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Evaluation of material models in LS-DYNA for impact simulation of white adipose tissue
Master’s Thesis in Solid and Fluid Mechanics
KRISTOFER ENGELBREKTSSON
Department of Applied Mechanics
Division of Material and Computational Mechanics and Division of Vehicle Safety
Chalmers University of Technology

Abstract

Human body models (HBM) are used as tools in crash simulations when investi-
gating the interactions between the human body and the vehicle, thus gaining insight
into the evolution of stresses and strains influencing the different parts of the body.
In todays crash simulations two broad categories of mathematical HBM are in usage,
namely multibody dynamics and finite element. Due to decreasing cost of computa-
tional resources there is a shift towards the more biofidelic finite element HBM.

Recent studies have shown correlations between increased risk of death in severe
motor vehicle crashes and different categories of obesity, namely the moderately and
the morbidly obese. Due to an increasing trend in the obese population there is a
need for deeper knowledge and understanding of the constitutive behaviour of the
human fat tissue, more specifically the white adipose tissue.

Through a literature study the current research field was explored, and a summary
of mechanical properties and available experiments were compiled. It was found that
the white adipose tissue behaves as an incompressible solid with nonlinear strain
stiffening and nonlinear strain rate stiffening. Further the tissue was found to be
isotropic. Unrecoverable deformation was also found to be present in three studies
but it was explained in two different manners. One study used plastic deformation
and another claimed the tissue hadn’t been given enough relaxation time for it to
be fully recovered. Three experiments were chosen to be modeled with the Finite
Element code LS-DYNA. One experiment was chosen for material model calibration
while two experiments were chosen for evaluation. Three material models were chosen
for calibration, Ogden Rubber 77 with linear viscoelasticity, Soft Tissue 92 with
viscoelasticity and Simplified Rubber 181 with strain rate dependency.

The results of the work reveals a good fit of the Ogden Rubber material model
to low and intermediate strain rates. The Soft Tissue material model is less suited
to accomodate the nonlinear strain stiffening of the adipose tissue since it is only of
order two. The Simplified Rubber material model accomodates the nonlinear strain
stiffening as the Ogden Rubber material model but suffers from the drawback of an
instant response in the stress to a change in the loading velocity.

The main contribution of the work is two material models that produce a good
fit to compressive tests performed at strain rates 0.2/s and 100/s, however, more
simulations and tests are needed in order to properly validate the models. The work
also contributes with an extensive search through the current research field indicating
a paucity of experiments conducted in the high strain rate regime.

Keywords: white adipose tissue, LS-DYNA, material modeling, high strain rate, large
strains, finite deformation, viscoelastic, fat
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Göteborg August 2011
Kristofer Engelbrektsson

, Applied Mechanics, Master’s Thesis 2011:46 V



VI , Applied Mechanics, Master’s Thesis 2011:46



Nomenclature

BAT Brown Adipose Tissue, page 3

FE Finite Element, page 2

HBM Human Body Models, page 2

MRI Magnetic Resonance Imaging, page 5

Ovine Sheep, page 4

Porcine Pig, page 4

WAT White Adipose Tissue, page 2

, Applied Mechanics, Master’s Thesis 2011:46 1



1 Introduction

Human body models (HBM) are used as a tool in crash simulations when investigating
the interactions between the human body and the vehicle thus gaining insight into the
evolution of stresses and strains affecting the different parts of the body. In todays crash
simulations two broad categories of mathematical HBM are in usage. Due to decreasing cost
of computational resources there is a shift towards the more biofidelic finite element HBM.
The model contains soft tissues, internal organs, bones, muscles and has the advantage of
being able to deliver stresses and strains within tissues. This is advantegous since if the
stresses and strains are known inside an organ, failure critera can be set and it is possible
to find out if damage has occured inside the organ.

Recent studies have shown correlations between increased risk of death in severe motor
vehicle crashes and different categories of obesity, namely the moderately and the morbidly
obese [9]. Due to an increasing trend in the obese population there is a need for deeper
knowledge and understanding of the constitutive behaviour of the human fat tissue, more
specifically the White Adipose Tissue (WAT). Sought for are the dynamic mechanical
properties of the tissue since the crash is a very rapid event imposing large accelerations
on the body.

The thesis aims at obtaining a validated finite element model of the human WAT
suitable for dynamic impact simulation.

1.1 Objectives

• Compilation of properties of fat

• Choose potential material models for fat

• Obtain mechanical test data for validation

• Obtain validated Finite Element(FE)-models of the mechanical tests

• Obtain validated material models

1.2 Limitations

The work is restricted to the compressive range of strain due to a lack of available ex-
periments. Further due to time restrictions the work is limited to obtain a model fitted
to compressive strain rates of 0.2/s and 100/s. Since the work considers impact simula-
tion only the loading part will be taken into account neglecting possible hysteresis and
unrecoverable deformation.

1.3 Approach

The project starts with a literature study of the properties and structure of the WAT.
The output of this literature study will be a list of properties that is going to serve as
requirement specification for selection of suitable material models. Further, a literature
study of available mechanical tests are to be conducted in order to obtain a foundation for
validation of the selected material models. The geometry of the mechanical tests are going
to be modeled in the commercial software LS-PrePost[3]. From these geometries meshes
will be created, also in the LS-PrePost[3]. Finally the numerical analysis will be conducted
in the commercial software LS-Dyna[21].

2 , Applied Mechanics, Master’s Thesis 2011:46



1.4 The Adipose Organ

In contradiction to common knowledge the fat tissue in the human body is collectively
considered an organ. The Adipose organ constitutes several depots located throughout the
human body. Firstly, the depots are divided into visceral and subcutaneous WAT as can
be seen in figure 1.1. These broad categories are further divided into intraperitoneal and
retroperitoneal respectively superficial subcutaneous WAT and deep subcutaneous WAT.
The Intraperitoneal depot is then divided into the omental and mesenteric depot[6]. All
above depots contain the WAT and Brown Adipose Tissue(BAT). The WAT has an energy
storage function whereas BAT is used for thermogenesis. In adults there exist a relatively
little amount of BAT compared to WAT[1]. The major part of the WAT is found in the
omental and mesenteric depots and the subcutaneous depot[6][17].

Navel

Skin

Subcutaneous Adipose Tissue

Abdominal Muscle

Peritoneal Wall

Spinal Column

Liver

Kidney

Perirenal Adipose Tissue

Omental Adipose Tissue

Mesenteric Adipose Tissue

Figure 1.1: Upper: Depot sites of WAT, tissue taken from [18] Lower: Section at navel redrawn from [24]
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1.5 Microstructure of WAT

Figure 1.2: Left: Light microscopy. Haematoxylin–eosin staining. Human WAT. Objective magnification
20x. Taken from [1] Right: Schematic of WAT, taken from [2]

The structure of the WAT at cellular level can be seen in figure 1.2. The white adipocyte
is the cell containing the lipid droplet and has an approximate diameter of 80 µm. The cell
wall consist of a collagen based reinforced basement membrane. At an higher level there
exist an open-cell foam like structure called the interlobular septa which contain adipocyte
cells and is about 1mm in size. The Septa structure consists of type I collagen[2].

Since the mechanical properties are dependent on the morphology of the tissue it is
necessary, when modeling the depot sites, to take into account how large the variations are
and due to what factors. Factors such as obesity, age, gender, genetics, various deseases,
could be factors that influence the microscopical structure. Further if there are large vari-
ations within depot sites this will be considered as inhomogeneity and adds a considerable
amount of complexity to the constitutive modeling.

Due to ethical, immunological and supply it is considerably more complicated to obtain
human WAT in comparison to an animal model, such as porcine or ovine. If a mechanically
similar animal model is found this is obviously preferred to a human subject.

1.6 Mechanical properties of WAT

There are only a few studies available that have investigated mechanical properties of
WAT and even less that have taken into account high strain rates in combination with
large strains.

Property Study
Nonlinear stress strain dependency [13],[7],[4],[15]
Nonlinear dependence of stress on strain rate [13],[11]
Incompressible [13]
Isotropic [13]
Symmetric between tension and compression [13]
Unrecoverable deformation [7],[19]

Table 1.1: Table of material properties

The studies are almost always composed of several different types of tests and the
strains and strain rates reported in table 1.3 are for the tests with the highest strain and
strain rate simultaneously. Below, follows a short summary on the tests in table 1.3 and
what material behaviour that emerges from these tests.

4 , Applied Mechanics, Master’s Thesis 2011:46



Material parameter Value Study
Density 925-970 kg/m3 [16]
Density 920 kg/m3 [13]
Bulk modulus 0.5 GPa [13]

Table 1.2: Table of material parameters

There is only one study available considering large strains in combination with large
deformation rates [13]. The study reports a nonlinear dependency between stress and
strain and a nonlinear dependency upon strain rate. The study succeeded in fitting a
one term Ogden hyperelastic model to three different areas of strain rate without any
viscoelastic modeling or modeling of the rate dependency. On the other hand the study
reported that the shape of the nonlinear stress strain curve is invariant to strain rate and
the stress level is consequently governed only by the shear modulus and not the strain
hardening parameter[13] Since this study is the only one available suitable for the purpose
of impact simulation it is choosen as a basis on which the model in this study is going
to be calibrated. Further the study assumes incompressibility due to large liquid content
and this is confirmed by an elastic shear modulus of approximately G’=E’/3. This also
confirms isotropicity according to [13].

