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Dynamic modeling and control strategies for shimmy in aircraft landing gears
Tonghui Zhang
Department of Signals and Systems
Chalmers University of Technology

Abstract
Air traffic is one of the most important means of transportation methods. It is of
importance to make it a safe, efficient, and comfortable experience. Oscillations oc-
curring during landing and taking off at nose landing gear, known as shimmy, may
result in gear fatigue, severe failures, or in extreme case accidents.
Engineers never stop trying to analyze and eliminate it by means of nose landing
gear shimmy control. Currently, a general method to avoid shimmy is to install a
damping component at the torsion link joint as a passive element but still a deeper
understanding of shimmy is essential for the design of controller with more accurate
and quick responding characters (e.g. electrohydraulic actuators). In contrast to
real landing gear tests which are expensive and difficult to perform, a virtual physi-
cal model is more economical and easier for dynamic analysis and controller design.
Modelon AB, as an expert and market leader on model-based-design systems, known
as MBD, has a project on shimmy dynamics and active control. As part of this
project, in this thesis, a physical model is created in Dymola based on existing model
libraries developed by Modelon AB and a control strategy is proposed to annihilate
shimmy oscillation. A traditional math model acts as basics and a model with
MF-Swift model (included in the MF-Tyre/MF-Swift product developed by TASS
International) is constructed as a contrast experiment. After model linearisation,
in Matlab, shimmy controllers are synthesised, such as Linear Quadratic Regula-
tor(LQR), Proportional Integrating Differential(PID) controllers. These controllers
will be compared in closed loop scenarios. The model and controller are verified in
Dymola.
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Notations

symbol Discription
a Slip angle
a1,2,3,... Coefficient of the character equation
c Torsional spring rate
cfα Side force derivative
cmα Moment derivative
e Caster length
ε Error between the reference and the output
f(x, u) Mapping function Rn × Rm → Rn

k Torsional link damping constant
kp Proportional gain
q1,2,...n State design parameters for Bryson rule
r1,2,...m Input design parameters for Bryson rule
s Laplace variable
t Time
te Time at the equilibrium point
t0 Initial time
u Input signal to the system
u Input signal at the equilibrium
u1max,2max,..mimx Input limitations
ũ Input signal of the simplified system
x State vector of the system
x1,2,... Element of the state vector
x States at the equilibrium point
x1max,2max,..nimx States limitations
x̃ States of the simplified system
y Measured outputs
yc Lateral shift of the tyre center
yl Lateral shift of the leading contact point
ỹ Measured outputs of the simplified system
A State matrix of the system
Ã State matrix of the simplified system
B Input matrix of the system
B̃ Input matrix of the simplified system
C Output matrix of the system
C̃ Output matrix of the simplified system
C−1 Inverse transformation of the output matrix
Fx Longitudinal force of the tyre
Fy Lateral force of the tyre
Fz Vertical load force
Iz Vertical inertia
J Cost function
K Feedback gain
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L Lagrange formula
Mx Longitudinal moment
My Lateral moment
Mz Self aligning torque
M1 Spring moment
M2 Damping moment
M3 Toal tyre moment around z-axis
M4 Tead width damping moment
O Controllibility matrix
P Riccati differential equation matrix
Q States weight matrix
R Input weight matrix
Td Derivative time
Ti Integral time
V Taxiing velocity
W Observability matrix
α Slip angle
αg Slip angle limitation of the tyre moment
δ Small variation
δx Small variation of state x
δu Small variation of input u
ε Error between the output and the reference
ε A small variable
ζ Slip angle limitation of the tyre force
κ Tread width moment constant
λ Co-state of Euler Lagrange equation
σ Relaxation length of the tyre
φ Rake angle of the landing gear
ψ Yaw angle
Γ,Θ,Λ,Υ Magic formula coefficients
Ω Torque or force of a tyre
ᵀ Transpose of a matrix or a vector
? Optimal of a variable
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1
Introduction

This report developes a model of shimmy phenomenon on nose landing gear in
Dymola and control algorithm design for it. The thesis is supported by Modelon
AB and will be used for future products in Dymola.

1.1 Background
Shimmy is the self-induced vibration in a frequency range of 10 to 30Hz caused
by the tyre lateral dynamic mechanism and landing gear structure occurring on
both nose and main landing gears. Sometimes it might result in severe failures
even accidents in extreme cases [1]. Shimmy dynamics have been studied for a long
history. In 1925, French engineer, Broulhiet observed that tyre dynamic performance
was an essential factor contributing shimmy which is still of significance in shimmy
analysis and control. Different from Broulhiet’s method, another French engineer
Sensaud de Lavaud concentrated on a rigid tyre model disregarding ground force
effects. In 1950, hardware component like shimmy damper began to be installed
at the torsion link on landing gears but still, not enough understanding of shimmy
was available. In 1951, a program involving shimmy theory, computer aided study,
experimental study and a full scale of testing was started in Wright Air Development
Center. In 1954, Fromm investigated the relationship between lateral forces and
yaw angle or slip. In 1970s, many researches attributed that shimmy is due to
tyre imperfections or abrasion and road surface roughness. By now, gear designers
realized that to fully understand shimmy phenomenon, it was necessary to account
plane flexibility, tyre dynamics, landing gear structure and components together [2].

