
Productization and validation of PressTending

concept into a RobotStudio Addin

Master's Thesis in Systems, Control and Mechatronichs

NILS BLOMQVIST

JENS KULLBERG

Department of Signals and Systems
Division of Automation

CHALMERS UNIVERSITY OF TECHNOLOGY
Göteborg, Sweden 2013
Master's Thesis 2013:10

MASTER'S THESIS 2013:10

Productization and validation of PressTending concept into a

RobotStudio Addin

Master's Thesis in Systems, Control and Mechatronichs
NILS BLOMQVIST
JENS KULLBERG

Department of Signals and Systems
Division of Automation

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2013

Productization and validation of PressTending concept into a RobotStudio Addin
NILS BLOMQVIST
JENS KULLBERG

c©NILS BLOMQVIST, JENS KULLBERG, 2013

Master's Thesis 2013:10
Number EX051/2013
Department of Signals and Systems
Division of Automation
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: + 46 (0)31-772 1000

Cover:
Auto generated station after user input.

Göteborg, Sweden 2013

Abstract

Simulation and o�-line programming is today two essential concepts in the au-
tomation industry. With the advances made in simulation tools and robot systems
(and the control of them) more and more scenarios can be simulated. One area where
this is can be implemented is in Press Lines. In this complex environment much can
be gained by having tools to build up, simulate and optimize the line in a virtual
environment. This is called Virtual Commissioning (VC) and is the latest advances
made in digital factoring. The thesis involves the Layout con�guration of a Press
Line. It is part of a greater tool for optimizing Press Lines. Using the Objective
Oriented Programming Language (OOPL) C# (CSharp) a software for organizing,
placing and connecting virtual components is created. In a Press Line a constant �ow
of parts needs to be ful�lled where every component in the line needs to be timed and
exactly handled. Every movement being critical and few bu�ers allowed. Changes in
the line directly e�ect other parts of the station. By having a tool that automatically
can place and rearrange components from simple user inputs facilitates the build up
of the station considerably.

In this thesis an add-in has been created to ABBs simulation software RobotStu-
dio. The add-in is created in Visual Studio. A User Interface (UI) is created to let
the user easily take control of the �rst stage, the layout con�guration. The devel-
opment of the add-in is done using ABBs Software Development Kits (SDKs) and
therefore well compatible for further expansions. Relationship algorithms have been
derived, which loops through the existing components in the virtual station in order
to determine what relationships should be established. A relationship is de�ned by
determining which device a robot should interact with, e.g. picking up a part from
a load table or leaving to a press. After the relationships has been calculated place-
ments are done. Locking segments of the line have been made possible in the add-in.
By adding this implementation it is easy for the user to make small changes, whilst
still having the possibility to auto correct the rest of the line. Managers for relations,
placements and locked objects has been created to keep track of the state the station.
The resulting software is a fully functioning add-in with UI for easy control of the
di�erent scenarios. The overall project successfully ful�ls the outset objectives.

Keywords: Press Line, RobotStudio, Digital Factory, Virtual Commissioning, C#, Auto-
mated Layout, Robot, ABB, Relations, Programming

, Signals and Systems, Master's Thesis 2013:10 I

Sammanfattning

Simulering och o�ine programmering är idag två viktiga koncept inom automai-
tonsindustrin. Med de framsteg som har gjorts med simuleringsverktyg och robotsy-
stem (och kontrollen av dem) �er och �er scenarier kan simuleras. Ett område där
detta kan utnyttjas är presslinjer. Det är ett komplicerat område som kräver avan-
cerade verktyg för att bygga, simulera och optimera virtuellt. Detta kallas virtuell
drifttagning och representerar de senaste framstegen som gjorts inom digital fabriker.
Tesen avhandlar den virtuella drifttagningen av en presslinje. Den är en del av ett
större projekt för att optimera dessa linjer. Med det objektorienterade programme-
ringsspråket C# (CSharp) har en mjukvara utvecklats för att organisera, placera och
koppla virtuella komponenter. Ett konstant �öde genom presslinjen krävs och varje
moment behöver vara tids- och välkontrollerat. Varje rörelse är kritisk och få bu�rar
är tillåtna. Ändringar i linjen påverkar direkt andra delar av linjen. Genom att ha
ett verktyg som automatiskt placerar och ordnar komponenter i linjen genom enkla
användarinställningar förenklar uppbyggnad och minskar ramp-up tiden.

En addin har utvecklats till ABBs simulationsmjukvara RobotStudio. Addin:en är
skapad i Visual Studio. Ett användargrännssnitt är framtaget som låter användaren
ta kontroll över de första stegen för att simulera och optimera en presslinje. Utveckling
har skett med hjälp av ABBs Software Development Kits (SDKs) och är därför väl
kompatibelt för vidare utveckling. Relationsalgoritmer är framtagna, vilka går igenom
be�ntliga komponenter i den virtuella stationen för att avgöra vilka relationer som
behöver skapas. En relation är de�nierad genom att avgöra vilken enhet som roboten
ska interagera med, t.ex. plocka en komponent från ett laddningsbord eller lämna till
en press. Efter att realationerna är satta så görs placeringarna. Fixering av segment
i linjen har gjorts möjlig i addin:en. Genom att lägga till denna funktion gör det
lätt för användaren att ändra saker, utan att förlora möjligheten att autokorrigera
resten av linjen. Hanterare för relationer, placeringar och låsta object har utvecklats
för att hålla koll på tillståndet i linjen. Resulterande mjukvara är en fullt fungerande
addin med användargränssnitt för enkel kontrol av olika scenarier. Projektet uppfyller
utsatta mål.

Nyckelord: Press Line, RobotStudio, Digital Fabrik, Virtuell Driftsättning, C#, Automa-
tisk Layout, Robot, ABB, Relationer, Programmering

II , Signals and Systems, Master's Thesis 2013:10

Contents

Abstract I

Sammanfattning II

Contents III

Acronyms V

Preface VII

1 Introduction 1
1.1 Purpose and aim . 2
1.2 Speci�cations . 3

1.2.1 Speci�cations of the add-in . 3
1.2.2 Added speci�cations to the add-in 3

1.3 Limitations . 3

2 Theory 4
2.1 Virtual Commissioning . 4

2.1.1 Data requirements for VC . 4
2.2 Object Oriented Programming Language 5
2.3 Three Layer code architecture . 6

2.3.1 Presentation Layer . 6
2.3.2 Business Logic Layer . 7
2.3.3 Data Access Layer . 7

2.4 RobotStudio Add-ins . 7
2.5 Developing applications for RobotStudio 8

2.5.1 Software Development Kits . 8
2.5.2 Mastership . 9
2.5.3 The Virtual IRC5 Controller . 9
2.5.4 Homogeneous Transformation and Matrix4 9
2.5.5 XML . 10
2.5.6 Persistence . 11
2.5.7 I/O Connections . 11
2.5.8 Property bindings . 11
2.5.9 Smart Component . 11

