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Abstract

Fracture prediction and modeling are crucial in studying the behavior of materials under stress.
This research focuses on utilizing the phase field method for accurate fracture prediction, which
offers distinct advantages over traditional methods by representing fractures implicitly as smooth
fields. The phase field method was implemented and analyzed using Matlab and COMSOL as tools,
aiming to investigate and gain insights into the ease and feasibility of phase-field modelling for fa-
tigue fracture problems. This was conducted mainly by introducing a fatigue degradation function,
with the purpose of simulating the degrading process of the material after repeated cyclic loading.
Through comprehensive analysis, quantities of interest such as the history variable, accumulated
strain energy, and damage variable were examined. The obtained trends and results were found to
align with existing literature, although neither calibration nor validation was conducted due to time
limitations. Suggestions for future work include implementing a force-controlled load, calibration of
the fatigue degradation function for a larger amount of load cycles, and validation with experimental
data. Nevertheless, the results obtained from the fatigue implementation can provide a solid founda-
tion for continued research. In conclusion, the progress during the project highlighted the potential
of the phase-field model to predict fatigue fracture by modelling the crack through a damage field.
Hence, fatigue prediction using phase-field modelling has the potential to make significant progress
and thus contribute to less computationally expensive simulations for more complex fatigue fracture
problems.

Keywords: phase field, fatigue, cyclic loading, fatigue degradation function
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1 Introduction

When predicting the strength of a certain solid component one usually wants an overall mechanical
response of the whole body. This can be performed by implementing a finite element analysis.
However, in cases where the FE model includes fracture prediction the crack propagation can be
extremely difficult and expensive to simulate using an explicit model. One method developed to
circumvent this problem is phase-field modelling. The approach has proved good results for solving
the development of cracks both in terms of crack nucleation and crack propagation without any
need for an initial notch [6]. The phase-field approach is based on crack modelling in a smeared
sense where material damage is represented by a damage variable ϕ in each node ranging from 0
to 1, where 0 indicates full material integrity and 1 material fracture. In other words, the discrete
discontinuous phenomenon is by utilizing phase-modelling instead represented as a smooth function
[7].

1.1 Background

Phase-field modelling of fractures has due to significant interest and research led to an established
approach able to predict crack patterns and the overall mechanical response of structures. This is
however mainly developed for cases with monotonic static loading or high-velocity dynamic fracture
since the concept is relatively new [7]. Due to the many manufacturing processes and industrial
applications involving oscillating loads of different kinds, models that can simulate crack propagation
and fatigue fracture are of major importance for engineers and society in general. Furthermore,
fatigue failure is one of the most frequently occurred types of failure in structures, and is less
predictable than failure caused by exceeding the ultimate strength of the material [5]. Hence, due
to its beneficial simulation features even in complex crack problems, the development of phase-field
models for fatigue applications is of great interest amongst researchers and engineers [4].

1.2 Objective

This project aims at developing and evaluating a phase-field model for fatigue crack-growth problems.
In addition to a brief literature study, the project will mainly consist of working toward the following
goals:

• Develop and qualitatively calibrate constitutive models for phase-field evolution.

• Implement a finite element code based on phase-field modelling for elasticity.

• Implement fatigue loading to the phase-field model and compare with experiments in the
literature.

• Qualitatively assess the feasibility and ease of the implementation when using phase-field
fracture modeling for fatigue applications.

1.3 Scope

Since the project is being carried out during weeks 12 to 21, the time budget will be one of the major
limitations. As a result, relevant boundaries for the project are introduced below. It is clear that
these boundaries will affect the resulting model and its validity in real-life applications, especially
the boundaries related to the modelling assumptions. Consequently, considering and acknowledging
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them in the final conclusion is essential for the usage and further development of the model. As
mentioned, the first two boundaries below consider the specific modelling assumptions while the last
boundary is more general for the project itself.

• The simulations are limited to 2D (in-plane).

• Only elastic response coupled to phase-field damage (brittle fracture) is considered.

• Usage of the software is limited to available options on Chalmers’ computers.

Due to the first two boundaries, the implemented 2D finite element model could be used for the
prediction of the crack propagation in applications when the plane stress or plane strain assumption
is valid. In practice, plane strain assumption finds more applications in engineering problems such
as the prediction of the crack propagation in railway components.
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2 Theory

In this chapter relevant theory for understanding of phase-field modelling of fatigue, is presented.
First, theory on phase-field modelling is introduced along with its corresponding numerical counter-
part. Thereafter the fatigue extension of the phase-field model is described.

2.1 Phase-field modeling

In this section, the strong form of the the phase-field model is derived as the equations that are used
to solve the fracture problem under monotonic loading. Based on the strong form of the problem, the
weak form of it is derived using Galerkin’s method. Finally, the formulation of the FE approximation
follows, describing the numerical method that is used to solve the problem in MATLAB.

2.1.1 Strong Form

The fracture process is governed by the minimization of the potential energy where the internal
energy is expressed as a summation of the materials bulk energy and the dissipative fracture energy:

Ψ = Ψb +Ψf (1)

For the dissipative fracture energy Ψf the use of the explicit definition that involves integration over
the crack surface Γ(t) can be numerically costly. Instead, in the phase-field approach an equivalent
expression that involves calculation of the energy as a domain integral is used, given as [6]:

Ψf =

∫
Γ

Gc dΓ ≈
∫
V

Gcγ(ϕ,∇ϕ)dV (2)

where the critical energy release rate Gc is a material parameter. The crack density function is

expressed as γ(ϕ,∇ϕ) = 1
Cw

(
w(ϕ)
l + l|∇ϕ|2

)
[1]. For the case of brittle fracture the commonly used

values in literature are w(ϕ) = ϕ2 and Cw = 2. The continuous damage state variable, ϕ ∈ [0, 1],
describes the scalar damage field ranging smoothly between the broken (ϕ = 1) and the intact
(ϕ = 0) material state [6]. The length scale parameter l is used to control the width of the crack
approximation zone.

