
Driving Scenario Generation Using
Generative Adversarial Networks
Master’s thesis in Systems, Control, and Mechatronics

Martin Håkansson
Joel Wall

DEPARTMENT OF ELECTRICAL ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

www.chalmers.se

Master’s thesis 2021

Driving Scenario Generation Using Generative
Adversarial Networks

MARTIN HÅKANSSON
JOEL WALL

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2021

Driving Scenario Generation Using Generative Adversarial Networks
MARTIN HÅKANSSON

JOEL WALL

© MARTIN HÅKANSSON & JOEL WALL, 2021.

Supervisor: Mohammad Hossein Moghaddam, Department of Electrical Engineering
Majid Khorsand Vakilzadeh, Zenseact
Ghazaleh Panahandeh, Zenseact
Examiner: Jiajia Chen, Department of Electrical Engineering

Master’s Thesis 2021
Department of Electrical engineering Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by Magnus Gustaver
Gothenburg, Sweden 2021

iv

Abstract
There is a huge interest today to move towards highly autonomous vehicles. To
establish a framework that ensures robustness and reach the highly set qualifications
set by authorities to allow autonomous vehicles on roads, scenario-based verification
will be an important tool. In order to further diversify, augment and improve their
already established framework, car manufacturers and software companies wish to
investigate the use of generative machine learning methods to model new scenarios.
In this thesis, a Generative Adversarial Network, modified to handle time series
data, is used to generate trajectories of lane changes in a highway environment. The
generated data manages to visually and to a great extent, statistically capture the
properties of the real data. In order to quantify the performance of the proposed
framework, the generated data is also compared to data generated using related
machine learning approaches. The proposed framework however outperforms the
bench-marking methods in almost every evaluation metric. Even though results are
promising, a lot of work is still to be done in order to provide a robust tool chain
that generates driver-like behaviour of great use within scenario-based verification.

Time-series, Generative adversarial network, Autonomous driving, Deep Learning,
Neural Networks, Scenario-based verification

v

Acknowledgements
Firstly, we would like to thank Zenseact, and the supervisors Ghazaleh Panahandeh
and Majid Khorsand Vakilzadeh who proposed the thesis scope and ensured that
we stayed on track through out the process. We are also grateful for the help and
feedback provided by Mohammad Hossein Moghaddam from the academic side of
the thesis supervision from Chalmers. Lastly we want to thank all the employers
at Zenseact that we have reached out to that have happily helped us with various
challenges throughout the project.

Martin Håkansson, Gothenburg, June 2021
Joel Wall, Gothenburg, June 2021

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Background . 1
1.2 Previous Studies . 2
1.3 Problem Description . 2
1.4 Limitations . 3
1.5 Thesis Outline and Contributions . 3

2 Theory 5
2.1 Generative Adversarial Networks . 5

2.1.1 Challenges with Adversarial Training 6
2.1.2 Wasserstein Loss . 7

2.2 Recurrent Neural Networks . 7
2.2.1 Long Short-term Memory . 8
2.2.2 Gated Recurrent Units . 8

2.3 State-of-the-art GANs for Time Series Generation 9
2.3.1 Challenges in Time Series Generation 9
2.3.2 Auto-encoder GANs . 10
2.3.3 Recurrent GANs . 10
2.3.4 DoppelGANger . 11

2.3.4.1 Batch Generation . 11
2.3.4.2 Auxiliary Discriminator 11
2.3.4.3 Auto-normalization Heuristic 12
2.3.4.4 Generation Flag . 12

3 Methods 15
3.1 Data and Processing . 15

3.1.1 Normalization . 16
3.1.2 Attribute Standardization . 16

3.2 Network . 17
3.2.1 Capturing Long-term Dependencies 17
3.2.2 Generating Scenarios of Various Lengths 18

3.3 Evaluation . 18
3.3.1 Removing Temporal Aspect 18

ix

Contents

3.3.2 Time Dependencies . 18
3.3.3 Lane Change and Steering Behaviour 19
3.3.4 Nearest Neighbour . 19
3.3.5 Benchmarking . 20

4 Results and Discussion 21
4.1 Overview of Results . 21
4.2 Temporal Aspects . 24
4.3 Metadata . 26
4.4 Positional Changes . 27
4.5 Steering Behavior . 29
4.6 Evaluation of Overfitting . 30
4.7 Capturing the Entirety of the Distribution 31

5 Conclusion 33
5.1 Future Work . 33

References 35

A Appendix 1 I
A.1 TimeGAN . I
A.2 Recurrent Variational Auto-Encoder V

x

List of Figures

1.1 Illustration of a highway lane change in highway environment with
corresponding features of study that constitutes a lane change. 3

2.1 A schematic view of a GAN. The generator takes a noise vector z
as input and maps this to G(z). The discriminator then receives
input that are either x (real data) or G(z) (generated data). The
discriminator then outputs a prediction if the input data is either
fake (0) or real (1). These outputs are used to train the network. . . . 5

2.2 A schematic view of time steps in a RNN where each RNN cell xi
ouputs a corresponding time step ht 8

2.3 A schematic view of the auto-encoder GAN architecture. The encoder
breaks down the properties of a time series into a latent space repre-
sentation. The purpose of the GAN is to a generate an output with
the properties of the latent space representation that the decoder can
reconstruct into a new, synthetic time series. 10

2.4 The batch generation principle with S=2, Each RNN cell outputs two
timesteps ahead for a given time series length N. 12

2.5 Illustration of how the generation flag is embedded with each scenario
data . 13

3.1 1000 real scenarios that make the validation dataset. Top plot illus-
trates lateral velocity and bottom illustrates longitudinal velocity . . 15

4.1 1000 generated scenarios of lane changes. Top plot illustrates lateral
velocity and bottom illustrates longitudinal velocity 21

4.2 Distribution of the values of velocities in all time steps in a 1000
generated scenarios compared with the validation scenarios. 22

4.3 Distributions of scenario lengths for generated and validation data . . 23
4.4 Distribution of the error between each time step, each fifth time step,

and each tenth time step in lateral velocity, 24
4.5 Distribution of the error between each time step, each fifth time step

and each tenth time step in longitudinal velocity 24
4.6 Distribution of the generated metadata compared. 26
4.7 1000 generated scenarios of lane changes of the total positional change.

Left plot is the generated scenarios and the right plot is the real sce-
narios . 27

xi

List of Figures

4.8 Distributions of the position where scenarios end. To the left is for
generated lateral end position compared to the corresponding data
in the validation set. To the right is the generated longitudinal end
position compared to the corresponding data in the validation set . . 28

4.9 Steering behaviour of 1000 grouped scenarios. Left plot is the derived
heading from the generated data and the right plot is the derived
heading from the real scenarios . 29

4.10 Total distribution and 1st error of the derived generated heading com-
pared to the derived heading from the validation dataset. 30

4.11 Nearest neighbour evaluation of the four generated scenarios with the
smallest RMSE error to its three nearest neighbour in the real dataset. 31

4.12 Farthest neighbour evaluation of the four real scenarios with the
largest RMSE error to its three nearest neighbour in the real dataset 32

A.1 1000 generated scenarios of lane changes. Top plot illustrates lateral
velocity and bottom illustrates longitudinal velocity I

A.2 Distribution of the values of velocities in all time steps in a 1000
generated scenarios compared with the validation scenarios. II

A.3 Distribution of the error between each time step, each fifth time step,
and each tenth time step in lateral velocity. II

A.4 Distribution of the error between each time step, each fifth time step
and each tenth time step in longitudinal velocity III

A.5 Distributions of the position where scenarios end. To the left is for
generated lateral end position compared to the corresponding data
in the validation set. To the right is the generated longitudinal end
position compared to the corresponding data in the validation set . . III

A.6 Lateral velocity at time step 1 . IV
A.7 Steering behaviour of 1000 grouped scenarios. Left plot is the derived

heading from the generated data and the right plot is the derived
heading from the real scenarios . IV

A.8 1000 generated scenarios of lane changes. Top plot illustrates lateral
velocity and bottom illustrates longitudinal velocity V

A.9 Distribution of the values of velocities in all time steps in a 1000
generated scenarios compared with the validation scenarios. V

A.10 Distribution of the error between each time step, each fifth time step,
and each tenth time step in lateral velocity, VI

A.11 Distribution of the error between each time step, each fifth time step
and each tenth time step in longitudinal velocity VI

A.12 Lateral velocity at time step 1 . VII
A.13 Distributions of the position where scenarios end. To the left is for

generated lateral end position compared to the corresponding data
in the validation set. To the right is the generated longitudinal end
position compared to the corresponding data in the validation set . . VII

A.14 Steering behaviour of 1000 grouped scenarios. Left plot is the derived
heading from the generated data and the right plot is the derived
heading from the real scenarios . VIII

xii

List of Tables

4.1 JSD between total distributions of all time steps in 1000 generated
scenarios compared to the validation data 23

4.2 JSD between distributions of time differences in lateral velocity . . . 25
4.3 JSD between distributions of time differences in longitudinal velocity 25
4.4 JSD initial lateral position and velocity of training data, generated

data from model and benchmarking methods with regards to valida-
tion data . 27

4.5 JSD between of positional distribution of the final time step for the
training data and each method with regards to validation data. . . . 29

4.6 JSD of total distribution and 1st difference of heading between gen-
erated and validation data . 30

xiii

List of Tables

xiv

1
Introduction

The automotive industry is in the race of developing different levels of autonomous
vehicles and a key component of reaching these levels of self-driving are machine
learning algorithms. These algorithms are relevant to the decision making of vehicles
but lately, studies have been made were machine learning algorithms have been used
for verification purposes and even diversification of the data needed to train the
decision making algorithms. In order for autonomous vehicles to finally be allowed
on open roads, autonomous driving will first have to outperform human driving. For
this reason, new ways of verification and testing to further improve decision making
algorithms is of high relevance. This report aims to focus on the implementation of
machine learning solutions to the verification part of autonomous drive.