3 Method 13
3.1 Approach . 13
3.2 De�ning challenges . 13
3.3 Device concept . 14

3.3.1 Robot System . 14
3.3.2 Press System . 15
3.3.3 Table . 15

3.4 Classes . 15
3.5 Placement class . 17

3.5.1 Auto-Placement Method . 17
3.6 Auto connections . 18
3.7 Lock algorithm . 18

3.7.1 First . 18

, Signals and Systems, Master's Thesis 2013:10 III

3.7.2 Second . 18
3.7.3 Consequences and constraints . 20

4 Results 21
4.1 User interface . 21
4.2 Auto-layout . 22
4.3 Auto-connections . 22
4.4 The whole add-in . 23
4.5 Locking down . 23

5 Conclusions 25

6 Recommendations and future work 27
6.1 Implement Automation Markup Language 27
6.2 Implement dynamic properties for Smart Components 27
6.3 Remodel UI into Single Step Wizard . 27

IV , Signals and Systems, Master's Thesis 2013:10

List of Acronyms

PP PowerPac

HSPL High Speed Press Line

BTP Bhoruka Tech Park

API Application Programming Interface

SDK Software Development Kit

OOPL Object Oriented Programming Language

BLL Business Logic Layer

DAL Data Access Layer

UI User Interface

WPF Windows Presentation Foundation

XML Extensible Markup Language

GUID Globally Unique Identi�er

VC Virtual Commissioning

SIL Software In Loop

HIL Hardware In Loop

, Signals and Systems, Master's Thesis 2013:10 V

VI , Signals and Systems, Master's Thesis 2013:10

Preface

The work on this thesis took place from the 15th of February until 15th of July 2013 at
ABB Global Industries & Services Ltd as a part of the ABB India Student Intern Program.
The o�ce is located at Bhoruka Tech Park (BTP) in Bangalore, India. The internship has
been planned under the guidance of Mr. Sudarshan M-V, from Discrete Automation &
LV Products Department. An add-in for ABBs simulation tool RobotStudio has been
developed. The add-in with implemented user interface automatically places and connects
the components and robots needed in a High Speed Press Line (HSPL). Furthermore,
additional options such as saving layout segments and making changes after the auto
generation is available.

Aknowledgements

Firstly we would like to thank Magnus Larsson at ABB Bangalore for �nding this project
and making it possible for writing it India. We felt very welcome and generously treated
by everyone. Also a big thanks to our supervisor Sudarshan and his team for guidance
throughout our stay in India. Finally, Petter Falkman for believing in this project and
helping us with the report.

Göteborg June 2013
Nils Blomqvist, Jens Kullberg

, Signals and Systems, Master's Thesis 2013:10 VII

VIII , Signals and Systems, Master's Thesis 2013:10

1 Introduction

Today's industries are constantly forced to �nd new and more optimal solutions in their
production lines. Since the birth of o�-line programming it is no longer a question of �if�
rather then �when� a company should optimize their line. O�-line programming is nowa-
days widely used in industries all over the globe. It is believed that since the introduction
of industrial robots in the late 1960, over 2,3 million of them have been sold. An esti-
mated 1.1-1.4 million were still operational by the end of 2011. This accumulated number
varies with the estimated average service life of a industrial robot system, 11 respectively
15 years. In a market estimated to be worth over 25 billion dollars and showing a steady
growth since the global �nancial crisis in 2009, it is clear that keeping up to date is more
important than ever [1].

In production lines today one of the time consuming aspects, when dealing with control
systems especially, is the ramp up time of the real assembly line. One way to shorten the
ramp up time is to �rst simulate the factory and thereby acknowledge faults early in the
design phase. Great advantages has been made over the last years in digital factory/man-
ufacturing techniques. The latest trend in digital manufacturing is Virtual Commissioning
(VC) which goes one step further than the �Digital Factory� concept. VC incorporates the
mechatronic behaviour of the components in the line using the actual PLCs in a virtual en-
vironment. The idea is to early implement engineering data from the design phase needed
for the simulation, such as CAD components, material �ow, detailed I/O connections for
the control system and IT infrastructure [2].

A Press Line is a series of presses in a linear pattern. They have long been used in
the industry and their goal is to deliver high quality and high output. Press Lines is used
to form metal sheets by passing them through the line and consequently pressing them
until they have the correct form [3]. Increasing the output of the press line whilst still
keeping the quality is a complex procedure with many parameters to be considered. Today
many press lines uses on-line tuning together with manual settings to reduce the cycle
time. This is often done with empirical testing by individual operators [4]. The Press Line
considered in this thesis is a press-to-press line. This means that no intermediate station
exists between the presses, the work object is instead transferred directly to the next press
[5]. In this case by a robot system, which acts as an extractor/unloader for the previous
press and a feeder/loader to the next press. Simulating this procedure is a highly complex
task since the whole system is dependent on exact timings and precision throughout the
line[4]. Achieving this by o�-line programming and making simulations available will give
higher e�ciency and increased quality.

ABBs own trademarked simulation tool RobotStudio enables both simulation and o�-
line programming for robot systems. This type of programming is essential both when
implementing new robot systems or when updating existing. In order to keep RobotStudio
well suited for di�erent applications, add-ins to the basic program are available. These
add-ins are called PowerPac (PP)s and are constantly developed to attend customer de-
mands. Developing Addins for RobotStudio is done in di�erent programming languages,
ABB's support covers Visual Basic and CSharp(C#) [6].

Several advantages can be made by switching to simulation testing instead of the more
traditional way of shop-�oor testing. Simulation leads to good decisions, which leads to
reduced costs and higher e�ciency [7]. Today Press Lines needs advanced calculations in

, Signals and Systems, Master's Thesis 2013:10 1

order to determine the most e�cient cycle time, o�set between presses, necessary parame-
ters etc. A new Addin capable of simulating the entire press line would greatly bene�t the
industry and also save both time and money. This thesis concerns the start of this new
PP, i.e developing an add-in handling the placement and connections of the components
needed to represent the press line in a virtual environment. By reducing the time needed
to place all the presses, robot systems and other needed components more time can be
spent optimizing the line. In Figure 1.1 the primary components in the line is shown, the
virtual objects represent a loading table, a robot system and a press.

Figure 1.1: A Robot System, Load Table and Press in RobotStudio

1.1 Purpose and aim

This master thesis concerns the development and validation of a subsystem to a new Addin.
Fig. 1.2 illustrates the projects development plan and this thesis contribution.

Figure 1.2: Overlook of the development plan. Note; this thesis contribution is coloured
green.

The add-ins main purpose is to control the automatic placement of the components in a
virtual robot station as well as connecting them automatically. The user should, with help
of the add-in, be able to set up a virtual representation of a Press Line.

The add-in solves an otherwise time consuming process of placing and connecting com-
ponents before the actual simulation of the cell is possible. The optimization process
uses newly developed formulas that are depending on where components are placed in the

2 , Signals and Systems, Master's Thesis 2013:10

robot cell. Possibilities to continuously make changes such as moving, adding or removing
components in the station is a necessary feature for later optimization.

1.2 Speci�cations

This thesis revolves around a layout challenge where the user with help of a User Interface
(UI) should be able to set the number of available components, such as robots, presses,
tables and import them into RobotStudio. Automatically a layout of a Press Line should
be created in a controlled way. The add-in should uphold the speci�cations presented 1.2.1
in Tab. 1.1 and Tab. 1.2.

