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PONGSAKORN CHANCHAIPOL
LEELAWADEE SIRIKUL
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This study is made to investigate the benefit of using high-dimensional data from
sensors in electric vehicles (EVs) in State-of-Health (SOH) forecasting. By the term
"High dimensional data", it means the data has a considerably large dimension that
the computation on the data is very difficult or very time consuming without a
proper handling. EV is one of the biggest trends in the automobile industry in
the past few years. One of the biggest concerns about the EVs is their lithium-ion
battery. The lithium-ion batteries will degrade over time based on several factors
such as calendar ageing, accumulated charge, temperature, and etc. These factors
can lead the Li-ion batteries to degrade, which can lead to several problems for the
EVs. The study is made on the Diagnostic Read Out (DRO) dataset from real-world
Volvo Cars’ customers. Several machine learning models were used to predict and
analyzed to find the significant causes of battery degradation. Principal Component
Analysis (PCA) was used to reduce the dimension of data before fitting it into the
prediction models. For the results, this study found that Long Short-Term Memory
(LSTM) is the most suitable machine learning model for SOH forecasting from all
machine learning models considered in this research. Moreover, applying PCA to
the data significantly improves the models’ performances than using the whole data
without dimensionality reduction. Furthermore, adding a suitable number of lag
features to the input also increases the models’ performance considerably. Last but
not least, SOC and the temperature while cranking and starting the engine of the
hybrid EVs are considered to be important to the battery degradation problem.

Keywords: Lithium-ion Battery degradation, Electric Vehicle, State-of-Health fore-
casting, Machine learning, Linear Regression, Recurrent Neural Network, Random
Forest Regression, Long Short-Term Memory, Principal Component Analysis.

v





Acknowledgements
This project is one of the best opportunities for us to have a chance to work with
Volvo Cars and Chalmers University of Technology. The project itself is very chal-
lenging and interesting at the same time. We would first like to thank our thesis
advisor Christian Fleischer at Volvo Cars for giving us such an opportunity for this
amazing project and always provided great answers to our questions regardless of
how long they were. Many advice and support from him are some of the most
important things that help us complete this project. A huge thank you to our su-
pervisor Asst. Prof. Ashkan Panahi of the Department of Computer Science and
Engineering at Chalmers for providing us with a lot of support and guidance on
this thesis. We would also like to thank Herman Johnsson for helping us with the
data preparation and several useful recommendations on the project. We also want
to thank our examiner Prof. Devdatt Dubhashi and our thesis coordinator Birgit
Grohe for all the support you gave us. Last but not least, we want to thank all the
Volvo Cars employees, Chalmers staffs, and other master thesis students for being
part of our study at Chalmers and Volvo Cars.

Pongsakorn Chanchaipol and Leelawadee Sirikul, Gothenburg, October 2020

vii





Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Overall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2.1 Lithium-ion Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Battery Structures . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Battery Parameters . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2.1 Capacity . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2.2 State of Charge . . . . . . . . . . . . . . . . . . . . . 5
2.1.2.3 State of Health . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Battery degradation . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Related research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Theory 9
3.1 Standardization (Z-score Normalization) . . . . . . . . . . . . . . . . 9
3.2 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . . 10
3.3 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Random Forest Regression . . . . . . . . . . . . . . . . . . . . 12
3.3.3 Recurrent Neural Network (RNN) . . . . . . . . . . . . . . . . 13
3.3.4 Long Short-Term Memory (LSTM) . . . . . . . . . . . . . . . 15

3.4 Backpropagation Through Time (BPTT) . . . . . . . . . . . . . . . . 17

4 Methods 19
4.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Applying Standardization and PCA . . . . . . . . . . . . . . . 21
4.2.2 Adding lag features to the input structure . . . . . . . . . . . 22
4.2.3 Adding the Next features . . . . . . . . . . . . . . . . . . . . . 22
4.2.4 Train/Test/Validation split . . . . . . . . . . . . . . . . . . . 23

4.3 Machine Learning Model Implementations . . . . . . . . . . . . . . . 24
4.3.1 Simple Linear Regression implementation . . . . . . . . . . . 25

ix



Contents

4.3.2 Linear Regression implementation . . . . . . . . . . . . . . . . 25
4.3.3 Random Forest Regression implementation . . . . . . . . . . . 25
4.3.4 Recurrent Neural Network implementation . . . . . . . . . . . 26
4.3.5 Long Short-Term Memory implementation . . . . . . . . . . . 27

5 Results 29
5.1 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Random Forest Regression . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5 Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Discussion 39
6.1 Model performance comparison . . . . . . . . . . . . . . . . . . . . . 39
6.2 Feature importance analysis . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.1 Linear Regression coefficients analysis . . . . . . . . . . . . . . 42
6.2.2 Random Forest analysis . . . . . . . . . . . . . . . . . . . . . 43
6.2.3 LSTM analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Conclusion 47
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 51

A Appendix 1 I

x



List of Figures

2.1 These figures show how lithium-ions and electrons flow in a lithium-
ion battery during charging and discharging states. . . . . . . . . . . 4

3.1 An example visualization of gradient descent patterns comparing be-
fore and after applying normalization. In the figure (a), it is harder
to find a path to the local minimum (center) due to the imbalanced
axes (size 1:100). In the figure (b), after applying normalization, the
pattern is well-balanced on both x and y-axes (size 1:1). Therefore,
it is easier to find the local minimum. . . . . . . . . . . . . . . . . . . 9

3.2 The visualization of RNN internal structure.
(Note: ’||’ refers to concatenation between 2 blocks of tensors) . . . . 13

3.3 RNN feed-forward architecture. . . . . . . . . . . . . . . . . . . . . . 14
3.4 The structure of the Long Short-Term Memory (LSTM) neural net-

work. Inputs: Current input (xt), Memory from last LSTM unit
(ct−1), Output of last LSTM unit (ht−1). Outputs: New updated
memory (ct), Current output (ht). Operations: Element-wise prod-
uct (∗), Addition (+). . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 A BPTT example on the loss Lt+n of an RNN. In this case, the
algorithm needs to backpropagate from the loss back to all input
states of the same sequence including the first input state x<t>. . . . 17

4.1 Age Distribution of DRO data . . . . . . . . . . . . . . . . . . . . . . 20
4.2 State-of-Health and Age scatter plot . . . . . . . . . . . . . . . . . . 20
4.3 Scree plot of top 50 principal components from the histogram features.

We can clearly see that there is an "elbow" or aggressive angle occur
between PC2 and PC3. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 The visualization of how the dataset was split by its continental in-
formation into training, validation, and test sets. . . . . . . . . . . . . 23

4.5 Input feature design for the SOH prediction models. Models: Linear
Regression (LR), Random Forest Regression (RF), Recurrent Neural
Network (RNN), Long Short-term Memory (LSTM). Features: State-
of-Health (SOH), Age, Basic features (Basic), Histogram features
(Hist.), while < t > refers to the current timestamp and < t − 1 >
refers to the previous timestamp (lag features). . . . . . . . . . . . . 24

4.6 MSE of the Random Forest models on the validation set is displayed
as a function of the number of trees from Random Forest Models. . . 26

xi



List of Figures

5.1 Moving average of the actual and predicted result on the test set of
the Simple Linear Regression model trained with age feature . . . . . 29

5.2 Error Distribution of the Simple Linear Regression Model . . . . . . . 30
5.3 Actual vs Predicted State-of-Health values of the Simple Linear Re-

gression Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Moving average of the actual and predicted result on the test set of

the Linear Regression model trained with basic + lag feature. . . . . 31
5.5 Error Distribution of the Linear Regression Model. . . . . . . . . . . 32
5.6 Actual vs Predicted State-of-Health values of the Linear Regression

Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.7 Moving average of the actual and predicted result on the test set of

the Random Forest Regression model trained with basic + 10PC +
lag feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.8 Error Distribution of the Random Forest Model. . . . . . . . . . . . . 33
5.9 Actual vs Predicted State-of-Health values of the Random Forest Model. 34
5.10 Moving average of the actual and predicted result on the test set of

the Recurrent Neural Network model trained with basic + 2PC + lag
feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.11 Error Distribution of the Recurrent Neural Network Model. . . . . . . 36
5.12 Actual vs Predicted State-of-Health values of the Recurrent Neural

Network Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.13 Moving average of the actual and predicted result on the test set of

the Long Short-Term Memory model trained with basic + 2PC + lag
feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.14 Error Distribution of the Long Short-Term Memory model. . . . . . 37
5.15 Actual vs Predicted State-of-Health values of the Long Short-Term

Memory model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 Moving average of the actual and predicted result on the test set of
the machine learning models trained with different features. . . . . . 39

6.2 Error Distribution on the test set of the machine learning models . . 40
6.3 Best machine learning models performance comparison . . . . . . . . 41
6.4 Features’ coefficient values of the Linear Regression model trained

with Basic and Histogram feature. . . . . . . . . . . . . . . . . . . . 42
6.5 Top 10 List of the Features importance of the Random Forest Regres-

sion model trained with Basic and Histogram feature. . . . . . . . . . 43
6.6 Features importance of the Random Forest Regression model trained

with Basic and Histogram features that are not include current SOH
(Min_Cell_Capacity), current age (age), and next age (Next_age)
feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.1 Performance comparison from different machine learning models and
different inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xii



List of Tables

5.1 MSE and MAE results on the test set of the best-performing model
for each model type. See full result in the appendix chapter. . . . . . 38

6.1 The feature importance result of the LSTMmodel. Negative delta_MSE
(%) means improvement, otherwise the performance of the model is
worse than the LSTM trained with only Basic features. . . . . . . . . 45

A.1 MSE and MAE results on the test set of the machine learning models
trained with different sets of input features. . . . . . . . . . . . . . . I

xiii



List of Tables

xiv



1
Introduction

1.1 Overall

In these past few years, electric vehicles (EVs) have been one of the world hottest
trends in the automotive industry. EVs replace the need for a combustion engine
with single or multiple electric motors which yield better power efficiency [1] and
ease of maintenance due to the lower number of complex components in the vehicle.
Apart from the electric motor, another major difference of EVs from the regular
combustion engine car is their energy source. EVs use batteries as their source of
energy which can be charged up via any renewable energy source, even from the
brake mechanism from the car itself. Moreover, any combustion engine car with
its engine running will always consume energy even when the car is stationary. On
the other hand, the electric motor in EV will consume energy only when the car
is accelerating. This reason alone makes EV technically more power-efficient and
environmentally friendly than most of the combustion engine cars on the market.