The fracture energy can then be computed as:

Ψf =

∫
V

Gc
2l

(ϕ2 + l2|∇ϕ|2)dV (3)

The bulk energy can be expressed as:

Ψb =

∫
V/Γ

ψ(ϕ, ϵ) dV =

∫
V

[g(ϕ) ψ(ϵ)e+ + ψ(ϵ)e−]dV (4)

where the degradation function is selected for this problem as g(ϕ) = (1−ϕ)2, and it is used to account
the loss of stiffness that the fracture cause in the material. The bulk energy is also splitted into a
compressive (ψ(ϵ)e−) and tensional (g(ϕ) ψ(ϵ)e+) part in order to resolve the unrealistic symmetric
behaviour in terms of crack propagation in both tension and compression. For this project the
degradation function will always be applied to the elastic bulk modulus. This means that the model
will only be valid for loads in tension. For the case of elastic material response the strain energy per
unit volume of the intact material is described by: ψ(ϕ, ϵ) = g(ϕ) ψ(ϵ)e = g(ϕ) 1

2ϵ D ϵ.
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Therefore for this project, the total internal energy can be summarized as:

Ψ =

∫
V

(1− ϕ)2ψe(ϵ)dV +

∫
V

Gc
2l

(ϕ2 + l2|∇ϕ|2)dV (5)

Defining the energy functional Π = Ψ−W ext, the external work follows as:

W ext =

∫
V

b̄ u dV +

∫
Γ

t̄ u dΓ (6)

where b̄ and t̄ are the prescribed volume and boundary force vectors respectively. According to the
principle of minimum total potential energy, the equilibrium state is taking place when the potential
energy Π reaches a minimum.

For minimization of the energy functional, partial derivatives of the terms are calculated with respect
to the field variables:

δΨ =
∂Ψ

∂ϵ
δϵ+

∂Ψ

∂ϕ
δϕ

=

∫
V

g(ϕ)
∂ψe(ϵ)

∂ϵ
δϵ dV +

∫
V

[
∂g(ϕ)

∂ϕ
ψe(ϵ) +

Gc
2l

∂γ(ϕ,∇ϕ)
∂ϕ

]
δϕ dV

=

∫
V

σ δϵ dV +

∫
V

∂g(ϕ)

∂ϕ
ψe(ϵ) δϕ dV +

∫
V

Gc
2l

∂γ(ϕ,∇ϕ)
∂ϕ

δϕ dV

where the constitutive equation for an elastic material model describes the stress tensor as:

σ = g(ϕ)
∂ψe(ϵ)

∂ϵ
= (1− ϕ)2D ϵ (7)

for the material stiffness tensor D given for a 2-D field. Implementing the small strain setting as
ϵ = 1

2 [∇⊗ u+∇⊗ u], and by using the Gauss Divergence theorem as well as the definition of the
traction stress vector t = σ n, the equation can be written as:

δΨ = −
∫
V

[σ∇] δudV +

∫
Γ

t δudΓ+

∫
V

[−2(1−ϕ)ψe(ϵ)+ Gc
l
(ϕ− l2∆ϕ)] δϕdV +Gc l

∫
Γ

∇ϕn δϕdΓ

where the symbol ∆ = ∇ · ∇ is used. The corresponding partial derivative of the virtual external
work follows as:

δW ext =

∫
V

b̄ δu dV +

∫
Γ

t̄ δu dΓ

Hence, the minimization of the energy functional δΠ = 0 lead to δΨ − δW ext = 0 which make it
possible to identify the governing equations for the final strong form as:

∇σ + b̄ = 0 in V (8)

t = t̄ on Γt̄ (9)

u = ū on Γū (10)

−2(1− ϕ) ψe(ϵ) +
Gc
l

(ϕ− l2∆ϕ) = 0 in V (11)

∇ϕ · n = 0 on Γ (12)

Introducing the crack driving state function D̃ = ψe(ϵ)
Gc
2l

, Eq.(11) can be expressed as:

−l2∆ϕ+ (1 + D̃) ϕ = D̃ in V (13)
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For a qualitative study of the crack propagation Gc
2l can be set equals to 1. This is an simplification

for the implementation in this project which works while developing the code for crack prediction,
but has to be considered when comparing with experimental data in a quantitative study. In order
to prevent the nonphysical crack healing phenomenon after the load is removed, the history field
variable is introduced as:

H(t) := max
τ=[0,t]

D̃(τ) (14)

and it can be used to equivalently express the above equation as:

−l2∆ϕ+ (1 +H)ϕ = H in V (15)

2.1.2 Weak form

In order to numerically solve the problem, the weak formulation of the governing equations needs to
be performed. The displacement field equilibrium Eq.(8) is integrated over the volume and multiplied
with a kinematically admissible virtual displacement δu:

−
∫
V

(σ ∇) δu dV =

∫
V

b̄ δu dV (16)

Using the Gauss divergence theorem, the Cauchy’s stress theorem, t = σn, and taking into account
that δϵ = ∇ δu, we get the weak form of the displacement field as:∫

V

σ δϵ dV =

∫
V

b̄ δu dV +

∫
Γ

t̄ δu dΓ (17)

For the derivation of the weak form of the damage field equilibrium Eq.(11) is integrated over the
volume of and multiplied with an virtual damage δϕ. The final form of the expression is:∫

V

[
Gc
l
ϕ− 2(1− ϕ)ψe(ϵ)

]
δϕ dV +

∫
V

Gc l∇ϕ∇δϕ dV = 0 (18)

with boundary condition ∇ϕ · n = 0. Using the history field variable, the above equation can be
written as: ∫

V

[((1 +H)ϕ−H) δϕ+ l2 ∇ϕ ∇δϕ] dV = 0 (19)

2.1.3 FE form

In order to derive the FE form, the weak form equation need to be expressed in Voigt format. For
a 2-D problem, the displacement and strain terms with corresponding virtual components can be
formulated as [3]:

u(x, y) =

[
ux(x, y)
uy(x, y)

]
, δu(x, y) =

[
δux(x, y)
δuy(x, y)

]

ϵ(x, y) = ∇u(x, y) =

ϵxx(x, y)ϵyy(x, y)
γxy(x, y)

 , δϵ(x, y) = ∇δu(x, y) =

δϵxx(x, y)δϵyy(x, y)
δγxy(x, y)


Using a finite element discretization, the field variables are expressed as:

u(x, y) =

n∑
k=1

Nu
k (x, y)

[
ux,k
uy,k

]
= Nu au (20)
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with

Nu =

[
Nu

1 (x, y) 0 ... Nu
n (x, y) 0

0 Nu
1 (x, y) ... 0 Nu

n (x, y)

