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Abstract

Electromagnetic compatibility is an ever growing field due to the increasing integration and

reliance on electronics and wireless communication. Today, almost no band in the frequency

spectrum is unoccupied and there is a need to measure the characteristics of the spectrum in the

real world to be able to specify, design and test new electrical systems in a relevant way.

In this project we explore the usage of software defined radio as an inexpensive mobile logging

electromagnetic spectrum analyzer and its application against unintentional and deliberate

electromagnetic interference in a wide frequency band from DC to 6 GHz. The deployed system is

based on a universal software radio peripheral from Ettus Research and a small general purpose

computer with wireless transmission of spectrum data over WAN and battery backup for complete,

stand alone, operation.
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1 Introduction

1.1 Background

Software defined radio has created an opportunity to rapidly develop and deploy reconfigurable

measurement systems for engineers. Instead of having a few expensive systems that has to be

shared between multiple engineers in an organization each engineer can have a universal software

radio peripheral and reconfigure the system as needed. These tools can include comb generators,

spectrum analyzers, digital radio simulators and more.

Due to the modular nature of the SDR stack, the tools can be upgraded with new RF front ends as

they develop with minimal changes in software.

In automotive EMC testing, these tools are getting more and more interesting as the need for field

testing increases with harsher regulations and increasing integration of electronics in the vehicle

and its surroundings.

1.2 Purpose

The purpose of the project is to design and implement a reasonably accurate inexpensive mobile

logging spectrum analyzer with software defined radio for use in EMC testing and generate graphs

and maps for data analysis. The system should have the following features:

1.2.1 Frequency range

The system should be able to handle arbitrarily wide spectrums from DC to 6 GHz.

1.2.2 Logging over time

Logging electromagnetic spectra over time will, for example, allow the engineer to measure

changes over the course of a day to compare the signal power when societal activities change such

as people being at work, or using less electronics during night.

1.2.3 Logging over space

Log and analyze how the signal power changes in different environments and ranges from external

signal sources. This can be used to, for example, specify reception testing cases in the development

of radio receivers.
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1.3 Limitations

The project is limited to analyzing and logging static broadcasts and other signals that are present

during an extended period of time.

1.4 Definitions

• ADC – Analog to Digital Converter

• EMC – Electromagnetic Compatibility

• EMI – Electromagnetic Interference

• FFT – Fast Fourier Transform

• GPS – Global Positioning System

• RF – Radio Frequency

• RX - Receive

• IF – Intermediate Frequency

• LO – Local Oscillator

• SDR – Software Defined Radio

• TX - Transmit

• USRP – Universal Software Radio Peripheral
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2 Electromagnetic compatibility

The increasingly prevalent use of electronics in our society has made it necessary to take

precautions to ensure the continued operation of circuits and systems in a shared environment.

Modern electronics, with smaller circuits operating at higher frequencies and with tighter

tolerances leading to a higher susceptibility to noise has made electromagnetic compatibility an

important sector in the development of electrical systems.

“Electromagnetic compatibility (EMC) is the ability of an electronic system to (1) function

properly in its intended electromagnetic environment and (2) not be a source of pollution to

that electromagnetic environment“[1]

EMC is a heavily regulated field and products placed on the market or taken in service must be

certified to comply with current limitations on electromagnetic susceptibility and emission. In the

European Union, EMC is currently regulated under Directive 2014/30/EU (EMC Directive).

The tools used to measure electromagnetic fields are generally expensive and not suitable for non-

attended use or high volume field measurements. To solve this problem, engineers are looking into

using inexpensive reconfigurable software defined radios to create measuring systems that can be

used and deployed in environments otherwise limited. The deployment of such systems would

increase the amount of real world data on electromagnetic radiation and could help with the

objectification of new standards and emission requirements.

2.1 Electromagnetic interference

Electromagnetic interference (EMI) is the disruptive transmission of electromagnetic energy 

between electric components or systems due to radiative and/or conductive coupling. EMI can 

lead to the degradation of performance or even complete failure of components and is therefore 

important to take into consideration when designing electronic systems.

