

Virtual Commissioning with Oculus Rift
Bachelor’s Thesis

Marcus Björklund
Marcus Engberg
Martin Kastebo
Andreas Lu
Tobias Ågren
Måns Östman

Department of Signals & Systems
Chalmers University of Technology
Gothenburg, Sweden 2015
Bachelor’s Thesis 2015

The Authors grant to Chalmers University of Technology the non-exclusive right to
publish the Work electronically and in a non-commercial purpose make it accessible on
the Internet. The Authors warrant that they are the authors to the Work, and warrant
that the Work does not contain text, pictures or other material that violates copyright
law.

The Authors shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Authors have signed a copyright agreement with a third party regarding the Work, the
Authors warrant hereby that they have obtained any necessary permission from this
third party to let Chalmers University of Technology store the Work electronically and
make it accessible on the Internet.

Virtual Commissioning with Oculus Rift

MARCUS BJÖRKLUND
MARCUS ENGBERG
MARTIN KASTEBO
ANDREAS LU
TOBIAS ÅGREN
MÅNS ÖSTMAN

c© Marcus Björklund, Marcus Engberg, Martin Kastebo, Andreas Lu, Tobias
Ågren and Måns Östman, June 2015.

Examiner: Ass. Prof. Petter Falkman
Supervisor: Dr. Mohammad Reza Shoaei

Chalmers University of Technology
Department of Signals and Systems
SE-412 96 Gothenburg
Sweden

Department of Signals and Systems
Gothenburg, Sweden June 2015

Abstract

Virtual Commissioning is a method which both replicates an industrial environ-
ment, including hardware and software, into a virtual environment and validates
PLC-code. Virtual Commissioning also handles the demands from the market as
it improves the time-to-market, planning accuracy, cost constraints and quality.
Oculus Rift is a pioneer product among virtual reality goggles where the user gets
an improved reality based experience of a virtual world. By introducing Virtual
Commissioning with Oculus Rift, we believe a new visual experience for Virtual
Commissioning will be achieved.

This thesis studies the opportunity of getting a better perception of reality when
performing a Virtual Commissioning on a robot cell. By adding Oculus Rift, we
believe, this goal can be achieved. However, a Virtual Commissioning could not
be performed and the result of the project was a simulation of the robot cell
through Oculus Rift. The impression of the simulation was a realistic experience
and further development is of great interest.

Sammanfattning

Virtual Commissioning är en metod där b̊ade en industriell miljö, som inneh̊aller
h̊ardvara och mjukvara, replikeras till en virtuell miljö och PLC-kod valideras. Vir-
tual Commissioning möter marknadens efterfr̊agan genom bättre produktionstid,
högre planeringsprecision, mindre kostnader och en bättre kvalité. Oculus Rift
är en pionjär bland virtual reality headsets där användaren erh̊aller en förbättrad
verklighetsupplevelse i den virtuella miljön. Genom att introducera Virtual Com-
missioning med Oculus Rift, tror vi att man kan f̊a en ny upplevelse med Virtual
Commissioning.

Detta projekt undersöker möjligheten att förbättra verklighetsupplevelsen för en
Virtual Commissioning av en robotcell. Detta m̊al anses kunna uppn̊as genom in-
tegrationen av Oculus Rift. En fullständig Virtual Commissioning kunde emeller-
tid ej genomföras, resultatet av projektet var istället en simulering av robotcellen,
genom Oculus Rift. Simuleringen gav en verklig uppfattning av den virtuella cellen
och framtida utveckling av projektet anses vara av stort intresse.

Acknowledgements

There are a number of people without whom this thesis could not be accomplished
and to whom we would like to express our gratitude:

Petter Falkman, for the support and guidance early in the project.

Mohammad Reeza Shoaei, for the support during the whole project.

Martin Dahl, for the support with the Test Cell and equipment.

Kristofer Bengtsson, for the support with PLC and OPC-server.

Mikael Öhman, for the support with the compiling of the Tcl-C++ wrapper.

Group 15, Gothenburg 2015-06-07

Contents

Glossary 1

1 Introduction 2

1.1 Background . 3

1.2 Aims . 3

1.3 Methodology . 3

1.4 Project Overview . 4

2 Implementation 5

2.1 Process Simulate . 5

2.2 PLC . 9

2.2.1 Project Study . 10

2.2.2 Hardware . 11

2.2.3 Communication . 13

2.3 Oculus Rift . 14

2.3.1 Rendering Graphics to Oculus Rift 15

2.3.2 Orientation Control . 18

2.4 Integration . 26

i

CONTENTS

3 Discussion 27

3.1 Future work . 28

4 Conclusion 31

Bibliography 34

Appendices 35

A Test Cell 36

B Oculus Rift - User and Development Guide 103

C Inventory of Safety Equipment 109

D Tutorial: Setting Up a Project in TIA Portal 111

E Tutorial: Setting Up an OPC Server 125

F Tutorial: OPC Tunneling With Matrikon OPC 133

G Tutorial: Validating an OPC Server with OPC Scout 142

H Tutorial: Writing Ladder Code in TIA Portal 147

ii

Glossary

ABB JOKAB is a company specializing in safety equipment.

API is an acronym for Application Programming Interface which is a particular
set of rules and specifications that serves as an interface between different
software programs and facilitates their interaction.

CAD is an acronym for Computer-Aided Design which is a computer technology
that designs a product and documents the design’s process.

Event-based is a process which sequence is controlled by signals.

Head Tracking is a method of monitoring the movements of the user’s head and
translating them into computer input.

OPC Server is a software interface which is used in Windows to interpret PLC
protocol, distributed on a server.

PLC is a digital computer used for automation of typically industrial electrome-
chanical processes.

Ramp-up is a term to describe an increase in firm production ahead of anticipated
increases in product demand.

Sequence-based is a process which sequence is controlled by operations.

TIA Portal is a software used to configure a PLC and its belonging hardware.

1

1

Introduction

The demands of better time-to-market, planning accuracy, cost constraints and
overall quality of a product are challenges which Virtual Commissioning can over-
come [1]. Virtual Commissioning replicates the industrial production environment
into a virtual environment, where the PLC code can be validated. By confirming
the functionality of the PLC code, hidden errors can be discovered in an earlier
stage of the process which results in an increased ramp-up phase and a cost re-
duction [1] [2]. Virtual Commissioning is useful when implementing new hardware
to the production processes since it allows analysis and verifications of the virtual
representation on an early stage of development.

The merging of virtual reality and Virtual Commissioning, is an attempt at achiev-
ing a more realistic experience of the physical environment. Integrating Oculus rift
with Virtual Commissioning gives the opportunity to study the virtual representa-
tion from a first person perspective. This perspective introduces chance at gaining
new insights into problems which might have been overlooked otherwise.

Oculus Rift is the latest in virtual reality goggles targeting the consumer market
which will allow developers to create immersive games and new experiences [5].
Oculus Rift uses sensors in order to achieve 360 degree head tracking. This enables
a more realistic perception, since the user can explore the virtual environment
through head movements.

2

1.1. BACKGROUND CHAPTER 1. INTRODUCTION

1.1 Background

One of the pioneers behind the development of Virtual Commissioning was General
Motors, during the 90’s [3]. Since then the technology has spread and a new market
has appeared where companies develop software for the sole purpose of Virtual
Commissioning. One of them is Siemens PLM Software, founder of the software
suite Siemens Tecnomatix. Process Design and Process Simulate are part of this
suite and was used during this project. Other companies that develops advanced
platforms for Virtual Commissioning are ISG Virtuos, Emulate3D, Xcelgo and
Visual Components.

Previous studies have been made regarding problems that can occur with the
OPC interface [4]. A Study about the implementation of Virtual Commissioning
[5] has also been researched, the project herein focuses on implementing a Virtual
Commissioning and shares a similar setup to that of this project. These projects
have focused on the approach and process of Virtual Commissioning. They will be
used as a basis to strengthen the understanding of, and how to conduct, a Virtual
Commissioning.

1.2 Aims

The goal of the project is to conduct a Virtual Commissioning on a robot cell in
which Oculus Rift is used to view the virtual environment. It is of great interest to
evaluate if adding Oculus Rift to a Virtual Commissioning creates a more realistic
experience, bringing the user closer to the physical environment.

1.3 Methodology

To reach the end goal of performing a Virtual Commissioning of a robot cell with
Oculus Rift, the main task was divided into three subtasks. These will be referred
to as; Process Simulate, PLC and Oculus Rift. An overview of the project can be
seen in Figure 1.1.

3

1.4. PROJECT OVERVIEW CHAPTER 1. INTRODUCTION

Figure 1.1: Flowchart of the projects workflow.

Each of these three subtasks have different purposes during the project in order
to reach the end result. The Process Simulate subtask has the goals to both
graphically build a robot cell and also defining its operations. The end result
should be a robot cell which is able to be controlled by a physical PLC. The PLC
subtask consists of establishing a communication link between the PLC and the
virtual environment as well as controlling it. The subtask also includes creating
a physical safety environment to be represented as a virtual environment. The
Oculus Rift subtask covers the interface between Oculus Rift and Process Simulate
and the establishment of an orientation control in the virtual environment.

1.4 Project Overview

The second chapter, consists of methodology and results of each subtask combined
with the result of the project. Chapter three, contains discussions and future work
of the project. The last chapter contains of conclusions regarding the project.

4

2

Implementation

The following chapter will describe and present the methods and results for each
subtask. In Section 2.1, we describe the subtask Process Simulate. In Section
2.2, we describe the subtask PLC. Finally, in Section 2.3, we describe the subtask
Oculus Rift.

2.1 Process Simulate

Siemens Tecnomatix is a software suite to handle part planning, assembly planning,
automation and robotics planning, plant design and optimization [6]. Process
Design and Process Simulate are software included in Tecnomatix.

Process Design is a tool used to add the required items to a project and to handle
how they are associated. This includes the engineering libraries which hold the
CAD data and other object within the project.

Process Simulate is a tool used to create the operation which includes both place-
ment of the objects into a 3D environment and defining the tasks performed by
the objects. The simulation part can be performed in two ways, either sequence-
based or event-based. If the simulation is sequence-based, the tasks defined will
run one after another in a predetermined order. It can be used to verify placement
through checking for reachability and detecting collisions. Event-based simulations
also uses a predetermined order for the tasks, but will only transition from one
task to the next if the conditions are met. For instance, the process will not start

5

2.1. PROCESS SIMULATE CHAPTER 2. IMPLEMENTATION

unless the start button has been pushed.

Case Study: Test Cell

The SPEAR project was used a base for studying how to create a robot cell
with Tecnomatix[7]. Their methodology is a step by step instruction which covers
all the necessary features for creating event based simulation that include safety
equipment. It does not include any information on how to replace the virtual PLC
within Process Simulate with a real one nor is it prepared for use with Oculus
Rift. The purpose of this case study will be to create an event-based simulation of
a robot cell that can be adapted to work with a physical PLC along with adding
any features required for the integration with Oculus Rift. The robot cell created
for this purpose was referred to within the project as the Test Cell.

The contribution to this robot cell simulation model was an inclusion of a human
object into the robot cell. This was an essential part due to the integration between
Process Simulate and Oculus Rift. By adding the human object into the robot cell,
it was possible to control the object and use its in-built function of getting a first
person-perspective of the cell.

The Test Cell performs a welding operation on two parts. For this it utilises one
fixture, one robot for spot welding and one robot to pick and place the welded
parts into a container, see Figure 2.1. The Test Cell also includes several safety
features such as two safety gates, one safety mat and one emergency button. The
cell operates according to the following sequence:

1. The operator places two different parts onto a fixture

2. The parts are secured in the fixture by clamps

3. A welding robot performs a spot-weld operation, joining the two parts

4. The clamps are opened

5. The gripper robot removes the assembly from the fixture and places it in a
container for collection, completing one cycle

By following the instructions provided by the SPEAR project[7], the creation of
the Test Cell was divided into three parts. The first step was to use Process Design
to allocate all the necessary resources. This was done by creating four folders called
Libraries, Product, Plant and Studies. All the provided CAD data was imported
to the Libraries folder. The Product folder held the two objects that represent the

6

2.1. PROCESS SIMULATE CHAPTER 2. IMPLEMENTATION

parts that would be welded together. The Plants folder contained the objects for
the cell and its components along with the objects for the processes defined later.
The last folder, Studies, was used to associate objects with the specific simulation
created by Process Simulate.

The second part was to use Process Simulate to create a sequence-based repre-
sentation of the robot cell, which mean its flow is controlled by its sequence of
operations. This is commonly the first step of implementation. First all the essen-
tial objects to the process were added to the 3D-representation of the robot cell.
The process was then defined by using the following operations:

• Object flow operation, handles how the parts are placed into the fixture

• Device control operation, handles the opening and closing of the clamps

• Weld operation, handles the spot-welding robot

• Gripper operation, which handle the gripper robot for removing the finished
part

Figure 2.1: The Test Cell.

7

2.1. PROCESS SIMULATE CHAPTER 2. IMPLEMENTATION

The last step for the second part was to add the cosmetic feature to give the cell a
more realistic look. This includes fences around the cell, gates, containers, PLC’s
and robot controllers.

The final part was to make the robot cell work as event-based, which means it is
controlled by signals. By being controlled by signals, it is possible to connect a PLC
to handle the robot cell. To operate a event-based robot cell in Process Simulate,
there is a mode called Line Simulation. In Line Simulation it was possible to add
signals essential for keeping track of the process. These signals oversee the robot
position, status of the clamps and if both parts are present in the fixture. Signals
was also generated to control the operations with logic.

The purpose of the result from this subtask is to be integrated with the physical
PLC and Oculus Rift. The first goal reached was the sequence-based Test Cell.
The graphical result of the Test Cell is depicted in Figure 2.1. Observations of
the desired behavior verified the implementation of the sequence along with the
associated operations. The desired behavior of the cell was first to push a simulated
start button. Secondly, the parts are loaded into the fixture in the cell, where it
is locked by the clamps. Then the welding robot perform its welding operation
and when finished, it goes to its starting position. The clamps are released and
the gripper robot grips the welded part and puts into the container. This is the
sequence in which one cycle is performed. The operations implemented to perform
this cycle was the following:

1. Start Button

2. Clamps Open

3. Part 2 to Fixture

4. Part 1 to Fixture

5. Clamps Close

6. Weld op

7. Clamps Open 2

8. Pick And Place

The next goal in this subtask was to make the robot cell event-based. By using the
sequence-based model of the robot cell, it was possible to continue in Line Simu-
lation mode to make it event-based. In Process Simulate, there is a feature which
auto generates the signals based on the implemented operations. Compared to
the sequence-based version, it was necessary to implement logic for the transitions

8

2.2. PLC CHAPTER 2. IMPLEMENTATION

between the operations. Therefore, with help of the signals, a determined sequence
could be implemented which can bee seen in Figure 2.2. The logic between each
transition can be seen in Appendix A.

Figure 2.2: The implemented sequence.

With a full functional event-based robot cell, it was possible to implement the
safety features. As seen in Figure 2.1, apart from the emergency stop button
which not is visible in the picture, the following safety parts are integrated into
the robot cell:

• Safety gate 1

• Safety gate 2

• Safety mat

• Emergency stop button

To make these parts integrated to work as safety features, an additional module
with corresponding signals was created. In the safety module, logic was created
to handle the safety issues in the cell if it is triggered by the safety signals. If
triggered, the robots are paused until the signal is reset. When the safety signal is
reset, the robots continues the cycle. This can all be seen through a first person-
perspective because the importation of the human object into the robot cell. To
see the logic for the safety features, see Appendix A.

2.2 PLC

It was estimated that a substantial amount of information had to be gathered in
order to control the Test Cell. A study was therefore conducted to develop an
understanding of the project as a whole, in order to ease the planning process.
The plan was made based on the methods used in The Value Model [8]. This to
ensure only essential steps were taken in order to achieve the goals and to minimize
the chances of project dead ends. The plan was created through brainstorming

9

2.2. PLC CHAPTER 2. IMPLEMENTATION

meetings and with the help of feedback provided by the project supervisor as an
outside reference.

After the study of the project the process was divided into two parts, hardware and
software. This enabled a more focused and efficient work routine, as the process to
integrate the PLC with the Test Cell was complex and required in-depth studies.

2.2.1 Project Study

PLC

A study of the PLC system in general was conducted in order to get a basic
understanding of how the system functioned. As the PLC is central to the project,
knowledge about it and its environment was deemed essential. In order to achieve
this, the book Programmable Logic Controllers [9] was used.

Additional Hardware

With basic knowledge of the PLC and its features, provided by the PLC study,
an inventory list of the provided ABB JOKAB safety equipment was made. The
equipment was categorized in accordance to its relevance concerning the project.
This in order to ease the process of finding useful equipment to represent the
physical safety environment. The complete inventory list can be found in Appendix
C.

Ladder Logic

In this project, ladder logic is used for PLC programming [10]. To this end, a basic
understanding of the structure and advantages of the programming language was
researched, followed by dedicating time to learn the different function-blocks. The
fundamental understanding of the PLC and the ABB JOKAB safety equipment
eased the learning process.

10

2.2. PLC CHAPTER 2. IMPLEMENTATION

Software Interface

Since the PLC subtask was based on a Siemens PLC, TIA portal, also developed
by Siemens, was used to manage its configuration. TIA portal was used as an
interface between the PLC and the laptop. The instructions to run the Test Cell
would be defined in the software, see Appendix G, as well as respond to the signals
sent through the PLC from the ABB JOKAB equipment. To communicate the
information, an OPC server was established. The server interprets the signals sent
from the PLC and a client in Process Simulate in turn interprets the signals and
makes the Test Cell respond accordingly. Step by step guides of the work process
can be found in Appendix D and E.