1.1 Background
In the automotive industry today there is a huge interest in moving towards au-
tonomous driving. Autonomous driving is today seen as an important step for the
future of transportation. To be able to take this step, it is crucial to have an ex-
tremely safe and reliable solution. Verifying such a solution have been shown to
require hundreds of millions kilometers test driving [1]. This is clearly not feasible
due to the time and effort required. One way to combat this issue is using so called
scenario-based verification. In scenario-based verification, a database of scenarios
that the vehicle of study get exposed to in the field, is used to test autonomous driv-
ing functionality [2]. Due to the power of a large and up to date scenario database,
there is a large interest in the automotive industry to keep developing tools to es-
tablish and expand such a database.
There are multiple ways of creating the scenarios needed for a database. One simple
but time consuming alternative is to extract and label driving scenarios from raw
sensor data [2]. This also has the advantage of giving full control throughout the
process. Since the extraction of scenarios is based on explicit rules it is subject
to missing unknown cases. A complementary approach to the explicit rule-based
extraction of scenarios is a machine learning approach. A machine learning approach
allows for generation of new data as well as giving an opportunity to generate diverse
and potentially safety critical scenarios. To be able to utilize the machine learning
approach it is crucial to find a method that allows for mimicking the variation in
the collected data and with that creating realistic synthetic scenarios.
To accomplish this in the thesis work, we investigate the usage of generative deep
machine learning tools for this purpose. Primarily different variations of Vari-

1

1. Introduction

ational Auto-Encoders (VAE) and Generative Adversarial networks (GAN) have
shown promise when it comes to generating data. For example GAN were intro-
duced [3] for image generation and VAE [4] have also shown great promise within
the field of image generation. However, both methods have later been developed
and utilized for generating sequential sensor data.

1.2 Previous Studies

The properties of sensor data differs from images. Most significantly sensor data are
sequential and each time step depend on the prior time steps. Capturing temporal
aspects has been one of the main topics in Natural Language Processing (NLP) and
has been successfully managed using Recurrent Neural Networks and LSTM cells.
To handle the temporal property of the scenarios a version of GAN that can handle
time series is necessary. Some of the most successful studies of time-series generation
seem to take inspiration from NLP and base their GAN network structure of LSTM-
cells. A few options that has done this is Auto-Encoder GAN (AE-GAN) [5] and
Recurrent conditional GAN (RC-GAN) [6]–[8]. Another state-of-the art version of
GAN that has been used for time series generation is DoppelGANger (DG) [9] which
also uses similar structure to original RC-GAN [6] but also introduces some training
features that significantly improves the generated sequences. Some research has also
been done within the field of driving scenario time series [8], [10], [11].
VAEs has also shown promise in capturing time-series properties [12]–[14]. These
studies however focus on classification for time series. In the RC-GAN paper [6] a
Recurrent VAE (RVAE) is used and trained to generate sine-wave data, these results
are mentioned as poor by the authors and are not presented in the paper. A RVAE
is used by Ding, Wang, and Zhao [15] with great result in generating trajectories of
vehicle encounters.

1.3 Problem Description

The aim of this thesis project is to generate realistic scenarios of driving behaviour
in the category of lane changes in a highway setting. A typical lane change carried
out by an ego vehicle and its features are illustrated in Figures 1.1a and 1.1b. These
scenarios should consist of time series with at least the observations of velocity in
lateral and longitudinal direction. However, the generated data should from this be
able to capture underlying properties such as acceleration in lateral and longitudinal
direction, the positional changes and also the steering angle of the vehicle. All
parameters are referenced to the lane that the ego-vehicle is driving in. The goal
is to generate scenarios that represents the distribution of the real dataset, and by
doing that, create data that can further increase the robustness of the testing and
verification of autonomous driving.

2

1. Introduction

(a) Illustration of a typical lane change sce-
nario referenced from the centre of initial
lane and the start of the scenario.

5 10 15 20 25

time steps

-1

-0.5

0

m
/s

Lateral velocity real data

5 10 15 20 25

time steps

0

50

m
/s

Longitudinal velocity real data

0 50 100 150

Longitudinal position (m)

-2

-1

0

L
a
te

ra
l
p
o
s
it
io

n
 (

m
)

Generated data positional change

(b) Top is lateral velocity, middle is longitu-
dinal velocity and bottom is the derived
position.

Figure 1.1: Illustration of a highway lane change in highway environment with
corresponding features of study that constitutes a lane change.

1.4 Limitations
Since the aim of the project is to create trajectories of the ego-vehicle, there will
not be any mentioning of target vehicles. The aim of the project is also to do the
generation for highway scenarios, which means that no data outside of highways will
be used. Another important limitation is that no non machine learning approach
will be used as a main method to generate driving scenarios. No other data than
that supplied by Zenseact will be used to train the algorithms.

1.5 Thesis Outline and Contributions
This thesis is made up of a theory section where the fundamentals of the Generative
Adversarial Network will be presented, from that further developments of GAN
and further work more closely related to the problem description of this report will
be presented. In the Method chapter, all implementation steps and contributions
made in this report will be presented along with the extensive evaluation process
of the GAN. In the result and discussion section, all findings and evaluations will
be presented and discussed. In the conclusion section, the relevance and possible
ramifications of this work will be presented.

3

1. Introduction

4

2
Theory

In order to solve the objectives, an extensive literature study is needed to identify
relevant methods for addressing the problem, but also for finding the state-of-the-
art model that are used within these methodologies in order to achieve desired
results. First, GANs will be explored. After that, other relevant machine learning
methodologies will be explained in order to grasp the holistically of what makes
a sequential generative model state-of-the-art. Specifically the RCGAN [6] will be
presented as well as an improved variant of it, DG [9].

2.1 Generative Adversarial Networks
Generative Adversarial Networks is a ground breaking generative method in the area
of deep learning. GANs were introduced by Goodfellow, Pouget-Abadie, Mirza, et
al. [3] in 2014 and consists of two competing neural networks.

Figure 2.1: A schematic view of a GAN. The generator takes a noise vector z as
input and maps this to G(z). The discriminator then receives input that are either
x (real data) or G(z) (generated data). The discriminator then outputs a prediction
if the input data is either fake (0) or real (1). These outputs are used to train the
network.

One of the networks, the generator maps a random input noise vector, z to a data
space. The goal of the generator is to map z as similar to an actual data, x as possi-
ble. It achieves this by the function G(z, σg) where G is a multi layer neural network
and σg represents its parameters[3]. For the second network, the discriminators, role
is to estimate the probability that the x actually came from the data instead of as
an output of G(z). This is done by the function D(x, θd) where D is a multi layer
neural network and θd represents its parameters [3]. Training the discriminators, the

5

2. Theory

goal is to assure that the discriminator makes the correct estimation on whether the
input is the original data, x or the generated data G(z). The generator is trained
to minimize equation (2.1) when fed with generated data [3]. I.e. the generator is
trained to make the discriminator predict the generated data as real data.

log(1−D(G(z))) (2.1)

Having two networks for this task is where the two networks compete in a mini-
max game described in equation (2.2) [3]. This kind of training is called adversarial
training [16]

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.2)

The objective of the GAN is to pull the distribution of the generated data towards
the distribution of the real data using the loss function. When the discriminator
performs optimally the loss function in equation (2.2) could be derived to be equal
to the Jensen-Shannon divergence that is described in equation (2.3) [3].

JSdiv(P ||Q) = 1
2K(P ||M) + 1

2K(Q||M) (2.3)

where M = 1
2(P + Q) and K is the KL divergence [17]. The KL divergence can be

calculated in the following way.