]
, au =


ux,1
uy,1
.
.
.

uy,k


For the small strain definition it is:

ϵ = ∇u = ∇Nu au = Bu au

with

Bu =


∂N1

u(x,y)
∂x 0 ∂N2

u(x,y)
∂x 0 ... ∂Nn

u(x,y)
∂x 0

0 ∂N1
u(x,y)
∂y 0 ∂N2

u(x,y)
∂y ... 0 ∂Nn

u(x,y)
∂y

∂N1
u(x,y)
∂y

∂N1
u(x,y)
∂x

∂N2
u(x,y)
∂y

∂N2
u(x,y)
∂x ... ∂Nn

u(x,y)
∂y

∂Nn
u(x,y)
∂x


The discretization of the damage field is described as:

ϕ(x, y) =

n∑
k=1

Nϕ
k (x, y) ϕk = Nϕaϕ (21)

where

Nϕ =
[
Nϕ

1 (x, y) Nϕ
2 (x, y) ... Nϕ

n (x, y)
]
, aϕ =


ϕ1
ϕ2
.
.
.
ϕk


The derivative of the damage variable is approximated as

∇ϕ(x, y) = ∇Nϕ aϕ = Bϕaϕ (22)

where

Bϕ =

[
∂N1

ϕ(x,y)
∂x

∂N2
ϕ(x,y)
∂x ... ∂Nn

ϕ(x,y)
∂x

∂N1
ϕ(x,y)
∂y

∂N2
ϕ(x,y)
∂y ... ∂Nn

ϕ(x,y)
∂y

]
(23)

By utilizing the Galerkin’s method, the virtual components of the field variables can be described
as

δu = Nuδcu (24)

δϵ = Buδcu (25)

δϕ = Nϕδcϕ (26)

δ∇ϕ = Bϕδcϕ (27)

with arbitrary coefficient vectors δcu and δcϕ. Inserting the approximation of the displacement and
damage variables together with their virtual counterparts into the weak form equations δW int −
δW ext = 0, we obtain the relation from Eq.(17) as:

δcu
T

(∫
V

BuT σdV −
∫
V

NuT b̄ dV −
∫
Γ

NuT t̄ dΓ

)
= 0
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⇒ δcu
T

(F int,u − F ext,u) = 0 ⇒ F int,u = F ext,u

for the force vectors for the displacement field to be given as:

F int,u =

∫
V

BuT σdV (28)

F ext,u =

∫
V

NuT b̄ dV +

∫
Γ

NuT t̄ dΓ (29)

In a similar manner, the derivations for Eq.(19) result to

δcϕ
T

(∫
V

{[(1 +H)Nϕ aϕ − H]Nϕ + l2 BϕT Bϕ aϕ} dV
)

= 0

⇒ δcϕ
T

(F int,ϕ − F ext,ϕ) = 0 ⇒ F int,ϕ = F ext,ϕ

for the internal force vectors for the damage field to be given as:

F int,ϕ =

∫
V

{[(1 +H)Nϕ aϕ − H]Nϕ + l2 BϕT Bϕ aϕ} dV (30)

and , due to displacement condition
F ext,ϕ = 0

where H = max(n−1H,ψe) at a current time step n .

Concluding, the system of equations can be written with the following manner in order to be solved
in an iterative manner using the Newton-Raphson method:[

Kuu Kuϕ

Kϕu Kϕϕ

] [
∆au

∆aϕ

]
=

[
F ext,u

F ext,ϕ

]
−

[
F int,u

F int,ϕ

]
(31)

where

Kuu =
∂F int,u

∂au
= (1− ϕ)2

∫
V

BuT D Bu dV (32)

Kuϕ =
∂F int,u

∂aϕ
= −2(1− ϕ)

∫
V

BuT D Bu Nϕ dV (33)

Kϕu =
∂F int,ϕ

∂au
= −2(1− ϕ)

∫
V

NϕT D Bu Bu dV (34)

Kϕϕ =
∂F int,ϕ

∂aϕ
=

∫
V

[l2 BϕT Bϕ + (1 +H)Nϕ Nϕ] dV (35)

2.2 Fatigue extension

The theory of phase-field modeling described in the previous chapter is able to predict the crack
initiation and propagation with some features for loads in the low cycle regime or monotonic loading.
This since the crack driving state function and the splitting of the bulk energy into a compressive and
tensile part prevents the material from acting nonphysical in terms of healing or driving the crack
propagation in compression. What the model is unable to consider however, is the reproduction of
crack initiation nor crack growth for cyclic loads with amplitudes below the fracture limit in brittle
materials [6]. This section will extend the model with fatigue considerations for brittle fracture,
corresponding to the high-cycle fatigue regime.

Aiming to implement the fracture energy degradation due to the repeated externally applied loads,
the accumulated strain energy ψ̄(t) is introduced. Specifically, the physical result is the crack
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propagation to take place as the number of loading cycles is increased, which is equivalent to the
degradation of the material fracture properties during the cyclic loading. In order to achieve this
the structural loading history needs to be taken into account. Considering the case of high-cycle
fatigue where the externally applied load is below the plastic limit, the bulk energy ψe follows a
periodical function according to the external applied loading. That is because by its definition ψe

is dependent on the strain ϵ. For this reason, the variable ψ̄ is used as a local measure of repeated
deformation energy changes during the loading history.

It is important to notice that in order to utilize ψ̄ in a generalized phase-field fatigue formulation
model, it needs to be defined in a manner that the monotonic loading case is not affected. To satisfy
this condition, in this project the ψ̄ is computed at each Gauss Point of the finite element model as
described by the equation:

∂ψ̄

∂t
= − ⟨−∂ψ

e

∂t
⟩ (36)

This definition denotes that ψ̄ is increased only during the unloading phases, thus not affecting
the loading phases. Therefore the accumulated strain energy is considered as the sum of negative
differences of total deformation energy during the cyclic loading [6].

In addition, a fatigue degradation function F̂ (ψ̄) ∈ [0, 1] is introduced as:

F̂ (ψ̄) = e−αψ̄ (37)

where F̂ (ψ̄ = 0) = 1 , F̂ (ψ̄ → ∞) = 0 and dF̂
dt (0 < ψ̄ < ∞) ≤ 0, while α is a selected constant

value.