The lithium-ion battery is a device that stores electrical energy through electrochem-
ical reactions to power other electrical appliances such as electric vehicles (EVs),
smartphones, laptops, and etc. At Volvo Cars, lithium-ion batteries are one of
the most essential components that makes the Plug-In Hybrids Electric Vehicles
(PHEVs) and Battery Electric Vehicles (BEVs) come to life. One main problem of
batteries is that they naturally degrade over time due to the uncontrollable chemical
reactions of the components inside the battery. This results in lower capacity and
also increases the chance of having battery problems such as overheating or even
explosion in the worst possible case. In response, Volvo Cars employs several sen-
sors in their EVs to monitor and help to analyze the battery degradation of each
car, specifically State Of Health (SOH) or the measurement that reflects the current
capacity of the battery. Unfortunately, it is very difficult to have an accurate and
reliable estimation of the current battery condition due to the limited capacity of
online calculation, the high complexity of models, and various kinds of uncertainties.

In the past few years, Machine Learning and Artificial Intelligence (AI) have proven
to be two of the most powerful analytics tools in Computer Science. It can be used
for analyzing customers’ behavior, improving traffic management, increasing power
efficiency of mobile phones, or even forecasting future such as stock market prices,
weather, and etc [2, 3, 4]. Focusing on the future prediction, the data is collected
in time-series format due to the ability to be represented in graphs/plots based on
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1. Introduction

the time axis. However, these kinds of future predictions are not always accurate or
reliable. In fact, most of the time, they are only used as a guide for the experts to
further analyze the target event due to the instability of long-term predictions.

In the recent literature on battery degradation, most of the researchers tend to
analyze only battery-specific parameters such as its input/output voltage, current,
and temperature due to the ease of data collection. This data can be considered
to be low dimensional since not many parameters can be collected from just the
batteries [5, 6, 7]. On the other hand, this thesis proposes a way to work alterna-
tively on high dimensional data collected from all of the sensors in Volvo EVs. This
high-dimensional sensor data may contain some useful information help us forecast
the state of health of the battery in a more reliable way compared to the method
using only low-dimensional battery-specific data.

The main contribution of this project is to build a machine learning solution to
forecast the battery degradation of EVs, specifically the State of Health (SOH) pa-
rameter, based on high dimensional sensor data. The outcome of this thesis can be
further utilized to help Volvo Cars draw a conclusion on the remaining useful life of
the battery in their EVs, lower the risk of customers having battery problems, and
also to help Volvo Cars find out the reasons behind these battery problems caused
by the degradation of these batteries.

1.2 Research questions
Below is the list of research questions that this thesis aims to answer.

• Does the additional high-dimensional data from EV sensors improve battery
degradation forecasting performance of the prediction models?

• Does the usage of the Principal Component Analysis (PCA) improve the per-
formances of the prediction models compared to using the whole dataset fea-
tures?

• Does the additional lag features improve State-of-Health forecasting perfor-
mance of the machine learning models?

• What is the most suitable machine learning model for SOH forecasting based
on DRO data?

• What are the possible causes of the battery degradation in EVs?

2



2
Background

2.1 Lithium-ion Battery
Lithium-ion batteries are one of the most commonly used energy storage devices
for most of the portable electrical appliances such as smartphones, laptops, and
etc. Due to their wide variety of applications, batteries can vary in size, shape,
and capacity depending on the type of electrical appliances they were used for.
Nevertheless, lithium-ion batteries still share the same basic structure and principle
with other battery types. The below sections will explain the basic structure and the
principal chemical reactions of the lithium-ion battery. Moreover, it also includes the
explanation of battery degradation and some important parameters of the battery
includes battery capacity, State-of-Charge (SOC), and State-of-Health (SOH)

2.1.1 Battery Structures
Lithium-ion batteries consist of 4 fundamental components including Cathode, An-
ode, Electrolyte, and Separator [8, 9].

The cathode is a battery component that is made from lithium-oxide. This lithium-
oxide will act as active material that allows lithium to break into lithium-ions and
electrons. For the anode, graphite is used as a stable structure to store lithium-ions
when the battery is charged. While charging, electrons will break themselves off
the lithium-oxide in the cathode and move toward the anode through the charging
circuit. This induces the anode to be negatively charged which attracts the posi-
tively charged lithium-ions. In order for the lithium-ions to move from the cathode
to anode, the electrolyte is used as a medium transferring the ions from one side to
the other side internally but does not allow the electron to move through it. After
the battery is fully charged and the charging circuit is removed, most of the lithium-
ions and electrons are now residing in the anode side which creates the difference in
voltage between cathode-anode. To prevent the cathode-anode from touching, the
separator is inserted in between to act as a barrier. Preventing cathode and anode
from touching is essential since the touching between the two can cause all of the
electrons to instantaneously move from anode back to the cathode which can create
electricity and heat. In the worst case, this could lead to a battery explosion.

3



2. Background

The main principle of the lithium battery to produce electricity is the movement
of electron. As mentioned before, after the battery is fully charged, the lithium-ion
and electrons are trapped at the anode. Since the electrons are negative, they tend
to travel back to the cathode which is positively charged. However, the electrolyte
does not allow the electrons to pass through, so the electrons will need another way
to go back to the cathode. In this state, when we connect an electrical appliance to
the battery, the electrons are able to travel back to the cathode through the electri-
cal appliance. This flow of the electron produces electric current for the electrical
appliance until the battery runs out of energy. In order to recharge the battery, we
just need to create the reverse flow of the electron by using a charging adapter that
allows electrons to flow back from the cathode to the anode once again.

Cathode Anode

Electrolyte

Separator

Ion (Li+) flow

Electron (e-) flow

(a) Battery Charging

Cathode Anode

Electrolyte

Separator

Ion (Li+) flow

Electron (e-) flow

(b) Battery Discharging

Figure 2.1: These figures show how lithium-ions and electrons flow in a
lithium-ion battery during charging and discharging states.

2.1.2 Battery Parameters

2.1.2.1 Capacity

Battery capacity measures how much electric charge can be stored in a battery.
The common unit of the battery capacity is Ampere-hours (Ah) which is a product
of the possible output current multiplied by time. For example, 1 Ah means that
the battery can release 1 A current at its specific voltage for one hour before it is
out-of-charge. The equation of battery capacity is given by:

C = I × t (2.1)

where C is capacity (Ah), I is current (Ampere), and t is time (hours).
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2. Background

2.1.2.2 State of Charge

State of Charge (SOC) is the measurement that shows how much the energy is left
in the battery [7]. It shows the percentage of the remaining releasable capacity over
the rated capacity given by the manufacturer. For example, 60 % SOC for a 1000Ah
battery means that the battery has 600Ah remaining capacity left. The equation of
SOC is given by:

SOCt = Ct

Crated

× 100% (2.2)

where C(t) is the remaining capacity of the battery (Ah), Crated is the rated capacity
given by the manufacturer (Ah).

2.1.2.3 State of Health

State of Health (SOH) is one of the most important parameters to measure the
ability to store and release the energy or power of a battery compared with a new
battery from the manufacturer [7]. SOH can be defined into two specific forms:
SOHe and SOHp, which are computed based on the degradation in terms of energy
and power, respectively [10].

SOHe is defined as the maximal current capacity of the battery (Cmax,t) divided
by the total capacity of a new battery as specified by the manufacturer (Crated),
which its equation is given by:

SOHe,t = Cmax,t

Crated

× 100% (2.3)

For SOHp, it is defined as the current ohmic resistance (Ro,t) divided by the ohmic
resistance specified by the manufacturer (Ro,rated). The equation is given by:

SOHp,t = Ro,t

Ro,rated

× 100% (2.4)

2.1.3 Battery degradation
Battery degradation is an inevitable chemical phenomenon that continuously re-
duces battery performance over time. Not only does it reduce the battery capacity,
but also increases the resistance of the battery which can lead to higher operating
temperatures and lower output current. After a certain amount of time, any de-
graded lithium-ion battery will not be able to keep its performance up enough to
run its system reliably. So, EV batteries need to be checked during the car main-
tenance to make it run perfectly and prevent any unintentional problems caused by
the degraded batteries.