1.2.1 Speci�cations of the add-in

The speci�cation on the add-in was presented in the beginning by ABB, [8] and developed
accordingly to their varying priority, noted on a scale of Low, Medium, High.

Speci�cation Priority
Automatic layout generation from single Step wizard High
Automatic interconnections with standard I/O signals High
Solution based on Smart Components and standard ABB libraries High
Possibility to import new components in a controlled way Medium

Table 1.1: Speci�cations of the add-in

1.2.2 Added speci�cations to the add-in

During discussions in connection to the planning of the master thesis it became clear that
a feature for locking down components was needed. This would enable rearranging the
complete line automatically with out changing the locked down components. This feature
was not in the original speci�cations.

Added speci�cation Priority
Possibility to lock a components position and attributes Medium

Table 1.2: Added speci�cations of the add-in

1.3 Limitations

With focus lying on implementing the objectives and making the program stable, design
of the UI has been limited. No speci�c test program is used, more than what is available
in Visual Studio and RobotStudio. Collision detection will not be added. Developed
algorithms will not be optimized.

, Signals and Systems, Master's Thesis 2013:10 3

2 Theory

This section describes the theory behind the implemented methods and software. It starts
by explaining Virtual Commissioning (VC) with its requirements and advantages. Con-
tinuing with theory behind the chosen programming language and code structure. The
section also covers used applications and interfaces such as RobotStudio, development kits
for said application and continues with underlying math for component placement/move-
ments. Persistence in RobotStudio and the XML structure used is also handled in this
section.

2.1 Virtual Commissioning

VC was in the beginning called "soft commissioning" and introduced the possibility of con-
necting real systems with virtual models. The testing and validation could now be done
before implementing a real system. VC extends this concept with added simulation anal-
ysis, engineering requirements and a more complete vision of the life cycle of the technical
system [2]. It facilitates the transition between the real and digital factory. The goal is to
test and validate the control in the virtual environment and then, without changes, connect
the same control to the real system. This enables the development and con�guration of
control systems in parallel with mechanical and electrical development. The possibility for
di�erent groups to work on the same model enables earlier testing and validation of the
plant [9]. As can be seen in [2] a reduction of the ramp up time by 15-25%, using VC on
a real system, is achieved.

There are two ways of implementing VC. The �rst way is Software In Loop (SIL), which
means that the control and system is completely represented virtually. One big advantage
is that no hardware is needed and that the simulation and control can be done on a PC.
The second way, Hardware In Loop (HIL) is when equipment of the real system is tested in
conjunction with the virtual environment. As explained in [10], dividing up the hardware
and software gives four di�erent scenarios explained below and can be seen in Figure 2.1.

1. Real control system and real system: traditional way of commissioning

2. Real control and virtual system

3. Virtual control and real system

4. Virtual control and virtual system: complete VC

Connecting software with hardware in the second and third example can be solved with
OPC. One of the advantages of the forth example and VC is that the simulation can be
run in the same tool [10]. Tools that make this possible is e.g. CIROS Planner and ABBs
RobotStudio.

2.1.1 Data requirements for VC

To achieve full VC and make use of all its advantages engineering data is needed. These
data is often available early in the design phase and VC takes advantage of this fact.
Collecting these data and implement them in a structured form lays way for the VC. In
accordance to [2] the data requirements are as follow.

• Simulation models of components covering kinematics, geometries, controller pro-
grams and electronics.

4 , Signals and Systems, Master's Thesis 2013:10

Figure 2.1: Combinations of hardware and software solutions

• Design of the production line regarding placement of resources and equipment.

• Material �ow in the line, sequence of operations and relations of processes in the
production.

• Control systems, either real or virtual.

• I/O signals in the control system and the connections of the resource components.

• Available functionalities such as e.g safety systems and the signals needed to imple-
ment them in the commissioning process.

• Communication protocols and software drivers for connections between the control
system and the virtual environment (usually TCP/IP).

With these requirements ful�lled the implementation of VC has come a long way. Using VC
facilitates the decisions for the design engineers regarding type and number of components,
which type of communications and connections/interfaces between the resources in the line.
It is a valuable tool and provides a foundation for easier, time- and cost e�cient setup for
production [2].

2.2 Object Oriented Programming Language

The chosen programming language C# is an Object Oriented Programming Language
(OOPL) developed by Microsoft from C++ and is a part of Microsoft's .NET initiative. It
is designed to be a simple and modern programming language and to be used for developing
software components [11]. With OOPL objects are created and relationships between these
objects are formed. Each object is self-contained and have its own methods/operations
and data/attributes. Complicated systems and entities in real life can be implemented in
a direct way. This is made possible by the availability of data abstraction, inheritance
and encapsulation. This way of coding is tolerant to changes and has high �exibility, re-
usability and extensibility [12].
Each object stems from a class, which, as mentioned above has methods and attributes.
The inheritance possibilities gives the option to easily create subclasses. An illustration of
the class structure can be seen in Fig. 2.2.

, Signals and Systems, Master's Thesis 2013:10 5

Figure 2.2: Class structure example

2.3 Three Layer code architecture

This section presents the theory behind the multi tier architecture, used to achieve a three
layer framework. This is done to simplify the programming process and facilitate changes
and increase the development e�ciency. Each layer should only communicate with its clos-
est neighbour. Applications constantly change due to user speci�cations, new standards
or other factors. By applying the three layer architecture changes in the code are only
necessary at certain places.

The three layers consist of from top to bottom: Presentation layer, also know as UI,
explained in 2.3.1, Business Logic Layer (BLL), explained in 2.3.2, and Data Access
Layer (DAL), explained in 2.3.3. The �rst layer is the one visible to the user. This
layer handles input and displays data. The input/output is then transferred to the BLL,
where the necessary calculations and calls are done. The BLL is the core of the system
and handles the operations. If access to data is needed it is the BLL that calls the DAL.
It is then the DALs task to retrieve or write the data in the database implementation [13].
The di�erent layers and the structure can be seen in Fig. 2.3

2.3.1 Presentation Layer

The presentation layer is also called the front layer. It is what the user sees and interacts
with. The components use to make this possible is all included in the presentation layer.
It handles all the inputs from the user and displays the necessary information [14].

By using Windows Forms adding components to the presentation layer is convenient. It
has been apart of the .NET Framework since the beginning. Window forms is a library
that builds up standard components such as buttons and drop down lists. It is well suited
for business like applications. If there is no need for rich media content in the UI it is
equally suited for applications as the newer more graphic Windows Presentation Founda-
tion (WPF) [15].

6 , Signals and Systems, Master's Thesis 2013:10

Figure 2.3: Three Layer Structure: UI, BLL and DAL

2.3.2 Business Logic Layer

BLL occupies the middle section of the three-tier planning framework and coordinates
the application. It handles and processes commands, calculation operations and logical
decisions. The BLL is the middle-man between the three layers and is the core of the
system [16],[13].

2.3.3 Data Access Layer

In computer software the DAL, is a part of the application which provides an easy access
to stored data. In object-oriented programming the layer returns a reference to an object
rather than tables of data, though it can be used both ways. Data access components are
created speci�cally to make the application easier to con�gure and maintain in terms of
functionality [17].

