the
operating mode explained in Fig. 1.8 is most suitable. In this mode, the length of the
N = 2-electrode does not play a role. Figures 3.6 and 3.7 show the performance of the
extreme design. Figure 3.8 shows an electric field map of this configuration in the high
field area.

3.4 Particle Tracking

One important idea for the functionality of the detector is the magnetic field present
in the AEgIS-apparatus. In the region where the detector is mounted, this field is
B = 1ẑT. The function of the magnetic field for this detector is to guide one of the
charged the particles (e−s or ps) onto the MCP after the ionization has ocurred. This is
important both to minimize solid angle losses and also if one wants to use the radial hit
distribution as information about the state distribution in the beam. To confirm that
the magnetic field will be able to serve this purpose, particle tracking simulations were
done.

In the simulations, the movements of e−s and ps were examined for both the maximally
ionizing configuration given by Fig. 3.1 with and without a magnetic field as well as the
trapping configuration described in Fig. 1.9. These simulations now include a conducting
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Figure 3.4: This plot is identical with Fig. 2.4 except for that the Comsol simulation
(dots) is now done with 1 mm thick electrodes rounded off at the edges with
a radius of curvature of 0.5 mm. The solid lines are again from the analytical
solution which remained unchanged.
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3.4 Particle Tracking

Figure 3.5: Field map around the N = 2-electrode of the design given in Fig. 3.1. The
electric field strength is the strongest around the electrode edges. The x- and
y-axes are presented in meters and the field strengths in Volts per meter.
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Figure 3.6: These plots show the electric potential φ and electric field strength E as
functions of z for a fixed ρ for most extreme achievable values on the trap
parameters. There are three electrodes with voltages 0 V, 5000 V and 5000 V.
Their lengths are 6 cm, 1 cm and 6 cm. The spaces between the electrodes
are both 0.5 mm.
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3.4 Particle Tracking
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Figure 3.7: These are the ionization capabilities of the extreme trap design given in figure
Fig. 3.6.
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3 Results

Figure 3.8: This is a close up electric field map on the gap between the two electrodes in
the extreme trap design given in figure Fig. 3.6 except for that si = 1 mm.
The asymmetry in the field is due to that the simulation was done with 3
electrodes with the last two on the same potential. The x- and y-axes are
presented in meters and the field strengths in Volts per meter.
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3.4 Particle Tracking

plate at the end of the last electrode biased equally as the last electrode, symbolizing
the MCP. In each simulation, 20 particles were released from rest in the middle of the
gap between the first and the second electrodes at equidistant radial coordinates from
ρ = 0 mm to ρ = 19 mm and subsequently tracked using Comsol Multiphysics. This
should correspond to the situation of an atom just having ionized in the region with the
highest field strength. The results may be seen in Figs. 3.9 to 3.12.

The results of the simulations tell that e−s are very well guided from the point of
ionization in the trap to the MCPs. For ps on the other hand, the magnetic field is
too weak so the cyclotron motion starts playing an important role. The particles with
ρ ≥ 17 mm collide with the wall and stop, while the rest continue. Luckily, for the given
trap geometry, the resulting displacement of initial and final radius is very small for the
particles that go through the trap, but this is most likely just a stroke of luck for that
particular trap configuration.

The simulations also show that e−s are effectively trapped and may be stored for at
least 10µs. Interestingly, the e−s keep their radial coordinate ρ, while changing their
azimuthal angle φ. This is good for the n-state analysis, since only ρ plays a role in
determining the quantum number n. Protons on the other hand are not trapped as
effectively. All ps starting at radii ρ ≥ 11 mm are lost due to their large synchrotron
motion. The trapped ps oscillate over a much larger ρ compared to the e−s.
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Figure 3.9: These plots show how well the detector can guide the e−s from a given radius
in the high field region in the trap to the detector at the end of the trap.
The top left and top middle graphs show the projections of particle paths in
the xy- and ρz-plane respectively in a magnetic field. The two graphs below
show the same thing without a magnetic field. The top right graph shows the
arrival times at the detector for the particles. The lower right graph shows
the initial radius versus the final radius for the particles. The lengths of the
electrodes were 6 cm, 1 cm and 6 cm, the spacings were both 1 mm and the
voltages were 0 V, 5 kV and 5 kV.
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Figure 3.10: These plots give the same information as Fig. 3.9 but for ps. The voltages
have been changed to 0 V, -5 kV and -5 kV.
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Figure 3.11: These plots show how well the trap can trap e−s released after ionization of
H. The top left graph shows the projection of particle paths in the xy-plane
(the cover image of this thesis as a 3D image of this plot). The top middle
graph shows how the radial position ρ of the particles depends on time t.
The remaining graphs show how three particles at different radii oscillate
back and forth with time. The lengths of the electrodes were 6 cm, 1 cm
and 6 cm, the spacings were both 1 mm and the voltages were 0 V, 5 kV and
0 kV.
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Figure 3.12: These plots give the same information as Fig. 3.11 but for ps. The voltages
have been changed to 0 V, -5 kV and 0 kV.
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4 Discussion