1.2 Problem Statement
Most existed shimmy explorations are based on mathematical model which are not
enough sufficient to reflect the real performance. Therefore, a thorough landing gear
model together with the hydraulic system is necessary for virtual experiments and
a shimmy control algorithm could be designed based on it.

1.3 Thesis Scope
This thesis includes 3 main tasks

1



1. Introduction

• Creating a 3-D landing gear model including the hydraulic system to expose
shimmy phenomenon.

• Design a control algorithm to eliminate shimmy.

• Building a test rig to compare the open loop and controlled system.

To build a reasonable physical model, a traditional math model is stated as the theo-
retical basement and a complete tyre model developed by TASS International works
as a comparison. In chapter 5, a linear quadratic regulator and a PID controller are
analyzed and compared for a better performance.

1.4 Landing Gear Structure

Landing gear is one of the most critical components laid under the aircraft fuselage
for smooth landing. In reference [3], a 35-year period research shows totally 456 air-
craft accidents related to landing gears ranking number one in all accident factors.
Therefore, optimizing the structure and components of the landing gear is still of
importance. A number of landing gear prototypes are shown in figure 1.1.

Figure 1.1: Schematic overview of different landing gear configurations[1]

For modern civic airplanes, the twined cantilevered style is the most popular struc-
ture for nose landing gear by far. In this thesis, the cantilevered twin-wheel structure
is adjusted with a rake angle.

2



1. Introduction

1.5 Feedback Control
In the field of industrial engineering, a control system is a system consisting of a
range of elements affected by each other dynamically with desired commands to the
system as inputs and specified system responds as outputs. Usually, systems are
defined in two categories: open-loop and closed-loop. The open-loop system is not
contributed by its outputs while in contrast, a closed-loop system or feedback sys-
tem dynamic behaviour is dependent on both desired inputs, known as set points,
and measured outputs [4]. A feedback system block diagram is in the style of figure
1.2.

Figure 1.2: Feedback diagram

There are two types of feedback systems, positive and negative. The positive feed-
back works like an amplifier increasing the effect of the input while the negative
feedback is an error regulator minimizing the difference between the reference sig-
nal and the output. The selection of positive or negative feedback is based on the
requirements and for most stabilization target, usually negative feedback is more
suitable [5].

1.6 Linear Quadratic Regulator
A control target on a linear system with a cost function respect to states and inputs
is called Linear Quadratic problem and a solution to minimize or maximize the cost
function is called Linear Quadratic Regulator. Parameters of the cost function are
selected by engineers depending on the cost of input energy and output accuracy.
The cost function could either use all states as a state feedback control problem or
choose specified states as output optimal control [6]. A description of the algorithm
in detail is included in chapter 5.

1.7 MF-Swift Model
An important factor which affects the shimmy phenomenon is the contact effort be-
tween tyres and road. Traditionally, engineers usually optimize the road condition

3



1. Introduction

so that automobiles have comfortable and safe operating performance. To make
vehicle dynamic properties accurate, TASS International provides a complete chain
of modeling and detailed assessment of tyre-road interaction [7]. In this thesis, the
MF-Swift model with latest implementation of renowned ’Magic Formula’ is used
to present performance of a suitable frequency.
The ’Magic Formula’ is developed by Pacejka to describe tyre dynamic characters.
over the last decades, ’magic formula’ has been applied on a series tyre modeling de-
sign and analysis. Despite there are no particular theoretical physical foundations for
tyre dynamic equations even though they fit a wide range of tyre conditions, ’Magic
Formula’ is widely used for automobile modeling and landing gear tyre modeling
with a general expression as shown in 1.1,

Ω(α) = Γ sin(Λ arctan(Θ(1−Υ)α) + Υ arctan(Θα)) (1.1)

The tyre forces and torques R(α) are calculated with respect to slip angle α, vertical
force Fz and tyre property parameters Θ, Λ, Γ and Υ. The ‘Magic Formula’ has
benefits that it is easy to program and reasonably accurate even though not work
for low speed model [11].
According to [7], MF Swift model is developed based on the MF-Tyre model which
enables fast and robust tyre-road force and moment referred to ‘Magic formula’ for
steady-state and transient tyre behavior simulation. Contact forces Fx ,Fy and mo-
mentsMx, My, Mz are calculated using longitudinal, lateral and turn slip and wheel
inclination angle with vertical angle as input signal.
Different from MF-Tyre model, MF-Swift model is a rigid ring model and it has been
validated to be accurate in the vibration experiments in velocity between 7m/s to
40m/s up to 100Hz. It has 5 operation modes for tyre model in which the Rigid
ring dynamics with initial statics mode is used for shimmy under 100Hz. In this
mode, all contact forces and moments are included together with a turn slip.
Modelon AB has developed an interface library support Deft-Tyre modeling activ-
ities. With this interface, the visualization geometry and operation mode could be
selected. In this thesis, the interface model with one frame connected to a revolute
joint is simple enough to get desired output.

