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Abstract
Providing solutions for designing an optimal planning scheme is extremely im-

portant in transportation industry. A potential solution requires the development of
models that are able to accurately predict the remaining travel time of trucks oper-
ating in a transport mission. Unfortunately this is not a trivial task as a transport
mission is influenced by a variety of stochastic and impossible to predict factors.
This study develops a variety of machine learning approaches and benchmark their
ability to predict arrival times. In particular Support Vector Regression, Artificial
Neural Networks, Gradient Boosting, Random Forest and Stacked Generalization
models were developed for the aforesaid task. The proposed models are trained
and evaluated using GPS and weather data for a transport mission between Malmö
and Göteborg. The main objectives of the study are finding the variables that in-
fluence the total travel time of a vehicle and are optimal to be used as inputs to
the prediction models, comparing the performance of different machine learning ap-
proaches and identifying the optimal approach among the proposed models. Study
results verified that machine learning approaches have the ability to predict the ar-
rival times of trucks. Even though all methods outperformed a historic data based
model, results showed that the Random Forest and Stacked Generalization methods
outperformed the other machine learning models in terms of Root Mean Square
Error and Mean Absolute Percentage Error. In addition it was found that utilizing
appropriate features as inputs to the prediction models dramatically increased the
performance of the algorithms.

Keywords: Support Vector Regression, Feed Forward Neural Networks, Recurrent
Neural Networks, Gradient Boosting, Random Forest, Stacked Generalization, Ar-
tificial Intelligence, Road Transport, Estimated time of arrival(ETA)
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1
Introduction

In this chapter, the background of the main problem motivating this thesis is
presented and discussed. The purpose, scope, aims and the research questions the
thesis trying to answer are also analyzed and clearly stated. In the end of this
chapter, the overall structure of the thesis is explicitly described.

1.1 Background

Transportation is a vital part of the development of modern civilizations. Through
transport, trade is being developed and effective distribution of goods is possible in
countries, contributing to the improvement of the quality of life of citizens. Even
though this can be achieved by different modes of transport such as road, rail, avi-
ation and maritime transports, road transport is the main means of transporting
passengers and goods in the modern world. As far as freight transport is concerned,
road transport continues to dominate with continued growth. According to studies
[12] almost half of the freight tonnage transported in Europe in 2010 was by road.

This thesis considers a specific transport mission operated by Volvo FH-180
trucks between Göteborg and Malmö. The aim of the study is to propose different
machine learning models to predict the remaining travel time of a truck in the
mission and evaluate their performance. In general, the prediction of the arrival
time of trucks is not a trivial task since it is usually influenced by many stochastic
factors such as weather and traffic congestion.

An optimal planning scheme requires the design and development of prediction
models for the estimated time of arrival of the operating vehicles. A travel time
estimation model is a fundamental element to decrease wastes related to idle times,
for instance a truck arriving early and forced to be idle for a significant amount of
time or arriving late and force other operational machines to be idle.

Unfortunately due to the complex non-linear relationship between various fac-
tors and the total travel time of a truck, no explicit formula is known that can give
perfect predictions. This leads to a need of approximation models that can approx-
imate this complex non-linear function. Moreover it was concluded in many studies
that artificial intelligence models can predict the outcome of an unknown complex
non-linear function with minimal errors [17]. In the last years artificial intelligence
models managed to accomplish great achievements, and started to outperform hu-
mans in many tasks [28] [15].
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1. Introduction

1.2 Purpose of the study
A well-designed prediction model for the total travel time of trucks in a transport

mission is an essential ingredient to make decisions that can optimize planning. This
can be achieved by utilizing the proposed prediction models to make better planning
in order to increase productivity.

The purpose of this thesis is to propose and evaluate the ability of machine
learning algorithms to predict the arrival time of trucks. Furthermore this thesis
studies which factors influence the total travel time of the vehicles in a mission. The
research questions that this thesis tries to answer are the following:

1. What are the variables that can significantly influence the total travel time of
a vehicle in a mission and are optimal to be used as inputs to minimize the
errors of the prediction model?

2. What proposed Artificial Intelligence prediction model accomplished the best
performance when a benchmark comparison of the ability of the models to
determine the estimated time of arrival of a truck was performed?

2



1. Introduction

1.3 Thesis structure
The thesis is structured into the following six chapters:

• Introduction
• Literature Review
• Theory
• Methods
• Results
• Conclusions

In the Introduction chapter the background of the main problem that moti-
vated the study as well as the main goals and objectives of the study are explicitly
analyzed, stated and described.

In the Literature Review chapter we present an extensive literature review that
was performed with the research questions of the thesis in mind. In this chapter
several results and models from studies related to predicting travel time of vehicle
throughout the years with a specific mission are mentioned. From the literature
review we noticed that even though there were many studies related to our goals,
to design a reliable arrival time prediction model, the proposed models were mostly
related to buses. Hence there is a need to study if the technologies that are widely
used to deal with similar problems, can also be utilised to make predictions for the
specific problem this thesis considers.

In the Theory chapter the theoretical background of the proposed models as
well as the mathematical principles of the algorithms are analyzed and discussed.
Furthermore frequently used techniques for improving the performance of the pre-
diction models are analyzed and explained in detail.

In the Implementation chapter a detailed description of how the data were
collected and processed as well as the libraries and software utilised to implement
the models are presented.

In the Results chapter the experimental results of the study are described and
analyzed. In the end of the chapter the outcomes of the thesis are compared with
results of other studies in the literature.

In the Conclusions chapter the research questions this thesis considers are an-
swered. In addition the thesis limitations as well as future projects proposals are
stated.
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2
Literature review

In the previous chapter the needs that motivated this thesis were analyzed and
discussed. In order to achieve our goals, an extensive literature review was performed
to determine what Artificial Intelligence models are more suitable to predict the
remaining travel time of vehicles operating in a mission. Furthermore one of the
main goals of the literature review was to discover what variables give more accurate
results when used as inputs to a specific model. In this chapter a variety of proposed
models based on past studies and their performance is presented. Moreover the
input variables to the prediction models and also the technology used to collect the
corresponding data are analyzed and discussed. In the end of this chapter a brief
summary of our findings is presented.

2.1 Determination of estimated time of arrival

Researchers found that Artificial Network Networks (ANN) had a better perfor-
mance than Historical data based Models and Regression Models in terms of the
predicted time of arrival accuracy [17]. They believed that ANN were able to cap-
ture the complex non-linear relationship between travel time and the independent
variables. This study used data such as arrival time, dwell time and schedule ad-
herence at each stop collected by a Differential Global Positioning System(DGPS)
receiver in Houston, Texas as the input variables to each proposed prediction model.

A dynamic algorithm based on the Kalman filtering technique [18] was developed
to estimate buses arrival times using Automatic passenger counter (APC) data. The
APC data consisted of many variables such as schedule arrival time, transit day and
time of the day, latitude, longitude, stop distance, trip status(start/end), time point
ID, dwell time and inter-stop travel time. The dynamic algorithm consisted of two
parts, in the first part an ANN was predicting the bus travel time between time
points and in the second part a dynamic Kalman-based algorithm was using bus
location information to adjust the prediction for the arrival time of the bus. They
claimed that the algorithm can be utilised to provide real-time bus arrival time
predictions for each time point along the route [8].

Other studies proposed Support Vector Machine (SVM) models [10] such as
Support Vector Regression (SVR) [11] to make predictions for the arrival time of
buses. Their model considered current segment, travel time of current segment
and the largest travel time of next segment as inputs to their prediction models.
The proposed model outperformed an ANN model in terms of Root Mean Square
Error(RMSE) in seconds. They stated that SVM could be trained thought a linear

5



2. Literature review

optimization process and unlike ANN, this model is not affected by the overfitting
problem [5].

More recent studies utilised a Support Vector Machine with Genetic Algorithm
(GA-SVM) model to determine the estimate time of arrival. The GA-SVM al-
gorithm used a Genetic Algorithm (GA) to find optimal hyper-parameters for a
Support Vector Machine (SVM) model. Their input variables to the SVM consisted
of weather related data, the character of the time period, the average speed, the rate
of road usage and the length of the road. Results showed that GA-SVM model was
superior to traditional Artificial Neural Networks(ANN) and SVM models in terms
of prediction accuracy [35].

In 2018 Wang et al., [32] proposed an end to end Deep learning framework for
Travel Time Estimation (DeepTTE) to estimate travel time of the whole path di-
rectly. According to them estimating the travel times of individual segments to
calculate the travel time of the whole path produces inaccurate predictions. That
is because this approach does not consider road intersections and traffic lights,
hence local errors may accumulate. The model consisted of three components, the
Spatio-Temporal Learning Component, the Attribute Component and the Multi-
task Learning Component. For the Spatio-Temporal Learning Components, DeepTTE
used Convolutional Neural Networks(CNN) [20] with Exponential Linear Unit (ELU)
activation [9] to capture the spatial dependencies in the GPS sequence and recur-
rent layers to capture temporal dependencies among the local paths. The Attribute
Component was used to process external factors and information of the path, for
instance weather, driver, time and distance related data, and its output was used
as input to the other Components. The Multi-task Learning Component combined
the other components to give predictions for the travel time using residual fully
connected layers with Rectified Linear Unit (ReLU) activation [14]. Experiments
suggested that DeepTTE significantly outperformed other models.