In the test [7] hyperelastic and viscoelastic parameters are obtained by the use of (MRI)
and inverse finite element method using indentation testing on exvivo porcine specimens.
This study shows that there is unrecoverable deformation after the specimen has been
unloaded which according to them would indicate elastoplastic behaviour.

In the test [4] indentation testing is again used, this time on excised breast tissue. The
study obtains hyperelastic parameters through inverse finite element method and reveals
nonlinear stress strain dependency.

[15] investigates possible thixo- and anti-thixotropy of the WAT through shearing of
specimens in a rotational rheometer. They argue that the WAT is able to fully recover if
it is given sufficient time.

[5] in a more recent study, the most extensive yet found w.r.t. the number of samples,
uses indentation testing and inverse finite element analysis on breast tissue. This time the
indentation is performed with a smaller amplitude which is not in a favourable direction
for the modeling of large strains. This work is a continuation on their earlier work.

[8] uses the Ovine model instead of the porcine with the argument that it is a popular
orthopaedic model. They use indentation testing together with hayes solution to obtain a
value of the elastic modulus. This test uses a larger specimen than the other studies and a
relatively high indentation speed. However there are no reported values on the force from
zero to four millimeter penetration only the value at full penetration.

In the study [19] a rhotational rheometer is used and the complex modulus is obtained.
The study concludes that WAT viscosity increases with increasing strain rate indicating
shear thinning.

Since the working range of the model includes high strain rates it is reasonable to
assume the importance of inertia forces thus a value of the density is needed. There are
only a few values in the literature reporting a value of the density of human WAT and the
one adopted here is taken from a study performed on six . The study reports a variation
of 925-970 kg/m3 over the whole body[16].

Soft tissues does normally not have symmetric behaviour in tension and compression
often due to collagen fibers distributed throughout the tissue. The collagen fibers are
assumed incapable of resisting compressive forces therefore yielding different response in
tension and compression. However in the case of the WAT [13] reports a symmetry between
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tension and compression and non that opposes this have been found. This is obviously
not a proof of symmetry since the nonexistence of studies that opposes tensile compressive
symmetry is due to lack of studies not extensive testing.

In summary what is sought for is a material model in LS-DYNA able to accomodate
the properties in table 1.1, except for the properties that are excluded according to section
1.2.

2 Viscoelasticity

Maxwell Model

s

m
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m
2

m
a

m
1

E
1

E
2

E
a

E
N

s
1

s
2

s
a

s
N

e-e
v

a

e
v

a

Figure 2.1: Standard Linear Model

This is the Standard Linear Model or otherwise named Generalized Maxwell Model. It can
represent solid behaviour if for example µ1 = ∞ which means that it relaxes towards the
value of σ = E1ε. The Maxwell model in the dashed region in the figure above represents
a fluid since when stretched infinitesimaly there is no resistance. The following derivation
is in line with [22]. By looking at the single Maxwell element in the dashed region, free
from the above structure, the following is obtained

σv1 = σe1 = σ (2.1)

εv1 + εe1 = ε (2.2)

This results in, for the single maxwell element

σ = E1(ε− εv1) (2.3)

There is now one equation but two unknowns since the strain in the damper is not known.
The evolution equation for the strain in the damper is introduced
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ε̇v1 =
1

µ1

σv1 (2.4)

Since σv1 = σ this results in

ε̇v1 =
1

µ1

E1(ε− εv1) (2.5)

This differential equation can be solved for εv1 with the appropriate initial condition of
εv1(0) = 0

Now an arbitrary number of Maxwell elements are added in parallell according to the
figure above which by equilibrium yields

σ =
N∑
α=1

σα =
N∑
α=1

Eα(ε− εvα) (2.6)

Further the evolution equation becomes

ε̇vα =
1

µα
σvα (2.7)

By use of σα = σvα and insertion of σα from equation (2.6) in equation (2.7) this results in

ε̇vα =
1

µα
Eα(ε− εvα) (2.8)

Since the above expression is uncoupled it can be solved separately for εvα resulting in, for
a prescribed constant strain of ε0

εvα(t) = ε0(1− e
−t
t∗α ) (2.9)

Insertion of this equation into equation (2.6) results in

σ(t) = (
n∑

α=1

Eαe
−t
t∗α )︸ ︷︷ ︸

Pronyseries

ε0 (2.10)

If this is going to be used with a variable prescribed strain instead of a constant strain the
hereditary formulation can be used

dσ(t, τ) = R(t− τ)dε(τ) = R(t− τ)
dε(τ)

dτ
dτ (2.11)

Summing this by integration from 0 to t results in

σ(t) =

∫ t

0

R(t− τ)
dε(τ)

dτ
dτ (2.12)

Insertion of the Prony series results in

σ(t) =

∫ t

0

(
n∑

α=1

Eαe
−(t−τ)
t∗α )

dε(τ)

dτ
dτ (2.13)

That is the Prony series is actually a collection of Maxwell elements in parallel. If,
for example, two terms are used then two hereditary integrals are obtained where the
relaxation function of each is a Maxwell element.
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Relaxation function

Ead (t)e

dt

Eae
-t/t*a

t
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t

s(t)

t
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Figure 2.2: Convolution of one term Prony series with strain rate

Figure 2.2 shows graphically how the hereditary integral with one element in the prony
serie is calculated, that is equation (2.13) with n=1. The value of σ(t) at tn is calculated
as the integral of the product of the blue and green line. This gives the material model a
fading memory where a certain strain rate at an earlier time influence the stress at current
time less and less. This fading property is determined by the relaxation time t*. The
larger the t* the slower the exponential function asymptotically approaches zero. If for
example three terms are used in the prony serie three of these integrals are obtain where
it is possible for each to have its own t∗α and Eα.
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t
n

t

E1

E3

E2

Figure 2.3: Convolution of three term Prony series with strain rate

In figure 2.3 the three exponential curves are added then the integral of the product of
the new curve with the strainrate gives the stress at tn

3 Available models in LS DYNA

LS-Dyna[21] has a vast selection of possible choices for a material model however for
this particular material only a handful seems reasonable at first sight. Material models
suitable for a more indepth study has been choosen based on the criteria in section 1.6.
The information in this section is taken from [20],[21] unless another source is explicitly
cited.

Name Model nr.
Soft tissue 92
Simplified Rubber 181
Ogden rubber 77O
Viscoelastic(For reference, THUMS) 006

3.0.1 Soft tissue

This model is a transversely isotropic model in tension and isotropic in compression with
the strain energy function in the equation below. The reason for investigating this model
further even though it opposes the symmetric tensile compressive and isotropic behaviour
of the WAT is if it is possible to adjust parameters in order become isotropic and symmetric
in tension and compression.

W = C1(Ĩ1 − 3) + C2(Ĩ2 − 3)︸ ︷︷ ︸
MooneyRivlin

+F (λ) +
1

2
K(ln(J))2 (3.1)

∂F

∂λ
=


0 λ < 1

C3

λ
[exp(C4(λ− 1))− 1] λ < λ∗

1
λ
(C5λ+ C6) λ ≥ λ∗


10 , Applied Mechanics, Master’s Thesis 2011:46



As can be seen in equation (3.0.1) it is possible to obtain only the mooney rivlin solid
by setting the value of C3 and C4 to zero and letting λ∗ being large enough so that it is
never reached.

The viscoelastic contribution is on the following form

S(C, t) = Se(C) +

∫ t

0

2G(t− s) ∂W

∂C(s)
ds (3.2)

And with the prony serie inserted in the above equation

S(C, t) = Se(C) +

∫ t

0

2(
6∑
i=1

Sie
t−s
Ti )

∂W

∂C(s)
ds (3.3)

3.0.2 Simplified rubber

This model is a tabulated version of the Ogden model described previously. It has the
advantage that no parameter fitting is necessary since it directly uses uniaxial stress strain
curves obtained from experiments in order to calculate the stresses. There is no vis-
coelasticity in this model, instead, the model uses stress strain curves from experiments
performed at different strain rates. If for example two curves are used all values of stress
at a particular strain and strainrate will be a linear interpolation between the two curves.
A drawback of this approach to the strainrate dependency is that change in the loading
velocity will give an immediate respose[10]. An advantage on the other hand is that the
shape of the curves at different strainrates can have whatever shape since they are defined
by the tabulated values. That is there is no need for adjusting parameters in order to acco-
modate a specific shape of the stress-strain curve at a particular strainrate, the tabulated
curve is used instead.

s0

e0

strain
rate

Linear interpolation between different strain rates

Figure 3.1: Engineering stress versus engineering strain for different strainrates used as input in the model
simplified rubber
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3.0.3 Ogden rubber

This model is a hyperelastic nearly incompressible model in principal directions with the
following expression for the free energy.