2.2.2 Hardware

Siemens PLC and Components

The PLC used in this project is a Siemens SIMATIC 1517F-3 PN/DP. The PLC
consisted of several modules interconnected on a rail, see Figure 2.3. Each compo-
nent was reviewed to get an understanding of how to connect the different safety
equipment to the PLC [11].

In addition to studying the components, the PLC interface was studied in order to
determine how error messages and different states of the PLC was shown on the
display.

Finally, a button was connected to the PLC in order to validate all the gathered
information about the system. The button sends a signal when pressed and receive
one to light up. A simple ladder program was written to light up the button as it
was pressed.

ABB JOKAB Safety Equipment

ABB JOKAB develops safety equipment for industrial production lines. In order
to mimic the security setup in the virtual Test Cell, equipment provided by ABB
JOKAB was used. The equipment was plugged into the output module and the
input module, seen in Figure 2.3, according to the ABB JOKAB manual [12].

11

2.2. PLC CHAPTER 2. IMPLEMENTATION

Figure 2.3: Setup of the PLC

The security equipment used was a Focus light curtain FT4-35-300 and a Smile
Tina 11 EA emergency stop. These would represent the safety mat as well as
the emergency stop in the Test Cell. A turning knob was also used to represent
the start button. By programming simple ladder sequences the functionality of
the equipment was confirmed. For additional information on ladder code in TIA
portal, see Appendix G.

The final setup of the PLC hardware part of the PLC subtask can be seen in Figure
2.4.

Figure 2.4: The final setup decided upon for the physical safety environment, where FFI-
PC-02 is the laptop

12

2.2. PLC CHAPTER 2. IMPLEMENTATION

2.2.3 Communication

An OPC server was established in the virtual environment of TIA portal, see
Appendices D and E.

In order to check the functionality of the OPC server, a client was established
through OPC scout, see Appendix H. By using a client on the same system as the
server, a range of connectivity issues could be avoided. The server’s functionality
could be confirmed before the connection between the computers was established.

The link between the computers became the next concern. Different communica-
tion alternatives were researched. The concept of this study was to evaluate which
connection that proved most stable transferring data between the computers. As
the local network was the most accessible alternative it was assessed first. Second
an internal VPN-server and finally a local switch, which was decided upon as the
best solution.

In order to make the OPC server detectable on the PC station, in which the Test
Cell was located, the information on the server was tunnelled between the com-
puters using MatrikonOPC Tunneler, see Appendix F. This allowed the server to
be simulated in real time on both computers in order for the client in Process Sim-
ulate to read the variables active on the OPC server. The simple ladder sequence
displayed in Figure 2.5 was used to test the connection. Process Simulate recog-
nized the variables present on the server, the Test Cell however, did not respond
to the signals sent through the OPC server.

Figure 2.5: Connection test ladder code

The result of the PLC subtask was a communication setup in TIA portal of the
PLC and I/O, in which signals was translated to an OPC server and tunnelled using
MatrikonOPC Tunneller between two computers. However, since Process Simulate
did not respond to the ladder code written in TIA portal, the project was unable
to control the Virtual environment of the Test Cell. The final communication
configuration can be seen in the Figure 2.6.

13

2.3. OCULUS RIFT CHAPTER 2. IMPLEMENTATION

Figure 2.6: Flowchart of the integration between Process Simulate and the physical PLC,
where FFI-PC-01 is the PC and FFI-PC-02 is the laptop.

2.3 Oculus Rift

This section covers the implementation of the rendering of graphics from Process
Simulate to Oculus Rift and the establishment of an orientation control in Process
Simulate.

Using Oculus Rift with Virtual Commissioning is a new approach. An important
step was to study the Oculus Rift hardware and software. There are several docu-
ments provided by the developers website that possess the necessary information
about the hardware and the software [13].

14

2.3. OCULUS RIFT CHAPTER 2. IMPLEMENTATION

2.3.1 Rendering Graphics to Oculus Rift

Figure 2.7: Printscreen from OculusWorldDemo stereoscopic rendering.

The first task was to create a first person perspective seen through the Oculus Rift.
When using the goggles, each eye has a separate screen to create a stereoscopic
view which introduces an illusion of depth as seen in Figure 2.7. Lenses are used
to magnify each screen to yield a wider field of view, but they also distort the view
significantly.

Figure 2.8: Distortion types.

If displaying the original object in Oculus Rift, the user may observe it with pin-
cushion distortion as seen in Figure 2.8. To counteract the pincushion distortion,
the software must apply an equal and opposite barrel distortion to cancel each
other out. The stereoscopic view and the wide field of view are critical parts of
achieving an immersive experience [14].

Setup in Process Simulate

In Process Simulate it is possible to include a human object and change the view
to a first person perspective. This will open up two additional windows which
represents the left eye and the right eye.

15

2.3. OCULUS RIFT CHAPTER 2. IMPLEMENTATION

Figure 2.9: Printscreen of the left and right eye output windows in Process Simulate.

Figure 2.9 was the result when the left and the right eye view output windows were
generated in Process Simulate. The output windows can not be rendered directly
to the Oculus Rift because there is no built-in functionality in Process Simulate.
However, Process Simulate lacks the support to develop custom modules. In order
to render the graphical view, additional external applications was used.

Rendering Graphics from Process Simulate

In order to render graphics from Process Simulate, a custom application was de-
veloped that merges the two windows from Process Simulate into a stereoscopic
full-screen image.

An executable Windows application written in the scripting language AutoHotKey
(AHK) was chosen. In AHK-libraries, there are already developed API functions
that directly can be used to solve parts of the problem. In order to move, remove
borders, change dimension and orientation of a window as well as hiding the Win-
dows taskbar and start button, only five short AHK commands was used. The
AHK functions are listed in Code 2.1 [15][16][17][18].

16

2.3. OCULUS RIFT CHAPTER 2. IMPLEMENTATION

Code 2.1: AHK functions used to generate stereoscopic split-screen view.

WinGet , OutputVar , Cmd, WinTitle
WinSet , Attr ibute , Value , WinTitle
WinMove , WinTitle , WinText , X, Y , Width , Height
WinHide ahk c l a s s Shell TrayWnd ; hide taskbar
WinHide Star t ahk c l a s s Button ; hide s t a r t button

Figure 2.10 is the result when the stereoscopic full screen view was generated by the
custom application. Additional features were added to the application that were
hiding the Windows taskbar and start button in order to improve the immersive
experience.

Figure 2.10: Printscreen of the merged stereoscopic full-screen view generated by the
custom application.

The stereoscopic split-screen that was generated by the custom application was
missing distortion corrections and could therefore not properly be viewed in Oculus
Rift. To counterbalance the stereoscopic view, the software Virtual Desktop was
used. The software has one setting where distortion corrections can be used on
side-by-side content and directly render the view to Oculus Rift. The result of
rendering the images in Virtual Desktop can be seen in Figure 2.11.

17

2.3. OCULUS RIFT CHAPTER 2. IMPLEMENTATION

Figure 2.11: The stereoscopic full-screen view with distortion corrections rendered by
Virtual Desktop.

2.3.2 Orientation Control

The second task was to control the human object in Process Simulate with help of
an input device. One important part was to be able to control the human object
during the simulation, otherwise it would be a static view.

Setup Jack Collaboration

There is no way to control the human object directly during simulation in Process
Simulate. It is possible to predefine the coordinates for the human object and a
movement path for it, but there is no option to give the human object new input
data during the simulation.

To solve this issue, an add-on software, Jack 8.2, with a feature called Jack Col-
laboration was used. This feature connects the human object in Jack 8.2 with
the human object in Process Simulate by setting one software as the server and
the other as the client. The human object in the client was controlled from the
software set as the server which gave the opportunity to control the orientation of
the human object in Process Simulate from Jack 8.2.

18

2.3. OCULUS RIFT CHAPTER 2. IMPLEMENTATION

Controlling Orientation in Jack 8.2

A Jack 8.2 Tool Command Language (Tcl) module was developed in Jack 8.2 in
order to control the orientation. The Jack 8.2 module system is based on Tcl
packages. This functionality is extended with hooks for menu creation and other
types of module initialization tasks [19].

In Jack 8.2, it is possible to manually change the orientation of a human by using
the functions in the menu bar. Following Tcl commands can then be viewed in
the log viewer seen in Code 2.2.

Code 2.2: Tcl commands from the log viewer.

s e t jcHuman 4 [jcScene findHuman [j cG loba l ge tScene] human]
s e t jMatr ix 5 [new jMatrix]
jMa t r i x s e tL i s t $ jMatr ix 5 { l i s t }
jcHuman setLocation $jcHuman 4 $jMatr ix 5
de l e t e jMat r i x $ jMatr ix 5

After analyzing and experimenting with the Tcl commands, the parameters used
can be explained by Table 2.1.

Table 2.1: Explanations of the parameters from the log viewer.

Parameters Explanation

jcHuman_4 The human object that is controlled.

jMatrix_5 Matrix object that is temporary used.

list A list of 16 elements.

list = {x y z 0 R11 R12 R13 0 R21 R22 R23 0 R31 R32 R33 1}
The x, y, and z values in the list are the translation in three perpendicular axes
and the R values represents the rotation about three perpendicular axes. In order
to easily control the rotational orientation of the human object in Jack 8.2, it was
necessary to set up a function that transforms Euler angles into a rotation matrix.
Euler angles are three angles that can be used to describe any rotation.

A general rotation matrix has the form that can seen in Equation (2.1).

R =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 (2.1)

19

2.3. OCULUS RIFT CHAPTER 2. IMPLEMENTATION

This matrix is a sequence of three rotations, one about each principle axis. Since
matrix multiplication does not commute, the order of the axes that one rotates
about will affect the result. Below, the rotation will first be about the x-axis, then
the y-axis and finally the z-axis. This sequence of rotations can be represented as
the matrix product in Equation (2.2) [20].

R = Rz(φ)Ry(θ)Rz(ψ) = (2.2)

=


cos(θ)cos(φ) sin(ψ)sin(θ)cos(φ)− cos(ψ)sin(φ) sin(θ)cos(φ) + sin(ψ)sin(φ)

cos(θ)sin(φ) sin(ψ)sin(θ)sin(φ) + cos(ψ)cos(φ) cos(ψ)sin(θ)sin(φ)− sin(ψ)cos(φ)

−sin(θ) sin(ψ)cos(θ) cos(ψ)cos(θ)



Input Devices

To control the human object with a keyboard or other input device, Jack 8.2 has
to perceive signals from the device. There are two potential approaches that can
be used in order to set up an interface between the input device and Jack.

1. Use the built in Tcl function bind.

2. Develop more advanced functions by extending the Tcl language.

The second approach was not chosen to be followed because it is much more
complex than binding input signals.

The function bind listens to keystrokes from a keyboard directly in the Tcl module.
The binding approach is about setting up an interface, between a keyboard or
another input device and Jack, by binding signals to certain actions. To bind a
keyboard key to a certain event, bind can be used by the Tcl example code seen
in Code 2.3. The parameters are explained in Table 2.2 [21].

Code 2.3: Tcl binding function example.

bind a l l <key name> {
MyFunction
}

20

2.3. OCULUS RIFT CHAPTER 2. IMPLEMENTATION

Table 2.2: Explanation of the binding function parameters

Parameters Explanation

key_name name of key to bind

all bindtag for global bindings

MyFunction function to call on when key signal is received

By binding a key to call on a custom function, it is possible to remap a specific
keyboard key to a certain action. Pressing the keyboard key [W] could for instance
correspond to moving the human object a few centimetres forward. There were,
however, issues with the key-binding approach that had to be taken into account.

When a key is pressed down, two different time delays makes the binding function
poor. The first delay is the initial pause before the repeat starts and the second
delay is the delay between each repetition. Both delays had to be eliminated
completely in order to get a smooth orientation control. Delays associated with
key pressing could almost be eliminated with the AHK-command seen in Code 2.4.

Code 2.4: AutoHotKey function used to eliminate keyboard key delays.

SetKeyDelay , −1

Using the input device with the bind function, the signals from the input device
needed to be remapped to keyboard key signals, in order to be recognized by the
function. There is a built-in remapping feature in the AHK language that was
used to remap both keyboard and input device keys. Remapping a keyboard key
can be done by the AHK example code seen in Code 2.5.

Code 2.5: AutoHotKey remapping example.

a : : b

The example above will make the [A] key to behave like the [B] key, but it will not
alter the [B] key itself.

The same command can also be used for input device keys, however, the device
key names must first be determined. There was an already developed test script,
that was executed to help determine the button numbers and names for an input
device. The script was named JoystickTest.ahk and was found at AutoHotKey
website [22]. When input device key names were determined, they were used with
the built-in remapping feature exactly the same way as for the keyboard keys.

21

2.3. OCULUS RIFT CHAPTER 2. IMPLEMENTATION

Figure 2.12: Nintendo GameCube controller button names.

A Nintendo GameCube controller was chosen as input device. All corresponding
device key names to the button names, seen in Figure 2.12, was determined by
running the JoystickTest.ahk script. Code 2.6 is an example where the first num-
bered button, (X Button), on a Nintendo GameCube controller is remapped to
correspond to the [F1] keyboard button.

Code 2.6: AutoHotKey remapping example.

Joy1 : : send {F1}

In the custom application, keyboard arrow keys and Nintendo GameCube buttons
and joysticks were remapped according to the scheme in Table 2.3.

22

2.3. OCULUS RIFT CHAPTER 2. IMPLEMENTATION

Table 2.3: Remapping scheme in the custom external application.

Nintendo Game-
Cube key input

Key output Keyboard key input Key output

joyY < 30 Send Up arrow Up arrow Send W

joyX < 30 Send Left arrow Left arrow Send A

joyY > 70 Send Down arrow Down arrow Send S

joyX > 70 Send Right arrow Right arrow Send D

joyR < 30 Send Numpad4 Numpad4 Send F

joyR > 70 Send Numpad6 Numpad6 Send G

L-Trigger Send Numpad8 Numpad8 Send I

R-Trigger Send Numpad2 Numpad2 Send K

Up & Left arrow Send Q

Up & Right arrow Send E

Down & Left arrow Send Z

Down & Right arrow Send C

Up & Down arrow do nothing

Left & Right arrow do nothing

The custom application made the input keys to behave as the output keys and
sends the output to the Oculus Tcl module Jack 8.2. The Nintendo GameCube
L/R-trigger, control and c-stick sends keyboard arrow keys and numpad keys which
in turn sent keyboard key inputs. The joyX, joyY, joyR key input are the key states
of the Nintendo GameCube control and c-stick and is explained in appendix B,
section 5.2.

Table 2.4 shows all key bindings that was set up in the Oculus Tcl module in Jack
8.2.

23

2.3. OCULUS RIFT CHAPTER 2. IMPLEMENTATION

Table 2.4: Binding scheme in Oculus Tcl module.

Key binding Bound function event Step size

W Move forward 5 cm

A Move left 5 cm

S Move backward 5 cm

D Move right 5 cm

Q Move forward and left 5 cm diagonally

E Move forward and right 5 cm diagonally

Z Move backward and left left 5 cm diagonally

C Move backward and right 5 cm diagonally

F Rotate left 1◦

G Rotate right 1◦

I Levitate up 5 cm

K Levitate down 5 cm

Incoming keyboard signals from the custom application trigger function events,
via the key binding feature, and reorients the human object in Jack 8.2 according
to the step size in the table.

Oculus Rift Head Tracking

In order to use the Oculus Rift head tracking feature for orientation control in
a new application, following steps must be performed according to the Oculus
developer guide [14]:

1. Initialize LibOVR.

2. Enumerate Oculus devices, create the ovrHmd object and configure tracking.

3. Integrate head tracking into the developed application’s movement code which
involves:

(a) Reading data from the Rift sensors through ovrHmd_GetTrackingState
or ovrHmd_GetEyePoses.

(b) Applying Rift orientation and position to the camera view while com-
bining it with other application controls.

(c) Modifying movement and game play to consider head orientation.

24

2.3. OCULUS RIFT CHAPTER 2. IMPLEMENTATION

The steps (1), (2) and (3a) can be achieved by applying the theory found on pages
17-23 in the Oculus developer guide [14].

Step (3b) and (3c) can be obtained by writing a Tcl - C++ wrapper so all necessary
Oculus routines can be accessible via Tcl.

Tcl has the ability that it can be extended with code written in C++. It also
provides an interpreted environment that makes it possible to interactively control
and manipulate the underlying C++ application such as calling functions or exam-
ine variables. In newer versions of Tcl, this is usually done by compiling the C++
extension module into a shared library (.so-file) or dynamic-link library (.dll-file)
that dynamically can be loaded into the Tcl environment [23].

In order to load dynamic-link libraries to initialize new commands, the Tcl com-
mand load was used seen in Code 2.7 [24].

Code 2.7: Tcl load command example.

load f i leName . d l l

There was already a developed project solution for this at Github [25] that was
used. The project is a Tcl - C++ wrapper that compiles a dll-file, that can
be loaded in Tcl, which makes the application main routines accessible via Tcl.
All available routines in this wrapper were not of interest and some parts of the
contents could either be removed or slimmed. All rendering routines were removed
and routines connected to the Oculus Rift head tracking feature were kept. For
detailed instructions of how this project was compiled, see Appendix B, Section
5.3.

When the wrapper is compiled and loaded into the Tcl environment, it would be
possible to initialize new Tcl commands. The Tcl command in Code 2.8 initializes
Oculus Rift.

