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Numerical simulation of flow around a pyramid using Large Eddy Simulation
Master’s thesis in Applied Mechanics
ANDERS BENGTSSON
Department of Applied Mechanics
Division of Fluid Mechanics
Chalmers University of Technology

Abstract

In this Master Thesis, flow around a pyramid with 60 apex angle at a Reynolds number of Re = 27000 was
studied numerically using Large eddy simulation. The pyramid was mounted on a plate, with the base of the
pyramid parallel to the plate edges. The pyramid base width was 0.045 m, and the free-stream inlet velocity
was U∞ = 10 m/s.

Computations were performed using the software AVL Fire. The Smagorinsky model was used for the
sub-grid-scale model. Simulations were compared with experiments using an identical setup which allowed for
effective comparisons.

A proper orthogonal decomposition was performed on the computed flow to create a set of modes to describe
the flow. The computed modes were correlated to surface pressure at different locations on the pyramid surface
in order to find a set of sensor location that can best be used to express the entire flow. The procedure used
can then be used to find optimal measurement positions in situations where only limited measurements can be
taken, such as experimental setups.

It was concluded that Large Eddy Simulation can be effective in describing the flow around a pyramid, but
that this requires a high spatial resolution. It was also shown that proper orthogonal decomposition can be
used to identify large scale structures in the flow, as well as finding time-dependent behaviour that can be
linked to surface pressures.
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Preface

In this Master thesis LES has been used to perform simulations of turbulent flow around a pyramid. The
simulational data has been used to perform a POD analysis of the flow. This data was then used to correlate
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was carried out from april 2013 to december 2013 at the Department of Applied Mechanics, Division of Fluid
Mechanics at Chalmers University of Technology, Sweden, with Professsor Sinisa Krajnovic as supervisor and
examiner.
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1 Introduction

Pyramids are a simple shape present in countless situations on scales ranging from small machine parts to large
architectural features. The flow around pyramids have however only been studied in a few experiments and
simple simulational setups, and a description of the entire flow field does not exist where good agreement can
be found with experiments.

Previous studies have shown some promise, but have failed to properly describe wake flow. As pyramid
width decreases with the height, the vortices formed at the leading edge of the pyramid, the effect of the top of
the pyramid, and the large vortices formed in the wake of the pyramid all meet behind the pyramid top[1].
This region is therefore needs a high resolution simulation to be able to properly describe the interactions[4].

The aim of this master thesis is to improve the understanding of these flows by producing a large eddy
simulation solution which is compared with experiments. To further analyze the flow, a proper orthogonal
decomposition of the solution is performed in order to identify prevailing flow patterns. This analysis allows for
comparison with surface pressure measurements along the pyramid surface, which may be used for optimization
of pressure sensor placement in further experimental studies.

1.1 Limitations

As Large eddy simulation techniques are transient and require a high spatial resolution, the simulations become
very large. This puts some practical limitations on the project. This master thesis concerns only a single flow
situation with a pyramid with an apex angle of 60 and the base edges parallel to the incoming flow. A Reynolds
number of Re = 27000 was used. Two simulations were done using different computational grids in order to
test for grid independence.

All physical parameters of the simulations were set as to closely mimic experimental studies being carried
out concurrently by another team at the University of Calgary in Alberta, Canada. This provides a method to
validate the simulations with high certainty.

2 Theory

Viscous flows follow the Navier-Stokes equations, which for incompressible flow of a Newtonian fluid with no
external forces read

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂P

∂xi
+ µ

∂2ui
∂xj∂xj

(2.1)

along with a continuity equation.
∂ui
∂xi

= 0

In general cases these require a numerical solution. The straightforward approach would be to discretize the
equation using a finite volume method, and assuring numerical fidelity by using a fine enough discretization to
resolve all relevant scales.

In turbulent flows, this quickly becomes unfeasible as the difference between the large and small scales
increase exponentially with the Reynolds number. In order to make computations on scales comparable with
experiments, some kind of modeling needs to be introduced to reduce the amount of calculations needed.

This study uses Large eddy simulation (LES), which seeks to ease the computational load by explicitly
resolving the large scales, while introducing a model only for the small scales. Thus, large scale features should
give good agreement with experiments as long as the the dissipation in the small scales is properly modeled[7].

2.1 Large eddy simulation equations

The process of setting up the LES-equations begins by separating the solution field of the sought variables into
a filtered field and a small scale fluctuating field.