1.8 Tools
Modelica is an object oriented programing language for modeling of multi-domain
of complex system. It has two main characters which are different from general
programing languages such as Java.

• Modelica is a modeling language which means it is not compatible in the usual
sense. Before exercised by a simulation engine, the modelica block should be
translated into objects in advanced.

• Even though statements and algorithmic components are contained in model-
ica, the equation is in the highest priority content.

Modelica is supported by software Dymola used in this thesis and the analysis and
controlling design is finished with Matlab.

4



2
Theory

In literature [8], Broulhiet described that the wheel shimmy phenomenon results
from the forward kinetic energy which changes due to taxiing velocity V and self-
excitation energy. When an airplane is taxiing, small disturbance laterally outside
will trigger this oscillation. Usually, this oscillation will grow up from small ampli-
tude vibration to a magnitude saturated oscillation. Currently, standard method
to avoid shimmy is to use different type of dampers on the Nose Landing Gear
even though the dynamic of shimmy is less known. In this chapter, a theoretical
description will clearly explain how shimmy is generated and the simulation result
of it.

2.1 Mathematical Model
For standard landing gear model, it is composed of the main structure including a
torsion link which is essential for shimmy and a twin wheel with rigid lateral char-
acters. A classical nonlinear landing gear model is proposed by Gerhard Somieski
in [9]. Figure 2.1 is this classical simple landing gear configuration to be analyzed.

Figure 2.1: Top view of shimmy dynamics model[9]

In figure 2.1, the wheel is mounted on a trailing arm which could rotate around
a vertical rotation axis. A linear revolute spring and a damper are added to the

5



2. Theory

system to simulate the torsion link with the consideration of viscous friction in the
oleo strut. The whole structure is mounted under the fuselage of the airplane which
is moving with a velocity V .
All necessary parameters for the math model are shown in table 2.1

Table 2.1: Parameters for shimmy

Parameter Value Unit
Half contact length a 0.1 m
Caster length e 0.1 0.1
Moment of Inertia Iz 1 kgm2

Vertical force Fz 9000 N
Torsional spring rate c -10000 Nm
Side force derivative cfα 20 1/rad
Moment derivative cmα -2 m/rad
Torsional damping constant k 0 to -50 Nm/rad/s
Tread width moment constant κ -270 Nm2/rad
Relaxation length σ 0.3 m
Limit angle of tyre moment αg 10 degree
Limit angle of tyre force ζ 5 degree

For the whole system, the vertical torque relation could be modeled as a second
order system shown in 2.1,

Izψ̈ = M1 +M2 +M3 +M4 (2.1)

Moments M1 = cψ and M2 = kψ̇ are the torques provided by the torsion link and
the effect of the viscous friction in the bearing of the oil-pneumatic shock absorber.
M3 is a tyre moment composed of its own self-aligning moment and the torque
generated by lateral force Fy. M4 is a tyre damping moment from tyre tread width
depending on the taxiing velocity and yaw angle [10].
As described previously, moment M3 is composed of a self-aligning moment and a
torque generated by lateral force.

M3 = Mz − eFy (2.2)

In the equation above, e is the caster length of the landing gear andMz and Fy could
be calculated using related formulas in literature [11]. The nonlinear character is
described in equation 2.3 and the curve is shown in 2.2

Fy =
{
cfααFz if |α| ≤ ζ
cfααgFzsign(α) if |α| > ζ

(2.3)

Where ζ is a limitation of slip angle and α is the slip angle of the tyre.

6



2. Theory

Figure 2.2: Nonlinear Fy
Fz

vs slip angle[10]

Another component of M3 is the self-aligning torque generated when there is a yaw
angle on the tyre. In the presence of a non-zero slip angle, this torque tends to turn
the wheel to the travelling direction of the landing gear [9]. The value of Mz has a
sinusoid expression with respect to the slip angle in the angle limitation zone while
0 outside. The curve and equation are shown below.