Code 2.8: New Tcl command that initializes Oculus Rift and return sensor data.

tc lovrGetData

It returns the current sensor data to Tcl in the format: tx ty tz rx ry rz, where tx,
ty and tz is the offset and rx, ry and rz is the rotation of the Oculus Rift goggles.
When the offset and rotation data is passed from the Oculus Rift sensors into the
Tcl environment, the data can directly be used to update the orientation of the
human object by passing it to functions which updates the orientation.

Step (3b) and (3c) was not fully established in this project and the head tracking
feature was therefore not integrated in the solution.

25

2.4. INTEGRATION CHAPTER 2. IMPLEMENTATION

The Figure 2.13 is a overview flowchart of the whole interface between the hardware
and software.

Oculus Rift

Virtual Desktop
Custom

Application

Nintendo
Gamecube
Controller

Keyboard

Oculus Tcl
Module

Jack 8.2 Process Simulate

Computer interface

Rendered Oculus
compatible view

View
merged in
fullscreen

Analog
gamepad signals

Keystrokes

Modified
keystrokes

Update
orientation

Jack collaboration

Transfer orientation
data

Left and
right eye
view

Figure 2.13: Overview flowchart. The red boxes corresponds to hardware and the orange
boxes corresponds to software.

2.4 Integration

The final part of the project, as seen in Figure 1.1, was integrating the different
subtasks into a solution. Since the communication between the PLC and Process
Simulate was not established, a Virtual Commissioning was not performed. The
integration part of the project was instead solely the simulation of the Test Cell
viewed through Oculus Rift, in which the head tracking feature was excluded.

26

3

Discussion

The end result did not match the expectation stated at the start of the project.
Each sub task encountered issues during the project which changed the outcome.
However, we successfully made an event based robot cell and are able to use the
Oculus Rift to experience the simulation from a first person perspective. We also
designed an orientation control in order to manoeuvre the human object during
the simulation and therefore achieve a more realistic experience of the robot cell.

We believe that the methodology from the SPEAR project [7], the step-by-step
instruction about building the Test Cell, facilitated the learning process. We first
acquired theoretical knowledge about every step and then applied it practically on
the Test Cell. However, we encountered some problems. The fixture in the cell
had no given coordinates for its placement. We could, after some time, solve the
problem and get the approximate coordinates for its placement. The result from
the subtask, Process Simulate, was the event-based robot cell with an inclusion of
a Human Object. With the inclusion of the Human Object, the simulation could
be viewed in a first person-perspective which gave a more realistic perception. This
made us even more curious of how it would be experienced with the integration of
Oculus Rift.

Establishing a communication path between the PLC and Process Simulate turned
out to be a much larger task than anticipated. Therefore not much time was left
to developing the physical safety environment. Another reason for delays was
caused trying to get the OPC setup to function over wireless and later using a
VPN connection. This was found impossible due to security configuration of the
wireless network.

27

3.1. FUTURE WORK CHAPTER 3. DISCUSSION

Since the setup of the PLC, OPC server and OPC tunnel between the PC and
the laptop was successful we believe that the majority of the connection setup
is finished. We found it probable that the communication failed due to wrong
settings in either Process Simulate or TIA portal.

A few irregularities arose when testing the safety equipment. The light emitting
diodes did not work as intended. This was rather trivial to the project, as the main
objective was to create a Virtual Commissioning. In a real robot cell, however,
such issues do have to be solved, since operators need to quickly determine the
state of different equipment. This also makes a good argument to use the ABB
JOKAB safety PLC. Using such a system can also allow a far more realistic setup
which is of interest, since the PLC code easier can be correctly validated.

The integration of the Oculus Rift head tracking feature was never fully developed
for the orientation control purpose. The Tcl - C++ wrapper did not include all
necessary project dependencies such as Oculus and Tcl library and source files nor
full instructions on how to compile the project. Without full instructions, we had
to debug the code by trial and error. In this respect, we had to figure out which
project settings and library file versions that was needed to be used for a successful
compilation.

When the Tcl - C++ wrapper was compiled, the result was still not as expected.
The dynamic-link library could not properly be loaded into Jack 8.2 and no helpful
error messages was given while the program was running. Without necessary
information, it was hard to debug the problems. Due to the lack of time and
programming knowledge, the group decided to not pursue this issue.

3.1 Future work

In order to perform a Virtual Commissioning a thorough investigation of why
the communication didn’t work as intended needs to be carried out. To do this
efficiently a different setup could be considered where the commissioning only uses
one computer therefore eliminating the need for an OPC tunnel. When the issues
have been resolved the approach of using an OPC tunnel to transfer the PLC data
could be implemented once more.

When a Virtual Commissioning has successfully been performed the next step
is to start considering how to allow a better user experience. We have noted
problems using Oculus Rift while working with the PLC-equipment. Since the
Oculus Rift limits the users eyesight to the virtual world, orientation in the physical
environment becomes difficult. The user has a hard time interacting with different

28

3.1. FUTURE WORK CHAPTER 3. DISCUSSION

HMI’s and it would therefore be of great interest to investigate how to properly
interact with physical components, while using Oculus Rift.

To improve the experience of using Oculus Rift when viewing a virtual environment
implementing head tracking would be of great interest. In order to achieve this,
a dynamic link library needs to be established. Furthermore we would strive
towards creating a more easy-used, slimmed solution by decreasing the amount
of interactions between the software modules. This should be implemented so that
it does not effect the result and the user experience in a negative way. Figure 3.1
is a flowchart of a possible optimized solution.

Oculus Rift
Nintendo

GameCube
Controller

Keyboard

Dynamic
Link Library

Oculus Tcl
Module

Jack 8.2 Process Simulate

Computer interface

Module interface

Rendered Oculus
compatible view

Analog
gamepad signalsKeystrokes

Update
orientation

Jack collaboration

Transfer orientation
data

Left and
right eye
view

Head tracking
data

Figure 3.1: Overview flowchart of optimized solution.

The differences to the current solution are fewer software modules and an inte-
grated Oculus Rift head tracking feature. The custom application and Virtual
Desktop is replaced by a dynamic-link library that can handle both graphics ren-
dering to Oculus Rift and process signals from the keyboard and Nintendo Game-
Cube controller.

To make the transition between the plane movement directions more smooth, it
would be better to read the analog state value of the Nintendo GameCube control

29

3.1. FUTURE WORK CHAPTER 3. DISCUSSION

stick, pass and use it in the Tcl module so corresponding movement direction can
be applied. It would also be better to separate plane and rotational movement
controls by controlling rotation by mouse or Nintendo GameCube C-stick and
plane movement by keyboard arrow keys or Nintendo GameCube control stick.
This would make the rotational movement control more sufficient since it only is
possible to rotate about one axis in the current solution.

We believe that using Oculus Rift with implemented head tracking support to-
gether with a well designed physical interface will lead to a better perception of a
virtual model. This could give a new perspective when inspecting the behaviour
of industrial processes.

30

4

Conclusion

During the time of this project, we have studied the possibilities of getting a better
perception of reality through Virtual Commissioning with a simulation in Oculus
Rift. Virtual Commissioning is a method that improves the ramp-up phase, quality,
planning accuracy and cost constraints compared to a physical commissioning. In
order to determine if combining Virtual Commissioning and the Oculus Rift will
give a closer perspective towards reality, the task had to be divided into three
parts.

The result was a simulation of the robot cell with Oculus Rift. However, we were
not able to integrate the Oculus Rift head tracking which led to a less realistic
experience. Despite the lack of head tracking the simulation experience was con-
fiding. Through the simulation, we were able to explore the virtual reality and see
the robot cell operate in real time. The experience was more realistic compared to
watching the result on a computer monitor, however, not as real as we expected
at the start of the project. We believe it depends on the lack of the head tracking
feature.

Future work could be to get a PLC integrated with Process Simulate, integrating
the Oculus Rift head tracking feature with the orientation control. If these features
would be developed into this project, we believe it would give a more determinate
solution towards our aim.

31

Bibliography

[1] G. Reinhart, G. Wünsch, Economic application of virtual commissioning to
mechatronic production systems (Nov. 2007).
URL http://link.springer.com/article/10.1007/s11740-
007-0066-0/fulltext.html

[2] S. Makris, G. Michalos, G. Chryssolouris, Virtual Commissioning of an As-
sembly Cell with Cooperating Robots (2012).
URL http://www.hindawi.com/journals/ads/2012/428060/

[3] L. Jing, Y. Chengyin, G. Fangming, B. Stephan, W. Demet, A. Daniel, Vir-
tual commissioning: Gm.
URL http://worldwide.espacenet.com/publicationDetails/
biblio?CC=US&NR=8949480&KC=&FT=E&locale=en_E

[4] C. Henrik, S. Bo, D. Fredrik, L. Bengt, Methods for reliable simulation-based
plc code verification (May 2012).
URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=6121945

[5] H. Ali, S. Oliver, Virtual commissioning of an existing manufacturing cell at
volvo car corporation using delmia v6 (May 2012).
URL http://publications.lib.chalmers.se/records/
fulltext/157312.pdf

[6] Siemens, Tecnomatix12 (2015).
URL https://www.plm.automation.siemens.com/en_us/
products/tecnomatix/tecnomatix12/index.shtml

[7] R. Cawley, E. McDougall, J. Pratt, R. Weir, SPEAR.

[8] P. Lindstedt, J. Burenius, The Value Model - How to Master Product Devel-
opment and Create Unrivalled Customer Value, Nimba, 2004.

32

http://link.springer.com/article/10.1007/s11740-007-0066-0/fulltext.html
http://link.springer.com/article/10.1007/s11740-007-0066-0/fulltext.html
http://www.hindawi.com/journals/ads/2012/428060/
http://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=8949480&KC=&FT=E&locale=en_E
http://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=8949480&KC=&FT=E&locale=en_E
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6121945
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6121945
http://publications.lib.chalmers.se/records/fulltext/157312.pdf
http://publications.lib.chalmers.se/records/fulltext/157312.pdf
https://www.plm.automation.siemens.com/en_us/products/tecnomatix/tecnomatix12/index.shtml
https://www.plm.automation.siemens.com/en_us/products/tecnomatix/tecnomatix12/index.shtml

BIBLIOGRAPHY BIBLIOGRAPHY

[9] W. Bolton, Programmable Logic Controllers, Newnes, 2009.

[10] R. W. Lewis, Programming industrial control systems using IEC 1131-3, The
Institution of Electrical Engineers, London, 1998.

[11] Siemens, Simatic et 200sp, distributed i/o system (Mar. 2015).
URL https://support.industry.siemens.com/dl/files/293/
58649293/att_844992/v1/et200sp_system_manual_en-US_en-
US.pdf

[12] Jokab Safety AB, Säkerhetshandboken, Erfarenhet - System - Produkter
(2008).

[13] O. VR, Oculus vr: Pc sdk documentation.
URL https://developer.oculus.com/documentation/

[14] L. Oculus VR, Oculus Developer Guide (Dec. 2014).
URL http://static.oculus.com/sdk-downloads/documents/
Oculus_Developer_Guide_0.4.4.pdf

[15] AutoHotKey, WinGet function description.
URL https://www.autohotkey.com/docs/commands/WinGet.
htm

[16] AutoHotKey, WinSet function description.
URL https://www.autohotkey.com/docs/commands/WinSet.
htm

[17] AutoHotKey, WinMove function description.
URL https://www.autohotkey.com/docs/commands/WinMove.
htm

[18] AutoHotKey, WinHide function description.
URL https://www.autohotkey.com/docs/commands/WinHide.
htm

[19] Siemens, Developing Modules in Jack (Jun. 2014).

[20] G. G. Slabaugh, Computing Euler angles from a rotation matrix (Oct. 2014).
URL http://staff.city.ac.uk/~sbbh653/publications/
euler.pdf

[21] A. Goth, Bind function description (Jun. 2014).
URL http://wiki.tcl.tk/1401

[22] AutoHotKey, Joystick Test Script (May 2005).
URL https://www.autohotkey.com/docs/scripts/
JoystickTest.htm

33

https://support.industry.siemens.com/dl/files/293/58649293/att_844992/v1/et200sp_system_manual_en-US_en-US.pdf
https://support.industry.siemens.com/dl/files/293/58649293/att_844992/v1/et200sp_system_manual_en-US_en-US.pdf
https://support.industry.siemens.com/dl/files/293/58649293/att_844992/v1/et200sp_system_manual_en-US_en-US.pdf
https://developer.oculus.com/documentation/
http://static.oculus.com/sdk-downloads/documents/Oculus_Developer_Guide_0.4.4.pdf
http://static.oculus.com/sdk-downloads/documents/Oculus_Developer_Guide_0.4.4.pdf
https://www.autohotkey.com/docs/commands/WinGet.htm
https://www.autohotkey.com/docs/commands/WinGet.htm
https://www.autohotkey.com/docs/commands/WinSet.htm
https://www.autohotkey.com/docs/commands/WinSet.htm
https://www.autohotkey.com/docs/commands/WinMove.htm
https://www.autohotkey.com/docs/commands/WinMove.htm
https://www.autohotkey.com/docs/commands/WinHide.htm
https://www.autohotkey.com/docs/commands/WinHide.htm
http://staff.city.ac.uk/~sbbh653/publications/euler.pdf
http://staff.city.ac.uk/~sbbh653/publications/euler.pdf
http://wiki.tcl.tk/1401
https://www.autohotkey.com/docs/scripts/JoystickTest.htm
https://www.autohotkey.com/docs/scripts/JoystickTest.htm

BIBLIOGRAPHY

[23] D. M. Beazley, Tcl and SWIG as a C/C++ Development Tool (1998).
URL http://www.swig.org/papers/Tcl98/TclChap.html

[24] P. Yorick, Load function description (Dec. 2013).
URL http://wiki.tcl.tk/1208

[25] M. Yzusqui, OculusVr-CmDLL Project (Jan. 2015).
URL https://github.com/myzb/OculusVr-CmDLL/tree/
master/OculusVr-CmDLL

34

http://www.swig.org/papers/Tcl98/TclChap.html
http://wiki.tcl.tk/1208
https://github.com/myzb/OculusVr-CmDLL/tree/master/OculusVr-CmDLL
https://github.com/myzb/OculusVr-CmDLL/tree/master/OculusVr-CmDLL

Appendices

35

A

Test Cell

36

VIRTUAL FACTORY TUTORIAL

A STEP BY STEP DEVELOPMENT OF A DIGITAL PRODUCTION CELL

CONTENTS

CHAPTER ONE - INTRODUCTION .. 1

1.0 SOFTWARE OVERVIEW .. 2

1.1 PROCESS DESIGNER .. 2

1.2 PROCESS SIMULATE ... 2

1.3 THE TECNOMATIX SETUP... 2

2.0 BASIC DEFINITIONS .. 3

2.1 OPENING THE SOFTWARE ... 3

2.2 VIEWERS .. 4

2.3 NODES .. 5

2.4 USING THE MOUSE ... 5

2.5 SYSTEM ROOT FOLDER ... 5

2.6 SAVING YOUR SIMULATION ... 6

2.7 IMPORT/EXPORT OF SIMULATIONS .. 6

3.0 PRE-OPENING TASKS ... 6

4.0 CREATING A PROJECT ... 6

5.0 CREATING THE FOLDER STRUCTURE .. 7

6.0 CREATING ENGINEERING LIBRARIES ... 8

7.0 CREATING THE PROJECT NODES ... 9

8.0 ALLOCATING PARTS AND RESOURCES ..10

9.0 OPENING IN PROCESS SIMULATE ...13

10.0 POSITIONING OF RESOURCES ...14

CHAPTER 2 – CREATING OPERATIONS ..17

11.0 CREATING OPERATIONS ...18

11.1 OBJECT FLOW OPERATIONS ..18

11.2 DEVICE CONTROL GROUP OPERATIONS ..19

11.3 WELD OPERATIONS ...23

11.4 GRIPPER OPERATIONS: PICK AND PLACE ..29

12.0 PLACEMENT OF PROXIMITY SENSORS ...30

13.0 ADDING COSMETIC FEATURES ..31

14.0 REFINEMENT OF PATH LOCATIONS ..33

14.1 OBJECT FLOW OPERATION ...33

14.2 WELD OPERATION..34

14.3 PICK AND PLACE LOCATIONS ...35

CHAPTER 3 – CYCLIC EVENT EVALUATOR ..37

15. DEFINITION OF MATERIAL FLOW ...38

16.0 DEFINITION OF JOINT VALUE SENSORS ...39

16.1 ABB_IRB64 ROBOT JOINT VALUE SENSORS ...39

16.2 KR30_3 ROBOT JOINT VALUE SENSORS ...41

17.0 PROXIMITY SENSORS ...42

18.0 SIGNAL GENERATION ..43

18.1 CREATION OF ROBOT SIGNALS ..43

18.2 DEVICE SIGNALS ..45

18.3 USING THE SIGNAL VIEWER ...46

18.4 CREATING THE START CYCLE SIGNAL ..46

19.0 INTRODUCING LOGIC TO THE SIMULATION ..47

19.1 TRANSITIONS ..47

19.2 ROBOT PROGRAMS ...51

19.3 MODULES ..54

20.0 INTRODUCING SAFETY FEATURES ..57

20.1 GATES AND SAFETY MAT ..57

20.2 EMERGENCY STOP BUTTON ...59

21.0 PRACTICE ACTIVITY ..60

TUTORIAL SET-UP

This tutorial is designed to instruct a user in creating the virtual factory, shown in the diagram

below. All steps necessary will be described in detail and it is hoped that through completing

this tutorial, a user will be supplied with an introductory knowledge into the application of Virtual

Commissioning using the Process Designer/Process Simulate software packages.