The above three chapters have all been necessary in order to get in a position to find the
most suitable design for the detector. In Chapter 1 a motivation for why the detector
will be needed is given, as well as a discussion about what the detector should achieve.
In Chapter 2, the relevant physics is treated to understand how the detector performs.
In Chapter 3, the results from Chapter 2 are used to produce quantitative results in
order to make a decision on the final design of the detector. In this chapter, the results
above will be discussed in order to converge on a decision for the design of the detector.

4.1 Decision

Firstly, Fig. 3.7 tells that a detection efficiency of about 25% is achievable for n = 18
with the extreme configuration (5000 V potential difference over 0.5 mm). The highest
field strengths will occur close to the surface of the electrodes and their magnitudes do
not depend on the radius a. It is therefore possible to make the detector shorter without
sacrificing detection efficiency.

By making the radius smaller, the spatial resolution will worsen since at a < 2 cm the
whole active area of the MCPs is no longer used. However, spatial resolution is only of
importance when extracting information about the n state distribution from the radial
dependence of the hit pattern which in turn requires a large flux of particles. The H
production process at AEgIS will initially be very inefficient, so a hight flux cannot be
expected. Instead, the main interest will be to detect H as efficiently as possible. At the
same time, choosing a lower a will make the detector shorter, since the endcap electrodes
will have a length 3a. This is beneficial since it then takes less time for the H∗ to fly
through the detector and less atoms will have deexcited to a lower quantum state.

The solid angle considerations in Section 2.3 and Fig. 2.7 effectively give a lower limit
on a. Given that from a construction and safety point of view, it is desirable to position
the detector not closer than 10 mm to the ultra cold traps, a was therefore taken to be
a = 10 mm. The particle tracking simulations show that it is feasible to trap e−s, which
might be desirable to do. Therefore the final design becomes

a = 10 mm, N = 3, li=̇ (30, 10, 30) mm, si=̇ (0.5, 0.5) mm. (4.1)

4.2 Potential Problems

Some physical phenomena were glossed over in the treatment of the physics in Chapter 2.
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4 Discussion

One major concern is about the influence of a magnetic field on field ionization. In
the Schrödinger Eq. (2.1) no magnetic field was included. Treating field ionization in an
electric- and magnetic field has not been extensively investigated. A couple of noteworthy
details are however that in the presence of an electric and a magnetic field, the classical
orbits for the e− in the H atom are chaotic [21]. It can also be argued that when ionizing
with an electric field with the same direction as a magnetic field, the magnetic field does
not have a large impact. This has been investigated somewhat in Ref. [22].

Another worry is how the inhomogeneous electric field inside the trap might affect the
path of the incomming H∗, i.e. how the H∗ might me Stark accelerated by the electric
field that is used for ionization. Modelling and calculating Stark acceleration is very
difficult and beyond this thesis. One should nevertheless keep the effect in mind.

It must also be realized that the H∗ atoms have a lifetime before they deexcite to lower
energy states. This will of course constitute a problem for measuring the n-quantum
numbers that the atoms are produced in. The lifetime of a n = 30 Stark state of H
before deexcitation is around 200µs and scales as n4.36 [23]. Assuming that the atoms
travel with 500 m/s, after 10 cm they will have a probability of e−1 ≈ 0.37 to remain in
their initial quantum state. This distance is comparable to the distance from the point
of production in the ultra cold traps to the first gap inside the detector where ionization
is most likely to occur. This means that deexcitation of atoms is to be expected.