Ψ =
3∑
i=1

n∑
j=1

µj
αj

(λ̂
αj
i − 1) +K(J − 1− lnJ) (3.4)

After some calculations and using only one term in the innermost sum above the ex-
pression for the second Piola Kirchhoff stress is obtained as

S =
3∑
i=1

(µ(λ̂αi −
1

3
(λ̂α1 + λ̂α2 + λ̂α3 ))) +KJ(J − 1)(F−1ni)⊗ (F−1ni) (3.5)

In addition to this hyperelastic model there is a viscoelastic contribution in the following
form

Sij =

∫ t

0

Gijkl(t− τ)
∂Ekl
∂τ

dτ (3.6)

This viscoelastic stress is then added to the stress determined from the ogden model
above resulting in

S =
3∑
i=1

(µ(λ̂αi −
1

3
(λ̂α1 + λ̂α2 + λ̂α3 ))) +KJ(J − 1)(F−1ni)⊗ (F−1ni)+

∫ t

0

Gijkl(t−τ)
∂Ekl
∂τ

dτ

(3.7)

3.0.4 Viscoelastic

There will be no detailed description on the viscoelastic model since it is only used for
comparison. The viscoelastic model in LS DYNA is used in the Total Human Model for
Safety(THUMS)(Toyota corporation) HBM, when modeling soft tissues. It is not specifi-
cally used for WAT but for soft tissues in general hence care needs to be taken when using
this model for comparison.

4 Method

In the FE-modelling part of the thesis the commercial solver LS-DYNA(version: ls971s
R5.1.1)[21] have been used together with the Pre/Post tool LS-Pre-Post [3]. LS-DYNA[21]
is primarily an explicit FE-code. This has the advantage of less demanding timestep
calculation than the implicit time integration since the inverse of the stiffness matrix does
not need to be calculated. This is advantageous in short physical time analysis such as
impact simulation. The drawback of the method is that it is conditionally stable since the
stability depends on the timestep being short enough to capture an elastic wave at the
speed of sound of the material being used. That is the timesstep depends on the shortest

element side length and the speed of sound c =
√

K
ρ

. The previous expression for the

speed of sound is a one dimensional expression and the timestep actually depends on the
highest eigenfrequency of the structure however this simple formula is sufficient to keep in
mind to get a feeling of in which direction the timestep size will go if the density or the
bulk modulus is changed. Dynamic implicit time integration with the Newmark method is
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used when the simulation approaches the quasistatic case. For the extraction of data from
figures in the test studies the commercial software Matlab have been used.

4.1 Experiments

The chosen experiments are presented beginning, with the test used for material model
calibration [13] in 4.1.1. Proceeding, with an indentation experiment on WAT [8] in 4.1.2
used for evaluation of behaviour at higher velocities. Finally, a torsion experiment on WAT
[15] in 4.1.3 used for evaluation of material model shear behaviour.

4.1.1 Calibration

Split Hopkinson Pressure Bar

Skrew Driven Compression Test

Hydraulic Compression Test

Range of engineering strainrate 0.002/s - 0.2/s

Range of engineering strainrate 20/s - 260/s

Range of engineering strainrate 1000/s - 5700/s

d= 10 mm

h = 3 mm

d= 10 mm

h = 8 mm

White Adipose Tissue

Momentum Trap

Striker Bar

Input Bar

Output Bar

Strain Gauge

Strain Gauge

Smooth Nylon Platen

Smooth Nylon Platen

Smooth Nylon Platen

Smooth Nylon Platen

White Adipose Tissue

White Adipose Tissue

Figure 4.1: Unconfined compression experiments [13]
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In figure 4.1 experiment [13] is summarized. This experiment was chosen based on the
large strains and high strain rates investigated. The test is divided into three different
parts where three different test-methods have been used for three different ranges of strain-
rate. The experiment was performed at three different levels of strain rate in unconfined
compression.

At low strain rate a skrew driven compression test machine was used and the data was
measured by a 5N load cell with a sensitivity of 20 mN within 1%. The specimen was
compressed between two nylon platens with a thickness of 15 mm. In figure 4.2 the result
of the skrew driven compression test is shown. The curve at 0.2/s is chosen for comparison
with the later developed FE-model. The reason for choosing only one curve is that there
is not always a continous increasing stiffness from lower to higher strain rates within the
levels, low, intermediate and high strain rate, hence one curve is sufficient. More curves
would not increase the accuracy.
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Figure 4.2: Skrew driven compression test [13]

In the intermediate strain rate range a servohydraulic compression test machine was
used. Again the specimens were compressed between nylon platens. Further a load cell was
used consisting of an aluminum beam with four Wheatsone bridges. The dimensions of the
load cell was not specified and it was not possible to obtain the blueprints. The impacting
platen was accelerated up to the required velocity before impacting the specimen. In figure
4.3 the result of the hydraulic compression test is shown. The curve at 100/s is chosen for
comparison with the later developed FE-model. The reason again for choosing only one
curve is the same as for the low level strain rate.
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Figure 4.3: Hydraulic compression test [13]

In the high strain rate region the method is changed to the split hopkinson pressure bar
method. The striker bar is impacted into the input bar creating an elastic wavefront. The
wavefront transmitts into the specimen and further into the output bar. An elastic wave is
also reflected at each boundary. These strains are then measured by the strain gauges and
then a calculation is performed yielding the stress strain response in the specimen [13]. In
figure 4.4 the result of the split hopkinson pressure bar is shown. These curves are shown
for completeness and this range of strain rate will not be modeled.
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Figure 4.4: Split hopkinson pressure bar [13]
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4.1.2 Evaluation 1

Swift Indentation

Indentor

Plexiglas container

White adipose tissue

45 mm

d = 60 mm

d = 12 mm

Indentation velocity 2000 mm/s

4 mm

4 mm

t

Displacement profile

Depth

Figure 4.5: Swift indentation [8]

In the first evaluation experiment [8] in figure 4.5 a pneumatically driven piston of 12 mm
diameter is indented into a specimen of ovine WAT. The specimen is contained in a plastic
cylinder. The force in the indentor is measured at a penetration depth of 4 mm. The result
from [8] can be seen in table 4.1. The value in the eighth cycle is used for later comparison.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
Mean Peak force (N) 13.3587 10.0279 9.8759 9.6057 9.6406 8.7956 8.9233 8.5679
Standard deviation peak force (N) 6.1064 6.1330 5.7758 5.6079 5.8681 5.0864 5.2437 5.1378

Table 4.1: Peak force at 4 mm penetration. Mean value consists of 10 samples. Taken from [8]
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4.1.3 Evaluation 2

Rotational Rheometer Constant Shear Strain

Range of Shear Strainrate 0.01/s - 1/s

d= 8 mm

h = 1.5 mm

Sandblasted Platen

Sandblasted Platen

Displacement Sequence

0.15

100s 100s

Specimen compressed with 1g force during

diplacement sequence

Shear Strain g

Time

Figure 4.6: Constant shear strain experiment [15]

The evaluation 2 experiment [15] is summarized in figure 4.6. The testing device used was a
rotational rheometer (Ares, Rheometric Scientific, USA) with sandblasted parallell plates.
A slight compression of 1 gram was exerted on the specimen throughout the displacement
sequence in order to increase the friction between the plates. Then a load and unloading
sequence was performed with a rest interval of 100 s between each load unloading cycle.
The shear strain rate was increased with every cycle beginning at 0.01/s, proceeding with
0.1/s and finally performed at 1/s.
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Figure 4.7: Constant shear strain experiment with increasing strain rate [15]
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In figure 4.7 the result of the experiment is displayed. Only the loading part of these
curves will be used for comparison according to the limitations of this thesis.

4.2 Mesh and Boundary Conditions

In this subsection the actual mathematical modelling of the three chosen experiments are
presented. Beginning, with modelling of the calibration experiment [13] in 4.2.1. Pro-
ceeding, with modelling of evaluation 1 experiment [8] in 4.2.2. Finally, the modelling of
evaluation 2 experiment [15] in 4.2.3.

