

1

K-Priority Scheduling of Hard Real-Time

Implicit-Deadline Periodic Task Systems on

Uniprocessor

Master of Science Thesis in Intelligent Systems

Design

GILBERT MENSAH

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, August 2011

2

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

K-Priority Scheduling of Hard Real-Time Implicit-Deadline Periodic Task Systems on

Uniprocessor

Gilbert Mensah

© Gilbert Mensah, August 2011.

Examiner: Jan Jonsson

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

3

Abstract:
The Rate Monotonic (RM) scheduling algorithm (static priority scheme) has an advantage in that

it is simple to implement and incurs less run time overhead. It however has a disadvantage that it

cannot guarantee 100% utilization of the processor for many tasks set having 100% tasks

utilization. The earliest deadline first (EDF) scheduling algorithm (dynamic priority scheme) has

a significant advantage in terms of processor utilization but increase in runtime overhead

undermines this advantage.

In this thesis, a dual priority algorithm is proposed. Each task has two static priorities – lower

and upper band priorities with each priority band following the rate monotonic priority ordering.

Initially each task executes with the lower band priority and promoted to the upper band priority

after a particular (promotion point) time offset from the release of the task. We show by using

simulation that 100% processor utilization is possible and our conjecture is that 100% processor

utilization is possible.

Key words: Rate monotonic scheduling algorithm, Earliest Deadline first Scheduling algorithm,

static priority, dynamic priority, utilization, scheduling, heuristic, dual priority.

4

Acknowledgement:
I would like to express my deepest appreciation to my supervisor Prof Jan Jonsson for his time

and dedication throughout my thesis and for giving me the opportunity to be part of the

dependable real-time systems research group.

I would like to give a special thanks to Risat Mahmud Pathan. You were there to help no matter

the time or day of the week, and your assistance to me has been priceless.

I am also very grateful to my family and friends who have given me unconditional support and

love through this long process.

5

Contents
Abstract: .. 3

Acknowledgement: .. 4

Introduction: ... 7

Chapter 2 ... 9

2.1 Real-time Systems: .. 9

2.1.1 Periodic task systems: .. 9

2.1.2 Implicit deadline task systems: ... 10

2.1.3 Ready tasks: .. 11

2.1.4 Task priorities: ... 11

2.1.4.1 Fixed Priority (FPS): .. 11

2.1.4.2 Dynamic Priority: ... 11

2.1.5 Preemptive Scheduling: ... 12

2.1.6 Feasibility Analysis: ... 12

2.1.6.1 Task Model: ... 12

2.1.6.2 Sufficient feasibility test: .. 12

2.1.6.3 Exact feasibility test: ... 13

2.1.7 Difference between EDF and RM: ... 14

Chapter 3 ... 15

3.0Why dual priority? .. 15

3.1 Dual priority algorithm: Burns and Wellings: ... 15

3.2 Advantage of dual priority algorithm: .. 18

3.3 Challenges with Dual priority algorithm proposed by Burns and Wellings: 18

3.3.1 Determining priority assignments and promotion points in Burns and Wellings: 18

3.4 Goals of this thesis: ... 20

Chapter 4 ... 21

4.0 Assumptions: ... 21

4.1 Task model: ... 21

4.2 The dual priority (DP) algorithm: ... 21

4.2.1 Data structures used in DP algorithm: .. 21

4.2.2 Details of the DP algorithm: .. 22

4.3 Heuristic algorithm to generate the promotion points: ... 23

6

4.4 Comparing the heuristic developed to algorithm by Burns and Wellings: 30

4.5 Proof that heuristic achieves 100% utilization:.. 32

4.5.1 Assumptions: .. 32

4.5.2 Proof: ... 32

4.6 Optimization techniques: ... 34

4.6 Performance of the heuristic:... 35

Chapter 5 ... 37

5.0Simulations: .. 37

5.1 Utilization generation policy: ... 37

5.2 Period generation policy:.. 38

5.3 Worse case execution time generation policy (WCET): .. 38

5.4 Experiments conducted: ... 38

5.4.1 Effect of number of task: ... 38

5.4.2 Effect of increasing Utilization: .. 39

5.5 Conclusion and limitations of experiments: ... 40

Chapter 6 ... 41

6.0 Future work and Conclusion: .. 41

References:... 42

7

Introduction:
Our daily interaction with computers has increased rapidly in the last couple of years. We

interact with them when washing, watching TV, playing games, driving etc. One group of

computers systems we often interact with is the „real-time computer systems’ which have timing

constraints. The most important timing constraint of real-time systems is about meeting the

deadlines of tasks. This implies that for a real-time system to have a correct behavior, the logical

or functional output should be delivered at the right time. A class of real-time systems where a

deviation from the timing constraints can cause catastrophic consequences like loss to human life

or a significant economic loss is the hard real-time system. As such for hard real-time systems,

the utmost concern of designers is about meeting all the deadlines of the application once the

system is in mission. This does not mean that the functional correctness is not important, since

there is no use for a wrong result produced at the right time anyway. To ensure that the timing

constraint of a real-time system is satisfied, the appropriate task scheduling algorithm must be

used.

Task scheduling is a means of determining the order in which the various tasks in the application

are to be taken up by the processor for execution. One way to achieve this is by assigning to each

task a priority value which is used by the scheduler to determine the appropriate task to execute

on the processor. The higher the priority value, the higher the urgency that the task needs to be

executed on the processor. Based on how the priority values are assigned, scheduling algorithms

can be divided into static priority and dynamic priority scheduling algorithms. If the priorities of

the tasks are assigned before run time and do not change, the priority assignment is static, but if

the priority values can change during the execution of the tasks, then the priority assignment is

dynamic. An example of the static priority assignment is the Rate Monotonic scheduling

algorithm (RM) and the earliest deadline first (EDF) is an example of the dynamic priority

assignment policy.

The run time system for RM is very simple and incurs less overhead because the priority values

are assigned before run time. These advantages make this scheduling algorithm an ideal

candidate for many commercial and safety critical applications. Due to the fact that this

algorithm can only guarantee about 70% usage of the processor‟s capacity for large number of

tasks, these advantages are undermined. On the other hand because the priority values of EDF

are assigned during run time and can change, the run time system of the EDF are relatively

complex and incurs more overheads than the static counterpart. This dynamic priority behavior

makes the EDF to use all (100%) of the processors capacity, making it preferred in cases where

higher processor usage is needed for large number of tasks. There is therefore the need to

develop an algorithm that combines the advantages of both RM and EDF that is, an algorithm

that can introduce dynamic behavior into RM to achieve higher processor usage.

8

This thesis seeks to develop an algorithm that aims to increase the processor utilization of static

priority (RM) scheduling algorithm from 70% to 100% (while maintaining its advantages for

independent periodic task systems on uni-processors) by introducing minimum dynamic priority

behavior.

The first contribution of this thesis deals with the development of a heuristic algorithm called the

dual priority heuristic algorithm. This algorithm, unlike RM, assigns two static priority values to

each task called lower and upper band priorities with all upper band priorities higher than all

lower band priorities, and the priority ordering in both bands following the RM priority ordering.