Figure 2.3: Nonlinear Mz

Fz
vs slip angle[10]

Mz =
{
Fz(cmααgπ sin( π

αg
α)) if |α| ≤ ζ

0 if |α| > ζ
(2.4)

M4, known as a tyre damping moment, is linear related to the yaw angle velocity of
tyre,

M4 = κ

V
ψ̇ (2.5)

7



2. Theory

Where κ = −0.15a2cfαFz.
The detailed analysis and discussion of these moments could be found in literature
[9]. the rolling tyre lateral dynamic characters could be described using stretched
string theory with a finite contact length introduced by Von Schlippe in 1941. The
detailed discussion of stretched string theory could be found in reference [11].
To simplify the problem, a massless tyre model with a string of finite contact length
in a circular shape is used to analyze the lateral elastic character. Furthermore, the
equilibrium of forces acting on the circular string is somewhat more complicated.
Pacejka noted that in the expression for the self-aligning torque derived by Von
Schlippe, a corrective factor was introduced, which would not exist if the point of
application for all forces acting on the string had been taken into account correctly
[11]. The tyre-ground contact model is shown in 2.4.

Figure 2.4: Straight tangent tyre model (top view)[1]

The half contact length is a and define yl as the leading contact point lateral shift,
therefore, as what figure 2.4 shows, sliding angle α ≈ yl

σ
where yl is the lateral shift

of the contact point and σ is the relaxation length. Equation 2.6 could describe the
relationship between contact point shift and tyre center lateral shift.

σα̇ + V α = V ψ − aψ̇ − ẏc (2.6)

yc = −eψ could be calculated according to figure2.4 and therefore,

ẏl + V

σ
yl = V ψ + (e− a)ψ̇ (2.7)

The variable yaw angle ψ, yaw angular velocity ψ̇ and leading point lateral shift
yl are selected as state variables to formulate a desired standard state space model

8



2. Theory

with x1 = ψ, x2 = ψ̇ and x3 = yl.

ẋ1 = x2

ẋ2 = c

Iz
x1 + 1

Iz
(k + κ

V
)x2 + Fz

Iz
(cmα

αg
π

sin( π
αg

yl
θ

)− ecfα
yl
θ

)x3

ẋ3 = V x1 + (e− a)x2 −
V

σ
x3

(2.8)

Most control theories consider linear time invariant as objectives and the nonlinear
system should be linearized befor further analysis.

2.2 Jacobian Linearization
For a nonlinear system

˙x(t) = f(x(t), u(t)) (2.9)

Where f is a mapping function Rn × Rm → Rn. The states vector x ∈ Rn is
equilibrium if there is a specified input u ∈ Rm such that f(x, u) = 0. If x(t0) = x
and let u(t) = u for any t > t0, the system sates will never change to other positions.
Define small deviationδx = x(t) − x, δu = u(t) − u, the differential equation could
be expanded using Taylor expansion method neglecting higher terms as followed.

˙x(t) = f(x+ δx, u+ δu)

= f(x, u) + ∂f(x(t), u(t))
∂x x(t)=x,u(t)=u

δx + ∂f(x(t), u(t))
∂u x(t)=x,u(t)=u

δu
(2.10)

∵ ˙x(t) = f(x, u) = 0

∴ δ̇x = ∂f(x(t), u(t))
∂x x(t)=x,u(t)=u

δx + ∂f(x(t), u(t))
∂u x(t)=x,u(t)=u

δu
(2.11)

As long as δx and δu keep small, the differential equation could be considered as
linear time invariant equation,

δ̇x = Aδx +Bδu (2.12)

where A = ∂f(x(t),u(t))
∂x x(t)=x,u(t)=u and B = ∂f(x(t),u(t))

∂u x(t)=x,u(t)=u.
Since the shimmy phenomenon has small variations for all states, the linearized
differential equation has similar dynamic characters to the original system when
(δx, δu) is near to (x, u). Therefore, the linearized state space model at equilibrium
(when y = 0) is shown below.

ẋ1
ẋ2
ẋ3

 =

 0 1 0
c
Iz

1
Iz

(k + κ
V

) Fz
(cmα−ecfα)

σIz

V e− a V
σ


x1
x2
x3

 +

0
1
0

u (2.13)

where u is the actuating torque.

9



2. Theory

2.3 Analysis
The eigen-decomposition for stable analyses is generated as equation 2.14.

λ3 − (a2 + a5)λ2 + (a2a5 − a1 − a3a4)λ+ a1a5 − V a3 = 0 (2.14)

where a1 = c
Iz
, a2 = 1

Iz
(k + κ

V
), a3 = cmα−cfα

σIzFz
, a4 = e− a and a5 = −V

σ

In Matlab, it is possible to find the velocity region where the system is stable to avoid
disturbances. An important factor which could affect the stability is the damping
constant and a comparison of stability of different damping constants with respect
to velocity is described in 2.5

Figure 2.5: Stability velocity zone with different damping constant

Figure 2.5 shows how damping constants affect the stability where 1 indicates stable
and 0 means unstable. It is easy to find the stability character with k = −40 has
a typical curve to describe shimmy with an unstable velocity zone [51 206]. The
eigenvalue curve is shown in 2.6.