ϕ(~x, t) = ϕ̄(~x, t) + ϕ′(~x, t)
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Introducing these into the Navier stokes momentum equations (2.1), it can be shown that this reduces to

ρ

(
∂ūi
∂t

+ ūj
∂ūi
∂xj

)
= − ∂P̄

∂xi
+ µ

∂2ūi
∂xj∂xj

+
∂τij
∂xj

with the residual stress tensor τij representing the small scale contribution, which will have to be modelled [2].
Different methods exist for modeling the sub-grid contribution τij . This study uses the Smagorinsky model,

which assumes that the stress can be modeled as an additional viscosity term, such that

τij −
1

3
τkk = −2νsgsS̄ij

with the sub-grid-scale viscosity being further dependent on the grid and large scale rate of strain by

νsgs = (CSf∆g)2
√

2S̄ijS̄ij

[7] The AVL Fire solver uses the value CS = 0.1, and uses the cubic root of the cell volume for the filter width,
∆g = 3

√
V . As the eddy viscosity should be zero near walls the damping function f is included as

f = 1− exp
y+

25

[2]

2.2 Numerical calculation

The filtered Navier-Stokes equations need to be solved numerically. For computational fluid dynamics software,
finite volume methods are currently standard, and is used in this study. The details of the solution procedure
goes beyond the scope of this report, however, a few details concerning simulational accuracy needs to be
defined to explain choices used when specifying the computational mesh.

As seen in the above section, the equations to be solved are dependent on the cell size for the calculation
of sub-grid-scale viscosities. As the sub-grid-scale contributions are modelled, the goal should be to create a
numerical grid that resolves as much as possible of the turbulence in the explicitly calculated large scales.

As the residual stress tensor is dependent on the rate of strain tensor, we deduce that fine grid resolution is
needed in regions where the rate of strain is expected to be large. These primarily include near wall regions,
and in the wake.

A common measure of near wall grid resolution is to express the cell distance in dimensionless wall distance
units, with the wall distance weighted by.

y+ =

√
τw/ρ

ν

where τw is the wall shear stress. For LES calculations, proper near wall resolution is widely held to require a
dimensionless wall distance below y+ < 1.

To make sure that the calculation converges the Courant-Friedrichs-Levy condition holds that for all
computational volumes

CFL =
|~u|∆t
∆x

< 1

where ∆t is the timestep and ∆x the cell side length. This condition is absolute only in fully explicit solvers,
and for the software used convergent solution can be still be achieved if this is exceeded only locally [2].

2.3 Proper orthogonal decomposition

The proper orthogonal decomposition (POD) procedure is a method of data analysis which provides a set
of orthogonal basis functions that allows reconstruction of the flow. Roughly analogous to performing an
eigenvector analysis on a matrix, the procedure expresses the flow field as a combination of a set of coefficients
and modes.

~φ(~x, t) =

∞∑
k=1

ak(t) ~ψk(~x)

2



With ~φ being any studied flow variable, ak being the time-dependent modal coefficients, and ~ψ being time-
independent modes, we have separated the time and space dependencies from each other. For a case with
discrete measurements, such as our simulation, the number of modes becomes finite.

As both ak(t) and ~v(x) can be seen as vectors, the choice of whether to perform the analysis in the temporal
or spatial dimension is dependent on the sought data. For transient flow data, a method known as snapshot
POD, calculating ak(t) first is proper, and used in this study. Data then is captured as a series of snapshots of
the studied field providing temporal discretization. Each snapshot is the flow field at a specified time.

Assuming a spatial discretization φ(~x, t) ≈ ~ui(x, t) the continuous flow field can be expressed as a vector
with elements dependent on the snapshot. With the same reasoning the modes can now be expressed as
ordinary vectors ~viand the modal coefficients being a discrete vector in time.

~ui(~x, t) =

Nk∑
k=1

ak(t)~vik(x) (2.2)

By using the same number of modes Nk as the number of snapshots, the above equation is exact, and numerically
the right hand side actually needs more data to describe the same flow, meaning the new form is slightly more
inefficient.

The advantage of the POD procedure arises when the modes can be chosen in a way such that some modes
contain more information than other. By using only a subset of modes chosen to express as much as possible of
the flow a good approximation of the time-dependent structure can be achieved.

To find the modes ak(t), a correlation matrix is constructed by calculating the inner product of the vectors
representing different snapshots ti and tj

Rij =
1

Nk
(~u(~x, ti), ~u(~x, tj)) (2.3)

The choice of inner product space is here taken to be one corresponding to the turbulent kinetic energy of
the vector, meaning that the diagonal terms in the correlation matrix is the turbulent kinetic energy for the
snapshot.

This also means that element Rij of correlation matrix can be interpreted as the amount of turbulent kinetic
energy of time step ti that can be expressed by time step tj .

By definition, the correlation matrix becomes symmetrical and positive semi-definite. This means that the
eigenvalues and vectors can be computed, and that all eigenvalues are non-negative. The eigenvectors become
a time series expressing how the snapshots should be weighted.

With our choice of inner product space this also means that the eigenvalues λi correspond to the turbulent
kinetic energy resolved by each eigenvector ~αi, and that the first eigenvector is the time series that expresses
the most of the turbulent kinetic energy. The second eigenvector is then the time series that describes as much
as possible of the turbulent energy that is not expressed by the first eigenvector, and so forth.