The algorithm starts by executing tasks with their priority set to the lower band values, but to

achieve a higher utilization (100%) than normally achievable with RM, the algorithm determines

the exact time instant from the release of each task (known as the promotion point) at which the

lower band priority of the task needs to be changed or promoted to the upper band priority values

to avoid a task from missing its deadline. The main challenge in developing this algorithm is

finding the promotion points. Assuming a task set with periods T1 ,T2 , T3 , ……, Tn , then an

exhaustive search approach would require T1 * T2 * T3 *…… * Tn number of iterations in the

worse case to determine the promotion points. The developed algorithm reduces this huge

number of iterations to just T1 +T2 + T3 +…… +Tn in the worse case. This represents a huge

reduction making this algorithm much faster than existing algorithms that employ the exhaustive

search approach.

The second contribution of this thesis is carrying out an extensive simulation using the heuristic

algorithm developed to determine if a task set with 100% processor utilization could be found

that is not schedulable by the algorithm (in other words no promotion point can be found). This

was done by randomly generating task sets which are not schedulable under RM and using the

heuristic to determine the promotion points. With the assumption that promotion points could

always be found, another contribution of this thesis is to show that the algorithm can achieve the

100% processor utilization bound.

Finally, the algorithm developed has been packaged as a simulation tool which can easily be

used by real-time systems engineers to find promotion points. The tool determines the promotion

point for a set of n periodic tasks.

The rest of the thesis is organized as follows: Chapter 2 describes the related background of real-

time systems and scheduling algorithms. Related research on dual priority algorithm is discussed

in Chapter 3 and detail discussion of the dual priority heuristic algorithm developed in this thesis

is presented in Chapter 4. The simulation results as well as detailed description of task generation

techniques are presented in Chapter 5. Chapter 6 concludes the thesis with future work and

conclusion.

9

Chapter 2
In this chapter, the related background of real-time systems and scheduling is presented.

2.1 Real-time Systems:

A real-time computer system is one in which the result expected is not the only important thing,

but also the time as which the result is obtained. Computers that fall under this group can

normally be found in safety critical control systems as well as transaction systems. For example,

in a brake-by-wire system, the computer that controls the braking systems of the car is a real-

time system because when the brakes are applied, it is expected that the car stops within a

specified amount of time [14]. There are consequences when the results are not obtained at

before a pre-specified deadline. The severity of the consequence of not meeting the deadlines

further classifies real-time systems into hard and soft real-time systems. A soft real-time system

is one in which the consequence of a result after its deadline is minimal, and does not pose any

threat to human life. An example is a live video streaming, if the arrival of the frames are

delayed, it will result in a degraded video but not pose severe threat like death or injury. Hard

real-time systems on the other hand posses threat to human life or economic loss when the results

are produced after the deadline. An air bag system which delays when a car crushes has a severe

effect of causing death or injury to the passenger.

This thesis deals with scheduling of periodic tasks in hard real-time systems. This is due to the

fact that many monitoring and safety critical systems are modeled as recurrent tasks because they

are predictable and well understood [1, 2]. The most relevant real-time scheduling concepts in

this thesis are: periodic task systems, implicit deadline task systems, ready task, task priority,

preemptive scheduling algorithm, and feasibility conditions of scheduling algorithm.

2.1.1 Periodic task systems:

A task is what actually gets scheduled on a processor; it is therefore the basic component of

scheduling. Formally, it can be defined as a unit of work that when executed generates some

output or service from an application. This unit of work can be whole of a program of just a code

fragment. Examples of tasks include reading from a sensor, sending commands to actuator, doing

some computations etc. An instance of a task is known as a job of the task. When a set of tasks

are characterized by a period , deadline and worse case execution time (WCET) , then the task

set is said to be a periodic task system.

10

Period:

This is the time separation between the release times of successive jobs of a task. At each period,

a job of the task is released and ready for execution.

Deadline:

When a job of a task is released at each period, it has a maximum time form this release time by

which it must complete its execution. This time is known as the relative deadline of the job and

is the same for all jobs of a particular task. The time instant represented by the addition of the

release time of a job and the relative deadline is known as the absolute deadline.

Fig 1, period, arrival time, relative and absolute deadline of a task

Worse Case Execution Time (WCET):

This is the maximum amount of time a job may take to execute after it becomes eligible for

execution. This time must be less than the relative deadline of the task or in the worse case be

equal to it.

2.1.2 Implicit deadline task systems:

A task is said to be constrained if the relative deadline is less or equal to its period. The task

becomes an implicit deadline task if the relative deadline is exactly equal to the period. If the

task is neither constrained nor implicit, then it is arbitrary. This thesis considers the scheduling of

implicit deadline periodic task systems.

11

2.1.3 Ready tasks:

At each period, a job of a task is released for periodic task systems. This released job is eligible

for execution and thus can be executed on the processor when dispatched. The set of all such

jobs is kept in a ready (active) queue from where they are selected by the run time dispatcher to

be executed on the processor based on priority.

2.1.4 Task priorities:

Scheduling basically involves assigning tasks to processors when they are ready. But when two

or more tasks are ready, then certain rules must be applied in order to select one task for

execution. The rule applied is based on the task with highest priority. The priority of a task is a

value assigned to the task that suggests the relative urgency of that task for execution. The

priority can be fixed (static) or dynamic.

2.1.4.1 Fixed Priority (FPS):

This is also known as static priority scheduling in that the priorities of the tasks are assigned

before run time and jobs of a task has the same priority relative to other jobs. The deadline

monotonic (DM) and the rate monotonic scheduling (RM) algorithms are examples of fixed

priority algorithm [2, 15]. DM assigns to each task a priority value based on the relative deadline

to the task, the task with the smallest deadline has the highest priority and the one with the

largest deadline has the lowest priority. RM assigns each task a unique priority based on its

period; the shorter the period, the higher the priority, thus the priority can be determined as the

inverse of the task periods. The focus of this thesis is on RM for static priority algorithms. It has

been found by Liu and Layland in [2] that the rate monotonic algorithm is optimal for scheduling

task set under fixed priority on uni-processors for implicit deadline tasks systems. [2, 3, 4, 5].

2.1.4.2 Dynamic Priority:

Unlike the fixed priority, there is no restriction to the manner in which priorities are assigned to

individual jobs of a task in the dynamic priority scheme. This implies that different jobs of a task

may have different priorities relative to other jobs. The earliest deadline first algorithm (EDF) is

an example of a dynamic priority algorithm. It assigns priority to tasks based on the deadlines of

their current job, thus the highest priority goes to the task whose current job has its deadline

nearest while the lowest priority goes to the task whose current job has its deadline furthest. The

EDF algorithm has been found also by Liu and Layland in [2] to be optimal for scheduling tasks

under dynamic priority for uni-processors. [3, 4, 5].