4.2.1 Modelling Calibration

x

z y

nylon platen shells

WAT hexahedral solid

Figure 4.8: Hexahedral mesh for the skrew driven unconfined compression test

The hexahedral mesh used to simulate the skrew driven compression test [13] is shown
in figure 4.8. The upper nylon platen shell is displaced in the x-direction and the lower
nylon plate shell is locked in all directions. The WAT hexahedral mesh rests on the contact
formulations. An adequate mesh density of 600 hexahedrons have been established through
the convergence study in appendix B. Allthough the convergence study was performed at
100/s it is assumed that this mesh density is sufficient also for the test at strain rate
0.2/s. The shells are covered with nullshells which are present in order to facilitate contact
calculations and does not contribute to the stiffness calculations. The friction between
the platens and the WAT has been modeled with a Coloumb friction formulation where
the dynamic and static yield forces have been input. In order to determine reasonable
values of the friction, a sensitivity analysis between compression force and friction has
been conducted in appendix E.
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WAT hexahedral solid

Figure 4.9: Hexahedral mesh the hydraulic unconfined compression test

The hexahedral mesh used to simulate the hydraulic unconfined compression test [13]
is shown in figure 4.9. The upper nylon platen shell is displaced in the x-direction and
locked in all other directions. The lower nylon platen shell is locked in all directions. The
WAT hexahedral mesh rests on the contact formulations. The shells are again covered with
nullshells in order to facilitate the contact implementation. The velocityprofile is shown
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Figure 4.10: Velocity profile with maximimum engineering strainrate 100/s and peak acceleration 2400
m/s2

in figure 4.10. The risetime of the velocity is choosen long enough not to cause numerical
instability and short enough so that constant engineering strainrate is held for the major
part of the analysis. It should be noted that the exact velocityprofile is with a very fast
acceleration in the beginning due to the platen impacting on the specimen with constant
velocity.
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4.2.2 Modelling Evaluation 1

Indentor shell Container shellWAT hexahedral solid

x

y
z

Figure 4.11: Hexahedral mesh of evaluation 1

The mesh used to simulate the evaluation 1 experiment [8] is shown in figure 4.11. The
indentor is placed half the shell thickness away from the WAT in order for it to be in
contact from the beginning. The indentor shell is then accelerated upto a constant velocity
of 2000 mm/s and then stopped at 4 mm penetration where the force is. The container
is represented by a shell. Note that there are small elements, not visible in figure, on the
shells of the indentor and plastic cylinder which does not slow down the calculation since
they are assigned ridgid material properties. The container shell is locked in all degrees of
freedom and the WAT rests inside on the contact formulation between the shell and the
WAT. The friction between the different parts is the coefficients established in appendix
E. It is assumed that these coefficients would be the same as in the calibration.
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4.2.3 Modelling Evaluation 2

x

z y

Lower boundary locked in all degrees of freedom simulating full friction

Upper boundary locked in x translational degree of freedom and subject to a rotation in

the yz-plane around x-direction according to the displacement profile

Figure 4.12: Hexa hedral mesh for simulation of rotational rheometer test, 200 hexahedrons

In figure 4.12 the mesh with a mesh density of 200 hexahedrons is shown used for the
simulation of evaluation 2 experiment [15]. The mesh density has been established through
a convergence study in appendix B and this mesh density is assumed for all three levels
of strain rate. The friction has been assumed to be very high so as no slip occurs between
the platens and the specimen, this allows the model to be constructed without contact
formulation. Further the compressive force present during the torsion of the specimen has
been assumed small enough to be neglected. It has been approximated to 20 Pa which is
order of magnitude lower than the shear stresses.

4.3 Simulations

Experiment Id Material model ν C1 C2 µ1 α1 K S1 T1 G1 β1 ρ G0

Calibration
0.2/s CIH5O1 Ogden Rubber 0.499 - - 30 20 - - - 3000 310 920 -

CIH5Si1 Simp. Rubber 0.49 - - - - 5E5 - - - - 920 -
CIH5So1 Soft Tissue - 100 100 - - 5E5 10 0.00322 - - 920 -

Calibration
100/s CJH2O1 Ogden Rubber 0.4999983 - - 30 20 - - - 3000 310 920 -

CJH8Si1 Simp. Rubber 0.49 - - - - 5E8 - - - - 920 -
CJH2So1 Soft Tissue - 100 100 - - 5E8 10 0.00322 - - 920 -

Evaluation 1
E1OH2O1 Ogden Rubber 0.499 - - 30 20 - - - 3000 310 920 -
E1OH2So1 Soft Tissue - 100 100 - - 5E5 10 0.00322 - - 920 -

Evaluation 2
1/s E2TH2O1 Ogden Rubber 0.499 - - 30 20 - - - 3000 310 920 -

E2TH2So1 Soft Tissue - 100 100 - - 5E5 10 0.00322 - - 920 -
E2TH2T1 Viscoelastic - - - - - 2.296E6 1.169E5 100 - - 1200 3.506E5

Evaluation 2
0.1/s E2UH2O1 Ogden Rubber 0.499 - - 30 20 - - - 3000 310 920 -

E2UH2So1 Soft Tissue - 100 100 - - 5E5 10 0.00322 - - 920 -
E2UH2T1 Viscoelastic - 100 100 - - 2.296E6 1.169E5 100 - - 1200 3.506E5

Evaluation 2
0.01/s E2VH2O1 Ogden Rubber 0.499 - - 30 20 - - - 3000 310 920 -

E2VH2So1 Soft Tissue - 100 100 - - 5E5 10 0.00322 - - 920 -
E2VH2T1 Viscoelastic - 100 100 - - 2.296E6 1.169E5 100 - - 1200 3.506E5

Table 4.2: Table of material model parameters for simulations presented in the results section

In table 5.1 the simulations presented in the results section is shown. A detailed table of
simulations is included in appendix G. Each simulation that is later presented in section 5
is described below. All other simulations are presented in their respective appendix.
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4.3.1 Calibration

The parameter values used in the simulation of the calibration experiment [13] are the
parameters obtained after some adjustments, hence the values are the final values. The
parameters used for the Ogden Rubber model are µ1, which is the shear modulus, α1 which
is hardening parameter, G1 which is prony serie relaxation shear modulus and β1 which is
relaxation constant. Further a poisson’s ratio of ν = 0.499 is used for the low strain rate
range and an implicit calculation is performed. For the intermediate strain rate range a
poisson’s ratio of ν = 0.4999983 is used which corresponds, in small strain theory, to a
bulk modulus of 0.5 GPa. The density used is 920kg/m3.
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Figure 4.13: Input material curves for Simplified Rubber

For the Simplified Rubber model a bulk modulus of K=5E5 has been used for the low
strain rate range and K=5E8 for the intermediate strain rate range. The material input
curves are presented in figure 4.13. The curves are not taken directly from the experiment
in [13] but are created by using an expression for the uniaxial tension of the incompressible
Ogden Rubber without viscoelastic contribution [23]. The reason for using two curves at
each range, two curves lies close to each other, is since if the strain rate is higher or lower
than the one specified, the two curves closest to the actual rate will be used in the linear
interpolation. The density is set to 920kg/m3.

When calibrating the Soft Tissue model the parameters C1 and C2 are varied which are
stiffness parameters. Further the prony serie is input by varying the coefficients S1 and T1
which are the relaxation modulus and relaxation time respectively. The bulk modulus is
set to K=5E5 for the low strain rate range and K=5E8 for the high strain rate range. The
density is set to 920kg/m3.

4.3.2 Evaluation 1

These simulations are performed for the Ogden Rubber material model and the Soft Tissue
material model only. The Simplified Rubber material model is discarded due to convergence
problems. The parameters calibrated in the previous section are used, shown in table 5.1.
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4.3.3 Evaluation 2

These simulations are performed for the Ogden Rubber material model and the Soft Tissue
material model only. The Simplified Rubber material model is discarded due to conver-
gence problems. The parameters calibrated in the previous section are evaluated. Also
the THUMS model, Viscoelastic 006 in LS-DYNA [21] is simulated for reference. The
parameters used are for the chest area of the THUMS HBM.

5 Results

The results section is divided into results from calibration [13], results from evaluation 1
[8] and evaluation 2 [15].

5.1 Results from calibration
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Experiment 0.002/s
Experiment 0.2/s
CIH5O1 Ogden Rubber 0.2/s
CIH5Si1 Simplified Rubber 0.2/s
CIH5So1 Soft Tissue 0.2/s

Figure 5.1: Experimental curves taken from [13]

Material model ν C1 C2 µ1 α1 K S1 T1 G1 β1 ρ
Ogden Rubber 0.499 - - 30 20 - - - 3000 310 920
Simp. Rubber 0.49 - - - - 5E5 - - - - 920

Soft Tissue - 100 100 - - 5E5 10 0.00322 - - 920

Table 5.1: Table of material model parameters for low strain rate range

The experimental curves in figure 5.1 are taken from [13], from the low strain rate compres-
sion test. The experimental curves are chosen with 0.2/s and 0.002/s strain rate. These
strain rates are the lowest and highest strain rates in the low strain rate region. The anal-
yses are performed at a strain rate of 0.2/s. Note that the soft tissue material model is
less nonlinear than the ogden model and the simplified rubber model.
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Experiment 160/s
Experiment 25/s
Experiment 100/s
CJH2O1 Ogden Rubber 100/s
CJH8Si1 Simplified Rubber 100/s
CJH2So1 Soft Tissue 100/s

Figure 5.2: Experimental curves taken from [13]

The experimental curves in figure 5.2 are taken from [13], from the intermediate strain rate
compression test. The experimental curves are chosen with 100/s and 160/s strain rate.
Note that the curve from the simplified rubber model is higher than the curves from the
other models. Also note the peak in the beginning of the curves from the analyses and
note the abscence of this peak in the experiments.

