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Abstract
Modern systems for automatic speech recognition (ASR), powered by artificial neu-
ral networks, make up the core in many day-to-day products and services. This
development has been mostly driven by the large tech giants of the industry, which
naturally has led to a large focus on developing models for the English language. If
instead focusing on ASR for the Swedish language, there exists little research, and
no open and available models. The lack of open and available models means that
in order to create products and services relying on Swedish ASR, one needs to rely
on third party commercial solutions. This becomes an issue when privacy, integrity,
and cost are taken into account. Moreover, when considering specialised domains
such as health care, creating a new model from scratch might not be feasible due to
a lack of data.
In this thesis, the goal has been to explore how recent research in ASR can be applied
to the Swedish language. In recent papers, transfer learning has been proposed as
a technique to develop ASR models for languages where sufficient training data is
lacking. In this thesis we aim to use the same technique to create a new state-of-the-
art model for Swedish ASR, comparing against previous research on Swedish ASR
as well as commercial solutions. Additionally, we explore if transfer learning can be
successfully utilised to achieve even better ASR in specialised domains.
To achieve the aim of the thesis, the NST Acoustic Database for Swedish has been
used to train a model based on Mozilla’s DeepSpeech. Additionally, two domain
specific datasets have been created as part of the thesis to explore if they can be
used to fine-tune the general model for Swedish ASR in certain domains.
The resulting general model for Swedish ASR achieves a new state-of-the-art result
on the test part of the NST Acoustic Database for Swedish, with a 13.80% word error
rate and 4.78% character error rate. Additionally, we show that transfer learning
can improve the results in specialised domain with on average 12% lower word error
rate and 6% lower character error rate compared to the general Swedish model.
We conclude that recent research in ASR applies also to the Swedish language. We
reaffirm that transfer learning is a powerful technique to create new ASR models
based on existing ones, both for new languages and for specialised domains, with
little extra effort in terms data and resources.

Keywords: automatic speech recognition, speech-to-text, transfer learning, artificial
neural networks, end-to-end, DeepSpeech, specialised domains, Swedish.
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1
Introduction

A huge amount of speech data is recorded every single day, e.g., in the form of news
broadcasting or voice communication. To maximise exploitation and dissemination
of this large amount of speech data, it is necessary to present it in written form.
In short, if speech data could successfully be automatically transcribed into text, a
lot of existing tools for text analysis could be utilised. Even if further analysis of
the produced text is not desired, the transcription from speech to text is valuable in
itself, in order to e.g., save time (i.e., allowing one to dictate ones thoughts instead of
having to write them down), make the speech content searchable, or to simply make
content more inclusive by making it available for people with hearing difficulties.
This is where Automatic Speech Recognition (ASR), also known as speech-to-text,
comes into play.

Tenfifty is a Gothenburg based company specialising in developing tailored AI so-
lutions for their customers.1 They have customers that are in need of automatic
speech recognition for Swedish, but are constrained in terms of privacy, data in-
tegrity and cost. The lack of alternatives to existing commercial 3rd party services
which can satisfy these constraints has become a problem, and progress can not be
made. This thesis is a response to the challenge at hand, where possible solutions
are researched.

As mentioned, there is a lack of open and ready-to-use automatic speech recognition
models for the Swedish language. There are commercial services available, such
as Google’s Cloud Speech-to-Text,2 but such models might not be an alternative
for everyone due to e.g., cost or privacy constraints. The problem becomes even
greater when considering automatic speech recognition in specific domains, e.g.,
flight radio communication or health care, where a special vocabulary or way of
speaking might be used. In certain domains, such as the aforementioned health care
domain, existing commercial solutions might be a particularly bad fit, since data
might be very personal. An on-premises solution is preferred in these scenarios,
as it preserves the integrity of the data. In order to achieve such an on-premises
solution, one could naïvely create a new speech recognition model from scratch for
every domain. However, such an approach would be a waste of time and resources,
and might not be feasible due to limited data availability.

1https://tenfifty.io
2https://cloud.google.com/speech-to-text/
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1. Introduction

This presents a great opportunity to introduce transfer learning [1]. The idea is
that utterances of speech can be similar between different applications, domains
and even languages. This means that an English ASR model might also perform
well on Swedish speech when additionally trained on Swedish data. Furthermore,
this technique can be applied to specialised domains (e.g., health care, aviation and
marine) to enable cheap, quick and well performing ASR even when data is sparse.

To the extent of our knowledge, there exist no previous research on using transfer
learning to achieve automatic speech recognition for the Swedish language. More-
over, before this project there existed no openly available and ready to use model for
Swedish ASR. There is work on using the Kaldi toolkit [2] for Swedish ASR [3, 4],
but the resulting models have not been published. Kaldi is an open source system
for speech recognition, but since its release there have been significant advances in
the field of ASR [5–8]. Together with these advances, there has also been success in
using transfer learning for language modelling [9], and in ASR for other languages
with limited access to training data (e.g., German) [10–12]. In this thesis, we work
with Swedish speech data. By utilising new and promising techniques in the field of
ASR, we achieve similar improvements.

Based on recent research, such as the wav2letter++ model by Facebook [13],3 or the
DeepSpeech [5] implementation by Mozilla,4 we wanted to develop a new state-of-
the-art model for Swedish ASR. Mozilla’s DeepSpeech is implemented using Ten-
sorFlow,5 an open source framework for machine learning, while wav2letter++ is
implemented in C++ using the open-source machine learning library flashlight.6
In a paper from 2017, an ASR model for the German language was created by
first training a wav2letter++ model on English, and then used transfer learning to
fine-tune the model on German [10]. Mozilla also recently demonstrated how their
DeepSpeech model together with their multilingual dataset Common Voice could
be used to create ASR models for languages with little training data available, by
first pre-training on English [11].

In previous work on Swedish ASR, a public domain dataset called the NST Acoustic
Database for Swedish was used [3].7 The work by Kullmann [3] explored a couple
of different variants of models, and achieved at best a word error rate (defined in
Section 2.6) of 16% on the test part of the NST Acoustic Database for Swedish. As
part of this thesis, we achieve an improved word error rate on the NST Acoustic
Database for Swedish of 14%. Additionally, we evaluate Google’s Cloud Speech-to-
Text service on this dataset to conclude that the model developed as part of this
thesis defines a new state-of-the-art result. Finally, we show how transfer learning
can be used to get improved results in specialised domains.

3https://github.com/facebookresearch/wav2letter
4https://github.com/mozilla/DeepSpeech
5https://www.tensorflow.org
6https://github.com/facebookresearch/flashlight
7https://www.nb.no/sprakbanken/show?serial=oai%3Anb.no%3Asbr-16&lang=en

2

https://github.com/facebookresearch/wav2letter
https://github.com/mozilla/DeepSpeech
https://www.tensorflow.org
https://github.com/facebookresearch/flashlight
https://www.nb.no/sprakbanken/show?serial=oai%3Anb.no%3Asbr-16&lang=en


1. Introduction

1.1 Aim of thesis
This thesis aims to address two problems:

1. can we create a state-of-the-art automatic speech recognition model for Swedish,
following methods that have been proven successful for other languages, and

2. can we use transfer learning to achieve even better automatic speech recogni-
tion in certain specialised domains.

The models developed as part of the project should be able to, given some audio file
of spoken Swedish, automatically transcribe the speech into text.

1.2 Rationale
In order to achieve the aim of the thesis, there were some problems which had to be
approached and solved. These problems can be divided into two major milestones
that each contribute to achieve the final goal of Swedish ASR using transfer learning.
First of all, we created a general model for Swedish ASR. The general model would
create a foundation for the following steps of the project, and utilised recent research
on ASR. We will refer to this model throughout the thesis as the general Swedish
model.

After creating the general Swedish model, which addressed our first aim, we explored
whether we could use this model as a foundation for transfer learning. This was
used to reach the second aim of the thesis, which was to explore if we could get an
improved ASR system on a specific domain using transfer learning.

1.2.1 General Swedish model
Creating the general Swedish model, i.e., a general ASR model for Swedish, was
the most crucial problem to solve. Our goal was to improve on previous work in
the area of Swedish ASR, so we had to achieve a lower word error rate (defined in
Section 2.6.2) on the NST Acoustic database for Swedish compared to Kullmann [3],
i.e., lower than 15.97%. Preferably, we wanted to see some significant and non trivial
improvement compared to Kullmann [3]. Additionally, we wanted to compare the
general Swedish model to commercial services, namely Google’s Cloud Speech-to-
Text service.

1.2.2 Domain specific model
In order to achieve the second aim of the thesis project, we had to explore approaches
for creating domain specific ASR models. These models had to utilise transfer
learning, and be based on the general Swedish model. The goal was to achieve an
improvement over the general Swedish model when used on the specialised domain
data. In order for the results to be meaningful, we decided that the domain specific
data had to be much smaller in size compared to the data used to train the general

3



1. Introduction

Swedish model. In previous research, transfer learning was successfully used to
create an ASR model for Slovenian with just five hours of data [11]. Because of
this, we decided to limit how large the domain specific datasets should be, such that
they consisted of at most roughly 5 hours of speech, which is about 1% of the NST
Acoustic database for Swedish.

1.3 Scope
This thesis project was limited to 20 weeks, which also limited the scope of what
could be achieved. Natural language processing in general, and automatic speech
recognition in particular, are very active fields of research. There is new theory re-
leased all the time, but due to the limitation in time, we focused on using techniques
that have proven successful. It was also a top priority that implementations either
existed and were available, or were trivial to implement, as time was limited.

For automatic speech recognition, there are primarily two different open-source mod-
els that fit the project: Mozilla’s DeepSpeech (see Section 2.5.2) and wav2letter++.
Both models allow the usage of transfer learning, and optimally we would have liked
to use and compare both models; however, this was not feasible in the given time
frame. In this project, we thus decided to use Mozilla’s DeepSpeech model as a
foundation for the model development. The decision to go with Mozilla’s Deep-
Speech was made after researching both models and comparing pros and cons of
them, as well as after discussions with our supervisor and advisor. Our familiarity
with TensorFlow and the Python ecosystem (which Mozilla’s DeepSpeech is based
on) contributed a lot to the decision. Mozilla’s DeepSpeech also seems to have a
larger community around it in general, which includes several hands-on examples
on using it for transfer learning. A con with wav2letter++ is also that it requires a
lexicon with all words that it should support, in addition to a language model. This
added unwanted complexity compared to Mozilla’s DeepSpeech.

As described further in Section 2.5, a typical system for automatic speech recogni-
tion involves using a language model. Mozilla’s DeepSpeech is no exception, and
has out-of-the-box support for the KenLM language model [14]. In theory though,
support for other language models could be implemented to work with Mozilla’s
DeepSpeech. It would have been interesting to try out different language mod-
els, such as BERT [9]. In the work by Shin et al. [15], BERT is successfully used
as a language model in the context of ASR. Due to the limited time however, we
deemed it infeasible to focus our efforts on implementing support for using BERT
together with Mozilla’s DeepSpeech — this was especially the case considering there
is out-of-the-box support for KenLM.

1.4 Limitations
When training models as part of this thesis project, we were limited to a CUDA
enabled GTX 1080 Ti graphics card with 11 GB of memory. The graphics card was
available for use throughout the entire project. Additionally, we had a budget from
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1. Introduction

Tenfifty for use on Google Cloud computing resources, which was used to evaluate
Google’s Cloud Text-to-Speech service.

Since the NST Acoustic Database for Swedish is publicly available, the general
Swedish model developed using this data can be and is published.8 However, due to
licensing issues, the domain specific datasets created as part of this thesis project can
not be published. Instead we must refer anyone interested to download and process
the source data themselves, following our method. Because of this, the models based
on these domain specific datasets are also not published. However, we argue that
the biggest value is obtained from having open access to the general Swedish model
though, as this enables further transfer learning for potential gains in performance,
and other use cases.

1.5 Ethical considerations
We have identified two potential ethical problems that follow from developing an
efficient ASR system for Swedish. However, there are also gains to be made.

First of all, if an efficient enough system is developed, it might result in jobs being
automated and replaced. Such jobs could be e.g., secretaries. This also leads to the
second problem, mainly the problem of responsibility. In the event of an incorrect
speech transcription by an ASR system, who is responsible? This problem might
be negligible though, as it is for example rarely the secretary that has the ultimate
responsibility. As an example, in a health care setting, it is most likely the medical
doctor that has the ultimate responsibility for what is put into e.g., a patient’s
journal. This means that while utilising ASR systems, it is important to not stop
proofreading.

As mentioned, there are also gains to be made. Instead of having to rely on third
party services, such as Google’s Cloud Speech-to-Text, one could create their own
solutions. This increases data integrity, and strengthens the integrity and privacy
of people whose speech need to be transcribed.

1.6 Contributions
As part of this thesis work, a new state-of-the-art result is achieved on the NST
Acoustic database for Swedish, improving over previous research [3] by an absolute
2%, and over Google’s Cloud Speech-to-Text by an absolute 7%.

It is also shown that ASR models, such as the one developed as part of this thesis,
can with little effort be fine-tuned to achieve additional performance on specialised
domains. This, together with the method for achieving a new state-of-the-art result
on the NST Acoustic database for Swedish, confirms that transfer learning is a
powerful and efficient method in the field of Swedish ASR. Additionally, the model
developed is freely available for further research and use.

8https://github.com/se-asr/
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2
Background

In this chapter, theory required to understand the thesis is presented. A background
in computer science, with knowledge of machine learning as a concept, is assumed.

2.1 Artificial neural networks
An artificial neural network (ANN) is a graph based type of machine learning model,
and is sometimes referred to as a deep learning model [16]. An ANN model consists
of nodes, which are commonly grouped together in so called layers. Together the
layers form a directed acyclic graph (DAG), starting with an input layer, passing
through an arbitrary amount of so called hidden layers, which finally connect to
an output layer. Figure 2.1 illustrates a simple ANN, with an input layer, a single
hidden layer, and an output layer. When using an ANN for inference, input values
are fed to the input layer, which then gets propagated through the network until
they reach the output layer to produce an output.