Figure 2.6: Eigenvalue curves in a range of velocity

Therefore, theoretically, the landing gear model will have a shimmy response when
the taxiing velocity is between 51m/s and 206m/s.

10



2. Theory

2.4 Simulation
A math model was built in Dymola and tested using the standard parameters with
3 different taxiing velocities (50m/s, 100m/s, 250m/s) corresponding to low, mid,
high speed. The output is yaw angle and the disturbance is a pulse lateral shift of
tyre.

Figure 2.7: Yaw angle shimmy responds to a pulse disturbance

Figure 2.8: Frequency analysis of shimmy responds

Mostly, shimmy frequency is usually in the range of 10 ∼ 30Hz while for an ideal
math model, it could be higher or lower. In Chapter 4, there will be a comparison
of different models.
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Method

For most of the experiments on landing gear dynamic test, it is clear and convenient
to analyze simulation results and design control algorithm on a 3D model. Therefore,
creating a physical oriented 3D model in Dymola is a good choice. The libraries of
mechanical and hydraulic components are supported by Modelon AB and MF-Swift
model is supported by TASS International. The parameters are from Airbus manual
and empirical value.

3.1 Mechanical System Modeling
The data on the mechanical structure could be found in the AIRBUS manual. In
Dymola, the system is built with mechanical library and vehicle library which have
more realistic performance. The mechanical diagram with MF-Swift model is shown
in figure3.1

Figure 3.1: Mechanical Structure

The mechanical structure is composed of three main components:

• Oleo pneumatic strut composed of freely rotating upper and lower legs.

13



3. Method

• Torsional link composed of a vertical revolute joint together with spring-
damping component to avoid lower leg’s rotating.

• Shock absorber composed of a vertical prismatic joint together with spring-
damping component to avoid bouncing up when landing.

Different from the math model, the 3D model does not have the caster link but a
rake angle φ instead. Also, the shock absorber will affect the taxiing performance
when there is a yaw angle in the physical model. A flange connector will be used as
the controlled input to the system and two sensors to measure angular velocity and
angle as observed outputs.

3.2 Tyre Modeling
A linear tyre model built by Modelon AB is used for analysis and controller design.
The block is shown in figure 3.2

Figure 3.2: Linear Tyre Model

The tyre model is composed of four blocks:

• Rigid (generate the 3-D animation of the tyre model)

• MultiBodyCF (connect the tyre to other components)

• Linear (calculate torques and forces generated by tyres)

• Generic (read forces from the contact of tyre and ground)

14



3. Method

To make it corresponding to the math model, a nonlinear self-Aligning torque equa-
tion is added in ’linear’ block and for disturbance simulation, two variables are
added as disturbance sliding angle and lateral shift. The MF-Swift model is used as
a comparison experiment with a complete tyre dynamic model.

3.3 Hydraulic System Modeling
The hydraulic system called ’Green system’ is composed of three units:

• Hydraulic supplying unit

• Retracting unit

• Steering unit

Since no exact data or geometry is available in this thesis, a component ’Translation
to Rotation’ is used to transform the linear cylinder force to a rotational torque and
two revolute joints to simulate the extension-retraction movement and the steering
movement. Figure 3.3 and 3.4 are the block diagrams of supplying unit and retract-
ing unit, the steering unit has a similar structure to the retracting unit.

Figure 3.3: Hydraulic supplying unit

As shown in figure 3.3, The hydraulic power is supplied by an ideal constant pump
driven by the engine with a constant angular velocity and an ideal tank as a reser-
voir. A relief valve is installed at the outlet of the pump as a protecting valve and
another relief valve to reduce fluids when the system pressure is higher than a stan-
dard level. The accumulator is used to reduce fluid fluctuation. A check valve makes
the retraction acts in priority compared with than steering action.

15
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Figure 3.4: Hydraulic supplying unit

The retracting unit is a valve-controlled cylinder system composed of a direction
control valve and a differential cylinder in figure 3.4. Two orifices are installed at
the inlet and outlet of the cylinder to make the flow to the cylinder at a suitable flow
rate and pressure. To make the calculation simpler while protecting the cylinder,
two pressure sensors measure the pressure inside and use the feedback signal and
input signal to control valve spool position.