One final concern is about the risk of discharges in the device. The field maps in
Figs. 3.5 and 3.8 show where the electric fields are biggest and give an idea of the order
of magnitude. It is well known that field ionization is much more likely to happen in the
direction of a magnetic field if there is one present, which in this case there is. One might
therefore consider putting a dielectric in the gaps with a higher breakdown voltage to
protect against this.
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A Solution of Laplace’s equation in
cylindrical coordinates

In order to derive an analytical solution for the potential φ and the electric field E =
−∇φ of the trap, Laplace’s equation

∇2φ = 0 (A.1)

must be solved in the interior of the trap. The relevant boundary conditions for the
trap are equipotential surfaces on the endcaps and some specified function f(z) along
the surface of the electrodes and the space between them. Because of the geometry,
cylindrical coordinates, x = (ρ, ϕ, z), will be used. The boundary conditions are written

φ(ρ, ϕ, 0) = VB , φ(ρ, ϕ, L) = VT and φ(a, ϕ, z) = f(z). (A.2)

This will be solved by looking for solutions φT , φS and φB respectively for the three cases
where only one of the boundary condition on the three surfaces (top, side and bottom
of the cylinder) are nonzero. The general solution will then be

φ = φT + φS + φB. (A.3)

Since there is no ϕ-dependence in the boundary conditions, the problem has azimuthal
symmetry which ensures that φ will be also be independent of ϕ. Looking for solutions
on the form R(ρ)Z(z) Eq. (A.1) now becomes

1

ρ

∂

∂ρ

(
ρ
∂R

∂ρ

)
Z +

∂2Z

∂z2
R = 0. (A.4)

Rearranging the terms gives

− Z ′′

Z
=

1

ρR

∂

∂ρ

(
ρR′
)
. (A.5)

The left hand side now only depends on z and the right hand side only depends on ρ.
Both sides must therefore be equal to some constant −k2,

− Z ′′

Z
=

1

ρR

∂

∂ρ

(
ρR′
)

= −k2. (A.6)

The equation for Z is then
Z ′′ = k2Z (A.7)
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A Solution of Laplace’s equation in cylindrical coordinates

and the equation for R is

1

ρR

∂

∂ρ

(
ρR′
)

= k2 ⇔ ρ2R′′ + ρR+ k2ρ2R = 0. (A.8)

With a change of variables x = kρ this becomes

x2
∂2R

∂x2
+ x

∂R

∂x
+ x2R = 0 (A.9)

which is the Bessel equation with order parameter α = 0. The solutions are

R = CJ0(x) +DY0(x) (A.10)

where J0 and Y0 are Bessel functions of the first and second kind respectively. Since Y0
diverges as x→ 0⇔ ρ→ 0, that solution is now allowed, so D = 0 and

R = CJ0(x) = CJ0(kρ) (A.11)

where Jα is a Bessel function of the first kind.

A.1 The three cases

A.1.1 Case one: Top

In this case the boundary conditions are

φT (ρ, ϕ, 0) = 0 , φT (ρ, ϕ, L) = VT and φT (a, ϕ, z) = 0. (A.12)

These imply

R(a) = CTJ0(ka) = 0 ⇔ ka = u0m ⇔ k =
u0m
a

(A.13)

where uαm is the m-th zero to Jα. The equation for Z now becomes

Z ′′ =
(u0m
a

)2
Z = 0 ⇔ Z = AT cosh

u0mz

a
+BT sinh

u0mz

a
. (A.14)

The boundary conditions imply

Z(0) = 0 ⇔ AT = 0. (A.15)

The solution φT is thus

φT (ρ, z) =

∞∑
m=1

ETmJ0

(u0mρ
a

)
sinh

u0mz

a
. (A.16)
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The last, unused boundary condition now gives

φT (ρ, L) =
∞∑
m=1

ETmJ0

(u0mρ
a

)
sinh

u0mL

a
= VT . (A.17)

Multiplying both sides by ρ
aJ0

(u0m′ρ
a

)
, integrating and using the orthogonality relation∫ 1

0
sJα (uαms) Jα (uαm′s) ds =

δmm′

2
J2
α+1 (uαm) (A.18)

gives∫ a

0

∞∑
m=1

ETm
ρ

a
J0

(u0m′ρ
a

)
J0

(u0mρ
a

)
sinh

u0mL

a
dρ =

∫ a

0

ρ

a
J0

(u0m′ρ
a

)
VTdρ (A.19)

⇔
∞∑
m=1

ETm sinh
u0mL

a

∫ 1

0
sJ0 (u0m′s) J0 (u0ms) dρ = VT

∫ 1

0
sJ0 (u0m′s) dρ (A.20)