From the eigenvectors, the spatial modes can then be computed from equation (2.2), which gives the
expression

~vk(x) =
1√
Nkλk

Nk∑
m=1

ak(tm)~u(x, tm)

As eigenvectors are orthogonal, these can be sorted in any order. By assigning the highest eigenvalue to index
k = 1, and so forth, we get the modes sorted in order of the amount of turbulent kinetic energy they describe.
We have thus arrived at a set of modes that can be used to describe the flow, as well as a classification method
to compare these modes [3]. s

2.4 Correlation analysis

In this master thesis we seek correlations between surface pressure measurements and the computed POD
modes. To do this, we may use a similar approach to the calculation of the correlation matrix in (2.3), but
using multiple input signals. We now seek to express the POD modal coefficients in terms of a combination of
surface pressure measurements.

3



2.4.1 Least square regression

Using a set of Nm pressure measurements ~pj , each a time series with the same temporal resolution as the
snapshots, we seek a linear combination of these which best expresses the modal coefficients ak(t) in a least
square sense. We thus seek an approximation

ak(t) ≈ βij~pj(t)

where we may calculate the square residual

R2 = (βij~pj(t)− ak(t)) · (βij~pj(t)− ak(t)) (2.4)

which becomes a scalar measure of how well the data match. The problem can then be specified as finding the
weights βij which minimizes R2. This then becomes a simple least square minimization problem, as each set of
mode coefficients ~αi can be considered independent, we get a set of matrix equations

βij =

 1

Nm

Nm∑
j

~pj~p
T
j

−1 1

Nm

Nm∑
j

~pj ~αi


which we may compute numerically with ease [5].

In order to increase the accuracy without having to sample additional data, we expand our set of pressure
measurements with a time shifted copy of the pressure series. By shifting the variable in time the current modal
value can be matched with a previous surface pressure value. The time shift is chosen as the first positive zero
of the autocorrelation function of the modal time series, which gives

R(tj) =
∑
n

αi(tn)αi(tn − tj) (2.5)

This can be deduced to by symmetrical, and the index of the first zero with tj > 0 gives us our time shift.
By sampling the pressure signals slightly earlier than the start of the measurement window used for the

calculation of the POD-modes, the time shifted signals can be seen as a second set of pressure measurements,
effectively doubling the size of ~pj without needing more data from the simulation.

2.4.2 Monte Carlo optimization

We now seek the set of pressure measurements pj which minimizes R2 in (2.4). While using simulational data, we
may easily increase the number of pressure measurements included in the computation. For experimental setups,
there are often several restrictions on what measurements can be taken, and a small number of measurements
Nmeas will have to express the flow. A suitable set of measurement positions needs to be found, and we seek to
use the large amount of data available in a LES simulation to predict these positions. While the residuals can be
easily calculated for a given set of pressure measurements, the problem of finding the set of measurements that
minimizes R2 is significantly harder. As there is no guaranteed connection between the pressure measurements
and the modes, the only way to find a solution is to compute the residual R2 for every unique combination of
pressure sensors. This calculation quickly becomes very large, as the number of possible sets Nset of Nmeas

chosen measurements from a pool of Ntot possible measurements is given by

Nset =
Ntot!

Nmeas!(Ntot −Nmeas)!

In this study, with a set of 6 measurements taken from a pool of 1521 positions this equals around Nset ≈ 1.7·1017

combinations [6]. This can be considered numerically unfeasible, and a method to find a reasonable guess is
needed.

We therefore use a random subset of combinations, to find sets of sensors which provide a statistically
significant lowering of the residual. While this does not guarantee the optimal solution, it gives a set of data
that is relevant enough for further analysis. We then seek to find trends in the sensor placements which yields
low residuals, and from these seek to provide a best guess for finding the lowest residual.

The idea is to perform the least square regression procedure outlined in section 2.4.1 on a randomly chosen
set of sensors. The calculated residual R2 is stored along with the chosen sensors, and the process in repeated

4



a large amount of times. With a large enough amount of calculated residuals, we get an approximation of
how the residuals are distributed. By choosing the the sensors that give the lowest residual we get a sensor
setting which we cannot tell if it is optimal, but we can with a large enough sample of different sensor location
combinations say that the combination is within the top percentile with high certainty. The exact degree of
certainty depends on the number of samples used and how these are distributed.

From the sensor sets in the random sample we can also study whether there are any trends in the sensor
placement that can be used to produce a good guess for a low residual. The best found set of sensors can then
be used as a basis for a local search to find even better matches with the experimental data, but since those
measurements cannot be assumed to be randomly distributed, it is important not to use those measurements
when comparing for statistically significant residuals. We can however deduce that these sensor positions
express the flow modes better than a set of sensors we know in the top percentile.

3 Method

The process of performing the simulation begins with specifying the geometry and the simulational domain.
The domain is then discretized to create a computational mesh. The mesh is then used by a software package,
that produces a solution to the flow field using specified models and boundary conditions. The solution is then
transfered to another software package which computes the proper orthogonal decomposition.