The amount of battery degradation depends on several factors such as battery ap-
plication, usage, temperature, age, and etc. From [7, 11], the causes of lithium-ion
battery degradation can be summarized to 5 main factors; time, high temperature,
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2. Background

high/low state-of-charge, high current input/output, and energy cycles. Firstly,
battery degradation will still occur whether the battery is in-used or not. Even if
a customer did not use his EV for a year, the battery of that EV will still degrade
over time. Another obvious factor is temperature. The extremely hot or cold tem-
perature can affect battery performance and even degrade them significantly. Other
than the temperature and age of the battery, fully charging or fully discharging bat-
teries will also degrade them too. Moreover, fast-charging or fast-draining can cause
the chemical components inside the battery to change quickly. This drastic change
can increase the battery temperature and degrade the battery even more. Lastly,
the energy usage cycle is the number of SOC cycles that the battery has been used.
The more a battery is used, the higher its energy usage cycle is. So, a heavily-used
battery is likely to be degraded more than a lightly-used one.

2.2 Related research
From the literature [12, 13, 14], for approximately 500 cycles or equivalently 50000
percent of accumulated charge, the State-of-Health degradation can be considered
linear. In other words, at the beginning to middle lifetime of the battery, the battery
is expected to degrade in a linear trend. Moreover, in [13], several battery degra-
dation plots are shown on multiple Li-ion battery variations that the degradation
trends of these batteries can be linear up to a very high precision for 800 charging
cycles, which is considered to be quite old for battery in real-world usage. These
reasons support the benefit of using linear prediction models such as univariate
or multivariate linear regressions up to a shallow artificial neural network structure
[15, 16] to reserve the prediction trend as close to a linear line. Therefore, the predic-
tion model does not need to be very complex since the trends of battery degradation
are considerably linear especially in the beginning to a middle lifetime of the battery.

Another concern for battery degradation forecasting is that long-term prediction
is hardly accurate due to the unpredictable degradation pattern of the battery.
From [17], the ceiling of accurate SOH forecasting is approximately only 1 year
ahead. From our consideration, a one-year ahead prediction should be enough for
Volvo Cars to prevent the battery problem to occur to the customer since every car
is expected to be checked and repaired at the maintenance center at least once a year.

In the research conducted by Yang [18], the writers directly compared the per-
formance between the LSTM network and the unscented Kalman filter (UKF) [19]
on battery SOC estimation. The results of this paper show that their LSTM net-
work significantly outperformed UKF by comparing their root mean squared error
(RMSE) and mean absolute error (MAE) on several battery datasets. From their
SOC estimation result, we found that their SOC decreasing patterns are very similar
to SOH, that is they are both very close to the linear line with slight fluctuations
every now and then. Their LSTM network structure also consisted of only three
hidden layers which can also be considered as a shallow neural network as well.
This also supports the idea of using only shallow neural networks for any time series
sequences that are quite linear.

6



2. Background

In the literature [20], the authors compared the performance between Autoregressive
Integrated Moving Average (ARIMA) [21] and Long Short-term Memory (LSTM)
based on their financial time-series data. The research found that their LSTM signif-
icantly outperformed the ARIMA model. Furthermore, LSTM appeared to capture
the fluctuation of the patterns better than ARIMA and its variations too. So, our re-
search will focus mainly on comparing the performances of several machine learning
models including Linear Regression, Random Forest Regression, RNN, and LSTM
to see which machine learning model performs the best on our dataset.
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3
Theory

3.1 Standardization (Z-score Normalization)
Standardization or Z-score Normalization is an important tool for manipulating
numerical features. Standardization was used to scale all numerical features so that
their means are shifted to zeros (zero-means) and all have unit standard deviations
[22]. This normalization technique will help the prediction models to train faster due
to easier gradient descent. See Figure 3.1 for the visualization of how normalization
can improve the model training process.

1

1000

(a) Before normalization
(imbalanced axes)

1

10

(b) After normalization
(balanced axes)

Figure 3.1: An example visualization of gradient descent patterns comparing before
and after applying normalization. In the figure (a), it is harder to find a path to
the local minimum (center) due to the imbalanced axes (size 1:100). In the figure
(b), after applying normalization, the pattern is well-balanced on both x and y-axes
(size 1:1). Therefore, it is easier to find the local minimum.

The equation of the standardization is given by:

x′ = (x− x̄)
σ

(3.1)

where x is the original feature, x′ is the scaled feature, x̄ is the mean of the feature,
and σ is the standard deviation of the feature.

9
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The sample mean is given by:

x̄ =

n∑
i=1

xi

n
(3.2)

where xi is the ith value of variable in the dataset, n is the number of variables in
the dataset.

Standard deviation is estimated using the formula given below:

σ =
√√√√ 1
n

n∑
i=1

(xi − x̄)2 (3.3)

3.2 Principal Component Analysis (PCA)
Principal component analysis (PCA) is a dimensionality reduction technique that
transforms data to a set of linearly uncorrelated features called “Principal compo-
nents” [22, 23]. The purpose of any dimensionality reduction technique is to reduce
as much dimensionality from the data as possible, but also reserve as much infor-
mation of the original data as possible [24]. The main point of doing this is to
reduce the curse of dimensionality from the high dimensional dataset which is very
problematic for any statistical models for prediction and machine learning models
to learn or capture the pattern from these high dimensional data.

The main concept of PCA is to transform the data into a new coordinate system
that maximizes the variance of each principal component on the new coordination
system. In other words, PCA is a technique that rotates the data around and finds
the viewing angle that maximizes the variance of the data, so we can see the pat-
tern of the data from the best angle and see the distribution of the data clearer. By
rotating data, it means to linearly transform the data to a new coordinate system
based on eigenvalues of the principal components that are computed to maximize
the variance of the transformed data. Each principal component is a linear combina-
tion between the data features, weighted by the eigenvectors of the data covariance
matrix. For example, principal component 1 (PC1) can be represented like this:

PC1 = w11X1 + w12X2 + w13X3 + . . . + w1pXp (3.4)
where [w11, w12, . . . , w1p] is the weight or eivectors of PC1 and [X1, X2, ..., Xp] are
the features that represent the data

The equation (3.4) of PC1 represents the linear combination between p features
that maximize the variation which can be variance or sum of squared distances be-
tween each data point and the eigenvector that represents PC1. Therefore, each
principal component will have its own eigenvector and eigenvalues. Moreover, these
eigenvectors must be orthogonal with each other so that the transformed data are
linearly uncorrelated to each other. To compute the eigenvector and eigenvalues of
each principal component, we first start by computing the p × p covariance matrix
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from the p features of the data. The equation for the covariance between features
X and Y is defined as in equation (3.5):

Cov(X,Y) =
∑n

i=1 (Xi − X̄)(Yi − X̄)
N

(3.5)

where Cov(X,Y) is the covariance of the feature X and Y ,
N is the number of data points,
Xi and Yi are the ith items of each feature X and Y ,
X̄ and Ȳ are the means of each feature X and Y

After the covariance matrix is computed, we can use it to compute the eigenval-
ues and eigenvectors of each principal component which we will not go into the
detail since there will be too much information here. Then, after calculating all of
the eigenvalues and eigenvectors of each principal component, we can now use them
to transform our data.

Applying PCA, we will get new data that represents the original data but on different
coordination due to the transformation and every feature is now linearly uncorre-
lated. At this point, we have already got p principal components from the new data
to represent the old data. Now, we can sort these principal components of the new
data by its eigenvalues and choose only p′ highest-eigenvalues principal components,
where p′ < p, to reduce the dimensionality. Now, we will have a lower-dimensional
data while reserving as much information as possible by using PCA.

3.3 Machine Learning Models
This section describes the machine learning models that were used to capture the
pattern of input data and predict the future State-of-Health in detail. It includes
Linear Regression, Random Forest Regression, Recurrent Neural Network, and Long
Short-Term Memory.

3.3.1 Linear Regression
Linear Regression is one of the most basic prediction model in machine learning.
The algorithm is based on supervised learning, where it is trained on the known
pairs between features X and target y. Normally, a simple linear regression model
receives only one input feature x to predict one output value ŷ. The goal of this
simple linear regression is to find the relationships between them by fitting the linear
equation (3.6) to a given input data.
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ŷ = mx+ c (3.6)

where ŷ is an estimated dependent variable value. x is an independent variable
value or input feature. m is a coefficient that shows the slope of the line. c is the Y
intercept (the value of ŷ when x = 0).

In the case of multivariate linear regression or linear regression model that receives
more than one input feature, the model is based on the given linear combination
equation (3.7)

ŷi = β0 + β1xi1 + β2xi2 + ...+ βp′xip′ (3.7)

where i is the index of the observation Xi, and p′ in the number of input fea-
tures. xi1, ..., xip′ is input features. ŷi is the prediction target, and β0, ..., βp′ is the
coefficients of the model.