The user will be instructed in the creation of robotic and device operations as well as gaining

a deep understanding of the extent to which Process Simulate can be used to test PLC logic.

This function known as the Cyclic Event Evaluator in Process Simulate is a valuable tool used

within industry during the Virtual Commissioning process. Due to the large number of stages

involved in creating the virtual factory, this tutorial has been split into three chapters, each

focusing on different aspects of the Virtual Commissioning procedure. Chapter one introduces

a basic foundation using both Process Designer and Process Simulate, where Resources will

be placed. Chapter two will then introduce the use of Operations within Process Simulate while

Chapter three will conclude with the functionality offered by the Cyclic Event Evaluator. The

flow chart displayed on the page opposite provides an overview of the steps within this tutorial

and can be applied to the development of most virtual factories.

CHAPTER
ONE

CHAPTER
TWO

CHAPTER
THREE

Page 1

CHAPTER ONE - INTRODUCTION

Page 2

1.0 SOFTWARE OVERVIEW

The Tecnomatix Suite is comprised of two software packages used within this tutorial. Firstly

is the Process Designer package where the folder structure for the project is created and

Resources are imported. Secondly is the Process Simulate package where positioning of

Resources takes place followed by, the addition of Operations and subsequently the

implementation of logic. A more detailed description is provided below.

1.1 PROCESS DESIGNER

Within Process Designer, the libraries of CAD Parts and internal ‘nodes’ are defined and

created. This part of the software suite allows the user to establish the library structure used

for the remainder of the project and within industrial projects should follow the working method

supplied by the organisation. In addition to this, Process Designer is referred to at various

stages of the project and is used, for example, to define the associations between Operations,

Resources and Parts. In essence, Process Designer is used to provide the backbone to the

process before entering Process Simulate where the further functions are used.

1.2 PROCESS SIMULATE

Process Simulate is the primary software utilised in the development of an event-based

simulation and is used to define the Operations and locations of each Resource and Part. In

addition ‘via points’ and further sequences are defined in this software. When creating the

event-based simulation, the Cyclic Event Evaluator (CEE) functions are then utilised to apply

logic to the simulation in such a way that it can run in a cyclic manner based on user defined

logical commands.

1.3 THE TECNOMATIX SETUP

In using both Process Simulate and Process Designer, a link between the two software

packages is established through the means of an ‘eMServer’. This server is often a standalone

machine which contains the large amounts of data (e.g. CAD files) required for any given

simulation. Communication between a machine and the ‘eMServer’ allows for multiple

machines to operate within the server at the same time, securing projects through the use of

a ‘Check-Out/ Check-In’ system.

Page 3

2.0 BASIC DEFINITIONS

2.1 OPENING THE SOFTWARE

Process Designer and Process Simulate are opened by selecting the desktop icons or start-

menu icons shown below.

Upon opening, the user will be prompted to supply appropriate login details and select a project

from the window displayed below.

The selected software package will then open with the chosen project already loaded within.

Once the software is open it is possible to open and close projects from within the software.

To close: File >> Close Project

To open: File >> Open Project – this will portray the list of projects available for opening.

Page 4

2.2 VIEWERS

In navigating the software, ‘viewers’ are used and can be customised based on the users’

needs by following View >> Viewers and selecting the desired viewer. Each viewer serves an

individual purpose in the generation and evaluation of simulations. It is possible to select a

default setup for the viewers based on the stage of the simulation creation. This will open the

same default viewers in the same location every time. For the purpose of this tutorial, the

‘Standard’ setup will be sufficient for a large portion of the factory development and so this

should be selected as shown below. The ‘Standard’ setup includes essential viewers such as

the ‘Navigation Tree’, ‘Operation Tree’ and ‘Graphics Window’. At a later stage in the factory

development, including work within ‘Line Simulation’ mode, the ‘Advanced Simulation’ setup

will be more appropriate.

Page 5

2.3 NODES

Process Designer and Process Simulate work on the basis of ‘nodes’ within a folder tree. Each

node can represent a Resource, Operation, Part or Manufacturing Feature. A colour key exists

within the software and is as follows:

 Resources (Blue); Robots, Guns, Grippers, Fixtures etc.

 Operations (Pink); Robot Operations, Weld Operations etc.

 Parts (Orange); Car Parts

 Manufacturing Features (Green); Weld Points, Glue paths etc.

Nodes are created in the ‘Navigation Tree’ by right-clicking on the parent folder/node and

selecting New >> Select the desired node.

2.4 USING THE MOUSE

Mouse functions are used extensively in Process Simulate. Within the ‘Graphics Viewer’ of

both Process Simulate and Process Designer:

 Holding down the left mouse button will initiate a box which can be dragged over objects

for selection.

 Using the middle button on the mouse facilitates zooming in and out of the graphics

window.

 Holding down the middle mouse button and moving right zooms in, with zooming out

being enabled by moving left.

 Using the middle and right mouse button together allow the 3D navigation of the models

loaded within the ‘Graphics Viewer’.

2.5 SYSTEM ROOT FOLDER

The ‘System Root’ is the central location that Process Simulate and Process Designer use for

storing data and is where all files used/created within a simulation are stored. It is important

not to delete any files connected to an existing/current simulation, else the simulation may

become corrupt. The folder is typically located at ‘C:\Tecnomatix\SystemRoot’ however this

may vary depending on your installation. Time should be taken now to locate your System

Root folder.

Page 6

2.6 SAVING YOUR SIMULATION

As you progress with any simulation project, you will need to frequently save your work to avoid

the loss of any data. When working with an ‘eMServer’ this is done by selecting the ‘Selectively

Update ‘eMServer’ button. This saves any changes made to the simulation to the

‘eMServer’ and allows you to successfully store your data. It will be necessary to perform this

step in both Process Designer and Process Simulate. In process Designer however, the save

feature is labelled as ‘Save Scenario’ and will save the changes made to any nodes.

2.7 IMPORT/EXPORT OF SIMULATIONS

Alternatively, projects may be imported through the ‘Pack and Go Import’ function. At any stage

in a project it is possible to save and export all work done as a ‘Pack and Go export’. This will

take all data within a study and saves it for import at a later date or on a different machine.

Following File >> Project Management >> Pack and Go Import, the data is able to be re loaded

within Process Simulate.

3.0 PRE-OPENING TASKS

1. All CAD files required for the simulation (Parts, Resources, Robots, Fixtures etc.) should

be located in their .cojt format. For this tutorial, the folder is named ‘Factory 2 CAD Parts’.

2. Copy and paste the ‘Factory 2 CAD Parts’ folder containing all of the files into the System

Root folder.

4.0 CREATING A PROJECT

1. Open the Tecnomatix ‘AdminConsole’ via the Windows Start menu. Click ‘Project Actions’

then ‘New Project’. Name the project and set comments as you wish. Close the

‘AdminConsole’.

Page 7

2. Open ‘Process Designer’ and select the factory created in step 1.

3. Check out the project. To do so, right-click the project and select ‘Check Out’. Tick the

‘Check out with hierarchy option’.

Note: The Check-in/out process is a method used within larger organisations to ensure that

data is maintained securely. Within large projects it may be desirable to have more than

one operator working on the project and so the check-in/out process is used to ensure that

only one operator may edit particular parts of the project at a time. Once a node or folder

has been checked-out it is only usable by that operator.

5.0 CREATING THE FOLDER STRUCTURE

1. Right-click on your factory node (named ‘SPEAR Factory 2’ in this tutorial) and click ‘New’.

Select ‘Collection’ and set the amount to ‘4’ to create four new folders. Once created,

expand the menu and click a folder. Press F2 to rename and repeat for each folder to

match the structure shown below.

Page 8

Note: These folders have the following functions:

 Libraries; will hold all the ‘EngineeringLibraries’ that will be imported and effectively

stores all the CAD data for the project.

 Product; contains all components associated with the parts being assembled in the

factory

 Plant; contains location and resource allocation for Operations and Stations

 Studies; contains the ‘Study’ information such as ‘RobCad’ Studies

While these folders include the required information for this project, more may be needed

for other projects.

6.0 CREATING ENGINEERING LIBRARIES

1. Follow the path Tools >> Administrative Tools >> Create Engineering Libraries. When

prompted, select the folder previously created containing all CAD Parts located in the

System Root (see Section 2.5).

2. Once selected, each CAD Part / Folder should show up individually. Each part now needs

assigned a category based on its use within the simulation. For simplicity, the CAD Parts

Page 9

in this tutorial have been grouped as per their intended use however time should be taken

to explore the different categories available. Select the ‘Type’ to match as shown:

3. Click ‘Next’ to create the library. Drag and drop the new nodes named

‘EngineeringResourceLibrary’ and ‘EngineeringPartsLibrary’ into the ‘Libraries’ folder.

7.0 CREATING THE PROJECT NODES

1. Create a ‘Compound Part’ within the ‘Product’ folder renaming this node as

‘CompoundPart_Style1’. To do so, right-click the folder, click ‘New’ and select ‘Compound

Part’ from the available node types.

2. Create a ‘PrPlant’ and ‘PrStation’ within the ‘Plant’ folder following the same procedure as

above.

Note: Once created, two additional nodes will be generated as ‘PrPlant’ and ‘PrStation’

nodes come in pairs. For every Resource ‘PrPlant’ (blue) node, there is an associated

Operations ‘PrPlant’ (Pink) node and the same is true of ‘Stations’.

3. Create a ‘StudyFolder’ within the ‘Studies’ folder. This allows the user to create a variety

of the different studies available within the software. For the purpose of this tutorial, create

a ‘Robcad Study’ within the ‘StudyFolder’.

Page 10

4. Your final folder and node structure should look like the diagram shown below. Rename

any nodes as necessary by clicking the node once and pressing F2.

5. Click and drag the ‘StationProcess01”0’ node into the ‘PlantProcess01”0’ node (the

corresponding ‘Station01’ will move automatically due to the reasoning explained above).

This will generate the standard hierarchy where Plant is the top level and Station is a sub-

node of the Plant.

6. Prior to the allocation of Parts and Resources, it is good practice to group Resources within

a compound resource node. As such, for this tutorial, create three ‘CompoundResource’

nodes within ‘Station01’. Rename as ‘Robot1’, ‘Robot2’ and ‘Fixture’.

8.0 ALLOCATING PARTS AND RESOURCES

1. To allocate the parts that will be used in the tutorial, right-click the ‘CompoundPart_Style1’

node and select ‘Load’ (ensuring the ‘Product Tree’ viewer is open prior to doing so; View

>> Viewers >> Product Tree). Drag Parts 1 and 2 into the ‘CompoundPart_Style1’ node

shown in the ‘Product Tree’. Your setup should look like that shown below.

Page 11

2. To allocate Resources, it is first necessary to open two ‘Navigation Trees’ side-by-side as

shown below; this will assist in dragging and dropping Resources into the correct nodes.

Right-click on ‘EngineeringResourceLibrary’ and select ‘Navigation Tree’ to create the

layout as shown.

Page 12

3. Click and drag Resources from the ‘Navigation Tree’ on the right to the correct nodes in

the ‘Navigation Tree’ on the left. Your final setup should resemble that as displayed.

4. Click and drag the three nodes (‘CompoundPart_Style1’, ‘PlantProcess01”0’ and ‘Plant01’)

into the previously created ‘Robcad Study’. This creates a shortcut for each node within

the ‘Robcad Study’ and allows the study to reference these parts.

5. Save the scenario (File >> Save Scenario). This completes the setup of the project within

Process Designer and the following actions will be carried out in Process Simulate.

Note: Cosmetic and safety features will be added at a later stage in this tutorial as these

can be created directly within Process Simulate. See Section 13.

Page 13

9.0 OPENING IN PROCESS SIMULATE

1. Right-click the ‘Robcad Study’ node and select ‘Open with Process Simulate in Standard

Mode’ as shown.

2. It is useful to display the floor of the factory to give a clearer visual representation. Click

View >> Display Floor.

3. In manipulating objects, it is beneficial to alter their position relative to the ‘Working Frame’.

This should be set by clicking Modeling >> Set Working Frame and selecting ‘Reset to

Origin’.

Page 14

10.0 POSITIONING OF RESOURCES

In Process Simulate, all Resources will be displayed in the ‘Graphics Viewer’ but it is also

necessary to specify positions for each resource individually, representative of the desired

factory layout. One method is to right-click the resource and select ‘Placement Manipulator’.

This opens a frame by which the resource can be dragged and rotated to the correct position.

Alternatively, and for increased accuracy, co-ordinate points can be input by the user.

1. Firstly, select the ‘kr30_3’ Robot and open up the ‘Placement Manipulator’. Enter co-

ordinate points as follows:

Page 15

2. Repeat this process for all Parts as shown in the table below.

Note: Please enter the Rz co-ordinate first for the ‘abb_irb_64’ Robot—this will ensure that

the absolute position is correct.

3. With Resources in place, it is necessary to mount tools onto their associated Robots. Do

so by right-clicking the Robot and selecting ‘Mount Tool’. This will open the following

dialogue window:

Firstly, complete this step for the ‘kr30_3’ Robot selecting ‘RobotAdapterPlate’ as Tool and

‘Self’ as the mounting frame to complete the initial mounting procedure.

4. Again, selecting the ‘kr30_3’ Robot, open the ‘Mount Tool’ command box and this time

select the ‘Gripper’ as the mounted tool. In this instance, the mounting frame should be set

as ‘FR1’ and the orientation should be adjusted with a 90° shift in the Z-axis using the ‘Flip

Tool’.

5. Following this, select the ‘abb_irb64’ Robot and open the ‘Mount Tool’ command box.

Mount the ‘WeldGun’ using the ‘mtg’ mounting frame, again with a shift of 90° in the Z-axis.

 X Y Z Rx Ry Rz

RobotPedestal 2982.76 721.84 0 0 0 0

RobotPedestal 7835.54 260.52 0 0 0 0

abb_irb_64 7795.06 267.02 295.13 0 0 180

Page 16

Note: Once the tools are mounted it is possible to test that they function as desired through

the ‘RobotJog’ function. Right-click the desired Robot and select ‘RobotJog’. By

manipulating the position of the Robot you will be able to see if the tool moves alongside

the Robot, confirming the functionality of the Robot.

Page 17

CHAPTER 2 – CREATING
OPERATIONS

Page 18

11.0 CREATING OPERATIONS

11.1 OBJECT FLOW OPERATIONS

1. Double-click ‘CompoundPart_Style1’ in the ‘Navigation Tree’ to display the individual parts.

Selecting ‘PART_1’, click Operations >> New Operation >> New Object Flow Operation.

This Operation is used to simulate a part flowing along a pre-defined path and in the case

of this tutorial, it will emulate the action of a human placing both parts into the Clamp

Fixture. The following dialogue box will appear:

Set the ‘Scope’ as shown by selecting the node in the ‘Operation Tree’. Set the ‘End Point’

by clicking in the entry-box to turn it green, then selecting an arbitrary point within the

‘Graphic Viewer’. These points will be updated with precise co-ordinates at a later stage

and so it is not necessary to define points at this stage.

2. Repeat the above procedure for ‘PART_2’ creating two ‘Object Flow Operations’ within the

node ‘StationProcess01’.

3. It is beneficial to rename all Operations as they are created, particularly for latter stages in

the project when signals are defined. As such, by selecting the node in the ‘Operation Tree’

and using F2, rename as ‘PART_1_to_Fixture’ and ‘PART_2_to_Fixture’ accordingly.

4. Selecting ‘StationProcess01’ in the ‘Operation Tree’ will allow the Operations to be added

to the ‘‘Path Editor’’, either via a drag and drop action or by selecting the ‘Add Operations

to Editor’ icon highlighted in the top left of the ‘‘Path Editor’’ viewer. Now enter the co-

ordinates as shown below:

Page 19

5. In reality, additional path locations are required to define the actual motion of the part. As

such, further locations should be added to these ‘Object Flow Operations’. Right-click ‘loc1’

within the ‘‘Path Editor’’ as shown above and select ‘Add Location Before’. This will add an

intermediate location to simulate the lowering of the part into the clamp. Complete this step

for both ‘Object Flow Operations’. Set the values as shown below in either the ‘Placement

Manipulator’ or the ‘‘Path Editor’’ window. In addition, rename the locations as displayed.

11.2 DEVICE CONTROL GROUP OPERATIONS

1. At present, the above ‘Object Flow Operation’ is not accompanied by the necessary clamp

Operations required to hold the parts in the Fixture. As such it is necessary to create a

‘Device Control Group’ which will allow all the clamps on the Fixture to be operated by one

‘Device Control Group Operation’.

2. Create a ‘Device Control Group’ by clicking CEE >> Device Control Group >> Create

Device Control Group.

Page 20

3. Navigating back to the ‘Object Tree’, under ‘Resources’ the newly created ‘Device CG’ can

be found. Rename this node to ‘FixtureClamps’ and place it within the ‘GripperFixture’

node.

4. Using a drag and drop action, place the following clamps into the ‘Device Control Group’:

Fixture 1, 2, 3, 4, 7, 8 as shown in the diagram below.

5. Selecting the ‘FixtureClamps’ control group, select CEE >> Device Control Group >> Edit

Pose Groups. This function is used to associate the poses of the clamps with each other

such that all Operations are performed in synchronisation. First, clicking ‘Match by Name’

then selecting ‘CLOSE’ from the ‘Group Pose List’, it is necessary to add ‘EXTEND’ for

Fixtures 1, 4 and 7 to this group pose. Similarly for ‘OPEN’, Fixtures 1, 4 and 7 should have

‘RETRACT’ added to this group pose. See below.