K(P ||Q) =
∑
i

P (i)log
(
P (i)
Q(i)

)
(2.4)

KL divergence is a maximum likelihood method and will go towards infinity if the
supports for the two distributions does not overlap. When combining different KL
divergences for the JS divergence the same case with no overlap of the distributions
gives the logarithm of two. This is the cause of some challenges in adversarial
training using the loss function suggested in (2.2).

2.1.1 Challenges with Adversarial Training
The main challenge occurring when using the loss function (2.2) is that it is possible
to saturate the discriminator resulting in that the generator gets no meaningful
feedback [18]. This could further be explained by the behaviour of the JS divergence
described previously. When there is no significant overlap between two distributions
the JS divergence will become constantly log two [19]. A constant result means
that the gradient over the loss function will be zero and the network will not learn
anything. This is what happens when the discriminator in a regular GAN is trained
to optimality. Further it can be explained by looking at the probability distributions.
When the discriminator improves and not the generator the joint support for real
and fake data becomes smaller [19]. If this joint support becomes negligible and
updates from the generator does not change that, then there is a discriminator win
case [20].

6

2. Theory

2.1.2 Wasserstein Loss
To address the issue that occurs when using JS as a method to match distributions,
a new metric is introduced in the Wasserstein GAN paper [19]. The authors pro-
pose a metric for comparing distributions which they call Earth-Mover distance or
Wasserstein distance. Wasserstein distance differs from KL and JS since it manages
to quantify the distance even when the compared distributions do not have a non-
negligible intersection [19]. How the Wasserstein distance is computed is illustrated
in equation (2.5). Incorporating Wasserstein distance for GANs allows us to always
have a meaningful feedback to the generator, since the gradient does not become
zero [19].

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ[‖x− y‖] (2.5)

In the Wasserstein proposed GAN, the discriminator network is replaced with a
critic which differs to the discriminator mainly in the fact that it does not output
a probability-prediction of fake or real, as the network in Figure 2.1, but instead
computes the Wasserstein distance between the two distributions as in equation
(2.6) [19].

max
w∈W

Ex∼Pr [fw(x)]− Ez∼p(z) [fw (gθ(z)] (2.6)

The loss function in (2.6) describes the Wasserstein distance between the generator
and the critic. Having a critic instead of a discriminator has a lot positive conse-
quences when it comes to the training of the network. The greatest benefit of using
the critic is that it is not possible to saturate a critic, since it now is a distance
instead of the probability of a sample being fake or not that the critic outputs. This
property results in that the generator always gets meaningful feedback and that it
is always beneficial to have a better performing critic. Since it is always better to
have a better critic, there is no longer a need to balance the training. This simplifies
tuning of the network significantly.

2.2 Recurrent Neural Networks
For dealing with sequential data, which time series are, a class of neural networks
called Recurrent Neural Networks (RNN) [21] has shown promising results when
applied to attempt to generalize time dependent properties [13], [8], [9], [7], [5]. A
RNN takes the previous hidden state ht−1 and the current input xt in to account.
This process is illustrated in Figure 2.2. The update of the current state is then
derived according to (2.7) where W and U are weight matrices and b is bias [21].

a(t) = b+Wh(t− 1) + Ux(t) (2.7)

The update is then calculated using a tanh function as in equation (2.8)[21].

h(t) = tanh(a(t)) (2.8)

In order to then calculate the hidden-to-output of the RNN equation a further layer
is derived with bias c and weights V [21].

o(t) = c+ V h(t) (2.9)

7

2. Theory

Figure 2.2: A schematic view of time steps in a RNN where each RNN cell xi
ouputs a corresponding time step ht

on top of the final linear layer a softmax function is used. [21]

ŷ = softmax(o(t)) (2.10)

RNNs uses recurrent back-propagation through time to update its weights in the
network. In an RNN this is done by unrolling the time steps. If a time series consists
of multiple steps, this will cause a computational issue since all time steps has the
previous time steps as input. Calculating the gradients with this dependency of
time steps will have an exponential effect, since the jacobian of the previous weights
will be multiplied with each other as many times as there are time steps in the time
series [21]. This will cause the gradient to explode, if the gradients are larger than
absolute 1 or make the gradient vanish, if the gradients are smaller than absolute 1.

2.2.1 Long Short-term Memory
Long Short-term Memory (LSTM) [22] uses more layers in each time-step than the
vanilla RNN and introduces a cell that controls what parts of the history that is
relevant to store by weighting the previous history. This history cell C(t) which
consist of an input gate and a forget gate is then used to derive the hidden state
h(t) [21], deriving the hidden state is shown in equations (2.11)-(2.12).

C(t) = f(t)C(t− 1) + itC̃t (2.11)

In this case f is the forget gate, i the input gate and C̃ is the new information [21],

h(t) = o(t)tanh(C(t)) (2.12)

2.2.2 Gated Recurrent Units
Gated Recurrent Units (GRU) are similar to LSTMs cell but only consists of a
single step update which should make them less computationally heavy. GRUs were
introcuced in 2014 [23]. What makes GRUs different from LSTMs is mainly that
GRUs has one gate that concurrently controls the decision and the forget task in

8

2. Theory

the state [21]. To derive the hidden state in a GRU, see equation (2.13) where u is
the update gate and r is a reset gate used to control what information is kept [21].

h
(t)
i = u

(t−1)
i h

(t−1)
i +

(
1− u(t−1)

i

)
σ

bi +
∑
j

Ui,jx
(t)
j +

∑
j

Wi,jr
(t−1)
j h

(t−1)
j

 (2.13)

2.3 State-of-the-art GANs for Time Series Gen-
eration

In the previous work section, different methods of generating time series was in-
troduced. What is common for all these methods is that they all have recurrent
components to its structures. Since this method have shown the most promise when
it comes to handling temporal aspects. The two main network structures that are
used are the RCGAN and the AE-GAN. In this section, the different methodologies
of GANs will be explained more in detail.

2.3.1 Challenges in Time Series Generation

Most machine learning models requires a fixed input size, so also RNNs. This
becomes an issue since time series differ in length in most applications. All solutions
of this will in some sense impact the performance of the network. There is two main
challenges with generating variable length time series. Firstly, the distribution of
the lengths of the generated data should match the real data. Secondly, a generated
synthetic scenario Ss, should ideally be ended at a value that is realistic for the time
series generated. Existing models tends to handle variable length in different ways.
A solution could simply be to either pad by interpolation or end-pad sequences.
Interpolation removes the equidistant property of the data and would require another
solution for the time dependency. By end padding scenarios by either zeros or the
final value, the network gets additional information and some solution is necessary
for when the scenario ends. Training the model on single batches could also be a
solution, but would bring the negative consequence of being computationally heavy.
An important challenge with generating time series is to handle the temporal aspect
of the data well. The main solution to this problem is using RNNs. The RNNs does
though still struggle a little bit with capturing long term dependencies. Another
solution that could improve the handling of long term dependencies is down sampling
the data. This helps the network by reducing the need for long term dependencies.
In all forms of GANs it is a common problem with mode collapse. Mode collapse
is when the network only generates samples that correspond to one part of the real
distribution. It can also result in that the network is over fitted to noise in individual
samples. One simple solution to this problem is using more data, but since data
can be hard to come by it is not always an efficient solution. When studying state-
of-the-art models it is relevant to take into consideration how they approach these
three issues.

9

2. Theory

2.3.2 Auto-encoder GANs
One of the commonly used architectures for generating time series is a combination
of the Auto Encoder [4] and the GAN [3], denoted as AE-GAN. The idea behind AE-
GAN is based on the fact that GANs are difficult to train and when the complexity
and dimensions of the data to reproduce is increased the output of the GAN can
be expected to be of various results [24]. The AE-GAN approach to this problem is
to use a encoder to decompose and learn the components of the data into a simpler
product, a latent space representation. The GAN is then trained to generate latent
space representations that the decoder part of the auto-encoder reconstructs to
represent the original distribution. The idea is that the latent space representation
is easier to generalize for a GAN than an entire time series. [24] uses this approach
for text generation while [8] and [5] uses this approach for time series generation.
The principle of the AE-GAN architecture is illustrated in Figure 2.3.
The AE-GAN with its latent space representation presents an opportunity to handle
time series of various lengths. Demetriou, Alfsvåg, Rahrovani, et al. [8] trains a
separate network to estimate the length of the sequence based on the features of the
latent space representation. In this existing solutions however, no clear evidence is
shown that solutions for the two challenges are successfully provided.

Figure 2.3: A schematic view of the auto-encoder GAN architecture. The encoder
breaks down the properties of a time series into a latent space representation. The
purpose of the GAN is to a generate an output with the properties of the latent
space representation that the decoder can reconstruct into a new, synthetic time
series.