Figure 2.1: An illustration of a simple artificial neural network. Each layer is
indicated by a unique color. The blue layer is the input layer, the red layer is a
hidden layer, the green layer is the output layer.
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2. Background

There are different types of artificial neural networks [16]. In the most simplest type,
feed-forward neural networks, every node in one layer is connected to every other
node in the next layer. The ANN in Figure 2.1 is an example of a feed-forward neural
network. Common to all types of ANN however is that each of these connections
have a weight value associated with them, where the weight determines the impact
of values passing through it. During the training of an ANN, the aim is to optimise
these weights, as they directly affect the output of the model.

Looking at an individual node in the graph, its input is a weighted sum of the
output from preceding nodes, where each node pair has a unique weight value. The
weighted sum is then transformed using a so called activation function, before being
sent as input to subsequent nodes. A common activation function is the rectified
linear unit (ReLU), defined in Equation 2.1.

f(x) = max(0, x) (2.1)

The activation function used on the nodes in the output layer during inference can
differ a lot, depending on the use case for the ANN model. It is also common to
simply not use any activation function at all on the output layer’s nodes, letting
the model output raw values directly. However, when using an ANN model for a
classification task with multiple possible classes, the softmax activation function is
commonly used. The softmax function is defined in Equation 2.2, where ~x is the
vector of all node outputs, and ~xi is the output of the i-th node. The softmax
function has the effect that all outputs are normalised such that they are in the
range [0, 1], and such that ∑n

i=1 ~xi = 1, forming a probability space.

f(~xi) = e~xi∑n
j=1 e~xj

(2.2)

2.1.1 Training
When training (or optimising) an ANN model, a so called loss function is applied
to the output of the model, instead of an activation function. The purpose of a loss
function is to calculate a loss, also referred to as a cost, which is a measure of how
correct the output of the model was compared to some ground truth. The loss is
used by an optimiser based on stochastic gradient descent to update the weights of
the ANN in order to hopefully improve its future performance. There are different
types of optimisers, but the Adam optimiser [17] is by far one of the most widely used
ones today. As with activation functions, there are multiple different loss functions
to choose from, depending on the purpose of the model. However, a loss function of
particular interest in this thesis is the Connectionist Temporal Classification (CTC)
loss function [18]. The CTC loss function is of particular use when working with
sequential data, such as audio or text, as it can take a sequence of inputs to produce
a sequence of classifications.
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2. Background

In general, when training an ANN model, it is fed training data. Each data point in a
training dataset can either be sent one at a time through the network, optimising the
network after each one, or it can be sent in batches, using so called mini-batching [19,
20]. Going through all data points in a training dataset is referred to as an epoch.
An ANN model can be trained through multiple epochs, meaning it processes the
training dataset multiple times. As the ANN model is trained on a training dataset,
it gets better and better at making correct predictions for it. To make sure that
the model is actually generalising, and not just getting good at the examples in
the training dataset, a separate so called development dataset is commonly used.
The phenomena where a model stops generalising and gets specialised on a specific
dataset is referred to as overfitting, and is something you generally want to avoid.

One technique to avoid overfitting is referred to as early stopping [21]. When using
early stopping, the average loss for the development set is calculated after each
epoch, but the weights of the network are not updated. As the average loss for the
development set stops improving over multiple epochs, overfitting has happened.
When this happens, we can stop training of the model, and the model weights
where the loss on the development set was the lowest is used.

Another technique to avoid overfitting, which can be used in conjunction with early
stopping, is so called dropout [22]. When training a model with dropout, for every
node there is a probability p that the node is dropped, meaning it will not contribute
to the network for that particular training instance. The intuition behind dropout
is that it reduces the risk of the network becoming reliant on individual nodes. The
parameter p is typically fixed for each layer in the network, and is commonly referred
to as the dropout rate. During inference, dropout is disabled.

2.1.2 Recurrent neural networks

As mentioned, there are different types of artificial neural networks, and the recur-
rent neural network (RNN) is an additional type of ANN which is common in the
context of natural language processing (NLP). One particular feature of recurrent
neural networks which makes them interesting is that they are able to capture con-
text, in the sense that they take into account the input that has come before the
current one. When using an RNN for e.g., text classification, this means that when
the model is fed a word that is part of a sentence, it will be able to take into account
preceding words in that sentence as well.

A core component of an RNN is the so called unit, and is what enables the context
awareness. There are multiple types of RNN units, but a common characteristic is
that they have two inputs, namely the current input, and the previous input [23,
24]. A commonly used unit is the Long short-term memory (LSTM) [23] unit. The
LSTM unit consists of weighted gates, which regulate e.g., how much of the previous
input should be taken into account.

9



2. Background

2.2 Transfer learning
Transfer learning, as the name suggests, is the process of transferring knowledge
from one machine learning model to another, which may or may not be used for
the same task as the original model [1]. Transfer learning is in itself not referring
to any specific technique for achieving such a knowledge transfer, and is more of
an umbrella term. In this project, a specific technique for transfer learning called
fine-tuning is the primary focus. Fine-tuning has been used very successfully in the
field of image classification for a long time, primarily based on ImageNet [25, 26],
and has recently shown promise in the field of ASR [10, 11].

Fine-tuning, or sometimes called model adaptation, is a transfer learning technique
where the learned parameters from a machine learning model are re-used in a new
model [1, 10, 27, 28]. When re-using the parameters, they can either be frozen
such that they are not updated during training, or they can be adjustable such that
they can be updated during training. When doing fine-tuning on artificial neural
networks, the weights of the nodes in layers are transferred from a source model to
the new model.

The use of fine-tuning is often motivated by a lack of training data for a specific
task [10, 11, 28]. By using fine-tuning, one hopes that a model trained on a similar
task can be used as a base for a new model, and as such the new model can leverage
knowledge that might overlap between the two tasks [1]. In Kunze et al. [10] the
assumption is that English is similar to German, so by using a model pre-trained
on English and fine-tuning it on German, better results can be achieved compared
to training a model on German from scratch, since the available amount of training
data for German is scarce.

As mentioned, when re-using weights, they can either be frozen or adjustable. Often
the choice of freezing weights or not is made on a per-layer basis [10, 11]. Besides
simply freezing layers, one or more layers can also be removed completely. The last
layer can be removed when e.g., the model’s predicted labels are not desired for a
new task [1]. In the context of ASR, a model for the English language might predict
letters ranging from a–z, but when training a model for Swedish it would most likely
be desirable to also include the letters å, ä, and ö. To achieve this, the last layer in
the model for English can be replaced with a new layer that has room for the extra
letters.

2.3 Sound
Sound is an important part of any system working with speech. The way sound is
represented and processed can impact the performance of systems as well as enable
certain kinds of analysis [29]. Sound is created by vibrations that are transferred
through different media, such as air or water. The vibrations are often described as
a signal of oscillating waves. The amplitude of the sound wave corresponds to the
power of the sound, i.e., how loud it is. The frequency of the sound wave corresponds
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to the, so called, pitch of the sound. Pitch is the quality of sound that makes it
possible to judge sound as higher or lower. For example, a sub-woofer commonly
outputs sound that is low pitched while a fire alarm often outputs sound that is high
pitched.

Most sound is composed of several frequencies with different amplitudes. These fre-
quencies and their individual amplitudes can be separated and distinguished through
a method called Discrete Fourier Transform (DFT). Given any sound wave, a DFT
can be used to approximate it using a number of sinus waves with different fre-
quencies and amplitudes. By doing this the sound wave can be represented by a
combination of components which can be analysed individually or as a whole. Fig-
ure 2.2 illustrates how a sound wave can be approximated with several sinus waves
at different frequencies and amplitudes. In the figure, the waves are projected on
the frequency-axis to show the amplitude of each frequency. The output is often
represented by a vector, of which the length depends on the sampling rate of the
DFT. The output in the figure could, depending on the sampling rate, be repre-
sented by the vector X = [0, 4, 0, 2, 0, 2, 0, 1, 0, 1, 0]T . If the sampling rate halved,
the output vector would instead be X = [4, 2, 2, 1, 1]T . Each value in the vector is
the amplitude of a sinus wave with a specific frequency, given by the index of the
vector. The 4 could, for example, be the amplitude of a 1 kHz sinus wave, the 2
could then be the amplitude of a 2 kHz sinus wave, and so on.

Frequency

Time

Amplitude

Figure 2.2: A visualisation of a DFT on a sound wave. The sound wave is shown
in red. The different sinus waves contributing to the sound wave are shown in cyan.
The blue bars are the result of the DFT and indicate the amplitude of the sinus
wave for each frequency.

The following subsections further describe different parts of sound analysis and
representations that are commonly used in the context of ASR.

2.3.1 Mel scale
The Mel scale was devised to measure the magnitude of difference in perceived
pitch [30]. It describes how the perception of distance between two pitches differs
at different frequencies. Figure 2.3 illustrates the characteristic signature of the Mel
scale for frequencies between 0 and 8000 Hz. As can be seen in the figure, after the
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Figure 2.3: Mel values compared to their corresponding frequencies. The dot
illustrates the break point at which the perception of pitch difference is lower than
the actual change in frequency.

breaking point, 1000 Hz, the perceived difference in pitch becomes lower than the
actual difference in frequency. It decreases to the point where a 100 Hz difference
between two frequencies is indistinguishable. For example, the frequency difference
between 100 and 200 Hz is equal to the difference between 10 100 and 10 200 Hz;
however, as the Mel scale suggests, the way humans perceive these sound waves is
very different. To our ears the difference in pitch between 100 and 200 Hz is very
obvious, while the difference between 10 100 and 10 200 Hz is indistinguishable.
So while the differences in frequency are identical they are perceived differently
depending on the magnitude of the frequency.

The Mel scale is not an exact correlation, but an approximation, and was initially
formulated empirically through quantitative experiments. Although not precise, the
Mel value for a frequency f is commonly calculated as shown in Equation 2.3, where
f denotes the frequency in Hz. The inverse of this equation can be used to get the
frequency given a Mel value.

Mel-scale(f) = 2595 · log10

(
1 + f

700

)
(2.3)

2.3.2 Mel-Frequency Cepstral Coefficients
Mel-Frequency Cepstral Coefficients (MFCCs) are commonly used as a representa-
tion of sound for speech recognition systems [6, 11, 31–33]. MFCCs combine the
property of the Mel-scale that provide human-like perception of sound, together with
a prioritisation of the sound properties that matter most for speech. MFCCs also
compress the sound, which means that the MFCC representations of sound takes
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up less storage space while capturing sufficient information for machine learning
purposes.

Sound waves can be transformed into MFCCs through a number of steps, of which
some might change in order depending on actual implementation.

The first step in this process is the DFT. To be able to apply the DFT, the sound
wave needs to be consistent in the time frame that is analysed — i.e., not changing
too much. Figure 2.2 is a good example of a consistent signal. Speech is typically
not consistent but if the sound is split into small enough parts, each part can be
considered consistent. These parts are called windows and are typically about 20
ms long. The DFT is applied to the windows individually and the result for each
window is a vector of amplitudes for each of the frequencies that contribute to the
the sound of that window.

The next step is to apply the Mel scale, which maps frequencies to Mel scaled values.
Additionally, a logarithmic trade-off for the amplitude is implemented. Similarly to
how the Mel scale models the perception of pitch (frequency), the perception of
loudness (amplitude) is often described with a logarithmic model [34]. Without
applying the log function a change in amplitude in the lower frequency regions
would have a higher impact than the same change in the higher regions, which does
not match how humans perceive sound.

0 1000 2000 3000 4000 5000 6000 7000
Frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0
Mel scaled filter bank

Figure 2.4: A Mel-scaled set of filters with a linear spacing of 250 Mel. Each color
represents one filter.

The application of the Mel scale and log function is often combined with a com-
pression. These three function to ensure that the features of the sound that are
most important are extracted. Compression is accomplished through sampling, by
extracting a selection of data points from a dataset. Sampling single points would,
in this case, result in very misleading features. Instead, sample filters are used to
sum the amplitudes in an area around the sample point to capture the character-
istics of the sound at that part of the frequency spectrum. These filters are most
commonly triangular filters centered around a sample point, with linearly decreas-
ing activation in each direction. However, other filter types can be used as well,
depending on implementation. As illustrated in Figure 2.4, the filters are spaced
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at proportional steps according to the Mel scale and logarithmically decreasing in
weight. This means that, if they are plotted on a frequency axis, as in the figure,
there are more sample points in the lower frequency area and fewer sample points
in the higher frequency area. If plotted on the Mel scale, however, the difference
between each filter would be constant. The triangular filters are commonly compiled
as shown in Equation 2.4 [35] where fk is frequency sample points distributed at
equal distances according to the Mel scale and h is the frequency.

wk,h =


h−fk−1
fk−fk−1

if fk−1 < h < fk

fk+1−h
fk+1−fk

if fk < h < fk+1

0 otherwise
(2.4)

Finally a Discrete Cosine Transform (DCT) is applied to the output of the filters.
DCTs are similar to DFTs, except they use the cosine function instead of the sinus
function.
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Figure 2.5: MFCC representation of a short audio file from the NST Dataset.

The final result of putting a window through all of these transformations is a vector
with the same number of values as the number of filters. The values correspond to
the activation of each filter. If we have 4 filters, each vector will have 4 values. To
represent a piece of sound, the vectors for all windows are vertically concatenated
with each other to form a matrix, like the one in Figure 2.5. The figure shows sound
represented as MFCCs, where the height is equal to the number of filters and the
width is equal to the number of samples from the audio. If the audio file is 400ms
long and the window size is 20ms the width will be 20.