Material model ν C1 C2 µ1 α1 K S1 T1 G1 β1 ρ
Ogden Rubber 0.4999983 - - 30 20 - - - 3000 310 920
Simp. Rubber 0.49 - - - - 5E8 - - - - 920

Soft Tissue - 100 100 - - 5E8 10 0.00322 - - 920

Table 5.2: Table of material model parameters for intermediate strain rate range
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5.2 Results from evaluation 1
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Figure 5.3: Ogden Rubber and Soft Tissue. Experimental curves taken from [8]

In figure 5.3 the results of evaluation 1 are presented. The Ogden Rubber and the Soft
Tissue model are presented. Note that the end values are around 2 N which is 25 percent
of the experimental reported force at 4 mm penetration. The parameters in table 5.2.

5.3 Results from evaluation 2
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Figure 5.4: Ogden Rubber with linear viscoelasticity. Experimental curves taken from [15]
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In figure 5.4 the ogden rubber model is compared to three different shear strain rates. Note
the difference in the slope. The experiment shows shear strain softening and the simulation
shows shear strain hardening.
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Figure 5.5: Soft Tissue with viscoelasticity. Experimental curves taken from [15]

In figure 5.5 the Soft Tissue model with viscoelasticity is simulated at three different shear
strain rates. Note the almost linear behaviour of the Soft Tissue model and the shear
strain softening of the experiment.
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Figure 5.6: Viscoelastic material model. Experimental curves, at bottom of figure, taken from [15]
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In figure 5.6 the THUMS material model is simulated at three different strain rates. Note
the excess stiffness of the THUMS simulation. The experiments lies at the bottom of the
graph.

The parameters in table 5.1 are used for Ogden Rubber and Soft Tissue. The THUMS
material model parameters are ρ =1200 K=2.296E6 G0=3.506E5 Gi=1.169E5 β=100 .
The Simplified Rubber input curves are from figure 4.13.

6 Discussion

The discussion section will begin with an analysis of the results of the simulation of the cal-
ibration experiment. Proceeding with an analysis of the evaluation 1 experiment. Finally,
a discussion of the result in the simulation of the experiment in evaluation 2.

6.1 Calibration

The Ogden rubber material model in figure 5.2 predicts the stress-strain behaviour in com-
pression with excellent results. There is no need to make any improvements for the low
strain rate region since the model is as good as the indata. The same applies to the Sim-
plified Rubber material model 5.2. The soft tissue material model shows a weak nonlinear
behaviour. This is due to when the parameters of the model are tweaked according to
section 3.0.1 the model reduces to a Mooney Rivlin solid which is a special case of the two
term Ogden Rubber with parameters α1 = 2 and α2 = −2. Since the Ogden Rubber model
in figure 5.2 has parameter α = 20 it is more nonlinear than the Mooney Rivlin which is
of second order. The discrepancies between the Ogden Rubber model and the Simplified
Rubber model is just a matter of parameter tweaking, they have equal behaviour.

When predicting the intermediate strain rate region a value of 100/s was choosen. It can
be seen here also that the Soft Tissue model is less linear than the Ogden Rubber model,
this difference is explained as previously. The peak in the beginning of the analysis comes
from the inertial effects. Since the material is very compliant and the density rather high
a small amount of acceleration gives a relatively large contribution to the overall forces.
In the experiment there is no peak at the beginning. One possible explanation could be
that the density is set too high but this is rather unlikely since the same value has been
observed in different papers. A more possible explanation or hint to where an explanation
could be found is in the test setup. It was not possible to obtain the blueprints of the
loadcell and there might be something in its construction that filters these peaks.In the
experiment the platen was accelerated upto the choosen velocity and then impacted onto
the specimen. It was not possible to model this high acceleration, as in the impact, with
this high bulk modulus without getting an unstable solution. With a higher acceleration
the peak would become higher and thinner and could possibly be filtered away by the real
test setup, it might not even be registered by the measuring device. Since all three material
models has a peak in the beginning of the analysis it is less probable that the reason lies
in the material modelling. The Soft Tissue is more similar to the Ogden rubber at this
strain rate due to the fact that both has a viscoelastic contribution with a one term Prony
serie as relaxation function. The Simplified Rubber model deviates from the other two
models since it has no hereditary integral that constitutes a fading memory effect of the
strain rate at previous timesteps. The Simplified Rubber has its stress-strain curve above
the other material models and it is not possible to lower it any further at this strain rate
and density. If the stiffness is reduced it asymptotically approaches a curve with the same
peak as with the original stiffness and the remaining curve is less nonlinear.
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6.2 Evaluation 1

According to figure 5.3 and table 4.1 the simulation results for both material models are
only 25 percent of the experimental value in cycle 8. This could be due to several factors.
For instance the indentor used in the experiment is flat ended and no radius is reported.
Obviously it has to have a radius but how small it is is not documented. There hasn’t been
enough time in the project to make a study on the sensitivity of the force to the radius
and a radius of 1 mm have been used. It could be speculated at least that the force should
increase with decreasing radius but with what amount. The sensitivity might decrease with
decreasing radius but that is just a speculation. In order to decrease numerical instability
the indentor does not impact the specimen at full velocity rather accelerates from zero
upto 2000 mm/s in 0.1 ms. This is only 5 percent of the total simulation time. Due to
the relaxation time of 3.22 ms of the one term prony serie in both models this means that
it does not have time to fully relax. If a longer relaxation time had been set it could be
speculated that the force would be higher at 4mm penetration. Since the simulation time,
due to the acceleration in the beginning, is a little bit longer than in reality the end value
of the simulation will be lower since the viscoelastic contribution would have relaxed to a
lower stiffness. This would result in a lower value of indentor force. It is quite riskful to
compare one value since there are oscillations in the force and they could be shifted slightly
in time due to different factors which would result in a value far away from the real value
even though, if the whole experimental curve could have been obtained, it might have been
really close in comparison. The opposite is also a risk. Further the ovine WAT might be
stiffer than porcine or human WAT. In the experiment hexahedral elements were used with
a 1 point integration solid element. Since they are subject to hourglassing, and hourglass
formulation has been used. Unfortunately the hourglass forces are higher than the rule of
thumb, below 10 percent of peak internal energy. An hourglass sensitivity study has been
performed which reveals little sensitivity between indentor force and hourglass coefficient,
see appendix D.1.2. This might support the use of higher than 10 percent hourglass energy.

6.3 Evaluation 2

According to figure 5.4 the Ogden Rubber predicts the stresses with reasonable accuracy
but it exhibits an opposite behaviour considering the stiffness. This is due to the fact
that the experiment shows shear strain softening and the model is calibrated against a
compression curve with strain hardening. If the model is calibrated with compressive
strain-hardening and tensile strain hardening it is unlikely that shear strain softening can
fit in the model behaviour. Further the strain rate dependency is different in that the
model does not show as large increase with strain rate as the experiment. This is due to
the indata and can be accomodated by the model since more terms can be added to the
prony series thus capturing a wider range of strain rates. In figure 5.4 looking at the curve
of the Ogden rubber model at strain rate 1/s there is a small slope in the beginning with
decreasing stiffness. This is from the hereditary integral with one prony serie fitted to
the experiment in the calibration at 100/s. The small slope has similar behaviour as the
experiment curves but if this small slope would be expanded by use of shorter relaxation
times the compressive behaviour would also be influenced since the same prony serie is
used for all elements of the strain rate tensor, that is the same prony serie is used for all
shear strains and strains in the hereditary integral according to section 3.0.3.

In figure 5.4 it can be seen that the Simplified Rubber model has a similar behaviour
as the Ogden Rubber in figure 5.4. The difference is that there is no slope in the beginning
of the curve at strain rate 1/s since there is no heriditary integrals involved, only linear
interpolation. This model cannot accomodate both tensile and compressive strain harden-
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ing at the same time as shear strain softening since the input is a curve from a uniaxial
tensile-compressive test. If shear strain softening is wished for the compressive and tensile
strain hardening would suffer. The strain rate dependency for this model is constant at
these ranges of strain due to the indata but the model can accomodate the strain rate
stiffening response if the appropriate indata is input.