There are numerous of counter measures applied against EMI. Conductive EMI can be mitigated by

proper grounding, filters and/or ferrites, while shielding is used to protect against radiative 

interference. 
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2.2 Automotive EMC

As in most industries, more and more electronics are integrated in automotive solutions as 

technology and governmental regulations advance. Tighter regulations of fuel efficiency has lead to

automakers increasing the use of electronic engine controls to reduce fuel consumption and higher

demand of infotainment systems by customers are both examples of systems that increase the 

emission and susceptibility of electromagnetic radiation. Other sources of EMI in an automotive 

setting include cell phone towers, broadcast signals, RADAR systems and high current electric 

propulsion. Vehicle electronics must be designed for high reliability. Low cost, long development 

times and high volumes mean that EMI has to be considered as early as possible in the design 

process[2].
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2.3 Antennas

The antenna is the main tool used in practical EMC testing. Antennas used in EMC are designed

with high bandwidth as the primary parameter. Gain and voltage standing wave ratio, important in

telecommunication, are of secondary importance. Biconical antennas are example of an antenna

type which is used in EMC testing.

2.3.1 Antenna factor

The goal with EMC testing is to measure the absolute electric field present at the antenna. The

antenna factor is a parameter associated with the antenna used to correlate the voltage level at

the antenna terminals to the electric field and is expressed as

where

AF = antenna factor [m-1]

E = electric field at the antenna [V/m]

V = voltage at antenna terminals [V]

The antenna factor can be derived as a function of the antenna’s gain and is therefore highly

dependent on the frequency of the electric field.[3]

Figure 1: Antenna factor for Schwarzbeck SBA 9113
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3 Software defined radio

Software defined radio (SDR) is an overarching term for communication systems where large parts

are implemented in software digital signal processing instead of hardware components. The

technology has been enabled by the rapid development in analog-to-digital converters and

processing power. SDR has the advantage that a single general purpose radio can be used for

multiple tasks and have the application specific implementation defined in software which is easier

to develop and maintain.

A common SDR system is comprised of a RF front end, an analog-to-digital converter, a bus

interface such as USB and a software stack running on a general purpose computer.

3.1 Hardware

The general concept of the SDR hardware is to translate the voltage signal on the antenna

terminals between the analog and the digital domains. The theoretical implementation would

simply be an analog-to-digital converter (ADC) for receiving and a digital-to-analog converter (DAC)

for transmitting. In reality however, the hardware is limited by a number of parameters such as the

sampling rate of the converters, the bandwidth of the serial bus delivering the data to the

computer and the low input voltage of the signal.

Figure 2: Direct-conversion transceiver block diagram
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Modern telecommunications span the frequencies from a couple of kHz up to several GHz, way

beyond what inexpensive converters handle. To work around this, most SDR hardware use a

variable-frequency oscillator, mixers and filters to tune the signal to a specific baseband. The

drawback of this solution is that the SDR is limited to look at only one, comparatively narrow,

frequency range at the same time. Transceivers with a high frequency range needed in software

defined radio are often based on direct-conversion instead of a superheterodyne design. The

direct-conversion transceiver directly converts the RF signal from and to the DC baseband directly,

skipping the extra step where a superheterodyne transceiver would convert the signal to an

intermediate frequency. Direct-conversion has several advantages in a SDR context. Problems with

image rejection inherent in a superheterodyne design are not present with direct conversion. This

means that the complexity of the analog circuitry is reduced and can more easily be designed for a

large range of frequencies. The main problems with direct-conversion is leakage of the local

oscillator to the DC-bin and phase mismatch between the I and Q path which leads to a faulty

representation of the spectrum[4].

3.1.1 Ettus research B210 USRP

The RF harware used in the project is a B210 USRP from Ettus research is based on the Analog

Devices AD9361 RFIC. The chip is originally designed for use in 3G and 4G base stations[5]. Ettus

distributes drivers which include a USRP Source signal block as an interface between the hardware

and GNU Radio’s flow graph.

Table 1: Parameters for the Ettus research B210

IF bandwidth 56 MHz

RF frequency range 70 MHz to 6 GHz
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3.2 GNU Radio

GNU Radio is an open source software framework for software defined radio development on

general purpose computers. The system is based on the data flow programming paradigm with

individual standard processing blocks which can be used to implement radio transmission and

reception. The signal processing flow graphs can be defined with the included GNU Radio

Companion, a visual environment useful for rapid prototyping, or included as a library in

programming languages such as Python, Ruby or C. Regardless of chosen method of

implementation, the flow graph is run as highly optimized native threads directly on the hardware

and is independent of the performance of the language it self. 