2.3.3 Recurrent GANs
Recurrent- or Recurrent Conditional GANs has been one of the main methodologies
for time series generation. It was first introduced by Esteban, Hyland, and Rätsch
[6] in 2017 with the implementation area of generating medical time series data for

10

2. Theory

doctor training simulations. The architecture is similar to that of a regular GAN
where the generator competes with the discriminator. The two networks however
are substituted with RNNs. [6] also introduces a conditional element in which the
time series can be conditioned on certain features or metadata aspects. The original
RCGAN model is trained to minimize cross-entropy loss between its own prediction
and the label of the time series of whether it is synthetic or real. The generator
on the other hand is trained to minimize the negative cross-entropy loss between
the discriminator predictions of the synthetic samples and the True labels, i.e. the
generator is trained to trick the discriminator.
From this original work, many studies have attempted to reproduce and in many
ways improve the performance of the Recurrent GAN and RCGAN. Among those
are who utilize a Recurrent GAN or RCGAN methodology are [8], [7], [9] where
their contributions are either data from different application areas, different training
conditions, altered architecture structures or implementation of metadata handling
(mainly [9]). Of these methods, [9] really stand out due to the fact that the au-
thors present results that show evidence of outperforming many previous methods
including RGAN, RCGAN [6] and Time-GAN.
When training a RCGAN, a solution to the variable length issues is to condition on
lengths and by doing that, structuring the batches of training based on lengths of
scenarios [8], [5].

2.3.4 DoppelGANger
One adaptation to the original RCGAN is a network called DoppelGANger [9].
This network uses the basic structure with a LSTM generator and a Multi-layer
Perceptron as discriminator. It does though have some important differences that
is presented below.

2.3.4.1 Batch Generation

To increase the ability of the network to learn long term dependencies the authors
of DG suggests to generate a batch of time steps at each RNN pass-through [9].
The way that this is improving long term dependencies is by reducing the amount
of passes through the RNN that is necessary to generate the entire time series. The
idea is that with a lower amount of passes through the RNN the internal state will
have more information from steps further away [9]. Generating a batch of samples
at each RNN pass comes with a difficulty that is increasing rapidly with the length
of this batch. This induces a trade off and the length of the batch generated at
each RNN pass has to be tuned [9]. An example of how DG implemented the batch
generation with S=2 i.e. two time steps are outputted from each cell is shown in
Figure 2.4 [9].

2.3.4.2 Auxiliary Discriminator

A feature that is desirable in a method for time series generation is the ability to also
generate matching metadata, this has been investigated for a few different methods
[5], [9]. DG has its own solution to this issue which is adding a second discriminator

11

2. Theory

Figure 2.4: The batch generation principle with S=2, Each RNN cell outputs two
timesteps ahead for a given time series length N.

that discriminates how well the generated metadata represents the real metadata
[9]. The main discriminator then discriminates on generated features and metadata.
This also means that the main discriminator evaluates whether the the metadata
correlates well with the generated features.

2.3.4.3 Auto-normalization Heuristic

DG uses a normalization method that is based on normalizing each time series on its
own [9]. The idea behind this is that it reduces issues that can come from having time
series in a wide range. The authors of DG suggests that it alleviates mode collapse
which is a common issue when training GANs [9]. The issue that occurs when
normalizing each time series by itself is that the information lost when normalizing
needs to be kept somewhere. DG solves this issue by calculating metadata values
using maximum and minimum of each time series according to equation (2.14).

metai = maxi ±mini
2 , (2.14)

By then training on this metadata and generating it together with the time series
it can be used to re-normalize generated time series [9].

2.3.4.4 Generation Flag

DG approach to making sure that the distribution of the lengths of the synthetic
scenarios matches the lengths of the real scenarios and that the scenarios are ended
at a suitable time step [9]. The solution that is presented is a generation flag that
is fed to the model along with the real data with the purpose of signalling when the
the scenario is ending and the end padding starts of each sequence.

12

2. Theory

Figure 2.5: Illustration of how the generation flag is embedded with each scenario
data

For each time step the generator outputs a time step for a sequence, it also outputs
a probability [p1, p2] ∈ [0, 1] of how likely it is that the scenario is over where p1
represents the probability that the scenario is should continue and p2 represents
the probability that the scenario should end. If p1 > p2 the scenario is ended and
padded with zeros to a fixed length. The principle of how the generation flag is
fed to the network along with the features is shown in Figure 2.5. Intuitively, this
method should solve the issue of ending scenarios at the right time step.

13

2. Theory

14

3
Methods

In this section the implementation of the framework for generating driving scenarios
is presented. The data used and how it is processed is also presented. Finally the
methods used for evaluating the result is described.

3.1 Data and Processing
The data used for training the GAN models was filtered scenarios from a dataset of
lane changes supplied by Zenseact. The two parameters of study were lateral and
longitudinal velocity for the ego vehicle. These two parameters were derived from
measurements of the ego vehicles position. The lateral and longitudinal velocities
were derived as the gradients of the position with time frequency of 0.111s between
each time step.

Figure 3.1: 1000 real scenarios that make the validation dataset. Top plot illus-
trates lateral velocity and bottom illustrates longitudinal velocity

From this, a set of rules was established to ensure that only lane changes that
matches our definition are extracted from the data. Based on these rules, the defini-
tion of a scenario was set as a scenario that surpasses 10 m/s in longitudinal velocity.

15

3. Methods

At the same time the scenarios must have had a starting position less than 1.5 m
from the initial lane center, it had to move 1.5-6 m laterally and could not end up
closer than 1 m from the initial lane center. The scenario must also have had a
starting lateral velocity lower than 0.4 m/s and end up with a lower lateral velocity
than 0.25 m/s. A scenario can also have at most two local maximas or minimas in
lateral velocity. I.e. if a scenario has more than two peaks before returning to close
to zero, it is discarded. The dataset was ultimately consisting of 7301 scenarios.
Of those, 1000 scenarios were separated in to a validation set which are shown as a
group in Figure 3.1. These scenarios were not exposed to the model during train-
ing, but instead used to compare the generated scenarios. The reason for this is to
compare the results to data that is not biased. The 1000 scenarios in the validation
data is randomly extracted from the 7301 scenarios. This leaves 6301 scenarios that
are used for training.

3.1.1 Normalization

Since the nature of the data in lateral and longitudinal velocity differs, two differ-
ent approaches on how to handle the features were used. The auto-normalization
heuristic suggested by DG was used for longitudinal velocity. This method suits
data with a large range well and the values in longitudinal velocity is over a quite
large range. Utilizing the DG auto-normalization heuristic, two normalization con-
stants is generated for each time series. The network needs to be fed these two
normalization constants as metadata, derived according to equation (2.14). Since
the lateral velocity is close to normalized from the start, with almost zero mean and
a suitable range, no normalization was used for lateral velocity.

3.1.2 Attribute Standardization

An issue that arises when training multiple dimensions of data is the difference in
amplitude of the data. The attribute discriminator is trained to learn the starting
lateral position, starting lateral velocity as well as the fake metadata of the longi-
tudinal velocity. metadata values differs in order of magnitude, which is probable
to have a negative effect on training. In order to solve this issue, a regular stan-
dardization was done for each attribute (a). Standardization is the subtraction of
the mean and divided by the standard deviation of each attribute category seen in
equation (3.1),

ai = ai − µi

σi
(3.1)

where µ and σ is the mean and standard deviation of each attribute. This causes
all attributes that are fed into the network to have a mean of zero and a standard
deviation of one. The attributes will therefore be weighted more equally when the
network is trained.

16

3. Methods

3.2 Network

The network structure was heavily influenced by the DG structure [9]. The Gener-
ator is a RNN constructed of LSTMs with three layers and 100 units. At the end
of the generator, for longitudinal there is a tanh layer. The initialization of the first
time step is set randomly and continuously updated during the training. The gener-
ator is trained to capture the features of the lateral velocity and a normalized version
of the longitudinal velocity. Complementing the generator is a MLP attribute gener-
ator with four layers and 100 units. The attribute generator has two main purposes.
Firstly, the attribute generator generates metadata. For this application the meta-
data is the initial position in the lateral direction. This is information that is not
included in the generator input. Secondly, generating normalization attributes, later
used to re-normalize the scenarios. This attribute generator architecture is similar
to the one used in DG [9], however, it differs in the fact that DG uses a sigmoid or
tanh layer as a final layer depending on if the input data is normalized to between
minus one to one, or zero to one. These layers are removed in the model presented.

The network is trained using Wasserstein loss, therefore, the discriminators are
exchanged with critics. The critic is a seven layer MLP with 100 units. This dis-
criminates based on output from both the generator and the attribute generator I.e.
it is fed real data, synthetic generated data, real attributes and synthetic generated
attributes. To increase fidelity of the critic performance, an attribute critic is used
to only discriminate the synthetic generated attributes and real attributes. This
attribute critic is a MLP with 7 layers and 100 units. The total loss is then a sum of
the loss from the two discriminators. This loss can be weighted using an additional
tuneable hyper parameter determining the importance of the attribute critic.