Mehmet and Metin in 2013 [3] made a review for different computational models
for arrival time prediction. According to them historical data models are only reliable
when the traffic patterns in the area are stable since their accuracy relies on the
similarity between real time and historic traffic patterns. In the case of regression
models several studies showed that they are outperformed by other models. The
study suggest that regression models showed poor performance since the variables
are highly inter-correlated. Moreover they discussed the performance of Kalman
filtering models and Machine learning models like ANN and SVM. They claimed
that the Kalman filtering approach and Machine learning models can be used to give
reliable results. They stated that even though no algorithm managed to produce
robust results there is an increasing trend between researchers to utilise hybrid
algorithms to improve a model’s accuracy.

A study to predict the cycle time of trucks in an open-pit mining was performed
by Chanda and Gardiner in 2010 [7]. Artificial Neural Networks (ANN) and Multiple
Linear regression (MLR) prediction models were compared with the most commonly
used model by that time, a simulation using TALPAC software [1] based on the
Monte-Carlo technique. Their results showed that ANN and regression models were
superior to the computer simulations techniques.

Xiaoyo et al., in 2018 [29], proposed three machine learning models to predict

6
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real-time link travel time of open-pit trucks in Fushun West Open-pit Mine in China.
More specifically k-Nearest Neighbour (kNN), Support Vector Machine (SVM) and
Random Forest (RF) algorithms were used to predict travel time for every link
road. The link roads were split into two categories, the fixed and the temporary
roads. The road and truck related data were collected with open-pit automated
truck dispatching systems (OPATDS) while the weather data were collected from
the China Meteorological Administration (CMA). Further two different approaches
were compared, namely the LTTP and RTTP approach. LTTP approach considered
many models for every possible link in the route and summed up the best predictions
of every route while the RTTP approach used a model to predict arrival time for
the whole route. In terms of Mean Absolute Percentage Error (MAPE) LTTP
approach outperformed the RTTP approach. Moreover their results indicated that
RF and SVM methods outperformed the kNN approach. Also experiments showed
that using weather related data as inputs into their models resulted in a dramatic
increase in the prediction accuracy.

2.2 Summary of literature review
Many studies concluded that machine learning models outperform other ap-

proaches in terms of prediction accuracy. Most used methods for that purpose
appear to be Artificial Neural Networks, Support Vector Regression and Random
Forest. Through the literature review we identified a huge research gap related to
models that can predict the arrival time of vehicles operating in a long mission. In
particular most of the studies are focused in estimating the arrival time of urban
buses. In those mission factors such as driver breaks are not existent. In this study
we develop prediction models for the estimated time of arrival of a long transport
mission with driver breaks.
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3
Theory

In this chapter the theoretical background of the proposed machine learning
prediction models is explicitly analysed and described. In the first part of the chapter
the theory behind artificial neural networks and techniques that are usually used
to optimize their performance are presented. In the following sections an overview
of the theoretical background of machine learning algorithms such as the support
vector regression and ensemble models such as random forest, gradient boosting
trees and stacked generalization are briefly discussed. The purpose of this chapter
is to provide the reader with enough knowledge to be able to understand how the
proposed models produce their predictions and what mathematical principles are
the basis of every model.

3.1 Artificial neural networks

Artificial Neural Networks (ANN) are computational networks consisting of ar-
tificial neurons and are inspired by the biological neural networks that constitute
animal brains. Every artificial neuron can receive a signal, process it and sent a
signal to other nearby artificial neurons. In the end the network produce an output
value based on its inputs. Many studies found out that they can be used to predict
the output of a complex non-linear function [17]. There are many different types
of neural networks such as recurrent and feed forward neural networks. This study
utilises both feed forward and recurrent neural networks to get predictions for the
total travel time of trucks.

3.1.1 Feed forward networks

Feed-forward networks are artificial networks where neurons belong to a layer of
neurons and signals are only allowed to be transferred forward from the input layer
in the left side to the output layer in the right side. In other words no signal can
be transferred from layer i to layer j, where j ≤ i. Moreover the network is a fully
connected network, meaning that every neuron is connected to every neuron to next
layer. In addition to that no neuron is allowed to skip a layer, for instance a neuron
in layer i is unable to sent a signal to another neuron in layer k for k ≥ i + 2. An
example of a feed-forward neural network with two hidden layers is illustrated in
figure 3.1.
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Figure 3.1: A multi-layer perceptron with three inputs, two hidden layers with
two neurons and one output.

3.1.2 Training a network
After designing the architecture of a network, it is time to train the network to

give accurate predictions. The training procedure is an iterative process consisting
of two parts, the feed forward propagation and the back propagation algorithm.
After obtaining a pair of inputs and outputs, the weight matrices and biases are
randomly initialized and an error function is chosen. In the first part the inputs
are fed forward to produce a prediction, which is expected to be random at first
iterations, and in the second part the weights and biases are updated by utilizing an
optimization algorithm on the error function. In other words the network initially
makes a lot of mistakes and it begins to learn by capitalizing on its mistakes. Those
parts as well as the mathematical principles of the algorithms will be discussed in
detail in the next paragraphs.

3.1.2.1 Forward propagation

As it was previously stated forward propagation is the first part of the learning
procedure of a neural network. Initially an activation function for every layer, ex-
cept the input layer, is chosen. Some of the commonly used activation functions are

The Sigmoid function : g(x) = ex

ex + 1 (3.1)

The Hyperbolic Tangent : g(x) = ex − e−x

ex + e−x
(3.2)

The Rectified Linear Units : g(x) = max(0, x) (3.3)

The shape of those activation functions is shown in fig 3.2.
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Figure 3.2: The shapes of the Sigmoid, tanh and ReLu activation functions.

Lets consider a feed forward neural network with N hidden layers. We define:

• gj = activation function for layer j ∈ {1, ..., N + 1}.

• V j = the states of neurons in layer j ∈ {0, ..., N + 1}.

• W j = The weight matrix connecting layer j-1 with layer j ∈ {1, ..., N + 1}.

• bj = The biases in layer j ∈ {0, ..., N + 1}.

Initially the weight matrices as well as the biases are randomly chosen. Then the
inputs V 0 ∈ Rk are fed into the network to produce the outputs V N+1 ∈ Rm. This
is achieved by the following computations

V j = gj( W jV j−1 + bj ) for j ∈ {1, ..., N + 1}. (3.4)

After the computations in equation (3.4) outputs were produced by utilising the
data as inputs. However since the weight matrices and biases were randomly chosen
the model’s predictions are expected to be wrong. The idea of the second part of
the algorithm is to apply optimization techniques on an error function to update
weights and biases in order to produce more accurate results.

3.1.2.2 Gradient descent

One optimization algorithm frequently used for minimizing a neural network
error function is the gradient descent algorithm. Lets assume that H is the function
we want to minimize, in this study we consider the error function H to be the
mean square error between the actual values of the training set and the predicted
values. The Gradient Descent optimization algorithm utilises the fact that the
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negative gradient direction of H is a descent direction. Then in order to find a local
minimum the algorithm takes a step proportional to the negative gradient of the
function evaluated at the current point. However since we do not want our algorithm
to get stuck in a local minimum but to converge to a global minimum stochastic
Gradient Descent is usually used to add noise to the algorithm.

3.1.2.3 Chain rule

Chain rule is a fundamental mathematical formula used to compute derivatives
of the composition of two or more functions. According to [33] the formulation of
the Chain rule is as follows:

• Let w = f(x, y, w, ..., v) be a differentiable function of a finite set of variables
A = {x, y, w..., v}

• Let x, y, w..., v be differentiable functions of another finite set of variables
B = {p, q, ...., t}.

• Then w is a differentiable function of the variables p, q, ..., t ∈ B and the partial
derivatives of w with respect to a variable k ∈ B is given by

∂w

∂k
= ∂w

∂x

∂x

∂k
+ ∂w

∂y

∂y

∂k
+ ...+ ∂w

∂v

∂v

∂k
(3.5)

3.1.2.4 Back propagation

The second part of learning procedure is the back propagation algorithm. In
this part the weight matrices and the biases are updated by applying an optimiza-
tion algorithm in an error function. For the purpose of the thesis we consider the
mean square error function H and we choose gradient descent as our optimization
algorithm. Lets assume that (xµ, yµ) for µ ∈ {1, ..., k} are pairs of input and target
vectors and Oµ is the output vector of the feed forward propagation algorithm with
n hidden layers. Then the error function is defined as

H = 1
2

∑
i,µ

(yµi −O
µ
i )2 (3.6)

Applying the gradient descent optimization algorithm for the weights and learning
rate η we get the following weight updates and biases updates

W l
m,n = W l

m,n − η
∂H

∂W l
m,n

, ∀ l ∈ {1, ..., N + 1} (3.7)

blj = blj − η
∂H

∂blj
, ∀ l ∈ {1, ..., N + 1} (3.8)
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Then by applying the chain rule ( see Appendix A) we calculate the partial deriva-
tives

∂H

∂W l
m,n

= −
∑
µ

∆µ,l
m V µ

n (3.9)

∂H

∂blj
= −

∑
µ

∆µ,l
j (3.10)

where the errors for neuron m in the output layer are given by

∆µ,N+1
m = g′(

∑
n

WN+1
m,n V N

n + bN+1
m )(yµm −Oµ

m) (3.11)

and the errors for neuron m in the layer l are given by

∆µ,l
n =

∑
m

∆µ,l+1
m W l+1

m,n g
′(

∑
k

Wj,kV
l
k + bl−1

j ) for l = 1, ..., n (3.12)

3.1.3 Adam optimizer
In this study we utilise the Adam optimizer as described in [19] to perform op-

timization on the selected error function. Adam optimizer is an efficient algorithm
that combines two optimization algorithms, the gradient descent with momentum
and Root Mean Square Propagation (RMSprop) algorithms. Experienced neural
network engineers often suggest using Adam optimizer since it is an algorithm that
requires minimal hyper parameter tuning and lower memory usage than other opti-
mization methods.