Page 21

6. The Device Control Group Operation can now be created. From the menu bar, click

Operations >> New Operation >> New Device Control Group Operation. Rename this

Operation to ‘Clamps_Open’ and select ‘FixtureClamps’ as the Device Control Group. As

the Scope, select ‘StationProcess01’ and set the ‘To pose’ to ‘OPEN’. Repeat this

procedure for the ‘CLOSE’ Operation. See below.

Page 22

Note: As you now have four Operations, it is necessary to adjust the order in which the

Operations take place. Do so in the ‘Sequence Editor’ window by linking Operations such

that the Gantt Chart correctly displays the order in which the Operations occur. Link

Operations by highlighting the desired Operations (in the correct sequence) then select the

‘Link’ button circled in the top-left of the ‘Sequence Editor’ window. The correct sequence

at this stage should appear as follows with black arrows indicating the links.

Note: When saving from now on, ensure that ‘Line Simulation data’ is ticked, or else the

save will be incomplete!

Page 23

11.3 WELD OPERATIONS

With the parts correctly secured in the Fixture it is now necessary to fix the parts together

through a ‘Spot Weld Operation’. Creation of a ‘Spot Weld Operation’ requires the definition of

a Weld Point, which will become a ‘Manufacturing Feature’, and the subsequent projection of

these points onto the parts. The following steps detail this process:

1. With the simulation reset, select: Weld >> Spot >> Create Weld Points By Coordinates.

Rename this first Weld Point as ‘WeldPoint1’ and set a ‘frame by 6 values’ to the

coordinates specified in the table below, selecting ‘PART_1’ as the part associated to this.

The figure below shows an example of how to do this. Repeat this action for a second Weld

Point again following the coordinates below.

2. The next step is to project these Weld Points onto the defined part. Select Weld >> Spot

>> Project Weld Points. In the newly opened dialogue box select ‘WeldPoint1’ and

‘WeldPoint2’ from the ‘Operation Tree’ and select ‘Project’ as shown in the diagram below.

Following this the Weld Points will be projected and should be displayed as solid pink nodes

in the ‘Operation Tree’.

Weld Point X Y X Rx Ry Rz

WeldPoint1 2370.34 -7149.17 831.07 180 0 156

WeldPoint2 2323.65 -7153.21 831.07 0 0 160

Page 24

3. With the Weld Points created, the ‘Weld Operation’ will now be defined. Follow: Operations

>> New Operation >> New Weld Operation to create this operation. A ‘Weld Operation’

dialogue box will now appear.

4. In the ‘Robot’ field, select the ‘abb_irb64’ Robot from the ‘Graphics Viewer’ and populate

the ‘Scope’ field with ‘StationProcess01’. In the ‘Weld List’ box, select ‘WeldPoint1’ and

‘WeldPoint2’ from the ‘Operation Tree’ as shown below.

Page 25

5. As described previously, the sequence editor is used to define the order the events occur

in. Link the ‘Clamps_Close’ Operation to the newly created ‘Weld_Op’ now and click play

to view the simulation so far. Ignore the warning message that appears here, shown below:

6. Upon playing the simulation there is a clear collision between the Weld Robot and the

Fixture as shown below. As such it is necessary to rotate the angle at which the Weld

Robot will perform the weld.

Page 26

7. After letting the simulation run to completion, select each Weld Point in turn in the

‘Operation Tree’ and open: Weld >> Pie Chart to adjust the weld angle. Set the value of

the ‘Rotate Location Around Perpendicular’ box to -20o. This angle will remove any

collisions of the weld gun.

8. It can be noted that following the Operation, the Weld Robot does not return home. Adding

in a ‘via location’ after the ‘Weld Operation’ will allow the simulation to run as required.

Right click on the ‘abb_irb64’ Robot and select ‘Home’. Following this, open the ‘‘Path

Editor’’ and within the ‘Weld_Op’ right click ‘WeldPoint2’ and select ‘Add Current Location’.

This will add the current Robot location (Home) to the list of points within the ‘Weld

Operation’. Ensuring this point is the last in the list, and renaming the point to

‘Weld_End_To_Home’, will send the Robot to Home after the ‘Weld Operation’ is complete.

9. As an additional safety measure to ensure the Robot definitely returns to both the home

position and configuration, an ‘OLP command’ can be used. Loading ‘Weld_Op’ in the

‘‘Path Editor’’ select the box named ‘OLP Commands’ for the ‘Weld_End_To_Home’. The

window shown below will then be displayed.

Page 27

10. Selecting the ‘Add’ button, follow ‘Standard Commands >> Tool Handling >> Drive Device

Joints’. This will then open a second window shown below with all data filled in. The window

which opens will give the option to select a ‘Device’ select the ‘abb_irb64’ Robot now. This

feature will drive the Robot to the joint configuration selected. As the original ‘HOME’ pose

has a joint configuration of ‘0’ for each joint, select each join in turn and leave the value as

‘0’. In addition select the box ‘Synchronize With Robot Motion’. Then select ‘OK’.

Page 28

11. In addition to supplying the above ‘OLP command’ to ensure the Robot returns home, it is

necessary to input a command which specifies to the software the two parts being welded

should now act as one part. This is again done in the ‘OLP Command’ window. As before,

select the OLP Command window on the ‘Weld_Op_End_To_Home’. Now select ‘Add >>

Standard Commands >> Part Handling >> Attach’ to display a new window as shown

below.

12. In the ‘Attach Object’ field select ‘Part_1’ from the ‘Parts’ label in the ‘Object Tree’ or from

the ‘Graphics Viewer’. Then under ‘To Object’ Select ‘Part_2’. This feature will ensure that

the software recognises the two parts as one and will be particularly useful later in this

tutorial. The final ‘OLP Command’ window for the ‘abb_irb64’ Robot should look like that

shown below.

Note: As collisions still exist within this Operation, further path points should be added.

Specific points for this Operation will be defined at a later stage in this process, however,

the steps above should provide the basic knowledge to create and use ‘Weld Operations’.

Page 29

11.4 GRIPPER OPERATIONS: PICK AND PLACE

1. The two parts of this simulation have now been welded together and the next step of the

process is to remove the welded parts from the Fixture and place them in a new location

where they can be collected for use in a later station. To do this in Process Simulate, a

‘Pick and Place’ Operation is used.

2. Prior to using a ‘Pick and Place’ Operation, the clamps of the Fixture must first be opened.

As described previously, utilise the ‘New Device Control Group Operation’ to create a new

Operation named ‘Clamps_Open_2’ which changes the ‘Device Control Group’ ‘Fixture

Clamps’ from ‘Current Pose’ to ‘OPEN’. Ensure that in doing this the ‘Scope’ is set to

‘StationProcess01’.

3. Now, selecting the ‘kr30_3’ Robot, create a new ‘Pick and Place’ Operation by following

Operations >> New Operation >> New Pick and Place Operation to display the following

dialogue box.

4. Firstly, rename the Operation to: ‘Pick_And_Place_Op’ then select ‘StationProcess01’ as

the ‘Scope’. Within the ‘Pick’ and ‘Place’ boxes, the reference points for the Robot should

be defined. These points are provided for the purpose of this tutorial and should be input

as co-ordinates. This will ensure that the gripper is in the correct position to collect the

newly welded parts. Please input the following co-ordinates for this Operation now:

Page 30

Operation X Y Z Rx Ry Rz

Pick 4379.35 -685.68 994 180 0 180

Place 4270.34 1279.51 702.10 180 0 180

5. As with the other Operations created, it is necessary to link it to the previous Operation to

ensure it follows the correct sequence of Operations. In addition, at present, the ‘Pick and

Place’ Operation ends at the destination ‘Place’. To ensure the Operation runs as desired,

please add a location after the ‘Place’ Location for the Robot position ‘HOME’. This is done

in ‘‘Path Editor’’ by right-clicking the ‘kr30_3’ Robot and returning it the ‘Home’ position;

then right-clicking the ‘Place’ location select ‘Add Current Location’. Rename this location

‘Pick_And_Place_End_To_Home’.

At this point in the tutorial, your simulation should be at a stage where clicking ‘play’ will run

through the Operations defined above. These steps should have given you the basic training

needed in each of the above Operations, however, there is still a significant number of features

which can be utilised in Process Designer and Process Simulate. The following sections of this

tutorial are focused on developing a more advanced knowledge of simulation development

within Process Simulate specifically collision avoidance, cosmetic additions and the use of the

Cyclic Event Evaluator. Using the Simulation built already, additions will be made to take the

current factory to a far more developed stage where more features will be explored and the

user will be left with a more complete knowledge.

12.0 PLACEMENT OF PROXIMITY SENSORS

1. Proximity sensors were added at the initial stages of the factory however were not placed

into their correct position. It is now necessary to perform this step as these will be used

when logic is applied. Opening the ‘Object Tree’, expand ‘GripperFixture’ and right-click

each of the proximity sensors in turn. Select ‘Placement Manipulator’ and enter the

following co-ordinates:

X Y Z Rx Ry Rz

5172.16 -677.11 666.11 0 0 0

4032.22 -671.65 899.25 0 0 180

Page 31

The proximity sensors should be located as shown below:

Note: At present these are a graphical representation only and the sensor functionality will

be applied at a later stage during the application of logic, Section 17.0.

13.0 ADDING COSMETIC FEATURES

In the tutorial so far, only essential ‘Resources’ have been utilised. In reality this is not

representative of the real factory and so all features should be included. The next step in this

tutorial is to import all the necessary parts to complete the look of the factory.

1. Going back to the ‘Navigation Tree’, open the ‘EngineeringResourceLibrary’ in a new

‘Navigation Tree’ alongside the original Tree.

2. Opening ‘Station01’ it will be possible to drag and drop the necessary cosmetic features

into the Plant for use in the simulation. Firstly, create a new ‘Compound Resource’ within

‘Plant01’ Renaming this as ‘StationDevices’, then create another named ‘Guardings’.

Following this, drag and drop the Resources below into the ‘Guardings’ Compound

Resource. These will be used to create the perimeter fence for the Station.

 27 x ‘Fence_Post’

 13 x ‘Fence_Large’

 12 x ‘Fence_Medium’

 5 x ‘Fence_Small’

Page 32

Note: After adding Resources to the ‘Plant01’ node within the ‘Navigation Tree’ it may be

necessary to re-load the ‘RobcadStudy’ in order to load the newly added Resources in the

Graphic Viewer. Right-click the ‘RobcadStudy’ and select ‘Load in Standard Mode’ to allow

the Resources to generate.

3. In the ‘Object Tree’, right-click each of the Resources within ‘Guardings’ individually and

select ‘Placement Manipulator’. In creating the perimeter fence, the co-ordinates for the

layout presented in this tutorial are attached as an Excel spreadsheet where each co-

ordinate can be input manually. However, the user may take this opportunity to practice

manual placement manipulation, re-creating the perimeter fence as close to that shown as

possible.

Note: when entering these co-ordinates, it is important to input the Rz co-ordinate first, else

the absolute location will be inaccurate.

4. With the perimeter fence now in place, other cosmetic components may now be added. In

a drag and drop method similar to that described above, please populate the

‘StationDevices’ CompoundResource with the Resources shown below. Reload the study

once again.

Page 33

5. As with the perimeter fencing, these Resources may be placed manually, however, co-

ordinates are given in the provided Excel spreadsheet. The figure below should be used

as a reference to ensure that the cosmetic features have been added to the Station

correctly.

14.0 REFINEMENT OF PATH LOCATIONS

14.1 OBJECT FLOW OPERATION

Since the initial creation of the ‘Object Flow Operation’ used to place the parts into the Fixture,

two containers have been inserted from which the parts are to be sourced; this is to represent

the action of a human picking parts from the containers and manually placing them into the

Fixture. Given that the location of the buckets does not correspond with the ‘Object Flow’

starting location however, it is necessary to update the values so that they match. It is also

necessary to add additional ‘via’ locations to ensure that collisions are removed and that the

parts move in a controlled motion path.

1. Open ‘StationProcess01’ within the ‘‘Path Editor’’. Selecting ‘PART_2_loc_1’, right-click

and select ‘Manipulate Location’. The co-ordinates should be adjusted to match those as

shown below.

Page 34

2. In addition, create a further two ‘via’ locations by, again, right-clicking ‘PART_2_loc_1’ and

selecting ‘Add Location After’. When prompted, set the co-ordinates to match those below.

3. Repeat the above two steps, this time for ‘PART_1_loc_1’ utilising the values displayed

below.

4. Finally, rename all locations to comply with the previous naming convention.

14.2 WELD OPERATION

It is necessary to refine the path of the Robot in completing the ‘Weld Operation’. In reality, the

Robot is travelling more slowly in the vicinity of parts to minimise the chance of a collision and

so this should be reflected within the simulation as closely as possible.

1. Ensure that ‘StationProcess01’ is the current Operation within the ‘‘Path Editor’’. Reset the

simulation then play up until both parts are loaded into the Fixture and pause.

2. Right-click ‘WeldPoint1’ and select ‘Jump Assigned Robot’ to show the Robot position at

this Weld Point. The next stage is to define the path of the Robot leading up to this Weld

Point.

3. Again, right-click ‘WeldPoint1’ but this time select ‘Add Location Before’. Perform this action

twice to create two ‘via’ points prior to ‘WeldPoint1’ and populate the co-ordinate fields

within the ‘‘Path Editor’’ to match those show below.

4. For the Robot to exit on the same path as it entered during the ‘Weld Operation’, two

identical ‘via’ points must be created after ‘WeldPoint2’. This can be achieved by right-

clicking the location ‘via’ and selecting ‘Jump Assigned Robot’. Following this, right-click

‘WeldPoint2’ and select ‘Add Current Location’. Repeat this step for the location ‘via1’

ensuring ‘Add Current Location’ is selected on the newly created point ‘via2’. Alternatively,

Page 35

arbitrary ‘via’ locations can be created and the co-ordinates updated to match those as

shown below.

5. Finally, adjust the ‘Motion Type’, ‘Speed’ and ‘Time’ to match those shown. This will slow

the speed of the Robot motion during the Operation. Linear motion is selected at the Weld

Point to increase accuracy of the Robot.

6. Rename the Weld Points to match the names as shown below.

14.3 PICK AND PLACE LOCATIONS

The ‘Pick and Place’ Operation must be adjusted so that the Robot places the final part in the

container as, at present, the part is released at an incorrect location.

1. Within this Operation, four ‘via’ points must be created using the procedure stated above.

Create one ‘via’ point before ‘Pick’, two between ‘Pick’ and ‘Place’ and one after ‘Place’. In

addition, the co-ordinates for the other locations should be checked and updated if

Page 36

necessary. Please see below for the most up-to-date co-ordinate points including those for

the ‘via’ locations.

2. Following this, rename the locations as shown below. It is also necessary to update the

configuration of the ‘Pick_And_Place_End_To_Home’ location to ensure the Robot returns

to its correct ‘Home’ position. This is done by clicking the ‘Configuration’ box indicated

below. Following this, select the configuration ‘J3 – OH –’ and click ‘Teach’. A ‘green’ tick

should now display in this box.

You have now completed the second stage of the process – Creating the Simulation on

Process Simulate. Next you will move onto creating the associated control program; this

will predominately use the Cyclic Event Evaluator (CEE) within Process Simulate.

Page 37

CHAPTER 3 – CYCLIC EVENT
EVALUATOR

Page 38

15. DEFINITION OF MATERIAL FLOW

Material flow is a function which defines the introduction and consumption of material parts

used within the simulation. This function provides a visual representation of the existence and

use of parts within a manufacturing facility during Cyclic Operations.

Note: When working in ‘Line Simulation’ mode (used for Cyclic Operations) parts are only

viewed in the simulation as appearances and are only visually represented in the ‘Graphics

Viewer’ during their consumption by an Operation.

1. Right click the ‘Robcad Study’ on the ‘Navigation Tree’ and select ‘Load in Line Simulation

Mode’ as displayed on the left below.

2. Ignore the warning that appears on the screen by clicking close (see above on the right)

as you will now be defining the material flow structure.

3. Open ‘Operation Tree’ and expand all levels.

4. On the main toolbar select View >> Viewers >> Material Flow Viewer.

5. Within the ‘Material Flow Viewer’, click the ‘Generate Material Flow Links’ icon.

6. Now click the green ‘Objects’ taskbar and this will allow you to add Operations as objects.

7. Using the ‘Operation Tree’ you must now add Operations. The Operations that must be

added are detailed in the following window screenshot:

Page 39

8. Click OK to close the ‘Generate Material Flow Links’ window.

Note: The material flow for the project has now been defined and can be observed in the

‘Material Flow Viewer’.

16.0 DEFINITION OF JOINT VALUE SENSORS

It is now necessary to introduce ‘Joint Value Sensors’ for each of the Robots. These sensors

will allow specific Robot poses to be defined for use later in the simulation.

16.1 ABB_IRB64 ROBOT JOINT VALUE SENSORS

1. Within the ‘Operations Tree’ drag the ‘PlantProcess01’ into the ‘Path Editor’ and expand

all levels. The ‘Path Editor’ should now look like the following:

Page 40

2. In the ‘Graphics Viewer’ click the ‘abb_irb64’ Robot (it will turn green) and within the

‘Weld_Op’ in the ‘Path Editor’ right click ‘Weld_loc_1’ and click ‘Jump Assigned Robot’.

This will move the Robot to the Weld_loc_1 position.

3. Right click the ‘abb_irb64’ Robot in the ‘Graphics Viewer’ and select ‘Mark Pose’.

4. Right click the ‘abb_irb64’ Robot again and select Pose Editor >> Pos1 >> Edit and change

the name to ‘Weld_loc_1’.