12

2.1.5 Preemptive Scheduling:

A scheduling algorithm is preemptive if the release of a new job of task with higher priority can

preempt the job of a currently running task with lower priority.If the scheduling algorithm is

non-preemptive, then the lower priority task will be allowed to finish its execution first RM and

EDF are examples of preemptive scheduling algorithms. [2, 3, 4, 5]. The scheduling algorithm

developed in this thesis is a preemptive scheduling algorithm on a uni-processor platform.

2.1.6 Feasibility Analysis:

To determine whether a given scheduling algorithm ensures that all the timing constraints of the

set of tasks are met, a feasibility analysis has to be conducted. Baker and Shaw in [16] proposed

a simple way to determine feasibility for periodic task systems known as the cyclic schedule

(time line schedule). They observed that after a length of time which is equal to the least

common multiple (LCM) of the periods of the task set, the schedule is just a repeat of the initial

schedule prior to the LCM time value. This suggest that if the task set can be scheduled up to the

LCM of the periods of the task set, then it will be schedulable for all time instants. Although

simple, it becomes computationally impractical for large task sets. Feasibility tests (which are

mathematical expressions) can be used to overcome this problem. Given a schedule, a feasibility

test can be used to determine whether the task set is schedulable or not under the given run-time

system. Two main feasibility tests are of concern to this thesis, the sufficient test and the exact

test. Before discussing the two feasibility test, a brief task model is presented [3, 4].

2.1.6.1 Task Model:

Each task has a period , a computation time also known as the WCET , a deadline which

is the same as the period. With these values the utilization of each task which is the ratio between

the task WCET and its period can be calculated. The total utilization of the task set is the sum of

all the task utilizations.

2.1.6.2 Sufficient feasibility test:

Given a scheduling algorithm, the sufficient feasibility test guarantees that all deadlines of the

tasks will be met if it produces a positive answer. No decision can be made when the answer is

negative. Liu and Layland provided a sufficient test for RM scheduling algorithm in [2] based on

the total utilization of the task set, given as,

 (Eq 1)

13

Where n is the number of tasks. The above test shows that as the number of tasks gets very large,

the utilization value reduces to about 69.3%. [2, 3, 4].

2.1.6.3 Exact feasibility test:

Given a schedule, the exact test produces a positive answer if the task set is schedulable and a

negative answer if it is not. Liu and Layland provided in [2] an exact test for EDF algorithm

based on the task utilization of the processor,

 (Eq 2)

The above test shows that, as long as the task utilization is less than or equal to 100%, EDF can

schedule the task set. [2, 3, 4].

In [13], Audsley et-al proposed an exact test for RM known as the response time analysis (RTA).

In RTA, the maximum time interval between the release of a job of a task and its completion

time called the worse – case response time (WCRT) of the task is computed. If this WCRP is less

or equal to the deadline of the respective tasks, then the task set is feasible or schedulable and

vice versa. The WCRT equation proposed in [13] is given as

 (Eq 3)

Where and represents the response time and WCET of task . The set represents

the set of higher priority tasks with respect to task and and represent the period and wcet

of such high priority tasks. The term

 represents the maximum interference from

all high priority tasks than . This term combined with WCET of gives the WCRT. Since

there is on both sides of Eq 3, the equation can only be solved recursively and is transformed

into Eq 4

 (Eq 4)

Where
 represent the response time in the iteration

14

2.1.7 Difference between EDF and RM:

RM is supported by many programming languages and operating systems because it is easier to

implement as the priority is static. Since EDF is dynamic, it requires a complex run-time system

and hence has more overhead. [3]

Also RM is more predictable under overload conditions as compared to EDF which becomes

unpredictable and can experience domino effect where large number of tasks misses their

deadlines. [3]

In terms of utilization and feasibility, EDF is superior to RM since it can schedule all tasks RM

can schedule but not all task scheduled by EDF can be schedule by RM. When the utilization

is

15

Chapter 3
 In this chapter, the related research on dual priority algorithm is developed to form the basis for

the work done in chapter 4.

3.0Why dual priority?

Due to the disjoint advantages of RM and EDF, it becomes desirable to have a single algorithm

that combines their advantages. That is, an algorithm which has static properties like RM with

less overhead and at the same time can achieve 100% utilization. That algorithm is the dual

priority algorithm. The dual priority algorithm is a minimally dynamic priority algorithm in the

sense that it assigns to each task two static priorities, hence the name „dual priority’. Initially

each task runs with the first priority and after some elapsed time known as the promotion time,

the task is promoted to the second priority to enable it meet its deadline. The algorithm has

dynamic behavior since it is allowed to change the task priority during run- time and it also has

static behavior since these priorities are already assigned to the task before run – time. This is

basically an attempt to increase the processor utilization of fixed priority algorithm such as RM.

The problem of increasing the utilization of fixed priority scheduling based on dual priority

concept is not a new one. In 1991, Harbour et al [10] observed that by breaking a task into

precedent constrained subtasks, and allowing the subtask to increase its priority after a period of

computation time, it was possible to schedule task set that were otherwise not possible with fixed

priority. The subtasks in their scheme performed the same computation on each release.

However, in 1993, A. Burns and A. Wellings [6] found a counter example of a task set that could

not be schedulable under the scheme proposed by Harbour in [10] and introduced the concept of

dual priority scheduling as the alternative means of increasing the utilization of fixed priority

scheduling. Tasks were split into subtask just as in [10] but the subtasks were allowed to increase

their priority only after a period of elapsed time (promotion points) from the release time of the

task, making the subtask not perform the same computation on each release. A look at their

algorithm is presented below.

3.1 Dual priority algorithm: Burns and Wellings:

The concept of dual priority introduced by Burns and Wellings in [6] allows a low priority task

that would otherwise miss its deadline to steal execution time from a higher priority task by

increasing its priority. To achieve this, each task has two priority levels, called lower band and

upper band. The concept of promotion point () was then introduced as the time instant after the

release of the task where the priority of the task is increased to a value in the upper band. Each

task has a period , a computation time , lower band priority
 , upper band priority

 and a

promotion point . As such during the time interval [0,) the task execute with a priority in the

16

lower band and if the task still has some computation to do for the time period [,] then it

execute with a priority value in the upper band. Just for clarity, an example of the dual priority

algorithm for a task set that will fail if scheduled with RM is given below.

Task set

 3 4 6

 1 2 1

 0.3333333 0.5 0.1666667

U 1

LCM 12

Table 1, task information for three task with 100% U

Based on the periods of the above task set, the LCM value is 12 and as such the schedule will

repeat itself after 12. This means for a cyclic (timeline) schedule, it is enough to simulate up to

11 that is the interval [0, 11) A timeline schedule using RM for the task set in table 1 is shown

below

Fig 2. Time line schedule produced when task set in Table 1 is scheduled using RM. Initially all

3 tasks are released and put into the ready queue at time 0. Task 1 which has the highest priority

starts its execution and completes at 1. It is immediately followed by task 2 which finishes at 3.

Task 1 again is released at 3 and immediately starts executing because it has higher priority

than task 3 which is still in the queue, finishing at 4. Task 2 again gets released at 4 and starts

immediately and finishes at 6 forcing task 3 to miss its deadline because it did not have the

opportunity to execute due to the presence of high priority tasks.