Therefore, the history variable that is used to describe the phase-field fatigue model is given as:

H(t) := max
[τ<t]

ψe(τ)

F̂ (ψ̄(τ))
(38)

Proceeding to the solution of the fatigue problem, the finite element formulation is performed and
the system of equations is defined as in Eq.(31). The stiffness matrices Kuu , Kuϕ and Kϕϕ are
defined as in Eq.(32), Eq.(33) and Eq.(35) respectively, while due to the implemented definition of
the history variable the stiffness matrix Kϕu is given as:

Kϕu = −2(1− ϕ)

∫
V

NϕT ∂H

∂ϵ
Bu dV (39)

where at a particular time step n :

∂H

∂ϵ
=

 0 if ψe(ϵ)

F̂ (nψ̄)
< n−1H

∂ψe

∂ϵ

F̂ (nψ̄)
− ψe

F̂ (nψ̄)2
∂F̂ (nψ̄)

∂ψ̄
∂ψ̄
∂ϵ if ψe(ϵ)

F̂ (nψ̄)
≥ n−1H

(40)

with
∂ψ̄

∂ϵ
=

{
0 if n−1ψe − nψe < 0

− ∂ψe

∂ϵ if n−1ψe − nψe ≥ 0
(41)
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3 Method

In this chapter, the methodology for the project is presented. The first part consists of an investiga-
tion of fracture patterns for monotonic loading in both Matlab and Comsol. Next, the procedure of
applying a cyclic load to the monotonic case in order to analyze the behaviour is described. The final
part of the method chapter covers necessary modifications and completions for implementing fatigue
on the phase-field model, which both includes the already provided geometry and also an attempt
on a new geometry. The final part of the chapter concerns the verification process of comparing the
model with analytical data and assessing its plausibility.

3.1 Investigation of fracture pattern for monotonic loading

In this section an investigation of the fracture pattern for a linearly increasing load on the specimen
will be made. The main reason for this simulation was to verify that the phase-field model is working
before proceeding. It was made both in Matlab and Comsol to be able to compare if there are any
numerical differences using the different softwares.

3.1.1 Monotonic loading in Matlab

Before any fatigue loads are considered it was of interest to have a model describing the fracture
pattern for monotonic loading. For this, an open-source Matlab code from an earlier project was
provided by one of the teaching assistants. The code is using phase-field modeling for monotonic
loading in pure tensile (mode I) or shear (mode II) conditions. The geometry of the specimen is
quadratic with a side length of 1mm with clamped boundary conditions at the bottom boundary
and applied load at upper boundary. The fracture pattern for pure tensile testing shown in Figure
(1), and the corresponding load versus displacement curve can be shown in Figure (2). The code
is considered when the specimen is fully damaged and terminates when a full fracture appears. In
Figure (2), it can be noted that the crack starts to grow when the internal force is starting to
decrease which corresponds to displacements above u = 0.0055mm. The full fracture displacement
can be read as u = 0.005612mm. In Figure (3) the crack pattern for a time step between the initial
crack and final failure can be viewed.

Figure 1: Crack pattern at final failure visu-
alized in terms of the damage variable ϕ for
monotonic tensile test.

Figure 2: Load/displacement curve until final
failure.

9



Figure 3: Crack pattern for monotonic load-
ing for displacement uy = 0.005556mm.

3.1.2 Monotonic loading in Comsol

The COMSOL Multi-physics platform was utilized to implement the phase field approach, which
enables the simulation of mathematical and physical problems by incorporating application-specific
modules. This makes it well-suited for multi-field modeling. Within the COMSOL module, the
variables and equations were defined, allowing for the investigation of multiple conditions and cases
using the solver and post-processing capabilities.

The model comprises three primary modules: Solid Mechanics, History strain module, and Phase
Field Module. These modules are discretized using the standard Finite Element Discretization.
The Phase Field Module is dedicated to the representation of the phase field variable ϕ, achieved
by modifying a module governed by the Helmholtz equation. The History strain variable H and
the Distributed ODEs and DAEs Interfaces are employed in the construction of the History-strain
Module, wherein the History strain variable is not directly solved. Instead, a ”previous solution”
solver is used to record results from previous time steps and obtain the field H [8][9].

The Solid Mechanics module relies on the linear elastic material library and focuses initially on de-
scribing fracture patterns under monotonic loading. A preexisting COMSOL model from a previous
project by one of the Ph.D. students was adopted, utilizing a Staggered solver.

This study employed a specific model, featuring a single-edge-notched square with dimensions x =
1 × 10−3m and y = 1 × 10−3m. Assuming plane strain conditions, the length scale parameter was
set to l0 = 1.2 × 10−5m. The entire domain was discretized with 7942 domain elements (3-node
triangular) and 388 boundary elements. The maximum element size was 0.005mm in the domain
with crack growth and 0.037mm in the remaining domain.

The phase-field modeling of both pure tensile (mode-I) and pure shear loading conditions was tested
using the models. The fracture patterns resulting from pure tensile loading are illustrated in the
figures. These patterns were obtained by applying displacement-controlled loading at the upper
boundary.

Figure (5) depicts the relationship between the force acting in the y-direction and displacement
during tensile loading. Notably, a significant drop in load-carrying capacity is observed after a
displacement of 5x10−3mm, indicating the occurrence of material failure, specifically the initiation
of a crack.
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Figure 4: Crack pattern visualisation in
terms of damage variable ϕ for monotonic
tensile loading.

Figure 5: Reaction Force v/s Displacement
[y] graph for tensile loading.

3.2 Cyclic loading adjustments

As the project will investigate the feasibility of solving fatigue problems using phase-field modeling,
the next step was to implement a simple cyclic loading for the problem to be able to analyze the
response of the damage. In the first subsection, the loading will be restricted according to what the
implemented model is able to handle. In the next section, a history variable is introduced for the
model to be able to store damage that has progressed in earlier loading cycles.