2.4 Language modeling
A language model (LM) is a model of a natural language, such as Swedish or En-
glish. In this work we focus on statistical language models that are used by digital
systems to modify texts, such that they adhere to the language. Given, for example,
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a sequence of words, a language model can predict the next word in the sequence
based on the language that it represents. A statistical language model has no no-
tion of grammar, instead it relies on the number of occurrences of words in the
language [36]. As an example, the word sequence a banana is very is, intuitively,
more often followed by the word sweet than the word toxic. Language models can
be useful in many situations related to natural language processing. For example,
when correcting words in a sentence or scoring the likelihood of whole sentences and
deciding which one of two (or more) that is the most probable one.

It can be difficult to distinguish between someone saying this guy and the sky,
since the pronunciation can sound very similar for some people. Depending on the
surrounding words, a language model can make a qualified prediction for one or
the other. Previous work has been able to significantly improve automatic speech
recognition results by using a language model [10, 31, 32, 37, 38].

A common way of modeling languages is with n-grams [14, 39]. An n-gram is in
general a sequence of n items, and in the context of this thesis a sequence of n words.
Given a sequence of words one could extract all possible n-grams from it and count
the number of occurrences for each n-gram. For example, extracting all 3-grams
(trigrams) from the sentence The fox and the dog would result in the trigrams The
fox and, fox and the, and and the dog.

One toolkit for compiling n-gram language models is KenLM [14]. It has successfully
been used in several automatic speech recognition systems [5, 10, 13]. KenLM was
designed to perform faster and use less memory than popular models at the time [14].
When it was published it outperformed previous models, such as the SRILM [39] and
IRSTLM [40], in these aspects [14]. Both SRILM and IRSTLM are implementations
of what was at the time state-of-the-art algorithms.

When compiling a KenLM model, a parameter called order has to be specified. The
order describes what kind of n-gram models it consists of. Since it is difficult to
find all possible sequences of words for a specific order, statistical language models
often approximate probabilities using lower order n-gram models [36]. A 3-gram
could be approximated using a 2-gram and a 1-gram model. Using this approach, it
is theoretically possible to give a probability for a specific 3-gram even though the
exact sequence has never been seen during training of the language model.

The resulting language model will contain n-grams from n = 1 to n = order. Through-
out this thesis, we will describe these models as {order}-gram models (e.g., 3-gram)
but what it really means is a combined model with all n-grams up to that order. For
example, what we call a 3-gram LM is not a model with only 3-grams but instead
a combination of 1-gram, 2-gram and 3-gram models.

2.5 Automatic speech recognition
Automatic speech recognition, or ASR for short, is a technology that enables human–
computer interaction through speech, and is an active field of research that has been
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studied for several decades [33]. A more everyday term for ASR is simply speech-
to-text, which most people have likely heard of at some point. In recent years, ASR
systems have become a core component in consumer products like digital assistants
such as Google Assistant or Siri, voice search such as Google Voice Search, and in-car
infotainment systems. ASR systems can also aid in human–human interaction, by
e.g., transcribing lectures to make content indexed and searchable by students.

2.5.1 General architecture
A typical ASR system includes four major components, as shown in Figure 2.6 [33].
The signal processing and feature extraction component is responsible for trans-
forming an audio signal into a format suitable for the acoustic model (AM). This
includes extracting features from the audio signal that might be of interest for the
AM. The AM then combines its knowledge about speech (i.e., acoustics and phonet-
ics) with the features from the previous step, and produces a score for the features.
The language model, as described in Section 2.4, estimates a probability, or score,
of a sequence of words. Finally, the hypothesis search component combines the AM
score and the LM score to produce an hypothesis for what was spoken in the input
audio signal.

Feature

Signal	Processing	&
Feature	Extraction

AM	Score

Acoustic	Model

Recognition	Result

Hypothesis	Search

Audio	Signal

LM	Score

Language	Model

Figure 2.6: Architecture of a typical automatic speech recognition system.

The details of how these four components should be implemented are not speci-
fied, and recently so called end-to-end systems which combines multiple of these
components have emerged. As an example, both DeepSpeech [5] and wav2letter [6]
are two end-to-end models, based on artificial neural networks, combining the sig-
nal processing and feature extraction, acoustic model, and hypothesis search, while
making the language model optional. An advantage with the end-to-end approach
to ASR is that it eliminates the need for linguistic resources and expertise [5, 6, 11,
13, 41]. It has also been shown that this approach outperforms more conventional
ASR systems based on hidden Markov models [5, 7, 8, 10, 37, 42]. An example of
a model that is not end-to-end, and is primarily based on hidden Markov models,
is the Kaldi toolkit [2], which previously defined state-of-the-art for ASR [43], and
has been used to develop ASR systems for Swedish and German [3, 44, 45].
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2.5.2 Mozilla’s DeepSpeech
Mozilla’s DeepSpeech is an open-source implementation of the DeepSpeech model
presented by Hannun et al. [5],1 which is a model for end-to-end ASR. As Mozilla’s
DeepSpeech is open-source, and is continually improved, the model is not identical to
the one by Hannun et al. [5]. In this thesis, the released version v0.6.1 of Mozilla’s
DeepSpeech is used, and a simplified version of its model architecture is shown in
Figure 2.7.
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Figure 2.7: Simplified architecture of Mozilla’s DeepSpeech model. Each circle
represents a layer of several nodes.

As seen in Figure 2.7, Mozilla’s DeepSpeech model is and end-to-end model that
contains the three most important components of a typical ASR system: The signal
processing and feature extraction, acoustic model, and hypothesis search compo-
nents. The model is an artificial neural network which in total consists of six layers.

1https://github.com/mozilla/DeepSpeech
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It takes a raw audio signal as input, and outputs a text transcription for the speech
in the audio.

The model splits the raw audio signal into slightly overlapping windows of 32 mil-
liseconds each, and extracts Mel-Frequency Cepstral Coefficients (MFCCs, described
in Section 2.3.2). Each of these windows represents a so called time step, of which
each serves as input to the artificial neural network. The input is first fed through
three feed-forward fully connected layers, with 2048 nodes each. Each of these three
layers use the ReLU [46] activation function. The fourth layer is a uni-directional
RNN layer using 2048 LSTM cells [23]. The fifth layer is another feed-forward fully
connected layer, with 2048 nodes using the ReLU activation function. The sixth
and last layer is the output layer, where the number of nodes is equal to the size
of the alphabet of the target language. As an example, if the target language is
e.g., English, the alphabet would consist of the characters a–z, making up a total of
26 characters. The output layer would then consist of 26 nodes, where each node
represents one of the characters. The output layer outputs so called logits for each
represented character. A logit is a value in the range [−∞,∞], and works as a raw
representation of the probability that a specific character is uttered, where a higher
value means the probability is higher. In statistics, a logit is typically calculated as
shown in Equation 2.5, where p is the probability.

logit = log

(
p

1− p

)
(2.5)

When using Mozilla’s DeepSpeech model for inference, the softmax function is ap-
plied to each of the n logits from the output layer. The softmax function is defined
in Equation 2.2, where ~x is the vector of all logits, and ~xi is the logit for the i-th
character in the alphabet. The softmax function forms a probability space, where
each character gets a probability in the range [0, 1], and the sum of the probabilities
for all characters is 1. The character with the highest probability will be predicted
by the model. Applying this to all time steps, the result will be a sequence of pre-
dicted characters, which when combined makes up the predicted transcript for the
input sound signal.

The model predicts transcripts based on the probabilities of characters, and has
no understanding of the actual language itself, it only predicts characters based on
sounds. This means that the resulting transcript can contain spelling mistakes and
sequences of words that does not make any sense when put together. To counteract
this, Mozilla’s DeepSpeech supports using the KenLM [14] language model to cor-
rect the transcription. In short, it works by feeding the output transcription from
Mozilla’s DeepSpeech into KenLM, which then outputs a finalised and corrected
transcript. The details of how language models work are described in Section 2.4.

For the training of Mozilla’s DeepSpeech model, the Connectionist Temporal Clas-
sification (CTC) loss function [18] is used together with the Adam optimizer [17].
The choice of using the Adam optimizer is an example of where Mozilla’s Deep-
Speech differs from the work by Hannun et al. [5]. In Hannun et al. [5] an optimizer
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based on Nesterov’s Accelerated Gradient Descent (AGD) [47] was used, rather than
the Adam optimizer used in Mozilla’s DeepSpeech. Mozilla’s DeepSpeech utilises
mini-batching [19, 20] and dropout [22], both of which are easily configurable when
training a new model.

Table 2.1: Hyperparameters used to pre-train an English model using Mozilla’s
DeepSpeech.

Parameter Value
Mini-batch Size 128
Learning Rate 0.0001

Dropout 0.2

Together with its implementation, Mozilla has also released a pre-trained Deep-
Speech model for the English language, free of use. The pre-trained model is
trained on approximately 5500 hours of transcribed English speech, and achieves
a 7.5% WER on the LibriSpeech [48] test dataset. When training this model, the
hyperparameters shown in Table 2.1 were used. In [31], a DeepSpeech model for
German was created using 302 hours of transcribed German speech, and in the
original DeepSpeech paper [5], 7380 hours of transcribed English speech is used.

2.6 Evaluation
When developing any sort of model, it is crucial to be able to evaluate how good it
is in a systematic and reproducible manner. In the evaluation of models for ASR,
the word error rate (defined in Section 2.6.2) and character error rate (defined in
Section 2.6.3) are two commonly used measurements, where an as low error rate
as possible is desired [3, 10, 11]. The word error rate and character error rate are
defined below, but in short they both compare a predicted output text from a model,
given some input sound, with the actual transcription of that sound, and calculate
how much they differ from each other.

By using the same metrics for evaluation, it is possible to compare two different
works against each other. Metric results are comparable if they are calculated for
the same dataset (a so called test set), i.e., the output text of one model is compared
to the same reference text as the other model was tested on. In fact, this is how
most research is done in the field, and realistically, it is not meaningful to compare
evaluation results with results reported by others unless all results are based on the
same dataset.

When looking at tasks other than pure transcription of speech, such as real world
applications for e.g., speech driven navigation, relying on metrics like word error
rate for evaluation might not be enough [49]. In real world context, it is important
to involve and combine human evaluations to evaluate naturalness and usability.
Such evaluations are typically costly, as human time is expensive, and are usually
performed by letting a human use and rate a system.
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2.6.1 Levenshtein distance
The Levenshtein distance, sometimes referred to as edit distance, is measurement for
comparing the similarity between two sequences of characters (i.e., strings) [50, 51].
It calculates how many edits that would be required in order to change one of the
sequences into the other.

In Equation 2.6, the Levenshtein distance between two sequences a and b is formally
defined, and calculated as La,b(|a|, |b|), where |a| and |b| is the length of a and b
respectively. In the equation, ai refers to the element at index i of sequence a,
where both a and b are 1-indexed (i.e., starting at index 1).

La,b(i, j) =



max(i, j) if min(i, j) = 0

min



La,b(i− 1, j) + 1
La,b(i, j − 1) + 1

La,b(i− 1, j − 1) +

1 if ai 6= bj

0 otherwise

otherwise
(2.6)

As mentioned, the Levenshtein distance is commonly used to compare string se-
quences, where each character in the string is considered. However, the Levenshtein
distance can be used for any sequence of elements, where the sequence is represented
as an ordered set. In the case of strings, the sequence is simply an ordered set of all
characters in a string.

2.6.2 Word Error Rate
Given a sound file X containing speech, with a corresponding true transcription ŷ,
a model predicts a transcription y for X. To calculate the word error rate (WER),
the words in y are put in an ordered set A, and the words in ŷ are put in an ordered
set B. As an example, if y is hello world, then A is {hello, world}. As shown in
Equation 2.7, the WER is then defined as the Levenshtein distance LA,B(|A|, |B|)
between A and B, divided by the number of words in (or size of) B, denoted |B|.

WER = LA,B(|A|, |B|)
|B|

(2.7)

2.6.3 Character Error Rate
The character error rate (CER) is defined similarly to WER, as described in Section
2.6.2, but on a per-character basis instead of per-word. This means that each char-
acter in y is put in the ordered set A, and each character of ŷ is put in the ordered
set B. As an example, if y is hello world, then A is {h, e, l, l, o, , w, o, r, l, d}.
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Data is an integral part of machine learning, and in this chapter the datasets used
as part of this project are presented in detail.

3.1 NST Acoustic Database for Swedish

The NST Acoustic Database for Swedish (16kHz),1 from now on referred to as the
NST Dataset, is a dataset of Swedish speech with corresponding validated transcrip-
tions. It was created specifically with speech recognition and dictation in mind. The
dataset was created around the year 2000 by a Norwegian company named Nordisk
språkteknologi holding AS, or NST for short. The company NST went bankrupt in
2003, but the NST Dataset has since then been made freely available to the pub-
lic domain through the National Library of Norway, by directions from the Royal
Norwegian Ministry of Culture.

Table 3.1: Dialects represented in the NST Acoustic Database for Swedish. Statis-
tics are reported by the official documentation of the NST Dataset.

Region Part of dataset
Stockholm and vicinity 19.87%
Northern Sweden (Norrland) 12.15%
West South Sweden (Västra sydsverige) 11.40%
Gothenburg and vicinity 10.77%
Central Sweden (Mellansverige) 10.53%
West Gothland (Västergötland) 7.85%
East Gothland (Östergötland) 7.69%
East South Sweden (Östra sydsverige) 7.29%
Dalarna and vicinity 6.79%
West Sweden (Västsverige) 5.65%

The NST Dataset is divided into two parts and consist of around 500 hours of
transcribed Swedish speech in total. The first part is for training, and consist of
around 400 hours of speech, and the remaining part is for testing. There is no overlap

1https://www.nb.no/sprakbanken/show?serial=oai%3Anb.no%3Asbr-16&lang=en
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between the two parts. Additionally, no speaker in the training part is present in
the test part, and vice versa.

As mentioned, the NST Dataset was created with speech recognition in mind, and as
such has a large mix of speakers. There are a total of 1000 speakers represented in the
dataset, and the dataset covers 10 major different dialects, as shown in Table 3.1.
The speakers’ ages range from 16–77, and there are 54% female and 46% male
speakers. All recordings are made in a closed office environment, and have little
background noise.