17

It can be seen that task 3 misses its deadline by 1 time unit at 6 because it could not find any free

space between [0, 6] to execute at its initial rate monotonic priority. However, if we promote

(give it a higher priority than the task that is causing it to miss its deadline, in this case task 2)

task 3 at 5, then it will have a higher priority at 5 and can then execute to avoid missing it

deadline. This is shown in the figure below.

Fig 3. Result of the dual priority algorithm after promoting task 3 at 5.All task meets their

deadlines as shown in the graph above.

The complete task information from table 1 is given in table 2. When the task information in

table 2 is given to a dual priority scheduler, the above schedule in Fig 3 is produced where task 3

gets promoted at 5 and all the other tasks do not get promoted due to the fact that their promotion

point is the same as their period.

Task set

 , 3 4 6

 1 2 1

 4 5 6

 1 2 3

 - - 5

 0.3333333 0.5 0.1666667

U 1

Table 2, complete task information after the dual priority algorithm of the task set in table 1

18

3.2 Advantage of dual priority algorithm:

The main advantage of the dual priority algorithm lies in the fact that it combines both RM and

EDF into one; as such it has all the good properties of RM and also possibly has 100%

utilization.

Davis and Wellings showed in [7] that the dual priority algorithm provides an efficient and

effective means of scheduling tasks with soft deadlines (including periodic, sporadic and

adaptive tasks) with tasks with hard deadlines. They compared the performance of the dual

priority scheme to the well known bandwidth preserving schemes such as Background, Extended

Priority Exchange and dynamic Slack Stealing methods and found it to be superior.

In [8] Burns hinted that the dual priority algorithm can be used with priority-based non-

preemptive communication protocols such as CAN. In CAN, the priorities (the 11bit identifiers)

of the nodes (devices) are statically assigned, and at any point the node with the highest priority

identifier is allowed to transmit messages. With the static priority assignment, dynamic priority

algorithms such as EDF become difficult to implement on the CAN. With a minor change to the

protocol, that is by equipping each node with two 11bit identifiers (two priorities), a message

which has been in a node‟s output buffer for a defined amount of time could have its priority

promoted (first 11bit is changed to the second 11 bit identifier) so it could be transmitted,

making the protocol more robust

Davis also showed in [9] that the dual priority scheme can be used to construct an efficient O(n)

acceptance test for providing online guarantees to hard real-time tasks, which he admitted was

not optimal, but was sufficient and effective .

3.3 Challenges with Dual priority algorithm proposed by Burns and Wellings:

The algorithm developed by Burns and Wellings has some shortcomings and a discussion of

these shortcomings as well as how they are can be resolved is given below.

3.3.1 Determining priority assignments and promotion points in Burns and Wellings:

Each task has two priority values, the lower band priority and the upper band priority. The lower

band priority is the initial priority of the task, and the upper band priority is the priority value to

which the task is promoted to at the time instant known as the promotion point of the task.

First the lower band priorities are assigned using rate monotonic priority assignment ordering

and all promotion points of the tasks are set to the value of their periods . When a task

misses its deadline, its promotion point is progressively moved backwards from until the task

19

meets its deadline and the upper band priority (the upper band priority ordering is not necessarily

RM) is set high enough so that the task can steal execution from the “appropriate task or tasks”.

An appropriate task for refers to the task that has a higher priority than and due to that

causes to miss its deadline, but has the property that if can be made to execute before it (by

increasing ‟s priority), it will still not miss its deadline. For example if is allowed to execute

at time instant (because it has the highest priority among all ready task) and that causes to

miss its deadline, but when is made to executes at instead(due to priority promotion at),

does not miss its deadline, then is the appropriate task with respect to . At such must steal

execution from in other to meets its deadline. This is done by setting the upper band priority

of between the lower band priorities of and so that can preempt to finish its

execution. This makes this scheme complex and computationally intensive since the appropriate

task must be found and the upper band priority is based on the lower band priority of this

appropriate task. An example of a complete task set information scheduled with this scheme is

shown below in table 3

Table 3 taken from [6] .Complete task set information with the promotion points. From the table,

T, C, , S, P
1
, P

2
 and U represents the period ,WCET, the promotion points, the lower band

priorities ,the upper band priorities and the task utilization for the tasks. Tasks with smaller

priority values have higher priority than higher priority valued tasks. Tasks , and need

not steal from any other task and as such do not have any promotion point. This is shown by the

dash (-) at their respective promotion points(S) and upper priority values. However, task has

its upper band priority set to a value between the lower band priority of and and as such

must steal execution from to meet its deadline, making the appropriate task for . Also

has its upper band priority set to a value between and and as such must steal execution

from to meet its deadline. This makes the appropriate task for .

Table 4 is another example which shows how complex the priority assignment in the upper band

can become.

20

Table 4 taken from [6]. Complete task set information with the promotion points. Task needs

to steal from task at time 20 and as such has its upper band priority set to a lower than the

lower band priority of t1. Task also needs to steal from and thus has its upper band priority

set between the lower band priority of and . Task needs to steal from at 50 and has its

upper band priority set between the lower band priority of and .

From table 4, it can be seen that the priority assignment is not trivial.

It can be observed that while the assignment of the priorities in the lower band follows the rate

monotonic priority assignment, that of the upper band is completely arbitrary.

The major challenges of the existing dual priority algorithm are bulleted below:

 There is difficulty in determining the priority values in both lower and upper band

 The algorithm is computationally intensive because it involves “determining the

appropriate tasks”

In 2010, Burns in [8] hinted that it was possible for both the lower band and upper band priority

levels to both follow the rate monotonic priority ordering with all the upper band priorities

higher than all the lower band priorities. If that were the case, then it eliminates the need to

determine the “appropriate tasks” in the initial algorithm.

3.4 Goals of this thesis:

 The first goal of this thesis is to eliminate the difficulty in determining the priority values

in both lower and upper bands. This is achieved by allowing both bands to follow the RM

priority ordering.

 The second goal deals with reducing the computational intensive nature of old algorithms

by eliminating the need to determine the “appropriate tasks”.

21

Chapter 4
In this chapter, the dual priority heuristic algorithm developed in this thesis is presented.

4.0 Assumptions:

The algorithm developed in this thesis is a preemptive algorithm; as such any task with a higher

priority can preempt any other task with a lower priority.

Also because independent periodic task systems are considered, there are no task dependencies

and as such tasks do not suspend themselves other than at the end of their computation.

To make the analysis simpler, the cost associated with context switches and priority changes etc

are summed up in the task's WCET.

4.1 Task model:

Each task has a period , a computation time also known as the worse case execution time , a

deadline which is the same as the period, two priority levels lower band(
) and upper band

(
), a task name , and a promotion point which is the time instant after the task is released

at which its initial priority
 is promoted to its

 . For all task, . During

the time interval [0,) the task execute with its
 priority and after time between [] if

there is still some computation left for the task in the ready queue, that remaining computation

will be executed with its
 priority.