GNU Radio is distributed with a large library of signal processing block which are sufficient to

develop most radio applications and are built on a stable and peer reviewed codebase. The library

is also easily expandable with custom blocks written in Python or C if extra functionality is needed.

3.2.1 Flow graph and blocks

A flow graph is a mathematical directional graph in which data flows between nodes connected by

an ordered set of vertices. In GNU Radio, these nodes are called blocks. The blocks are connected

to each other by different kinds of ports. Blocks with only output ports or only input ports are

called sources and sinks respectively and are often used as an interface between hardware and the

rest of the signal chain or synthesized signals.

 

Figure 3: Simple flow graph in GNU Radio Companion which generates a 440 Hz sine wave and

emits the signal with an audio sink.
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3.2.2 Custom blocks

To enable the expansion of GNU Radio functionality the system is shipped with an API to use 

general purpose programming languages such as Python to define custom blocks. In Python the 

blocks are constructed as a single class extending one of GNU Radio’s block types. The block type is

needed for the scheduler to know how the number of consumed and emitted samples relate to 

each other.

• Synchronous (1:1) – . The block emit exactly one item for each consumed item.

• Decimation (N:1) – The block consumes a fixed number of items for each emitted item. 

• Interpolation (1:N) – The block outputs a fixed number of items for each consumed item. 

• General/Basic (M:M) – No relation between input and output.

To define a Synchronous block that multiplies the consumed item with a constant value, one could 
write

class multiply_py_ff(gr.sync_block):

    """ 

    This block multiplies incoming items with a constant multiple

    """

The class constructor defines the input and output signature of the block as well as handling the 

definition of parameters. In this case, the block has two 32-bit float ports, one for input and one 

for output and a parameter for the multiplier.

    def __init__(self, multiple):

        gr.sync_block.__init__(self,

            name = "multiply_py_ff",

            in_sig = [numpy.float32],

            out_sig = [numpy.float32])

        self.multiple = multiple
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Lastly a work function is defined, this is the function which GNU Radio calls when a prepending 

block has items for the block to consume or if a succeeding block need the block to emit items. The

input_items parameter is a reference to a multidimensional list containing a number of items to 

be consumed by the block grouped by input port. The output_items parameter is a reference to 

the list where the emitted items should be placed. The body of the function handle the signal 

processing, in this case a simple multiplication between the consumed item and the multiplier. 

Lastly the function is expected to return the number of items consumed to tell the scheduler how 

much data has been processed this function call.

    def work(self, input_items, output_items):

        in0 = input_items[0]

        out = output_items[0]

        out[:] = in0*self.multiple

        return len(output_items[0])

Custom blocks can also be used to wrap flow graphs in a single block, this is called a hierarchical 

block[6].
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3.2.3  Stream tags and message passing

While the main data stream is great for ensuring that samples and bits are processed correctly it 

has a limited capacity to send control and meta data. In addition to the main data stream GNU 

Radio therefore has implemented two mechanisms to send messages and tags between blocks.

Messages are asynchronous data used to broadcast information from a block to the entire flow 

graph, but are not guaranteed to arrive with a specific sample or a specific time.

Stream tags are synchronous with and sent parallel to the main data stream. Tags are a good way 

to send meta data on specific samples. For example, the UHD source block generate tags that 

inform other blocks on the time, sample rate and frequency at the time of sampling. Tags can be 

read in the work function of a custom block. In this case a the frequency of the sample emitted by 

the USRP Source Block is read[7].

nread = self.nitems_read(0)

tags = self.get_tags_in_range(0, nread, nread + len(input_items[0]))

for tag in tags:

    if (pmt.symbol_to_string(tag.key) == "rx_freq"):

        rx_freq = pmt.to_double(tag.value)

3.3 Spectrum analysis

Spectrum analysis is the measurement of the magnitude of an input signal versus the frequency of

said signal. The technique is based on the fact that an arbitrary signal can be represented as a

series of sinusoids as shown by Joseph Fourier in 1822.

A spectrum analyzer can be implemented in a number of ways.

A swept-tuned frequency analyzer down-converts a part of the signal to the center frequency of a

narrow band-pass filter by sweeping the local oscillator over a selected frequency range. The signal

amplitude over the filter would then correspond to the amplitude of the signal at the current

oscillator frequency. The down side of this technique is that well defined analog filters are hard

and expensive to construct.