2.4 RobotStudio Add-ins

ABB's simulation tool RobotStudio implements several di�erent functions. Writing a add-
in where the application lets the user control certain functions demands some knowledge
by the programmer. To access di�erent functions in RobotStudio by the application the
right Software Development Kit (SDK), explained in 2.5.1, has to be used. With the
PC-SDK e.g. the application programmer can ask for mastership, explained in 2.5.2,
over the virtual IRC5 Controller, explained in 2.5.3.A graphical object in the simulation
enviroment contains it position and orientation represented in a 4 × 4 matrix, explained
in 2.5.4. Extensible Markup Language (XML) provides the ability to exchange and store
information in RobotStudio, explained in 2.5.5, and how this is done is explained in 2.5.6.

, Signals and Systems, Master's Thesis 2013:10 7

(a) RobotStudio-SDK for de-
veloping applicationss for the
RobotStudio environment.

(b) PC-SDK is used for writ-
ing programs accessing and
editing either the real or the
virtual IRC5 Controller.

(c) When constructing in-
terfaces and applications
for the FlexPendant the
Flexpendant-SDK i used.

Figure 2.4: The three SDKs

2.5 Developing applications for RobotStudio

Developing applications for RobotStudio is done with three di�erent SDK with correspond-
ing Application Programming Interface (API). The three SDKs are PC SDK, RobotStudio
SDK and the FlexPendant SDK. With these SDKs programmers can develop customized
interfaces suiting user speci�c needs [18],[19].

2.5.1 Software Development Kits

The SDKs comes with the RobotStudio installation. They make it possible to develop
applications on the RobotStudio platform and customize it to the users speci�cations.
Such as added scripts, extra user interfaces or entire add-ins. These packages/libraries are
essential when developing PPs for RobotStudio. The three SDKs are RobotStudio-SDK,
PC-SDK and FlexPendant-SDK and are represented in Figure 2.4.

RobotStudio-SDK is the basic SDK needed for developing software applications for
RobotStudio. It contains the API crucial for developing, extending and customizing Robot-
Studio to the user speci�cations. RobotStudio SDK is also used when creating custom
Smart Components with Code behind [19], further explained in 2.5.9.

PC-SDK enables programmers to build applications on the PC and connect them to the
ABB Robot controller (Virtual, Real). The customized applications, be it for third parties,
end users or system integrators, can be implemented as stand alone PC applications. They
can also operate the IRC5 controller via the network.

FlexPendant-SDK gives the possibility to write custom programs for this device and
therefore extend the functionalities available [18]. FlexPendent is a hand held device at-
tached to the robot controller. It can handle several of the functions needed to operate the
robot, such as: running, creating and editing speci�c programs, jogging the robot etc.

Another advantage of the PC-SDK is the ability to keep track of multiple IRC5 controllers

8 , Signals and Systems, Master's Thesis 2013:10

in the same application, this is not possible with the FlexPendant. The PC application is
however a remote client and will not have the same privileges as the FlexPendent which
is a local client. Remote clients also need to request Mastership over the Rapid domain,
before they get write access [6].

2.5.2 Mastership

In order to control the robots on the shop �oor mastership is needed. This is implemented
so that only one person or program has control the robot at any given point. Several
clients can still be logged on with read only access, which is a default access right, but only
one with write access. This is for security reasons as well as protection from data being
accidentally overwritten. The same applies for the virtual IRC5 controller in RobotStudio,
when a user via an add-in in RobotStudio wants to write to the controller access must �rst
be given. This is done by taking mastership over the controller [6]

2.5.3 The Virtual IRC5 Controller

The IRC5 is ABB's �fth generation robot controller. RobotStudio provides a perfect digital
copy of the robot system together with strong programming and simulation features [20].
In other words, the same code can be executed both in the RobotStudio simulation and on
the shop �oor without any di�erence in behaviour or physical appearance. To write code
accessing the virtual controller PC-SDK is used [18].

2.5.4 Homogeneous Transformation and Matrix4

The following is a summary of Homogeneous Transformation as explained in [21]. ABB
uses via RobotStudio-SDK a 4 × 4 matrix to describe the orientation of an object in the
workspace, the used notation is Matrix4. Every object in the workspace has a Basefram
de�ned by a Matrix4. The workspace is the platform where the actual robot cell is placed.
The workspace has one de�ned world coordinate system, it acts as a base reference point
and can be placed anywhere in the workspace, usually at (x, y, z) = (0, 0, 0). Each objects
baseframe is referenced to this coordinate.

An orientation in a three dimensional euclidean space can be represented as three unit
vectors, forming a 3× 3 matrix. To explain a rotation of the orientation a rotation matrix
can be used. Given two orientations O0 and O1 in the same origin and with unit vec-
tors x0, y0, z0 and x1, y1, z1 respectively, the orientation of O1 with rotation matrix R is
calculated by:

O1 = RO0 (2.1)

Introducing a third orientation O3 and the notation Ri
j representing going from orientation

i to j. With i, j = 0, 1, 2 the rotation from O0 to O2 is written as R0
2 = R0

1R
1
2. Worth

noting is that the rotations are not commutative, R2
1R

1
0 6= R1

0R
2
1. The rotation matrix for

an angle α around the x-axis is given by:

Rx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 (2.2)

In the same way the rotations about the y- and z-axis with an angle of β and γ is given by

, Signals and Systems, Master's Thesis 2013:10 9

Ry(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 (2.3)

Rz(γ) =

cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 (2.4)

As mentioned before representing both the rotation and location from one coordinate
system to another is made possible by the homogeneous transformation matrix. Given two
orientations in space, O0 and O1 with a distance d0

1 between them. With vector points
p0 and p1 for the di�erent orientations and the rotation matrix R0

1 describing the relative
location of O0 to O1. The vector points can now be given by

p0 = d0
1 +R0

1p1. (2.5)

It can also be shown that the inverse transformation holds, which can be written as

p1 = −R1
0d

0
1 −R1

0p0. (2.6)

In a more compact way the homogeneous transformation 4× 4 matrix can be written as

A0
1 =

[
R0

1 d0
1

0T 1

]
(2.7)

and expresses the coordinate transformation from one frame to another. The �nal matrix
with a slight di�erence, i.e formulating the matrix is, de�ned as:

A0
1 =

[
R0

1 0

d0
1

T
1

]
(2.8)

2.5.5 XML

XML was introduced in the 1990s and is a way of exchanging and storing data. XML can
be used to share data between almost any application. Even though it is text based and
easily understood for a human eye, processing the information can be quite complex. The
implementation of the data can be done in di�erent ways and XML leaves much freedom for
the user. With just simple rules to follow, it is very �exible and lets the user decide rather
freely on how to build up the data storage. For making it possible for di�erent applications
or even companies a XML schema can be used for exchanging data in a structured and
consistent way. Implementations vary between manipulations of existing XML data, store
data easily read by other applications and standards that already are based on XML [22].

XML code can be created and edited in any standard text editor. The guidelines for
XML was de�ned by World Wide Web Consortium (W3C) and is a way of having struc-
tured data in plain text. The data structure is formed by creating and organising elements
and attributes. The structure is only bound by some simple rules, and then its up to the
user to decide which form it will take [22]. In Fig. 2.5 the XML document is used for
saving a state of a component with name, position, type etc.