⇔
∞∑
m=1

ETm sinh
u0mL

a

δmm′

2
J2
1 (u0m) = VT

∫ 1

0
sJ0 (u0m′s) ds (A.21)

⇔ ETm′ sinh
u0m′L

a

J2
1 (u0m′)

2
=

VT
u0m′

J1 (u0m′) (A.22)

⇔ ETm =
2VT
u0m

1

J1 (u0m) sinh u0mL
a

(A.23)

where a primitive function of xJ0(x) can be found by using the Maclaurin series for
Bessel functions

Jα =
∞∑
m=0

(−1)m

m!Γ (m+ α+ 1)

(x
2

)2m+α
(A.24)

or for α = n ∈ N

Jn =
∞∑
m=0

(−1)m

m! (m+ n)!

(x
2

)2m+n
(A.25)

according to∫
xJ0(x) dx =

∞∑
m=0

(−1)m

m!m!

∫
x
(x

2

)2m
dx =

∞∑
m=0

(−1)m

m!m!

x2m+2

22m(2m+ 2)
= (A.26)

=x

∞∑
m=0

(−1)m

m! (m+ 1)!

(x
2

)2m+1
= xJ1(x). (A.27)
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A.1.2 Case two: Side

In this case the boundary conditions are

φS(ρ, ϕ, 0) = 0 , φS(ρ, ϕ, L) = 0 and φS(a, ϕ, z) = f(z). (A.28)

Solving for Z gives

Z = AS cos tz +BS sin tz (A.29)

with k = it. The boundary conditions now imply

Z(0) = 0 ⇔ AS = 0 (A.30)

and

Z(L) = 0 ⇔ tL = mπ ⇔ t =
mπ

L
. (A.31)

The solution for R then becomes

R(ρ) = CSJ0

(
i
mπ

L
ρ
)

= CSI0

(mπρ
L

)
(A.32)

where Iα is a modified Bessel function of the first kind. The solution φS is thus

φS(ρ, z) =
∞∑
m=1

ESmI0

(mπρ
L

)
sin

nπz

L
. (A.33)

The last, unused boundary condition now gives

φS(a, z) =

∞∑
m=1

ESmI0

(mπa
L

)
sin

mπz

L
= f(z). (A.34)

The coefficients ESm are found by multiplying both sides by sin m′πz
l and integrating

along a straight line on the boundary of the cylinder and using the last boundary con-
dition.∫ L

0

∞∑
m=1

ESmI0

(mπa
L

)
sin

mπz

L
sin

m′πz

L
=

∫ L

0
sin

m′πz

L
f(z) dz ⇔ (A.35)

∞∑
m=1

ESmI0

(mπa
L

)∫ π

0
sinmt sinm′t

Ldt

π
=

∫ L

0
sin

m′πz

L
f(z) dz. (A.36)

Using the relation ∫ π

0
sinmx sinm′x dx =

π

2
δmm′ (A.37)
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this becomes

L

π

∞∑
m=1

ESmI0

(mπa
L

) π
2
δmm′ =

∫ L

0
sin

m′πz

L
f(z) dz ⇔ (A.38)

L

2
ESm′I0

(
m′πa

L

)
=

∫ L

0
sin

m′πz

L
f(z) dz ⇔ (A.39)

ESm =
2
∫ L
0 sin mπz

L f(z) dz

LI0
(
mπa
L

) (A.40)

A.1.3 Case three: Bottom

Since the endcap surfaces are equipotential surfaces, the guage invariance φ → φ + VB
can be used to cover the case of a nonzero potential on the bottom endcap. In practice
it is then enough with the sum of the two cases above and subtract VB from all other
supplied potentials.

A.2 Final solution

Taking all of the above calculations into account, the final solution φ is now given as

φ(ρ, z) =

∞∑
m=1

(
E′TmJ0

(u0mρ
a

)
sinh

u0mz

a
+ E′SmI0

(mπρ
L

)
sin

nπz

L
+ VB

)
(A.41)

with coefficients

E′Tm =2
VT − VB
u0m

1

J1 (u0m) sinh u0mL
a

(A.42)

E′Sm =
2
∫ L
0 sin mπz

L (f(z)− VB) dz

LI0
(
mπa
L

) (A.43)

= 2

∫ L
0 sin mπz

L f(z) dz − LVB
mπ (1− (−1)m)

LI0
(
mπa
L

) . (A.44)
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