3.1 Numerical simulations

The geometry and simulational domain was specified to be identical to the experimental setup used by the
collaborating team. The experiments were carried out in an open test section of a wind tunnel, with the
pyramid being affixed to a plate measuring 1100 mm in the flow (x-) direction and 760 mm in the spanwise (y-)
direction. For the simulational domain, the plate size was used as the basis for the length. To avoid spending
computational resources on areas not affected by the pyramid. The domain extended only 500 mm in the
y-direction, and extended in the z- direction to a height of 405 mm.

The pyramid chosen had a base length of 45 mm and a height of 39 mm. This gives a pyramid apex angle
of 60. The pyramid was placed with the apex 200 mm from the leading edge of the simulational domain, and
centered in the spanwise direction. The pyramid was angled so that all the base sides were parallel to the edges
of the base plate. The origin of the simulational domain was then chosen as the point on the plate directly
under the apex of the pyramid.

3.1.1 Boundary conditions

The boundary conditions were specified in the AVL Fire software package. For the ground plate and pyramid
surface, a no-slip wall condition was used. To recreate the open test section, slip-wall conditions were used
on the sides and top of the numerical domain. Due to the small size of the projected pyramid surface are in
relation to the simulation domain cross-section (less than 1%), any potential errors introduced by this boundary
condition is considered negligible.

For the outlet of the domain, a zero gradient condition was specified, with the outlet assumed to be far
enough downstream not to influence the result. For the inlet, a wall-normal velocity of U0 = 10 m/s was
specified expect for near the ground plate, where a specified velocity profile was used in order to achieve the
same boundary layer thickness observed in the experimental setup. This was applied at below z = 0.01 using
an expression gained by adjusting experimental data to an exponential expression.

U(z) =

{
10, z ≥ 0.01

10
(

z
0.01

) 2
9 , z < 0.01

The initial conditions used a uniform initialization with a U-velocity of 10 m/s. The pressure was set at 92000
Pa to match the atmospheric pressure used in the experiments.

5



3.1.2 Numerical meshes

The geometrical domain was specified in the ICEM software which was also used to discretize the domain into
the computational mesh. Two meshes were made, with the major difference being the cell sizes in the wake
region. To accomplish smooth transitions between cell sizes (a necessity for a properly converging simulation)
in the denser mesh, a fundamentally different meshing strategy was needed. The two meshes are therefore
considered different enough to show mesh-independence of the solution, given that the results of the simulations
are in agreement.

The coordinate system was set with the origin at the ground plate under the pyramid apex. The x-direction
was the streamwise direction, the y-direction was chosen as the spanwise direction, and the z-direction was the
height wise direction. To assure that the near wall behavior of the flow was properly resolved, both meshes
were designed to produce a dimensionless wall distance of y+ < 1 near all walls (the y+ designation is slightly
confusing as the wall normal direction is more closely aligned with the z-direction). Furthermore the cell sizes
in the spanwise and flow wise directions were kept at under x+ < 30 in order to properly resolve the surface.
As a consequence of the mesh structure, the cell sizes near the top of the pyramid were even smaller.

Figure 3.1: x-y plane of the fine mesh at 0.8 times the pyramid height (upper) and x-z plane of the fine mesh
through the center of the pyramid (lower)

The smaller mesh used a total of 8.0 cells, and the finer mesh used 14.1 cells.As the near wall cells are by
far the smallest, and were roughly the same in both simulations, the constraints set by the CFL-number were
almost identical, the same time step of ∆t = 10−5 s could be used while calculating on both meshes.

Simuations were carried out using computer resources from Chalmers Centre for Computer Science and
Engineering (C3SE) and from the National Supercomputer Centre in Linkping. The simulations on the coarse
mesh used 64 cores for around 670 hours, and the simulations on the fine mesh needed 128 cores used for
around 500 hours.

6



3.2 Post processing

The post processing consisted first of calculating the POD-modes, then implementing the correlation analysis,
and finally to visualize the solution. The POD calculation was done using the xAMC package, which is a set of
command line programs designed specifically for POD calculation on flows.

For the correlation analysis, a Matlab code was written to perform the calculation and perform the Monte-
Carlo search. The primary focus of this was to get a working code that could natively use the data from xAMC
and the simulations. As such the program is likely highly ineffective, and if other cases are to be studied using
the same approach, a dedicated application should be written in a compilable language such as Fortran or C.

Plots of data were mainly carried out in Matlab, and the Ensight software was used to visualize 2-d planes
and 3-d structures, as well as for computation of vortex cores and flow properties.

3.3 Sought results

In order to perform the proper orthogonal decomposition a series of snapshots of the flow need to be established.
While it would be possible to save the entire domain, due to the large amount of data generated, 1000 snapshots
were taken of a subdomain around the pyramid extending 0.054 m on both sides of the pyramid, extending
0.0675 m in front of the pyramid, and 0.2475 m behind the pyramid apex. The domain extended 0.0675 from
the group, as shown in figure 3.2 expressed in terms of the pyramid base width d = 0.045 m.