4.2 The dual priority (DP) algorithm:

The dual priority algorithm basically looks like the well known rate monotonic scheduling

algorithm with the simple modification that at the promotion point of a task, if there is some

computation left, the priority of the task in the ready queue will be changed to its upper band

priority.

4.2.1 Data structures used in DP algorithm:

The algorithm maintains a data structure called releaseTimes which stores the next release time

of each task. Additionally, a data structure called arrivedTasks which is the same as the ready

queue in most algorithms is used store all tasks that have been released. This data structure

contains other structures such as arrivedTaskName, arrivedTaskPriority, arrivedTaskWCET,

arrivedTaskPromotion and arrivedTaskDeadline.

When a task is released, its next release time is calculated and the value in its releaseTimes

(initially set to 0) data structure is updated as the sum of the current time and its period. The task

is then added to the arrivedTasks (initially empty) as follows: - the arrivedTaskName field is

updated to the task name , the arrivedTaskPriority field is updated to the lower band priority

of the task, the arrivedTaskWCET is updated to the WCET value of the task,

22

arrivedTaskPromotion field is updated to the sum of the release time of the task and its

promotion point value and the arrivedTaskDeadline is updated to the relative deadline of the

task.

The arrivedTasks structure is then sorted based on the arrivedTaskPriority field values so that

the task with the highest priority comes first. The algorithm ensures that the arrivedTasks data

structure is always sorted. This is done by sorting it at times known as event times. An event

time (eventTime) represents times which can cause a change in the arrivedTasks data structure.

These times include the release time of a task (a task is added to the arrivedTasks), the finishing

time of a task (a task is deleted from the arrivedTasks) and the promotion time of a task (the

arrivedTaskPriority value is changed to the upper band priority value).

4.2.2 Details of the DP algorithm:

If the arrivedTasks data structure is not empty, then the first task (the highest priority task) is

selected. The next occurrence of an event (event time) is determined as the minimum of the

release times of the tasks (obtained from the releaseTimes data structure), the finishing time of

the selected task (obtained as the sum of the current time value and the arrivedTaskWCET value

of the selected task) and the promotion times of the arrived task (obtained from the

arrivedTaskPromotion field of the arrivedTasks structure). The difference between the current

time and the next occurrence of an event (eventTime) is calculated as eventTimeDiff (event time

difference) and the selected task is executed for eventTimeDIff time units. The execution is done

by subtracting the eventTimeDIff value from the task‟s arrivedTaskWCET value and if a value of

zero results (task has finished executing), the task is deleted from the arrivedTasks data structure.

The process is repeated till all tasks are scheduled.

As an example, let t1, t2, t3 be three tasks with periods 3, 4, 6, WCET 1, 2, 1 and promotion points

values 3, 4, 5 respectively. The lower band priorities of the task are 4, 5, 6 while the upper band

priorities values are 1, 2, 3.Let the releaseTimes data structure contain 6, 8, 6 for the next release

times of the three tasks respectively. Then at time t=4, only t2 and t3 will be in the arrivedTasks

data structure with arrivedTaskWCET equal to 2, 1, arrivedTaskPriority being 5, 6,

arrivedTaskPromotion equal to 8, 5 and arrivedTaskDeadline equal to 8, 6. t2 will then be

selected for execution and it‟s finishing time is calculated as 4+2=6.The next occurrence of an

event will be calculated as eventTime= min(6,8,6,6,8,5) which will result in a value of 5. The

eventTimeDIff is then calculated to be (5-4)=1, as such t2 will be executed for only 1 time unit

after which the arrivedTasks will change (t3 gets promoted).

If the eventTime is equal to a promotion point of a task (arrivedTaskPromotion value), then the

arrivedTaskPriority value of the task is changed to its upper band priority value at a time equal

to the eventTime.

23

The algorithm can be summarized as follows:

1. Select the task with highest priority for execution

2. Determine the next occurrence of an event (eventTime)

3. Determine the difference between the current time and eventTime known as

eventTimeDiff.

4. Execute the selected task for eventTimeDiff time units by subtracting it from its

arrivedTaskWCET value. If a value of zero results, delete the task from the arrivedTask

data structure.

5. If the eventTime is equal to a promotion point of a task (arrivedTaskPromotion value),

then the arrivedTaskPriority value of the task is changed to its upper band priority value

at a time equal to the eventTime.

6. Repeat till LCM value

Fig 4. The dual priority (DP) algorithm

4.3 Heuristic algorithm to generate the promotion points (Dual priority heuristic

algorithm):

The above algorithm assumes that the promotion points have already been found. Once the

promotion points can be found successfully for a task set, then the above algorithm can produce

a schedule for that task set. Thus, determining the promotion point is the most important issue to

the dual priority algorithm. A heuristic algorithm called the dual priority heuristic algorithm has

been developed in this thesis which can be used to determine the promotion points. The heuristic

algorithm makes use of the DP algorithm above. Details of the heuristic algorithm are discussed

below.

Since the arrivedTasks data structure is always sorted according to decreasing order of priority, it

is very easy to determine the highest priority task that misses its deadline by comparing the

current time to the values of the task‟s arrivedTaskDeadline . Once the current time is equal or

greater than a task‟s arrivedTaskDeadline value, then the task has missed its deadline. The

amount of computation left for this missed-deadline task is the value of its arrivedTaskWCET.

Initially the promotion point of each task is set to the value corresponding to the task‟s

period . The tasks are then assigned their lower and upper band priorities in accordance to the

rate monotonic priority assignment with the lower band priority values ranging from

 , and the upper band priority levels ranging from

 for task ,

which have been sorted according to their priorities with having the highest priority and

 having the lowest priority. Table 5 below show the initial task set information for three tasks.

24

Example: (initial setting)

 WCET Ti P
1

P
2

Si

Task t1 C1 T1 4 1 T1

Task t2 C2 T2 5 2 T2

Task t3 C3 T3 6 3 T3

Table 5, initial task set information to determine the promotion points of three task. The initial

value of the promotion points of each task is set to the value of its period.

Given the initial task information as shown in table 5, the DP algorithm is used to schedule the

task set(no task gets promoted since the promotion points are the same as their period which is

also the same as the deadlines of the tasks). If a successful schedule is produced, then the no task

set needs to be promoted and the task set can be scheduled by the rate monotonic scheduling

algorithm. If the DP algorithm fails, then the first high priority task that misses its deadline is

determined together with how much computation is left for this missed-deadline task (let that

value be equal to . In the worse case this will be equal to).

The new promotion point for task is then calculated as , which is the previous

promotion point minus .This means that at time from each release of task , the

arrivedTaskPriority value of the task is set to its upper band priority value in the arrivedTasks

data structure if it still has some computation left (this remaining computation will be executed at

the upper band priority). The task set is rescheduled using the DP algorithm, which repeats the

above process for all tasks that misses their deadline till a termination criterion is reached.