3.4 Test Rig Modeling
To test the integrated model, an ideal environment should be built in Dymola. In
this thesis, four degrees of freedom are allowed to simulate a taxiing movement:

• Taxiing as a prismatic movement in x axis

• Lateral shift in y axis

• Vertical movement in z axis

• Steering movement around the landing gear axis

A ground component ’flat’ is included to give ideal tyre ground contact and another
revolute joint with respect to y axis to model the retraction joint. The disturbance
used in the experiment is an impulse signal to tyre lateral shift or slip angle. Since
the four degrees of freedom belong to the airplane body, a body component is con-
nected to the landing gear with a huge mass and inertia. The whole experiment
diagram is shown in figure 3.5

16



3. Method

Figure 3.5: Test rig

3.5 Parametrization
In this thesis, the parametrization is confidential information so that there will be
no exact value for the parameters used except for the public ones. Some of the
confidential parameters such as torsion link spring-damping constants are set to
experienced value so that the simulation result will have more general performance.
The linear tyre model are modified according to the math model but impossible to
arrange parameters of the MF-Swift model because of the limited access to it. A
suitable set of parameters is selected after a large amount of trials and the whole
system with Dymola tyre model is analyzed in next chapter.
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4
System Analysis

4.1 Simulation
Since the MF-Swift model has been validated for vibrations in the velocity range
between 7m/s to 40m/s by TASS International [7]. Only the phenomenon when V
equals to the real taxiing velocity is simulated in this thesis and according to the
manual, the integration step should be located between 10−4 and 10−6. To make a
comparison, the parameters used in the model with Modelon’s tyres should be set
similar as much as possible to MF-Swift model. The comparison is shown in figure
4.1 and 4.2.

Figure 4.1: MF-Swift model simulation
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4. System Analysis

Figure 4.2: Linear tyre simulation

The MF-Swift model uses a rigid contact method to generate shimmy phenomenon
and therefore, the first 2s is used to reach an equilibrium. The output has an
amplitude of 6 degrees with 14Hz frequency corresponding to the normal shimmy.
The Modelon’s tyre model is parametrized with theoretical values and tested at
the same testing velocity, the amplitude is about 15 degrees and the frequency is
24Hz. The result comparison shows that for the modified linear tyre model, it has
correct shimmy features for analysis and to make a full velocity range analysis, the
linear model is simulated in low(V = 20m/s), medium(V = 67m/s) and high(V =
300m/s). The shimmy curves on different velocities are shown in figure 4.3.

Figure 4.3: Complete Simulation result
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4.2 System Analysis
The landing gear system is always a nonlinear system and to design a controller,
a linear analysis including stability, controllability and observability is necessary
to be taken. In Dymola, there is a Modelica LinearSystem2 library for automatic
linear analysis. To have a controller for general operation, taxiing velocity and shift
disturbance are considered as uncontrollable inputs and a torque applied on the
torsion link joint is the controlled signal. The system is linearized at 15s when all
states are steady and all inputs are 0. One limitation is that the servo valve does
not have explicit transfer function and it will not be included in the linear analysis.

4.2.1 Stability
For a general system

˙x(t) = f(x(t), t) (4.1)

where x(t0) = x0, x(t) ∈ Rn, f is a continuous mapping function and f(x, te) is an
equilibrium.
For nonlinear system, the system is said to be lyapunuov stable if for every ε ≤ 0,
there exists a δ ≤ 0 such that if ||x(t0)−x|| ≤ δ, then for every t ≥ t0, ||x(t)−x|| ≤ ε
[12]. If when t → ∞, lim

t→∞
||x(t) − x|| = 0, the system is asymptotic stable. Same

as the theoretical model, for controller design, the system should be linearized as
15s without any inputs when all states become stable. The stability is checked by
’zero-pole’ graph.

Figure 4.4: Zeros and poles of system

For the linearized system, there are some poles have very small positive real parts(about
10−7) compared with other poles which means the system could be considered Lya-
punuov stable. Therefore, the control target is to make the system asymptotic
stable.
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4.2.2 Controllability and Observability
Controllability, or reachability in another word, is the ability that if a specific input
siganl could drive all its states to any position in its reachable configuration space.
For a linear time invariant model shown in simultaneous equations 4.2.

˙x(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(4.2)

The controllability could be checked by a reachability matrix:
O =

[
B AB A2B · · · An−1B

]
(4.3)

If R is full rank, then the system is controllable [14].
Observability is the ability that if all states of the system could be decided by specific
inputs and its output response. The observability is verified by the observability
matrix:

W =



C
CA
C2A
...

Cn−1A]

 (4.4)

In Dymola, the controllability and observability are invested controllable but not
observable using linear analysis function. In this condition, another controllability
called output controllability is introduced for output control. Output controllability
describes if a specific sequence of inputs could govern all outputs to any reachable
states. Then the system is necessary to be simplified.