5. Repeat steps 2-4 for Weld_loc_ numbers 1 to 4.

Note: You will be unable to create poses for WeldPoint1 and WeldPoint2. Do not worry as

these are not required.

Upon completion of Step 5, the ‘Pose Editor’ window should look like the following:

6. Select the ‘abb_irb64’ Robot in the ‘Graphics Viewer’. Then, in the main toolbar click CEE

>> Sensors >> Create Joint Value Sensors. The following window will appear:

Page 41

7. Select the first pose in the ‘Pose’ dropdown menu (this will be HOME) and change the

name to ‘abb_irb64_24_12_at_HOME’.

8. Repeat step 7 for all other poses in the ‘Pose’ dropdown menu, changing the names to the

corresponding names of the poses.

16.2 KR30_3 ROBOT JOINT VALUE SENSORS

1. Right click the ‘kr30_3’ Robot in the ‘Graphics Viewer’ (it will turn green).

2. Now within the ‘Pick_And_Place_Op’ in the ‘‘Path Editor’’, right click

‘Pick_And_Place_loc_1’ and click ‘Jump Assigned Robot’. This will move the Robot to the

Pick_And_Place_loc_1 position.

3. Right click the ‘kr30_3’ Robot in the ‘Graphics Viewer’ and select ‘Mark Pose’.

4. Right click ‘kr30_3’ Robot again and select Pose Editor >> Pos1 >> Edit and change the

name to ‘Pick_And_Place_loc_1’.

5. Repeat steps 2-4 for all positions in the ‘Pick_And_Place_Op’ apart from

‘Pick_And_Place_End_To_Home’.

6. Upon completion of step 5 the pose editor should resemble the following:

7. Click the ‘kr30_3’ Robot in the ‘Graphics Viewer’.

8. In the main toolbar select CEE >> Sensors >> Create Joint Value Sensors.

9. Select the first pose in the ‘Pose’ dropdown menu (HOME) change the name to

‘kr30_3_at_HOME’.

10. Repeat step 9 for all other poses in the ‘Pose’ dropdown menu, changing the names to the

corresponding names of the poses.

Page 42

Joint Value Sensors have now been defined for both of the Robots. These poses set by each

Joint Value Sensors should be shown in the ‘Object Tree’ as shown below in the following

screenshot:

Note: Although all poses have been defined using Joint Value Sensors. Only the HOME poses

for each Robot will be used in the logic. However it must be noted that in other projects

additional poses may become applicable for the logic.

17.0 PROXIMITY SENSORS

Proximity Sensors are used for part and human detection within the simulation and must be

represented by individual CAD models within the simulation. For the purpose of this project

they will be used to identify the presence of both ‘PART_1*’ and ‘PART_2*’ within the clamp

Fixture.

1. CEE >> Create Proximity Sensor.

2. Within the ‘Name’ box type: ‘proximity_sensor_Part1’.

3. Select the ‘Graphic Representation’ box and then click the proximity sensor on the left-

hand side of the Fixture as shown by the red circle below.

Page 43

4. Open ‘Operation Tree’, right click LineOperation >> Generate Appearances.

5. Select the ‘Check Inference With’ objects box and then within the ‘Object Tree’, select

‘PART_1*’ .This will add ‘PART_1*’ to the Objects window.

6. Set the ‘Detection Range’ to 1000 and ensure that ‘Normally False Signal’ is ticked/

checked. Close the window by clicking ok. The sensor will now appear in the ‘Object Tree’

under Plant01 node.

7. Repeat steps 1-6 for the second proximity sensor (Shown above in the right-hand circle).

Please note that the ‘Check Interference With’ object for the second proximity sensor will

be ‘PART_2*’.

18.0 SIGNAL GENERATION

For logic to be added to the simulation, Signal Generation is key. Input and Output signals

must be created for all Robots and Devices. With the use of logical expressions these signals

are then used to either permit or restrict the start of Operations within the simulation.

18.1 CREATION OF ROBOT SIGNALS

1. In the ‘Graphics Viewer’ select the ‘abb_irb64’ Robot and within the main toolbar at the top

of the screen select Robotics >> Robot Signals. This will open the Robot signals window.

2. Now click the ‘Create Default Signals’ icon .The following will be displayed:

Page 44

3. Click ‘Apply’ and ‘OK’ to close the window.

4. Select the ‘abb_irb64’ Robot and click CEE >> Signal Generation >> Create Robot Start

Signals on the main toolbar.

5. Repeat Steps 1 and 2 for the ‘kr30_3’ Robot. The following signals will be displayed:

6. Select the ‘kr30_3’ Robot, click CEE >> Signal Generation >> Create Robot Start Signals.

Page 45

Note: At this stage, all signals for the ‘abb_irb64’ Robot and ‘kr30_3’ Robot have been

created.

In this section signals have been created for the poses (defined in the Section 15.2), Robot

Operation start signals and default Robot signals.

For the purpose of this tutorial not all of these default Robot signals will be used. The

signals of importance are as follows:-

1) ‘abb_irb64_at_HOME’ and ‘kr30_3_at_HOME’ – These signals will be used to return

the Robot to its home position

2) ‘abb_irb64_startProgram’ and ‘kr30_3_startProgram’ - These will be used to signal the

initiation of Robot Programs

3) ‘abb_irb64_programNumber’ and ‘kr30_3_programNumber’ – Used to define the

specific Robot Program to be used by the ‘abb_irb64_startProgram’ and

‘kr30_3_startProgram’ signals respectively.

4) ‘abb_irb64_programPause’ and ‘kr30_3_programPause’ – Will be used in the definition

of safety features later in the simulation.

18.2 DEVICE SIGNALS

1. Select the ‘WeldGun’ in the ‘Graphics Viewer’ (this device is attached to the ‘abb_irb64’

Robot).

2. Select CEE >> Signal Generation >> Create Device Operations / Signals and complete the

window as shown below:

Page 46

Note: The poses of the device can be observed in the ‘Graphics Viewer’ by ticking an

individual pose and clicking the ‘Jump to Selected Pose’ tab. This is a good way to verify

that the poses are correct.

3. Select the ‘Gripper’ in the ‘Graphics Viewer’ (this device is attached to the kr30_3 Robot).

4. Repeat step 2 and within the ‘Create Device Operations / Signals’ window, ensure that all

‘Device Poses’ are checked and that the ‘Only Signals’ option is selected.

18.3 USING THE SIGNAL VIEWER

The created signals are displayed in the ‘Signal Viewer’ which is accessed via the main toolbar,

selecting View >> Viewers >> Signal Viewer. A portion of the ‘Signal Viewer’ can be seen

below:

Note: Within the ‘Signal Viewer’, click ‘Signal Name’ – this organises the signals into

alphabetical order which makes it easier when selecting signals for later use.

18.4 CREATING THE START CYCLE SIGNAL

It is necessary to create a signal that can be used to initiate the simulation. This signal takes

the form of a ‘Key Signal’.

Page 47

1. Within the ‘Signal Viewer’ select the ‘Create New Signal’ button.

2. In the dialogue box that appears, check the ‘Key Signal’ box as shown below:

Click ‘OK’ to close this dialogue box.

3. A ‘Key Signal’ will be created. Find the ‘Key Signal’ within the ‘Signal Viewer’ by scrolling

through the list until the highlighted ‘Key Signal’ is found. Double-click the signal and

rename: ‘START CYCLE’. This signal will be used later in the process.

19.0 INTRODUCING LOGIC TO THE SIMULATION

19.1 TRANSITIONS

In a time-based simulation, the Sequence of Operations determines the order in which the

Operations are conducted whereas in an event based simulation, the logic applied controls the

order. The method used to initiate the start of an Operation is the evaluation of the ‘Transition

Conditions’. ‘Transitions’ are the link between the Operations and are represented by black

arrows, as shown: . ‘Transitions’ will be created for the full simulation. This process is

detailed as follows:

1. Open the ‘Operation Tree’, right click ‘LineOperation’ and select ‘Set Current Operation’,

this will bring the ‘LineOperation’ into the ‘Sequence Editor’. Expand all levels. The resulting

‘Sequence Editor’ will be displayed:

Page 48

2. Within the ‘Sequence Editor’, click the button to add additional columns. For this

tutorial you will require the following columns: ‘Transition’, ‘Running’, ‘Input’ and ‘Output’.

3. It is now necessary to create a ‘Non-Sim Operation’. This will allow a ‘Transition’ to be

created and hence allow the addition of required logic. Firstly, select ‘StationProcess01’

within the ‘Operation Tree’. Now navigate to Operations >> New Operation >> New Non-

Sim Operation from the main menu toolbar. A dialogue window will appear; enter the

‘Name’ as ‘Start_Button’ and select ‘OK’. Finally, click and drag the newly created

‘Start_Button’ Operation so it becomes the first Operation within ‘StationProcess01’ as

shown below:

4. It is required to create a ‘link’ from the ‘Start_Button’ Operation to the ‘Clamps_Open’

Operation in order to enter logic during the ‘Transition’. Select both the ‘Start_Button’ and

‘Clamps_Open’ by holding down the ‘Ctrl’ key. It is important that the ‘Start_Button’

Page 49

Operation is selected before the ‘Clamps_Open’ Operation .Now click the icon to

create the link.

5. Having established a ‘link’ between all of the Operations, logic can now be applied. When

the simulation satisfies the logical commands entered at ‘Transition’ points, the following

Operation in the sequence will commence. This is done by double-clicking the blue

‘Transition’ icon beside the ‘Start_Button’ Operation. A dialogue box will display as

shown:

6. Click the ‘Edit Condition…’ button. This will allow you to edit the logic within the ‘Common

Condition’ that has to be satisfied for the simulation to advance to the following Operation

in the sequence.

Note: When you start typing to add expressions to the Common Condition a drop down

menu will appear containing all signals that you can use.

7. Enter the ‘Common Condition’ as:

‘kr30_3_at_HOME AND abb_irb64_24_12_at_HOME AND NOT proximity_sensor_Part1

AND NOT proximity_sensor_Part2’

Note: The ‘AND’ command must be entered in capital letters.

Page 50

Note: Logical expressions are input into the ‘Transitions’ using ‘AND’, ‘AND NOT’ and ‘OR’

statements. It is important to understand the meaning of these commands:

 AND: requires the signals either side of the ‘AND’ statement to be true. An example is:

Signal 1 AND Signal 2. This states that Signal 1 and Signal 2 must be true to progress

to the next stage of the simulation. It should be noted that a logical expression can

contain multiple ‘AND’ statements and is not restricted to just an expression between

two signals.

 AND NOT: is the opposite of the ‘AND’ statement. An example is: Signal 1 AND NOT

Signal 2. This states that Signal 1 must be true and Signal 2 must be false to progress

to the next stage of the simulation.

 OR: allows the simulation to progress with a range of options. An example is: Signal 1

OR Signal 2. Either Signal 1 or Signal 2 must be true to progress to the next stage of

the simulation.

8. The ‘Transitions’ have been labelled from 1-7 in the following diagram:

9. With reference to the above diagram input the following common conditions for each

transition as per steps 4-7.

1
2

3

4

5 6

7

Page 51

Transition # Common Condition

1

Start_Button_end AND kr30_3_at_HOME AND

abb_irb64_24_12_at_HOME AND NOT proximity_sensor_Part1 AND

NOT proximity_sensor_Part2

2
Clamps_Open_end AND (NOT proximity_sensor_Part1) AND (NOT

proximity_sensor_Part") AND abb_irb64_24_12_at_HOME

3
PART_2*_end_PART_2_to_Fixture AND proximity_sensor_Part2 AND

abb_irb64_24_12_at_HOME

4
PART_1*_end_PART_1_to_Fixture AND proximity_sensor_Part1 AND

proximity_sensor_Part2

5
Clamps_Close_end AND proximity_sensor_Part1 AND

proximity_sensor_Part2 AND abb_irb64_24_12_at_HOME

6 Weld_Op_end AND proximity_sensor_Part1 AND proximity_sensor_Part2

7
Clamps_Open_2_end AND proximity_sensor_Part1 AND

proximity_sensor_Part2

19.2 ROBOT PROGRAMS

A real Robot contains the information for several tasks to be executed. As such, a Robot

Program is constructed on Process Simulate to collate the Operations.

1. Click the ‘abb_irb64’ Robot within the ‘Graphics Viewer’ and then on the main toolbar

Robotics >> Robot Program >> Robot Program Inventory. Within the dialogue box that

appears, shown below, click the ‘Create New Program’ button . In this window ‘Name’

the New Robotic Program ‘abb_irb64_Weld_Op’ as highlighted below. Select ‘OK’ to close

the window.

Page 52

2. Now within the ‘Program Inventory’ window, select the program that has newly been

created (‘abb_irb64_Weld_Op’) and click the ‘Set as Default Program’ icon . This will

result in the ‘abb_irb64_Weld_Op’ being shown in bold.

3. Repeat steps 1 and 2 for the ‘kr30_3’ Robot, naming the Robot Program

‘kr30_3_Pick_And_Place_Op’.

4. Select the ‘abb_irb64_Weld_Op’ Robotic Program and click ‘Open in Program Editor’. The

Robot Program will be shown in the ‘‘Path Editor’’.

5. Now select the ‘Weld_Op’ Operation within the ‘Operation Tree’ and by dragging into the

‘add_irb64_Weld_Op’ or by using the ‘Add Operations to Editor’ icon within ‘Path

Editor’. Under the column ‘Path #’ for the ‘Weld_Op’ enter ‘10’ as displayed in the figure

below.

6. Open Robotics >> Robot Program >> Robot Program Inventory and select the

‘kr30_3_Pick_And_Place_Op’ and click on ‘Open in Program Editor’.

Page 53

7. In the ‘Operation Tree’ select ‘Pick_And_Place_Op’ and add to ‘Path Editor’. Under the

‘Path #’ column for the ‘Pick_And_Place_Op’ enter ‘20’.

Note: The Path numbers (#) 10 and 20 are arbitrary values used for clarity to distinguish

between the ‘Weld_Op’ and ‘Pick_And_Place_Op’. They are not representative of the

number of paths within the project.

8. Open the following windows: View >> Viewers >> Simulation Panel and View >> Viewers

>> Signal Viewer.

9. Add all signals from the ‘Signal Viewer’ to the ‘Simulation Panel’. This is conducted by

highlighting all signals in the ‘Signal Viewer’ and then clicking the ‘Add Signal to Viewer’

icon in the ‘Simulation Panel’.

10. Find signal: ‘abb_irb64_24_12_programNumber’ within the ‘Simulation Panel’. Under the

‘Forced Value’ column enter ‘10’ (this was the ‘Path#’ that you entered for the

‘abb_irb64_Weld_Op’ Robot Program). Ensure that the ‘Forced’ column is checked.

11. Repeat the same process for the ‘kr30_3_programNumber’ signal, entering the forced

value number as ‘20’. The two signals that you have entered forced values for can be seen

highlighted below:

12. It is now necessary to save the configuration of the ‘Simulation Panel’. This can be then

reloaded whenever you open the study from scratch. Saving a configuration in this way will

save the ‘Forced Value’ entries for the Robot Programs, else these will need to be re-

entered every time the software is closed and opened again. It will also save the order that

the signals are displayed in should you want to adjust this. To save a configuration click

the ‘Store Signals Settings’ icon within the ‘Simulation Panel’ as shown by the red circle.

Page 54

Enter a name of choice, for example: ‘Tutorial_Factory’ and click ‘OK’.

To open a saved configuration, click the ‘Load Signals Settings’ icon, see blue circle above,

and select the appropriate file.

Note: If you add/ remove signals, it will be necessary to resave the configuration and

overwrite the previous save.

It is now required to create additional logic that will automatically initiate these ‘Robot

Programs’ at the correct moment of the simulation. This will be conducted using ‘Modules’.

19.3 MODULES

‘Modules’ contain signals which are a result of logical expressions comprising of a number of

other signals and operators. They will be used to govern when the ‘abb_irb64_Weld_Op’ and

‘kr30_3_Pick_And_Place_Op’ Robot Programs will start. This process is detailed as follows:

1. Navigate to View >> Viewers >> Modules Viewer.

2. Click the ‘New Module Object’ button. Then select ‘Module’ from the ‘Modules

Inventory’ and click the ‘Edit Module’ button.

Note: For best practice don’t use the ‘Main Module’. It is not applicable in this particular

tutorial however in other projects it means that you are able to merge studies easily.

3. In the ‘Module Editor’ click the ‘New Entry’ button, this will open a new window.

4. In this new window click on the ‘Result Signal’ task bar. Open ‘Signal Viewer’ and double-

click ‘abb_irb64_24_12_startProgram’, this will appear in the ‘Result Signal’ task bar and

turn green. Underneath this task bar, logic should be added to describe the starting

condition for the ‘abb_irb64_Weld_Op Robot Program’. Input the signals as follows:

Page 55

Click ‘OK’ to close this dialogue box.

5. Again click ‘New Entry’ within the ‘Module Editor’ box to add logic for the ‘kr30_3 Robot

Program’. Enter the ‘Result Signal’ and logic as follows:

 Again, click ‘OK’ to close this dialogue box. Select ‘Close’ to return to the ‘Modules Viewer’.

6. Now drag ‘Module’ from the ‘Modules Inventory’ into the ‘Modules Hierarchy’. The ‘Modules

Viewer’ should now look like the following:

Page 56

At this stage, the simulation can be described as event-based. Two methods of logic have

been added: ‘Transitions’, and ‘Modules’, each with their own distinct applications.