3.1.4 Initialization of weights and biases
In the remainder of this section, techniques often used to increase the model

performance are discussed. Previously we mentioned that our initial weights and
biases are randomly initialized. According to [30] many deep and recurrent neu-
ral networks failed to learn due to poor initialization schemes. Therefore a good
initialization strategy is essential to increase a prediction model performance. A
common initialization strategy is to set biases to zero and weight matrices to nor-
mally distributed numbers with zero mean and variance proportional to 1

N
, where N

corresponds to the number of incoming connections to a neuron. This initialization
scheme guarantees that weights are small initially and speeds up the convergence of
the optimization algorithm [23].

3.1.5 Normalizing data
A common technique that speeds up the optimization process of the error func-

tion is to normalize the data before using them as inputs into the prediction model.
Normalization of the data means transforming the data to data with zero mean and
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unit variance. The normalization of the data transforms an ill-posed problem to
a well-posed problem and therefore speeds up the convergence of the optimization
algorithm. In this study the proposed neural network normalizes the train data and
then the normalized train data are used as inputs to the prediction model. Further-
more for the evaluation of the model the test data also need to be standardized.

3.1.6 Overfitting and underfitting
The goal of the described algorithm is to give reliable predictions for unseen

random data and learn to generalise the knowledge it learnt from the training data.
Unfortunately usually networks start to "memorise" the patterns of the training
data and are not able to generalize. This phenomenon is known as overfitting and is
often observed when the architecture of the neural networks includes many neurons
as well as when the network is "over-trained". This happens when the algorithm
fits the training data too well and it starts capturing the noise of the data. Several
techniques that reduce this phenomenon such as early stopping and regularization
techniques are discussed and explained in the following sections.

In contrast networks are said to underfit when they are unable to capture trends
in the data. Underfitting is usually observed when the prediction model is to sim-
ple, consists only of few neurons. Both overfitting and underfitting are problems
that an optimal prediction model should aim to avoid in order to produce optimal
predictions. Those phenomena and their negative effects in a specific classification
problem are illustrated in figure 3.3.

(a) Optimal Fit (b) Underfitting (c) Overfitting

Figure 3.3: Examples of overfitting and underfitting. The prediction model can
generalize and give reliable predictions (Left). The prediction model fails to capture
the trend in the data (Middle). The prediction model captures all the noise of the
train set(Right)

3.1.6.1 Early stopping

One of the previously mentioned techniques is early stopping. The idea behind
this technique is simple but very effective. Before training the data-set at hand is
split into two different sets, the training set and the validation set. The training
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set consist of the data that would be used to train the model while the validation
set consists of the data that would be used for validation instead of training. The
early stopping stopping technique then keeps track of the error for both the training
and the validation sets and aborts the training procedure when the error of the
validation set becomes stable or increases over a number of iterations. The early
stopping trick is presented in figure 3.4.

Figure 3.4: The early stopping technique. The red line represents the training error
and the blue line the validation error. The training is stopped when the validation
error, blue line, increases over a number of iterations.

3.1.6.2 Weight decay

In this part the L1 and L2 regularization techniques and how those can be used
to prevent overfitting are analyzed and discussed. The idea of regularization is to
add a regularization term in the error function H.
In the L1 regularization scheme the new error function becomes

H ′ = H + γ

2
∑
i,j

|Wi,j| (3.13)

In the L2 regularization scheme the new error function becomes

H ′ = H + γ

2
∑
i,j

W 2
i,j (3.14)

where γ ∈ R+ . Then the update rule for the weights are

Wk,l = Wk,l − η
∂H

∂Wk,l

− εWk,l (3.15)

Wk,l = Wk,l − η
∂H

∂Wk,l

− ε sign(Wk,l) (3.16)

for the L2 and L1 regularization scheme respectively where ε = γη.

This approach prevents overfitting in the two following ways. First, when weight
decay is applied some of the effects of static noise are suppressed. Second, the
model chooses the smallest weight vector that solves the learning problem, hence
any irrelevant components of the weight vector are also suppressed [21]. Therefore
an increase in the ability of the network to generalize is observed.
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3.2 Recurrent neural networks
Unlike the Feed Forward Networks (see 3.1) where information is fed forward

through the network, Recurrent Neural Networks are networks with an architecture
that allows more complex information flows [26]. For instance the information can
be looped though the network as seen in figure 3.5. This modification makes RNN
suitable models to forecast time series data since the network not only uses informa-
tion from one observation but also keeps into the network memory information of the
previous time-steps. As a result those networks are an optimal choice for translation
tasks, speech recognition tasks and are widely used in applications where inputs are
given as a sequence of data. However since each neuron can give feedback to itself
the back propagation algorithm discussed in 3.1.2.4 needs to be modified.

Figure 3.5: Example of a recurrent neural network structure.

3.2.1 Back propagation through time
In order to train a RNN , the network is expanded in time as seen in figure 3.6.

Then the information are fed though the network as described in equations (3.17)
and (3.18). In particular the hidden state of the neuron at time t, ht is given by

ht = g1(Uxt +Wht−1 + b) (3.17)

and the output at time t, Ot is then computed by

Ot = g2(V ht +B) (3.18)

where gi are activation functions, for instance the hyperbolic tangent or the sigmoid
function, and U, V,W are weight matrices and b, B are vectors containing the biases.
Then the weights are updated using the back propagation algorithm discussed in
3.1.2.4. We consider again the mean square error function

H = 1
2

T∑
i=1

(Yi −Oi)2

where Yi are the actual response variable at the time step i. Then computing the
gradient of error H with respect to the weights W using the Chain rule we obtain.

∂H

∂W
= ∂H

∂Ok

∂Ok

∂hk
(
k∏
i=2

∂hi
∂hi−1

)∂h1

∂W
(3.19)
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Inserting equation (3.17) to equation (3.19) and calculating the product of deriva-
tives ∂hi

∂hi−1
we observe that the network learning rate tends to decay exponentially

[4]. This phenomenon is also known as the Vanishing Gradient Problem. As a result
RNN are computationally expensive to train and hence a lot of computation power
is required.

Figure 3.6: Plot demonstrating how the network is expanded in time and how
information is then fed through the network.

3.2.2 LSTM
In the previous paragraph it was mentioned that RNN suffer from the Vanishing

Gradient problem and are unable to handle dependencies over large time periods.
Long Short-Term Memory [16] cells are RNN architectures that can deal with the
vanishing gradient problem. The idea is to replace every neuron in the network with
a LSTM cell. An LSTM cell consists of three gates, the input gate, the output gate
and the forget gate. The input gate determines how the new information flows into
the LSTM cell, the forget gate decides what needs to kept in the cell memory and
the output gate is used to compute the output of the cell. The inputs to an LSTM
cell are the input data at time t, xt and the hidden state of the previous LSTM cell
ht−1. The outputs ft, it, ot of the forget, input and forget gates at time t respectively
are given by.

ft = σ(Wfxt + Ufht−1 + bf) (3.20)
it = σ(Wixt + Uiht−1 + bi) (3.21)
ot = σ(Woxt + Uoht−1 + bo) (3.22)

The hidden state of the cell ht and the state of the cell ct at time t are then given
by

ct = ct−1ft + it tanh (Wcxt + Ucht−1 + bc) (3.23)
ht = ot tanh (ct) (3.24)
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where Wj, Uj are matrices and bj are biases for indices j ∈ A = {f, i, o, c}. Using
this architecture the derivative that caused the problem in the previous paragraph
is approximately

∂ct
∂ct−1

≈ ft ≈ 1 (3.25)

This implies that the gradients do not vanish and the network can learn dependencies
over large time periods. These designs are also known as Constant Error Carousels
(CEC). In this study an RNN model utilising LSTM cells was developed to estimate
the arrival time of trucks between Malmö and Göteborg. The architecture of an
LSTM cell is visible in figure 3.7.

Figure 3.7: The Long Short-Term Memory unit Architecture. The flow of the
information from all three gates is presented. The circular shapes represent element-
wise multiplication and addition. The rectangular shapes represent application of
sigmoid and hyperbolic tangent functions to an affine transformation of their inputs.
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3.3 Support vector machines

Support Vector Machines (SVM) [10] are machine learning algorithms that can
be used for classification as well as for regression. This section describes how the
SVM algorithm works for classification problems. The basic idea of the SVM algo-
rithm is to find the optimal hyperplane, often called maximal margin hyperplane,
that maximizes the distance from the nearest data points on each side. A classifi-
cation problem is said to be linearly separable if it is possible to find a hyperplane
that separates the data into different classes. Moreover when the problem is linearly
separable then two parallel hyperplanes that separate the classes and the distance
between them is maximal can be selected. The region between those hyperplanes is
called margin and points on the boundary of the margin are called support vectors.
When the data are standardized and labeled as 1 and -1, for the first and second
class respectively, those hyperplanes as well as the width of the margin can be de-
scribed with the following equations.