A FFT-based frequency analyzer uses a digital-to-analog converter and the Fast Fourier Transform

to calculate the frequency components of the signals numerically. The FFT-based frequency

analyzer is limited by the sample rate of the digital-to-analog converter.
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A Hybrid-FFT combines the two techniques using a local oscillator to down-convert a baseband to

a lower intermediate frequency and then converting the signal to the digital domain for frequency

analysis with an FFT. This has the frequency range advantage of the swept-tuned analyzer but at

the same time being able to exploit the advantages of digital filtering.[8]

3.3.1 Fast Fourier Transform

The Discreet Fourier Transform is the numerical analogy of the continuous Fourier Transform. The

transform allow machines that work with time- and band-limited signals, such as computers, to

compute the corresponding frequency components of a given signal. The DFT is an incredibly

important algorithm and has been called “the most important numerical algorithm of our lifetime".

The DFT algorithm computes the frequency component for a single frequency. For large number of

samples N the naive implementation of calculating each component by itself and adding them

together. By utilizing the technique of divide and conquer and splitting up the samples into two

groups recursively the complexity can be shown to be reduced significally This reduction of

complexity is called the Cooley–Tukey FFT algorithm and is the most common implementation of

the Fast Fourier Transform.

To improve the signal-amplitude-to-noise ratio of the analyzed spectrum, it is useful to average

multiple Fourier transforms with a technique called incoherent averaging. The averaging is to be

performed on the magnitude of the spectrum, after the phase information has been removed. This

is necessary because the time of sampling is not synchronized with the incoming signal and phase

differences would alter the averaged spectrum[9].

3.4 Measuring the electric field

What differs EMC measurements from telecommunication is the interest in the absolute value of

the electromagnetic field. The data provided to the software by the USRP is unit-less and not

calibrated against an absolute value at the RF input. The attenuation and linearity of the peripheral

is not defined for neither the RF part nor the IF part of the board. The raw data is therefore

unsuitable to use directly as a measurement of the electric field and data needs to be externally

calibrated.
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4 Method

The goal of the project is to implement a Hybrid-FFT spectrum analyzer with SDR hardware and

GNU Radio and evaluate the precision and viability of its usage in EMC testing. 

4.1 Software stack setup

4.1.1 GNU Radio

GNU Radio is available and kept up to date in the standard Ubuntu Linux software distribution.

Ubuntu has a built in package manager and the software can be installed with a simple command

run as the “root”-user in the shell.

# apt-get install gnuradio

4.1.2 USRP Drivers

The drivers for the USRP are available from the Ubuntu repositories but are in active development

and not kept up to date with upstream sources. It is recommended to install the drivers from Ettus

own repository that can be included as a Personal Package Archive (PPA) in Ubuntu.

# add-apt-repository ppa:ettusresearch/uhd
# apt-get update
# apt-get install libuhd-dev libuhd003 uhd-host

4.2 Frequency analysis with GNU Radio

The signal processing is implemented with GNU Radio’s flow graph to ensure high bandwidth and

signal integrity. The signal chain is comprised of the UHD drivers usrp_source block which emit

samples from the SDR hardware connected to the logpwrfft_c block which calculates the

logarithmic power FFT of the signal. The resulting spectrum data is the connected to a custom sink

block which perform data logging and control the frequency of the local oscillator.

Figure 4: Flow chart for signal propagation
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4.3 Custom spectrum sink block

To implement a Hybrid-FFT spectrum analyzer it is necessary to change the tuning frequency of the

USRP after a sufficient number of spectrum frames have been sampled. A custom sink block is

needed to implement this functionality.

The block is instantiated with the configured frequency ranges which is to be logged, how often

the spectra should be logged, how they should be averaged and in how the spectrum should be

compensated to ensure absolute calibration. During capturing, the block is keeping track of which

frequencies that should be logged and in what order.

The work function is called whenever the scheduler has new spectra for the sink to consume.

When a new spectrum is delivered from the logpwrfft_c block, the sink checks the rx_freq tag

delivered in parallel to the spectrum if it corresponds with what the sink expects. If the frequency

differs, the sink sends a request to change the frequency of the USRP with a priority queue to the

main program.

If the RX frequency is correct then the sink keep the spectra in a buffer for averaging. When the

averaging is done, the sink adds the specified precalculated calibration spectrum and retunes to

the next spectrum in the range.