Table 3.2: Properties of the sound files in the NST Acoustic Database for Swedish.

Sample rate: 16 000 Hz
Resolution: 16 bit
Channels: 2 (stereo)
Encoding: Linear PCM (LPCM)

The transcripts of the dataset are divided into multiple text files with a .spl file
extension and Latin-1 (ISO 8859-1) encoding. Each such text file holds transcribed
sentences for a single speaker, together with metadata about that speaker. The
metadata includes a unique anonymous ID for the speaker, their age, sex and the
region where they were raised (used to deduce dialect). For each sentence in the
transcript, there is a reference to a sound file where the speaker says that sentence.
The sound files have a .wav file extension, and has the properties described in
Table 3.2.

3.2 Common Voice
Common Voice [11] is a large multilingual dataset of transcribed speech, created
by Mozilla, made freely available under a Creative Commons Zero (CC0) license.2
It is a community driven project, where anyone can contribute by either recording
themselves reading given sentences, or validating other peoples recordings. As such,
it is a constantly growing dataset with (at the time of writing) 40 different languages
and over 3400 hours of validated speech in total.

Table 3.3: Properties of the sound files in the Common Voice dataset.

Sample rate: 48 000 Hz
Resolution: 16 bit
Channels: 1 (mono)
Encoding: MPEG-3

The Swedish part of the Common Voice dataset is the only one of relevance for the
aim of this thesis project. Common Voice consists of five hours of validated Swedish
speech, by a total of 99 unique speakers. Comparing this with the English part of

2https://www.mozilla.org
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Common Voice, with a total of 1118 hours of validated speech, or the NST Dataset
described in Section 3.1, the Swedish part of Common Voice appears rather small.
It is optional for contributors to disclose gender, and the statistic is entirely self
reported. Out of those who have disclosed their gender for the Swedish part of the
Common Voice dataset, 90% are male.

As anyone can contribute to the Common Voice dataset, using whatever recording
equipment they have available, the sound quality of the speech in Common Voice
can differ quite a lot. Most of the speech is recorded in an environment with a lot
of background noise, in contrast to the recordings of the NST Dataset. All sound
files have a .mp3 file extension, and the sound properties are further described in
Table 3.3.

3.3 Lunchekot Dataset
Lunchekot is a Swedish news radio program that is broadcast every day at lunch
at 12:30 Swedish time. Data from this program has been used to create a dataset
in the news broadcasting domain, which will from now on be referred to as the
Lunchekot Dataset. Each episode of Lunchekot is 25 minutes long and for the main
part contains what is considered the most important news for the day. Towards the
end of each episode there are two short distinct segments with domestic news and
sports news. The program is mainly recorded in studio where the host and some
of the reporters and experts reside. In the case of interviews, the host or reporter
is often in the studio while the interviewee is recorded from a phone call or in an
environment with some background noise. In the first and more general part of the
program, one often finds longer reports about the main news for the day, both from
abroad and domestic. The domestic news and sports segments tend to keep the
different elements shorter.

Some news are presented directly by the host, for every other element the host
usually makes a hand-over. The hand-over is typically on the form Now x will talk
about y, where x is the name of a reporter, and y is some news subject. After
an element, the host typically either thank the reporter or, if not done before the
start of the element, explains who was talking. In this case, the reporter typically
says something along the lines of Thanks for that x!, where x is the name of the
reporter. This format makes it easy to identify who is speaking, which was useful
when creating the dataset.

Table 3.4: Properties of the sound files in the Lunchekot Dataset.

Sample rate: 16 000 Hz
Resolution: 16 bit
Channels: 1 (mono)
Encoding: Linear PCM (LPCM)

The tempo of the broadcast is quite high, probably as there is a lot to present.
Sometimes Sveriges Radio, the company behind Lunchekot, has longer reports on
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various subjects. These are often shortly presented in Lunchekot, and the listener
is then referred to the longer report if they are interested.

The Lunchekot program is freely available on Sveriges Radios website.3 When com-
piling this dataset, a selection of 14 episodes spread out over 6 months, November
2019 to April 2020, were downloaded. This resulting dataset contains 5 hours and
2 minutes of speech with corresponding transcription and speaker annotation. In
total there are 229 unique speakers, out of which 148 are male and 81 are female.
Some speakers, mostly reporters, experts and hosts, appear in multiple episodes.
Other speakers, mostly interviewees, appear in only a single episode.

Table 3.4 shows properties of the sound files in the Lunchekot Dataset. Since this
dataset was devised as part of this thesis project, the sound files were deliberately
created with the specific properties shown in the table.

Sound quality in this dataset is varying. The parts recorded in the Lunchekot studio
are of high audio quality, with little distortion and background noise. These parts
also make up the large majority of the dataset. Sound from interviews often have
a lot of background noise and worse quality, but are in most cases still intelligible.
Some interviews have a lot static noise, and are hard to interpret even for us humans,
but they are quite rare.

3.4 Sports Dataset
In order to explore an even narrower domain than that of news broadcasting, the
sports segment of the Lunchekot Dataset was extracted to form a new dataset; the
Sports Dataset. This dataset consists of just the sports segment from Lunchekot,
and could be considered to be in the domain of sports. As it is extracted from the
Lunchekot Dataset, it has the same sound properties as shown in Table 3.4.

Looking at the distribution of speakers in the Sports Dataset, it has 29 unique
speakers. Out of these, 21 are male and 8 are female. In total, this dataset consists
of 18 minutes of transcribed speech, annotated with speaker and gender informa-
tion. The sound quality of the Sports Dataset is mostly of good quality, with little
background noise. This follows from the fact that most of the sound is recorded in
the Lunchekot studio.

3https://sverigesradio.se/ekot
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In the following sections the method that has been used is described. Each of the
main sections describes an important part of the project. Each of these parts is
described in a more or less chronological order, in which they were completed.

First the datasets are downloaded and processed so that they can be used with
Mozilla’s DeepSpeech, following the process described in Section 4.1. In Section 4.2
a language model based on KenLM is then created from open text corpora available
online. Using the language model and the processed datasets, Mozilla’s DeepSpeech
is used to create models for ASR. In Section 4.3, a general Swedish model is created,
and in Section 4.4 the general Swedish model is used together with transfer learning
to create domain specific models.

4.1 Dataset processing
Before any of the datasets can be used for training or testing of models, they have
to be downloaded and processed into a suitable format.

All sound files containing speech need to be converted into a usable format. This
follows from the fact that the DeepSpeech implementation by Mozilla is used, and
it comes with some requirements. The desired sound properties are described in
Table 4.1, and they differ from both the NST Dataset and Common Voice.

Table 4.1: Sound file requirements by Mozilla’s DeepSpeech model.

Sample rate: 16 000 Hz
Resolution: 16 bit
Channels: 1 (mono)
Encoding: Linear PCM (LPCM)

The transcripts have to be parsed from the original datasets, and be converted into
a format that makes them usable together with Mozilla’s DeepSpeech. Mozilla’s
DeepSpeech implementation wants the data in the form of comma-separated values
(CSV) in a .csv file. Each line in the file, except for the first one, corresponds to
one data point (a single spoken sentence). Each data point is formatted as a tuple of
a path to the sound file where the sentence is spoken, the file size of the sound file in
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bytes, and the transcription of the spoken sentence. The first line in the file contains
a header for each column, namely wav_filename, wav_filesize and transcript.

Transcriptions are only allowed to contain a special set of characters, called an
alphabet. For Swedish, we define the alphabet as the letter a–z, plus the letters å,
ä, and ö. Any transcripts that contain characters outside the alphabet either have
to be discarded, or the invalid characters have to be converted into a character in the
alphabet. Transcripts are also made all lowercase, as the alphabet would otherwise
need to contain all capitalized letters as well, meaning that e.g., the letters A and a
would be treated as non-equivalent.

4.1.1 Processing the NST Dataset
Retrieving the NST Dataset is as straightforward as downloading four compressed
archives from the National Library of Norway’s website.1 One of the compressed
archives contains the test part of the NST Dataset, and the other three archives
contain the training part. To make further processing easier, the contents of all
three training parts are extracted into a directory called train, and the test part
into a directory called test.

The properties of the sound files in the NST Dataset almost perfectly matches the
requirements of Mozilla’s DeepSpeech. The only mismatch is in the number of
channels, where the sound files of the NST Dataset are stereo, but mono is required.
Because of this, all sound files in the NST Dataset are converted to mono, by mixing
the two channels together. Mixing the sound files into a single channel was done
using the open-source utility FFmpeg.2

All transcripts of the NST Dataset are spread out over multiple different files, as
described in Section 3.1, and thus need to be extracted. For each .spl file, speaker
metadata was extracted from the top of the file using simple pattern matching. All
the validated transcripts are placed between the two headers [Validation States]
and [End], and each of the transcripts are separated by a newline character. Each
line between the two headers could thus be treated as a transcript, and parsed
individually. Each such line includes a reference to a sound file, and the transcription
of the spoken Swedish.

In order to make future processing steps easier, all transcripts were saved into a
single .csv file, combining the transcript with all metadata known about it. Each
transcript together with its sound file reference and speaker metadata was saved,
with each comma-separated line containing all the information for a transcript. In
addition to just saving a reference to each transcript’s sound file, the file size and
duration in seconds for the sound file was calculated and saved in the .csv file. The
duration of each sound file was determined programmatically using an open-source
utility called SoX.3

1https://www.nb.no/sprakbanken/show?serial=oai%3Anb.no%3Asbr-16&lang=en
2https://www.ffmpeg.org/
3http://sox.sourceforge.net/
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Splitting the dataset

The dataset needs to be split into a training, development, and test part, as is
common when developing machine learning models [6, 37, 52, 53]. The NST Dataset
already comes with a test part, making up about 20% of the total data. This test
set is left intact, such that our results can be compared with other work also using
the NST Dataset, such as Kullmann [3]. The remaining training part from the NST
Dataset is split into a new training part and a development part. The aim is to split
the combined data such that the training part makes up 70%, the development part
10%, and the test part 20%. To achieve this, the training part of the NST Dataset
is split into a new training part that is roughly 87.5%, and the remaining 12.5%
goes into the development part.

When splitting the dataset, we wanted to maintain a balance in gender, duration,
and dialect between the subsets as close as possible to the one in the original dataset.
Also, most importantly, no speaker should appear in more than one of the three
parts, as that might lead to overfitting to a specific speaker [10]. As the test part is
fixed, we can not influence it, but we can influence the creation of the new training
part and the development part. In order to maintain the desired balance when
splitting the datasets, a simple randomized algorithm was developed, as displayed
in Algorithm 4.1.

Algorithm 4.1 Randomized algorithm for splitting the NST Dataset
Require: data := training part from NST Dataset
train, dev := {}
thresholds := {10%, 0.1%, 0.1%} // {dialect, duration, gender}
while not balanced do
// Randomly split the data into two parts, based on speakers
train, dev := randomize(data, 87.5%, 12.5%)
// Check if the random split is balanced
balanced := is_balanced(train, dev, thresholds)

end while
return train, dev

The algorithm described in Algorithm 4.1 randomly splits the training part of the
NST Dataset until it finds a split that satisfies the requirements. The splitting
is done based on the speakers, such that 87.5% of all speakers will be in the new
training part, and 12.5% of the speakers will be in the development part, with
no overlap. After the randomized split, the resulting training and development
subsets are automatically checked as part of the algorithm to make sure that they
are balanced in terms of dialect, gender, and duration. When determining if a certain
variable (e.g., dialect) is balanced, we allow for some margin of error, referred to
in the algorithm as a threshold. For the gender and duration balance, we set the
threshold to 0.1%. Since the difference between male and female in the NST Dataset
is roughly 10%, setting a threshold of 0.1% means a difference in balance of e.g.,
9.9% in either of the new parts is accepted. For the dialect balance, we set the
threshold to 10%, since the total balance in the NST Dataset is not so good to
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begin with, as seen in Table 3.1, making it hard to find an accepted split with lower
thresholds.

The resulting training and development splits are saved in the files train.csv and
dev.csv respectively. In these files, for each data point there is a file path, the file
size, and the transcript of a sound file. These files are according to the specifications
of Mozilla’s DeepSpeech. Before these files are saved however, the data is also filtered
according to the process described in the next section, and normalised according to
the process described in Section 4.1.3.

Filtering bad data

Some of the data in the NST Dataset is not suitable for use with Mozilla’s Deep-
Speech. There is an upper limit of 10 seconds for the duration of the sound files.
This only applies when training the model, but means that files longer than 10
seconds need to be filtered from the final training and development set.

There are some sound files that do not match their corresponding transcript. This
is detectable from the fact that the duration is too short compared to the text
transcript. Mozilla’s DeepSpeech has a built-in detection for the case of too short
sound files, so they are easy to detect. We simply ran all the training and test data
through Mozilla’s DeepSpeech, and took note of all sound files that were deemed
bad, and filtered these out.

The NST Dataset contains some transcripts with non-standard Swedish characters,
such as è, ü, î, and ÿ, as well as some transcriptions with the text tyst under denna
inspelning (which is Swedish for silent during this recording) together with a silent
sound file. All of these transcripts were removed from both the training and test
part of the NST Dataset.

4.1.2 Processing Common Voice
The Common Voice dataset is downloaded from its official website.4 Data for mul-
tiple different languages are available, but only the Swedish data is of interest for
this project.

In contrast to the sound files from the NST Dataset, the sound files from Common
Voice requires more processing before they are compatible with Mozilla’s Deep-
Speech. The sound files from the Common Voice dataset have both the wrong
sample rate and the wrong encoding. Luckily, as the Common Voice dataset has
been used together with Mozilla’s DeepSpeech before, there exists an official script
for processing all sound files. The official script is part of the DeepSpeech reposi-
tory by Mozilla on GitHub.5 It uses the open-source utility SoX for all sound file
processing.6

4https://voice.mozilla.org/en/datasets
5https://github.com/mozilla/DeepSpeech
6http://sox.sourceforge.net/
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The official processing script does some filtering of data not suitable for Mozilla’s
DeepSpeech. First of all, it only extracts the transcripts and sound files that have
been validated by multiple users. It also filters out sound files that are too long for
Mozilla’s DeepSpeech. Finally, it also filters files that have a mismatch between the
transcript and the actual sound file, i.e., if the duration of the sound file is too short
for the provided transcription.