First Parallel Hyperplane : Wx − b = 1 (3.26)

Second Parallel Hyperplane : Wx − b = − 1 (3.27)

Maximal Margin Hyperplane : Wx − b = 0 (3.28)

Margin Width : 2
|| W ||

(3.29)

After receiving pairs of inputs and labels (xj, yj) j ∈ A = {1, ...,M} from the data-
set the SVM algorithm is equivalent to solving the following linear optimization
problem.

min 1
2 || W ||

2 (3.30)

Subject to

yi ( Wxi − b ) ≥ 1, ∀i ∈ A (3.31)

The optimization problem of the SVM algorithm has a quadratic objective func-
tion and linear constraints, hence it is a Quadratic Programming (QP) problem.
Furthermore, many algorithms exist that can efficiently solve this type of optimiza-
tion problem. Figure 3.8 illustrates how SVM algorithm works for classification
problems. The maximal margin hyperplane is represented by the red line and the
support vectors, the points in the dashed line are also presented.
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Figure 3.8: The Support Vector Machine algorithm. The maximal margin hyper-
plane as well as the support vectors, points in the dashed line, are displayed.

3.3.1 Kernel trick
In the previous paragraph we assumed that the data are linearly separable, in

other words we assumed that the maximal margin hyperplane exists. Unfortunately
most of the times this is not the case, therefore a technique known as the kernel
trick is often utilised. The idea that motivates the kernel technique is that is easier
to separate variables when you map them in a higher dimensional space (Cover’s
Theorem). However it can be quite hard and impractical to define such mappings
and computationally expensive to implement. Therefore in order to overcome this
difficulty the kernel functions are introduced. Kernel functions are functions that
can do operations in higher dimensional spaces by computing the inner products
of data in the original space without the need of defining and computing complex
mappings. Commonly used kernels are presented in table 3.1.

Kernel Function

Linear Kernel K(xi, xj) =xi · xj

Radial Basis Function Kernel K(xi, xj) = e−γ||xi−xj ||2 γ > 0

Polynomial Kernel K(xi, xj) = (xi · xj + 1)d d ∈ N

Table 3.1: Popular kernel functions

Then the SVM algorithm is used to separate the variables produced by the kernel
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mapping. The following section describes how a support vector machine algorithm
can be modified in order to confront regression problems.

3.3.2 Support vector regression
This paragraph is focused on the Support Vector Regression (SVR) algorithm

which is inspired by the SVM algorithm and is used to confront regression problems.
The idea of SVR algorithm is to approximate the unknown real valued function f(x)
with a higher dimensional hyperplane by using the kernel function φ(.). In other
words we assume that f(x) can be expressed in the following way.

f(x) = w · φ(x) + b (3.32)

However since we deal with a regression problem instead of a classification problem
we introduce an ε-tube around our predicted function. Moreover in equation (3.32)
we assumed that is feasible to approximate the function f(.) with precision ε but
since this is not usually the case, slack variables ξi and ξ∗i are introduced . After re-
ceiving pairs of inputs and target variables (xi, yi) ∀i ∈ {1, ..., l} the SVR algorithm
is then equivalent to solving the following optimization problem.

min 1
2 || w ||

2 +C
l∑
i

(ξi + ξ∗i )

Subject to
yi − w · φ(x)− b ≤ ε+ ξi ∀i ∈ {1, ..., l}
w · φ(x) + b− yi ≤ ε+ ξ∗i ∀i ∈ {1, ..., l}
ξi, ξ

∗
i ≥ 0 ∀i ∈ {1, ..., l}

(3.33)

The objective function of the above optimization problem is a trade of between two
terms, the regularized term and the empirical error. Minimizing the regularized
term, ||w||2, will make the function as flat as possible. The empirical error term,
C

∑l
i(ξi + ξ∗i ) penalizes the objective function if the prediction is outside of the ε-

prediction tube. This implies that the SVR model can perform regression by solving
an optimization problem with two parameters, the regularization constant C and
precision parameter ε. Those parameters are controlled by the user and is often
crucial to chose optimal hyperparameters to optimize the algorithms performance.
For the scope of this thesis the optimization of the parameters is done by a trial
and error grid-search. The SVR algorithm is illustrated in figure 3.9. In this study
a Support Vector Regression algorithm is proposed to predict the arrival time of
trucks in a transport mission between Malmö and Göteborg.
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Figure 3.9: The modification of support vector machines for regression purposes.
Points outside the ε region around the predicted hyperplane are penalized.
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3.4 Decision tree based models
Decision trees are simple tree-structured decision tools that can be used for

classification as well as for regression. A decision tree used for regression take as
inputs the attributes of different observations and outputs a real valued prediction.
A tree for classification take as inputs the attributes of many observation and outputs
a prediction for the category the observations belong. A decision tree consists of
internal nodes, branches and leafs. Internal nodes check if explanatory variables
satisfy a certain condition, branches represent the outcome of those conditions and
leaf nodes represent the predicted value or class. In other words the inputs space is
split into many regions and a prediction for every region is produced based on the
observations in the available data-set. In addition a greedy algorithm that minimize
a cost function and a stopping criterion is usually used to determine the cut-points.

Initially, decision trees identify the region of the input space where an observation
belongs. Then the average response for observations in that region is computed and
given as a prediction. This study proposes random forest and gradient boosting
algorithms for predicting the arrival time of trucks. Those algorithms utilise weak
learners such as decision trees to produce a more accurate prediction. An example
of how a decision tree splits the input space and produce its outputs is presented in
figure 3.10.

Figure 3.10: A simple example of how a decision tree separates the input space.
The tree corresponds to a regression problem, in each region the mean value of all
the observations are used as a prediction .
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3.4.1 Random forest

The Random Forest algorithm [22] is an ensemble algorithm used for regression
and classification. This method utilizes Decision trees (see 3.4) to produce its pre-
diction. Even though the motivation of the algorithm is very simple the method
most of the times produces satisfactory results and often outperforms other pre-
diction models. Given a set of input variables and prediction (xi, yi) the method
randomly samples with replacement to create a number of decision trees, this tech-
nique is known as bagging [6]. Moreover Random Forest applies a bagging method
into the feature space as well. This randomness guarantees that all of the weak
learners, decision trees, are uncorrelated. In other words, this method creates a
forest of random and independent decision trees. Therefore the variance of the trees
is reduced by sacrificing some bias. Then, in the case of regression problems, the
average prediction of all decision trees is taken as the final prediction. In the case of
classification problems the prediction is taken by a voting procedure. In other words
the decision trees "vote" for a class and the winning class is the final prediction of
the Random Forest algorithm.

In this study a Random Forest algorithm for regression is proposed to predict
the arrival time of a truck in a mission between Malmö and Göteborg. A trial and
error grid-search algorithm is utilised to optimise the parameters of the proposed
random forest model. An example of the Random Forest algorithm with N decision
trees for a regression problem is presented in figure 3.11.

Figure 3.11: The random forest algorithm for a regression problem. N independent
decision trees are created using the bagging technique both for feature space and
data. In the end the average of the decision trees predictions is the final prediction
of the random forest algorithm.
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3.4.2 Gradient boosting
The Gradient Boosting algorithm [13] is an ensemble algorithm that can be

used to deal with regression and classification problems. The Gradient Boosting
algorithm utilises a technique called boosting [27] to obtain its predictions. The
main idea of boosting is to utilise weak learners, for instance decision trees (see 3.4),
and an optimization algorithm to optimize the predictions of the weaker model.

Unlike the previously discussed Random Forest model which produces decision
trees in parallel Gradient Boosting is a sequential algorithm. The first step of this
algorithm is to choose an error function and make an initial prediction using a
decision tree. Since the decision tree model is a weak predictor, some errors are
expected. Then a functional Gradient Descent algorithm is used to determine the
next prediction of the algorithm. This algorithm is explicitly described below

• Let y be the target variable and f0(x) the initial prediction.
• Let E(f0(x), y) = 1

2((y − f0(x)))2 be the mean square error function.

Then the negative gradient of the error function with respect to f0(x) is given by

• −∇E(f0(x), y) = f0(x)− y = h1(x) is the residual of the model.

Then the same procedure is repeated to estimate the residual h1(x). In the end the
prediction of the Gradient Boosting algorithm is given in equation (3.34)

F (x) = f0(x) + f1(x) + f2(x) + ...fN(x) (3.34)

where fj(x) is the prediction given by a weak learner for the residual hj(x) ∀j ∈
{1, 2, ..., N} and N is the iteration where a stopping criterion is met. In this study
the Gradient Boosting algorithm was utilised to produce predictions for the total
travel time of trucks operating in a specific mission. The algorithm is displayed in
figure 3.12

Figure 3.12: The Gradient Boosting algorithm. The first decision tree predicts
the target variable y and the nth tree predicts hn−1 ∀n ∈ {2, ..., N + 1}. The sum of
those weak predictors is the final prediction of the Gradient Boosting model.
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3.5 Stacked generalization
The stacked Generalization method is an ensemble algorithm that can be applied

to increase the accuracy of previously trained prediction models [34]. The main idea
of this method is to combine the predictions of different machine learning models in
order to achieve better prediction accuracy. This can be achieved by using a meta
predictor algorithm with input variable the predictions of the previously trained
models. This approach is also known as super learning [31]. The algorithm is ex-
plicitly described below.