10 , Signals and Systems, Master's Thesis 2013:10

Figure 2.5: XML document saving a state of a component in a virtual environment

2.5.6 Persistence

When RobotStudio is closed the information of the station state needs to be stored some-
where. An add-in with connections and relations has a lot of information and have to store
that information between closing and opening the main program. RobotStudio persists the
changes that have been made in the station by providing �Attributes� where information
can be stored. Any object in RobotStudio inheriting from Project Object (PO), an abstract
base class, can be used to store information. Attributes are stored as key/value pair, for
safety and stability from con�ict with other add-ins it is recommended to associate the
keys with a Globally Unique Identi�er (GUID) and is only known to the client. The value
itself is the XML �le and an example of one is shown in Fig. 2.6 [23].

Figure 2.6: XML document saving a state of a component in a virtual environment

2.5.7 I/O Connections

Each SmartComponent has the ability to communicate with another SmartComponent via
I/O-signals.

2.5.8 Property bindings

Property bindings allow communication between SmartComponents on a higher level, they
connect values of one property to the value of another. This allows for mathematical
implementation in the SmartComponents.

2.5.9 Smart Component

Smart Component is a RobotStudio object with or without a 3D graphical representation,
that has a added behaviour which can be implemented by code-behind and/or aggregation

, Signals and Systems, Master's Thesis 2013:10 11

Source Object Speci�es the owner of the source property
Source Property Speci�es the source of the binding
Target Object Speci�es the owner of the target property
Target Property Speci�es the target of the binding

Table 2.1: Property binding description

by other Smart Components. The following list describes the di�erent terminologies used
when setting up a robot cell and working with Smart Components. The lists is directly
cited from [24].

• Code behind A .NET class associated with a Smart Component that can implement
custom behavior by reacting to certain events, for example simulation time steps and
changes in property values.

• [Dynamic] property An object attached to a Smart Component that has value,
type and certain other characteristics. The property value is used by code behind to
control the behavior of the Smart Component.

• [Property] binding Connects the value of one property to the value of another
property.

• [Property] attributes Key-value pairs that contain additional information about
a dynamic property, for example value constraints.

• [I/O] signal An object attached to a Smart Component that has a value and a
direction (input/output), analogous to I/O signals on a robot controller. The signal
value is used by code behind to control the behavior of the Smart Component.

• [I/O] connection Connects the value of one signal to the value of a di�erent signal.

• Aggregation The process of connecting several Smart Components using bindings
and/or connections in order to implement a more complex behavior.

• Asset Data object contained in a Smart Component

12 , Signals and Systems, Master's Thesis 2013:10

3 Method

This chapter describes the di�erent methods and general approach used in the thesis.
In VC the idea is to early on acquire the data needed for commissioning the line in a
virtual environment. The data is usually available in the design phase but needs to be
implemented. Most of the requirements for VC, as seen in 2.1.1, is available from the start
of the thesis and is therefore implemented in the application. The work is concentrated
on solving the available speci�cations, for the addin, given by ABB. These speci�cations
closely resembles the requirements needed to do VC. VC has taken the digital factory
design one step further by extending it and making better use of the engineering data
already available early on in the design phase. To do a complete VC of the line would
need some further data not available at the moment. The chosen methods and approach
is mostly planned in conjunction with ABB but also decided by own research and logic.

3.1 Approach

The primary goal was to create relationships between the presses and the robots and then
build from there. The relationships core is built up by the device concept, section 3.3. By
creating data objects for every component in the station and then establishing relations
between them, the placement would come relatively easy. Categorising the components rel-
ative the robots as devices facilitates the structure and the placement. A device is de�ned
as an object which the robot interacts with. In order to keep track of the relationships
between a robot system and device a relationship manager class is designed and engineered.
The positioning and distancing is managed by the distance manager class. All classes are
explained in more detail in 3.4. Section 3.5 explains the automatic placement algorithms.
Section 3.6 shows how the I/O connections is done. 3.7 contains the added lock-feature
algorithm.

There are di�erent ways of testing a control systems. Figure 2.1 shows four ways by
combining virtual and real testing. The third way is called emulation and the forth is pure
simulation. In the thesis pure simulation is used, VC. The control of the robots for ABB
is however the exact same for virtual and real controllers. This gives the possibility to test
the control in the virtual environment and then directly transfer it to the real system.

3.2 De�ning challenges

The complexity of this project regards the automatic placement of the HSPL. By �rst
establishing the relationship between the chosen components in the station the automatic
placement becomes relatively easy. A developed algorithm is used to determine the rela-
tionships and works together with a relationship manager class in order to keep track of
the initial state and any changes.

• First layout
The �rst challenge is to establish relationships between robots, presses and tables
etc. in the station. When all relationships is determined the placements needs to be
calculated. The placement of the components takes input from the user for an initial
layout. With help of the established relationships the placement goes through the
components in the correct order and determines the position of the objects.

, Signals and Systems, Master's Thesis 2013:10 13

• Change layout
The possibility to add another press, conveyor or other existing component into the
station is a one of the basic speci�cations. The added components needs to create
new relationships and also get relative positions. With this implemented, options to
automatically recalculate and remodel the station should exist.

• Lock down layout
It is important not to unintentionally overwrite information regarding a components
attributes such as position when updating a robot cell. This causes obvious problems.
If the user positions robot at a certain position and then updates the robot cell, the
software would recalculate and remodel from default settings, which means that the
changes in the station will be overwritten and ignored. A possibility to lock down
components at their current position and with its other attributes is a wanted but
complex feature. This has been solved and is presented in 3.7.

3.3 Device concept

According to the requirements, part 1.4.1 Device concept every area which might be
occupied by robots or machines is identi�ed as a device.

Figure 3.1: Example of a robot cell layout

Every device is located in connection to a robot. The function of each device vary depending
on the purpose of the robot it is connected to. The relationship between robot and its
attached devices is henceforth known as �Relationship�. The possible devices a robot
system can have is shown in Tab. 3.1.

Robot System
Device 1 Previous Press
Device 2 Next Press
Device 3 Load/Unload Table

Table 3.1: Available Relationship

3.3.1 Robot System

The user labels the available robot systems in the add-in. Each robot is set by the user to
be either a Loader, Interpress or Unloader robot described in Tab. 3.2. The labels represent

14 , Signals and Systems, Master's Thesis 2013:10

the robot systems activity in the add-in and not which type of robot. It is implemented in
such a way that there can only exist one or none Loader robot and one or none Unloader
robot. Each type of robot comes with di�erent settings and conditions e.g. a robot set to
be Loader is given priority over Interpress and Unloader to connect to the press labelled
First. The concept of labelling presses is explained further in 3.3.2.

Robot System
Loader Robot System
Interpress Robot System
Unloader Robot System

Table 3.2: Available Robot Systems

3.3.2 Press System

Each press can be either device 1, 2 or both at the same time depending on the number
and type of robots in the robot cell. Both meaning the press is previous and next press
at the same time according to Tab. 3.1. Depending on the purpose of the press it exits a
possibility to label the press system as either First, Middle or Last press described in Tab.
3.3. Each label comes with di�erent settings and conditions e.g. a press labelled First is
given priority over Middle and Last to connect to a Load table.