When all spectra in the range are done, the buffer is copied and sent with a priority queue to a

separate thread for logging to file.
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Figure 5: Spectrum Sink work function flow chart
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4.4 Verification, calibration and testing

The system is verified and calibrated by comparing the measured spectra with a calibrated

spectrum analyzer. The difference between the spectrum analyzer and the USRP is used as a

calibration file in the logging software and is interpolated and applied to the frequency bins

present in the current spectrum.

4.5 Data analysis

The data from the program is logged as the signal power at the SMA input in dBm together with

the time and date and position when the spectrum was sampled. With the logged data, charts and

maps can effectively be automatically generated with the programming language R and selected

libraries. Map backgrounds can be downloaded from the open source project OpenStreetMap with

functionality from the R library with the same name and the plot library ggplot2. The automation

of data analysis and report generation is a necessity with the large datasets expected from

specified usage.
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5 Results

5.1 Calibration

The system was calibrated against a HP 8591A spectrum analyzer and an HP ESG-D3000A signal 

generator. As can be seen in figure 6 the linearity of frequency response of the spectrum is rivaling 

that of the spectrum analyzer and should allow measurements correct within 1 dBm on amplitudes

at a reasonable distance from the noise floor.

The measurements also showed good linearity of the power measurement, but due to the higher 

noise floor of the USRP compared to the spectrum analyzer the system struggle with accurately 

measuring frequency components under -65 dBm. This is to be expected by the hardware though 

and does not impose a big draw back in the use case of the system. There were some problems 

during the development of the system that resulted in that the calibration had to be performed a 

couple of times. After the first calibration it was evident that the internal RX gain in the USRP was 

to dependent of the incoming frequency. The errors were to large to calibrate without losing to 

much dynamic range. Lack of time resulted in that the correctly performed calibration had to be 

made on a narrower frequency band.

Figure 6: Calibration measurement between 880 and 960 MHz at a -30 dBm sine input.
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5.2 Spectrum characterisation

The characterisation is in general good. LO leak trough is minimal and does not influence the 

measurement in a significant way.

However, there are some issues with high energy signals between 1 and 2 GHz, as seen in figure 7a

& 7b, whose cause is not yet fully understood. It could be an effect of a defect in the USRP or 

inaccuracies in the RFIC or board design. It could also be so that it is a bug in the software. In any 

way, further investigation is needed.

Table 2: Input frequencies and resulting significant components.

Input frequency Measured significant components

1 GHz 1 GHz

1.5 GHz 104 MHz, 232 MHz & 1.5 GHz

1.75 GHz 170 MHz, 182 MHz & 1.75 GHz

2 GHz 656 MHz & 2 GHz

2.5 GHz 2.5 GHz

These emerging inaccuracies in the measured spectrum are important to consider when using the 

system to characterize spectrums under 700 MHz and additional filtering or a strategic choice of 

antenna is necessary for an adequate measurement.
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Figure 7a: Correct characterisation of sine function input at 2.5 GHz

Figure 7b: Problematic characterisation of sine function input at 1.5 GHz
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5.3 Power consumption

The power consumption of the complete system while running was measured to 16 W. A battery

pack with the capacity of 1 kWh should in theory enable an independent running time of about 60

hours. 

5.4 Field test

The system was tested on Volvo PV premises at the frequency range of 870MHz – 978 MHz which

is populated by the GSM-900 band. The USRP was connected to a Schwarzbeck SBA 9113 antenna

which has a known antenna factor over the range.

The field test shows that it is possible to measure a clear difference in the field strength around

buildings and further away in areas covered by forest.

The maximum total field strength was measured to 104 dB(uV/m) directly NW of PV-Huset and the

minimum to 60 dB(uV/m) outside the anechoic chamber in the northern parts of the premises.

Figure 8: Spectral density at maximum measured field strength during field testing.
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Figure 9: Measured total electric field strength at 870 - 978 MHz
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6 Discussion and conclusions

The usage of the USRP as a spectrum analyzer has shown itself to be a viable alternative to

expensive tools in some use cases. The USRP is obviously not as exact as the more specialized tools

and has a higher noise floor which affect the measurement of low amplitude signals.