The main objective of the linear regression model is to find a line (or hyper-plane
for the multivariate version) that fits the data the best. In this case, it means that
the algorithm needs to find weights or the coefficients β0, .., βp′ that minimize the
error between the prediction value ŷi and the actual target values yi. Finding these
coefficients is usually done by using gradient descent.

This linear regression model is very simple yet reasonably effective for any regression
problem that the data has linear pattern or at least close to a linear pattern. So,
in this thesis, we used both simple and multivariate linear regression models as our
baseline models for comparing the performance between these simple models and
the more complex models that will be explained in the next section.

3.3.2 Random Forest Regression
Random forest regression is an ensemble learning technique that uses multiple de-
cision trees to help increase prediction performance [25]. The model was called
“Forest” basically because it can contain a lot of decision trees to help to predict
the result. This model was considered to be one of the most highly used machine
learning models due to its simplicity and strength when applied correctly.

The key concept of the random forest model is that the decision trees inside must
be trained to be considerably uncorrelated within each other. Normally, a regular
decision tree is prone to overfitting very easily. For this reason, the decision trees
inside the random forest model must be diverse enough so that they do not vote for
the same result, caused by overfitting to the same set of data. By using a technique
called “Bagging” or “Bootstrap Aggregation”, each decision tree inside a random
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forest model will be trained on a different subset of data that increases the diversity
of the decision trees in the random forest model [26]. Another technique that could
be applied to improve the diversity of these decision trees in the random forest model
is to also apply the Bagging method to the set of features. Training on a different
subset of features will also increase the diversity of these trees inside a random forest.
Furthermore, this bagging method can also be used in the node growing process of
each tree to further increase node diversity and also reduce overfitting of each tree.
By doing this, the decision tree can be grown to its fullest and need no pruning after
that. (“Pruning” is a technique to reduce overfitting in decision trees by removing
sub-trees out of the decision tree based on the impact of that sub-trees.) Finally,
after these decision trees in the ensemble were created, trained to the fullest, and
fed an input for a prediction, their output results from all trees will be combined by
averaging.

3.3.3 Recurrent Neural Network (RNN)
Recurrent Neural Network (RNN) is a class of neural networks in deep learning
which is designed specifically for capturing patterns of sequential data e.g. time-
series data, natural language processing, and etc [27, 28, 29]. The concept of the
RNN that distinguishes itself from a regular neural network is its hidden state that
memorizes the information of the past data in the same sequence. The Figure 3.2
shows the RNN internal structure that is used in this thesis.

x  h

x       ||       h

i2h

h

h2o

y

<t> <t-1>

<t> <t-1>

<t>

<t>^

Figure 3.2: The visualization of RNN internal structure.
(Note: ’||’ refers to concatenation between 2 blocks of tensors)
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At the start of every input sequence, we initialize the hidden state h<t−1> for mem-
orizing sequential data to be all zeros (clear its memory of the previous data se-
quence). Then, the first item in the input sequence is concatenated with the hidden
state before it is fed into the input-to-hidden (i2h) network and an activation func-
tion g1. After that, the output hidden state h<t> of the i2h network is fed into
the hidden-to-output (h2o) network and an activation function g2. Moreover, the
hidden state h<t> will be passed to the next timestamp for the next prediction too.
At this point, the output of the current timestamp ŷ<t> is generated. Therefore,
the model is ready to move to the next item in the sequence and keep predicting
one by one until the end of the sequence. Figure 3.3 is shown to visualize on how
our RNN structure receives input and predicts output for each timestamp until it
finishes a sequence:

Figure 3.3: RNN feed-forward architecture.

The hidden and output layers can be computed as described in the equations (3.8)
and (3.9) respectively:

h<t> = g1(Whhh
<t−1> +Whxx

<t> + bh) (3.8)
ŷ<t> = g2(Wyhh

<t> + by) (3.9)

where x<t> is the input state at time t, h<t> is the hidden state at time t,
ŷ<t> is the prediction result at time t, g1, g2 are the activation functions,
Wxh,Whh, bh are the weight and bias coefficients of the i2h network that are shared
temporally, Why, by are the weight and bias coefficients of the h2o network that are
also shared temporally, < t−1 >,< t >,< t+1 >, ..., < t+n > refer to the previous
timestamp < t− 1 >, the current timestamp < t >, the next timestamp < t+ 1 >,
and the next nth timestamp < t+ n >, respectively.

At the end of each sequence, in order to start the next one, the hidden state needs
to be reset to zeros again to clear the memory of the finished sequence and get ready
to memorize the next one.
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3.3.4 Long Short-Term Memory (LSTM)
Long Short-term Memory neural network or LSTM is one of the variations of Recur-
rent Neural Network (RNN) with the ability to learn long-term dependencies better
than the regular RNN [30, 31]. The key components of LSTM that allow the model
to learn long-term dependencies are its memory cell (ct), forget gates (ft) and input
gates (it). These gates allow LSTM to adjust what to remember and what to forget
that replicate how human memory work. These gates also control the information
flow that means the gradients will be trapped in the memory cells longer than the
regular RNN. So, this can reduce and/or prevent vanishing gradient problem that
is one of the biggest problems of the regular RNN.

σ

Wio Who

tanh

Wig Whg

σ

Wii Whi

σ

Wif Whf

xt

+*

*

* tanh

ht -1

ct -1

ht 

ct 

ht

ft it gt ot 

Figure 3.4: The structure of the Long Short-Term Memory (LSTM) neural net-
work. Inputs: Current input (xt), Memory from last LSTM unit (ct−1), Output of
last LSTM unit (ht−1). Outputs: New updated memory (ct), Current output (ht).
Operations: Element-wise product (∗), Addition (+).
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The equation of LSTM components is given by:

it = σ(Wiixt + bii +Whiht−1 + bhi)
ft = σ(Wifxt + bif +Whfht−1 + bhf )
gt = tanh(Wigxt + big +Whght−1 + bhg)
ot = σ(Wioxt + bio +Whoht−1 + bho)
ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

where
it is the input gate’s activation vector at time t.
ft is the forget gate’s activation vector at time t, if the values (ft) close to zero, the
cell will forget the cell state from the past (ct−1), but if the value close to one, the
cell will remember its history.
gt is the cell gate’s activation vector at time t.
ot is the output gate’s activation vector at time t.
ct is the cell state vector or memory at time t.
ht is the hidden state vector at time t and also is the output vector. ht−1 is the
hidden state vector from the previous timestamp t− 1 and also is the input vector.
xt is the input vector at time t.
All W are the weights/coefficients of each component.
All b are the biases of each component.
� is the Hadamard product or element-wise product.
σ is the sigmoid function.
tanh is the hyperbolic tangent function.

To summarize the purpose of all these components, LSTM has in total of 4 gates
which are the input gate it, the cell gate gt, the forget gate ft, and the output gate
ot. The input gate it controls how much information we should consider from in-
put. The forget gate ft controls how much information we should forget from the
previous cell state ct−1 (memory state). The cell state ct combines the information
of the processed input vector gt and the previous cell state ct−1 through the it and
ft gates. Finally, the hidden state ht is computed by calculating the element-wise
product between the output gate ot and the tanh(ct).
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3.4 Backpropagation Through Time (BPTT)
Backpropagation Through Time (BPTT) is made specifically for the machine learn-
ing models that receive sequential or temporal data as input, such as RNN and
LSTM [29, 32]. The main point of backpropagation is to calculate gradients to
update the weights of the model in order to reduce the loss of the model outputs
compared to the real outputs for each epoch during the training process. In the
prediction of the model that uses sequential data, the information of every input
state is passed to the next one over and over. Suppose that we feed an RNN a
sequence of data, the first state of that sequence will be used to predict the output
of that timestamp. Then, the model passes through its hidden state from the first
timestamp to the next one and it will keep happening over and over until the model
finished the whole sequence of input data. Therefore, the information of the first
state was passed through the whole sequence via the hidden state. So, when we
compute the backpropagation of the last output, it will calculate through the whole
sequence due to the dependency from the hidden state that was passed since the
start of the sequence. That is why backpropagation for these temporal or sequential
models is called backpropagation through time. See Figure 3.5 for an example on
how BPTT backtracked from L<t+n> to all of the previous input states of the same
sequence.

Figure 3.5: A BPTT example on the loss Lt+n of an RNN. In this case, the
algorithm needs to backpropagate from the loss back to all input states of the

same sequence including the first input state x<t>.
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Methods

This chapter will explain the data description and preprocessing techniques in detail.
The implementations of the machine learning models will also be shown in this
chapter.

4.1 Data Description

We used a data set called Diagnostic Read Out (DRO) data. The DRO data con-
sists of tabular data collected from the sensors in the Volvo XC90 II model across
44 countries around the world. There are a total of 20,417 measurements (rows)
from 7,247 cars with 253 features before feature selection. After feature selection by
hand, we get a total of 237 usable features that are meaningful or relevant in some
way to the battery degradation. For the sequential data of each car, the number of
measurements can range from 2 to more than 60 measurements depending on each
car. Mostly, the cars have only around 2-6 measurements in the period of around
1,600 days starting from their production date. So, these time gaps between each
measurement can range from multiple days to multiple years depending on how fre-
quently each customer brought their cars to a service and repair shop. Therefore,
most of the cars will have long time gaps between each measurement which is typi-
cally around 180-500 days. In this study, the data were selected only from the cars
that have more than 3 measurements so that we can have at least 3 sequential data
points for the RNN and LSTM to learn the data patterns. For this reason, there
are a total of 3,329 cars to be analyzed (with a total of 12,581 measurements).

