
DF

Message

Context

Complete
Information

Appropriacy

Appropriate

Inappropriate

Improving Algorithmic Text Moderation
via Context-Based Representations of
Word Semantics
Identifying Semantic Nuances Within the Domain of Short and
Conversational Chat

Master’s Thesis in Data Science and AI

Felix Nordén

Department of Mathematical Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021

Master’s Thesis, 2021

Improving Algorithmic Text Moderation
via Context-Based Representations of

Word Semantics

Identifying Semantic Nuances Within the Domain of Short and
Conversational Chat

Felix Nordén

DF

Department of Mathematical Sciences
Division of Data Science and AI

Chalmers University of Technology
Gothenburg, Sweden 2021

Improving Algorithmic Text Moderation via Context-Based Representa-
tions of Word Semantics
Identifying Semantic Nuances Within the Domain of Short and Conversational Chat
Felix Nordén

© Felix Nordén, 2021.

Supervisor: Fredrik Johansson, Department of Computer Science and Engineering
Examiner: Johan Jonasson, Department of Mathematical Sciences

Master’s Thesis 2021
Department of Mathematical Sciences
Division of Data Science and AI
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 32 50

Cover: Functional mapping model of how a message and a context can be combined
to identify the semantics and determine the appropriacy of the given message. More
in-depth information and a more concrete illustration is given in chapter 4.

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv

Improving Algorithmic Text Moderation via Context-Based Representa-
tions of Word Semantics
Identifying Semantic Nuances Within the Domain of Short and Conversational Chat
Felix Nordén
Department of Mathematical Sciences
Division of Data Science and AI
Chalmers University of Technology

Abstract
Reliable text moderation requires proper domain knowledge. With scaling require-
ments increasing as platforms of the Internet grow larger and larger, the prevalence
of algorithmic text moderation has increased with the intention to alleviate, or even
replace, its manual counterpart. Nonetheless, these algorithm-based solutions are
harder to interpret, evaluate, and risk being biased in their decision making, result-
ing in more rigid and error-prone behavior when changes in context end up shifting
the semantics of the text itself. To solve these shortcomings, this thesis presents an
approach that learns semantic nuances within shorter pieces of text when given a
related context represented by various layers of information. For this purpose, the
sentence transformer architecture is employed which jointly learns embeddings of
the short-form text and its context. The embeddings are used as input to a Log-loss
optimized, fully-connected network to classify the appropriacy of the text. Further-
more, the thesis investigates the tradeoff between gained performance and added
time- and implementation complexity for each additional layer of information. The
approach is evaluated on chat data from Twitch – a live-streaming service – where
the related context for each message is built up incrementally; first by introducing a
layer of stream metadata and then augmenting the stream metadata by introducing
a layer of related game metadata provided by IGDB – the Internet Game Database.
From the results, the approach demonstrates that representing a context using both
stream- and game metadata has a significant impact on the performance; yielding
an F1 score of 0.37 compared to 0.18 and an AUROC score of 0.63 compared to 0.45
of the best-performing baseline. Furthermore, a linear time complexity dependence
is identified on the number of sentences to embed per datapoint, causing a forward
pass to take at worst ∼78 ms. per datapoint. With this, it is concluded that con-
textual information is able to improve predictive performance for algorithmic text
moderation on shorter pieces of text. Additionally, exploring contextual relevance
of data is easy when using sentence transformers, albeit with a linear growth in time
complexity.

Keywords: Natural Language Processing, Machine Learning, Deep Learning, Algo-
rithmic Text Moderation, Sentence Transformers, Master’s Thesis.