In order to use Common Voice as a means of evaluating the models developed as
part of this project, all of the validated data was used. That means that no splitting
into training, development, and test is made — there is instead just a test set.

4.1.3 Normalisation of transcripts
As previously mentioned, transcriptions are only allowed to contain a special set of
characters. This means that the transcriptions for the datasets had to be normalised
to fit the allowed alphabet. This normalisation is enforced by Mozilla’s DeepSpeech,
as it will crash if it detects characters which are not allowed.

Table 4.2: Character substitutions made when normalising dataset transcripts.
The single blank space character (UTF-8 0x20) is denoted BLANK, and a character
removal (i.e., the substitution with nothing) is denoted REMOVED.

Original Substitution
- BLANK
_ BLANK
. REMOVED
, REMOVED
; REMOVED
? REMOVED
! REMOVED
: REMOVED
" REMOVED

[, ], (, ) REMOVED
| REMOVED

\, / BLANK
é, è e
& och
% procent

Normalising the transcripts is easy from a technical point of view, but considerably
harder from a linguistic point of view. The actual normalisation is just a matter
of searching for disallowed characters, and either replacing them or removing them
according to some rules, but these rules need to be defined. It is important that the
rules are defined in such a way that a transformation does not create a mismatch
between the transcript and what is actually being said in the sound file, as this
might impact the final model in a negative way. All character substitutions that
were made are shown in Table 4.2.
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Numbers and digits would usually have to be normalised into words, as there are
no digits in the alphabet. In the NST Dataset, this has already been done, where
e.g., the number 97470 is transcribed as nittiosju tusen fyrahundrasjuttio. As far
as we know, there are no numbers in the Common Voice dataset. In summary, no
normalisation of numbers and digits is required for the dataset transcriptions.

4.2 Language model
When doing ASR using models such as DeepSpeech [5] or wav2letter [6], a language
model can typically be used to improve the accuracy of the inference [6, 10, 37]. As,
to the extent of our knowledge, there are no openly available language models for
Swedish compatible with Mozilla’s DeepSpeech, a language model had to be created
from scratch.

For compatibility with Mozilla’s DeepSpeech, the language model is created using
the KenLM [14] toolkit. The KenLM toolkit comes with some tools that can be used
to create a KenLM language model. Most notably, the lmplz and build_binary
tools are provided. The lmplz tool is used to create the actual n-grams based
language model given some text corpus, and the build_binary tool converts the
language model into an efficient binary representation.

Before a language model could be created using lmplz, we had to create a text corpus
that the model could be based on. Previous research has typically used massive open
text corpora online, such as Wikipedia and the Europarl corpus [10, 31], so we also
opted for this approach. Besides using the Swedish version of Wikipedia, and the
Swedish part of Europarl, we have also used transcripts from speeches in the Swedish
Parliament, and news articles from the Swedish newspaper Göteborgs-Posten.

Table 4.3: Text corpora used to create Swedish language model.

Name Size Source
Swedish Wikipedia 2.1 GB (46.80%) Wikipedia
Swedish Europarl 202 MB (4.57%) Språkbanken
Swedish Parliament 697 MB (15.81%) Språkbanken
Göteborgs-Posten 1.5 GB (32.82%) Språkbanken
Total 4.4 GB (100%)

See Table 4.3 for a list of the corpora used, and how large they are in relation to each
other. The Swedish version of Wikipedia is downloaded from the official Wikipedia
database dump.7 The Swedish Europarl corpus, the Swedish Parliament speech
transcripts, and the texts from Göteborgs-Posten are downloaded from Språkbanken
Text,8 the division of the National Language Bank.

None of the corpora can be used in their original form, and therefore require some
pre-processing before being fed into the KenLM toolkit. Both the corpora from

7https://dumps.wikimedia.org/
8https://spraakbanken.gu.se/
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Språkbanken, and the Swedish version of Wikipedia are originally in a structured
XML format, containing metadata. For the language model, only the actual Swedish
sentences are of interest, and the KenLM toolkit expects a single plain text file of
all text. In order to extract the plain text articles, removing structured data such
as tables etc., from Wikipedia, the open-source tool WikiExtractor was used.9 To
extract plain text from the XML files from Språkbanken, we had to implement our
own simple script.

Additionally, a language model which includes a corpora based on the training part
of the NST Dataset was created. This language model was created using all of the
corpora from Table 4.3, plus all the transcripts from the training part of the NST
Dataset.

4.2.1 Corpora normalisation
Previous research suggests that simply using the plain texts from the corpora is not
enough, but the sentences should also be normalised such that they are closer to
spoken language [31]. In Agarwal et al. [31], a tool called MaryTTS was used to do
the normalisation.10 The normalisation steps includes expansion of abbreviations,
and conversion of digits and numbers into words (e.g. 97470 into ninety seven thou-
sand four hundred seventy). On the official website of MaryTTS, support for the
Swedish language is claimed, but after examining the tool further no such support
seems to exist.

As Swedish support in MaryTTS is lacking, we had to implement our own normalisa-
tion script, with inspiration fromMaryTTS. As it would likely be an entire additional
thesis project to implement an entire text normalisation system for Swedish, we had
to focus our efforts. We primarily focused on implementing number to word normal-
isation, with a word representation close to the one found in the NST Dataset, where
e.g., 97470 is normalised as nittiosju tusen fyrahundrasjuttio (ninety seven thousand
four hundred seventy). Additionally, we wanted to make sure to expand some com-
mon abbreviations, as shown in Table 4.4. When doing this, we also normalised
square and cubic units, such that e.g., m2 is normalised to kvadratmeter (square
meters) and dm3 is normalised to kubikdecimeter (cubic decimeters). This type of
normalisation was implemented using regular expressions and search-and-replace.
In addition to normalisation of numbers and abbreviations, the same substitutions
as described in Section 4.1.3 were performed, shown in Table 4.2.

Before applying the number to word normalisation described, we realised that due to
how numbers are typically written, they themselves often had to be pre-normalised
before being normalised into words. The patterns observed were numbers with
decimals, e.g., 3, 14 (decimals written with comma in Swedish), number ranges, e.g.,
18 − 65, and numbers being separated by whitespace, e.g., 97 470. These were
pre-normalised as 3 komma 14 (3 comma 14 ), 18 till 65 (18 to 65 ), and 97400
respectively.

9https://github.com/attardi/wikiextractor
10http://mary.dfki.de
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Table 4.4: Normalisation of Swedish abbreviations.

Abbreviation Normalised
bl.a. bland annat (including)
t.ex. till exempel (for example)
osv. och så vidare (and so on)
mm millimeter
cm centimeter
dm decimeter
km kilometer
m meter
ml milliliter
cl centiliter
dl deciliter
l liter

An issue encountered with number to word normalisation is that of correctly normal-
ising years and centuries. With our implementation, e.g., the year 1923 is normalised
as ett tusen niohundra tjugotre (one thousand nine hundred twenty three) instead of
nittonhundra tjugotre (nineteen twenty three). This does not correspond to how a
person would typically pronounce a year in Swedish. The same problem exists in
Swedish when dealing with centuries, such as 1900-talet (20th century), where with
our implementation the normalisation would incorrectly be ett tusen niohundra talet
instead of nittonhundra talet.

4.2.2 Compilation

After all corpora was normalised and combined, a Swedish language model could
be compiled using the KenLM toolkit. The lmplz tool allows specifying n, when
creating the n-grams model. Both a 3-grams and a 5-grams model were created from
the combined corpora, so that the effect of n could be examined. Two additional
5-grams models based on just Wikipedia were also created, one from the normalised
version and one from the un-normalised one. These were created such that the effect
of normalisation and a larger corpora could be examined.

Once the language models had been created, they all had to be converted into a
binary and memory optimized trie data structure. This is required by Mozilla’s
implementation of DeepSpeech. The build_binary tool in the KenLM toolkit was
used to create binary trie representations of the language models. Mozilla’s Deep-
Speech also comes with a tool called generate_trie, which takes the binary trie
from KenLM as input. It also takes an alphabet, i.e., a list of allowed characters (as
described in Section 4.1). When using Mozilla’s DeepSpeech, it requires both the bi-
nary trie from the build_binary tool, and the output trie from the generate_trie
tool in order to utilise the language model during inference.
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4.3 Developing the general Swedish model
The general Swedish model was developed using Mozilla’s DeepSpeech. The pro-
cessed NST Dataset was primarily used for training the model. Besides typical
hyperparameter tuning, two different approaches to training were explored. The
first, and most straightforward approach, was to train a DeepSpeech model from
scratch. In this case, the model was only trained on the training part of the NST
Dataset. The second approach was to fine-tune the released pre-trained English
model on the NST Dataset, and is described further in Section 4.3.1. The model
trained from scratch serves as a baseline to evaluate the model trained using transfer
learning.

When exploring hyperparameters for the model, mini-batch size, dropout rate, and
learning rate were considered. As a starting point, the parameters that were used
to train the publicly available pre-trained English model for Mozilla’s DeepSpeech
were copied. These parameters are shown in Table 2.1. However, due to hardware
memory limitations, a mini-batch size of 128 could not be used, so 64 was used
as a starting point instead. Different combinations of hyperparameter values were
manually explored.

In order to know when to stop training of a particular model, early stopping [21]
was used. After each epoch of training, the average loss was calculated over the
development part of the processed NST Dataset. If there had been no improvements
in loss for the past four epochs, training was stopped.

4.3.1 Transfer learning from English
As mentioned, the second approach explored was to use transfer learning from a
pre-trained English model, so called fine-tuning (see Section 2.2). Transfer learning
has previously successfully been used when developing ASR systems for languages
with limited training data [10–12], which is what motivated the exploration of this
approach. Instead of first training a DeepSpeech model for English ourselves, the
pre-trained English model by Mozilla was used.

A problem with the pre-trained English model was that it was trained using a
different alphabet. In particular, it was trained to support the ’-character, and it
did not recognise the Swedish letters å, ä and ö. In order to mitigate this problem,
the output layer of the model was replaced with a new layer with a size matching
our desired alphabet. This however meant that the weights from the original output
layer were discarded and not transferred, but previous work indicate that the output
layer is not as important as the previous layers [10, 11].

After making the architectural changes required to continue training with Swedish
data, training models using transfer learning was made in the same fashion as when
training models from scratch. The only difference would be that the models utilising
transfer learning would first load the weights from the English model, before starting
training on the Swedish data. None of the layers were frozen during the training.
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4.3.2 Evaluation

After the training of each model was complete, the WER, CER, and average loss was
calculated on the development part of the processed NST Dataset. These measure-
ments were then used to determine a best performing model. After hyperparameter
tuning, and exploring the two different approaches, a best performing model was
determined. This model was then used to calculate the WER, CER and average
loss on the test part of the NST Dataset, in order to get an evaluation result that
could be compared to Kullmann [3]. Multiple different language models were tested
in order to evaluate how different language models affected the WER and CER.

Besides comparing against Kullmann [3], we also wanted to compare the model
against commercial services, such as Google’s Cloud Speech-to-Text. In order to
make such a comparison, the WER and CER had to be calculated for the test part
of the NST Dataset, using Google’s Cloud Speech-to-Text. To calculate this, each
of the sound files from the test part was sent to the service to get a prediction. The
predictions were then compared to the actual transcripts, and the WER and CER
could be calculated. However, Google’s Cloud Speech-to-Text service transcribes
numbers with actual digits, making the transcription incompatible with the alphabet
used throughout this project. To make for a fair comparison, we also normalised
all numbers into their corresponding words, such that e.g., 24 becomes tjugofyra
(twenty four), similarly to the number normalisation described in Section 4.1.3 and
Section 4.2.1.

Finally the best performing models are evaluated in terms of WER and CER against
the Common Voice dataset for Swedish. This is done in order to get some estimate
of how the models generalise outside of the NST Dataset domain.

4.4 Developing the domain specific models

In order to create domain specific ASR models, domain specific datasets were re-
quired. The datasets were created as part of this project, and the data for them was
collected manually. Two datasets, and thus two different domain specific ASR mod-
els, were created — the Lunchekot Dataset within the news broadcasting domain,
and the Sports Dataset within the sports domain.

Once the domain specific datasets were in place, transfer learning based on the
general Swedish model was explored. More specifically, the general Swedish model
was fine-tuned on the domain specific datasets.

Finally, after hyperparameter tuning of the new domain specific models, the general
Swedish model was compared to the new domain specific models on the test part of
each respective dataset.
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4.4.1 Dataset creation

In order to create a domain specific dataset, a source of domain specific speech
data was needed. As mentioned in Section 1.2.2, the dataset used to train the
domain specific model should be significantly smaller than the one used for the
general model, in order to successfully reach the aim of the thesis. After exploring
alternatives, the decision fell on using the daily radio news show called Lunchekot
from the Swedish public service radio company Sveriges Radio.11

Based on the data from Lunchekot, two datasets were created. The first dataset
contains all of the speech data from Lunchekot, making up a very broad domain.
The other dataset only contains a subset of the Lunchekot data, namely the sports
segment, where exclusively sports are discussed. The second dataset is considered
much more specific, or narrow, in the domain aspect. Additionally, it is much smaller
in size, as it is made up of a smaller subset of the first dataset.

As mentioned in Section 3.3, a total of 14 episodes of Lunchekot were arbitrarily
selected, such that there was at least a couple of days between each episode. Each
episode was manually cut into multiple shorter sound clips. The cutting was made
such that each new sound clip contained just a single sentence from a single speaker,
and such that the sound clip was shorter than 10 seconds. As some sentences
were spoken for longer than 10 seconds, they sometimes had to be cut into two
parts. This cutting was made in a way such that the sentences were as semantically
meaningful as possible when split into two separate parts. Any non Swedish speech
was removed, with exceptions for names, locations, and common English loan words
and expressions used as part of an otherwise Swedish sentence. The importance
of keeping the sound clips shorter than 10 seconds comes from the limit, during
training, in Mozilla’s DeepSpeech.