3.2.1 Capturing Long-term Dependencies

A few different tools was used to try and capture the temporal aspects of the data
as well as possible. The main challenge being to capture long-term dependencies.
The most important addition was the network structure, using LSTM-cells like
DG and RCGAN. Another thing was the downsampling of the time series. The
original data had a sampling rate of 0.111s between time steps. From this the
data is downsampled to a third resulting in a sampling rate of 0.333s between time
steps. With fewer steps in the time series the networks task of capturing the entire
time series becomes simpler. In DG it is suggested to generate multiple samples in
each RNN pass which is a method also used. This however has a trade-off of each
RNN pass becoming harder to generate. Combining the downsampling with the
batch generation introduces the opportunity to substantially decrease the number
of passes through the LSTMs needed for each scenario which ultimately results in
an increased ability to handle long-term dependencies. After testing various values
of S, it was found that S=2, was a value that was well suited for this type of data.

17

3. Methods

3.2.2 Generating Scenarios of Various Lengths
Of all the methods presented in section 2.3 regarding training a network with data
of various lengths. The generation flag by DG stands out by solving the issue
with generating sequences of various lengths and also shows empirical evidence of
managing to capture the distribution of the lengths of the scenarios. The generation
flag is implemented as Figure 2.5 and trained as an additional feature to lateral and
longitudinal velocity in the generator. Since this feature had a discrete time-domain,
a softmax layer is used as a final layer of the generator for this feature.

3.3 Evaluation
There is no standard method for evaluating the performance of GANs [25]. One
of the most common methods used is to just visually inspect the generated data.
Visualizing the data could be done in a large variety of ways. It is also of interest
to be able to quantify the results. This has been done in many different ways and
there is no perfect solution that fits every data type. What can be said though is
that it is of great interest to be able to look at distributions of the data and not
single samples. This since the goal of GANs is to capture the distribution of the
data and not recreating single samples. One metric that measures the similarity
between distributions is the Jensen-Shannon distance (JSD) which is the square
root of the JS divergence from equation (2.3)[26]. It is also interesting to look at
different properties of the data. First of all it is important to see that both the
generated data and metadata has properties that matches the real data. To be able
to do this properly the position is also derived using the velocities and the starting
position from the metadata. The length of the scenarios is also studied to see that
the network properly handles variable length.

3.3.1 Removing Temporal Aspect
The main issue with JSD for evaluating time series is that it can not measure the
temporal aspect directly. To be able to use the JSD on the data the temporal aspect
of the data was ignored, storing all data points for all time series in a large vector.
It is then possible to calculate the JSD on this data as well as visualizing the data
in histograms for each feature. Comparing total distributions is a way to study if
the generated scenarios covers the entirety of the data, the tails of the data and if
the models is fixed on generating a certain type of data more or less frequent.

3.3.2 Time Dependencies
Since lateral and longitudinal velocity both are time dependent component it is
of high relevance that the generated samples manages to capture the entirety of
these components. It is also important that the change from one time step to the
next is accurately captured as well as longer time dependencies such as between
multiple time steps. Studies within similar field have labeled this evaluation metric
in multiple ways such as auto-correlation [9], first difference [7] or traffic rationality

18

3. Methods

analysis [15]. In this study, the difference is the same as acceleration and we wish
to study the acceleration over different time-intervals. This is an important metric
to cover since time dependencies in both long- and short-term is one of the main
challenges of this study. In this study, we will attempt to evaluate the distribution
of first, third and fifth difference. The first difference is the difference in velocity
between time step n and n+1 where n is a time step in a time series of length N,
n ∈ [1, N − 1]. The third and fifth difference is derived in the same manner, with
the exception of comparing n with n+3 and n with n+5 respectively.

3.3.3 Lane Change and Steering Behaviour
In order to ensure that the underlying properties such positional change and heading
are kept, it is important to further study and ensure that the generated scenarios
represented proper lane changes. One easy way of examining this was to derive the
positional change that each generated scenario made and compare that with the
real data. The position in each time step in lateral and longitudinal direction was
derived according to equation (3.2). From section 3.1, a criteria for a lane change is
a scenario that travels 1.5-6 m laterally and moves at least 1 m from the initial lane
centre. A generated scenarios should therefore uphold this criteria.

pi = pi−1 + vi ∗ t (3.2)

Another important driving behaviour to study is the yaw of the vehicle also called
heading. Heading can be examined by visually inspecting velocities, but a much
better comparison can be done if the heading is calculated. The heading (α) in each
time step was instead derived as seen in equation (3.3).

αi = atan2(vlati , vloni) (3.3)

The first difference, which represents yaw rate, is also derived to see that the tem-
poral aspects are kept in the steering behavior of the lane change.

3.3.4 Nearest Neighbour
Some studies within the field of time series generation uses a comparison between
individual samples of the generated data and real samples. For example Demetriou,
Alfsvåg, Rahrovani, et al. uses dynamic time warping and Hungarian algorithm [8]
to illustrate the performance of their model. These kinds of comparisons however
could be deceiving. If the error between a generated sample and a real sample is very
small it could be signs that the model is overfitted to only output copies of the real
data. However, comparing individual samples could be relevant, in order to show
that the data is not overfitted and that the generated samples actually manages to
capture the data.
For this reason we use a comparison metric of finding nearest neighbours. First,
the generated data is studied, for all samples of the generated data the root mean-
squared error (RMSE) compared to each scenario in the training data is derived
using equation (3.4). The generated scenarios that has the three most similar real
scenarios determined by RMSE, are visually compared to these generated scenarios.

19

3. Methods

This comparison is done to ensure that the samples with the smallest error does not
coincide with their three nearest neighbours in the real dataset.

RMSE =
√
mean(X̂ −X)2 (3.4)

In order to study whether or not the GAN model manages to capture all types of
scenarios in the real data, the three nearest neighbours to all real samples in the
generated data are found. In order to draw conclusions on whether or not some
category of samples are generated, the samples with the highest RMSE are studied
visually. This method will further on be called farthest neighbour.

3.3.5 Benchmarking
In order to put the outcome of this project in to context, a set of benchmarking
model was used. Two alternative generative methods were trained with the same
training data as the proposed model of this study. These two models were TimeGAN
[5] and the RVAE presented in the RCGAN paper [6]. The reason that these two
models were utilized for benchmarking is that TimeGAN previously have shown
great performance for generating timeseries, the AE-GAN structure was also used
for generating cut-ins in [8]. The RVAE model on the other hand represents a simpler
network structure than the presented framework of this project and it was therefore
of high relevance to examine if this simpler model can achieve satisfactory results
on the data. Both models was used as presented in their respective code repository
with a few alterations:

• The data was scaled using standardization. This was done by removing the
mean of the entire dataset and dividing with the standard deviation of the
entire dataset. The generated data was then re-standardized.

• A generation flag similar to the DG method [9] was added as a third feature
to the training were ones represented that the scenarios were active and zeros
represented that the scenario had ended.

• For the RVAE model, a sigmoid layer were used for the generational flag fea-
ture. When it outputted a probability of less than 0.9 the scenarios were
considered ended.

20

4
Results and Discussion

The results from the proposed model framework is presented in this section, along
with the results of the benchmarking models. In order to evaluate the generative
models, a total of 1000 generated scenarios are compared with the 1000 scenarios
from the validation dataset. These generated scenarios are then compared to the real
data and evaluated to see how well the model handles the challenges from section
2.1.1. The results and the implications of them are also discussed in this section.

4.1 Overview of Results
The generated lateral and longitudinal velocity is illustrated in Figure 4.1. The
grouped generated scenarios visually matches the real data quite well. Compared to
the validation data in Figure 3.1 the generated scenarios have a few more scenarios
with lower amplitudes of lateral velocity, and the generated ones does not fully
capture the outliers that have an amplitude above 1.5 m/s in lateral velocity. This
could be due to the fact that scenarios with high amplitudes, i.e. aggressive steering
behavior are not well represented in the training data.

Figure 4.1: 1000 generated scenarios of lane changes. Top plot illustrates lateral
velocity and bottom illustrates longitudinal velocity

21

4. Results and Discussion

To ensure that the total distribution is captured, disregarding the time dependencies,
the distribution of all generated time steps in lateral and longitudinal velocity is
studied. The overall distribution of the data also match quite well. With the
exception that the model generate some scenarios with lateral velocities very close
to zero, which is shown in Figure 4.2. In Figure 4.2a, it can be seen that the model
generates more scenarios with positive maneuver while the validation data generates
more scenarios with a negative maneuver From Figure 4.1. Some generated scenarios
have a quite low amplitude and is crossing zero more frequently than in the validation
data in Figure 3.1. This could cause the behaviour we see in Figure 4.2a where the
generated model has more data point in the bin around zero.