v

Acknowledgements
I would like to thank the following people, without whom I would not have been
able to complete this research.
First, my supervisor Fredrik Johansson at Chalmers, whose knowledge and insights
about the research process steered me in the right direction and helped me step
into territories which were previously unknown to me. Furthermore, I would like to
thank him for the counseling hours he has put in, the laughter we have shared during
these hours, and for always answering my questions, no matter how ambiguous they
may be!
I also want to thank Saad Ali, my mentor and one of my supervisors at Twitch, whose
knowledge in applied science regarding machine learning and artificial intelligence
has helped me investigate interesting aspects of my research and who has taught me
fundamental lessons regarding working with data at Twitch. Also, I want to thank
him once more for the times he helped me troubleshoot my database queries and
helping me get data dump after data dump until the data was correct.
Next, my other supervisor and also very creative mind, Sanjay Kairam, whom with-
out his genuine interest and the million ideas for topics, this thesis would likely
never even have been thought about. I also want to thank him for his guidance,
hospitality, and help throughout this thesis and my time at Twitch so far – without
it, my work would have been so much harder!
To Julia Tavarez at Twitch for her knowledge about Sentence Transformers and
being willing to take her time to help me troubleshoot my model when it did not
show any good results. Without her, these results would likely not have been found
in this project.
A thank you to Gerardo Mendez at Twitch for taking your time and explaining how
AutoMod works under the hood and for showing a genuine interest in my work – it
gave me a boost when I really needed it!
To the Safety Proactive team at Twitch for showing a genuine interest, asking me
tons of questions, and for giving me a guiding hand with regards to both people and
tooling at Twitch.
A huge thank you to Christian Frithiof – my mentor, dear friend, and one of my
pillars of support during the year of 2020. Without his engagement and support, I
would not have gotten to where I am today in this short amount of time.
Last, but certainly not least, I want to thank my friends, family, and loved ones
for being there for me with unconditional support. Without you being there in
my stressful moments with hugs, laughs, and activities, I would likely have been
overworked before finishing this work.
Once again, thank you everyone! This is the end of this journey, but I sure hope
that it is only the beginning of something bigger!

Felix Nordén, Gothenburg, May, 2021

vii

Contents

List of Figures xiii

List of Tables xv

List of Code xvii

1 Introduction 1
1.1 An Overview of Manual- and Algorithmic Text Moderation 1
1.2 Large-Scale Text Moderation at Twitch 2

1.2.1 History of AutoMod and Its Current Shortcomings 3
1.2.2 Motivating the Interest for Improvement 4

1.3 Aim . 4
1.4 Delimitations . 5
1.5 Specification of Issue Under Investigation 6
1.6 Thesis Outline . 6

2 Theory 9
2.1 Twitch Domain Language . 9
2.2 Text Moderation using AutoMod . 10
2.3 Defining a Context Within Text Moderation 12
2.4 Mathematical Notation . 12

2.4.1 Types of Variables and Functions 13
2.5 Shared Memory in Python and PyTorch 13

3 Procuring, Refining, and Preparing Datasets 17
3.1 Procurement of Data from Twitch . 17

3.1.1 Constructing the Training- and Validation Sets 19
3.1.2 Investigating Robustness and Generalization Against Unseen

Data . 20
3.2 Procurement of External Data . 21
3.3 Procurement of the Test Dataset . 21