Transitions: ‘Transitions’ are used for logic that is specific to an Operation. For the purpose

of this tutorial it was decided that this would be the best way to introduce the user to entering

logic into the simulation as they are user-friendly and easy to visualise in the ‘Graphics Viewer’.

Modules: The ‘Modules’ are used in this simulation for overall control; they govern the initiation

of the ‘Robot Programs’ and are also used for safety mechanisms (e.g. ‘Emergency Stop

Button’).

Note: The third method of applying logic is through the use of Logic Blocks. These will be

added in the next section of this tutorial.

You are now ready to play the simulation. Open the ‘Simulation Panel’ and press play. You

will need to press the ‘START CYCLE’ signal in the ‘Simulation Panel’ to start the simulation.

Note: The simulation will run the same as the time-based simulation, however as it is now

event-based it will run off the logic.

The next stage in the process is to add safety features to the virtual factory.

Page 57

20.0 INTRODUCING SAFETY FEATURES

20.1 GATES AND SAFETY MAT

Including ‘Gates’ to the simulation makes the model more realistic, showing entry points for

workers for robot and device maintenance or general access. These ‘Gates’ must be modelled

correctly such that when they are opened the processes are stopped or paused. In addition to

this a ‘Safety Mat’ was introduced to the simulation when an operator was near the clamp

Fixture. The ‘Gates’ and ‘Safety Mat’ used in this tutorial are ‘Smart Components’; this means

that logic is applied to these components by means of a logic block (defined logical behaviour

derived from one or more specified inputs and outputs in an equation or formula). The main

advantages of a ‘Smart Component’ are that it has predefined actions that signals are

connected to and can be stored in a library for use in other projects.

The ‘Smart Components’ will be defined as follows:

1. Within the ‘Signal Viewer’, select ‘Create New Signal’ button. A dialogue box will appear,

check the ‘Key Signal’ box and press OK.

2. Open the ‘Signal Viewer’ and locate the newly created ‘Key Signal’, it will be highlighted.

Double-click and rename the ‘Key Signal’: ‘Select_to_Open_Gate 1’.

3. Select ‘Create New Signal’ again. This time check the ‘Display Signal’ box and press OK.

4. Find the ‘Display Signal’ within the ‘Signal Viewer’ and rename the signal: ‘Gate_1_Open’

5. Within the ‘Object Tree’ under ‘StationDevices’, select the ‘Gate’ shown in the red rectangle

in the following figure:

Page 58

6. Whilst the ‘Gate’ in the red rectangle shown above is still selected, navigate to CEE >>

Logic Bock >> Edit Logic Resource.

7. Within the ‘Entries’ Tab, navigate to the ‘Connected Signals’ box and attach the

‘Select_To_Open_Gate_1’ signal by selecting it in the ‘Signal Viewer’ to display the ‘Logic

Block’ window shown below.

8. Within the ‘Exit’ Tab, again in the ‘Connected Signals’ box attach the ‘Gate_1_Open signal’.

Now click ‘Apply’ and ‘OK’. Again this ‘Logic Block’ window is shown below.

Page 59

9. Repeat steps 1-8 for the second ‘Gate’ shown in the above figure in the red circle, Naming

the ‘Key’ and ‘Display Signals’ as ‘Select_to_Open_Gate_2’ and ‘Gate_2_Open’

respectively.

10. Repeat steps 1-8 for the ‘Safety Mat’ named ‘safetymate’ in the ‘Object Tree’. Naming the

‘Key’ and ‘Display Signals’ as ‘Human_on_SafetyMat’ and ‘SafetyMat_On’ respectively.

20.2 EMERGENCY STOP BUTTON

In order to mimic a real life factory, safety measures and an ‘Emergency Stop Button’ should

be included. The conventional ‘Emergency Stop Button’ can be used to stop the simulation at

any point and return the Robots to their home positions, however, for the purpose of this basic

tutorial the ‘Emergency Stop Button’ will simply be used to pause the simulation.

1. Within the ‘Signal Viewer’, create another new ‘Key Signal’ and rename this:

‘Emergency_Stop_Button’.

2. Open ‘Modules Viewer’ and create a new ‘Module’. Double-click the newly created ‘Module’

and rename: ‘Emergency Stop Module’.

3. Edit the ‘Module’ by creating two new entries containing the following parameters:

Note: The ‘Emergency Stop Module’ will pause the simulation on three possible situations:

 The ‘Emergency Stop Button’ is pressed: This is representative of the stop button in a

real factory being pressed by an operator.

 One or both of the ‘Gates’ are open: This safety feature is representative of an operator

entering the work zone during the process.

 The ‘Safety Mat’ sensor is triggered: This is representative of a human being present

on the mat during the process.

All three of these situations would need to be included in a real factory to ensure the safety

of the workers/ operators.

Page 60

4. Click ‘Close’ and drag the ‘Emergency Stop Module’ into the ‘Modules Hierarchy’, as shown

below:

5. Once again select all the signals in the ‘Signal Viewer’ and add them to the ‘Simulation

Panel’.

6. The simulation is now complete and you are free to run it using the play button in the

‘Sequence Viewer’.

Note: To implement any of the safety features that have been added to the simulation the

user must manually trigger the signals. This is performed using the ‘Simulation Panel’. By

checking the ‘Forced’ column for either the ‘Emergency_Stop_Button’,

‘Select_To_Open_Gate_1’, ‘Select_To_Open_Gate_2’ or ‘Human_on_SafetyMat’ signals

the simulation will pause. Unchecking the ‘Forced’ column will resume the simulation.

21.0 PRACTICE ACTIVITY

The tutorial is now complete and you should now have a fully operational virtual factory that

runs as a discrete event-based simulation. As an extension task, the ‘opergate’, ‘panelview’

and ‘RobotController’ devices are pre-programmed as ‘Smart Components’. Different poses

are set for the lights on the respective devices, i.e. for one pose the light is red and for an

alternative pose the light is green. This can be previewed by right-clicking the component and

selecting ‘Pose Editor’. You should introduce the ‘Smart Component’ for each device into the

Page 61

simulation by creating a new ‘Module’ and setting the conditions so that the lights change

colour based on the stage the simulation is at.

B

Oculus Rift - User and
Development Guide

103

1 Directory Structure

Our project package Oculus_Dir.zip contains the following subdirectories:

ActiveTcl ActiveTcl installer version 8.6.4 for windows (x86).
AutoHotKey AutoHotKey installer that is used to compile our application.
Jack Jack 8.2 Windows (x64) installer and licence file.
Oculus Runtime Oculus Runtime for Windows, version 0.4.4-beta.
OculusJack Source code for our custom application and compiled version.
Oculus Source code for our custom Tcl module for Jack 8.2.
OculusSDK Oculus SDK package version 0.4.4 that is used to develop applications.
OculusSDK\LibOVR Libraries, source code, projects, and makefiles for the SDK.
OculusVR Source Source code for OculusVr-CmDLL Project
TCL Root folder from installation of ActiveTcl 8.6.4
tclovr Source code for TCL-DLL Wrapper with all additional required files.
Virtual Desktop Virtual Desktop Windows (x64) installer for Oculus Runtime 0.4.4.

2 Set up Software

2.1 Connection between Oculus Rift and Computer

1. Install Oculus Runtime (version 0.4.4) from the "Oculus Runtime" folder.

2. Copy the "OculusSDK" folder into the root directory of the installed Oculus
Runtime.

3. Read the DK2 Quick Start Guide and connect Oculus Rift to the computer.

4. Restart the computer and run the Oculus World Demo in the "OculusSDK"
folder in order to see if Oculus Rift is working.

2.2 Install Jack

1. Install Jack (version 8.2), jack82-win64-inst.exe including all plugin addons from
the "Jack" folder.

2. Copy the licence file from the "Jack" folder into the licence folder of the in-
stalled root directory of Jack 8.2.

2.3 Install our Oculus module in Jack

1. Open the root directory of Jack 8.2 and go to library -> modules. Full path on
Windows 7 might be C:\ProgramFiles\Siemens\Jack_8.2\library\modules.

2. Copy the "Oculus" folder into the modules folder.

1

2.4 Install Virtual Desktop

1. Install VirtualDesktop-Setup.x64 from the "Virtual Desktop" folder.

2. Restart computer.

3 Set up Environment

3.1 Import Human Object into Process Simulate

1. Create a new project via the AdminConsole.

2. Open it with Process Design and create Libraries, Studies and Human.

3. Load HUMAN_MODELS from C:\Program\Files\Tecnomatix\eMPower
\Human\HUMAN_MODELS into Libraries.

4. Create a RobCadStudy in Studies.

5. In Human, create a ProcessResource with a jack (named jack) from HUMAN_MODEL
in Libraries.

6. Open Process Simulate via PS Standard Mode in RobCadStudy.

7. Now you should see the Jack in the scene.

3.2 Connection between Human Object in Process Simulate and
Jack 8.2

1. Follow the “Import Human Object into Process Simulate” step.

2. Create a human object named "jack" (it must has the same name as the human
object in Process Simulate). This can be done by loading the Oculus module
from the plug-ins menu and choose “Generate jack”.

3. Load JackCollaboration from the plug-ins menu.

4. Choose server and click on start.

5. Open up JackCollaboration in Process Simulate and choose client and click con-
nect.

6. Choose jack as figure in add figure in Jack.

7. Now jack should be displayed as connected in Process Simulate.

2

4 Set up Orientation Control and Rendering to Oculus
Rift

4.1 Set up the Orientation Control

1. Follow the “Connection between Human Object in Process Simulate and Jack
8.2” step.

2. Load Oculus module from plug-ins menu.

3. Choose Movement...

4. Start and run the custom application JackOculus.exe from the "JackOculus"
folder.

5. Connect a GameCube controller to the computer if you want to use one instead
of the keyboard.

4.2 Render Graphics from a Process Simulate Scene to Oculus Rift

1. Follow the “Set up the Orientation Control” step.

2. Make sure that VirtualDesktop x64 is installed.

3. Set rift display mode to “extend desktop to the HMD” in Oculus runtime (you
may get one or more BSODs if you are unlucky).

4. If the image is rotated in the Oculus Rift goggles, rotate it to its correct orienta-
tion by right clicking the desktop, select screen resolution and set the rift DK2
orientation to portrait.

5. Open Process Simulate and Jack 8.2 and configure the left and right eye view
windows in Process Simulate. This is done by right clicking the human object
"jack" in Process Simulate, choose vision window and select left and right eye.

6. Open Virtual Desktop and choose the F8 mode (To rift - side by side content)

7. Run JackOculus.exe if not already started. Press F12 key to toggle between
screen modes.

8. Wear Oculus Rift, you should now see the Process Simulate scene from Jack’s
eyes. You should also be able to control the movement of the human object with
either your GameCube controller or by keyboard arrow keys.

5 Development

5.1 Compile our Custom Application

1. Install AutoHotkey112200_Install.exe from the "AutoHotKey" folder.

3

2. Press start icon -> All Programs -> AutoHotKey -> Convert .ahk to .exe

3. Browse source (script file) and choose folder "OculusJack", file Oculus-
Jack.ahk

4. Browse destination (.exe file) and choose the name OculusJack.exe.

5. Press the >Convert< button

5.2 GameCube Device Key Names

After running the JoystickTest.ahk script described in the methodology, following table
was established with all GameCube controller device key names determined:

GameCube button Device key name
X Button Joy1
A Button Joy2
B Button Joy3
Y Button Joy4
L-Trigger Joy5
R-Trigger Joy6
Z Button Joy8

Start/Pause Button Joy10
D-pad up Joy13

D-pad right Joy14
D-pad down Joy15
D-pad left Joy16

GameCube button Key state
L-Trigger analog JoyV
R-Trigger analog JoyU
Control Stick JoyX, JoyY

C-Stick JoyZ, JoyR

After experimenting with the JoystickTest.ahk script it was concluded that the key
states JoyU, V, X, Y, Z and R can take values between 0 and 90 on a GameCube
controller.

5.3 Compile the Tcl-Dll Wrapper in Visual Studio

1. Open Visual Studio

2. Choose File -> New Project

3. Choose Win32 Console Application, set name and solution name to tclovr and
choose the "tclovr" folder as location.

4. Press next, choose application type: DLL and additional options: Empty project

5. Press finish

4

6. Drag OculusVr-CmDLL.cpp, OvrThrd.cpp, UdpClient.cpp, OvrClient.cpp and
stdafx.cpp files into Source File folder in the project

7. Drag the OculusVr-CmDLL.h file into Header Files in the project

8. Right click on tclovr project -> Properties -> Configuration Properties -> C/C++
-> General

9. In Additional Include Directories, include the following folders found in the
"tclovr" folder: TclWin, LibOVR\Src, LibOVR\Include and Tcl

10. Head to Configuration Properties -> C/C++ -> Preprocessor

11. In Preprocessor Definitions, use the following symbols: WIN32, NDEBUG,
_WINDOWS, _USRDLL, OCULUSVRCMDLL_EXPORTS, USE_TCL_STUBS
and _WINSOCK_DEPRECATED_NO_WARNINGS

12. Head to Configuration Properties -> Linker -> General

13. In Additional Library Directories, include following folders found in the "tclovr"
folder: LibTcl and LibOVR\Lib\Win32\VS20XX where XX is the Visual Stu-
dio version you are compiling with

14. Head to Configuration Properties -> Linker -> Input

15. In Additional Dependecies, add: libovr.lib, libovrd.lib, winmm.lib, tclstub86.lib
and ws2_32.lib

16. Press apply and close properties menu

17. Build -> Build solution

18. You should now find the compiled file tclovr.dll in the Release folder.

5

C

Inventory of Safety Equipment

109

Inventory List of Safety Equipment

Product Description Quantity Relevant

Focus light grid FTR4-
K1C-500

Optical transmitter and receiver units. Beams
of infrared light are sent to the receiver from
the transmitters. When a light beam is interrup-
ted, a dual stop signal is given to the dangerous
machines inside the Light Curtain/Grid protec-
ted area

1 Yes

Focus light curtain
FT4-35-300

See Focus light grid FTR4-K1C-500 1 Yes

Smile Tina 11 EA Emergency stop button with LED indication de-
signed to be installed in areas with space limi-
tations

7 Yes

JSHD4 Three-Position
Enabling Devices

Device with double three-position button, gives
a stop signal when released or fully pressed in,
used for troubleshooting, programming and test
running

2 No

JSTD1 Safeball Control device that is used to guarantee that the
operator’s hands will be kept outside a risk area.

1 No

Eden sensor Non-contact switch with a dynamic function 7 pairs Yes

Grey emergency stop Emergency stop with reset and access buttons,
probably not ABB JOKAB equipment

2 No

Pluto B46-6 Safety PLC 1 Might be

Pluto B20 Safety PLC 1 Might be

Pluto BT51 Safety relay, used to supervise safety devices 3 Might be

Electromagnetic door
lock

Prevents doors and gates from opening 2 No

Pluto Gateway Profibus Gateway for communication with other PLC’s
through Profibus

1 Might be

Telemecanique relay Relay from Telemecanique 4 No

Spot safety light beam Photoelectric guarding of an entrance or around
a risk area

4 pairs Yes

M12-3A Y-branch Branch contact for reducing risk of incorrect
connections

4 Yes

M12-3B Y-branch See M12-3A Y-branch 2 Yes

TINA 10A contact Connection unit with M12 connections, that ma-
ke it easy to connect a light curtain or light beam
Focus with OSSD outputs to the dynamic safety
circuits of Vital and Pluto

2 Yes

TINA 1A contact Device used as a blind plug in unused M12 con-
nections

4 Yes

TINA 2A contact Device that adapts the safety sensors with me-
chanical contacts, such as emergency stops, swit-
ches and light curtains/light grids, with their
own relay outputs to the dynamic safety circuit

2 Yes

TINA 4A contact Tina 4A is a connection block with four 5-pin
M12 connections

1 Yes

D

Tutorial: Setting Up a Project in
TIA Portal

111

Setting Up a Project in TIA Portal
May 2015

Introduction

This is a guide that clarifies the process of establishing a PLC setup in TIA portal. The equipment
used are listed below:

Software

• SIMATIC STEP 7 Professional V13 Service Pack 1

• SIMATIC NET V13

Hardware

• SIMATIC 1517F-3 PN/DP, CPU

• PM 70W 120/230VA, Power supply

• IM 155-6 PN ST, I/O-device

• DQ 8x24VDC/0.5A ST, Digital output module

• DI 8x24VDC ST, Digital input module

• General server module

• Netgear Gigabit Switch ProSAFE—GS105

1

Guide

The is a step by step guide. It is recommended to save in between every step to avoid losing progress
and to confirm the steps are done in the correct order, they are all essential to achieve a functioning
configuration.

Creating a project

Step 1

In the portal view of TIA portal, choose ”Create new project” [1] as seen in Figure 1. Name the
project and click on create [2]. TIA portal will then establish a clean project worksheet.

Figure 1: Creating a project

Step 2

When the loading is finished, press ”Project view” [3] in the lower left corner of the screen, as seen in
Figure 2, this will bring up the project view.

Figure 2: Project view

2

CPU configuration

Step 3

Press the ”Add new device” [4] button at the top of the project tree and choose the controller section
[5]. In this project we will be using a Siemens PLC of the 1500 series, select the ”Simatic S7-1500”
folder followed by ”CPU 1517F-3 PN/DP” and the ”6ES7 517-3FP00-0AB0” [6], as seen in Figure 3.
Make sure the ”Open in device view” box at the lower left corner of the window is checked. Make sure
the firmware version displayed in the ”Version” drop-down menu matches the firmware in the PLC.
This can be seen on the display of the PLC.