3.2.1 Cyclic loading in Matlab

The internal energy of the domain can be described as Eq. (5) which follows as:

Ψ =

∫
V

(1− ϕ)2ψe(ϵ)dV +

∫
V

Gc
2l

(ϕ2 + l2|∇ϕ|2)dV

For this project the split of the bulk energy is not being considered in the implementation and the
fracture degradation function will always be applied. This means that the model will not be able
to simulate cyclic tensile-compressive loads as in Figure (6). Instead, the load will be implemented
as positive pulsating as in Figure (7). Since fatigue is damaged over a long duration of time,
it is crucial to have a load amplitude that is lower than the critical monotonic fracture load in
order to hold for many loading cycles. The chosen peak value of the cyclic load is selected to
be uy = 0.005556mm since it was a displacement where a crack pattern before full failure could
be detected in the monotonic loading case according to Figure (2). In order to capture the short
displacement range (0.0055y ≤ 0.005612) [mm] where the crack propagation is taking place, the step
size needed to be adopted with a finer step size for the displacement magnitudes in this region. This
was made by arranging the time steps with a ratio where a larger amount of time steps were located
at the top peaks.
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Figure 6: Visualization of tensile-
compression load. The red area is loading in
compression which the implemented model is
not able to handle.

Figure 7: Load is incremented in terms of
displacement control over time with adaptive
step size at loading peaks. The peak value of
the displacement is uy = 0.005556mm.

When applying load according to Figure (7) the crack should look the same as for the monotonic case,
Figure (3), after the loading cycles if no fatigue phenomena are implemented. Instead, the material
appears to be fully intact. The reason for this is that the material at this moment is ”healing” in
a nonphysical sense every time the loading is decreased. In order to capture the crack growth from
earlier loading cycles a history variable had to be implemented. In the case of monotonic increasing
loading this variable is unnecessary since the previous time step is the most critical one. However,
for cyclic loading, it is needed to prevent healing of the crack during unloading. The history variable
was introduced in the strong formulation, Eq. (15), which follows as:

H(t) := maxτ=[0,t]D̃(τ)

With the history variable implemented the most critical loading state will always be stored as the
crack driving state. The resulting crack pattern after five cycles is presented in Figure (8). A
visualization of the development of H(t) as the sum over all elements can also be shown in Figure
(9). Comparing the crack length with the monotonic case, Figure (1), it can be noted that the cracks
are almost of the same length which should be the case. However, it can always be some differences
depending on the convergence of the solution.

Figure 8: Crack pattern after 5 cycles with
history variable implemented.

Figure 9: Development of history variable,
H.
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3.2.2 Cyclic loading in Comsol

In COMSOL, cyclic loading was implemented similarly to Matlab to simulate the model’s behaviour.
The applied load followed a positive pulsating pattern, with a critical displacement of 5.1 x 10−3mm
considered as the threshold for complete failure and crack growth. As fatigue damage occurs grad-
ually over an extended period, this displacement value was chosen as the amplitude for the cyclic
loading.

To generate the cyclic displacement required, a sine wave waveform was generated and combined
with the displacement. This waveform, resembling the one used in Matlab, accounted for the cyclic
loading in COMSOL. Additionally, a history variable was introduced to prevent healing, mirroring
the methodology employed in the Matlab code. In order to conduct a detailed analysis of crack
growth, a series of experiments were performed with various displacement amplitudes. The Figure
(10) and Figure(11) provided showcases an example waveform and illustrates the resulting crack
growth.

Figure 10: Crack pattern visualisation in
terms of damage variable ϕ for cyclic load-
ing. The amplitude of the displacement is
uy=0.0058mm.

Figure 11: Visualization of how the load is
incremented in terms of displacement control
over time. The amplitude of the displacement
is uy = 0.0058mm.

3.3 Fatigue implementation

In this chapter, the methodology of the fatigue implementation is introduced. First, the implemen-
tation process on the already provided model is described in both Matlab and Comsol. Next, the
method for producing a new model that is comparable to existing experiments is presented, followed
by a description of the fatigue implementation attempts in Matlab and Comsol.

3.3.1 Fatigue implementation on provided model

The first step of the fatigue implementation process was to apply it to the provided model on which
the monotonic tests were carried out on. This was done both in Matlab and Comsol in order to
verify the implementations and the behaviors of the cracks according to theory.

Matlab

In order to make the fatigue adjustments in Matlab in line with the theory presented in section
2.2, the fatigue degradation function needed to be implemented. An approximation of the function
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was made in the form of an exponentially decreasing function from 1 to 0 as F̂ (ψ) = e−αψ (Eq. (37).
The local accumulated energy in each step and element ψ(t) was hence first implemented such that
it only increases if the gradient of the bulk energy in the current time step is negative. Equation
(42) below describes this relation and originates from Eq. (36):

nψ =n−1 ψ + ⟨n−1ψe −n ψe⟩ (42)

The next step was to adjust the history variable according to Eq. (38), which in Matlab corresponds
to the following formulation for each element and time step:

H(t) = max(
nψe

F̂ (ψ)
,n−1H) (43)

In order to visualize the results from the fatigue adjustments and thus behavior of the crack, the
history variable H, the accumulated energy ψ̄ and the bulk energy ψe was plotted as a sum of all
element contributions in each time step. The first check of the fatigue code was to set α to zero,
which should result in the same plots as for the monotonic cyclic tests since it forces F̂ to be one.
This assumption aligned with the results. Then different combinations of prescribed displacement
amplitudes, time steps, loading cycles, and constant values for the fatigue degradation parameter α
were tested in order to obtain a visible crack with a slow crack propagation representative of real-life
fatigue behavior. As a result, it became apparent that a very low value of α was necessary for the
solution to convergence, along with a large number of time steps in order to resolve the damage field
properly in each cycle peak as for the monotonic cyclic case.

In this test α was set to 0.00001, the displacement amplitude as 0.0026mm and 10 cycles dur-
ing 200 steps. Figure (12) illustrates the crack pattern with these parameters. The crack plot shows
a formation of a crack, and after visualizing it in the software Paraview, a slight crack propagation
after the first cycle producing a crack could be seen in each following cycle.

Figure 12: Crack pattern after 10 cycles.