In figure 5.5 the results from the Soft Tissue material model is shown. This model is
more similar in its shear stress-strain response than the previous models but this model
cannot predict shear strain softening since it is linear in shear strain. The shear stress
depends on the Mooney Rivlin coefficients added and then multiplied by the shear strain,
that is the two Mooney Rivlin coefficients added is equal to the shear modulus. The model
with these particular parameters is does not represent the same amount of shear strain
stiffening but it can be accomodated if fitted with indata from the correct strain rate
range. The slope at the beginning of the curve at strain rate 1/s has the same explanation
as for the Ogden Rubber model in figure 5.4

Figure 5.6 displays the THUMS model which is the LS-DYNA linear viscoelastic model
with one term prony serie. The experiment curves have been flattened out and lies at the
bottom of the figure since this model severely overestimates the stiffness and shear stress
by a factor 102.
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7 Conclusions

The Ogden Rubber would be suitable if range of strain rate is not too large otherwise
the Soft Tissue is a better choice while the Simplified Rubber is discarded due to severe
convergence problems. The Ogden Rubber would be the preferred choice if a strongly
nonlinear behaviour in compressive-strain to compressive-stress is sought for. The Soft
Tissue would be more suitable if there are large shear strains that affect the human body
model. The Ogden Rubber would be preferred if incorrect shear strain representation and
narrow range of strain rate is weighed up by it being 6-7 times faster. Which model that
is the most preferred would be determined by future work and investigations.

8 Future Work

It is highly recommended to do further experiments on WAT due to paucity of available
experiments and due to the small number of specimens and samples used in the up to
now conducted experiments. It is suggested tha porcine WAT be used since it is similar
to human WAT. Especially, subcutaneous WAT at the porcine back middle layer which is
similar to deep subcutaneous WAT at the human abdomen [14]. Further, investigations
are needed on finding a similar depot site of the visceral human WAT, since this depot site
is relatively large in certain individuals.

Suggested experimental methods are unconfined compression, see work by [13]. There
haven’t been conducted any experiments on the tensile behaviour of WAT, due to difficulties
in fastening of the specimen.

For evaluation an indentation experiment might be suitable since it produces a complex
strain field including all strain components such as, shear, compression and tension. For in-
dentation experiments see work by [4]. If indentation is going to be used it is recommended
not to use a flat ended cylindrical indentor but rather one that has a radius at the end.
This is to get rid of the sharp edge which is troublesome when modeling contact since it
complicates contact modeling by introducing a lot of hourglassing due to the concentraded
stress at the edge. A sharp edge does also require a higher mesh density in order for the
solution to converge, at least for convergence of the contact force.

Regarding the material models of this thesis, if one is going to be used it is recommended
to investigate the need to correctly represent the shear strains in an actual crash simulation
since both models underestimates the stiffness in shear for small values of strain and
overestimates for higher values of strain. Further a sensitivity analysis should be performed
for the wanted quantities with respect to the bulk modulus. This is since the bulk modulus
of WAT is rather high which in turn slows down the explicit calculations considerably. If
the Ogden Rubber model is to be used, a sensitivity study of the wanted quantities with
respect to the poisson ratio is recommended since a very high poissons ratio, very close to
0.5, indirectly increases the bulk modulus which in turn slows down explicit calculations.
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A Finite Deformation Continuum Mechanics

A.1 Finite Deformation Kinematics

The motion of a body can be described by the mapping

x = Φ(X, t) (A.1)

This mapping is a transformation from the Lagrangian, material, formulation to the
Eularian, spatial, formulation. It is a transformation from the undeformed to the de-
formed configuration. In order to transform quantities between the material and spatial
configuration the deformation gradient is defined

F =
∂Φ(X, t)

∂X
(A.2)

In order to get a representation of the strain the right Cauchy-Green deformation tensor
is defined as

C = FTF (A.3)

This can be interpreted as the transformation of the scalar product between two ele-
mental vectors in the material configuration to the spatial configuration

dx1 · dx2 = dX1 ·CdX2 (A.4)

In order to calculate the difference between the scalar product of the elemental vectors
above the Green strain tensor is introduced

E =
1

2
(C− I) (A.5)

This then becomes

1

2
(dx1 · dx2 − dX1 · dX2) = dX1 · EdX2 (A.6)

The Green strain tensor is the equivalent of the small strain tensor in infinitesimal
strain theory since the infinitesimal strain tensor is obtained upon linearization of the
Green strain tensor

In order to pave the way for the viscoelastic contribution further on an expression for
the velocity is needed.

v(X, t) =
∂φ(X, t)

∂t
(A.7)

The above expression is differentiated with respect to the coordinates of the parti-
cles in the body in the material configuration which produces the time derivative of the
deformation gradient

Ḟ =
∂

∂X
(
∂φ

∂t
) (A.8)

The material time derivative of the Green strain tensor is also needed.

Ė =
1

2
(ḞTF + FTḞ) (A.9)

To show how the above quantities are explicitly calculated an example of pure elongation
will be used
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Figure A.1: Pure elongation

The displacement is the same as the above mentioned mapping

x = φ(X, t) (A.10)

The components of the displacement vector in this case becomes

x1 = X1 +X1vt/L (A.11)

x2 = X2 (A.12)

x3 = X3 (A.13)

where v is the velocity of the right edge in the material configuration, t is time and L
is the initial length.

F =
∂x

∂X
=

1 + vt/L 0 0
0 1 0
0 0 1

 (A.14)

Ḟ =
∂

∂X
(
∂φ

∂t
) =

v/L 0 0
0 0 0
0 0 0

 (A.15)
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A.2 Stress Measures

The cauchy stress tensor is related to areas and forces in the current configuration, the
deformed configuration, in the following way.

dp = σda (A.16)

That is the common intuitive interpretation of stress. The second Piola-Kirchhoff stress
tensor is instead a transformation of the cauchy stress into the initial configuration, the
undeformed configuration. First, a pullback from the current to the initial configuration
of the elemental force vector dp is performed.

dP = F−1dp (A.17)

Now equation (A.16) is inserted into equation (A.17) resulting in

dP = F−1σda (A.18)

The area elemental vector is still in the deformed configuration. Nanson’s formula is
used in order to transform it into the undeformed configuration

dP = JF−1σFT︸ ︷︷ ︸
S

dA (A.19)

A.3 Hyperelasticity

Hyperelasticity is defined as path independency of the material. That is the strain en-
ergy function is only dependent on the initial and final state and not how that state was
reached[12]. This can be formulated as

Ψ(C(X),X) (A.20)

Ψ(IC , IIC , IIIC ,X) (A.21)

Ψ is the strain energy function. A definition of C can be found in appendix A.1. IC , IIC , IIIC
are the first, second and third invariant of a second order tensor and are equal to I : C,
C : C and det(C) respectively. In (A.21) the strain energy is dependent not upon C but
only on its invariants which are invariant when the coordinate system is rotated. Since this
is isotropic hyperelasticity the strain energy is fully determined by the three invariants. In
for example transverse isotropy two additional invariants are needed in order to determine
the strain energy. Below is the expression for the second Piola Kirchhoff stress tensor for
an isotropic material.

S = 2
∂Ψ

∂C
= 2

∂Ψ

∂IC

∂IC
∂C

+ 2
∂Ψ

∂IIC

∂IIC
∂C

+ 2
∂Ψ

∂IIIC

∂IIIC
∂C

(A.22)

A.4 Hyperelasticity in Principal Directions

When looking at an isotropic hyperelastic material in the principal directions the strain
energy is a function of the principal stretches instead of the invariants of the right Cauchy
Green strain tensor. In order to achieve this the square of the principal stretches and the
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principal directions are obtained by calculating the eigenvalues and eigenvectors of C. This
gives the expression for the second Piola Kirchhoff stress tensor as[12].

S =
3∑

α=1

SααNα ⊗Nα; Sαα = 2
∂Ψ

∂λ2α
(A.23)

The above equation is the spectral representation of the second Piola Kirchhoff stress tensor
with the basevectors in the material configuration

A.5 Near incompressibility

When dealing with incompressible materials problems arise when used with the finite ele-
ment method[12]. In order to get around this problem a nearly incompressible formulation
is used instead where the strain energy is split into an isochoric and volumetric part as
follows.

Ψ(λ1, λ2, λ3) = Ψ̂(λ̂1, λ̂2, λ̂3) + U(J) (A.24)

The hat refers to isochoric deformation which is the deformation under constant volume.
This implies that the determinant of the deformation gradient, the volume change, is equal
to 1 and in the case of isotropy in principal directions this yields

λα = J1/3λ̂α (A.25)

The term U(J) is the energy generated when the body experience volumetric defor-
mation and since near incompressiblity is used as an approximation for incompressibility,
U(J) needs to be accompanied by a penalty parameter that forces the body not to de-
form volumetrically. That is it prohibits this way of deformation since due to the penalty
parameter a volumetric deformation would give a considerable contribution to the strain
energy as compared to isochoric deformation.
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B Mesh Convergence

B.1 Calibration

In order to find out how many elements that are needed for the analyses a mesh convergence
study is performed using successively larger mesh densities.