Type Device
First Press 1,2 or both
Middle Press 1,2 or both
Last Press 1,2 or both

Table 3.3: Available Press Systems

3.3.3 Table

A Table can either be Load or Unload table but it is always a device 3 as described in Tab.
3.4.

Type Device
Load 3
Unload 3

Table 3.4: Available Table System

3.4 Classes

This section is divided into two parts, implemented BLL classes and implemented DAL
classes, that represents the core of the software and where the actual �work� is done. There
are more classes working in the background but they give little understanding of the whole
process, therefore they are not presented to the fullest in this paper. One such class is the
�Helper� class, its only purpose is to �assist� the programmer with commonly used methods
and functions that are not connected to a speci�c object. Fig. 3.2 illustrates a overlook of
the most important implemented classes in the software.

, Signals and Systems, Master's Thesis 2013:10 15

Figure 3.2: Layer

Implemented DAL Classes Implemented DAL Classes consists of the classes pro-
grammed under the DAL, e.g. the class Robot which when called by the user creates
a data object representing a real robot system. The data object only contains the infor-
mation equal to what a robot �in real life would know�, such as position, orientation and
name. Every virtual object in RobotStudio is given a unique identi�cation, GUID, that
is passed onto the object. This is a crucial process that must work due to the fact that
if the GUID does not match the objects unique identi�cation the used algorithm can not
separate a component from di�erent component. The same implementation is used with
the Press and Component class. A robot object does not contain information regarding its
relationship to other devices neither the distance to them. The information regarding both
robot and distance relationship for a robot object are created simultaneously and stored
in separate collection classes.

Implemented BLL Classes Implemented BLL Classes consists of the classes pro-
grammed under the BLL, e.g. the class RobotRelationManager which is created only
once when the add-in is started. RobotRelationshipManager stores information regarding
all RobotRelationship objects. Each robot class is assigned with a relationship the moment
it is created. The distance relationship stores information about the desired distance, set by
the user in the UI, to any device. Each robot class is assigned with a distance relationship
the moment it is created. DistanceRelationManager manages all DistanceRelation objects.
The managing involves calculating the distances set by the user between robot and device.
The LockManager class is responsible for and handles the locking down process. It involves
recalculating distances depending on the new position of the locked object. There are a
number of constraints and limits that make up the rules about where/when/how the user
is allowed to move and lock an object explained in 3.7.3.

16 , Signals and Systems, Master's Thesis 2013:10

3.5 Placement class

This chapter explains what and how the Placement class is used and implemented. It also
sits under the BLL but due to the importance to the software it is explained in more detail.
How the used automatic placement algorithm is coded and implemented is explained under
3.5.1.

3.5.1 Auto-Placement Method

In order to auto-place the components in the robot cell a algorithm is developed. The
algorithm consists of placing the �rst robot at any desired position, e.g. at (x, y, z) =
(0, 0, 0) in the robot cell and adding on the next robot in the chain of robots until there
are no more to place. The chain in this case is the list of robots in descending order from
�rst to last. The next robot in the chain is according to the set relationships always the
robot that the current robot is sharing a device with. When all the robots are placed,
each robots devices are placed around it. A maximum of two robots can be parent to one
particular device, for example the robot on the left side of the device and the robot on the
right side.

Figure 3.3: Auto-placement algorithm �owchart

To calculate the position of the next robot, if there exists one, the algorithm takes the
current robots position and checks the distance to the device that the two robot must share
and calculates a temporarily position at a new point in the coordinate system. From this
point the algorithm checks the distance to the device from the next robot, inverts it and

, Signals and Systems, Master's Thesis 2013:10 17

calculates the position of the next robot. This creates a zigzag �position�-curve shown in
Fig. 3.4.

Figure 3.4: Zigzag �position�-curve

3.6 Auto connections

One of the objects is to automatically connect the Smart Components in the Station.
This is done by creating property bindings and I/O connections. Each Smart Component
needed for the station is added as an object in the program, and its inputs and outputs
is known. Depending on the amount of presses and robots in the station, the bindings
and connections are then created. This is needed for simulations to run. Algorithms built
in to the Press Components and several line-con�guration Smart Components need to be
connected to control the movement and o�set of the presses.

3.7 Lock algorithm

One foreseeable problem is that, for example a robot, has been moved manually instead
of with the UI and followed up by updating the robot cell the software recalculates and
remodels from �default� settings. Which means that the manual changes made in the
station will be overwritten and ignored. A possibility to lock components at their current
position is therefore a needed feature. To solve this a new method is invented and is
described in two stages in 3.7.1 and 3.7.2. Depending on which component is locked there
are di�erent consequences and also a set of conditions are implemented both are described
in 3.7.3.

3.7.1 First

When the user selects a component in RobotStudio and presses �Save�, the lock-algorithm
�nds the corresponding data object of the component and �ags it as �Saved�. The algorithm
locks the distance relationship in question, making them unchangeable until the robot that
owns the relationship is �agged �Unsaved� by the user. The �owchart in Fig 3.7 illustrates
how the algorithm functions. Note that the backtracking part of the �owchart is explained
in 3.7.2.

3.7.2 Second

The �rst part solves the problem with overriding and ignoring the manual changes but the
locked component will be moved due to the chosen placement method describe in 3.5.1. The
distances between the locked robot and its devices will still be the same but e.g. if a distance
between a robot and press is changed and the robot is placed before the locked down robot,
the locked robot will be moved. The solution is called backtracking and how it works is
illustrated in Fig. 3.6. When the algorithm encounters a robot system in a locked state,

18 , Signals and Systems, Master's Thesis 2013:10

Figure 3.5: Lock algorithm �owchart, including backtracking algorithm

it places the system at the locked position regardless of the newly calculated position of
the system. Afterwards the backtracking recalculates the positions of the previous systems
using a algorithm similar to the one showed in Fig. 3.3 but backwards.

Figure 3.6: Backtracking algorithm �owchart

, Signals and Systems, Master's Thesis 2013:10 19

3.7.3 Consequences and constraints

The conditions and constraints are set up to be intuitive and logical.

Conditions Di�erent conditions apply regarding on which component is locked. When
chosen component is selected and locked the following will happen:

• Robot System All distance relationships owned by the robot are locked.

• Press System The distance relationship owned by the robot which the press was
moved towards is locked.

• Load/Unload Table The distance relationship owned by the robot which the load/un-
load table was moved towards is locked.

• When an unlocked robot is moved outside the base frame of any attached device the
robot is moved and no distances will be changed (the whole chain follows).

• When an unlocked press is moved closer to a robot and locked down the rest of the
chain behind the press follows.

• When an unlocked press is moved further away from a robot and locked down the
rest of the chain behind the press follows.

Constraint This constraint is based on logics, e.g. if a robot is located between two
locked down robots, the distances to its devices can not be changed since the locked robots
are set a certain positions. If the robots distances to its devices were to be changed, the
locked robot would be moved which defeats the purpose of the lock-feature.

• It is impossible to move a robots distances, if the robot is located between two other
locked robots.

20 , Signals and Systems, Master's Thesis 2013:10

4 Results

This section presents the software that has been programmed according to speci�cations
described in Section �Speci�cations� and implemented using �CSharp� in �Visual Studio�
for �RobotStudio�. Ideally the results of this paper would be best presented in a physical
demonstration; however, this is not possible in this format. The results are therefore
presented in scenarios during di�erent circumstances.