The development tools distributed by GNU Radio are excellent and provide a more than enough

tool chest for approaching problems with software defined radio. That is not to say that the

development of the software in this project went without any issues. It was found that GNU Radio

lacks in form of error handling, often resolving to print errors in stdout or just delivering empty

data packets instead of properly exposing the errors in the API. Because of this, more time than

was planned was spent with struggling to keeping the system stable and ensuring that the logged

data was consistent and correct. This affected the project in that less time than what might have

been desired was spent on validating the logged spectra against proper measuring equipment and

determine parameters such as dynamic range and signal-to-noise ratio for the system as well as

finishing the system as a deployable product with a case, UPS and batteries. These safe guards also

resulted in a slightly decreased performance of the system regarding the time spent acquiring the

spectrum.

All in all the project was a great introduction to modern signal processing and software defined

radio and the integration of different components in a complete system.
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7 Future development

The limitations USB present in bandwidth and stability could be alleviated by offloading some of

the signal processing to the field programmable gate array (FPGA) located on the USRP board.

FPGAs excel in computations easily run in parallel which is the case with the FFT and in handling

large amounts of data. By doing the computations on the FPGA and sending the time insensitive

calculated spectrums over the bus, less bandwidth is needed and the system’s robustness would

be increased greatly.

The system is today limited to measuring and logging continuous broadcast signals due to the

averaging and decimation of spectrum data. It would be useful to use the same technology to tune

in to a specific baseband and log the occurrence of high signal transients that are missed with the

current implementation.

7.1 New hardware

As the entire signal processing chain is performed in software on the NUC a SDR board featuring a

newly developed and more advanced chip for tuning and receiving would be able to be used as a

drop in replacement to the USRP used by the system today with minimal work.

Lime Microsystems, which is the developer of the LMS6002D featured in the BladeRF board has a

new chip in production. The LMS7002M expands the frequency range down to 100 kHz which

would be very useful for measuring electromagnetic radiation in the kilometer band. Lime

Microsystems also have announced a new RFIC (LMS8001M) which claims to span the range from

100 kHz to 12 GHz with a bandwidth of 120 MHz.

The rapid advancements in transceivers and the modularity of the systems really show the extreme

possibilities that software defined radio present to engineers today and in the future.
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9 Appendix

9.1 Source code for the custom data sink in GNU Radio

class SpectrumSink(gr.sync_block):

    def __init__(self, fft_size, sample_rate, capture_rate, spectra, render_queue, center_frequency_queue, 

logger_queue):

        self.fft_size = fft_size

        gr.sync_block.__init__(self, "spectrum_sink",

                          in_sig = [(numpy.float32, self.fft_size)],

                          out_sig = None)

        self.capture_rate = capture_rate

        self.spectra = spectra

        self.render_queue = render_queue

        self.center_frequency_queue = center_frequency_queue

        self.logger_queue = logger_queue

        self.rx_freq = 0

        self.current_frame = 0

        self.current_spectrum = 0

        self.current_window = 0

        self.avg_count = 20

        self.avg_alpha = 0.1

        self.retuning = False

        self.capturing = [False]*len(spectra)

        self.buffer = [0]*len(spectra[0].frequencies)

        for window in range(len(self.buffer)):

            self.buffer[window] = [0]*spectra[0].number_of_bins

        self.last_capture = time.time()

        self.bin_margin = (self.fft_size - self.spectra[0].number_of_bins)/2

    def work(self, input_items, output_items):

        in0 = input_items[0]

        out0 = input_items[0]

        num_input_items = len(in0)

        num_output_items = len(out0)

        x = 0

        spec = in0[x]        

        if (not self.capturing and time.time() > self.last_capture+(1.0/self.capture_rate)):

            self.capturing = True

            self.last_capture = time.time()            

        if (self.capturing):

            # Read tags

            nread = self.nitems_read(0)

            tags = self.get_tags_in_range(0, nread, nread+num_input_items)

            for tag in tags:

                if (pmt.symbol_to_string(tag.key) == "rx_freq"):

                    self.rx_freq = int(round(pmt.to_double(tag.value)))
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            if (self.rx_freq != self.spectra[self.current_spectrum].frequencies[self.current_window]):

                # Wait for spectrum of correct center frequency

                if (not self.retuning):

                    self.retuning = True

                    self.center_frequency_queue.put(

       self.spectra[self.current_spectrum].frequencies[self.current_window]

   )

            else: # Work frame

                self.retuning = False

                shifted = numpy.concatenate((spec[len(spec)/2:], spec[0:len(spec)/2]))

                # Remove bins from front and back where heavy aliasing occurs.

                if (self.bin_margin != 0): # Breaks if bin_margin is 0

                        cut_spec = shifted[self.bin_margin:-self.bin_margin]

                if len(cut_spec[numpy.where(cut_spec < -230)] != 0): 