The snapshots saved the three dimensional velocity field along with the pressure in 120x76x31 discrete
positions in the domain. Denser spacing was used in the center of the domain and the lower part of the domain,
as well as some specific planes included to ease comparison with measurements taken in the experimental study,
as shown in figure 3.3. Snapshots were saved with a frequency of 1000 Hz, over one simulated second. The first
snapshot was saved 0.5 simulated seconds from the beginning of the simulation, when the flow was observed to
be independent of the initial conditions.

d

0.7 d

dd 0.7 d

5 d

u

h

1.5 d

Figure 3.2: Size of the domain used for the POD snapshots

In addition to the snapshots, mean values of the entire simulation domain taken over the snapshot period
was saved.
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0

0.05
x−y plane of POD−grid

−0.05 0 0.05 0.1 0.15 0.2

0.02

0.04

0.06

x−z plane of POD−grid

Figure 3.3: Discretization used for the POD snapshots

The surface pressure was measured in a set of positions on the pyramid and on the plate behind the pyramid.
For the pyramid 1521 positions equally space over the pyramid in a 39x39 square pattern was used, and for the
wake nine lines were chosen, with 39 equally spaced sensors. Measurements for these sensors were saved with a
frequency of 10000 Hz.

For the Monte-carlo search of optimal sensor positions, a search using 100000 tested combinations were
performed using all possible sensor positions on the pyramid. As one purpose of these searches was to suggest
proper sensor positions for experiments two other searches were done using subsets of the possible sensor
positions. Both of these excluded positions near the base of the pyramid where pressure sensors would be
hard to fit, and one of these also excluded positions near the corner edges of the pyramid for the same reasons.
These two searches were also done using 100000 tested combinations.

4 Results

As one of the advantages of CFD methods is the availability of large amounts of data, this report can only
cover a subset of all data. We first seek to demonstrate that the LES simulations are in agreement with the
experiments, for which we compare velocities at specific cross-sections of the domain.

After agreement between the experiments and simulations have been discussed, we present the POD-modes
along with the mean flow to present an analysis of the flow features.

Finally we show the results of the correlation analysis, and present the sets of sensor positions found by the
optimization algorithm.

4.1 Velocity cross sections

From the POD-snapshot domains we can extract data along any line. We first want to compare the two
simulations to see whether the mesh resolution has any effect on the simulation. This is done by comparing the
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U-velocities at two x-normal planes at different distances from the pyramid. These are shown in figure 4.1. For
the two planes behind the pyramid there are significant disagreements between the two simulations, with the
coarser mesh giving higher velocities for cross-section higher up in the wake.

To compare with the experiments, we chose to study mean velocities along two planes at different elevation.
Along the planes velocities are plotted at five different distances from the pyramid. These are shown in figures
4.2 and 4.3. The curves from the finer mesh show much better agreement with the experiments, though the
smoothness might suggest that a larger sample is needed for the average.
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Figure 4.1: U-velocity component in the two simulations, measured at h and 1.8 · h behind the pyramid apex.
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Figure 4.2: U and V velocity components behind the pyramid at z = 0.012m

Along with these plots, comparisons were done on profiles between these, as well as the W-velocity component
and turbulent stresses. For space reasons, these are excluded, as they provide little more detail relevant for the
further discussion of the data.

4.2 Flow visualisation

Due to the large amount of available data, any visualization of transient flow needs to include a lot of
simplification. As the POD analysis is performed to provide an expression of transient flow expressed in terms
of combined time constant modes, visualization of transient flow is not done here.

Instead we provide a set of mean velocity profiles at z-planes spread along the pyramid height. The U and
V components are shown in figure 4.4. As these planes are taken from the snapshots, the pyramid appear
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Figure 4.3: U and V velocity components behind the pyramid at z = 0.036m

as an area of zero velocity. The near wall behavior should be taken with a grain of salt, as the interpolation
includes these zero velocity measurements. The average surface pressure and mean square pressure fluctuation
taken from the surface pressure measurements on the pyramid is shown in figure 4.5. Finally, to illustrate the
prevailing vortices, a 3-d picture of identified vortex cores using a eigenvalue scheme on the mean flow is shown.
This should be seen primarily as an illustration of the locations of the main structures.

4.3 Proper orthogonal decomposition

The proper orthogonal decomposition performed by the xAMC program yielded at set of 1000 modes. The
relative energies of which are shown in figure 4.7. The amplitude is weighted so that the energy of the mean
flow corresponds to an energy of 1. As can be seen from the figure, one requires 44 out of 1000 modes to express
half of the POD-resolved-energies, and using half of the modes expresses 92 % of the energy.