4.3 Simplification
To apply output control strategy, the outputs should be transferred to states without
additional effects on the system. Then new states vector ˜x(t) = y(t) = Cx(t).
Therefore, the simplified model is reformulated as 4.5

˙̃
x(t) = Ã ˜x(t) + B̃ ˜u(t)

˜y(t) = ˜x(t)
(4.5)

where Ã = CAC−1, B̃ = CB. For the reason that C is a column vector, it is
impossible to invert C directly and the operation pseudo-inverse is applied. The
original and simplified systems are compared in the bode diagram shown in figure 4.5.
Both the simplified system and the original system have similar dynamic characters
in the frequency domain. This bode graph illustrates that

• The reformulation does not change the stability of system (both magnitude
margin and phase margin are positive).

• The original system has a peak at high frequency domain while the simplified
system does not have. But since the shimmy frequency is between 0 to 100Hz
which is much lower than the peak frquency, this difference will not affect the
shimmy dynamics.
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Figure 4.5: Bode diagram
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Controller Design

The control target is to make the system asymptotic stable. A possible advanced
method is to use model predictive control which is widely accepted by modern
control systems. It calculates the first optimized controlled input depending on a
finite horizontal window of set points with known outputs and estimated outputs
literately. The main benefit is that current state is optimized by taking limit future
states into account [13]. For the model used in this thesis, MPC is not a suitable
method because there is no sufficient method to update the system state space model
at every sampling interval. Another control algorithm is infinite LQR which could
minimize a cost function related to states offset and input energy. In this chapter, a
Linear quadratic regulator is designed and a PID is applied as a contrast experiment.

5.1 PID Control

PID control is a control algorithm that minimize the error ε(t) = r(t)− y(t) where
r(t) is the reference or set-points and y(t) is the measured output. Usually, the
controller is composed of the proportional, integral and differential processes while
some of these factor could be 0. The control algorithm is shown below.

u = kp(ε(t) + 1
Ti

∫ t

0
ε(t)dt+ Td

dε(t)
dt

) (5.1)

The PID control strategy could be described in detail as followed:

• Proportional action controls the current error by a proportional gain kp. It de-
creases steady error but it is impossible to eliminate it because the controlled
output is proportional to the offset between set points and measured outputs.
Meanwhile a very high proportional gain makes system unstable while in con-
trast, smaller proportional gain does not have enough control effects.

• Integral action depends on an integral time constant Ti and the accumulation
of past error. It is possible to remove steady offset but as a drawback, it will
generate overshoots at the same time.

• Differential action works by minimizing the error derivative with a derivative
time constant Td. It enhances the system stability, reduces overshoots and
improves transient performance.
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Figure 5.1: Yaw angle using PI, PD, PID controllers

In Matlab, the control toolbox could automatically tune the parameters. PI, PD
and PID controlled responses are shown in figure 5.1.
The PI controller cannot reduce shimmy while PD and PID controller are effective
to remove shimmy with similar responses. The setting times of them are all less
than 0.1s and PID has better performance. In figure 5.2, the bode graph shows that
the PID controller amplifies the magnitude of the error to enhance the regulating
effects. But meanwhile, it generates a disturbance in high frequency. Since low
frequency disturbances could be removed together with shimmy by the controller, a
compensator is activated to remove high frequency disturbance. It is clear that the
PID controller generates about 90-degree offset after about 200rad/s in phase graph
which is suitable for a first order low pass filter with a cut-off frequency higher than
200Hz. With the transient behavior of the low pass filter considered, the low pass
filter is formulated as 5.2

C = 1
1 + 1

400s
(5.2)

Figure 5.2: Bode graph of uncontrolled system, PID controlled systtem and PID
controlled system with low-pass filter
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5.2 LQR Design
The LQR process refers to [14]. For a given controllable and observable linear
system:

˙x(t) = Ax(t) +Bu(t) (5.3)

A cost function
J =

∫ ∞
0

x(t)ᵀQx(t) + u(t)ᵀRu(t)dt (5.4)

is formulated for an optimal controller design. Q and R are weight matrices designed
by engineers. They should fulfil the requirements that Q is positive definite or
positive semi-definite symmetry matrix and R is positive definite symmetry matrix.
The selection of Q and R depends on the exact requirements for systems. The
control target is to minimize J over an infinite window and choose the closed-loop
poles accordingly. Formally, J∗ = minu(t)J subjects to the system dynamics and
boundary conditions with the input u(t).
To solve this optimal problem, an Lagrange fomula is formulated as equation 5.5

L = xᵀQx+ uᵀu+ λ(Ax+Bu− ẋ) (5.5)

where x refers to x(t), u refers to u(t) and λ is the Lagrange variable or co-state.
The Eular-Lagrange equations are expressed according to the rule ∂L

∂?
− d

dt
∂L
∂?̇

= 0
where ? means optimal.