Figure (13) below shows the element sum of the history variable, the accumulated energy, and the
strain energy, during each loading cycle. Figure (14) furthermore shows the fatigue degradation
function in one element during each cycle, in order to visualize its behavior. Figure (13) shows
similar behavior in the strain energy as for the monotonic, which is expected. Furthermore, it is
clear that the accumulated energy increases in each cycle where the strain energy decreases, in ac-
cordance with the expected results (see Eq. (42)). The history variable increases rapidly to a high
magnitude, which is expected when considering the sum of all elements. The fatigue degradation
function decreases stepwise as it should, and since only a small number of cycles were studied with
a very small α value, the exponentially decreasing curve is approaching a linear curve instead.
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Figure 13: Element summation of H, ψe and
ψ.

Figure 14: Fatigue degradation function in
one element.

After the verification of the fatigue implementation was completed, the parameters were adjusted for
a simulation over a larger amount of cycles, and with a higher resolution in order to mimic a real-life
fatigue situation as closely as possible. Even though the adapted step size improved the resolution at
the peaks for the previous parameters, it had to be further refined at the crucial loading peaks. This
became especially apparent during the cycle in which the crack first appeared, where the previous
test would cause the crack to grow to a certain length instantly without any intermediate steps. In
addition, the number of steps and cycles was increased largely for a more accurate representation of
reality. The plots were also adjusted by instead plotting each variable at different points along the
crack path over all cycles, in order to more clearly visualize the variables connected to crack growth.
Hence, the damage variable ϕ was also plotted.

Comsol

The fatigue implementation in the current model involved incorporating a degradation function,
denoted as F̂ (ψ), inspired by similar approaches used in Matlab. To expedite the process, an
updated version of the model was utilized, leveraging Constitutive relations and State Variables.
The weak form equation was adjusted by introducing F̂ (ψ) according to equation 37.

In the COMSOL state variable framework, we defined the history variable and accumulated strain
energy as functions of time (s), which were continuously updated by the time-dependent solver. This
approach acted as a ”previous solution” solver, considering time derivatives and boundary conditions
to obtain the History variable (H) and accumulated strain energy (ψ).

Throughout the model setup, multiple iterations were performed, varying the α values for F̂ .
Through this iterative process, it was observed that higher α values resulted in faster model di-
vergence. After careful consideration, an optimal value of 0.000001 was determined for α. However,
this choice significantly increased computational time. To validate the equations and boundary
conditions, an iterative verification process was implemented. This process revealed the inherent
complexities of the model, stemming from the geometry, variable relationships, and time constraints.
Despite these challenges, the model produced partial results that were comparable to those obtained
using Matlab. Unfortunately, due to the prolonged computational time, the model did not converge,
preventing the attainment of the desired solutions.

3.3.2 Fatigue implementation on new model

In order to achieve the goal of a qualitative assessment and calibration of the developed fatigue
implementation, an attempt on creating a new geometry with existing results to compare with was
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made. A compact tension specimen in pure mode 1 loading with similar geometry to the previous
one with an initial notch, and with fatigue test results was obtained from [2]. Thus, a new mesh was
created in Comsol that fulfilled the dimension constraints according to [2]. The mesh was created
with the same element type and the same boundary conditions, whereby it was inserted into the
existing fatigue code. However, after trying many different combinations of time steps, number of
cycles, displacement amplitudes, and α, no reasonable results were obtained from the model. Some
issues that were faced were no crack growth at all, a fully cracked plate and no convergence in the
time stepping, leading to unphysically large values on ψ and hence causing the solution to diverge.
Another attempt to solve the problem was made by implementing a force controlled load insetad
of the displacement control. This however still led to solution begin unable to converge. The same
issues were apparent when trying to simulate with Matlab as in Comsol, which led to the conclusion
of redirecting the focus of the project towards the old geometry and loading case.

3.4 Matlab FEM model verification using analytical methods

Since our finite element model developed in Matlab is based on a number of assumptions and un-
certainties related to domain discretizations, mathematical shape functions and solution procedures,
the evaluation of the model’s performance should take place for verification purposes. For the fatigue
problem that is studied analytical methods are available in the literature. Hence, a correlation be-
tween the numerical and analytical approach is performed so as to examine the agreement between
the two methods.

As a first approach, the stress intensity factor KI is calculated as a measure of severity of a crack
situation affected by the length of crack a, stress and geometry, as

∆KI = KI,max − KI,min = F (σmax − σmin)
√
π a (44)

where for our problem σmin = 0, since the component is loaded in tensile and the unloading is
taking place to the original state. The factor F depends on the geometry of the component as a
function of the fraction of the crack length to the width of the component b. For the initial crack,
it is ainitial/b = 0.5, hence the value F = 1.12 could be used according to the literature.

According to Paris’ law, for a stable macroscopic crack growth the criterion that should be fulfilled
is:

KI < KIC (45)

where the fracture toughness KIC is a material parameter. Since our developed numerical model is
not calibrated based on real material data, the value for the fracture toughness is selected according
to the literature for a typical ferritic-pearlitic steel, as KIC = 66MPa

√
m [2] .

The developed model describes the fatigue in region of medium crack growth rates, corresponding
to the straight line in the log-log fit of Region II in Paris’ law curve. The linear part of the curve
describes the growth rate of the length of the crack with respect to the number of cycles as:

da

dN
= C (∆KI)

m (46)

with the parameter F assumed to be constant in Eq.(44) for ∆KI . Integrating Eq.(46), the com-
putation of the amount of cycles needed for a crack of length ai to grow to a length af can be
performed as:

∆N = Nf − Ni =
a
(1−m

2 )

f − a
(1−m

2 )
i

C (F ∆σ
√
π)m (1− m

2 )
(47)

where material parameters used for a ferritic-perlitic steel under Mode I loading and σmin = 0 case
are [2] :

C = 6.89 · 10−12 m/cycle

(MPa
√
m)m

with m = 3
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4 Result

In this chapter the results of the implemented phase-field models for fatigue problems are presented.
The subsections will view results from the implementations in Matlab with graphs including earlier
introduced variables. Finally the comparison of the results with analytical data is presented.

4.1 Simulation of pulsating tensile fatigue problem in Matlab

The final run of the phase-field model with extended fatigue considerations were made as a positive
pulsating tensile test on a geometry with unit lengths in millimeters according to Figure (15). For
the simulation the constant parameter α was selected to 1e−5 as input to the fatigue degradation
function, in order to not make the crack grow too fast in each cycle. The number of cycles were
selected to be 100 which with the considered time discretization of 60 time steps per cycle corre-
sponds to 6000 time steps. Also, the displacement for the applied Dirichlet boundary condition on
the upper boundary, was chosen to be below the critical crack driving peak values in order to not
make the crack propagate already at the first loading cycle. The chosen displacement amplitude was
uy = 0.0026mm.