The POD-modes are shown by tomographies of the pressure of the the mean flow and first five modes at
half the pyramid height, and the full pyramid elevation. These are identically scaled to allow for comparison of
mode amplitudes. Pressure is measured from −125 Pa to 125 Pa, relative to the atmospheric pressure. These
are given in figure 4.8

4.4 Monte Carlo Optimization

Three searches were performed, one including all sensors on the pyramid, one excluding sensors closer to the
pyramid base edge than 5 mm in either x- or y- direction, and one additionally excluding sensors near the
diagonal edges. The calculated sum of square residuals were distributed according to the histograms in figure
4.9.

The top four sensor position sets were given by these searches as shown in figure 4.10 to 4.12 along with
their calculated sum of square residual.

5 Discussion

In this section, as in the preceding ones, we will first discuss whether the simulational data agrees well enough
with the experiments to make any worthwhile conclusions. We will then comment on the solution of the flow
field as well as the computed POD modes, and finally we will discuss the implications of the correlation analysis
with the pressure sensors.
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Figure 4.4: Mean U (left) and V (right) velocity fields at planes located (from up to down) at elevation of
z = 0.009m, z = 0.015m, z = 0.021m, z = 0.027m, z = 0.033m & z = 0.039m
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Figure 4.5: Mean surface pressure and mean squared pressure fluctuation.

Figure 4.6: Vortex core visualization

12



0 200 400 600 800 1000
10

−6

10
−5

10
−4

10
−3

10
−2

Spectrum of POD−modes

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

0.025

Cumulative strength of POD−modes

Figure 4.7: Spectrum (left) of POD-mode intensity, and cumulative intensity of POD-modes (right)

5.1 Validation of the simulations

The difference between the simulations show that the solution made with the coarser mesh is not resolved
enough to be considered independent of the mesh. While the general picture is consistent, the larger velocities
in the wake point to insufficient resolution of the wake. This is consistent with the refined mesh giving much
better agreement with the experimental setup.

The agreement between the two simulations is large enough to disregard the data from the coarse mesh in
the further discussion of the results. The coarse mesh used is simply not dense enough for LES to be used.

Studying the comparison of the fine grid simulation and the experiment give two important clues to the
usability of the simulation. When studying the U-profile, we see that apart from the points closest to the
pyramid, the experiments give higher velocities than the corresponding point in the simulation. We also see
that the velocities also increase with the distance from the pyramid. Therefore, if experiments at one point are
compared with a point slightly further away in the simulation, almost perfect agreement is found. This would
indicate that the main flow picture in the simulation is sound, but that something shifts the information in the
simulation further down in the wake.

Comparing the V-velocity profile, we also see that in the simulation, positions closest to the pyramid show
alternating directions of the V-velocity near the center, typically indicative of the precense of a recirculation
vortex. Such a zone is known to exist in both experiments and simulations, and is seen in previous studies, but
stops being relevant further down the wake. For this comparison, this effect has completely ceased when in the
experiments, but is still present in the experiments. Once again, if experiments at one point are compared with
a point slightly further away in the simulation, much better agreement is found.

Some of the discrepancies between the simulation and the experiments is also likely to be caused by the
measurement technique used in the experiments. As the measurement window in the experimental data
begins roughly 0.9 · h aft of the pyramid apex, the cross section studied near the pyramid may not contain all
information about the wake. The lack of the recirculation zone in the experiment may only point to a small
difference in the shape of those vortices, but as their center is located outside the measurement window, the
shape can not be studied further.

There is therefore a possible scenario where the only main difference between the simulations and experiments
is the extent of the two wake vortices in the stream wise direction. A difference here then influences the
entire wake, with a larger vortex in the simulations shifting the velocity profiles slightly rearwards to give
the simulations generally larger deviations from bulk flow, as seen in the comparisons. Near the tip where
velocity tapers off the most, this difference would be the largest. Any discrepancies between simulations and
experiments are then related to a lack of resolution upstream of the place where the differences are seen.

As the shift needed to create a match in the data is not constant, the shift is highly likely caused by a lack
of resolution in the wake, which makes the difference between experiments and simulations too large to neglect.
While the following analysis can be used to describe the simulated solution, any conclusions drawn can not be
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Figure 4.8: Comparison of mean flow (top) and POD-modes 1-5 (from up to down), at elevation of z = 0.5h
(left) and z = h (right)
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Figure 4.9: Distribution of the residuals from the three Monte Carlo Optimizations

−0.02 0 0.02

−0.02

−0.01

0

0.01

0.02

R
2
 = 19.8081

−0.02 0 0.02

−0.02

−0.01

0

0.01

0.02

R
2
 = 19.813

−0.02 0 0.02

−0.02

−0.01

0

0.01

0.02

R
2
 = 19.8465

−0.02 0 0.02

−0.02

−0.01

0

0.01

0.02

R
2
 = 19.8684

Figure 4.10: The four sets of sensors with the lowest residuals found while searching all possible combinations
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Figure 4.11: The four sets of sensors with the lowest residuals found while searching in a area excluding sensors
near the ground plate
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Figure 4.12: The four sets of sensors with the lowest residuals found while searching only sensors feasible for
experiments

applied to the experiments and real world flows.