After cutting the episodes of Lunchekot into sound clips of sentences, each sentence
was manually transcribed by the authors. The sentences were transcribed by listen-
ing to each sentence, and writing the transcription manually in a text file, where
each sentence was on a separate line. While transcribing, all numbers were writ-
ten as text. After transcribing each sound clip, all transcriptions were normalised
and validated by at least one other person in addition to the person who originally
transcribed it. Any disagreement in the transcriptions were settled by bringing in a
third person, such that the majority would decide on the transcription to use. The
authors as well as all additional third persons consulted during the transcription
process have Swedish as their native language.

All transcriptions together with their corresponding sound clips were also annotated
with a speaker ID and the gender of the speaker. The speaker ID was mostly
straightforward to extract, due to the format of Lunchekot. In the program, a
host usually says who just spoke or is about to speak. The gender of the speaker
was annotated both by researching the name of the speaker, and by listening to
the speakers voice. Like with the transcriptions themselves, these annotations were

11https://sverigesradio.se
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entered manually in a text file. The annotation was made to aid with splitting the
datasets, which was the next and final step.

Both datasets had to be split into a training, development, and test part, similarly
to how the NST Dataset was split. Just like with the NST Dataset, we wanted the
datasets to be split into 70% training, 10% development, and 20% test. Making the
actual split could be done using the same method as for the NST Dataset, namely
using Algorithm 4.1. This was possible as the transcriptions were annotated with
gender and speaker ID. Since there is no information about dialects however, this
parameter was not taken into consideration in the algorithm. When splitting the first
dataset, the thresholds had to be updated to 10% for the gender distribution, and
1% for the duration distribution. The updated thresholds were required as a split
could not be found with the same threshold parameters as for the NST Dataset. For
the second dataset, the sports specific one, the gender and speaker ID parameters
were also ignored when making the split, as the total number of unique speakers was
very small. This meant that the second dataset was split only based on duration.

4.4.2 Fine-tuning the general Swedish model
After having both dataset in place, the domain specific models could be created.
As stated in Section 1.1, one aim of this thesis is to explore if transfer learning can
be used to achieve better results in specialised domains. To do this, the general
Swedish model was used as the basis for transfer learning in the form of fine-tuning.

The general Swedish model was used as a base for both of the domain specific
models. The models were fine-tuned on the training part of the general Lunchekot
Dataset and the Sports Dataset respectively. Similar to how training of the general
Swedish model was performed, the model was evaluated against the development
part of the datasets after each epoch of training.

Multiple values for the hyperparameters learning rate, dropout, and mini-batch
size were explored for both models, similarly to how hyperparameter search for
the general Swedish model was performed. As the domain specific datasets are
significantly smaller in size compared to the NST Dataset, training of the models was
very quick. This meant that thousands of different hyperparameter combinations
could be tested in just a day, compared to roughly one per day when training the
general Swedish model on the NST Dataset. To aid the process of hyperparameter
search given the quick training time, a simple script which randomly generated and
tested hyperparameters was used. Random search for hyperparameter optimization
has been shown to be more efficient than manual or grid search approaches, when
feasible [54].

4.4.3 Evaluation
While developing the domain specific models, after the training of each model variant
was completed, the WER, CER and average loss was calculated on the development
part of the dataset of which the model was trained on. Similarly to how the general

36



4. Method

Swedish model was evaluated, the best performing model variant for each dataset
was selected. The best performing variant was then tested in terms of WER, CER
and average loss on the test part of the dataset on which it was trained on.

In order to compare the domain specific model to the general Swedish model, the
general Swedish model was also evaluated on the test part of the general Lunchekot
Dataset and the Sports Dataset. This allows determining whether or not transfer
learning could indeed be used to create a better performing domain specific model,
evaluated on two different domain specific datasets.

Similarly to the evaluation of the general Swedish model in section 4.3.2, multiple
different language models were evaluated. In order to do this, two additional lan-
guage models were created. These two language models were based on the best
performing language model for the general Swedish model, but also included the
transcripts from the training part of both the domain specific datasets respectively.
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5
Results

This chapter presents results obtained from experiments conducted in the project.
The structure closely follows that of Chapter 4, to make it easier to follow along.

5.1 Dataset processing
Dataset processing was done according to the methods described in Section 4.1. The
results of processing each of the datasets are described below.

5.1.1 NST Dataset
Using the algorithm described in Section 4.1.1, the training part of the NST Dataset
(referred to as NST Original Training in Table 5.1) could successfully be split into
a new training part, as well as a development part. These new splits are referred
to as NST Train and NST Dev respectively. Statistics for the resulting splits are
shown in Table 5.1, together with statistics for the original training and test part.
The test part is referred to as NST Test.

Table 5.1: Resulting datasets after processing the NST Dataset.

Dataset Length (h) Male (%) Female (%)
NST Original Training 392 45 55

— NST Train 343 45 55
— NST Dev 49 45 55

NST Test 103 49 51
Total 495 46 54

When processing the NST Dataset, some files were filtered out. Most importantly,
some files had to be filtered out of the NST Test set. In total, NST Test contains
73047 files, out of which 87 had to be filtered out. Table 5.2 lists how many files had
to be removed, grouped by the reason for removal, together with their fraction of
the total size of NST Test. A total of 83 files were removed as they only contained
silence. These were the files that had the transcription tyst under denna inspelning
(which is Swedish for silent during this recording), as described in Section 4.1.1.
Finally, 2 files were filtered out as their transcriptions were too short to match
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the duration of their sound file, and 2 files were filtered out as their transcriptions
contained unwanted characters not in the alphabet. See Appendix A for a complete
description of filtered files.

Table 5.2: The number of files filtered out of the total size of NST Test, grouped
by the reason for filtration.

Reason Number of files Part of total (%)
Silent recording 83 0.11
Duration too short for transcript 2 < 0.01
Unwanted character 2 < 0.01
Total removed 87 0.12
Total 73047 100

5.1.2 Common Voice
After using the processing script that comes with Mozilla’s DeepSpeech for pro-
cessing the Swedish part of the Common Voice dataset, roughly five hours of data
remained. These five hours corresponds to the validated part of the dataset. The
remaining 15% of the dataset was left out as it had not been validated.

5.2 Language model
Three language models were created, two using 5-grams, and one using 3-grams.
All language models are based on the corpora mentioned in Table 4.3, following the
method described in Section 4.2. Additionally, one of the 5-grams based language
models also include a corpora based on the training part of the NST Dataset. The
language models are described in Table 5.3. The storage space required grows ex-
ponentially when increasing the order of the language models. The 3-gram model
uses 2.6GB while both of the 5-gram models use about 12GB.

Table 5.3: Resulting language models and the corpora used to create each of them,
as indicated with a check-mark.

LM Name Swedish
Wikipedia

Swedish
Europarl

Swedish
Parliament

Göteborgs-
Posten

NST
Training

5-grams X X X X
5-grams + NST X X X X X
3-grams X X X X

5.3 General Swedish model
Below are the results from testing the best performing models trained from scratch
and trained using transfer learning from a pre-trained English model. The results
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show that the model that utilises transfer learning outperforms the model trained
from scratch, with an absolute difference of over 5% in WER.

The results from evaluating the models on the Swedish part of Common Voice shows
a far worse WER and CER for both the model trained from scratch and the model
utilising transfer learning when compared to the results on NST Test. However,
comparing the results on NST Test to Google’s Cloud Speech-to-Text shows that
the best model is on par with one of the best commercial services available, as
described in Section 5.3.3.

Both the model trained from scratch and the model utilising transfer learning took
on average about 12 hours to train.

5.3.1 Training from scratch
The best performing model trained from scratch used the hyperparameters shown
in Table 5.4. These are the same as the for the pre-trained English model from
Mozilla, with the exception of the changed mini-batch size. Since training a model
from scratch is the most straightforward and typical approach, these results are
regarded as a baseline for comparison and evaluation of the model trained using
transfer learning.

Table 5.4: Hyperparameters for best performing model trained from scratch.

Parameter Value
Mini-batch Size 64
Learning Rate 0.0001

Dropout 0.2

In Table 5.5, the results from testing the model on NST Dev, NST Test, and Com-
mon Voice are shown, using different language models. The best result in terms of
WER and CER for each dataset is underlined. The overall best language model, in
terms of on average lowest WER over all datasets, is highlighted in bold font. The
lowest WER on NST Test achieved using the ASR model trained from scratch was
19%, and used the 5-grams + NST language model. This language model was also
the overall best performing language model.

Table 5.5: Test results for ASR model trained from scratch. The best WER and
CER for each dataset is underlined. The on average best language model is in bold
font.

NST Test Common Voice
Language Model WER (%) CER (%) WER (%) CER (%)
No language model 39.22 11.33 83.17 43.08
5-grams 19.27 07.10 68.08 41.59
5-grams + NST 19.01 07.05 68.08 41.58
3-grams 19.42 07.16 68.04 41.58
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5.3.2 Transfer learning from English
Hyperparameters for the model trained using transfer learning based on a pre-trained
English model are shown in Table 5.6.

Table 5.6: Hyperparameters for best performing model trained using transfer learn-
ing.

Parameter Value
Mini-batch Size 64
Learning Rate 0.0001

Dropout 0.3

In Table 5.7, the results from testing the model on NST Dev, NST Test, and Com-
mon Voice are shown, using different language models. The best result in terms of
WER and CER for each dataset is underlined. The overall best language model,
in terms of average lowest WER over all datasets, is highlighted in bold font. The
lowest WER achieved, on NST Test using the transfer learning model was 14%, and
used the 5-grams + NST language model. This language model was also the overall
best performing language model.

Table 5.7: Test results for ASR model trained using transfer learning. The best
WER and CER for each dataset is underlined. The on average best language model
is in bold font. Improvements over each result in Table 5.5 are highlighted and in
parentheses.

NST Test Common Voice
Language Model WER (%) CER (%) WER (%) CER (%)
No language model 27.55 (-11.67) 07.56 (-3.77) 67.44 (-20.73) 32.17 (-10.91)
5-grams 14.03 (-5.24) 04.82 (-2.28) 52.21 (-15.87) 30.64 (-10.95)
5-grams + NST 13.80 (-5.21) 04.78 (-2.27) 52.21 (-15.87) 30.63 (-10.95)
3-grams 14.16 (-5.26) 04.87 (-2.29) 52.22 (-15.82) 30.66 (-10.92)

5.3.3 Evaluating commercial services
After letting Google’s Cloud Speech-to-Text predict transcriptions for NST Test, a
WER and CER of 27% and 17%, respectively, could be calculated. After normalis-
ing numbers produced by Google’s Cloud Speech-to-text, the WER and CER were
improved to 21% and 9%, respectively. Even after normalisation, the error rate is
significantly higher than for the ASR model using transfer learning developed as
part of this project. Table 5.8 shows a transcription by Google’s Cloud Speech-to-
Text, alongside with its normalisation and the ground truth. It is clear that the
decision to group some numbers together has a large impact on the final normalised
prediction compared to the ground truth. A rough estimate of the NST Test set
indicates that about 10% of the transcriptions are just numbers; however, remov-
ing these when evaluating Google’s Cloud Speech-to-Text service did not yield any
significant improvement.
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Table 5.8: An example of a predicted transcription by Google’s Cloud Speech-to-
Text together with its normalisation, compared to the ground truth.

Prediction 4128 22 616
Normalised
Prediction fyra tusen etthundratjugoåtta tjugotvå sexhundrasexton

Ground Truth fyra ett två åtta tjugotvå sexhundrasexton

The transcriptions of NST Test produced by Google’s Cloud Speech-to-Text service
are published.1 This enables future researchers to use these for comparison and
evaluation, without having to spend more money on Google’s service.

5.4 Domain specific models
The following subsections describe the results from developing two domain specific
models, the Lunchekot domain model and the Sports domain model.

5.4.1 Datasets
The domain specific datasets were created according to the described method in
Section 4.4.1. In total, just over 5 hours of speech was transcribed, validated and
annotated from Lunchekot by the authors. These five hours of speech make up the
Lunchekot Dataset and is split into 70% training, 10% development, and 20% test.
From the Lunchekot Dataset, the sports segments of each episode were extracted
to form a second domain specific dataset, the Sports Dataset. The Sports Dataset
is just 18 minutes of speech in total and is also split into 70% training, 10% de-
velopment, and 20% test. Both the Lunchekot Dataset and the Sports Dataset are
described in further detail in Section 3.3 and Section 3.4 respectively.

5.4.2 Language models
Besides using the best performing language model from the general Swedish model,
the 5-grams + NST language model, two additional language models were created.
One 5-grams language model which also includes a corpora based on the training
part of the Lunchekot Dataset, and one 5-grams model which also includes the
training part of the Sports Dataset. Both of the two new language models also
include the corpora used for the 5-grams + NST language model. The two new
language models are referred to as 5-grams + NST + Lunchekot and 5-grams +
NST + Sports respectively.

5.4.3 Lunchekot domain model
The hyperparameters for the best performing model variant fine-tuned on the Lunchekot
Dataset are shown in Table 5.9. This model is based on the best performing general

1https://github.com/se-asr/nst-google
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Swedish model, as described in Section 5.3.2. Fine-tuning of the domain specific
model was completed in a couple of minutes, compared to the multiple hours of
training required for the general Swedish model.

Table 5.9: Hyperparameters for best performing domain specific model fine-tuned
on the Lunchekot Dataset.

Parameter Value
Mini-batch Size 37
Learning Rate 0.00011

Dropout 0.172

In Table 5.10, the results from testing the model in terms of WER and CER on
the test part of the Lunchekot Dataset are shown. A comparison is also made with
the results from testing the best performing general Swedish model on the test part
of the Lunchekot Dataset. As can be seen in the table, the domain specific model
yields an absolute improvement of on average 12% in terms of WER, and 6% in
terms of CER, compared to the general Swedish model.