4.1 User interface

In this scenario there are three robots in the robot cell, one of each type. Fig. 4.1a shows
the main window of the add-in. The middle window named �Robot Systems� is where the
user can see the added robot systems in the cell. The actual position of the virtual robot
in the cell is shown next to its corresponding data objects position. It is implemented in
this prototype as a check point but is not needed in the �nished product. The top part
handles the adding of components from other ABB libraries e.g. conveyor belts as in 4.2,
Fig. 4.2a and Fig. 4.2b

(a) Main window of the add-in (b) Distance controller in the add-in

Figure 4.1: Pictures of user interface, need new ones

Fig. 4.1b shows the distance controller, reached by the �Open Edit Window� button in
the main window. Firstly, this is where all robots distance can be changed by selecting a
robot from the list and then which device can be selected right next to the list. Secondly,
at the bottom of the windows is where the lock function is implemented, consisting of a

, Signals and Systems, Master's Thesis 2013:10 21

�Save� and a �Unsave� button. The object to be locked can either be selected from the list
or from the virtual environment in RobotStudio by clicking on it. The middle part of this
window shows the current distance to the selected robots devices.

4.2 Auto-layout

Because of the �exibility of the add-in it is always possible to add another component, if
available, to the cell. To avoid redundancy two scenarios of di�erent layouts is presented.

(a) This station consists of three robot systems, two presses, one load table and
one unload table. The cell is also equipped with other components imported
from other ABB libraries.

(b) This station consists of three robot systems, four presses, one load table and
one unload table. The cell is also equipped with other components imported
from other ABB libraries.

4.3 Auto-connections

These two �gures illustrates the same scenario. Fig. 4.2c shows the connected property
bindings in the cell while in Fig. 4.2d both property bindings, red lines, and I/O connec-
tions, green lines.

22 , Signals and Systems, Master's Thesis 2013:10

(c) The property bindings in the robot cell.

(d) All connections in the robot cell repre-
sented.

4.4 The whole add-in

Fig. 4.2 shows how the add-in look like while running in RobotStudio.

Figure 4.2: The whole add-in in RobotStudio

4.5 Locking down

• Condition 1. In the scenario, shown in Fig. 4.3a, the robot system is locked down,
the distance relationships of the locked robot are �xed and therefore its attached
devices are also �xed. The sole purpose of the red boxes in the �gures are to indicate
if an object is in a locked state or not. A red box means that the object beneath it
is in a locked state.

, Signals and Systems, Master's Thesis 2013:10 23

• Condition 2. In Fig. 4.3b a robot in the end of the robot chain is locked. In this
scenario distance relationships regarding a robot before the locked robot in the chain
are changed. In a straight build order this would mean that the locked robot would
be moved according to the new distances. This would severely undermine the lock-
function since one of the conditions were that a locked object should not move under
any circumstances. Due to the backtracking function the problem is avoided and
instead of moving the locked robot the entire chain of robots before it is moved.

• Condition 3. Fig. 4.3c shows a scenario where a device, a press system, is moved
towards a robot and then locked down. According to the lock-function speci�cations
the robot system the device is moved towards is put in a locked state. Note; when
a robot system is locked as a consequence of moving a device, not all distance rela-
tionships owned by the robot are locked down as in Fig. 4.3a only the one belonging
to the moved device.

• Condition 4. Fig. 4.3d shows the message box, indicating that the Robot System is
locked down and thus it is not allowed to move it.

(a) Condition 1. When the robot system
is locked down its attached devices are also
locked. The distance relationships to the
locked devices are �xed.

(b) Condition 2. In Fig. 4.3a a robot is
locked. In this scenario distances regarding
robots before in the robot chain are changed.

(c) Condition 3. A device, a press system in
this scenario, is moved towards to a robot
and then locked down.

(d) Condition 4. Locked and not allowed to
be moved

24 , Signals and Systems, Master's Thesis 2013:10

5 Conclusions

An add-in to ABBs RobotStudio has been developed. The add-in lets the user set-up a
Press Line from scratch with existing standard components. Using these components, such
as known Smart Components, I/O connections and Property Bindings are done automati-
cally. This facilitates for further implementation and simulation. The user has the ability
to add and remove components from the station in a controlled way. The save function lets
the user edit the station and still have the possibility to auto-rearrange other parts of the
line. The add-in has an important role , where it saves time in the set-up of a Press Line
and lays the way for simulation and optimization. The add-in is programmed in a OOPL
and in modules where its clear what does what. The structure of the code therefore lets
future developers add methods and classes easily.

The important results of this paper can be divided into the �ve objective set out in the
beginning.

Automatic layout generation from single Step Wizard A fully functional auto-
matic layout has been developed and implemented. The decision was made to change the
Step Wizard into a UI instead. This was done due to the fact that graphical design was
not prioritized. Another reason was that the many settings was better implemented on a
UI instead of a Single Step Wizard.

Automatic interconnections with standard I/O The automatic interconnections
with standard I/O feature has been implemented in the UI and is functioning. Both
deleting components and their connections manually and with UI has been implemented.
The current solution is based on known components and their connections. Should they
have di�erent in- or outputs, the connection has to be done manually. This is something
that could have been �xed if more time was available.

Solution based on Smart Components and standard ABB libraries The solution
has been implemented based on Smart Components and standard ABB libraries. More
knowledge of the logics behind the Smart Components and the algorithms for running the
simulation would have been interesting.

Possibility to import new components in a controlled way The solution has been
with the possibility to add new components to each already existing components in the
robot cell. The new components can have any existing component as a reference point and
much like the automatic layout, it is based on de�ned relationship regarding purpose and
distance. A custom graphical interface for choosing the di�erent standard components and
libraries was something wanted. It is possible to import components through the standard
folder way.

Possibility to lock down components The possibility to lock a component at its cur-
rent position and distance relationships has been implemented. This was an added feature
by us and solved problems that would otherwise be present.

, Signals and Systems, Master's Thesis 2013:10 25

The outcome of the thesis is a well thought out and working add-in, with that said there
are a couple of things that could have made it even better. A more planned out structure
of working would possibly have made the work easier, but was hard to adapt because of the
simultaneous learning curve that was present. Early information and data is as mentioned
in the report essential when doing VC. This is something that needs to be considered in
future developments and is more discussed in next section.

26 , Signals and Systems, Master's Thesis 2013:10

6 Recommendations and future work

6.1 Implement Automation Markup Language

Automation Markup Language, AutomationML, is a data format based on XML used
for storage and exchange of information mostly concerning engineering. Its purpose is to
create and maintain a standard which greatly simpli�es the process of information storage
and exchange in projects. Having this data in a structured way would make it possible to
automate the procedure even further, which is one of the important goals for e�ciency in
VC

6.2 Implement dynamic properties for Smart Components

As previously mentioned in Sec.2.5.9 every Smart Component has dynamic properties. This
property value is used by Code Behind to control the behaviour of the Smart Component.
It can be used to change the physical lengths of a component, such as width. This would
greatly bene�t the simulation and modelling of press lines, when the user can change the
size of for example the die parts in a press to get di�erent sized output. The die is a
specialized tool used in manufacturing to cut or shape materials using a press.