These numbers represents the PLC serial number and can be found under the display cover [7], as seen
in Figure 4. As the display itself and each attached device to the CPU has its own serial number, be
sure to check the number corresponding to the CPU.

Figure 3: Selecting PLC

The PLC CPU and its rail can now be seen in the device view, where the CPU can be seen below
”PLC 1” in slot 1. The slots represent devices connected to the CPU according to the physical setup.
As seen in Figure 4, the CPU is connected to a power supply module, seen to the left of the opened lid
[8]. Next the power supply will be added into the corresponding configuration slot. The serial number
of the power supply module can be found at the top of the device [9], as seen in Figure 4.

3

Figure 4: PLC serial numbers

Step 4

In the catalog menu of TIA portal [10], seen to the right in Figure 5, select the ”PM” folder at the
top. This is the folder for the power supply modules. In this project the ”PM 70W 120/230VA” is
used, and the corresponding serial number ”6EP1332-4BA00” is selected. Drag and drop the selected
power supply module in to ”slot 0”. The setup should now look as in Figure 5.

Figure 5: PLC CPU setup

4

I/O device configuration

Step 5

Next the I/O device the will be added to the configuration. In order to do this, toggle to the topology
view, by selecting the corresponding tab on top of the device view window [11], seen in Figure 5.

The tabs displayed are the viewing options. The device view is used when configuring a specific
module, the topology view is used for adding hardware to the configuration and the network view will
be used for setting up the communication between the devices.

When in the topology view, notice that the catalog menu has been updated to add controllers, HMI
interfaces, PC systems etc. These represent the main components of the configuration, into which
modules can be integrated.

Step 6

It is possible to find a specific component by entering its serial number in the search bar at the top of
the folder view in the catalog menu [12], seen in Figure 6. The serial number of the I/O interface can
be found on top of the interface [13], as seen in Figure 7.

Type the serial number ”6ES7 155-6AU00-0BN0” into the search bar or click open ”Distributed I/O”,
”ET 200SP”, ”Interface modules”, ”PROFINET” and ”IM 155-6 PN ST” [14]. Finally, drag and drop
the ”6ES7 155-6AU00-0BN0” I/O device into the topology view, the configuration should now be the
same as in Figure 6.

Figure 6: Adding I/O device

5

Figure 7: I/O device serial numbers

Step 7

All main components are now represented in the main configuration. Next, enter the device view of
the I/O interface by selecting it in the topology view followed by switching to device view in the tab
as described before [15], see Figure 6.

Step 8

Enter the serial number of the digital output module ”6ES7 132-6BF00-0BA0” [16], the digital input
module ”6ES7 131-6BF00-0BA0” [17] and the server module ”6ES7 193-6PA00-0AA0” [18] in the cat-
alog menu search bar respectively. The modules can also be found by browsing the catalogue [19], see
Figure 9. Drag and drop the devices into the device view, in their corresponding order onto the rail of
the I/O device. The configuration should now look as in Figure 9.

If prompted to start the search from the beginning of the catalog, when searching for the compo-
nents serial numbers in the search bar, click ”OK”, see Figure 8.

Figure 8: Catalog search

6

Figure 9: I/O device configuration

Network configuration

The hardware setup is now complete. The next step is to connect the devices through a network and
establish a communication link.

Step 9

First, enter the network view [20], by pressing the network tab at the top of the topology window, see
Figure 9. When in network view, see Figure 10, notice how the toolbar in the top section of the view
has changed. It is possible to switch between ”Network mode” and ”Connection mode” [21] displayed
at the top left corner of the view. In network mode, the devices are connected and in the connection
mode, the protocol of these connections can be edited.

The available connection ports are displayed by green and pink boxes. The green boxes are PROFINET
interfaces, the one’s that will be used in this guide. The pink is a PROFIBUS connection [22]. This
connection can be used when pairing multiple CPU:s, but as this setup only includes one, it will not
be explored further.

Step 10

The CPU, seen in Figure 10, has two PROFINET interfaces, one of which will be assigned to the I/O
device. Select network mode. Press and hold the cursor over the rightmost PROFINET interface [23]
and drag the cursor to the PROFINET interface of the I/O device [24]. The I/O device has now been
assigned to the PLC CPU.

The line is at this point dashed because of the selection box [25], displayed in the top right corner of
the view. This has no major effect and can be undone by deleting the box.

This connection can be seen in Figure 11, as the green Ethernet cable running from the CPU to
the IO device [26].

7

Figure 10: Virtual I/O-device connection

Figure 11: Physical I/O-device connection

Step 11

To connect the PC-station to the CPU, an Ethernet cable is needed. The physical setup is similar to
that of the connection between the CPU and the I/O device. In Figure 12, the setup can be seen.
Notice that the connection is made to the second PROFINET interface [27], see Figure 13. A switch
us used as a connection hub between the devices, this has no major effect and the connection can be
made directly.

8

Figure 12: Physical setup

Figure 13: PROFINET interface connections

Step 12

Before the PLC is compiled, turn it on. The power switch is located under the lid of the power supply
module, see Figure 14. Once the CPU turns on, wait until the LED lights on the top of the device has
stopped blinking and the screen says run [28].

9

Figure 14: Powering on the PLC

Step 13

In the project tree, right click on the CPU, named as PLC 1. Select ”Download to device” followed
by ”Hardware and software (only changes)” [29], see Figure 15.

Figure 15: Download to device

10

Download to device

Step 14

In the extended download to device window that follows, select the PG/PC interface as ”PN/IE”,
next select the ”Broadcom NetXtreme 57xx Gigabit Controller” and finally ”Try all interfaces” [30],
see Figure 16. Press ”Start search” [31].

What these options do is to check the communication through the network card on the computer,
through the Ethernet interface and to try all the interfaces of the CPU. The connection data can be
seen above. Alternatively the IP-address of the CPU can be entered in the ”Compatible devices in
target subnet” and ”Access address” seen in the first line [32], see Figure 16. The CPU software will
then only search this specific address for the CPU.

Step 15

If the setup has been done correctly the CPU should become visible as a target. To be sure that the
connection is successful press the Flash LED button [33]. At the top of the CPU, above the display,
the LED lights should now be blinking. Next press load [34].

If a prompt is shown that requires an extra IP-address, this means the current one is not in the
same subnet as the CPU. Adding a new IP-address as TIA portal suggests, might result in difficulties
later in the project, for instance in the addition of an OPC server.

In order to complete the next section the IP-address in Windows might have to be altered. To change
the IP-address in windows, enter the Control Panel, ”Network and Sharing Center” and ”Change
adapter settings”. Right click on ”Local Area Connection”, this represents the Broadcom NetXtreme
57xx Gigabit Controller, and choose ”Properties”. Next turn off the Internet Protocol Version 6,
select Internet Protocol Version 4 and choose properties. Now change the IP-address so that the sub-
nets match, that is all the numbers match except for the last. In this guide the IP-address of the
PROFINET interface 2 is set to the standard ”192.168.1.1” and Windows IP-address to ”192.168.1.5”.
See Figure ??. In order for TIA portal to properly register the change of IP-address a computer reboot
may be needed.

Next press load [35] and finish [36].

11

Figure 16: Extended download to device

Figure 17: Loading to device

The PLC is now configured to the PC-station. Additional equipment can be connected to the I/O
device and programmed by ladder code in TIA portal.

12

E

Tutorial: Setting Up an OPC
Server

125

Setting Up an OPC Server
May 2015

Introduction

An OPC server is going to be added to the already created PLC configuration, described in the guide
”Setting up a project in TIA portal”. The server will be running through TIA portal and on Station
Configurator Editor. The Station Configurator Editor will pose as the virtual representation of the
OPC server and the IE-network card.

Guide

TIA portal setup

Step 1

Select ”Add a new device” in the ”Project tree” [1], see Figure 1. Select the ”PC systems” tag [2] and
choose the ”PC general” [3], click ”OK” [4].

Figure 1: Add PC station

Step 2

In device view of the PC station, add a IE general network card by either searching ”IE general” in the
search bar of the catalogue menu or by browsing ”Communication modules”, ”PROFINET/Ethernet”
and finally ”IE general” [5]. Next add an OPC server, either by searching ”OPC server” or by brows-
ing ”User applications” and ”OPC sever” [6]. Drag and drop IE general, followed by the OPC server
according to Figure 2.

Right click the IE general network card and select the ”PROFINET interface (X1)” section, see Figure
3. Next, enter ”Ethernet addresses” and choose the same IP address as Windows. Next turn off the
Internet Protocol Version 6, this step is described below.

To change or view the IP-address in Windows, enter the Control Panel, ”Network and Sharing Center”
and ”Change adapter settings”. Right click on ”Local Area Connection”, this represents the Broadcom
NetXtreme 57xx Gigabit Controller, and choose ”Properties”. ”. Next turn off the Internet Protocol
Version 6 by unchecking the box in the properties menu. Select Internet Protocol Version 4 and choose

1

properties. Now change the IP-address so that it corresponds to the IE-network card in TIA portal.
The IP-address ”192.168.1.5” will be used in this guide. Note that the subnet mask also needs to be
the same for all devices.

Figure 2: PC station configuration

Figure 3: IP-adress configuration

Step 3

Enter the network view [7], see Figure 3 followed by ”Connection mode” [8], this is done by pressing
the button in the top left corner of the network view. Press the down arrow in the drop down menu
[9] and choose the ”S7-protocol” [10], as seen in Figure 4.

2

Figure 4: S7-protocol connection

Step 4

Connect the CPU and the PC station by clicking the PROFINET interface on the IE general network
card, followed by dragging a connection line to the PLC:s PROFINET interface 2. Move the PC
station to the same level as the PLC. The setup should now appear as in Figure 5.

Figure 5: Final setup

If the Profinet interface connections intersects the setup is likely to fail. To solve this, check the IP-
adress for each Profinet interface to ensure the I/O device and the PC station are on different subnets.
If the connections still intersects, remove the I/O-device and the PC station from the configuration
along with the connections. Then add the PC station to the configuration first and the I/O-device
second.

3

Station Configuration Editor

Step 5

Open the Station Configurator Editor, see Figure 6. This may take a long time. If the Station Manager
crashes or fails to load configuration, restart the computer to resolve these issues.

Figure 6: Station Configurator Editor start up

In the Station Configurator Editor, click ”Add. . . ” select the IE general in slot one, as this configuration
must correspond to the one in TIA portal in order to be successful and the OPC server in slot 2, see
Figure 7. If prompted, click ”OK”. The setup should now correspond to Figure 7.

Figure 7: Station Configurator Editor

Step 6

Right click on the PC station in the Project tree in TIA portal. Select ”Download to device” and
”Hardware configuration”. In the ”Extended download to device” window that follows, enter the IP
address of the IE general [11], in this guide ”192.168.1.5”. Click load and finish.

4

Figure 8: Extended download to device window

If faced with an error report according to Figure 9, there are irregularities in the setup of the OPC
server in TIA portal and the one in Station Configurator Editor. The most common differences are
either different firmware versions, or setup index orders. To check the firmware version of the com-
ponents in TIA portal click on the PC station and enter device view. Right click on a device in the
station and choose ”Properties” [12], see Figure 10. In properties, select ”General” [13] and ”Catalog
information” [14]. The error report should in this case state the firmware version of the Station Con-
figurator Editor devices.

If the devices firmware does not match, right click the device in the device view and select ”Change
device” [15], see Figure 10. In the pop-up window simply enter a new device [16] and firmware [17],
see Figure 11.

Figure 9: Error report

5

Figure 10: Accessing firmware version

Figure 11: Changing the firmware version

6

F

Tutorial: OPC Tunneling With
Matrikon OPC

133

OPC Tunneling With MatrikonOPC
May 2015

Introduction

This is a step by step guide to explain how to establish the OPC tunnel used in the project. The
software MatrikonOPC Tunneller will be used.

Guide

Step 1

Download and install the Matrikon OPC Tunneller on both of the devices in the configuration.

Step 2

On both computers, add the Matrikon OPC Tunneller to the Windows firewall exception list, see
Figure 1. Alternatively the firewall can be turned off. If additional antivirus software is installed on
the computer these may need a similar configuration as well.

Figure 1: Windows firewall

Step 3

On the server-side computer, navigate to the installation folder, in this guide C:\”Program Files
(x86)”\Matrikon\OPC\Tunneller\”Server-Side Gateway”, and select “SSKeyManager”. Right click
on the application and select, “Run as administrator” [1], see Figure 2. Ensure that the configuration
corresponds to that of Figure 2.

1

Figure 2: Server side gateway configuration

Step 4

On both computers, enter the Client-Side Gateway, right click and press “Run as administrator”. In
the window that opens, press the computer icon on the top left of the screen [2], see Figure 3. This
will let you configure the connection between the Matrikon client and server.

Figure 3: Client side gateway configuration

2

Step 5

On both computers, when the “Add Remote Tunneller Connection” window opens, confirm that the
port number of the tunnel [3] is the same. Press “OK” [4], see Figure 4. It is recommended to use the
standard port, in case this has to be configured, be sure no other software uses the port assigned.

Figure 4: Port confirmation

If the configuration has been done correctly the client side of the tunnel should be as in Figure 5.
The server computer is in this configuration named FFI-PC-02, its servers can be seen below [5]. The
servers displayed above is simply simulations that the MatrikonOPC Tunneller can run in order to
confirm the functionality of a client.

Figure 5: Available OPC servers

3

Step 6

To complete the setup to the client in Process Simulate, open a project. In the top toolbar, enter
“Tools” [6] followed by “Options” [7], see Figure 6.

Figure 6: Process Simulate options

Step 7

Select PLC in the tabs on top of the Options window [8], Confirm “PLC” [9] and “External Connection,
followed by “Connection Settings” [10], see Figure 7.

Figure 7: External PLC connection

4

Step 8

In the next window, see Figure 8, press “Add. . . ” [11] in the lower right corner, and “OPC server”, in
the drop down menu that follows. Press the “. . . ” button [12] and choose the “FFI-PC-02:OPC.SimaticNET.1”
[13]. Select the Connections icon in the right display [14] and press “OK” [15]. Check that the signal
mapping setting is Signal names [16] and confirm with “OK”.

Figure 8: Choosing OPC server

Step 9

Confirm the OPC server with “OK”. The client is now connected to the server, see Figure 9.

Figure 9: Added OPC server

5

Signal mapping

The signals of the virtual environment are controlled by variables in the OPC server. As seen in Figure
10 each variable corresponds to a variable with the same name on the OPC server.

Figure 10: Signals of the virtual environment

If the variables used in the virtual environment doesn’t correspond to the ones in the OPC server an
error message will be displayed when running the cell, see Figure 11. In order to solve this ensure that
all the variables missing are declared in TIA portal.

Figure 11: Error message

6

The final result will be an external mapping of all signals, a selection of which can be seen in Figure
12

Figure 12: External signal mapping

7

G

Tutorial: Validating an OPC
Server with OPC Scout

142

Validating an OPC Server with OPC Scout
May 2015

Introduction

In order to confirm the Station Configurator Editor is running properly and the OPC server is online,
OPC scout was used.

Guide

Step 1

Open Station Configurator Editor and add the OPC server and the IE general, see Figure 1. Ensure
that both devices are still running when the TIA portal hardware configuration has been downloaded.
It is normal for the devices to shut down during this procedure, so check the status of each device after
the download has finished.

Figure 1: Station Configurator Editor

Step 2

When the devices have been loaded into Station Configurator Editor, open OPC scout, see Figure 2.

1

Figure 2: OPC scout

Step 3

To ensure that the server is running and detectable, select the OPC.SimaticNET in the Local COM
server tree [1], see Figure 3. The detection process may take some time.

Figure 3: OPC.SimaticNET

Step 4

If the connection is successful OPC scout will read ”The server is running normally” according to
Figure 4.

2

Figure 4: Status of OPC server

3

H

Tutorial: Writing Ladder Code in
TIA Portal

147

Writing Ladder Code in TIA Portal
May 2015

Introduction

This tutorial will go into the basics of ladder programming in TIA portal. It will focus on where to
find the different tools used when programming in TIA portal and not go into detail on how to write
actual code.

Guide

Step 1

Start by opening a previous project, if none have been created, follow the ”Setting up a project in TIA
portal”-tutorial in order to create and configure a new one.

Step 2

In the project tree, select ”Main [OB1]”[1], see Figure 1. This will open up the main block of the
ladder program, this is where the code will be written.

Figure 1: Project tree view

1

Adding logic operations

To add logic operations, drag a symbol from the menu above the networks [2] or from the instructions
catalogue [3] to the right, see Figure 2. In the catalogue all available operations can be found.

Figure 2: ”Main block” view

Defining new variables

To add new variables, or tags, select ”show all tags” [4] in the project menu, see Figure 3. To add a
new tag press an empty field in the list [5], a new tag can be defined as an input, output or memory
signal.

Figure 3: ”Show all tags” view

This concludes the basics of how to write ladder code in TIA portal.

2

	Glossary
	Introduction
	Background
	Aims
	Methodology
	Project Overview

	Implementation
	Process Simulate
	PLC
	Project Study
	Hardware
	Communication

	Oculus Rift
	Rendering Graphics to Oculus Rift
	Orientation Control

	Integration

	Discussion
	Future work

	Conclusion
	 Bibliography
	Appendices
	Test Cell
	Oculus Rift - User and Development Guide
	Inventory of Safety Equipment
	Tutorial: Setting Up a Project in TIA Portal
	Tutorial: Setting Up an OPC Server
	Tutorial: OPC Tunneling With Matrikon OPC
	Tutorial: Validating an OPC Server with OPC Scout
	Tutorial: Writing Ladder Code in TIA Portal