Table 5.10: Test results for the Lunchekot domain model compared to test results
for the general Swedish model. Results are from testing on the test part of the
Lunchekot Dataset. The best WER and CER are underlined.

Language Model WER (%) CER (%)

General Swedish
model

No language model 58.30 20.38
5-grams + NST 36.36 15.91
5-grams + NST + Lunchekot 35.95 15.80

Lunchekot
domain model

No language model 45.87 14.31
5-grams + NST 25.26 10.35
5-grams + NST + Lunchekot 24.72 10.13

The first example in Table 5.11 shows an interesting transcription predicted by the
Lunchekot domain model on the Lunchekot Dataset. The predicted transcription
gets a 100% word error rate, but only a 4% character error rate. As can be seen
in the table, the only error is a missing s, resulting in the compound word being
separated into two. The remaining examples in the table show typical errors, as well
as a perfect transcription with zero word error rate.

5.4.4 Sports domain model
The hyperparameters for the best performing model variant fine-tuned on the Sports
Dataset are shown in Table 5.12. This model is based on the best performing general
Swedish model, as described in Section 5.3.2. Fine-tuning of the domain specific
model was completed in a couple of minutes, compared to the multiple hours of
training required for the general Swedish model.

In Table 5.13, the results from testing the model in terms of WER and CER on
the test part of the Sports Dataset are shown. A comparison is also made with the

44



5. Results

Table 5.11: Examples of interesting transcriptions made by the Lunchekot domain
model on the Lunchekot Dataset.

Ground Truth eller samtalsbehandlingar
Prediction eller samtal behandlingar
WER 100.00 %
CER 4.00 %
Ground Truth hela regelverket behöver uppdateras
Prediction hela regelverket för häver uppdateras
WER 50.00 %
CER 14.29 %
Ground Truth ericssons styrelse föreslår att utdelningen ökar ordentligt
Prediction eriksson styrelse föreslår att utdelningen ökar ordentligt
WER 14.29 %
CER 3.39 %
Ground Truth en säkerhetsåtgärd för att undvika smittspridning
Prediction en säkerhetsåtgärd för att undvika smittspridning
WER 0.00 %
CER 0.00 %

Table 5.12: Hyperparameters for best performing domain specific model fine-tuned
on the Sports Dataset.

Parameter Value
Mini-batch Size 26
Learning Rate 0.00016

Dropout 0.282

results from testing the best performing general Swedish model on the test part of
the Sports Dataset. As can be seen in the table, the domain specific model yields
an absolute improvement of on average 9% in terms of WER, and 4% in terms of
CER, compared to the general Swedish model.

Some examples of transcriptions made by the Sports domain model on the Sports
Dataset are shown in Table 5.14. The table shows an example of a perfect transcrip-
tion (WER is 0%), an okay transcription (WER is 33%), and a transcription which
is bad (WER is 67%). Looking at more examples, the cause of errors seems to be
rather arbitrary. There are examples of 20 word long sentences scoring a perfect 0%
WER, but there are also examples of much shorter sentences which are completely
wrong. A lot of the times, a name is just misspelled, or a word is missing a letter
such as when the word inflection is wrong. It sometimes gets rather obscure names
of either teams or people correct, and sometimes fails a lot. An example of a name
it correctly transcribes is Linda Hofstad Helleland, which would not typically be
considered common last names.
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Table 5.13: Test results for the Sports domain model compared to test results for
the general Swedish model. Results are from testing on the test part of the Sports
Dataset. The best WER and CER are underlined.

Language Model WER (%) CER (%)

General Swedish
model

No language model 62.12 20.59
5-grams + NST 40.04 16.19
5-grams + NST + Sports 28.37 13.14

Sports domain
model

No language model 52.24 16.49
5-grams + NST 32.32 12.33
5-grams + NST + Sports 19.03 08.56

Table 5.14: Examples of a perfect, okay, and bad transcription made by the Sports
domain model on the Sports Dataset.

Ground Truth och svenskt missflyt har det även varit i skidskytte
Prediction och svenskt missflyt har det även varit i skidskytte
WER 0.00 %
CER 0.00 %
Ground Truth tror inte zlatans karriär är över
Prediction tror inte slattats karriär över
WER 33.33 %
CER 18.18 %
Ground Truth kvart över två i eftermiddag i p fyra extra avslöjas årets kandidater
Prediction juventus två eftermiddagen ipfyra extra varslas årets kandidater
WER 66.67 %
CER 27.94%
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In this chapter, some of the key results are highlighted and discussed in further
detail, in relation to the methodology and constraints of the project. Each section
can be considered a key takeaway or point of discussion.

6.1 The impact of language models
Language models have been considered for each model presented throughout this
thesis. In each case, the use of a language model improved the performance sig-
nificantly, as can be seen in Table 5.5, Table 5.7, Table 5.10 and Table 5.13. The
tables show that using any language model is considerably better than not using a
language model at all, both in terms of WER and CER.

That being said, the difference between the models that have been used is minimal.
First of all, the order of the model had a small impact; there was less than a 1%
absolute improvement between using 3-grams and 5-grams. Considering the small
improvement and the exponential growth in storage space required, as described in
Section 5.2, it is not obvious that a greater order n-grams is always desired. As an
example, in this thesis we decided to not use a higher order than 5-grams due to
storage limitations. The small improvement when going from 3-grams to 5-grams
also implies that 3-grams are enough in most cases.

Another observation is that increasing the size of the set of corpora used to create the
language model can be an effective technique to increase its performance. This effect
is clear when looking at the evaluation results of the general Swedish model and the
domain specific models, shown in the tables mentioned in the previous paragraph.
Adding the training and development parts of the NST Dataset to the language
model improves the evaluation results of the general Swedish model. Additionally
adding the training and development parts of the domain specific datasets respec-
tively improves the domain specific models evaluation results even further. The
improvement can be seen for all models, but it is especially noticeable for the sports
specific domain model in Table 5.13. This table shows an improvement from 32%
to 19% by simply adding the training and development part of the Sports Dataset
to the language model. However, this dataset is also special in that it was not split
with the speaker IDs in mind, as is further discussed in Section 6.5. Nonetheless, it
shows the impact of the language model and how, depending on the use case, adding
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context to the language model could improve performance significantly. In a domain
where very specific phrases and terms are used, adding these to the language model
can be very beneficial.

As described in Section 4.2.1, there are obvious errors in our approach to normalising
the language model corpora. These issues are primarily related to how years are
typically spoken in relation to how they are written. Since the approach considered
in this thesis does not deal with these issues at all, it is highly likely that the ASR
models developed are rather bad at transcribing speech talking about years and
dates. However, this is not something we have found direct evidence of. The lists
of special characters and abbreviations normalised, as described in Table 4.2 and
Table 4.4 respectively, are far from complete considering the whole Swedish language.
This could also negatively impact the performance of our models. Some of the most
common cases in everyday speech are handled though, and should at least lead to
some improvement compared to not doing this normalisation at all. In the work by
Agarwal et al. [31], a tool called MaryTTS was used to normalise German.1 To the
extent of our knowledge, no such tool exists for the Swedish language. It is likely
that model performance could be increased further if a more powerful normalisation
tool existed, one that could support more special cases, expand more abbreviations
and make the text more similar to spoken language.

6.2 A general model for Swedish ASR
When developing the general Swedish model, two different approaches were consid-
ered, both using Mozilla’s DeepSpeech. The first and most straightforward approach
was to train a model completely from scratch, and the second approach was to utilise
transfer learning. Comparing the results from using both approaches, as seen in Ta-
ble 5.5 and Table 5.7, it is clear that the transfer learning approach significantly
outperforms training a model from scratch. These results seem to show that trans-
fer learning is indeed a powerful method also for Swedish ASR. This was expected
considering recent research on using transfer learning for other languages in the same
language family as the Swedish language [10, 11]. To the extent of our knowledge,
the results obtained as part of this thesis are the first using transfer learning in the
field of Swedish ASR.

Although the general Swedish model does achieve a new state-of-the-art result, as
discussed further in Section 6.3, it leaves a lot to be desired. The most disappointing
results were achieved when evaluating the model on the Swedish part of the Common
Voice dataset. The best WER achieved on the Common Voice dataset is as high
as 52%, which is almost four times as high as the result achieved on NST Test.
A big difference between the speech data in Common Voice and NST Test is the
sound quality. The sound in Common Voice has a lot of background noise while
the sound in NST Test is of high quality with little background noise. Looking
at the results on the Lunchekot Dataset and Sports Dataset, the general Swedish
model achieves 36% and 28% WER respectively. Common for both these datasets

1http://mary.dfki.de
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is that they have a mix of speech data, with varying amounts of background noise.
An interpretation of these results is that the general Swedish model has issues with
lower quality sound containing much background noise. Although a disappointing
observation, it is not so surprising considering that the NST Dataset used to fine-
tune the model consists of speech data with little background noise. If more large
transcribed Swedish datasets, like the NST Dataset, would have been available, the
model would likely get better overall results. Such a dataset could have been used
either instead of the NST Dataset or in addition to it. A dataset with a balanced
mix between noisy and non-noisy speech data would be preferable, as the model
could then likely learn to deal with noise in a better way. However, there is no such
dataset. As of today, the best hope of collecting more data for Swedish ASR seems
to be through contributing to the Swedish part of Common Voice — anyone can
contribute, and the infrastructure to do so is already in place.

Regarding the hyperparameters used to train the best performing general Swedish
model, as seen in Table 5.6, they do not differ much from the default parameters
of Mozilla’s DeepSpeech. The only difference is the use of 30% dropout rate rather
than the default 20%. One explanation to this is that extensive hyperparameter
tuning has likely been performed by the team behind Mozilla’s DeepSpeech, so it
is not surprising that the hyperparameters they recommend are good. Another
explanation is that the hyperparameter tuning performed as part of this thesis was
rather limited, due to time and resource constraints. The true explanation is likely a
mix of both. It is also notable that the only hyperparameters considered for tuning
in this thesis were the dropout rate, mini-batch size, and learning rate. These three
hyperparameters are strictly related to the training process, and do not actually
affect the shape or size of the model. A simple explanation for this is that since the
model utilises transfer learning it is constrained by the shape and size of the model
from which it is fine-tuning on, in this case the official model for English published
by Mozilla’s DeepSpeech.

6.3 Evaluation results on the NST Dataset
The general Swedish model was primarily evaluated by comparing the WER and
CER achieved on the test part of the NST Dataset with the results achieved in
previous research and by commercial services. The best WER and CER achieved
by the model developed as part of this thesis is 14% and 5% respectively, as shown in
Table 5.7. This is an absolute improvement in WER over previous research [3] with
2%, and over Google’s Cloud Speech-to-Text with 7%. This could be considered a
new state-of-the-art result on the NST Dataset, and shows that the model developed
as part of this project is competitive compared to commercial services, there are
however some concerns regarding the evaluation methodology.

A major problem encountered when evaluating Google’s Cloud Speech-to-Text ser-
vice on the test part of the NST Dataset was that there was an alphabet mismatch.
In particular, Google’s Cloud Speech-to-Text service predicted transcriptions con-
taining numbers represented by actual digits, rather than in their normalised word
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form (e.g., the number 1 was actually transcribed as 1, rather than one). This is
in contrast to how numbers have been treated throughout the rest of the project,
and to how numbers are treated in the NST Dataset, where all numbers have been
written in their normalised form. As a result of this, the WER and CER initially
achieved by this service was 27% and 17%. This did not make for a fair comparison
though, as in most cases the numbers were correctly transcribed, but were just pre-
sented in an incompatible way. To make for a more fair comparison all predictions
were normalised and a better result of 21% WER and 9% CER was achieved. The
normalisation did not eliminate all issues though, and an example of an interesting
case illustrating this is shown in Table 5.8. Here the service correctly identified and
transcribed all numbers, but while doing so it also decided to group some of the
numbers together. Because of this decision, the prediction is wrong compared to
the ground truth. As the error is due to an incorrect decision by Google’s Cloud
Text-to-Speech, and not due to an incorrect normalisation, we argue that the re-
sults are fair and that the comparison is valid. This claim is further strengthened
by the fact that removing all numbers when evaluating did not yield any significant
improvement.

Another, although more subtle, problem encountered during evaluation is related
to the filtering made on the NST Dataset. This problem is primarily related to
the comparison with the result achieved by Kullmann [3]. Because of limitations in
DeepSpeech, as mentioned in Section 4.1.1, some files had to be removed from the
NST Dataset. This includes removing files from the test part of the NST Dataset.
As seen in Table 5.2, 0.12% of the files had to be removed from the test part of
the NST Dataset. This means that the data on which we evaluated the general
Swedish model might not be the exact same as the data used during the evaluation
by Kullmann [3]. Unfortunately, Kullmann [3] does not go into much detail about
any processing or filtration made. We do however suspect that some filtration must
have been made, since 83 sound files were just silent with a transcription stating
that they are in fact silent. This together with the fact that the total fraction of files
removed is only 0.12% anyways means our comparison should still be considered fair
and usable.

In summary, even though there are some noteworthy things to consider in regards
to the evaluation on the NST Dataset, it is fair to state that we created a state-of-
the-art ASR model for Swedish and this model presents a new baseline. In doing
so, it also fulfills one of the main goals of this thesis.

6.4 Transfer learning for specific domains
One of the main goals of this thesis is to explore if transfer learning could be utilised
to get improved results on specialised domains. To analyse this, two domain specific
models were created: one in the news broadcasting domain and one in the sports
domain. The Lunchekot Dataset was created and used to train the Lunchekot
domain model in the news broadcasting domain. The Sports Dataset was created
and used to train the Sports domain model in the sports domain. The former
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domain can be considered broader and more general in the sense that it uses a
wider vocabulary and touches upon a wider range of subjects, while the latter is
more narrow and specific to a smaller vocabulary and range of subjects.