Figure 4.1 and 4.2 indicates the scatter plot and the age distribution of the DRO
data. One can clearly see that there are a lot of age gaps between these distributions,
which is one big flaw of this data set. As mentioned in the previous paragraph, the
DRO data was collected from customers’ cars during the maintenance period of the
car. A customer may bring his car to the shop once or twice a year depending on
their usage. Therefore, in some age ranges, there are no customers that bring their
cars to the shop at all. For this reason, these age gaps occurring on this dataset are
unavoidable. This will make the sequence of data very short and has a low sampling
rate (due to the gap). In this case, we think that the machine learning models for
sequential data like RNN and LSTM might not benefit much from the temporal cor-
relation of the data than other machine learning models like Random Forest due to
the gap and the short sequence of the data. So, the performance of several machine
learning models will be analyzed regarding this problem in the latter section of this
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thesis.

Figure 4.1: Age Distribution of DRO data

Figure 4.2: State-of-Health and Age scatter plot
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4.2 Data Preprocessing
This section describes how the data is preprocessed before it is fed into the prediction
models.

4.2.1 Applying Standardization and PCA
First of all, we applied the Standard Scaler to every feature in the dataset. After
we normalizing the data using the Standard Scaler, we applied PCA to reduce the
dimensionality of the data from 237 features down to some reasonable sizes for
the prediction models. In our case, we separated the features of DRO data into
2 types; basic features and histogram features. The basic features are the features
that are basic measurements for most of the vehicles and we considered them to be
directly related to battery usage including the age of the vehicle (days), mileage,
and accumulated charge. The histogram features are the features that are measured
based on some specific vehicle events. These features are called histogram features
because they are originally meant to be visualized into histogram plots, so they
are quite high in dimension because they have to represent themselves in multiple
ranges/intervals such as the number of times that the vehicle was started in some
temperature ranges, maximum cell voltage output in some temperature ranges, and
etc. Therefore, we decided to apply PCA only to the histogram features which are
considerably high-dimensional and quite repetitive. Then, leave the low-dimensional
basic features as it is since they might be useful later when we analyze our prediction
models based on these non-PCA features. After applying PCA to the histogram
features, we visualize their variances out as a scree plot to see how their variances
distribute. Here is a sample scree plot of 50 principal components sorted by their
variances.

Figure 4.3: Scree plot of top 50 principal components from the histogram
features. We can clearly see that there is an "elbow" or aggressive angle occur

between PC2 and PC3.

From the scree plot in figure 4.3, we saw that there is an aggressive angle or the
“elbow” occurred between PC2 and PC3. So, we considered PC1 and PC2 to be our
two most significant principal components out of all principal components since the
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variance ratio is significantly higher than the other principal components. Therefore,
we decided to use mainly only PC1 and PC2 computed from the histogram features
as additional features to the basic features that we skipped applying PCA previously.

To summarize this PCA section, we applied PCA to the histogram features and
chose mainly only the PC1 and PC2 as the substitution of the whole histogram fea-
tures due to the elbow point on the scree plot. Therefore, our main set of features
after combining with the PCA result are the combination of the basic features, PC1,
and PC2. The other principal components will be added based on our consideration
during the hyperparameters-tuning step and the result will be analyzed further to
find the best set of features for each prediction model.

4.2.2 Adding lag features to the input structure
From the previous part, we have already applied PCA to the histogram features and
combined them with the basic features. In this section, we will restructure so that
they are ready to be used to train our prediction models. The equation (4.1) is a
sample designed input state from a measurement sequence of a car,

input_state<t> = X<t>
1 , X<t>

2 , . . . , X<t>
p′ , X<t−1>

1 , X<t−1>
2 , ..., X<t−1>

p′ (4.1)

where < t > is the current timestamp, X<t>
i means the ith feature at the current

timestamp < t >, and X<t−1>
i means the ith feature at the previous timestamp.

We design the input structure to be like this so that the prediction models can pre-
dict a result from the previous timestamp < t− 1 >.

This structure design is expected to be especially useful for the prediction mod-
els that do not have the hidden state for sequential data, such as Linear Regression
and Random Forest model in our case. This structure should still be useful for RNN
and LSTM in the way that the models will focus more on the previous measurement
than the further measurement in the past that they have to recall from their hidden
(or memory) states.

4.2.3 Adding the Next features
The next feature is the name for a variable that contains the data from the next
time steps. The purpose of this project is to predict the next SOH, not the current
SOH. So, the next SOH is referred to as a dependent feature. Before predicting the
next SOH, It is very important to determine a time period or the next age (next
time that customer will go to the customer service center). Therefore, the next age
is added into input structure and the next SOH is the target value.
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4.2.4 Train/Test/Validation split
We split our dataset by different cars with an 80:10:10 ratio for training, valida-
tion, and test sets, respectively. However, splitting them randomly from the whole
dataset might ruin the balance of the data between each continent. The cars from
each continent might have different patterns of data due to several reasons such as
different traffic conditions, climates, temperatures, cultures, and etc. Hence we de-
cided to split the data for each continent individually. We expect this data splitting
method to reserve the ratio of complex different patterns causing by reserving the
ratio of data from each continent. The number of cars and measurements between
each dataset will be changed due to the randomness of the splitting algorithm but
the ratio between each continent will be reserved and the ratio between training,
validation, and test sets is always approximately 80:10:10.

dataset

continent_1 continent_n

train val test train val test

train val test

...

...

Figure 4.4: The visualization of how the dataset was split by its continental
information into training, validation, and test sets.
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4.3 Machine Learning Model Implementations
In this section, the implementations of the selected machine learning models will
be explained. It is worth mentioning that every model except the simple linear
regression model was trained on several sets of input features including basic features
+ none/2PC/10PC/50PC/Histogram features + none/lag features + target age.

LSTM (Basic+50PC)<t> with/without (Basic+50PC)<t-1> 

RNN

RF

LR

(Basic+10PC)<t> with/without (Basic+10PC)<t-1> 

(Basic + 2PC)<t> with/without (Basic + 2PC)<t-1> 

(Basic)<t> with/without (Basic)<t-1> 

(Basic + Hist.)<t> with/without (Basic + Hist.)<t-1> 

(SOH + Age)<t> with/without (SOH + Age)<t-1> 

Model Input

Current Feature Lag Feature

Figure 4.5: Input feature design for the SOH prediction models.
Models: Linear Regression (LR), Random Forest Regression (RF), Recurrent

Neural Network (RNN), Long Short-term Memory (LSTM). Features:
State-of-Health (SOH), Age, Basic features (Basic), Histogram features (Hist.),
while < t > refers to the current timestamp and < t− 1 > refers to the previous

timestamp (lag features).
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4.3.1 Simple Linear Regression implementation

This simple linear regression model is basically a univariate linear regression model
that receives age as input and predicts SOH corresponding to the given age. As
mentioned before, the equation of this simple linear regression model is given by
the equation 3.6. The purpose of this model is a baseline performance for the other
model, which shows how much performance can be improved by adding more input
features and using higher complexity models. This model was implemented by using
the linear regression model from the Scikit-learn library with age as its only input
feature. After that, the model was trained using the Fit function given by Scikit-
learn to find the slope that fits the training data the best.

4.3.2 Linear Regression implementation

This linear regression model was created in the same way as the previous simple
linear regression model, that is to use the model from the Scikit-learn library [33]
but more features were added. So, it is basically a multivariate linear regression
model that uses the linear combination equation (3.7). The purpose of this multi-
variate linear regression model is to be used as another performance baseline for the
performance comparison and to judge the complexity of the problem based on the
effectiveness of this linear regression model. Several sets of input features were used
to train the model for performance comparison. Moreover, its weights or coefficients
will be analyzed to see how these features (e.g. age, mileage, temperatures) are
related to SOH based on the model’s weight optimizing decision.

4.3.3 Random Forest Regression implementation

For the Random Forest Regression model, we also used the model implemented
from the Scikit-learn library [33]. Several Random Forest Regression models were
created with several numbers of sub-trees for performance comparison with boot-
strap enabled, all sub-trees are constructed from the whole set of input features until
fully-grown, and unlimited maximum depth for sub-trees. The other model param-
eters are left as the default setting given by the Scikit-learn library. For the output
calculation, the average of the prediction results from all sub-trees is computed and
returned as the output of the Random Forest Regression model.

For the suitable number of trees, we constructed an experiment to observe which
number of trees will give us the best result regarding the increase of model complex-
ity and time usage. This experiment was done by training several random forest
models with different numbers of trees from 1,2,4,...,8192, and 16384 trees on the
validation set to observe which one gives the lowest Mean Square Error without
increasing too many trees.
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Figure 4.6: MSE of the Random Forest models on the validation set is displayed
as a function of the number of trees from Random Forest Models.