                    # Sometimes GNU Radio throws the FFT of zeroes samples, just throw them away and do over

                    return num_input_items

                if (self.current_frame == 0):

                    self.buffer[self.current_window] = list(cut_spec)

                else:

                    for i in range(len(self.buffer[self.current_window])): # Do averaging

                        self.buffer[self.current_window][i] = (1.0 -   

                                                self.avg_alpha)*self.buffer[self.current_window][i] +

                                                self.avg_alpha*cut_spec[i]

                self.current_frame = self.current_frame + 1

                if (self.current_frame == self.avg_count): # Averaging done

                    # Add RF compensation

                    self.buffer[self.current_window] = map(add, self.buffer[self.current_window], 

                                self.spectra[self.current_spectrum].rf_compensation[self.current_window])

                    self.current_frame = 0

                    self.current_window = self.current_window + 1

                    if (self.current_window == len(self.spectra[self.current_spectrum].frequencies)):

                        # Windows done

                        meta = {}

                        s = [self.current_spectrum, copy.deepcopy(self.buffer), meta]

                        self.render_queue.put(s)

                        self.logger_queue.put(s)

                        self.current_window = 0

                        print "Spectrum [{}] done, took {} seconds".format(self.spectra[self.current_spectrum].id,

                                                                           time.time() - self.last_capture)

                        self.current_spectrum = self.current_spectrum + 1

                        if (self.current_spectrum == len(self.spectra)): # Spectra done

                            self.current_spectrum = 0

                            self.capturing = False

                        self.buffer = [0]*len(self.spectra[self.current_spectrum].frequencies)

                        for window in range(len(self.buffer)):

                            self.buffer[window] = [0]*self.spectra[self.current_spectrum].number_of_bins

        return num_input_items
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9.2 Excerpt of code to render maps with OpenStreetMap and ggplot2 in R

library("OpenStreetMap")
library("matrixStats")
library("sp")
library("ggplot2")

data_comp = read.csv(file = "compensation.csv", head = TRUE, sep = ",")
f_comp = approxfun(as.numeric(data_comp[,"frequency"]), 

 as.numeric(data_comp[,"compensation"]), method = "linear", rule = 
2)

data_af = read.csv(file = "afschwartz.csv", head = TRUE, sep = ",")
f_af = approxfun(as.numeric(data_af[,"frequency"]), 

     as.numeric(data_af[,"af"]), method = "linear", rule = 2)

data = read.csv(file = "Mobil_20160516_135709.csv", head = TRUE, sep = ",")

measured_frequencies = as.numeric(substr(colnames(data)[-3:0], 2, nchar(col-
names(data)[-3:0])))

png(filename = "map.png", width = 1024, height = 1024)

map = openmap(
get_upper_left_coordinate(as.numeric(data[,"lat"]), 
as.numeric(data[,"lon"])), 
get_lower_right_coordinate(as.numeric(data[,"lat"]), 
as.numeric(data[,"lon"])), 
minNumTiles = 16, type = "osm")

sl = SpatialLines(list(Lines(Line(cbind(as.numeric(data[,"lon"]), 
    as.numeric(data[,"lat"]))), ID="a")),

proj4string = CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 
+towgs84=0,0,0"))

sl_merc = spTransform(sl, CRS("+proj=merc +a=6378137 +b=6378137 
+lat_ts=0.0+lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null 
+no_defs"))

# E = raw + internal_correction + dBm2dBuV + AF                                 
E = as.matrix(data[, -(1:3)]) +
    f_comp(measured_frequencies) + 106.98 + f_af(measured_frequencies)

powerSum = rowLogSumExps(E)

sl_merc_df = SpatialLinesDataFrame(sl_merc, 
     data.frame(ID = c("a")),
     match.ID = F)

powerPalette = colorRampPalette(c("grey", "red"))
colour = powerPalette(10)[as.numeric(cut(powerSum, breaks = 10))]
theme_set(theme_gray(base_size = 18))

autoplot(map) +
geom_path(data = sl_merc_df, linejoin = "round", size = 2, aes(group = 1, 

x = long, y = lat, colour = powerSum)) +
scale_colour_gradient("E (dBuV/m)",limits=c(min(powerSum), max(powerSum)),

low="blue", high="red")
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