• Let Pi = fi(x) ∀i ∈ {1, .., N} be the prediction of the prediction model i with
input data x.

• Let g be the function describing the approximation of the meta predictor
model.

• Then the final prediction W is given by

W = g(P ) = g(f(x)) (3.35)
where x are the input data and P, f(.) are vector with elements the predictions Pi and
approximation functions fi(.) respectively. In this study a Stacked Generalization
method was implemented with a linear regression meta predictor to estimate the
total travel time of trucks in a mission between Malmö and Göteborg. This machine
learning method is presented in detail in the figure 3.13.

Figure 3.13: Flow chart demonstrating how stacking technique generally works.
First, all of the initial prediction models are trained using the available data. Then a
meta prediction model is trained to make a final prediction using all the predictions
of the initial algorithms as additional inputs.
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Implementation

In this chapter the methodology we utilized to approach the problem, the libraries
used in the study as well as how the data are processed and used to design, implement
and evaluate the prediction models are described in detail. The aim of this chapter
is to clearly describe the implementation of our models so that any curious reader
can reproduce the results of the study.

4.1 Libraries
The implementation of the study is made in Python language. Python was chosen

as the preferred language since a variety of optimized libraries exist that can assist
us with data processing, prediction model implementation and evaluation. Some
of the libraries this study utilises are the Pandas, Tensorflow, Keras, NumPy and
Scikit-Learn.

4.1.1 Pandas
Pandas is an open source, BSD-licensed library [24] for the Python programming

language. Pandas library is one of the most used Python libraries for data manip-
ulation and analysis. It is a trivial to use library that offers data structures and
operations for manipulating numerical tables and time series. This study utilises
this library to manipulate the input data and create dataframes that will be used
to train and evaluate the prediction models.

4.1.2 Tensorflow and Keras
Tensorflow is an open source library used for machine learning applications such

as neural networks [2]. It is an optimized library developed by Google that utilises
dataflow graphs to represent computations. Keras is an open-source neural-network
library for neural networks. It provides a high-level neural networks API and is
capable to run on top of Tensorflow. This study uses Keras on top of Tensorflow to
build a neural network that predicts arrival times of trucks.

4.1.3 NumPy and Scikit-learn
NumPy is a library for Python that supports large, multi-dimensional arrays

and matrices. It also supports a plethora of high-level mathematical functions that
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can operate on these arrays and are useful in many scientific and engineering ap-
plications. Scikit-Learn is an open source, BSD-licensed library for the Python
programming language. It is built on top of the NumPy library and it provides
variety of machine learning algorithms for classification, regression and clustering
problems. This study utilises Scikit-Learn on top of NumPy to build the Random
Forest, Gradient Boosting, Stacked Generalization and Support Vector Regression
prediction models.

4.2 Data processing

In this section the functions created to clean and process the position related
data from the GPS sensors as well as the weather related data obtained from an
online dataset are analyzed and discussed. The position related data were collected
from different transport missions between Malmö and Göteborg between 16th of
December 2015 and 25th of June 2018.

4.2.1 GPS data

For the purposes of the study spatio-temporal truck related data were collected
by GPS sensors installed in Volvo FH-180 trucks during the period between 16th of
December 2015 and 25th of June 2018. The GPS sensors provided us with 116 truck
features but only 6 features were selected for the study. The selected variables are
displayed in table 4.1.

Variable Name Variable Description

Computer Time(yyyy:mm:dd hh:mm:ss) Date and time of the record.

Vehicle Speed (kmph) Truck speed in Km per Hour.

GPS heading (°) GPS heading in degrees.

Longitude (°) Longitude of the truck.

Latidute (°) Latitude of the truck.

Gross Weight (Kg) Gross weight of the truck.

Table 4.1: Description of the truck related variables collected from GPS sensors.
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4.2.2 Cleaning the data

The following changes to the data were made

• Observations with missing values were removed.

• Observations with no logical values were removed.

• Observations corresponding to the truck idle hours were removed.

• Observations corresponding to missions that lack information about the ar-
rival of the truck were removed.

• Day variable was amended in the data-set. For example when this variable
value is 1, it corresponds to a transport mission on Monday. To compute this
variable we utilised the dates of the records.

• Mission’s starting and ending points coordinates were chosen as the coordi-
nates that the truck remained idle for a long period of time with the hand
brake enabled.

4.2.3 Haversine formula:

In order to compute the distance from the mission’s starting and ending point
the Haversine Formula was utilised. Haversine formula computes the distance be-
tween two points in a sphere given the points latitudes and longitudes. The formula
is displayed below

• Let φ1, φ2 = latitude of point 1 and latitude of point 2

• Let λ1, λ2 = longitude of point 1 and longitude of point 2

• Let r be the radius of earth = 6,371km

• Distance d is then given by

d = 2r arcsin

√
sin2(φ2 − φ1

2 ) + cos(φ1) cos(φ2) sin2(λ2 − λ1
2 )

 (4.1)

For this study a function that takes as inputs the geographical coordinates, longi-
tudes and latitudes, of two points and return their distance on earth was developed.
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4.2.4 Weather data

It was previously mentioned that arrival time of trucks is influenced by stochas-
tic factors such as weather. In order to get weather data for different missions and
specific times we used the Wunderground weather dataset that is available online.
Specifically http://oco-carbon.com/wunderground-weather-data-downloader/
website provides a tool to download Wunderground weather data in CSV format for
given weather station and date range. The weather stations chosen for this study
as well as a short description for their location is briefly presented in table 4.2.

Weather Station Name (ID) Weather Station Description

ISKNEMAL1 Weather station collecting weather related
data for the Malmö city

ISKNELDD2 Weather station collecting weather related
data for the region between Malmö and
Helsingborg.

IHELSING2 Weather station collecting weather related
data for the Helsingborg city.

ISHALLAND39 Weather station collecting weather related
data for the area near Halmstad city.

ISHALLAND64 Weather station collecting weather related
data for a region near Göteborg city.

Table 4.2: The weather stations chosen to collect the weather data

Moreover since the weather data are generated in five minute intervals and the
data from the trucks GPS sensors are generated every five seconds a function was
created to synchronise the weather variables with the truck related variables. To
achieve this, the study assumes that weather variables are constant in the five minute
interval between every weather observation and hence the weather only changes ev-
ery five minutes . This assumption is realistic since weather behaviour cannot rapidly
change and is most of the times constant. In addition to that weather data were
spatially synchronised. In other words only weather related data from the near-
est weather station and corresponding five minute interval were considered. The
weather related variables and a short description of every variable are briefly shown
in table 4.3.
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Weather Related Variables Weather Variable Description

Date ( yyyy: mm: dd ) Date of the recorded weather.

Time ( hh: mm: ss ) Time of the day for the recorded weather.

Temperature ( °F ) The atmospheric temperature in a region around
the weather station.

Dewpoint ( °F ) The dewpoint in a region around the weather station.

Humidity ( % ) Humidity in a region around the weather station.

Wind Direction in a region around the weather station.
Degrees are measured by the angle between the North

Wind Direction ( °) and the wind direction. For example ninety degrees
corresponds to wind direction towards the East and
270 degrees corresponds to wind towards the West.

Wind Speed ( mph ) Wind Speed in Miles per hour.

Pressure ( in ) Pressure in a region around the weather station.

Table 4.3: Description of the weather related variables. Date and Time variables
were used to synchronise the weather related data with the truck related data.

4.2.5 Computing wind advantage feature

We created a new feature named Wind Advantage using the input variables wind
direction and GPS heading. This variable is a measure on how wind direction in-
fluence the vehicle movement. For instance this variable is positive when the angle
θ between wind direction and GPS heading is θ ∈ [−90, 90] and negative otherwise.
This feature is computed as follows

• Let φ be the wind direction and

• Let ζ be the GPS heading. Then the wind advantage is given by

Wind_Advantage = cos(φ− ζ) = cos(θ) (4.2)
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Figure 4.1: An example displaying how the wind advantage feature is computed.
Wind advantage feature is given by cos(θ ).

4.3 Train and test data
In previous paragraphs the functions that helped as clean and process the data

from two year worth of truck data log files were discussed. The main purpose of the
mentioned implementations was to create a train data set to train our prediction
models and a test data set to evaluate the accuracy of the proposed models. For
the creation of the train set, fifty different missions were randomly selected and
processed. For the creation of the test data set twenty different transport missions
not included in the train set were randomly selected. Then weather related data for
the dates of the missions were amended into both datasets.

Moreover the dates of missions in the test set were randomly selected. However
the dates of those missions were carefully checked to be different from the mission
dates of the missions in the training set. This check was performed to ensure that
missions in the test set do not have any correlations with missions from the train set
since the purpose of the study is to evaluate the models in completely new missions.

4.4 Error definitions
For evaluating the ability of the models to predict arrival times we define the

following error functions.

Mean Absolute Percentage Error (MAPE)

MAPE = 100
N

N∑
i=1
| Pi −Oi

Oi

| (4.3)

Root Mean Square Error (RMSE )

RMSE =

√√√√ 1
N

N∑
i=1

(Oi − Pi)2 (4.4)

where Oi is the observed value of the response variable and Pi is the prediction of
that variable.
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4.5 Data exploration
This section provides a visualisation of the spatio-temporal data obtained from

the trucks GPS sensors. More specifically the mission path and speed profiles of
different mission are displayed in the following paragraphs. This analysis is essential
to guarantee the correctness of the given data.