(a) Distribution of lateral velocity (b) Distribution of longitudinal velocity

Figure 4.2: Distribution of the values of velocities in all time steps in a 1000
generated scenarios compared with the validation scenarios.

To see how well the network manages to capture the length of the scenarios it is
easiest to just look at a histogram of the scenario lengths. This does though not
tell how reasonable the ending of the scenarios are. This is instead necessary to
evaluate visually looking at Figure 4.1, where it can be seen that the scenarios ends
at reasonable points. The histogram of the generated lengths of the generated data
compared to that of the validation data is presented below.

Looking at the distributions in Figure 4.3 it is possible to see that the distributions
matches well. Though it is possible to see a slight bias towards generating longer
scenarios.

22

4. Results and Discussion

Figure 4.3: Distributions of scenario lengths for generated and validation data

Table 4.1: JSD between total distributions of all time steps in 1000 generated
scenarios compared to the validation data

Data JSD lat. vel JSD lon. vel. JSD scenario lengths

Training 0.0359 0.0776 0.0990
Model 0.0664 0.1090 0.1224
RVAE 0.1985 0.1452 N/A
TimeGAN 0.2074 0.2426 N/A

The JSD distance between the generated distributions in Figure 4.2 is computed
and compared to the benchmarking methods in Table 4.1. The model outperforms
both the benchmarking methods when comparing the distributions in the JSD met-
ric. Since the benchmarking methods of RVAE and TimeGAN does not handle a
variation of scenario length, a custom generation flag is implemented, therefore com-
paring the scenario lengths is not of high relevance. It can also be seen that there
is a non-negligible distance between the training and the validation data. This is
relevant to take into account when evaluating the performance. For example, the
model is quite far away from the validation set on its distribution of scenario lengths
compared to the other metrics. This is most likely due to the fact that this part of
the training data does not perfectly represent the validation data. This statement
is also supported by the JSD for scenario length presented in Table 4.1.

23

4. Results and Discussion

4.2 Temporal Aspects
To be able to compare how well the model and the benchmarking methods captures
long-term dependencies, the difference between time steps within each sequence is
evaluated. More specifically, the distribution of the difference between each time
step, each fifth time step and each tenth time step is studied. Each distribution is
compared using the JSD to the distribution of the validation data. Figure 4.4 and 4.5
illustrates how the distribution of all differences is captured by the model compared
to the validation set for lateral and longitudinal velocity respectively. It can be seen
that it captures the overall distribution and the peaks of the distributions to a large
extent.

(a) 1st difference lateral ve-
locity

(b) 5th difference lateral ve-
locity

(c) 10th difference lateral ve-
locity

Figure 4.4: Distribution of the error between each time step, each fifth time step,
and each tenth time step in lateral velocity,

(a) 1st difference longitudi-
nal velocity

(b) 5th difference longitudi-
nal velocity

(c) 10th difference longitudi-
nal velocity

Figure 4.5: Distribution of the error between each time step, each fifth time step
and each tenth time step in longitudinal velocity

The samples in the tail of the distribution shown in Figure 4.4b says that there are

24

4. Results and Discussion

a few, more aggressively turning samples in the validation data. Previously it was
shown that the highest amplitude scenarios in the validation data is not captured by
the network. These high amplitude scenarios is most likely the same scenarios that
is the most aggressive. In a larger perspective it is a bit worrying that the network
does not manage to capture the most aggressive scenarios, since it might very well
be these scenarios that causes safety issues.

Table 4.2: JSD between distributions of time differences in lateral velocity

Data JSD 1st difference JSD 5th difference JSD 10th difference

Training 0.0409 0.0350 0.0372
Model 0.0458 0.0482 0.0430
RVAE 0.0937 0.0898 0.0956
TimeGAN 0.1638 0.1274 0.1051

The performance on long-term dependencies by the model is compared to the bench-
marking methods in Tables 4.2 and 4.3. In this metric, the model outperforms the
benchmarking methods substantially. The performance in each difference is more
similar to the training data than the benchmarking methods. This indicates that
the models ability to capture temporal aspects is good.

Table 4.3: JSD between distributions of time differences in longitudinal velocity

Data JSD 1st difference JSD 5th difference JSD 10th difference

Training 0.0580 0.0666 0.0728
Model 0.1072 0.0723 0.0854
RVAE 0.1686 0.2329 0.2600
TimeGAN 0.3341 0.2926 0.2358

25

4. Results and Discussion

4.3 Metadata

Determining how well the model handles metadata was done by first comparing the
distributions of generated metadata to that of the validation set. Histograms of
generated and validation metadata along with the JSD is presented in the following
Figure.

(a) Distribution of initial lateral position.
JSD=0.0724

(b) Distribution of initial lateral velocity.
JSD=0.1524

Figure 4.6: Distribution of the generated metadata compared.

1It is not enough to only show that the metadata on its own matches the validation
data, the features generated by conditioning on the metadata must correspond to
the metadata. A visual comparison for the initial lateral position can be done by
looking at the positional trajectories. These can be seen in Figure 4.7. To visually
see how well the initial lateral velocity performs it is easier to look at Figure 4.1. For
both generated metadata it can be seen that it does not only fit the distribution of
the validation data, but does also correspond nicely to the features. Though there is
a few scenarios in the middle of the lateral velocity plot in Figure 4.1, these scenarios
are not at all represented in the validation data. These scenarios can also be seen
in the middle of the positional plot in Figure 4.7. It is not possible to compare the
metadata generation with that of the benchmark models since they do not have any
metadata generation, however for lateral velocity, the initial step is included as a
feature and can therefore still be compared with.

26

4. Results and Discussion

Table 4.4: JSD initial lateral position and velocity of training data, generated data
from model and benchmarking methods with regards to validation data

Data JSD initial lateral position JSD initial lateral velocity

Training 0.0622 0.0839
Model 0.0724 0.1524
RVAE N/A 0.2492
TimeGAN N/A 0.8209

4.4 Positional Changes
To evaluate how well the scenarios are capturing the properties of the real data it
is relevant to study the total positional changes of each generated scenario. The
behaviour that is sought to be captured is a lane change. In order to determine
how well that is captured, the generated positional change is derived and compared
to the positional changes of the scenarios in the validation dataset. The positional
changes is show in Figure 4.7.

Figure 4.7: 1000 generated scenarios of lane changes of the total positional change.
Left plot is the generated scenarios and the right plot is the real scenarios

The grouped generated scenarios matches the validation data well with the excep-
tion of a few generated outliers that end up in the region of [-2.5, 2.5]. To be able
to determine how well the lane change is executed, it is relevant to study the dis-
tribution of were the trajectory end up, both laterally and longitudinally, when the
scenarios is over. Figure 4.8 illustrates this distribution. In the lateral direction, in

27

4. Results and Discussion

Figure 4.8a, there is a slight bias for lane changes which move negatively referenced
from the lane. In the longitudinal direction, in Figure 4.8b, there is also a slight
bias where the generated scenarios is centered at a slightly higher mean end posi-
tion. This bias, in both lateral and longitudinal end position could be due to the
fact that the length of the generated scenarios have a mean that is slightly higher
than the real scenarios in the validation dataset. Longer scenarios could have the
affect of resulting in the vehicle travelling further.

(a) Distribution of lateral position at sce-
nario ending

(b) Distribution of longitudinal velocity at
scenario ending

Figure 4.8: Distributions of the position where scenarios end. To the left is for
generated lateral end position compared to the corresponding data in the valida-
tion set. To the right is the generated longitudinal end position compared to the
corresponding data in the validation set

The JSD of all methods is shown in Table 4.5. In this metric, The model performs
similar to the RVAE in end longitudinal position and TimeGAN in the end lateral
position. However, when visually studying the positional change (see appendix A),
it can be seen that both the benchmarking methods generates scenarios that are
smoothed and very similar to each other which is a typical trait of Auto-Encoder
models. Visually, the generated scenarios by the model matches the validation
scenarios better.

28

4. Results and Discussion

Table 4.5: JSD between of positional distribution of the final time step for the
training data and each method with regards to validation data.

Data JSD lateral end positions JSD Longitudinal end position

Training 0.0420 0.0679
Model 0.1811 0.1318
RVAE 0.3372 0.1519
TimeGAN 0.1811 0.2016

4.5 Steering Behavior
In order to evaluate the driving behaviour, the steering in each lane change is also
examined. Figure 4.9 illustrates the derived heading of the 1000 generated scenarios,
along with the derived heading from the validation dataset. Visually they match
each other quite well, apart from the fact that the real data has some outliers with
aggressive steering. This can also be seen in Figure 4.10a where the real data has
some tails that the generated data do not cover.

Figure 4.9: Steering behaviour of 1000 grouped scenarios. Left plot is the derived
heading from the generated data and the right plot is the derived heading from the
real scenarios

In Figure 4.10b, the first difference is also included to show that the temporal aspect
between time steps is also well matched compared to the real data. Overall, the
model captures the steering behavior of the distribution. Table 4.6 shows the JSD
between the training data, the proposed framework and the benchmarking methods.