B.1.1 Hexahedral elements

The element used here is the default formulation in LS-DYNA, namely elform=1.
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Figure B.1: Mesh convergence with explicit calculation. Ogden model with viscoelastic contribution

According to figure B.1 it can be concluded that for the ogden model with viscoelastic
contribution it is sufficient with a mesh density with 600 hexahedrons for explicit calcula-
tions.
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Figure B.2: Mesh convergence with explicit calculation.Simplified rubber with strain rate dependency
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In figure B.2 it can be seen that the Simplified Rubber model requires around 2000
hexahedral elements in order to reach convergence. This is around 3 times more than the
Ogden rubber model with viscoelastic contribution in figure B.1.
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Figure B.3: Mesh convergence with explicit calculation. Soft tissue with viscoelastic contribution

In figure B.3 it can be seen that the Soft tissue model with viscoelastic contribution
reaches convergence with 600 hexahedral elements.

B.1.2 Tetrahedral elements

The element used here is a tetrahedral formulation in LS-DYNA, namely elform=13.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ogden rubber with viscoelastic contribution

time [s]

fo
rc

e 
[N

]

 

 
5721 Tetrahedrons
16444 Tetrahedrons
82899 Tetrahedrons
268984 Tetrahedrons

Figure B.4: Mesh convergence with explicit calculation. Ogden model with viscoelastic contribution

It can be seen in figure B.4 that there is sufficient convergence at 5721 tetrahedrons.
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Figure B.5: Mesh convergence with explicit calculation. Simplified rubber with strain rate dependency

According to figure B.5 the Simplified rubber model does not converge even at 268984
tetrahedrons. No further increase in mesh density is necessary since the number of elements
largely exceeds the number required for convergence of the Ogden rubber and Soft tissue
model.
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Figure B.6: Mesh convergence with explicit calculation.Soft tissue with viscoelastic contribution

It can be seen in figure B.6 that there is sufficient convergence at 5721 tetrahedrons.
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B.2 Evaluation 1
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Figure B.7: Mesh convergence with explicit calculation. Ogden model with viscoelastic contribution

According to figure ?? it is reasonable to use a mesh density of 215279 hexahedrons for
evaluation 2 with the Ogden Rubber material model.
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Figure B.8: Mesh convergence with explicit calculation. Soft Tissue with viscoelastic contribution

According to figure B.8 it is reasonable to use a mesh density of 215279 hexahedrons
for evaluation 2 with the Soft Tissue material model.
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B.3 Evaluation 2
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Figure B.9: Mesh convergence with implicit calculation. Ogden model with viscoelastic contribution

According to figure B.9 it can be concluded that for the ogden model with viscoelastic
contribution it is sufficient with a mesh density with 200 hexahedrons for implicit calcula-
tions.
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Figure B.10: Mesh convergence with explicit calculation.Simplified Rubber with strain rate dependency

It can be seen in figure B.10 that convergence is not reached even at 2100 hexahedrons.
This model is therefore discarded since it demands at lowest a factor of ten times more
than the Ogden Rubber to reach convergence.
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Figure B.11: Mesh convergence with explicit calculation.Soft Tissue with viscoelastic contribution

As can be seen in figure B.11 a mesh of 200 hexahedrons is sufficient for convergence.
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E2QH3T1 600 Hexahedrons

Figure B.12: Mesh convergence with explicit calculation.THUMS

According to figure B.12 it is considered safe to use a mesh density of 200 hexahedrons.
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C Element formulation study

C.1 Element formulation Study

Since tetrahedral elements are going to be used in the future when meshing the WAT,
an element formulation study has been performed comparing the converged hexahedral
solution with different element densities of the tetrahedral formulation.

C.1.1 Calibration

The hydraulic compression test has been used and the converged
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Figure C.1: Ogden rubber model with viscoelastic contribution.
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Figure C.2: Simplified model with strain rate dependency.
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Figure C.3: Soft tissue model with viscoelastic contribution.

seconds/Tetrahedron at 5721 elements seconds/Tetrahedron at 268984 elements
Ogden rubber 0.01 0.04
Simplified rubber 0.03 0.13
Soft tissue 0.07 0.23

Table C.1: Element processing as if run with 1 CPU.

speed factor
Ogden rubber - Simplified rubber 3
Simplified rubber - Soft tissue 2
Ogden rubber - Soft tissue 6-7

Table C.2: Table shows seconds/tetrahedron for the fastest material model, amongst the two compared,
divided by seconds/tetrahedron for the slowest amongst the two compared.

The simulations has not been run with only one CPU hence their might be communi-
cation between the CPU:s in the element processing time, but the speed factors in table
C.2 gives a hint of which ones the fastest, middle, and slowest.
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D Hourglass formulation study

D.1 Hourglass formulation study

In order to find the appropriate hourglass formulation and hourglass coefficient a number of
different formulations and coefficient have been tested at one strain rate with one material
model.

D.1.1 Calibration

In these tests the Ogden model is used with µ = 40, α = 20 and a viscoelastic contribution
by a one term prony serie with coefficients β1 = 310 and G1 = 3000. The engineering
strain rate is 100/s.
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Figure D.1: Hourglass formulation study, mesh density 600 hexahedrons

According to figure D.1 a) it can be seen that the curve with 1 integration point element
is sufficiently similar to the fully integrated element. Further according to figure D.1 c)
there is almost no difference between an hourglasscoefficient of 0.1 and 0.05 since the curve
almost overlaps. In figure D.1 d) it can be seen that the hourglass energy is very low in
comparison with the internal energy and this formulation is used further on.
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D.1.2 Evaluation Study 1
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Figure D.2: Hourglass formulation study

The hourglass coefficient have been varied from visible hourglassing modes in the simulation
to no visible hourglassing modes. When there are no hourglass modes the hourglass energy
is higher than the 10
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Figure D.3: Hourglass formulation study

Acording to figure D.3 there is little influence of hourglass coefficient to the force in
the indentor with the Soft Tissue. It still does vary a bit in the end were the comparison
is going to be made but it is at least in the right ballpark.
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E Frictional sensitivity analysis

The sensitivity of the forces with respect to the friction needs to be investigated in order
to see if frictional formulation is needed or not. If the force is very sensitive to the friction
coefficients, care has to be taken in choosing the correct values.

E.1 Calibration

In these tests the Ogden model is used with µ = 40, α = 20 and a viscoelastic contribution
by a one term prony serie with coefficients β1 = 310 and G1 = 3000. The engineering
strain rate is 100/s. Further the dimensions of the specimen are radius 5 mm and length
3 mm.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time [s]

fo
rc

e 
[N

]

Force sensitivity with respect to friction

 

 
CHH2O1 zero friction
CHH2O2 FS 0.05 FD 0.04
CHH2O3 FS 0.1 FD 0.09
CHH2O4 FS 0.2 FD 0.19
CHH2O5 FS 0.3 FD 0.29
CHH3O6 FS 0.3 FD 0.29 1200 Hexahedrons

Figure E.1: Frictional sensitivity analysis. Ogden model with viscoelastic contribution

According to figure E.1 it can be concluded that for the ogden model with viscoelastic
contribution the friction has almost zero influence at small strains. At larger strains the
curves deviate and the force become more and more sensitive to friction with increasing
values of the coefficients. According to Bjork steel on steel has friction coefficients FS=0.18
and FD=0.14. It is reasonable to assume that WAT on nylon platens has lower values of
friction coefficients. According to Bjork steel on steel with lubricated surfaces has friction
coefficients FS=0.1 and FD =0.05. It is reasonable to assume that these values are very
close to the values of WAT on nylon platens and since the sensitivity is lower when FS and
FD are lower it becomes less critical to establish exact values on the friction coefficients
hence FS=0.1 and FD=0.05 are going to be used further on for the WAT on nylon platens.
In figure E.1 the black dashed line corresponds to an analysis with higher mesh density
and it can be concluded that the mesh density used is sufficient. This was done since
the stressfield obviously changes as the friction coefficient is increased resulting in a more
nonlinear stressfield.
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F Stress sensitivity to bulk modulus or poissons ratio

In order to save analysis time it is reasonable to check the sensitivity of stress to the value
of the bulk modulus since a lowering of the bulk modulus reduces simulation time.

F.1 Evaluation 2

The simulation times for the three tests in evaluation 2 are relatively slow, 015 s, 1.5 s and
15 s. The last two would take a considerable amount of time to calculate with the explicit
method therefore the implicit method is used for all three. Further since the bulk modulus
is relatively high the simulation time is also long for the implicit method. A sensitivity
test at 0.015 s simulation time with the explicit method has been performed with various
poissons ratios and bulk modulus’ including the correct one, for all three material models.
The calculations have been performed with elform=3 in order to eliminate hourglassing.
The argument is since this sensitivity test is performed at a faster simulation time it would
be sufficient to validate the use of a lower poissons ratio or bulk modulus if there is low
enough sensitivity of poissons ratio or bulk modulus to the shear stress. This since this
faster simulation will only increase inertial effects and stress due to strain rate dependency
which would be a more severe case than the slower ones.
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E2XH2O1 ν = 0.4999983
E2XH2O2 ν = 0.499

Figure F.1: Mesh density 200 hexahedrons, elform = 3

As can be seen in figure F.1 it is assumed safe to use a poissons ratio of 0.499 for the
three tests in evaluation 2.
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Soft Tissue shear stress sensitivity to bulk modulus

 

 
E2XH3So1 K = 5E5
E2XH3So2 K = 5E8

Figure F.2: Mesh density 600 hexahedrons, elform = 1

As can be seen in figure F.2 it is assumed safe to use a bulk modulus between 5E5 to
5E8 for the three tests in evaluation 2.
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G List of simulations

Below follows a brief description of the various simulations performed on the Calibration,
Evaluation 1 and Evaluation 2. A table of simulations is included in appendix amongst
the material keyword cards used in LS-DYNA.