5.2 The flow field

The features expected from previous studies of the flow around a pyramid can be seen in the simulations. The
formation of a large horseshoe vortex near the base along with two vortices emanating from the front base
corners of the pyramid are all expected and seen in the mean flow. Together with two counterrotating vortices
meeting behind the tip of the pyramid, these make up the most prevalent turbulent features [1].

More detailed analysis shows that the large horseshoe vortex is accompanied by a smaller one forming near
the base of the pyramid rotating in the opposite direction. The vortices emanating near the base of the pyramid
are in fact trend differently and seem to alternately form a low vortex near the ground plate and a weak one
trending along the leading diagonal edge of the pyramid. This alternates with a stronger vortex forming along
the diagonal of the pyramid side, which split up close to the trailing side of the pyramid and either continues
to join the rear vortices (as seen in figure 4.6), or trails of upwards to join the wake further up. The choice of
directions is highly likely related to the timing of the main wake vortices.

Overall the flow field agrees well in all main features with previous studies suggesting that the flow is well
described in behavior, though specific points may still differ.

5.3 Proper orthogonal decomposition

The decomposition of the flow shows a ordinary spectrum of modal strength. One might look at the total
mode intensity, totaling 0.023 compared to the mean flow, set at 1, to deduce that the turbulence is very low
intensive, but as flow far from the pyramid and ahead of the pyramid is very well described by the mean flow,
this is not an indication of turbulent intensity, but rather indicates that the same results could be achieved
with a smaller POD domain.

17



The spektrum show that the modal strength decreases very fast, as the first few modes expresses the
large scales, with modes expressing successively smaller scales containing less and less energy. This is further
confirmed by looking at the shown pressure modes in figure 4.8.

The first three modes in the z = 0.5h plane resolve the large scale near pyramid wake. The first mode
give the two vortices directly behind the pyramid. That the two pressure peaks has alternating signs indicate
that the vortices are shed alternately. The second mode basically shifts the first one further down the flow to
allow resolution of the shedding of the vortices, this mode also includes the formation of a new vortex, which is
in phase with the shedding. The third mode balances the two first modes, effectively resolving effects of any
deviation from a constant frequency shedding.

Worth noting is that the first three modes has very little impact on the pressure in the plane located at
z = h. Instead the fourth and fifth mode give high amplitudes at this plane, higher than the lower plane. This
indicates that the lower flow fluctuates at different frequencies than the higher flow. The prescence of multiple
superposed flow patterns would also explain why the mode amplitudes has an obvious oscillation, but show
no clear frequencies. These frequency spectra were calculated, but as the results gave no obvious conclusion,
they were not included for discussion in this report. Doing a POD analysis on a subset of the data, i.e. doing
separate calculations on different planes, could strengthen or disprove this hypothesis.

5.4 The optimal sensor positions

Studying the histograms from the three searches show that all of these plots show a bimodal behavior, which is
most pronounced in the case with all allowed sensors, where the distance between the two peaks is significantly
larger than in the other two cases. The two searches excluding sensors give roughly the same two peaks, which
are closer together than for the first search. The bimodal behavior here is less pronounced, as the two peaks
roughly merge in to one, but the model of two superimposed normal distributions does still explain the shape
of the distribution.

The bimodal behavior implies that there are at least two statistically significant ways that the set of sensors
chosen affects the residual. Had the distribution been normal, there would be no way to prove that the residuals
gained were not due to random variations. With the histograms given in figure 4.9 there is a significant effect
of the sensor placement on the residual, and we may proceed with our analysis.

The figures 4.10 to 4.12 show that there is a large variation of sensors giving similar residuals, showing that no
specific measurement position gives significantly better results. There are however some discernible patterns,
which becomes even more apparent when studying more sets of positions giving residuals on the same level.

All sets of sensors giving favorable residuals use two sensors located low on the the leeward side of the
pyramid. Most favorable residuals are found when using sensors on the very corners of the pyramid. As the
residuals when allowing sensors very close to the ground are discernably lower than the cases excluding such
positions, we see that experimental measurements giving good agreement would be hard to perform, as these
positions make physical sensor placement hard.

Apart from the pair of sensors, the optimizations give preference to locations near the diagonal edges of
the pyramid, which also make experimental sensor placement hard. One concludes that placing sensors near
where vortices form and detach from the pyramid give best agreement with the POD modes. Comparing this
with the pressure fluctuations in figure 4.5 one sees that these sensors are located in a region of high pressure
fluctuations.

Two additional considerations when studying the different allowed sensor positions is that due to the three
searches using the same amount of random sets, but having differing amounts of possible combinations, the
results should statistically be less converged for the larger amount of allowed sensors. However, for this sample
size, this effect is negligible compared to the advantage of having access to more relevant sensors.

Also, one might note that a lot of sensor positions are located close to each other, which may suggest that
all six sensor positions might not be needed to give a good estimation.