In Figure (15) and Figure (16) the progression of the crack pattern after five and 100 cycles re-
spectively can be shown including some reference points used for analyzing the data. The selected
points are within the region where the crack is propagating and are at the following coordinates:
A = [0.15, 0], B = [0.20, 0] and C = [0.25, 0]. In Figure (17) a more detailed view can be shown of
the development of the field variable ϕ for the three specified points. It can be noted that during
the first 4 cycles no crack is propagating. Instead stress concentrations at the initial notch tip is
accumulated. First at cycle 5 the material at the top of the initial notch is fully damaged. From
Figure (17) it can also be shown that it takes approximately 30 cycles for the crack to grow from
point A to B, while it takes around 40 cycles between B and C. This mean that the crack growth is
slowing down the longer the simulation is running. This can also be seen by looking at the slopes
for the three different curves of the damage variable.

In Figure (18) and Figure (19) the history variable and strain energy are viewed. The strain energy
and hence also the history variable are decreasing in magnitude further in along the crack. As pre-
sented in Eq. (37) the accumulated energy shown in Figure (20) has a large influence on F̂ which
hence is an important variable to connect cyclic loads with fatigue problems.

Figure 15: Crack pattern for the consid-
ered geometry after 5 cycles. Coordinates
A=[0.15,0], B=[0.20,0] and C=[0.25,0] spec-
ified for comparison in later graphs.

Figure 16: Crack pattern after 100 cycles.
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Figure 17: Development of the damage vari-
able ϕ at three different points.

Figure 18: Development of the history vari-
able, H.

Figure 19: Development of elastic strain en-
ergy, ψ.

Figure 20: Development of accumulated en-
ergy, ψ̄.

Figure 21: Development of the fatigue degra-
dation function, F̂ .

4.2 Verification of Matlab model results with analytical solutions

The verification process described in section 3.4 can be followed in order to compare the Matlab
results with the results from analytical solutions.

18



Specifically, verification tests took place for the selected loading cycles N = 0, 5, 10 and 20. For
each cycle the length of the crack was measured. Since the displacement-controlled approach is used
in the developed Matlab problem, the maximum stress at the top boundary was calculated during
the post-processing phase. In particular, the maximum stress of the elements of the top edge of
the component was averaged so as to be computed at each loading cycle. Then, using these Matlab
data, Eq.(44) and Eq.(46) were utilized to compute the stress intensity factor at each cycle as well
as the number of cycles needed for the crack to propagate from the previous length to the current
one. The data from Matlab N, a and σmax as well as the analytical results for KI and ∆N are
shown in Table 1.

N a (mm) σmax (MPa) KI (MPa
√
m) ∆N

0 0.5 1393.36 61.85 -
5 0.64 732.91 36.81 76
15 0.66 645 32.89 23
20 0.675 528 27.23 79

Table 1: Parameters for verification of Matlab results according to analytical solutions

By observing the results, the fulfilment of criterion in Eq.(45) is achieved for all the analytically
computed values of the stress intensity factor. On the other hand, the predicted number of cycles
∆N that the analytical derivations results is significantly higher than the applied loading in Matlab
that result to this crack growth.

The differences between the analytical and Matlab results are mainly due to the selected modeling
parameters. First, the parameter F was considered to be constant and equal to the value 1.12 that
corresponds to the initial crack length. That value was used for all the calculations, while in reality
the parameter F is increased as the length of the crack is increased. Moreover, parameters that are
used in Matlab code as the α constant in Eq.(37) are not calibrated. Hence, the Matlab result of
having important crack growth in only a few cycles is considered nonphysical while the analytical
solutions ∆N are more close to reality.
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5 Discussion

In this section the obtained results are first discussed and analyzed, followed by an assessment of
the initial goals in terms of whether or not they were achieved. Finally, possibilities of future work
on fatigue implementation on phase-field modelling is presented and discussed.

5.1 Analysis of results

The result presented in the previous chapter is showing crack propagation for loads in 100 cycles.
The results are reasonable in terms of how the presented variables are connected to each other, and
how they together make the crack propagate in each cycle. Firstly, it can be seen in Figure (15)
that point A is placed at the crack propagation of five cycles, which was the first crack appearance
for the chosen parameters. This aligns well with the presented variables in Figure (17) - (21), where
the blue curve starts to form at around five cycles as well. An increase in the damage variable, the
history variable, strain energy and accumulated energy is observed, which is reasonable considering
the theory presented in Chapter 2 for the crack driving variables. The fatigue degradation func-
tion is simultaneously decreasing, caused by the degradation of the material that mimics fatigue
fracture propagation. For all three points along the crack path, the same reasoning can be applied.
Furthermore, it can be seen in Figures (19) and (18) that the strain energy and hence also the
history variable is decreasing in magnitude further along the crack. This is due to the fact that
the material has been degraded by the fatigue degradation function F̂ , that for the three points is
developing according to Figure (21). For a continued crack growth over a larger amount of cycles
this phenomenon would continue until final material degradation and final fracture, occurs.

Another noticeable behaviour is that the first crack which occurs at around five cycles, develops
rapidly to a relatively long crack. This could be observed in a software, Paraview, which is an aid
for visualizing the crack growth over the time period. This can however also be seen in Figure (17)
when looking at the damage variable, where the blue curve increases significantly in just one cycle
in the beginning. This is most likely due to the accumulated stress concentrations from the first
four cycles. Moreover, the crack propagation seems to slow down the further the crack grows. This
can for instance be seen from the damage variable in Figure (17), where the slope is far steeper at
point A than at point C. One reason for this could be that the phase-field model is implemented
with displacement control, meaning that the applied load is represented by a Dirichlet boundary
condition. As the material weakens due to the fracture growth from the fatigue implementation,
the crack driving energy will also decrease as could be seen in Figure (19). Consequently, the dis-
placement amplitude would have to be increased over time in order to compensate for the material
degradation, with the purpose of maintaining the crack growth over a larger amount of cycles.