4.5.1 Mission route
The mission path of the route is created when longitudes are plotted against

latitudes. The axis limits are manipulated to deal with the fact that longitude
values λ ∈ [−180, 180] and latitude values φ ∈ [−90, 90]. The simulated mission
path is compared with the real mission path in figure 4.2.

(a) Longitudes plotted against latitudes to
create the mission route path.

(b) Figure from google maps

Figure 4.2: A comparison between the simulated mission path with the real path.

4.5.2 Speed profiles of missions
The speed profile of three different mission are displayed in figure 4.3. From the

figure it is observed that the speed is almost constant at 80 Km
h

when the truck is
in the highway. Moreover speed profile fluctuations are observed when the truck
passes through cities. This phenomenon agrees with the initial study assumptions
that uncertainties related to traffic congestion and traffic lights can influence the
speed profile and hence the total travel time of the operating truck. In addition
to that it is observed that the truck stops at certain locations for a long periods of
time. The factor that causes this behaviour is discussed in the next paragraph.
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Figure 4.3: Speed profile of three different missions. Every time point corresponds
to one minute interval. Driver break duration as well fluctuations in speed due to
traffic congestion are also visible.

4.5.3 Driver breaks

The duration of the studied mission is very long and hence it is very common
for the driver to take a break. Unfortunately the duration of the driver breaks are
impossible to predict. Hence missions with no breaks and missions with very long
driver breaks are uncommon and are considered as outliers in the data. This statis-
tical analysis of the data helped as identify and remove outliers from the data which
resulted in a decrease of the prediction error of the proposed models. This finding
makes the study different than the studies found in the literature since this factor
only influence extremely long missions. Most of the studies in the literature are re-
lated to predicting arrival times of city buses, hence this impossible to predict factor
is not existent. The distribution of the total mission’s duration before removing the
uncommon missions from the data is displayed in figure 4.4. To create the empirical
distribution in the figure missions from both test and train sets were used. Moreover
since the total duration of the missions are normally distributed we computed the
standard deviation of that distribution. The standard deviation of the empirical
distribution corresponds to the Root Mean Square Error of the prediction model
that uses as prediction the mean of the distribution. In the evaluation section this
result is compared with the errors of the proposed prediction models.
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Figure 4.4: The empirical distribution of the total mission duration is compared
with a normal distribution with the same mean and variance. Outliers can easily be
identified from the figure.

4.5.4 Locations of the driver breaks

To justify our claims, that the mission is greatly affected by driver breaks, the
locations where the truck remained idle for more than ten minutes were manually
found using google maps and the longitude and latitude variables from the available
data. Figure 4.5 demonstrates some of the resting places the drivers usually take
their breaks. Some of those locations are gas stations, resting places, cafeterias and
in some cases those location are roads where queuing problems might have occurred
due to an accident or traffic congestion caused by road construction.
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(a) (b)

(c) (d)

Figure 4.5: Four locations where drivers tend to stop. (a) a resting place (b) a gas
station (c) a road affected by traffic congestion, and (d) a resting place. Figures are
from Google Maps.

4.5.5 Data correlation

Lastly, in order to identify which features influence the arrival time of the truck
we computed and visualised the correlation matrix of the data. According to our
findings, the variables that are correlated with the arrival time are the time of the
day, the geographic coordinates, the vehicles speed, the distances from starting and
ending points, the GPS heading and humidity. A heat-map displaying correlations
between the input variables is displayed in 4.6. This result is used to eliminate ‘bad’
features, features that are not correlated with the response variable, from the models.
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Figure 4.6: Correlation heat-map of the input variables.

4.6 RNN data processing
As it was previously mentioned recurrent neural networks are able to learn a

dynamical system unlike feed forward networks that can learn input to output map-
pings. Hence additional processing of the data is necessary. Up to this point we have
a dataset of M observations and N features for some integers M and N . However
the inputs to a RNN should be three dimensional which implies that our two dimen-
sional inputs require further processing. In order to obtain the correct format for
inputs to the RNN models we first have to define how many previous time steps our
network will keep into its memory. In other words the format of the inputs into the
RNN model should be three dimensional. Eventually what we feed into the network
should have K inputs containing information of the previous L time-steps with F
features, where K,L and F are integer numbers. To obtain such format for our
data we used the Numpy library to reshape our datasets. By reshaping the dataset
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further cleaning of the data was necessary. This happens since when moving from
one mission to another there is a danger that the network will remember informa-
tion from the previous mission which will cause large errors. To guarantee that this
never happens we created functions to process and clean the data to obtain suitable
input for the RNN network.

4.7 Random forest model

The first proposed prediction model is a Random Forest (see 3.4.1) model im-
plemented in the Scikit-learn library (see 4.1.3). The parameters of the model were
tuned with a trial and error grid search. Table 4.4 shows the optimal parameters
chosen by the grid search algorithm.

Parameter Name Value

bootstrap True

max_depth 120

max_features sqrt

min_samples_leaf 1

min_samples_split 5

n_estimators 200

Table 4.4: The final parameters of the Random Forest algorithm after tuning them
with a grid search algorithm.

4.8 Gradient boosting model

The second proposed prediction model is a Gradient Boosting (see 3.4.2) model
implemented in the Scikit-learn library. The parameters of the model were tuned
with a trial and error grid search. Table 4.5 shows the optimal parameters chosen
by the grid search algorithm.
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Parameter Name Value

learning_rate 0.05

min_samples_split 0.2

min_samples_leaf 0.1

max_depth 3

max_features log2

subsample 0.95

n_estimators 300

Table 4.5: The final parameters of the Gradient Boosting algorithm after tuning
them with a grid search algorithm.

4.9 Support vector regression model

The third proposed prediction model is a Support Vector Regression (see 3.3.2)
model implemented in the Scikit-learn library. The parameters of the model were
tuned with a trial and error grid search. Table 4.6 shows the optimal parameters
chosen by the grid search algorithm.

Parameter Name Value

Kernel rbf

C 250

epsilon 0.31

gamma 0.01

Table 4.6: The final parameters of the Support Vector Regression algorithm after
tuning them with a grid search algorithm.
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4.10 Feed forward network

The fourth proposed prediction model is an Feed Forward Neural Network (see
3.1) implemented in the Keras library (see 4.1.2). The parameters of the model
were manually tuned. The model consisted of two hidden layers with ten and five
neurons respectively. The activation function chosen for hidden layers was ReLU
and the initial weights were sampled from a normal distribution. Also since the
model should output a real value the activation function for the output layer was
chosen to be linear. Moreover in every layer a L1 regularisation scheme was applied.
Table 4.7 shows some of the parameters chosen for the final model.

Parameter Name Value

Learning Rate 0.1

Loss MSE

Decay e-5

Batch size 128

Epochs 30000

Callbacks EarlyStopping

Optimizer Adam

Regularization Constant 0.01

Table 4.7: The final parameters of the Feed Forward Neural Network mode after
manually tuning the parameters.

4.11 Stacked generalization model

The fifth proposed prediction model is a Stacked Generalization (see 3.5) model.
The implementation was performed using the Scikit-learn library. The meta pre-
dictor model was chosen manually after experimenting with a variety of prediction
models. After experimenting with different meta predictor models we chose a linear
regression model as the final meta predictor model.
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4.12 Recurrent neural network model
The final proposed prediction model is a Recurrent Neural Network (see 3.2)

implemented in the Keras library (see 4.1.2). This network consists of a layer of
LSTM cells and an output layer with linear activation function. Table 4.8 shows
some of the parameters chosen for the final model.

Parameter Name Value

Learning Rate 0.1

Loss MSE

Decay e-4

Batch size 128

Epochs 30000

Callbacks EarlyStopping

Optimizer Adam

Regularization Constant 0

Table 4.8: The final parameters of the Recurrent Neural Network model after
manually tuning the parameters.
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Evaluation

This chapter presents all the findings and results obtained by the experiments
performed in the study. Initially the performance of historic data models is discussed
and then the predictions of the machine learning models are evaluated and discussed.

5.1 Predictions using historic average

In the first experiment we used the historical average mission duration of missions
in the train set as the prediction. This approach, as expected, produced very poor
results. More specifically the Root Mean Square Error of this model was approxi-
mately 508 seconds. Therefore historic data models are not suitable and definitely
not the optimal choice to give predictions to missions with many uncertainties. This
result ultimately confirms Mehmet and Metin [3] claims that models based on his-
toric data are unreliable when traffic conditions are unstable since their accuracy
relies on similarities between real time and historic traffic patterns. This outcome
also agrees with Jeong et al. [17] claims, that machine learning models outperform
historic data based models. The studied mission is a very long transport mission
that is greatly influenced by traffic congestion and driver breaks which makes those
models incapable of producing accurate predictions.