From figure 4.6, it shows that after increasing the number of trees to over 512, the
MSE does not reduce much for every input variations. For this reason, 512 trees
seem to be the suitable number of trees for the random forest regression model.
Therefore, 512 trees were applied for every Random Forest Regression models in
this thesis.

4.3.4 Recurrent Neural Network implementation
The Recurrent Neural Network (RNN) was built using the Pytorch library [34]. The
architecture is designed based on the equations explained in the Theory section (sub-
section 3.3.3). Several of RNN models were created for several sets of input features
with the hidden layer size equals to the input size. For instance, RNN with input
size of n features will be created with a hidden layer with size n for memorizing the
equal amount of information from the sequential data of the previous timestamp.
Backpropagation Through Time (BPTT) was used to update all of the coefficients
inside the RNN model and train the model to fit the given training data. Adam
optimizer is used here with a learning rate of 0.0002 and MSELoss as a criterion.
Early stopping was also applied to prevent the model from overfitting too much on
the training data by stopping the training when the validation loss is higher than
the best one for more than 10 epochs.

26



4. Methods

For the training process of RNN (and LSTM), the data was first separated into
2,660 training data sequences based on the Vehicle IDs of the training set. Then,
each data sequence was fed to the training algorithm one by one for the model to
learn. At the end of each sequence, the data gradients will be computed and update
the model based on the BPTT algorithm.

4.3.5 Long Short-Term Memory implementation
For the LSTM, the model structure was written in Python using the Pytorch library
[34]. The exact structure of LSTM can be seen in the Theory section (subsection
3.3.4). The hidden layer size of LSTM was chosen to be equal to the input size,
the same way with RNN on the previous sub-section. Backpropagation Through
Time (BPTT) was also be used with LSTM the same way as RNN. The optimizer
that we use here is Adam optimizer with a learning rate of 0.0002 and MSE as a
criterion. Early stopping was also applied the same way as mentioned in the previous
Recurrent Neural Network implementation subsection 4.3.4
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Results

In this chapter, the training results of each prediction model will be shown and
discussed. Several plots of the best performing model from each machine learning
technique will be visualized and analyzed in detail. For the full result, please take
a look at the Appendix.

5.1 Simple Linear Regression

Figure 5.1: Moving average of the actual and predicted result on the test set of
the Simple Linear Regression model trained with age feature

After the Simple Linear Regression model was trained with only ‘age’ feature as
input, its MSE error (test set) is 8.4799, and the MAE error (test set) is 2.4998.
From Figure 5.1, the moving average of the actual data was shown in blue color and
the predicted result from the model is in green color. It can be seen that the model
can represent the trend of degradation very well. However, the model cannot repre-
sent the fluctuation of the SOH due to the limitation of this simple linear regression
model, which only considers the age of the vehicle as its input.
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Figure 5.2: Error Distribution of the Simple Linear Regression Model

From Figure 5.2, the error distribution between the actual SOH and the predicted
SOH was shown. The mean of the error is 0.0962 with a standard deviation of
2.9104. Moreover, the error can range between -8.4458 and 4.2580, which is a con-
siderably big range of error in our case. The number of predictions with an error
less than 1% is 242 predictions.

Figure 5.3: Actual vs Predicted State-of-Health values of the Simple Linear
Regression Model.

Here, in Figure 5.3, the actual SOH and the predicted SOH were plotted. The
perfect scenario for this plot is to have every point on the red diagonal line shown in
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the figure. In this case, the simple linear regression model did not perform so well,
therefore the points do not align on the red line.

5.2 Linear Regression
From table A.1, the performance of the linear regression model gives the best re-
sult when training with the basic features with lag features included. However, the
performance between the model with only Basic features, Basic + 2PC and Basic
+ 10PC are very similar for the linear regression model with MSE loss (test set) at
around 3.21-3.22 and MAE loss (test set) at 1.14-1.15.

Figure 5.4: Moving average of the actual and predicted result on the test set of
the Linear Regression model trained with basic + lag feature.

Here, we plot the predicted result from the linear regression model compared to
the moving average of the actual SOH. From Figure 5.4, it seems this model can
capture the pattern considerably well, especially between the age of 1000-1200 and
1400-1500 days that has a lot of data points.

From Figure 5.5, the error distribution plot was created from the model. When com-
paring this linear regression model to the previous simple linear regression model,
this model has a significant improvement from the simple linear one with only the
‘Age’ feature considered. There are a total of 836 predictions that have an error less
than 1% and the error distributes in a very balanced way between both the positive
and negative side of errors. The average error of 0.0413 and a standard deviation
of 1.7936. The maximum and minimum range of this error are 7.2154 and -7.6253,
respectively.
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Figure 5.5: Error Distribution of the Linear Regression Model.

Figure 5.6: Actual vs Predicted State-of-Health values of the Linear Regression
Model.

Here, in Figure 5.6, the actual vs predicted values were plotted to see how the error
was scattered. It seems that this model can capture the pattern a lot better than
the simple linear one. The scattering dots appear to be almost on the red diagonal
line now.
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5.3 Random Forest Regression
For the performance of the Random Forest Regression model, it performed best
when training with the Basic features + 10 PC with lag features. The best model
returned MSE loss at 3.1104 and MAE loss at 1.0829.

Figure 5.7: Moving average of the actual and predicted result on the test set of
the Random Forest Regression model trained with basic + 10PC + lag feature.

From the moving average plot between the actual values and the predicted values in
Figure 5.8, one can see that Random Forest can capture the fluctuation of the data
on the beginning part a bit better than the linear regression model. The pattern is
captured almost perfectly in the first 1100 days of data.

Figure 5.8: Error Distribution of the Random Forest Model.
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From the error distribution chart in Figure 5.8, the error was smaller than 1 % for a
total of 843 predictions. When compared to the 836 accurate predictions from the
linear regression model, the random forest model seems to be a little bit better than
the linear regression model. The mean error is 0.0657 with a standard deviation of
1.7612, which seems better than the best model from the linear regression models
due to the smaller error variance. For this model, the maximum and minimum er-
rors are 8.3807 and -6.9045, respectively.

Figure 5.9: Actual vs Predicted State-of-Health values of the Random Forest
Model.

Now, for the scatter plot between the actual and predicted values in Figure 5.9, the
points still do not align perfectly with the red diagonal line. It seems like there is a
big chunk of errors due to the unexpectedly good-SOH data points that the actual
values are 100 % or almost 100 % but the model predicted them lower than it should
be. However, the pattern of these scattered dots have some linearity to them, so
this model did reasonably well predicting these SOH values.
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5.4 Recurrent Neural Network

From Table A.1, RNN that was trained with basic features + 2PC + lag features
performs the best here. It returned MSE loss (test set) of 3.0786 and MAE loss of
1.1059. However, the performance of this model is very close to the one training
with basic features + lag features. So, there is not much difference here between
Basic + lag and Basic + 2PC + lag. Still, RNN did perform considerably better
than the Random Forest and linear regression in terms of MSE loss.

Figure 5.10: Moving average of the actual and predicted result on the test set of
the Recurrent Neural Network model trained with basic + 2PC + lag feature.

For the moving average plot from Figure 5.10, RNN seems to capture excellent de-
tail between the age of 1000-1100 days and 1400-1500 days that have a lot of data
points. The overall pattern was captured very well too.
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Figure 5.11: Error Distribution of the Recurrent Neural Network Model.

Here, the error distribution does not improve much from the random forest model.
There are 844 predictions that have errors smaller than 1 %. The mean of the error
is 0.2460 with a standard deviation of 1.7573, which means it has a smaller average
error than the random forest model but with a similar standard deviation. The error
can spread from -7.4973 to 7.9501, which are the maximum ranges of error we found
from this model. This can be seen in figure 5.11.

Figure 5.12: Actual vs Predicted State-of-Health values of the Recurrent Neural
Network Model.

For the scatter plot of the actual vs prediction values from figure 5.12, the dots seem
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to stick to the diagonal line more than the plot from the random forest model but
still does not look much better in the other way.

5.5 Long Short-Term Memory

Figure 5.13: Moving average of the actual and predicted result on the test set of
the Long Short-Term Memory model trained with basic + 2PC + lag feature.

The best performing LSTM model is trained with basic features + 2PC with lag
features. It showed an MSE loss of 3.0200 and an MAE loss of 1.1278. Hence, this
LSTM produced the best MSE and MAE losses from every model we have tried so
far.

Figure 5.14: Error Distribution of the Long Short-Term Memory model.
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Now, for the error distribution, LSTM got a total of 834 predictions that had errors
smaller than 1%, which is a bit worse than RNN that got 844 predictions from the
same criteria (<1% error). However, LSTM got the error mean of 0.0367 and stan-
dard deviation of 1.7383, which is better than the RNN that got a bigger standard
deviation of the errors at 1.7573. This means the error of LSTM distributes in a
smaller range than the error of RNN. Therefore, this results in a better MSE for the
LSTM.

Figure 5.15: Actual vs Predicted State-of-Health values of the Long Short-Term
Memory model.

For the scatter plot from figure 5.15, the pattern of these dots are very similar to
the results from the previous models, that is, the pattern has some linearity to it
but still not accurate enough to form a linear line. Please check table 5.1 for the
numerical result of the best-performing models for each model types.