5.2 Achievement and assessment of initial goals

By revisiting the initial goals in Chapter 1.2, the work can be evaluated and assessed with the
aim of providing a solid foundation for future work. Since the goals were determined at an early
stage of the project, which is partly a research project due to its relatively new concept of fatigue
phase-field modelling, some of the goals were not achieved as intended. Since a finite element code
for phase-field modelling was provided for a monotonic loading case, a new code was not developed
from scratch. Instead, the main focus was to extend the model to include a fatigue implementation,
which was one of the initial goals. In the process, many different tests concerning the plausibility of
each step in the implementation were made.

Redirecting the focus and aim of the project was necessary in order to produce results that are
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valuable for further investigation within the field. For instance, neither calibration nor validation
with experiments was conducted mainly due to time limitations for the project. These limitations
also led to issues in applying the fatigue phase-field model on a new geometry, which in turn means
that the model at this stage is not suitable for usage in real-life applications. Furthermore, a larger
number of cycles would have to be simulated in order to mimic real-life fatigue problems. This
includes calibration of the fatigue degradation function and the parameter α, which could be cali-
brated using, for example, Eq. (47). Although the expression in Eq. (47) is analytical, it is very
well established in fatigue theory and rooted in experiments.

The final goal for the project was to qualitatively assess the ease and feasibility of the fatigue
implementation of phase-field models. The assessment is based on experiences during the project,
with benefits complemented by recognized difficulties. As mentioned in Chapter 1, there are many
numerical benefits to phase-field modelling for fractures in general, such as reduced computational
effort in not explicitly modelling the crack, and the ability to simulate complex crack problems.

Many of the faced difficulties for the fatigue implementation concerned convergence in the New-
ton solver at certain time steps. One of the main convergence difficulties was with the time step.
The sensitivity to time step size was especially crucial at the most critical crack-driving displace-
ments, namely the loading peaks. The need for extensive time step adjustments was a significant
realization, which helps refine the resolution at the loading peaks and hence increases the possibil-
ity for convergence. Another noticeable difficulty was that the simulations were time-consuming,
particularly when increasing the number of steps at the peaks. This affected the ease of parameter
calibration such as obtaining an α that mimics real-life fatigue that only causes crack propagation
after a large number of cycles. Additionally, many of the difficulties were realized after a lot of
testing. One example is the issue with displacement control causing the crack to slowly stagnate
when simulating a large amount of cycles. Another late realization was that the solver used from the
original code in monotonic loading was unsuitable for cyclic loading. It was a version of a Newton
solver that utilized a form of extrapolation, which led to issues in the implementation of the history
variable. To summarize, the ease of using phase-field modelling on fatigue problems will most likely
be more evident in time when research projects like this increase. The most time-consuming part is
realizing the difficulties and limitations of the models, which is usually the case in the early stages
of research fields.

5.3 Future work

Given the produced results of this project and the assessment of the work above, it is clear that
there are great possibilities for future work within phase-field modelling for fatigue problems. Even
though the work needs to be complemented with calibrations and validations, the discoveries along
the way as well as the result aligning well with the principle of fatigue crack growth has the potential
to be a foundation for further work. A summary of the focus points of future work will be presented
here.

As mentioned in the previous chapter the crack seems to slow down the longer the crack grows
due to displacement control. For further investigation of crack growth, an implementation of force
control could solve this problem. For force control the stress, due to the applied load, will be con-
stant for each cycle which leads to a more constant crack growth over time. Also, most theories
and analytical expressions on fatigue problems are based on force-controlled tests, meaning that
the calibration and validation procedure would benefit from a force-control approach. The next
step after this implementation would hence be to run the simulation over a much larger amount of
loading cycles, in order to simulate high cycle fatigue as in real life. Consequently, the amplitude of
the force, in this case, would need to be decreased accordingly. Thereafter the fatigue degradation
function and its parameter α can be calibrated, followed by validation tests from comparing the
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simulation with experiments. If the degradation function proves unsuitable due to its simplicity, a
more complex function can also be created in order to achieve better accuracy of the model. Rec-
ommendations for the degradation function can be found in previous research and in literature.

Another clear point of improvement is the computational time of the model. This is of course
the contradiction to the simultaneous problem of time step-dependent resolution at the loading
peaks. However, the adaptive step size method itself has room for improvement. A possible ap-
proach could be to optimize the time stepping in a way that only increases the number of steps at the
very locations where it is essential. The adaptive method developed in this project was approximate
and established from observed behavior rather than assessing the necessity based on the numerical
results in each step.

An additional possibility for improvement is further development of the Comsol model. Using the
load-controlled approach, the Comsol model could first be validated using results from experiments.
Then, the validated Comsol model could be used for verification of the developed MATLAB code.
A parameter that is suggested to be examined in the verification process is the crack length growth
with respect to the number of cycles. In addition, both the COMSOL and MATLAB models could
be verified using analytical derivations according to the literature.

Finally, some notes regarding the constitutive modelling assumptions are worth mentioning for
future work. The theory that the implementation is based on is assuming a linear elastic response
of the material. This means that when simulating a real-life problem it is important to do an es-
timation before simulating, in order to assess if the input data conditions are valid for high-cycle
fatigue problems. These considerations haven’t been taken into account in this project due to time
limitations, and are important remarks when proceeding to simulate for a large number of cycles.
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6 Conclusion

In conclusion, the produced results align well with the theoretical outcomes for phase-modelling
of fatigue, considering the modelling limitations described in chapter 5.2. Some difficulties were
however discovered as the project progressed, such as displacement control leading to a stagnating
crack propagation, extensive computational time when experimenting and convergence issues due
to sensitivity to time stepping and loading parameters. Consequently, some initial goals mainly
regarding calibration and validation, were left unfulfilled due to time limitations. In order to proceed
on developing the phase-field model for fatigue fracture, implementing force control is recommended
due to the more reasonable crack growth over time as well as the increased accuracy in calibration and
validation of the model. Additionally, developing the Comsol fatigue model further would solidify the
verification process of the implementations in Matlab. Regarding the feasibility of fatigue extensions
to phase-field models, the implementation process has proven to be time consuming mostly due to
the model’s sensitivity to convergence related parameters. However, with additional research along
with the results obtained from this project, fatigue implementations on phase-field models has the
potential to make prominent progress and thus facilitate less computationally expensive simulations
for more complex fatigue fracture problems.
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