There exist two termination criteria. The first is when the algorithm finds promotion points for

all tasks that miss their deadline so that the DP algorithm produces a feasible schedule. In this

case the heuristic algorithm terminates with a success signal. The second has to do with the

possible range of values of the promotion points. The promotion point of a task lies

between . If the promotion point is 0, then the task gets promoted as soon as it is

released, as such the value of the task‟s arrivedTaskPriority is always set to the upper band

priority value of the task. If the promotion point value is , then the task never gets promoted

since the arrivedTaskPromotion value of the task will be the same as the arrivedTaskDeadline

value of the task. Since the promotion point value of a task is initially set to and is reduced

every time it misses its deadline, then the promotion point of a task that always misses its

deadline can be a negative value. A negative value means the task needs to be promoted even

before it is released, which is not possible as such the algorithm terminates with a failure signal.

A couple of examples will help better understand how the above algorithm works.

25

Example 1

 , 6 8 8

 3 2 2

 4 5 6

 1 2 3

 6 8 8

Table 6. Initial task information for three tasks before dual priority algorithm. The promotion

point of all the tasks is set to the values of their respective periods.

When the above task set is scheduled with the dual priority heuristic algorithm, the schedule

obtained is shown below,

Fig 5. Schedule produced when task information in table 6 is scheduled by dual priority heuristic

algorithm. Task missed its deadline and needs to update its promotion point value.

It can be seen from Fig 4 that task misses its deadline at time 8 indicated by the red circle in

Fig 4. Since it is the only task that missed its deadline, it becomes the first high priority task to

miss its deadline. Also since it has already executed for 1 time unit, then the value in its

arrivedTaskWCET will be 1 which represents the amount of computation left for this task. Thus

its promotion point should be set to a value of = -1 = 8-1=7. The task set is then scheduled

again with this new promotion point for task . When this is done, the schedule obtained is

shown below.

26

Fig 6. Schedule after task is promoted at 7. Task again misses its deadline and its

promotion point value needs to be updated again.

It can be seen that, task again misses its deadline at time 16. Having been released at time 8

and executing only for 1 time unit, then the amount of computation left is 1 as such its promotion

point is recalculated as of = -1 = 7-1=6. This new promotion point for task is used to

reschedule the task set. The new schedule is given below.

Fig 7. Schedule after task is promoted at 6. With this new promotion point, a feasible schedule

is found by the dual priority heuristic algorithm.

27

As shown in Fig 6, the task set is now schedulable, as such the complete task information for the

task set is shown in table 7

 , 6 8 8

 3 2 2

 4 5 6

 1 2 3

 6 8 6

Table 7. Complete task information for task set in table 6 after finding promotion points.

Example 2

 , 6 6 8 8 8

 2 1 2 1 1

 6 7 8 9 10

 1 2 3 4 5

 6 6 8 8 8

Table 8. Initial task set information for five tasks before the promotion points are found. The

promotion point of all the tasks is set to the values of their respective periods.

When the above task set is scheduled with the dual priority heuristic algorithm, the schedule

obtained is shown below,

28

Fig 8. Schedule after task in table 8 is scheduled by dual priority algorithm. Task misses its

deadline indicated by the red circle and its promotion points needs to be updated.

From Fig 7, task misses its deadline at time 8 and as such becomes the first high priority task

to miss its deadline. Since it did not find any space to execute, then the amount of computation

left for this task is 1, as such its promotion point is calculated as 8-1= 7. The new task set is then

schedule again to produce the schedule in Fig 8.

Fig 9. Schedule after task is promoted at 7. But task misses its deadline and its promotion

point must be updated.

From the above schedule, task misses its deadline at time 16 and the amount of computation

left is 1, as such its promotion point is calculated as 8-1= 7. The new task set is then rescheduled

to produce the schedule in Fig 9.

29

Fig 10. Schedule after both and gets promoted at 7. Now task misses its deadline and its

promotion point must be updated again.

From Fig 9, task again misses its deadline at 16 by 1 and as such its promotion point is further

reduced to 6. The new task set is rescheduled again to obtain the schedule in Fig 10.

Fig 11. Schedule after is promoted at 6 and is promoted at 7. Now all task meets their

deadlines and the algorithm terminates.

From fig 10, it can be seen that no task misses its deadline and the task set is schedulable. The

complete task information is presented in table 9.

30

 , 6 6 8 8 8

 2 1 2 1 1

 6 7 8 9 10

 1 2 3 4 5

 6 6 8 7 6

Table 9. Complete task information for task set in table 8 after finding promotion points.

The above algorithm can be summarized into the steps below.

1. Assign the tasks their lower and upper band priorities in the interval

and
 respectively.

2. Set the of each task to the value of its period .

3. While (task set is not schedulable by DP algorithm or no fail signal is issued by dual

priority heuristic algorithm)

a. Determine the highest priority task that misses its deadline and the amount of

computation left (value of (execution time) by which it misses its deadline)

b. Calculate the new promotion point for this task as

c. If , issue a fail signal.

4. Terminate the algorithm.

Fig 12. The dual priority heuristic algorithm

4.4 Comparing the heuristic developed to algorithm by Burns and Wellings:

In [8] Burns posited that there may be range of promotion points that may all lead to a

schedulable system. This has been found to be true as the promotion points obtained by the

heuristic algorithm developed in this thesis differs in some situations completely from the ones

obtained by the algorithm developed by Burns and Wellings. The principle of reducing the

promotion points when a task misses its deadline is the same for both algorithms but the main

reason for the difference may be due to the difference in priority assignment in both lower and

upper bands. As discussed in section 3.3.1, the dual priority heuristic algorithm developed is

superior to the algorithm developed by Burns and Welligns in terms of the amount of

computation required to determine the promotion points.

Below are some examples provided in [6] and [8] with their promotion points and then the same

examples with the promotion points obtained by the heuristic developed.

31

Example 3 from [6]

 , 12 16 20 20

 3 4 4 6

 4 5 6 7

 - - 2 1

 - - 13 14

Table 11. Complete task set information using burns and wellings dual priority algorithm

When the task set in table 11 is schedule with the heuristic algorithm developed in this thesis, the

promotion points obtained is summarized in the table below

 12 16 20 20

 3 4 4 6

P_1 5 6 7 8

P_2 1 2 3 4

 12 16 19 13

Table 12. Complete task information using the dual priority heuristic algorithm developed in this

thesis.

Example 4 from [8]

 28 100 160

 21 15 16

P_1 4 5 6

P_2 1 2 3

 9 84 130

Table 17. Complete task set information using burns and wellings dual priority algorithm

When the task set in table 17 is schedule with the heuristic algorithm developed in this thesis, the

promotion points obtained is summarized in the table below

 28 100 160

 21 15 16

P_1 4 5 6

P_2 1 2 3

 7 82 130

Table 18. Complete task information using the dual priority heuristic algorithm developed in this

thesis.

32

4.5 Proof that heuristic achieves 100% utilization:

A proof that the algorithm can achieve 100% utilization is presented under certain assumptions.

The proof follows the proof presented by Burns and Wellings in [6]. The assumptions made are

presented followed by the proof.

4.5.1 Assumptions:

To make a proof, an assumption is made that every task set that is not schedulable by the rate

monotonic scheduling algorithm can be scheduled by the dual priority scheduling algorithm,

implying that there exist promotion points for all such tasks. With this assumption, then the

possible proof sketch is shown below.