Table 5.1: MSE and MAE results on the test set of the best-performing model for
each model type. See full result in the appendix chapter.

Model Input features Lag features MAE (%) MSE (%)
Simple Linear Reg. Age No 2.4998 8.4799
Linear Regression Basic Yes 1.1456 3.2189
Random Forest Basic + 10PC Yes 1.0806 3.0986
RNN Basic + 2PC Yes 1.1059 3.0786
LSTM Basic + 2PC Yes 1.1278 3.0200
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In this chapter, we will discuss and compare the performance of each prediction
model. The analysis of the feature importance based on the Linear Regression
model and Random Forest model will also be discussed.

6.1 Model performance comparison
This section will discuss mainly the models’ performances and analyze their error
distributions and their prediction patterns. Finally, the MSE of each model will
be considered to conclude which prediction model is the most suitable for SOH
prediction based on the DRO dataset.

Figure 6.1: Moving average of the actual and predicted result on the test set of
the machine learning models trained with different features.

From figure 6.1, the moving average of the actual data and the models’ prediction
results were plotted. The moving average of the actual SOH data is presented by
the blue line. Apart from the green straight line from the simple linear regression
model, the other models can capture the overall pattern of the actual plot very
well. The hardest section that every model has the biggest errors are in between
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the age range of 1300-1400 days, which is the part that the DRO data has the data
gap. Therefore, the models’ performances would be better if the data were more
complete.

Figure 6.2: Error Distribution on the test set of the machine learning models

The Figure 6.2 above shows the error distribution. One can see that the simple
linear regression model has the worst error distribution. Its error spreads widest
and unbalanced. On the other hand, other models performed well. Their error
distributions are very similar that they are mostly accurate and balanced. How-
ever, one cannot clearly see the differences in their performance since the patterns
are very similar and might vary depending on the randomness of the training process.

Last but not least, we compare the performance of these best models numerically
by their MSE. From Figure 6.3, one can clearly see that the MSE error of the Sim-
ple Linear model is significantly worse than the other models. The Simple Linear
model only got an MSE of 8.4799, which is really high. Next, the Linear Regression
(Basic with Lag) got an MSE of 3.2189, which improves a lot from the Simple Lin-
ear model. This shows that using only age features to predict SOH is clearly not
enough to get a good MSE. Random Forest is the third best performing model with
an MSE of 3.0986. Then, RNN is the second best model with an MSE of 3.0786.
Finally, the most accurate model is the LSTM model with MSE of 3.0200. From our
perspective, LSTM performs better than RNN due to its ability to remember longer
past sequence. However, it also comes with more complexity and needs longer time
to train than the RNN.
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Figure 6.3: Best machine learning models performance comparison
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6.2 Feature importance analysis
In this section, the feature importance analysis of Linear Regression, Random Forest,
and LSTM will be discussed. The purpose of this section is to analyze the important
features or sensor signals based on the characteristics of these three models.

6.2.1 Linear Regression coefficients analysis

Figure 6.4: Features’ coefficient values of the Linear Regression model trained
with Basic and Histogram feature.

In the Linear Regression model, the input features can be ranked based on the mag-
nitudes of its coefficients. From these magnitudes, we can see how much weight
the model gave to each feature. In other words, the higher the magnitude of the
coefficient, the more important the input feature was since they were standardized
to have zero-mean and unit-variance. From the 6.4, it can be seen that Accumu-
lated_charge has the largest negative coefficient of all input features. To be exact,
the negative coefficient of it means that Accumulated_charge has a negative relation
to the SOH. So, the higher the Accumulated_charge a vehicle has, the more likely
that its SOH will drop lower than the other vehicles with lower Accumulated_charge.
This makes a lot of sense since the Accumulated_charge refers to the number of per-
centages that the vehicle’s battery has been charged, so it directly tells how heavy
the battery usage is for each vehicle.
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For the other features, it is hard to conclude whether we should follow all the
coefficients or not since these coefficients might be updated in consideration of the
appearances of the other features. In other words, these coefficients are all updated
as a whole set of features during the training process of the model. So, it might be
impossible to tell whether they are really important on their own or not. However,
we can look at the whole set and see which sensor signals are frequently found in
these top 20 features.

In Figure 6.4 above, one can see that the features from ‘BATTERY-CRANK-
TEMP’, ‘DEPTH-OF-DISCHARGE’, ‘BATTERY-START-TEMP’, and ‘START-
SOC-CYCLES’ signals are found a lot in this top 20 features. So, this could mean
that these signals have more effects on the SOH degradation than the other. How-
ever, it is still hard to conclude whether these signals are really important or not.
Therefore, the result from the feature importance analysis of the Random Forest
Regression model is needed before we can conclude which sensor signals are really
important to the battery degradation problem.

6.2.2 Random Forest analysis
For the random forest model, we can analyze its feature importance property made
by the Scikit-learn library based on the calculation of Gini importance [35, 36]. The
random forest model that we will analyze in this section will be trained with the
basic features + histogram features without lag feature included so that one can see
which features are used frequently by the Random Forest model.

Figure 6.5: Top 10 List of the Features importance of the Random Forest
Regression model trained with Basic and Histogram feature.

From Figure 6.5, it is not surprising to see that the Random Forest model used
Min_Cell_Capacity (current SOH), Next_age (target age), and age (current age)
most frequently. These parameters are surely the most important parameter to fore-
cast SOH in the future.
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Figure 6.6: Features importance of the Random Forest Regression model trained
with Basic and Histogram features that are not include current SOH

(Min_Cell_Capacity), current age (age), and next age (Next_age) feature.

From Figure 6.6, we removed the current SOH, current age, and the target age from
the chart so that we can analyze the other features more clearly. Now, one can see
that
‘BATTERY-MAIN-CONTACTOR-CURRENT_Occasions_Current_(A):<=1_*:nan’
(i.e. the number of times that the current of the main contactor went lower or equal
to 1 ampere), ‘START-SOC-CYCLES_Occasions_SOC(%)_Interval:15_to25_*:nan’
(i.e. the number of times that the car was started while its SOC was between 15 and
25%), and ‘BATTERY-START-TEMP_Occasions_Battery_Temperature_(°C):<20__*:nan’
(i.e. the number of times that the car was started while the temperature was be-
low 20°C) are the top 3 most important features from the set. Apart from these
3 features, the other features are considerably less used by the Random Forest model.

6.2.3 LSTM analysis

Feature importance analysis was done on the LSTM by measuring the improvement
of the LSTM model based on the addition of specific sensor features to the training
data.
Multiple LSTM models were trained on multiple set of input features constructed
from the combination of Basic features and several subsets of the Histogram fea-
tures. After training the models, each model was evaluated on a resampled test
set to see how these sensor features improved the performance of the LSTM. The
negative delta MSE means improvement, while positive delta MSE means that the
performance was worsened by the added features. The result from the experiment
is shown in the Table 6.1 below:
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Table 6.1: The feature importance result of the LSTM model. Negative
delta_MSE (%) means improvement, otherwise the performance of the model is
worse than the LSTM trained with only Basic features.

Sensor features Delta_MSE (%)
START-SOC-CYCLES -7.8524
RMS-CURRENT -7.5992
BATTERY-START-TEMP -7.3774
DEPTH-OF-DISCHARGE-VS-CYCLES -7.0413
BATTERY-CRANK-TEMP -7.0321
BATTERY-MAIN-CONTACTOR-CURRENT -6.3593
PLUG-CHARGE-CURRENT -5.9710
MAX-CELL-VOLTAGE-TIME -5.8650
MIN-CELL-VOLTAGE -5.2661
MIN-SYSTEM-VOLTAGE -4.0365
Basic features 0.0000
BATTTEMP-AMBIENT-CHARGETIME 5.1271

From the result, one can see that ’START-SOC-CYCLES’ improves the performance
of the model by 7.85% from using only Basic features. So, ‘START-SOC-CYCLES’
is considered as the most important sensor features based on LSTM. Then, it was fol-
lowed by ‘RMS-CURRENT’, ‘BATTERY-START-TEMP’, ‘DEPTH-OF-DISCHARGE-
VS-CYCLES’ and ‘BATTERY-CRANK-TEMP’, respectively. It is good to mention
that these performance improvement are only based on a resampled test set, so the
improvement might be different depending on the random distribution of the data.
Therefore, these results might not be application on the other datasets.

To sum up the feature importance analysis from the Linear Regression, Random For-
est, and the LSTMmodel, the ‘START-SOC-CYCLES’, ‘DEPTH-OF-DISCHARGE-
VS-CYCLES’, ‘BATTERY-START-TEMP’, and ‘BATTERY-CRANK-TEMP’ sen-
sor features are the most frequently found signal in the top features from these
models. This could mean that starting and cranking the vehicle during certain
temperatures could affect the SOH degradation to some extent based on the data
sample from the DRO dataset. Moreover, starting the car in some range of SOC,
especially below 25%, could degrade the battery by introducing mechanical stress
to the electrodes and lithium plating inside the battery (including while charging).
Furthermore, the delta SOC between each usage cycle seems to have important
role to the SOH degradation too. It is good to mention that these discoveries are
based only on the DRO dataset collected from Volvo XC90 models, which are hybrid
EVs. Therefore, more research is needed to confirm this hypothesis on the other EV
models.
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7
Conclusion

This chapter will conclude all the things we have done so far in this thesis. The
first section will summarize all of the results and discoveries to answer all of the
research questions of this thesis. After that, we will talk about future work and
other possibilities for this project.