5.2 Machine learning based predictions

This paragraph describes the performance of the machine learning prediction
models. These models are trained using three different training schemes. Every
training scheme utilises different variables as input to the prediction models. In
particular in the first training scheme the models utilise every available variable,
in the second only truck related variables are considered and in the third only the
variables correlated with the travel time are used. In addition to that all models are
trained with observations sampled with certain frequency. More specifically, since
for the most part of the thesis we did not have access to a computer to run complex
models, we reduced the complexity of the models using observation sampled every
one, three and five minutes. We did not notice any significant difference regarding
the accuracy of the models when this modification was used, while in the same time
the complexity of the models dramatically decreased. In the next paragraphs the
errors of the models are presented.
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5.2.1 Training scheme 1

The performance of every algorithm in terms of Root Mean Square Error (RMSE)
in seconds and Mean Absolute Percentage Error (MAPE) is displayed in table 5.1.
Those errors are obtained by evaluating the predictive capability of the models using
the test set.

Model Frequency MAPE ( % ) RMSE ( Seconds )

RF 5 minutes 6.79 315
3 minutes 5.88 311
1 minute 5.43 316
5 seconds 5.24 321

FFNN 5 minutes 14.40 375
3 minutes 14.78 391
1 minute 13.18 390
5 seconds 12.02 400

SVR 5 minutes 16.97 457
3 minutes 16.27 458
1 minute 15.56 447
5 seconds 9.14 392

RNN 5 minutes 13.45 490
3 minutes 12.46 460
1 minute 11.52 465
5 seconds 12.96 480

GB 5 minutes 16.31 384
3 minutes 15.91 384
1 minute 15.74 385
5 seconds 19.06 373

SG 5 minutes 5.68 315
3 minutes 6.91 322
1 minute 6.51 353
5 seconds 4.96 325

Best Error 4.96 311

Table 5.1: The MAPE and RMSE of the models trained on observation sampled
with certain frequency using all the available input variables. The errors correspond
to prediction errors of missions in the test set.
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5.2.2 Training scheme 2
The performance of every algorithm in terms of RMSE in seconds and MAPE

is displayed in table 5.2. Those errors are obtained by evaluating the predictive
capability of the models using the test set.

Model Frequency MAPE ( % ) RMSE ( Seconds )

RF 5 minutes 5.29 314
3 minutes 6.15 320
1 minute 6.13 333
5 seconds 4.70 324

FFNN 5 minutes 13.80 359
3 minutes 12.43 376
1 minute 12.48 376
5 seconds 9.42 379

SVR 5 minutes 10.40 385
3 minutes 9.11 386
1 minute 8.90 398
5 seconds 8.75 383

RNN 5 minutes 13.46 490
3 minutes 11.25 480
1 minute 6.8 439
5 seconds 8.85 404

GB 5 minutes 18.40 364
3 minutes 13.79 365
1 minute 13.32 367
5 seconds 19.03 359

SG 5 minutes 5.51 312
3 minutes 6.21 320
1 minute 6.49 336
5 seconds 4.96 325

Best Error 4.70 312

Table 5.2: The MAPE and RMSE of the models trained on observation sampled
with certain frequency using only truck related variables. The errors correspond to
prediction errors of missions in the test set.

45



5. Evaluation

5.2.3 Training scheme 3
The performance of every algorithm in terms of RMSE in seconds and MAPE

is displayed in table 5.3 Those errors are obtained by evaluating the predictive
capability of the models using the test set

Model Frequency MAPE ( % ) RMSE ( Seconds )

RF 5 minutes 6.53 304
3 minutes 6.26 302
1 minute 6.48 311
5 seconds 5.21 311

FFNN 5 minutes 11.32 372
3 minutes 11.52 374
1 minute 12.78 330
5 seconds 10.35 396

SVR 5 minutes 10.42 385
3 minutes 13.29 393
1 minute 10.91 384
5 seconds 8.80 373

RNN 5 minutes 11.46 400
3 minutes 12.08 405
1 minute 10.54 449
5 seconds 8.99 385

GB 5 minutes 18.40 364
3 minutes 12.04 343
1 minute 13.61 338
5 seconds 17.47 363

SG 5 minutes 6.67 309
3 minutes 5.91 302
1 minute 6.80 321
5 seconds 6.25 317

Best Error 5.21 302

Table 5.3: The MAPE and RMSE of the models trained on observation sampled
with certain frequency using the variables correlated with the response variable. The
errors correspond to prediction errors of missions in the test set.
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5.3 Performance evaluation
The last part of our experimental design consists of the evaluation of the perfor-

mance of the developed models. The models are compared in terms of Root Mean
Square and Mean Absolute Percentage Errors.

5.3.1 Benchmark comparison
For the benchmark comparison of the predictive capabilities of the models, it is

essential to visualise the errors of different models. In this paragraph we present
plots demonstrating the Root Mean Square Errors and Mean Absolute Percentage
Errors of the developed models. In particular, in figure 5.1 the RMSE of different
experiments are presented while in figure 5.2 the MAPE are displayed.

Figure 5.1: The RMSE of every model for different training schemes.
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Figure 5.2: The MAPE of every model for different training schemes.

5.3.2 Visualizing the predictions
Figure 5.3 demonstrates the ability of the models to predict the remaining mission

time at the last hour of a mission. The blue line corresponds to the observed arrival
time and the other lines are predictions of the models. This plot undoubtedly
illustrates the predictive capability of the models. Moreover it is easily observed
that the Random Forest predictions, orange line, is closer to the actual arrival time
than the other models which confirms the study findings that this model showed
a superior performance compared to other models. Moreover in the last part of
the mission, random forest manages to completely negate the errors which result in
very low MAPE errors. In contrast, the gradient boosting model, red line, which
showed a balanced performance for most part of the mission, failed to capture the
trend in the last minutes of the mission. As a result, this model gave the poorest
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performance in terms of Mean Absolute Percentage Error.

Figure 5.3: The models predictions for the last hour of a mission for models
trained using all the variables sampled every five minutes. Blue line corresponds to
the actual arrival time and rest of the lines correspond to the predictions given by
the models.
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5.4 Discussion of the results

According to our results using historic data based model, such as using the
historic mean travel time as a prediction results does not provide accurate predictions
(RMSE = 508 seconds). This argument can be easily justified by comparing this
error with the RMSE of the proposed models. In particular the RMSE of most of the
models was very close to 350 seconds and even the worst performing model had an
error of 490 seconds. This finding confirms [17] claims that machine learning models
can capture the complex non-linear relationship between the explanatory variables
and the total travel time. This result can also be connected to [3] conclusions that
historic average models are not suitable when traffic conditions are unstable.

In terms of Root Mean Square Error of the machine learning proposed models,
all models managed to achieve acceptable performance. In particular Random For-
est model had the lowest RMSE of all models for all training schemes and training
frequencies. The Stacked Generalization that utilises the predictions of the models
as inputs to a meta predictor displayed similar performance. However as figure 3.8
shows the differences between this approach and Random Forest are not significant
which makes RF the winning model since SG model requires development of many
other models. The lowest RMSE, 302 seconds, was observed when Random Forest
was trained using only correlated variables with observations sampled every three
minutes. Similar results were observed in terms of Mean Absolute Percentage Error
with Random Forest demonstrating a superior performance compared to other meth-
ods. The lowest MAPE ( 4.70% ) was observed when Random Forest was trained
using only truck related variables with observations sampled every five minutes. The
Gradient Boosting model that was the second best model after Random Forest in
terms of RMSE had the worst performance in terms of MAPE and failed to capture
the trend in the last minutes of the mission. The RF model completely negated
the errors in the last minutes and displayed the lowest MAPE. This behaviour can
be easily explained since most of the models solve certain optimization problems
to obtain their predictions and may not converge to solutions that can accurately
predict the last minutes of the mission. On the other hand Random Forest take into
account only predictions from decision trees in the correct region of the feature space
and hence it provides very accurate predictions in the last minutes of the mission.

In regards to the appropriate choice of explanatory variables it was found that
truck related data from GPS sensors are sufficient to provide accurate predictions.
This result verifies Patnaik et al. [25] claims, that weather variables are insignifi-
cant when predicting arrival times of urban buses. This finding does not agree with
[29] conclusions that utilizing weather data dramatically increased the prediction
accuracy of their models. However [29] studied a mission operated in Fushun West
Open-pit Mine in China while we considered a transport mission in Swedish high-
ways and roads. Therefore, further study is required to decide if weather variables
should be considered when developing such models for trucks operating in rough
environments.

One of the main contributions of the thesis is the study of a long transport mis-
sion, approximately four hours long, that is greatly influenced by human behaviour.
More specifically, the travel time of the mission does not only depend on traffic and
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weather behaviour but also on the duration of the driver break. In contrast, most
studies in literature are related to urban buses where this factor is not existent. This
is an important element to take into consideration when designing similar models for
fully autonomous vehicles having in hand data that are greatly disturbed by human
behaviour.

51



5. Evaluation

52



6
Conclusion

The main objectives of the study were to design, develop and evaluate the ability
of machine learning models to predict the arrival time of a truck operating in trans-
port mission as well as to identify which features are optimal to be used as inputs
to the predictions models.

6.1 Answers to the research questions
For the fulfilment of the main aims of the study we try to give answers to two

research questions (see 1.2). Those questions are restated and answered below.

Research Question 1:

What are the variables that can significantly influence the total travel time of a
vehicle in a mission and are optimal to be used as inputs to minimize the errors of
the prediction model ?

Answer: Using as input variables the features that are correlated with the re-
sponse gave the lowest prediction errors and hence those variables are the optimal
choice of input variables to the models. Results were similar when training with
no weather variables. On the other hand when weather data were used the model’s
errors increased. Therefore truck related data are sufficient to provide accurate pre-
dictions.