∂L

∂u
− d

dt

∂L

∂u̇
= 0→ u? = −R−1Bᵀλ

∂L

∂λ
− d

dt

∂L

∂λ̇
= 0→ ẋ = Ax−BR−1Bᵀλ

∂L

∂x
− d

dt

∂L

∂ẋ
= 0→ λ̇ = −Qx− Aᵀλ

(5.6)

In matrix form, [
ẋ

λ̇

]
=

[
A −BR−1Bᵀ

−Q Aᵀ

] [
x
λ

]
(5.7)

and
u? = R−1Bᵀλ (5.8)

Assume λ? = P (t)x(t) where P is a positive symmetric matrix.
Then

λ? = Ṗ x+ Pẋ = −Qx− AᵀPx (5.9)

Rearrange equations and apply equation 5.6 to equation 5.10

Ṗ + PA− PBR−1BᵀP + AᵀP +Q = 0 (5.10)

For an infinite time steady situation, Ṗ = 0, then Control Algebraic Riccati Equa-
tion(CARE) is introduced as equation 5.11.

PA− PBR−1BᵀP + AᵀP +Q = 0 (5.11)
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The optimal controlled input is

u? = −Kx = −R−1BᵀPx (5.12)

For controller design, it is engineers’ task to select suitable state weight matrix Q
and input weight matrix R. Generally, there is no clear requirements for shimmy
control but still, the controller is constrained by the actuator. Here, ’Bryson rule’
is used for Q and R selection [15]. In Bryson rule,

Q =


q1

x2
1max

q2
x2

2max . . .
qn

x2
nmax

 (5.13)

R =


r1

u2
1max

r2
u2

2max . . .
rm

u2
mmax

 (5.14)

The ximax and ujmax are the boundary limitations of the inputs and outputs while
q1,2,...n and r1,2,...m are design parameters for engineers. In this thesis, Q is designed
as identical matrix with different ratio from 1 to 105. Without controlled input
constraint, R keeps as a constant 1. The simulation result shown in figure 5.3
expresses that from qi = 1000, the controller could stabilize the yaw angle and yaw
angle velocity and the offset keeps at a low level when qi = 105.

Figure 5.3: Simulation results with different Q

5.3 Controller Analysis
In this section, the dynamic character of the closed loop system with different con-
trollers and the open loop system are discussed. Figure 5.4 shows the controlled
angle and torque of PID controlled system and LQR controlled system.
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Figure 5.4: PID and LQR simulation comparison

For output analysis, PID controller designed here has better fast response character
and it minimizes the amplitude more sufficiently with smaller overshoots. Based
on the controlled input torque, PID needs larger torque as controlled input which
will increase the size and weight of the actuator. Therefore, for aircraft production,
it is better to apply LQR control algorithm to make it easily to fulfil the geome-
try requirements. Figure 5.5 shows the dynamic comparison of open-loop and two
closed-loop systems.

Figure 5.5: Bode graph of Open-loop, LQR controlled and PID controlled system

The bode graph both make the system stable but the reason is different.

• LQR controller minimizes the peak of the ordinary system and that increases
its robustness.

• PID controller amplifies DC gain of the system and increases the attenuation
speed which changes the magnitude margin and phase margin to a stable value.
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6
Conclusion and Discussion

6.1 Conclusion
This report covers the whole scope from theoretical modelling to controller design. In
this thesis, a Jacobian linearization method is used for nonlinear system analysis and
a physical model of landing gear is proposed together with its actuating hydraulic
system in Dymola. The existing tyre is optimized to generate a reasonable and
suitable shimmy for aircraft taxiing dynamic analysis. An linear quadratic regulator
is modified by Bryson rule successfully for shimmy control and a PID controller acts
as a comparison experiment. The system analysis simplification progress could be
used for controller design of the systems without all states observable.

6.2 Limitations
This thesis has the limitations and defects listed as below

• The control algorithm has to be applied by an extra actuator because it is
impossible to generate the servo valve transfer function.

• The MF-Swift model is not fully accessible in this thesis which means not all
parameters could be modified for Modelon’s tyre component.

• There is no very sufficient method to find a steady state in Dymola except for
waiting for enough time. There will be small deviations between ideal steady
states and the states found.

• The test rig only simulates the airplane as a mass point with an inertia and
only longitudinal, lateral, vertical movements and yaw rotation are allowed.
So it still needs to be perfected.

6.3 Future Work
The landing gear model describing shimmy characters and control is able to eliminate
shimmy, but still, further work listed below should be done.

• The shock absorber used in the system is a simple spring damping component
but the real ones used on airplanes have more complicated dynamic char-
acters. A complicated shock absorber model is necessary for more realistic
performance.
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6. Conclusion and Discussion

• Due to the limited access to tyre data and landing gear design draft, some
parts of the model still need to be re-built in detail.

• An airplane body is still necessary in landing gear operation tests for better
shimmy analysis and research.
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