29

4. Results and Discussion

Table 4.6: JSD of total distribution and 1st difference of heading between generated
and validation data

Data JSD total distribution heading JSD 1st difference heading

Training 0.0420 0.0501
Model 0.0649 0.0509
RVAE 0.1833 0.0863
TimeGAN 0.2200 0.1618

The model manages to capture the distribution of heading nearly as well as the
training data does, which confirms that the model manages to capture the heading
very well.

(a) Distribution of all the entire distribution
of the heading

(b) Distribution of the 1st difference in head-
ing

Figure 4.10: Total distribution and 1st error of the derived generated heading
compared to the derived heading from the validation dataset.

4.6 Evaluation of Overfitting
Up to this point, comparisons have only been made between the generated data and
the validation data. As mentioned in section 3.1 the validation data is 1000 scenarios
randomly extracted from the total dataset. These scenarios do resemble the training
data in many ways. For this reason, it is relevant to compare the generated data
with the training set to ensure that the generated scenarios are not only a set of
identical reproductions. This is evaluated using the metric nearest neighbour from
section 3.3.4. For each generated sample, the three nearest neighbours, i.e. the three
with the smallest RMSE from equation (3.4) are studied. Of all these scenarios, the

30

4. Results and Discussion

three that are closest to their nearest neighbours are presented in Figure 4.11. The
Figures show that the generated samples is close to its neighbour but no time series
are identical since they have some characteristics that sets them apart. This show
that the model is not heavily overfitted to the data.

0 5 10 15 20

time steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
/s

Generated sample with most similarity

to its three nearest neighbours in the real data

Generated lateral velocity

1st Nearest Neighbour

2nd Nearest Neighbour

3rd Nearest Neighbour

0 5 10 15 20 25

time steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
/s

Generated sample with 2
nd

 most similarity

to its three nearest neighbours in the real data

Generated lateral velocity

1st Nearest Neighbour

2nd Nearest Neighbour

3rd Nearest Neighbour

0 5 10 15 20 25

time steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
/s

Generated sample with 3
rd

 most similarity

to its three nearest neighbours in the real data

Generated lateral velocity

1st Nearest Neighbour

2nd Nearest Neighbour

3rd Nearest Neighbour

0 5 10 15 20 25

time steps

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

m
/s

Generated sample with 4
th

 most similarity

to its three nearest neighbours in the real data

Generated lateral velocity

1st Nearest Neighbour

2nd Nearest Neighbour

3rd Nearest Neighbour

Figure 4.11: Nearest neighbour evaluation of the four generated scenarios with
the smallest RMSE error to its three nearest neighbour in the real dataset.

4.7 Capturing the Entirety of the Distribution
When comparing real scenarios with the generated ones, it is hard to pinpoint exactly
where the model is insufficient. Some outliers or tails that were visually pinpointed
were mentioned in section 4.1. To computationally find the outliers that are not
covered by the model, we use farthest neighbour evaluation which was explained in
section 3.3.4. In the subfigures of Figure 4.12, a set of scenarios in the training set
with the neighbours in the generated data with the highest RMSE are visualized.
What they have in common is that the generated scenarios can not capture the
real scenarios with amplitudes higher than 1.5-2 m/s. That the network does not
capture the most aggressively turning scenarios have previously been discussed and
the complications of it.

31

4. Results and Discussion

0 5 10 15

time steps

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

m
/s

Real sample with least similarity to its three

nearest neighbours in the generated data

Real lateral velocity

1st Nearest Neighbour

2nd Nearest Neighbour

3rd Nearest Neighbour

0 5 10 15 20 25

time steps

-3

-2.5

-2

-1.5

-1

-0.5

0

m
/s

Real sample with 2
nd

 least similarity to its three

nearest neighbours in the generated data

Real lateral velocity

1st Nearest Neighbour

2nd Nearest Neighbour

3rd Nearest Neighbour

0 5 10 15 20

time steps

0

0.5

1

1.5

2

2.5

m
/s

Real sample with 3
rd

 least similarity to its three

nearest neighbours in the generated data

Real lateral velocity

1st Nearest Neighbour

2nd Nearest Neighbour

3rd Nearest Neighbour

0 5 10 15 20 25

time steps

-0.5

0

0.5

1

1.5

m
/s

Real sample with 4
th

 least similarity to its three

nearest neighbours in the generated data

Real lateral velocity

1st Nearest Neighbour

2nd Nearest Neighbour

3rd Nearest Neighbour

Figure 4.12: Farthest neighbour evaluation of the four real scenarios with the
largest RMSE error to its three nearest neighbour in the real dataset

32

5
Conclusion

The objective of the thesis was to present a framework that could generate realistic
scenarios of highway lane changes. The generated lane changes does visually and to
a great extent statistically represent that of real lane changes. Results shows that
even the generated scenarios with the most similarities does not purely mimic the
real scenarios but instead it has similar characteristics which show that the created
framework solves the task. The framework however, seems to not be able to capture
the scenarios with the most aggressive lateral steering behaviour. The framework
outperforms the benchmarking methods in almost every evaluation metric. However,
comparing to real data, the model seem to be slightly off in a few metrics.
With regards to challenges faced in previous work, both in time series generation
in general and driving scenario generation in particular, the proposed framework
handles the challenges successfully. The model framework can handle scenarios of
various lengths which is a key factor for driving scenarios generation. The model
can also handle metadata aspects with great success. This property was not utilized
to its full potential in this work but could potentially be of great use in the field of
driving scenario generation. Temporal aspects is also a challenge that the framework
captured successfully. The data however, was down sampled and only contained iso-
lated single scenarios. In order to draw full conclusions regarding temporal aspects,
exposing the framework for longer scenarios would be suited.

5.1 Future Work
The proposed framework has shown great results with the proposed tuning, however
parameter tuning has been done by extensive manual grid search. In order to reach
better results, Bayesian Optimization could be utilized to ensure convergence of the
model.
Lane changes are only quite simple scenarios, and then it is also possible to have
combinations and sequential scenarios. That the metadata generation works well is
promising for future works with different types of scenarios. The reason that the
metadata is useful here is that it is possible to have scenario types as meta data.
For example discrete time aspects such as road conditions, weather, driver or rate
of traffic could be used to further categorize the data.
An important challenge that comes with sequential scenarios is the increased length.
If the networks performance drops due to the increased difficulty, it could become
necessary to utilize more advanced network structures. A structure that has shown a
lot of promise in language processing for this is attention based networks [27]. Going

33

5. Conclusion

from RNN based GANs to attention based could help a lot if long term dependencies
becomes a problem.

34

References

[1] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of driv-
ing would it take to demonstrate autonomous vehicle reliability?” In Driving
to Safety: How Many Miles of Driving Would It Take to Demonstrate Au-
tonomous Vehicle Reliability? RAND Corporation, 2016, pp. 1–16. [Online].
Available: http://www.jstor.org/stable/10.7249/j.ctt1btc0xw.1.

[2] A. Pütz, A. Zlocki, J. Bock, and L. Eckstein, “System validation of highly
automated vehicles with a database of relevant traffic scenarios,” 2017.

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” Departe-
ment d’informatique et de recherche opérationnelle Université de Montréal,
2014. [Online]. Available: https://arxiv.org/abs/1406.2661.

[4] D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2014. arXiv:
1312.6114 [stat.ML].

[5] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series generative ad-
versarial networks,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R.
Garnett, Eds., vol. 32, Curran Associates, Inc., 2019, pp. 5508–5518. [On-
line]. Available: https://proceedings.neurips.cc/paper/2019/file/
c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf.

[6] C. Esteban, S. L. Hyland, and G. Rätsch, Real-valued (medical) time se-
ries generation with recurrent conditional gans, 2017. arXiv: 1706 . 02633
[stat.ML].

[7] E. Listo Zec, H. Arnelid, and N. Mohammadiha, “Recurrent conditional gans-
for time series sensor modelling,” Jan. 2021.

[8] A. Demetriou, H. Alfsvåg, S. Rahrovani, and M. H. Chehreghani, A deep learn-
ing framework for generation and analysis of driving scenario trajectories,
2020. arXiv: 2007.14524 [cs.CV].

[9] Z. Lin, A. Jain, C. Wang, G. Fanti, and V. Sekar, Using gans for sharing
networked time series data: Challenges, initial promise, and open questions,
2020. arXiv: 1909.13403 [cs.LG].

[10] F. S. Hoseini, S. Rahrovani, and M. H. Chehreghani, A generic framework for
clustering vehicle motion trajectories, 2020. arXiv: 2009.12443 [cs.LG].