7.1 Summary

The goal of this thesis is to analyze the possibility to use the high-dimensional data
from various sensors in electric vehicles to improve the State-of-Health forecasting
capability and also to analyze any interesting discovery from the data and the ma-
chine learning models. Below are the main research questions that this thesis is
aiming for:

• Does the additional high-dimensional data from EV sensors improve battery
degradation forecasting performance of the prediction models?

• Does the usage of the Principal Component Analysis (PCA) improve the per-
formances of the prediction models compared to using the whole dataset fea-
tures?

• Does the additional lag features improve State-of-Health forecasting perfor-
mance of the machine learning models?

• What is the most suitable machine learning model for SOH forecasting based
on DRO data?

• What are the possible causes of the battery degradation in the EVs?
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Figure 7.1: Performance comparison from different machine learning models and
different inputs.

For the first research question: “Does the additional high-dimensional data from EV
sensors improve battery degradation forecasting performance of the prediction mod-
els?”, the answer is “yes” but not very significantly on this specific DRO dataset.

In Figure 7.1 above, one can see that using basic features with additional prin-
cipal components are a little bit better than using basic features to train the model.
In some models, the performance difference in terms of MSE might be as low as
0.001, but in some other models, the improvement MSE might be as high as 0.05.
The only exception in our case is the linear regression model that the basic feature
fitted model has better MSE than the model fitted on the basic features with 10PC.
Thus, the improvement will also depend on the type of machine learning models
and their complexity. In conclusion, having additional features in terms of principal
components will mostly improve the performance of the models.
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It is worth noting that the improvement of this specific method can only be con-
cluded on the DRO dataset since the dataset is unique due to its age gaps, in-house
sensor features, and the real customer’s data collection. These reasons make it im-
possible to guarantee that the improvement will be the same on the other datasets.
Therefore, this could be another research area for future work to see whether this
method also works on the other datasets or not.

For the second question: “Does the usage of the Principal Component Analysis
(PCA) improve the performances of the prediction models compared to using the
whole dataset features?”, answer is also yes and it is very significant.

From Figure 7.1, one can see that adding the whole histogram features to the train-
ing data without applying PCA results in significantly worse performance in every
model. Especially in RNN and LSTM, the performance of these models is signifi-
cantly worse when training the data with basic + histogram than the basic + 2PC
version. Summing up, applying PCA to reduce the dimensionality of the data before
training the model improves the model performance significantly.

For the third question: “Does adding lag features help improve State-of-Health fore-
casting performance of the machine learning models?”, answer is yes, but it should
not increase the dimensionality of the input data too much.

From figure 7.1, the comparison between the model training with and without lag
features was shown and one can see that the models trained with lag features added
perform significantly better unless the input feature has Histogram features in it.
Most of the models produce lower MSE when lag features were added to the input
features. The improvement can range from 0.015 to 0.05. However, the models
that are trained with Basic+Histogram features not only did not improve but also
reduced their performance. This happened because its already high-dimensional
input features were added with another set of lag features, so the dimensionality
for this model is doubled. To summarize the above, lag features do help improve
the model performance but it should not increase the input features’ dimension too
much, otherwise, it will suffer from the increased dimensionality instead.

For the question: “What is the most suitable machine learning model for SOH fore-
casting based on DRO data?”

From Figure 7.1, the best performing model for this DRO data is the LSTM trained
with basic+2PC with lag features added. The model got its MSE of 3.0200, which is
significantly better than the other models. Compared to the best RNN that got an
MSE of 3.0786, the LSTM is still considerably better. Regarding the DRO data that
is considered to be a short sequence with only around 2-6 data points in most cases,
LSTM still performs better than RNN. In conclusion, LSTM is the most suitable
model for SOH forecasting on the DRO data.
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Last but not least, for the question: “What are the possible causes of the battery
degradation in the EVs?”.

In the previous chapter, we have discussed on the feature importances based on the
Linear Regression and Random Forest Regression models and found that the fea-
tures constructed from ‘START-SOC-CYCLES’, ’DEPTH-OF-DISCHARGE-VS-
CYCLES’, ‘BATTERY-START-TEMP’, and ‘BATTERY-CRANK-TEMP’ sensor
signals were considered important to the models. This could mean that starting
and cranking the hybrid vehicles during various ranges of temperatures could affect
the battery considerably. Furthermore, starting the car below 25% SOC and delta
SOC between each usage cycle could also degrade the battery to some extent too.
However, these findings might not be applicable to all EV models since the study
only focused on the DRO dataset. This is only some part of the possible causes
of the battery degradation problem, so more research is needed to conclude on the
actual causes of it.

7.2 Future work
This thesis has a lot of room for further improvement in the future. First of all,
other types of dimensionality reduction techniques apart from PCA are a nice area
to experiment on such as Kernel PCA [37], Linear discriminant analysis (LDA) [38],
Canonical Correlation Analysis (CCA) [39], and etc. There might be a better dimen-
sionality reduction technique than PCA that can create better new features without
the limitation of linear combination like PCA. Applying soft feature selection before
applying PCA to the data might be another possibility worth trying since it might
get rid of some irrelevant or low-quality features before applying PCA. Another
possible improvement is to experiment on other types of prediction models such as
Gradient Boosting tree [40, 41], Attention-based models [42, 43], Hidden Markov
Models [44], and etc. These models might yield better performances than the mod-
els that were used in this research. Moreover, in the future, it is possible to have
better quality data with a longer time span, higher-sampling rate, more features
and has more number of samples than the current one. The better data might help
us draw a better conclusion on how the battery degrades and what leads to battery
problems.
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Appendix 1

Table A.1: MSE and MAE results on the test set of the machine learning models
trained with different sets of input features.

Model Input features Lag features MAE(%) MSE(%)
Simple Linear Reg. Age No 2.4998 8.4799
Linear Regression SOH + Age No 1.1710 3.4136
Linear Regression Basic No 1.1504 3.2386
Linear Regression Basic + 2PC No 1.1527 3.2418
Linear Regression Basic + 10PC No 1.1524 3.2372
Linear Regression Basic + 50PC No 1.1712 3.2558
Linear Regression Basic + Histogram No 1.1847 3.2575
Linear Regression SOH + Age Yes 1.1472 3.3429
Linear Regression Basic Yes 1.1456 3.2189
Linear Regression Basic + 2PC Yes 1.1496 3.2249
Linear Regression Basic + 10PC Yes 1.1503 3.2224
Linear Regression Basic + 50PC Yes 1.1783 3.2664
Linear Regression Basic + Histogram Yes 1.2060 3.2878
Random Forest SOH + Age No 1.1848 3.5860
Random Forest Basic No 1.0921 3.1591
Random Forest Basic + 2PC No 1.0978 3.1416
Random Forest Basic + 10PC No 1.1103 3.1545
Random Forest Basic + 50PC No 1.1333 3.1664
Random Forest Basic + Histogram No 1.1115 3.1845
Random Forest SOH + Age Yes 1.1287 3.4295
Random Forest Basic Yes 1.0690 3.1418
Random Forest Basic + 2PC Yes 1.0655 3.1077
Random Forest Basic + 10PC Yes 1.0806 3.0986
Random Forest Basic + 50PC Yes 1.1158 3.1491
Random Forest Basic + Histogram Yes 1.0885 3.1501

Continued on next page
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A. Appendix 1

Table A.1 – Continued from previous page
Model Input features Lag features MAE(%) MSE(%)
RNN SOH + Age No 1.1415 3.2979
RNN Basic No 1.0454 3.4433
RNN Basic + 2PC No 1.0324 3.2641
RNN Basic + 10PC No 1.1177 3.1191
RNN Basic + 50PC No 1.1680 3.1600
RNN Basic + Histogram No 1.3330 4.5075
RNN SOH + Age Yes 1.1475 3.3059
RNN Basic Yes 1.0945 3.0787
RNN Basic + 2PC Yes 1.1059 3.0786
RNN Basic + 10PC Yes 1.1529 3.0978
RNN Basic + 50PC Yes 1.1902 3.3410
RNN Basic + Histogram Yes 1.3645 4.5554
LSTM SOH + Age No 1.1051 3.2029
LSTM Basic No 1.1015 3.0803
LSTM Basic + 2PC No 1.1141 3.0341
LSTM Basic + 10PC No 1.1317 3.1168
LSTM Basic + 50PC No 1.2034 3.3212
LSTM Basic + Histogram No 1.2601 3.4674
LSTM SOH + Age Yes 1.1246 3.2750
LSTM Basic Yes 1.0881 3.0537
LSTM Basic + 2PC Yes 1.1278 3.0200
LSTM Basic + 10PC Yes 1.1400 3.1201
LSTM Basic + 50PC Yes 1.2820 3.5305
LSTM Basic + Histogram Yes 1.2959 3.5964
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