Both domain specific models significantly outperforms the general Swedish model
on their respective domain specific test set. As can be seen in Table 5.10, the
Lunchekot domain model got a best WER of 25% while the best WER achieved by
the general Swedish was 36%. Similarly, as seen in Table 5.13, the Sports domain
models achieved a WER of 19% while the general Swedish model gets 28%. These
results seem to confirm the hypothesis that transfer learning can indeed be used to
achieve improved results on specialised domains; however, due to the small size of
the domain specific test sets, it is hard to draw too bold conclusions. It is hard to
claim that the small test sets are representative of the whole domain, and further
analysis on separate datasets is likely required.

Since the domain specific datasets are significantly smaller in size compared to the
NST Dataset, the domain specific models could be trained significantly faster than
the general Swedish model. While the latter model took approximately 12 hours to
train, the domain specific models took less than 30 minutes. Taking this into con-
sideration, the improvements achieved are even more impressive. It means that you
can get a significant improvement on specialised domains using few extra resources
and time. The fast training time also enabled more extensive and randomised hy-
perparameter search. The fact that the hyperparameter search was randomised also
explains why the hyperparameters shown in Table 5.9 and Table 5.12 are so different
from the hyperparameters used to train the general Swedish model and the default
hyperparameters recommended by Mozilla’s DeepSpeech.

Even though both domain specific models achieve improved results, mistakes are still
made. A lot of the mistakes made are reoccurring, and Table 5.11 and Table 5.14
show some interesting examples. Names seem to be an especially common cause of
errors, which is not so surprising. In most cases the model gets the name right, but
uses an incorrect spelling. Even for a native speaker it is impossible to know how
some names are supposed to be written, since spelling can differ without a change in
pronunciation. Another common error is missing to add an s to the end of a noun,
either to indicate possession or to form a compound word. Interestingly enough,
as seen in Table 5.11, the compound word säkerhetsåtgärd is correctly transcribed,
while the very similar samtalsbehandlingar is not. What causes these errors is un-
clear, and further analysis is required — unfortunately, due to time constraints, this
analysis could not be made as part of this project. These transcriptions are still easy
to understand though, as it is in most cases obvious that there is just an s missing.
Some of them are however grammatically incorrect, and can not be excused in the
same way as the errors related to names were. A native speaker would not make
these types of errors. Finally, an interesting observation is that failing to combine
two words into a compound word can have a very large impact on the WER, while
the effect on the CER is minimal. This is especially clear in the first example of
Table 5.11.
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6.5 Creating the domain specific datasets

Due to a lack of available Swedish datasets in general, and domain specific datasets
in particular, the datasets used to train the domain specific models had to be created
as part of this thesis. The lack of domain specific datasets forced us to create the
datasets ourselves, as they were essential to explore for accomplishing one of the
main goals of the thesis. The lack of datasets might also explain why there is little
research on this subject, as creating datasets turned out to be a very time consuming
task.

As the domain specific datasets were created manually, there is an obvious risk of
human errors affecting the final evaluation. As an example, due to human errors, a
transcription in either dataset might be incorrect, meaning that it does not actually
reflect what is being said in the sound file. This might result in the model getting an
error even though it correctly transcribed what was being said, as the ground truth
was wrong. To minimise these errors, we made sure to validate all transcriptions.
We are however certain that not all errors were avoided, as this is rarely the case.
This problem is not as big of an issue as it might seem though, as we were only
interested in the relative improvement between the general Swedish model and the
domain specific models. Even though there might have been errors, the evaluation
process was the same for the general Swedish model and the domain specific models,
making it a fair comparison.

Besides possible incorrect transcriptions, human error might have contributed to
wrong annotations in terms of speaker ID and gender. The annotations were also
manually created, and are thus prone to error. As an example, most speaker ID
annotations could easily be made by listening to the program hosts presenting each
speaker, but there were cases when the identity of a speaker could not be deter-
mined. For all speakers which could not be identified, a randomised and unique ID
was assigned. It might be the case though that one or more of these unidentified
speakers were previously correctly identified in some other part, meaning that the
same speaker could be represented by multiple speaker IDs. A similar risk of er-
ror is present when considering the annotation of gender. The gender of a speaker
was annotated purely based on either the name of the speaker, or how the speaker
sounded. This is a far from perfect approach, as the name of a person or the sound
of a person’s voice does not have to be an indication of its gender, and could be
considered discriminating. It was, however, the most straightforward approach, and
any errors caused by it are negligible.

The purpose of annotating the datasets was to aid in the process of splitting them
into training, development, and test sets. However, when creating the Sports
Dataset, the speaker ID was not taken into consideration during the split. This
design had to be made as we were otherwise unable to create a desirable split of
70% training, 10% development, and 20% test data. The cause of this is the fact
that the total Sports Dataset is just 18 minutes in total, with just 29 unique speak-
ers, meaning the degree of freedom to find a good split is very limited. The fact that
the same speaker might appear in any of the three subsets might help explain why
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there is such a significant improvement when using the 5-grams + NST + Sports
language model compared to just the 5-grams + NST model, as seen in Table 5.13.
An explanation is that if a certain speaker appears in more than one subset, the
specific subject that the speaker is talking about also appears in more than one sub-
set. This means that by simply including the training data in the language model,
words or phrases that also might appear in the test set could be captured.
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Conclusion

Conclusions based on the results and discussion of this thesis are presented in Sec-
tion 7.1. Based on the conclusions, we highlight some areas that would be interesting
for future research, presented in Section 7.2.

7.1 Conclusions
The first clear conclusion that can be made, given the results achieved as part of this
thesis, is that transfer learning is a very effective technique in the field of ASR. As
part of this thesis, transfer learning was successfully used both to create a model for
Swedish, based on an English model, and to create domain specific models within the
Swedish language. The results from creating a Swedish model based on an English
model seems to confirm the findings by Kunze et al. [10] and Ardila et al. [11], namely
that transfer learning can be successfully used for this purpose. This thesis is, to the
extent of our knowledge, the first using transfer learning in the field of Swedish ASR.
Additionally, the fact that transfer learning could be used so effectively to achieve
better ASR in specialised domains should make it an interesting approach when
developing products or services in specialised domains or use cases. As previously
mentioned though, further analysis and evaluation on separate datasets in the same
domain is required before any final conclusion can be made about it.

This thesis additionally highlights the importance of using a language model when
developing ASR systems. This seems to be an accepted and widely used theory, but
is worth reiterating. Improvements gained when using a language model compared to
not using a language model is not the most interesting finding, as this was expected
given previous research. Rather, it is worth highlighting the improvements that
were gained by simply extending the set of corpora used when creating the language
model to include domain specific text. This technique requires no additional training
of the actual ASR model, but can improve evaluation results.

As a final remark about the general Swedish model developed as part of this thesis,
it is clear that it is not sufficiently good at dealing with speech data containing back-
ground noise. This becomes clear when looking at the evaluation results on Common
Voice, and the worse results on the Lunchekot Dataset and Sports Dataset compared
to the evaluation result on NST Test. We believe that if there was significantly more
transcribed Swedish speech data available, the results could be improved. However,
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there is an obvious lack of available training data for Swedish ASR. The best avail-
able dataset seems to be the NST Dataset, at around 500 hours of transcribed
speech, but this dataset is 20 years old. Projects like Common Voice could be a
solution in the long run but as of now only contains five hours of validated data
for Swedish. Unfortunately, the domain specific datasets developed as part of this
thesis could not be published due to licensing issues with Sveriges Radio.

7.2 Future work
Below are some suggestions to topics that could prove valuable if researched further.

Artificial datasets
As previously stated, there is a lack of training data for Swedish ASR. The process
of creating a dataset suitable for training an ASR model is however time consum-
ing. A potential solution which does not involve manually transcribing more speech
data is to artificially and automatically create more data. It has been shown that
simply augmenting existing data can effectively improve results [32]. By using this
approach, one could get around the problem with lacking data by augmenting data
from the NST Dataset. An example which could perhaps improve evaluation results
on speech with background noise would be to artificially insert background noise in
the training data of the NST Dataset.

Alternative language models
In this thesis, the KenLM language model [14] was used. KenLM was first introduced
by Heafield [14] in 2011, but since then a lot has happened in the field of language
modeling. As an example, the BERT language model which was recently published
has achieved state-of-the-art results [9]. In a recent paper by Shin et al. [15], BERT
was successfully used in the context of ASR. Perhaps by using BERT, or other alter-
native language models, even better results could be achieved than those presented
as part of this thesis.

Improved corpora normalisation
There are some errors with the way Swedish text corpora were normalised as part of
this thesis. As previously discussed, there does not seem to exist any tools for per-
forming the needed normalisation of Swedish text. If such a tool, like the MaryTTS
tool previously highlighted, would exist for Swedish it is probable that results could
be improved further. Such a tool could also be valuable in the field of speech syn-
thesis [55].
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A
Files removed from the NST

Dataset

The NST Dataset (NST Training and NST Test combined) consists of 380617 files
with corresponding transcriptions. Out of these, 10197 files had to be removed
as a result of the filtering described in Section 4.1.1. There were 1082 files that
were just silent, and were removed because of this. These were the files that had
the transcription tyst under denna inspelning (which is Swedish for silent during this
recording), as described in Section 4.1.1. A large number of files, 9097, were removed
from the training part as they were longer than or equal to 10 seconds, which is a
limitation in DeepSpeech during training. The remaining 18 files are described in
Table A.1 and Table A.2. The file names in these tables have the prefixes train and
test, which means that they refer to a file in the training or test part of the NST
Dataset respectively. The number of files together with the reason for removal of
these files are displayed in Table A.3, Table A.4 and Table 5.2 for the NST Dataset
as a whole, NST Training and NST Test respectively.

Table A.1 shows files that were removed because their duration was either too long
or too short to match their transcriptions. Mozilla’s DeepSpeech contains a check
for this, and trying to use a file which does not pass the check makes Mozilla’s
DeepSpeech crash with an error.

In Table A.2, sound files which were removed because of their transcriptions are
shown. In this case, the transcriptions included characters not part of the defined
alphabet, see Section 4.1.1.

Table A.3 and Table A.4 describes the reasons why files got removed from the NST
Dataset as a whole and from NST Training respectively. These tables shows that
2.68% and 3.29% of all files were removed from the NST Dataset as a whole and
NST Training respectively. Table 5.2 shows the same data for NST Test, from this
dataset 0.12% of the files have been removed.
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A. Files removed from the NST Dataset

Table A.1: Sound files removed from the NST Dataset due to being too long or
too short for their transcriptions.

File name
train/Stasjon7/100799/adb_0467/speech/scr0467/07/04670706/r4670580/u0580189.wav
train/Stasjon7/100899/adb_0467/speech/scr0467/07/04670707/r4670672/u0672205.wav
train/Stasjon7/210799/adb_0467/speech/scr0467/07/04670707/r4670619/u0619087.wav
train/Stasjon7/160799/adb_0467/speech/scr0467/07/04670706/r4670598/u0598102.wav
train/Stasjon2/120799/adb_0467/speech/scr0467/02/04670202/r4670123/u0123069.wav
train/Stasjon5/220799/adb_0467/speech/scr0467/05/04670505/r4670441/u0441079.wav
train/Stasjon6/270799/adb_0467/speech/scr0467/06/04670606/r4670536/u0536161.wav
train/Stasjon20/191099/adb_0467_2/speech/scr0467/20/04672001/r4670086/u0086079.wav
train/Stasjon3/120799/adb_0467/speech/scr0467/03/04670303/r4670225/u0225002.wav
test/Stasjon20/110100_del2/adb_0468/speech/scr0468/20/04682001/r4680023/u0023342.wav
test/Stasjon20/191299/adb_0468/speech/scr0468/20/04682001/r4680013/u0013872.wav

Table A.2: Sound files removed from the NST Dataset as their transcriptions
contained unwanted characters.

File name
train/Stasjon1/020899/adb_0467/speech/scr0467/01/04670101/r4670077/u0077089.wav
train/Stasjon1/020899/adb_0467/speech/scr0467/01/04670101/r4670076/u0076121.wav
train/Stasjon6/290799/adb_0467/speech/scr0467/06/04670606/r4670544/u0544107.wav
train/Stasjon6/190799/adb_0467/speech/scr0467/06/04670606/r4670519/u0519118.wav
train/Stasjon3/210799/adb_0467/speech/scr0467/03/04670303/r4670249/u0249117.wav
test/Stasjon20/160100/adb_0468/speech/scr0468/20/04682001/r4680028/u0028784.wav
test/Stasjon20/060100/adb_0468/speech/scr0468/20/04682001/r4680019/u0019397.wav

Table A.3: The number of files removed from the NST Dataset as a whole, grouped
by the reason for filtration.

Reason Count Part of total (%)
Duration too long 9097 2.39
Silent recording 1082 0.28
Duration not matching transcription 11 < 0.1
Unwanted character 7 < 0.1
Total removed 10197 2.68
Total 380615 100

Table A.4: The number of files removed from NST Training, grouped by the reason
for filtration.

Reason Count Part of total (%)
Duration too long 9097 2.96
Silent recording 999 0.32
Duration not matching transcription 9 < 0.1
Unwanted character 5 < 0.1
Total removed 10110 3.29
Total 307568 100
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B
Acronyms

AGD Accelerated Stochastic Gradient Descent
AM Acoustic Model
ANN Artificial Neural Network
ASR Automatic Speech Recognition
BERT Bidirectional Encoder Representations from Transformers
CER Character Error Rate
CSV Comma-separated Values
CTC Connectionist Temporal Classification
DAG Directed Acyclic Graph
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
ID Identification
LM Language Model
LPCM Linear Pulse-Code Modulation
LSTM Long Short-Term Memory
MFCC Mel Frequency Cepstral Coefficients
NLP Natural Language Processing
NST Norsk Språkteknologi
RNN Recurrent Neural Network
ReLU Rectified Linear Unit
TTS Text-to-Speech
WER Word Error Rate
XML Extensible Markup Language
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