 4.5.2 Proof:

Assume a task with deadline at and a promotion point at

Fig 13. Time line with promotion point and deadline for task

Then all other tasks can be classified as

α = tasks with lower and priorities than

β = tasks with higher and priorities than

Then the following can be deduced,

1. In the worst case, all α tasks with deadlines at or before should have finished by ,

meaning they have their promotion points before as shown in Fig 15.

33

Fig 14. Shows where lower priority tasks with deadline before can execute.

This is due to the fact that between [,task has lower priority in both bands and cannot

preempt task .

2. Within the interval [, , only tasks which belong to β which have their

promotion point within this interval due to the fact that their deadlines is at or beyond

and task itself can execute . Let the earliest time of such promotion point of β be R,

then it means that within the interval [, R] only task can execute and must finish

its execution by R as shown in Fig 15

Fig 15. Shows where can execute in worse case.

34

It can be seen that all task with deadlines before are met, task meets its deadline at R and

any computation after R is needed by tasks which have their deadline at or beyond.

Thus within the interval [, R], a task whose deadline is nearest execute which is similar

to the EDF algorithm. Since the EDF has 100% utilization, then must complete its

computation with this utilization bound. What is true for is true for all other tasks.

4.6 Optimization techniques:

Normally when given a task set, a simulation to generate a schedule requires that one considers

every time unit(decision point) up to the LCM of the task periods (exhaustive simulation). This is

computationally very expensive. With the dual priority heuristic algorithm developed, the only

times at which the arrivedTask data structure changes state was at times known as event times as

already discussed in session 4.2.1 and 4.2.2 . Thus, instead of taking scheduling decisions at each

time point, scheduling decisions were taken only at these event times. With this, the

computational time was observed to have drastically reduced compared to the computational

time when each time unit is simulated up to LCM. An experiment consisting of 1000 tasks each

for task set of 3 to 9 number of tasks was performed to statistically compare the percentage

reduction in decision points of the dual priority heuristic algorithm to simulation of each time

point up to LCM. A box plot (a plot that graphically depicts groups of statistical data and

shows the 25
th

, 50
th

 and 75
th

 percentiles of data set as the lower part of a box, the red band in the

middle of the box and the upper part of the box respectively) of the results is shown below.

35

Fig 16. Box plot showing percentage reduction in decision points of the dual priority heuristic

algorithm compared to simulating each time unit up to LCM for various task sets. The x-axis

represents the number of tasks, which ranges from 3 to 9. The y-axis represents the percentage

reduction in decision points (number of points at which scheduling decisions were taken) which

ranges from 0 to 100%. For task set consisting of only 3 tasks, the dual priority heuristic

algorithm scheduled 25% of the 1000 tasks with less than 35% of the number of decision points

needed by an exhaustive simulation. It scheduled 50% with less than about 47% of the points

needed by an exhaustive simulation and 75% with less than 58% of the points needed by an

exhaustive simulation. Most of the tasks had a reduction ranging 5% to 85% which is indicated

by the black dotted lines. However, for one task indicated by the red plus sign, the dual priority

heuristic algorithm used the same number of decision points as the exhaustive simulation; as

such there was no reduction. For task set consisting of 5 tasks, the reduction range was form 0 to

about 65% with 25% of the task having less than 22% reduction, 50% having less than 33%

reduction and 75% having about less than 39% reduction. For task set consisting of 9 tasks,

most of the task had a reduction range of 0 to about 35%, with 25% of the tasks having less than

10% reduction , 50% of the tasks having less than 15% reduction and 75% having less than

20%. Two task out of the 1000 tasks had reduction of about 39% and 40% indicated by the two

red plus signs.

As the number of tasks increases, the percentage reduction decreases, and rightly so, because for

the same period range eg 1-20, more task are released, finished and are promoted for task set

with higher number of tasks.

4.6 Performance of the heuristic:

To generate the promotion points, an exhaustive search approach will consider T1*T2* T3*…* Tn

number of points. This is a huge value especially for task set which have very large integers as

their periods. The heuristic algorithm developed in this thesis however considers only

 in the worse case which present an enormous reduction in the number of

points considered. An experiment was conducted by generating 100 tasks each for task set

consisting of 3 to 9 number of tasks. The number of points that an exhaustive search would have

considered was determined as well as the amount of points that the heuristic algorithm

considered. The percentage reduction in the number of points by the heuristic algorithm

compared to the exhaustive search was also determined for each task set and plotted as a box plot

below.

36

Fig 17. Box plot showing percentage reduction in promotion points compared with exhaustive

search approach. The number of tasks is shown on the x-axis and the percentage reduction is on

the y-axis. For task set consisting of 3 tasks, most of the 100 tasks had a percentage reduction of

between 99.95 to a value very close to 100. However, few of the tasks had other percentage

reduction values indicated by the red plus sign. For task set consisting of 4 tasks, the least

percentage reduction was about 99.94 indicated by the red plus sign with most of the task

achieving almost 100% reduction. For task set of 5 to 9 tasks, the percentage reduction was so

huge that the almost all the task achieved a near 100% reduction, this is shown by a single

straight red line for these task sets.

37

Chapter 5
In this chapter, the simulation results as well as the task generation policies are discussed.

5.0Simulations:

The proof shown in session 4.5.2 is based on the assumption that there exist promotion points for

all task sets which are not schedulable by RM. In the absence of a formal proof for this

assumption, simulation was resorted to where large number of task sets were generated and

tested with the algorithm with the hope of finding a single task set (counter example) which was

not schedulable by RM and for which promotion points could not also be found. With such a task

set, the assumption made in session 4.5.1 and the resulting proof of achieving 100% utilization

are defeated.

Since the task generation policy is very important and can greatly affect the experimental result

as pointed out by Bini et al in [11], the generation policies for the task sets were chosen

carefully. Below is a brief discussion of the various generation techniques.

5.1 Utilization generation policy:

To generate uniformly distributed task utilizations in the range [0, 1], the algorithm

[11] shown in fig 18 in matlab code was employed. This algorithm of the form

generated uniformly distributed utilizations values whose sum is equal to . In [11], Bini and

Buttazzo showed that the algorithm is the most efficient algorithm with an O (n)

complexity for generating uniform distributed task utilizations.

function vectU = UUniFast(n, U)

 sumU = U;

 for i=1:n−1,

 nextSumU = sumU.∗ randˆ(1/(n−i));

 vectU(i) = sumU − nextSumU;

 sumU = nextSumU;

 end

vectU(n) = USum;

Fig 18. The UUnifast algorithm in Matlab.

38

5.2 Period generation policy:

The randi function of Matlab [12] was used to generate periods in the range [1-max]. The randi

function is a discrete uniform distribution that puts equal weight on the integers from 1 to max.

The function used has the form randi (max, 1, n).

5.3 Worse case execution time generation policy (WCET):

Having generated utilizations and periods, the worse case execution times were calculated

by multiplying the periods with the utilization and the result rounded to the nearest integer. The

new utilization value was calculated as

 and if >1, then that task set was ignored.