Interpretation of simulation letter denominations

Simulation denomination, numbers also correspond to directory level of stored in- and output data

C_F_H1_O_1

1

1_2_3_4_5

2

3

4

5

Example of simulation denomination

1

2

3

4

5

H1: 215279 hexahedrons
H2: 1434799 hexahedrons

O: Convergence test
M: Hourglass sensitivity

E1: Evaluation

O: Ogden Rubber material model
Si: Simplified Rubber material model
So: Soft Tissue material model
T: THUMS, Viscoelastic material model

1: Analysis nr. 1
2: Analysis nr. 2
3:
.
.
.

1

2

3

4

5

H1: 100 hexahedrons
H2: 200 hexahedrons
H3: 600 hexahedrons
H4:1200 hexahedrons
H5:2100 hexahedrons

Q: Convergence test
X: Bulk modulus sensitivity
T: Model test at 1/s
U: Model test at 0.1/s
V: Model test at 0.01/s

E2: Evaluation

O: Ogden Rubber material model
Si: Simplified Rubber material model
So: Soft Tissue material model
T: THUMS, Viscoelastic material model

1: Analysis nr. 1
2: Analysis nr. 2
3:
.
.
.

H1: 200 hexahedrons
H2: 600 hexahedrons
H3: 1200 hexahedrons
H4: 1000 hexahedrons
H5: 1800 hexahedrons
H6: 2400 hexahedrons
H7: 2000 hexahedrons
H8: 3000 hexahedrons
T1: 5721 tetrahedrons
T2: 16444 tetrahedrons
T3: 268984 tetrahedrons

O: Ogden Rubber material model
Si: Simplified Rubber material model
So: Soft Tissue material model
T: THUMS, Viscoelastic material model

F: Convergence test 100/s
H: Variable friction test 100/s
I: Model fit 0.2/s
J: Model fit 100/s
M: Hourglass sensitivity

C: Calibration

1: Analysis nr. 1
2: Analysis nr. 2
3:
.
.
.

Figure G.1: Simulation denominations and roadmap of directory structure for storing indata and outdata
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Denomination Varied Parameters Value of varied parameter

Calibration

CFH1O1 Mesh density 200 elements
CFH2O1 Mesh density 600 elements
CFH3O1 Mesh density 1200 elements
CFH1Si1 Mesh density 200 elements
CFH2Si1 Mesh density 600 elements
CFH3Si1 Mesh density 1200 elements
CFH7Si1 Mesh density 2000 elements
CFH8Si1 Mesh density 3000 elements
CFH1So1 Mesh density 200 elements
CFH2So1 Mesh density 600 elements
CHH2O1 FS, FD FS 0 FD 0
CHH2O2 FS, FD FS 0.05 FD 0.05
CHH2O3 FS, FD FS 0.1 FD 0.1
CHH2O4 FS, FD FS 0.3 FD 0.3
CHH2O5 FS, FD FS 0.2 FD 0.2
CHH3O6 FS, FD FS 0.3 FD 0.3
CIH5O1 shear modulus µ1 α1 = 20, µ1 = 40, ρ = 920, G1 = 0, β1 = 0, ν = 0.4999983
CIH5Si1 Input curves K = 0.5E9, SW = ST = SL = 1, TBID = 5000
CIH5So1 C1, C2 XK = 0.5E9, S1 = 0, G1 = 0
CJH2O1 shear modulus µ1, G1, β1 α1 = 20, µ1 = 30, ρ = 920, G1 = 3000, β1 = 310, ν = 0.4999983
CJH8Si1 Input curves K = 0.5E9, SW = ST = SL = 1, TBID = 5000
CJH2So1 C1, C2, S1, G1 XK = 0.5E9, S1 = 0.00322, G1 = 10
CMH2O9 IHQ, QM, elform no hourglass formulation, elform=3
CMH2O11 IHQ, QM, elform IHQ=1, QM=0.1, elform=1
CMH2O12 IHQ, QM, elform IHQ=1, QM=0.05, elform=1

Table G.1: Table simulations for Calibration

Denomination Varied Parameters Value of varied parameter

Evaluation 1

E1OH1O1 Mesh density 215279 elements
E1OH2O1 Mesh density 1434799 elements
E1OH1So1 Mesh density 215279 elements
E1OH2So1 Mesh density 1434799 elements
E1PH1O1 IHQ, QM IHQ=1, QM=0.1
E1PH1O2 IHQ, QM IHQ=1, QM=0.005
E1PH1So1 IHQ, QM IHQ=1, QM=0.1
E1PH1So2 IHQ, QM IHQ=1, QM=0.005

Table G.2: Table simulations for Evaluation 1
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Denomination Varied Parameters Value of varied parameter

Evaluation 2

E2QH1O1 Mesh density 100 elements
E2QH2O1 Mesh density 200 elements
E2QH3O1 Mesh density 600 elements
E2QH3Si1 Mesh density 600 elements
E2QH4Si1 Mesh density 1200 elements
E2QH5Si1 Mesh density 2100 elements
E2QH2So1 Mesh density 200 elements
E2QH3So1 Mesh density 600 elements
E2QH2T1 Mesh density 200 elements
E2QH3T1 Mesh density 600 elements
E2XH2O1 ν ν = 0.4999983
E2XH2O2 ν ν = 0.499
E2XH3So1 K K=5E5
E2XH3So2 K K=5E8
E2TH2O1 none evaluation of already existing values
E2TH2So1 none evaluation of already existing values
E2TH2T1 none evaluation of already existing values
E2UH2O1 none evaluation of already existing values
E2UH2So1 none evaluation of already existing values
E2UH2T1 none evaluation of already existing values
E2VH2O1 none evaluation of already existing values
E2VH2So1 none evaluation of already existing values
E2VH2T1 none evaluation of already existing values

Table G.3: Table simulations for Evaluation 2

52 , Applied Mechanics, Master’s Thesis 2011:46



H Material Keycards

The material keyword cards are presented for the material models used in the simulations.
The keyword cards are presented with the final parameter values after the calibration ex-
periment. The Simplified Rubber model has TBID 5000 as input curves which corresponds
to the curves in figure 4.13.

*MAT_OGDEN_RUBBER 

$#     mid        ro        pr         n        nv         g      sigf 

         2       920 0.4999983         0         6     0.000     0.000 

$#     mu1       mu2       mu3       mu4       mu5       mu6       mu7       mu8 

        30     0.000     0.000     0.000     0.000     0.000     0.000     0.000 

$#  alpha1    alpha2    alpha3    alpha4    alpha5    alpha6    alpha7    alpha8 

 20.000000     0.000     0.000     0.000     0.000     0.000     0.000     0.000 

$#      Gi        Bi 

       3E3       310 

*MAT_SOFT_TISSUE_VISCO_TITLE 

softtissue 

$#     mid        ro        c1        c2        c3        c4        c5 

         1 920.00000       100       100     0.000     0.000     0.000 

$#      xk      xlam      fang     xlam0 

 5.0000E+8 10.000000     0.000     0.000 

$#    aopt        ax        ay        az        bx        by        bz 

  2.000000     0.000  1.000000     0.000     0.000     0.000  1.000000 

$#     la1       la2       la3      macf 

     0.000     0.000     0.000         1 

$#      s1        s2        s3        s4        s5        s6 

        10     0.000     0.000     0.000     0.000     0.000 

$#      t1        t2        t3        t4        t5        t6 

   0.00322     0.000     0.000     0.000     0.000     0.000 

*MAT_SIMPLIFIED_RUBBER/FOAM_TITLE 

simplified 

$#     mid        ro         k        mu         g      sigf       ref     prten 

         3 920.00000 5.0000E+8     0.000     0.000     0.000     0.000     0.000 

$#     sgl        sw        st   lc/tbid   tension     rtype    avgopt   pr/beta 

  1.000000  1.000000  1.000000      5000  1.000000  1.000000     0.000     0.000 

*MAT_VISCOELASTIC 

$#     mid        ro      bulk        g0        gi      beta 

         4      1200 2.2960E+6 3.5060E+5 1.1690E+5 100.00000 

 

Figure H.1: Material keyword cards used in LS DYNA [21]
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