When comparing the two searches where only a subset of sensor positions are allowed, little difference is found,
and in fact the best set of sensors found for the third search has a lower residual than the ones found in the
second search. As the third search uses a subset of the sensors included in the second search, that set could
have been found in both searches. It is seen that even when excluding sensors on the diagonals, low residuals
are gained when using positions near the diagonals.
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The overlap also serves to show that the Monte-carlo method gives no absolute results. The difference
between the cases is mostly seen in the histograms, which shows that it is easier to find a half-good set of sensor
positions when diagonal placement is allowed, but that the results for the very best sets are equal in both cases.

When positions near the ground plate are excluded there are still two sensors located low on the leeward
side, separated and roughly symmetrical. That this pair is found in every good combination of sensors is
likely related to the two large wake vortices, which are resolved by these sensors. Even when placement on
the diagonal is allowed, the optimum position of these is found with the sensors closer to the middle. This,
together with the wider spacing when low sensors are allowed, indicates that the best position is near the root
of the wake vortices, and that higher up, it is better to place the center closer to the core of the vortex.

On the leeward side, a third sensor is always present which is placed higher up on the pyramid. When
diagonal placement is allowed, this is placed on one or both leeward diagonal edges. These are found in
proximity to where the vortices growing along the side of the pyramids detach from the surface. When diagonal
placement is not allowed, there is instead a single central sensor located high on pyramid, making a triangle
of relevant sensors on the leeward side. While an additional position is also found somewhere in the formed
triangle, this is most often close to another sensor, and is therefore assumed to be less necessary.

Another sensor is usually placed on the side of the pyramid, but in most cases only a sensor on one of the
sides is found. The behavior on the sides of the pyramid is assumed to be symmetric, and therefore information
on one side and a time shift can describe flow on both sides. When diagonal placement is possible, diagonals
can also be deduced to provide information about both sides.

Finally a position somewhere on the windward side of the pyramid is often included, and found close to
the center and slightly below the sensors on the side near the top. This gives information on the large scale
vortex shedding, and when sensors close to the ground plate are allowed, also about the near pyramid horseshoe
vortex.

Using these conclusions a set of sensors is constructed and tested for a low residual, and produces a lower
residual than all others found when sensors near the ground is allowed. This is shown in figure 5.1 and show all
patterns explained above. The procedure is repeated allowing all sensor positions and also gives a significantly
lower residual than the randomized cases. That these optimizations can be done serves to point out that while
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Figure 5.1: Optimized sensor positions. On the left using full limitations, and on the right allowing all sensor
positions.

the Monte-carlo approach is usable for optimization, but that local searches around the found optimum can
increase the quality of the results.

6 Conclusions

The results arrived at in this project give further insight into flow around pyramids. While the results primarily
enforces the previously known results about the flow around the pyramid, additional information was given
that helps explain why both this and previous studies have had problems resolving the wake with LES.
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The main cause of the discrepancies between the simulations and the experiments were the location and
shape of the two main rear vortices, which then shifts the entire wake rearwards to cause comparison errors
for every compared location. As this study and previous studies has sought to remove the discrepancies by
increasing mesh resolution in the far wake, more effort should be directed at the region close to the pyramid,
and at the area where the main vortices form. As this area includes interactions between both these large
vortices, the smaller vortices along the side, and the effects near the tip, insufficient resolution in this area is a
real possibility even in a mesh that is well resolved further along the wake.

The POD analysis also show that this is a powerful technique to gain insight into complex flows such as
flow around a pyramid. The correlation with the surface pressure does show that there is a link between the
pyramid surface pressure and the wake flow, but this also comes to the somewhat obvious conclusion that in
order to describe the flow, it is best to place sensors close to known flow features.

6.1 Further studies

As the two performed LES-simulations are not in agreement, it would be beneficial to show mesh independence
of the solution by further refining the mesh. If the near pyramid wake area is refined as discussed above, and a
simulation still gives results similar to the present LES, it would cast doubt on these conclusions, and also
cast doubt on the fidelity of the experiments. Using an approach using more large scale modelling could give
interesting results if agreeing results can be found without needing a refined mesh, and should be done as well.

The important result of the wake having different frequencies at different elevations should be further
studied by doing a more detailed analysis of the data. The interaction should be tested to see if a direct relation
between the local pyramid width can be established. This does not require additional simulations, but rather
doing a set of simpler POD-analyses for each plane, as well as studying the raw pressure measurements for
frequency maximas. However, a significant amount of time will have to be spent on analyzing the data.

While the correlation and sensor placement optimization could be further studied, it is not clear if any
worthwhile conclusions can be achieved by more data. Varying the amount of sensors to place, as well as studying
the effects of changing the time shift on the distribution of the residuals will give a better understanding of
how good the conclusions drawn are, but no immediate goals can be set to directly draw additional conclusions.
The method does however show some promise and deserves further study when applied to a simulation better
matching experimental flows.
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