[11] W. Ding, B. Chen, B. Li, K. J. Eun, and D. Zhao, Multimodal safety-critical
scenarios generation for decision-making algorithms evaluation, 2020. arXiv:
2009.08311 [cs.LG].

35

http://www.jstor.org/stable/10.7249/j.ctt1btc0xw.1
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1312.6114
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf
https://arxiv.org/abs/1706.02633
https://arxiv.org/abs/1706.02633
https://arxiv.org/abs/2007.14524
https://arxiv.org/abs/1909.13403
https://arxiv.org/abs/2009.12443
https://arxiv.org/abs/2009.08311

References

[12] P. Malhotra, V. TV, L. Vig, P. Agarwal, and G. Shroff, Timenet: Pre-trained
deep recurrent neural network for time series classification, 2017. arXiv: 1706.
08838 [cs.LG].

[13] W.-H. Lee, J. Ortiz, B. Ko, and R. Lee, Time series segmentation through
automatic feature learning, 2018. arXiv: 1801.05394 [cs.LG].

[14] J. Chen, Z. Wu, and J. Zhang, “Driver identification based on hidden feature
extraction by using adaptive nonnegativity-constrained autoencoder,” Applied
Soft Computing, vol. 74, pp. 1–9, 2019, issn: 1568-4946. doi: https://doi.
org/10.1016/j.asoc.2018.09.030. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1568494618305477.

[15] W. Ding, W. Wang, and D. Zhao, “A multi-vehicle trajectories generator
to simulate vehicle-to-vehicle encountering scenarios,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 4255–4261. doi:
10.1109/ICRA.2019.8793776.

[16] A. Kurakin, I. Goodfellow, and S. Bengio, Adversarial machine learning at
scale, 2017. arXiv: 1611.01236 [cs.CV].

[17] M. Menéndez, J. Pardo, L. Pardo, and M. Pardo, “The jensen-shannon diver-
gence,” Journal of the Franklin Institute, vol. 334, no. 2, pp. 307–318, 1997,
issn: 0016-0032. doi: https://doi.org/10.1016/S0016-0032(96)00063-4.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0016003296000634.

[18] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, Unrolled generative adver-
sarial networks, 2017. arXiv: 1611.02163 [cs.LG].

[19] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein gan, 2017. arXiv: 1701.
07875 [stat.ML].

[20] B. Zhu, J. Jiao, and D. Tse, “Deconstructing generative adversarial networks,”
IEEE Transactions on Information Theory, vol. 66, no. 11, pp. 7155–7179,
2020. doi: 10.1109/TIT.2020.2983698.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-
putation, vol. 9, pp. 1735–1780, 1997.

[23] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.
Schwenk, and Y. Bengio, Learning phrase representations using rnn encoder-
decoder for statistical machine translation, 2014. arXiv: 1406.1078 [cs.CL].

[24] D. Donahue and A. Rumshisky, Adversarial text generation without reinforce-
ment learning, 2019. arXiv: 1810.06640 [cs.CL].

[25] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
Improved techniques for training gans, 2016. arXiv: 1606.03498 [cs.LG].

[26] M. Menéndez, J. Pardo, L. Pardo, and M. Pardo, “The jensen-shannon diver-
gence,” Journal of the Franklin Institute, vol. 334, no. 2, pp. 307–318, 1997,
issn: 0016-0032. doi: https://doi.org/10.1016/S0016-0032(96)00063-4.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0016003296000634.

36

https://arxiv.org/abs/1706.08838
https://arxiv.org/abs/1706.08838
https://arxiv.org/abs/1801.05394
https://doi.org/https://doi.org/10.1016/j.asoc.2018.09.030
https://doi.org/https://doi.org/10.1016/j.asoc.2018.09.030
https://www.sciencedirect.com/science/article/pii/S1568494618305477
https://www.sciencedirect.com/science/article/pii/S1568494618305477
https://doi.org/10.1109/ICRA.2019.8793776
https://arxiv.org/abs/1611.01236
https://doi.org/https://doi.org/10.1016/S0016-0032(96)00063-4
http://www.sciencedirect.com/science/article/pii/S0016003296000634
http://www.sciencedirect.com/science/article/pii/S0016003296000634
https://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://doi.org/10.1109/TIT.2020.2983698
http://www.deeplearningbook.org
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1810.06640
https://arxiv.org/abs/1606.03498
https://doi.org/https://doi.org/10.1016/S0016-0032(96)00063-4
https://www.sciencedirect.com/science/article/pii/S0016003296000634
https://www.sciencedirect.com/science/article/pii/S0016003296000634

References

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin, Attention is all you need, 2017. arXiv: 1706.03762
[cs.CL].

37

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

References

38

A
Appendix 1

A.1 TimeGAN

Figure A.1: 1000 generated scenarios of lane changes. Top plot illustrates lateral
velocity and bottom illustrates longitudinal velocity

I

A. Appendix 1

(a) Distribution of lateral velocity (b) Distribution of longitudinal velocity

Figure A.2: Distribution of the values of velocities in all time steps in a 1000
generated scenarios compared with the validation scenarios.

(a) 1st difference lateral ve-
locity

(b) 5th difference lateral ve-
locity

(c) 10th difference lateral ve-
locity

Figure A.3: Distribution of the error between each time step, each fifth time step,
and each tenth time step in lateral velocity.

II

A. Appendix 1

(a) 1st difference longitudi-
nal velocity

(b) 5th difference longitudi-
nal velocity

(c) 10th difference longitudi-
nal velocity

Figure A.4: Distribution of the error between each time step, each fifth time step
and each tenth time step in longitudinal velocity

(a) Distribution of lateral position at sce-
nario ending

(b) Distribution of longitudinal velocity at
scenario ending

Figure A.5: Distributions of the position where scenarios end. To the left is for
generated lateral end position compared to the corresponding data in the valida-
tion set. To the right is the generated longitudinal end position compared to the
corresponding data in the validation set

III

A. Appendix 1

Figure A.6: Lateral velocity at time step 1

Figure A.7: Steering behaviour of 1000 grouped scenarios. Left plot is the derived
heading from the generated data and the right plot is the derived heading from the
real scenarios

IV

A. Appendix 1

A.2 Recurrent Variational Auto-Encoder

Figure A.8: 1000 generated scenarios of lane changes. Top plot illustrates lateral
velocity and bottom illustrates longitudinal velocity

(a) Distribution of lateral velocity (b) Distribution of longitudinal velocity

Figure A.9: Distribution of the values of velocities in all time steps in a 1000
generated scenarios compared with the validation scenarios.

V

A. Appendix 1

(a) 1st difference lateral ve-
locity

(b) 5th difference lateral ve-
locity

(c) 10th difference lateral ve-
locity

Figure A.10: Distribution of the error between each time step, each fifth time
step, and each tenth time step in lateral velocity,

(a) 1st difference longitudi-
nal velocity

(b) 5th difference longitudi-
nal velocity

(c) 10th difference longitudi-
nal velocity

Figure A.11: Distribution of the error between each time step, each fifth time step
and each tenth time step in longitudinal velocity

VI

A. Appendix 1

Figure A.12: Lateral velocity at time step 1

(a) Distribution of lateral position at sce-
nario ending

(b) Distribution of longitudinal velocity at
scenario ending

Figure A.13: Distributions of the position where scenarios end. To the left is for
generated lateral end position compared to the corresponding data in the valida-
tion set. To the right is the generated longitudinal end position compared to the
corresponding data in the validation set

VII

A. Appendix 1

Figure A.14: Steering behaviour of 1000 grouped scenarios. Left plot is the derived
heading from the generated data and the right plot is the derived heading from the
real scenarios

VIII

DEPARTMENT OF ELECTRICAL ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Figures
	List of Tables
	Introduction
	Background
	Previous Studies
	Problem Description
	Limitations
	Thesis Outline and Contributions

	Theory
	Generative Adversarial Networks
	Challenges with Adversarial Training
	Wasserstein Loss

	Recurrent Neural Networks
	Long Short-term Memory
	Gated Recurrent Units

	State-of-the-art GANs for Time Series Generation
	Challenges in Time Series Generation
	Auto-encoder GANs
	Recurrent GANs
	DoppelGANger
	Batch Generation
	Auxiliary Discriminator
	Auto-normalization Heuristic
	Generation Flag

	Methods
	Data and Processing
	Normalization
	Attribute Standardization

	Network
	Capturing Long-term Dependencies
	Generating Scenarios of Various Lengths

	Evaluation
	Removing Temporal Aspect
	Time Dependencies
	Lane Change and Steering Behaviour
	Nearest Neighbour
	Benchmarking

	Results and Discussion
	Overview of Results
	Temporal Aspects
	Metadata
	Positional Changes
	Steering Behavior
	Evaluation of Overfitting
	Capturing the Entirety of the Distribution

	Conclusion
	Future Work

	References
	Appendix 1
	TimeGAN
	Recurrent Variational Auto-Encoder