5.4 Experiments conducted:

Having generated the tasks with the generation policies above, various experiments were

conducted on them with the dual priority heuristic algorithm to determine if a counter example

could be found. In all the cases, task set with the number of tasks ranging from 3 to 9 and

period ranging from 1 to 50 was used. The above range for the number of tasks and period

were chosen because it was found that for task set with larger and higher periods, it was

computationally too expensive (it took too much time) for the laboratory computers (core 2

duo , 2.4 GHz) to perform the simulation. For each task set, 1000 tasks were generated and tested

with the algorithm. Below are detailed descriptions of the various experiments conducted and the

results obtained.

5.4.1 Effect of number of task:

From session 2.1.6.2 Eq 1, as the number of tasks increases, the task set utilization that can be

guaranteed by RM reduces, converging to 69.3%. With the dual priority heuristic algorithm

aiming to achieve a task set utilization of 100% implies that increasing the number of tasks while

keeping the task set utilization set at 100% should not fail to schedule any task set. With this, the

tasks that were generated were tested with RM and the dual priority heuristic algorithm and the

success rate (percentage of the task set that were successfully schedulable by the algorithm) was

plotted against the number of tasks as shown in the graph below.

39

Fig 19 . Graph showing the effect of number of tasks on the dual priority algorithm. The x-axis

represents the number of tasks per set , which ranges from 3 to 9 and the y-axis represent the

success rate (percentage of the number of task sets that are successfully scheduled). The blue

markers represent the success rate obtained for RM for the various numbers of tasks and the red

marker represent the results obtained for the dual priority heuristic algorithm.

It can be seen that more tasks miss their deadlines for the rate monotonic when the number of

task per set increases, but all tasks meet their deadlines for the dual priority heuristic algorithm,

as such its success rate remains at 100%. A simple reason being that, as the number of tasks per

set increases, the deviation of the task utilization from the Liu Layland bound in session 2.1.6.2

increases and as such the probability that a task set misses it deadline becomes high. This is

however just a statistical result.

5.4.2 Effect of increasing Utilization:

The experiment conducted above varied the number of task while keeping the task set utilization

constant at 100%. However , it might be the case that there exist a counter example with task set

utilization less than 100% but still not schedulable under RM. To find such a task set, the task set

utilization was varied from 69% to 100% at steps of 1% for the task sets generated in session 5.4.

Since RM guarantees a task set utilization up to 69.3%, then the probability of finding a counter

example in the range chosen if there exist one is higher. The task sets that were generated were

tested with RM and the dual priority heuristic algorithm and the success rate (percentage of the

task set that were successfully schedulable by the algorithm) was plotted against the task set

utilization as shown in the graph below. The results for task set with 3, 6 and 9 number of tasks

40

were shown in the graph just for clarity (showing all the results for all the task sets made the

graph very unreadable).

Fig 20. Graph showing the effect of increasing task utilization on the dual priority algorithm.

The x-axis represent the task set utilization ranging from 0.69(69%) to 1 (100%). The y-axis

represents the success rate (percentage of the number of task sets that are successfully

scheduled). The blue dotted lines represent the result for RM for task set with number of tasks

equal to 3. The blue straight lines represent the result for RM for task set with number of tasks

equal to 6 and the blue lines represent the result for RM for task set with number of tasks equal

to 9. The red dotted lines represent the result of the dual priority heuristic algorithm for task sets

with number of task equal to 3,6 and 9.

 It can be seen that as the utilization increases with the number of task per set, more tasks missed

their deadlines for the rate monotonic scheduling algorithm while for the dual priority heuristic

algorithm no task missed its deadline for the same reason as increasing the number of task

5.5 Conclusion and limitations of experiments:

The aim of the experiments conducted was to find a task set (counter example) what could not be

scheduled by the dual priority heuristic algorithm. If one counter example was found, it would

have signified that the dual priority heuristic algorithm cannot guarantee 100% utilization. From

the results presented for the various experiments, no counter example was found from the large

task set generated. This is however a statistical result so cannot be used as the sole proof that the

dual priority heuristic algorithm achieves 100% utilization, but it goes a long way to serves as

the basis upon which further research which may lead to the formal proof can be carried out.

41

Chapter 6
Future work and conclusion is discussed in this chapter

6.0 Future work and Conclusion:

This thesis has focused mainly on the development of the dual priority heuristic algorithm which

uses rate monotonic priority ordering in both lower and higher priority bands. It has also focused

on providing a proof which shows that this algorithm achieves 100% utilization. Extensive

simulations have also been performed on the developed algorithm in the hope of finding a

counter example and the results obtained suggest otherwise.

What is left to do as a future work is the formal proof that the dual priority algorithm can always

find promotion points when a task set is not schedulable by the rate monotonic scheduling

algorithm .Burns in [8] provided a proof for the dual priority algorithm for just two tasks but

trying to generalize for more tasks has proven to be difficult.

In developing the algorithm, unrealistic assumptions were made in section 3.1. Future work

could relax these assumptions and more simulations performed to observe the performance of the

algorithm. Also practical implementation issues could be a subject of future work.

42

 References:
[1] Arezou Mohammadi and Selim G. Akl “Scheduling Algorithms for Real-Time

Systems” Technical Report No. 2005-499, Queens University Canada, 2005.

[2] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in Hard

Real-Time Environment,” Journal of the ACM, Volume 20, Number 1, pp. 46-61, 1973

[3] A. Burns and A. Wellings “Real-time systems and programming languages” Forth edition

[4] M. Joseph, “Real-time Systems: Specification, Verification and Analysis,” Prentice Hall,

1996.

[5] J. Goossens and P. Richard “Overview of real-time scheduling problems” Euro

Workshop on Project Management and Scheduling 2004.

[6] A. Burns and A. Wellings “Dual Priority Assignment: A Practical Method For Increasing

Processor Utilization”.

[7] R. Davis and A. Wellings “Dual priority scheduling “

[8] A. Burns “Dual Priority Scheduling: Is the Processor Utilization bound 100%?”

[9] R. Davis “Dual Priority Scheduling: A Means of Providing Flexibility in Hard Real-time

Systems.”

[10] M.G. Harbour, M.H. Klein and J.P. Lehoczky, Fixed Priority Scheduling of Periodic

Tasks with varying Execution Priority, Software Engineering Institute, Carnegie-Mellon

University, Pittsburgh, PA, USA (1991).

[11] E. Bini and G. Buttazzo. „Measuring the performance of schedulability tests‟. Journal of

Real-Time Systems, 30(1-2):129–154, 2005

[12] http://www.mathworks.com/help/techdoc/ref/randi.html

[13] Audsley, et al. “Applying new scheduling theory to static priority pre-emptive scheduling

[14] Katharina Wennerström “Environment for Brake by Wire System Development”

[15] Krishna C.M and Shin K.G Real-time systems . Tata McGraw-Hill, 1997.

[16] T.P. Baker and Alan Shaw “ The Cyclic Executive Model and Ada”

http://www.mathworks.com/help/techdoc/ref/randi.html