6.3 Remodel UI into Single Step Wizard

As previously mentioned in Sec.5 the end result of the add-in is a UI instead of a single step
wizard due to the fact that the many settings and functions created was better implemented
on a UI instead of a Single Step Wizard for this project. Nevertheless a Single Step Wizard
was in the requirements. The amount of work needed to create a wizard is rather limited
since the necessary functions already exists and have been implemented. There is also an
aesthetic matter when designing the wizard which will need work.

, Signals and Systems, Master's Thesis 2013:10 27

References

[1] Executive summary. World Robotics 2012 Industrial Robots.
Available through: International Federation of Robotics. [Accessed 28 May 2013]
www.ifr.orguploadsmediaWR_Industrial_Robots_2012_Executive_Summary.pdf

[2] S. Makris, G. Michalos, G. Chryssolouris, (2012) Virtual Commissioning of an Assembly
Cell with Cooperating Robots. Advances in Decision Sciences.

[3] N.K.Nia, (20122 E�cient Simulation and Optimization for Tandem Press Lines . The-
sis for the Degree of Licentiate of Engineering. Department of Signals and Systems.
Automation Research Group. Chalmers University of Technology.

[4] B. Svensson, F. Danielsson, B. Lennartson, (2009) Simulation Based Optimization of a
Sheet-Metal Press Line 978-1-4244-2728-4.IEEE

[5] Tweedy K (1994) Automating the press line. Production vol. 106, no. 2, pp. 36.

[6] ABB AB. Application Manual, (2010) PC SDK Application Manual. Document id
3HAC036957-001. ABB Robotics Products. Västerås. Sweden.

[7] A. Pfei�er, B. Kádár, L. Monostori, (2003) Evaluating and improving production con-
trol systems by using emulation, Twelfth IASTED International Conference on Applied
Simulation and Modelling, ASM 2003, September 3-5, 2003, Marbella, Spain, pp.:261-
267.

[8] D. Vilacoba, ABB Spain. Developing requirements

[9] Z. Liu, N. Suchold, C. Diedrich, (2012) Virtual Commissioning of Automated Systems.
ISBN: 978-953-51-0685-2, InTech, DOI: 10.577245730. [Accessed 20 September 2013]
http:www.intechopen.combooksautomationvirtual-commissioning-of-automated-systems.

[10] P. Ho�mann et al, (2010) Virtual Commissioning of Manufactoring Systems a Review
and New Approaches for Simpli�cation. Proceedings 24th European Conference on
Modelling and Simulation. [Accessed 25 May 2013]
http:www.scs-europe.netconf ecms20102010%20accepted%20papersibs_ECMS2010_0041.pdf.

[11] F. Rasheed, (2006) C# School. [e-book]. Fuengirola Spain. Synchron Data.
Available through: Programmers Heaven website. [Accessed 4 April 2013]
www.programmersheaven.comebookscsharp_ebook.pdf

[12] BB. Wu, (1995) Object Oriented systems analysis and de�nition of manufacturing op-
erations, International Journal Of Production Research, vol. 33, no. 4, pp. 956, Business
Source Premier, EBSCOhost.

[13] X. Hu, J. Xue, H. Liu, (2011) Research of Architecture Pattern Based on .NET Dis-
tributed System. 2011 International Conference on Mechatronic Science, Electric Engi-
neering and Computer August 19-22, 2011, Jilin, China

[14] Microsoft Developer Network, Microsoft Application Architecture Guide, 2nd Edition
- 2009. Design Fundamentals - Chapter 6: Presentation Layer Guidelines. [Accessed 15
July 2013] http:msdn.microsoft.comen-uslibraryee658081.aspx.

[15] Microsoft Developer Network, Microsoft Application Architecture Guide, 2nd Edition
- 2009. Design Fundamentals Chapter 11: Designing Presentation Components. Accessed
15 July 2013]. http:msdn.microsoft.comen-uslibraryee658100.aspx

28 , Signals and Systems, Master's Thesis 2013:10

[16] Microsoft Developer Network, Microsoft Application Architecture Guide, 2nd Edi-
tion - 2009. Design Fundamentals - Chapter 7:Business Layer Guidelines. [Accessed 15
August 2013]. http:msdn.microsoft.comen-uslibraryee658103.aspx.

[17] Microsoft Developer Network, Microsoft Application Architecture Guide, 2nd Edition
- 2009. Design Fundamentals - Chapter 8: Data Layer Guidelines. [Accessed 15 Juli
2013]. http:msdn.microsoft.comen-uslibraryee658127.aspx.

[18] ABB AB. Application Manual, (2010) Flexpendant SDK 5.13 Application Manual.
Document id 3HAC036958-001. ABB Robotics Products. Västerås. Sweden.

[19] ABB AB. Application Manual, (2011) RobotStudio SDK Reference Manual. ABB
Robotics Products. Västerås. Sweden.

[20] ABB AB. Robotics. IRC5 Datasheet IRC5 Industrial Robot Controller. [Accessed 15
September 2013]
http:www05.abb.comglobalscotscot241.nsf veritydisplayc13e1c5490c61230c125796000
515137$�leIRC5%20datasheet%20PR10258%20EN_R13.pdf.

[21] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, (2009) Robotics Modelling, Planning
and Control. Series: Advanced Textbooks in Control and Signal Processing. XXIV, 632p.

[22] M. MacDonald, D. Mabbutt, A. Freeman, (2010) Pro ASP.NET 4 in VB 2010. XML
Chapter. pp 621-680.

[23] ABB AB. RobotStudio Development, Persistence. [Accessed 15 July 2013]
http:developercenter.robotstudio.comIndex.aspx?DevCenter=RobotStudio&OpenDocume
nt&Title=Persistent.

[24] ABB AB. Application Manual, (2008-2010) Operating manual RobotStudio 5.13 2008-
2010, pp 238. ABB AB Robotics Products SE-721 68 Västerås Sweden

, Signals and Systems, Master's Thesis 2013:10 29

	Abstract
	Sammanfattning
	Contents
	Acronyms
	Preface
	Introduction
	Purpose and aim
	Specifications
	Specifications of the add-in
	Added specifications to the add-in

	Limitations

	Theory
	Virtual Commissioning
	Data requirements for VC

	Object Oriented Programming Language
	Three Layer code architecture
	Presentation Layer
	Business Logic Layer
	Data Access Layer

	RobotStudio Add-ins
	Developing applications for RobotStudio
	Software Development Kits
	Mastership
	The Virtual IRC5 Controller
	Homogeneous Transformation and Matrix4
	XML
	Persistence
	I/O Connections
	Property bindings
	Smart Component

	Method
	Approach
	Defining challenges
	Device concept
	Robot System
	Press System
	Table

	Classes
	Placement class
	Auto-Placement Method

	Auto connections
	Lock algorithm
	First
	Second
	Consequences and constraints

	Results
	User interface
	Auto-layout
	Auto-connections
	The whole add-in
	Locking down

	Conclusions
	Recommendations and future work
	Implement Automation Markup Language
	Implement dynamic properties for Smart Components
	Remodel UI into Single Step Wizard