Research Question 2

What proposed Artificial Intelligence prediction model accomplished the best per-
formance when a benchmark comparison of the ability of the models to determine
the estimated time of arrival of a truck was performed?

Answer: Even though most of the models acquired a good level of predictive accu-
racy the models that are more suitable to predict the arrival times of trucks are the
Random Forest and Stacked Generalization models. Since Stacked Generalization
model uses the prediction of the Random Forest as input to the meta predictor it
achieved low errors. However the difference between the two models is not signifi-
cant and the winning model can be considered to be the Random Forest algorithm,
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since the Stacked Generalization model requires predictions from four different other
models. The lowest RMSE error of the Random Forest algorithm was 302 seconds.
In terms of Root Mean Square Error, Recurrent Neural Network showed the poorest
performance (RMSE = 490 seconds) out of the prediction models but still gave bet-
ter predictions than models using the average travel time as their prediction (RMSE
= 508 seconds). Random Forest also displayed the lowest error in terms of MAPE
error while Gradient Boosting model had an inferior performance compared to other
models (MAPE = 19.03%).

6.2 Limitations
The main limitations of the study were hardware and time related. For the

most part of the thesis we did not have access to a high-performance computer
to run our models. This combined with the fact that some models require a lot
of time to train, did not allow us to develop new models such as Convolutional
Neural Network. Moreover for the same reason we were not able to explore in depth
the predictive capabilities, tune the hyperparameters, of models such as Recurrent
Neural Networks. Another limitation of the study is the unavailability of data related
to important factors such as traffic flow information. One of the main assumptions
of the study is that traffic greatly influences the arrival of trucks but unfortunately
no information about the traffic situation was available to us.

6.3 Future work
Lastly we express our opinion about future projects that can potentially improve

the thesis results and contribute to the development of more accurate models. Those
ideas are stated in the next paragraphs.

6.3.1 Augmentation of the datasets
Collecting and processing new truck related data from GPS sensors can be very

time consuming and expensive. A potential solution to this issue is to create ar-
tificial data using the current available data. Hence a study that considers data
augmentation methods such as Generative Adversarial Networks is needed. More-
over it will be interesting to monitor how the prediction accuracy is influenced when
using artificial data to train the models.

6.3.2 Traffic flow information
One of the limitations of this study is that no traffic flow related data were

available. A study that repeats the experiments performed in the current study
by including traffic flow information should be considered as a future work. Fur-
thermore, collecting traffic flow data can be very hard and quite expensive, hence
research for designing and developing models that can approximate traffic flows
should be conducted.
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6.3.3 Convolutional neural networks and hyper parameter
tuning

In this project a plethora of prediction models were proposed and developed
to estimate the arrival time of the trucks. However due to the time limitation of
the thesis it was impossible to test the predictive capabilities of some prediction
models that can potentially produce satisfactory or even better results than results
of models proposed in this study. An interesting project that can also contribute to
this study findings is to explore the predictive capabilities of other models such as
convolution neural networks. In addition to that since these kind of models require
a lot of computation power and large amount of time to train, Bayesian approaches
can be utilised to tune the hyper parameters of the models.

55



6. Conclusion

56



Bibliography

[1] Talpac - truck haulage simulation software.
[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16),
pages 265–283, 2016.

[3] Mehmet Altinkaya and Metin Zontul. Urban bus arrival time prediction: A
review of computational models. International Journal of Recent Technology
and Engineering (IJRTE), 2(4):164–169, 2013.

[4] Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. Learning long-term de-
pendencies with gradient descent is difficult. IEEE transactions on neural net-
works, 5(2):157–166, 1994.

[5] Yu Bin, Yang Zhongzhen, and Yao Baozhen. Bus arrival time prediction us-
ing support vector machines. Journal of Intelligent Transportation Systems,
10(4):151–158, 2006.

[6] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.
[7] Emmanuel K Chanda and Steven Gardiner. A comparative study of truck

cycle time prediction methods in open-pit mining. Engineering, construction
and architectural management, 17(5):446–460, 2010.

[8] Mei Chen, Xiaobo Liu, Jingxin Xia, and Steven I Chien. A dynamic bus-
arrival time prediction model based on apc data. Computer-Aided Civil and
Infrastructure Engineering, 19(5):364–376, 2004.

[9] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and ac-
curate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

[10] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-
ing, 20(3):273–297, 1995.

[11] Harris Drucker, Christopher JC Burges, Linda Kaufman, Alex J Smola, and
Vladimir Vapnik. Support vector regression machines. In Advances in neural
information processing systems, pages 155–161, 1997.

[12] The EU explained:. Transport. European Commission, 2014.
[13] Jerome H Friedman. Greedy function approximation: a gradient boosting ma-

chine. Annals of statistics, pages 1189–1232, 2001.
[14] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural

networks. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 315–323, 2011.

57



Bibliography

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
The IEEE International Conference on Computer Vision (ICCV), December
2015.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[17] Ranhee Jeong and Laurence R. Rilett. Bus arrival time prediction using artifi-
cial neural network model. In Proceedings - 7th International IEEE Conference
on Intelligent Transportation Systems, ITSC 2004, pages 988–993, 2004.

[18] Rudolph Emil Kalman. A new approach to linear filtering and prediction prob-
lems. Journal of basic Engineering, 82(1):35–45, 1960.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[21] Anders Krogh and John A Hertz. A simple weight decay can improve general-
ization. In Advances in neural information processing systems, pages 950–957,
1992.

[22] Andy Liaw, Matthew Wiener, et al. Classification and regression by random-
forest. R news, 2(3):18–22, 2002.

[23] B Mehlig. Artificial neural networks. arXiv preprint arXiv:1901.05639, 2019.
[24] Open Source Initiative OSI. The bsd license: Licensing. The BSD.
[25] Jayakrishna Patnaik, Steven Chien, and Athanassios Bladikas. Estimation of

bus arrival times using apc data. Journal of public transportation, 7(1):1, 2004.
[26] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning

representations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.
[27] Robert E Schapire. The strength of weak learnability. Machine learning,

5(2):197–227, 1990.
[28] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human knowledge. Nature,
550(7676):354, 2017.

[29] Xiaoyu Sun, Hang Zhang, Fengliang Tian, and Lei Yang. The use of a machine
learning method to predict the real-time link travel time of open-pit trucks.
Mathematical Problems in Engineering, 2018, 2018.

[30] Ilya Sutskever, James Martens, George E Dahl, and Geoffrey E Hinton. On
the importance of initialization and momentum in deep learning. ICML (3),
28(1139-1147):5, 2013.

[31] Mark J Van der Laan, Eric C Polley, and Alan E Hubbard. Super learner.
Statistical applications in genetics and molecular biology, 6(1), 2007.

[32] Dong Wang, Junbo Zhang, Wei Cao, Jian Li, and Yu Zheng. When will you
arrive? estimating travel time based on deep neural networks. AAAI, 2018.

[33] Maurice D Weir, Joel Hass, and George Brinton Thomas. Thomas’ Calculus:
Multivariable. Addison-Wesley, 2010.

[34] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

58



Bibliography

[35] M Yang, C Chen, L Wang, X Yan, and L Zhou. Bus arrival time prediction
using support vector machine with genetic algorithm. Neural Network World,
26(3):205–217, 2016.

59



Bibliography

60



A
Appendix 1

Proposition 1

∂Wkl

∂Wmn
= δkmδln

where
δij =

 0 if i 6= j

1 if i = j

is the Kronecker delta .

Derivation of the back propagation algorithm(N=1)

Updates for output layer
∂H

∂W 2
kl

= −∑
µ,i

(tµi −Oµ
i ) ∂O

µ
i

∂W 2
kl

∂Oµ
i

∂W 2
kl

= ∂

∂W 2
kl

(g(∑
j
W 2

ijV
µ
j − b2

i )) = g′(Bµ,2
i )δikV µ

l

Combining both equations we obtain

∂H

∂W 2
kl

= −∑
µ

(tµk −O
µ
k )g′(Bµ,2

k )V µ
n = −∑

µ
∆µ,2
k V µ

n (A.1)

where
∆µ,2
k = (tµk −O

µ
k )g′(Bµ,2

k ) (A.2)
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Updates for first hidden layer

∂H

∂W 1
mn

= −∑
µ,i

(tµi −Oµ
i ) ∂O

µ
i

∂W 1
mn

∂Oµ
i

∂W 1
mn

= ∂

∂W 1
mn

(g(∑
j
W 2

ijV
µ
j − b2

i )) = g′(Bµ,2
i ) ∑

j
W 2

i,j

∂V µ
j

∂W 1
mn

∂V µ
j

∂W 1
mn

= ∂

∂W 1
mn

g(∑
k
W 1

jkx
µ
k − b1

j) = g′(B1,µ
j )δjmxµn

Combining those equations we obtain

∂H

∂W 1
mn

= −∑
µ,i

∆µ,2
i W 2

img
′(B1,µ

k )xµn = −∑
µ

∆µ,1
i xµn (A.3)

where
∆µ,1
i = ∑

i
∆µ,2
i W 2

img
′(B1,µ

m ) (A.4)

This procedure can be generalized for any number of hidden
layers. Similarly the updates for biases can be calculated.
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