4 Architecturing, Implementing, and Iterating on the Model 23
4.1 Defining a Baseline . 23

4.1.1 A Small Ablation Study of Chat Messages and Severity Scores 25
4.2 Defining the Main Model . 26

4.2.1 AutoBERT Configurations of each Variation 29

ix

Contents

4.3 Training the Models . 30
4.3.1 Baseline Model Training and Hyperparameters 30

4.3.1.1 Hyperparameters for Loading and Processing of Data 31
4.3.2 AutoBERT Model Training and Hyperparameters 32

4.3.2.1 Hyperparameters for Loading and Processing Data . 33
4.4 Evaluating the Models . 34

4.4.1 Estimation of Confidence Bounds 35
4.5 Summarizing the Baselines and AutoBERT Models 35

4.5.1 Baseline Model Summary . 35
4.5.2 AutoBERT Model Summary 36

5 Results 39
5.1 Data Statistics . 39

5.1.1 Test Dataset . 40
5.2 Baseline Results . 40

5.2.1 Inferred AutoMod Performance and Baseline Performance . . 44
5.3 AutoBERT Comparison to Baseline 44

5.3.1 Evaluating Decision Thresholds 46
5.4 Investigation of Robustness and Generalization Regarding Unseen Data 47

5.4.1 Conditioning on Channels . 48
5.4.1.1 Baselines . 48
5.4.1.2 AutoBERT Models 49

5.4.2 Conditioning on Broadcast Categories 49
5.4.2.1 Baselines . 50
5.4.2.2 AutoBERT Models 51

5.4.3 Conditioning on Messages . 51
5.4.3.1 Baselines . 51
5.4.3.2 AutoBERT Models 52

5.5 Final Evaluation on Test Set . 53

6 Discussion 55
6.1 Performance Differences Between AutoBERT Stream- and IGDB Con-

figurations . 55
6.1.1 Complexity- and Performance Tradeoffs Between Layers of In-

formation . 56
6.2 Sudden Undefined and Positive/Negative Infinite Loss of AutoBERT

IGDB Configuration . 58
6.3 Where Contextual Information Improves Predictions 59
6.4 Limitations . 61
6.5 Future Work . 62

7 Conclusion 63
7.1 Answering the Questions Under Investigation 63
7.2 Summarizing and Reflecting on the Work 64
7.3 Contributions to the Field . 65

Bibliography 67

x

Contents

A AutoBERT I
A.1 Classification Component . I
A.2 Run-time Configuration . II

B Robustness Investigation Results III
B.1 Channels . III
B.2 Broadcast Categories . V
B.3 Messages . VII

C Shared Memory in Python IX

xi

Contents

xii

List of Figures

1.1 Moderation flow from viewpoints of both the sender and moderator . 3
1.2 Relationship diagram of the involved data in defining appropriacy of

a message. 5

2.1 Domain model diagram of Twitch for the problem domain of chat
moderation. 10

2.2 Flowchart of how AutoMod processes a message 11

4.1 Legend description of what the color and shape encodes for each ar-
chitecture diagram . 24

4.2 General architecture- and baseline architecture diagrams 25
4.3 Model and data loading architecture of the AutoBERT model 28

5.1 ROC- and Precision-Recall curves for the baseline models 43
5.2 Loss curves over epochs and hours for AutoBERT variations 45
5.3 ROC- and Precision-Recall curves for the AutoBERT models 47

A.1 Fully connected network architecture of the classification component
of AutoBERT . I

xiii

List of Figures

xiv

List of Tables

4.1 Tuned hyperparameters for data loading and processing 34

5.1 Basic statistics of the training- and validation sets 39
5.2 Counts of unique and shared data instances between the training- and

validation sets . 40
5.3 Basic statistics of the test set . 41
5.4 F1 Scores depending on a varying decision thresholds for the baselines 41
5.5 Accuracy, Precision, Recall, F1 Scores, and Specificity scores for base-

lines and models . 42
5.6 AUROC and AUPR scores for the three baseline models and the three

AutoBERT models . 43
5.7 F1 Scores depending on a varying decision thresholds for the Auto-

BERT models . 46
5.8 Precision, Recall, F1 Scores, and Specificity of baselines and Auto-

BERT models w.r.t. common and unique channels 48
5.9 Precision, Recall, F1 Scores, and Specificity of baselines and Auto-

BERT models w.r.t. common and unique broadcast categories 50
5.10 Precision, Recall, F1 Scores, and Specificity of baselines and Auto-

BERT models w.r.t. common and unique messages 52
5.11 Accuracy, Precision, Recall, F1 Scores, and Specificity scores for base-

lines and models . 53
5.12 AUROC and AUPR scores for the three baseline models and the three

AutoBERT models . 54

6.1 Messages and predictions of best baseline and AutoBERT model. . . 60

B.1 Accuracy of baselines w.r.t. common and unique channels III
B.2 Precision, Recall, and F1 scores of baselines w.r.t. common and

unique channels . IV
B.3 Specificity of baselines w.r.t. common and unique channels IV
B.4 Accuracy of baselines w.r.t. common and unique broadcast categories V
B.5 Precision, Recall, and F1 scores of baselines w.r.t. common and

unique broadcast categories . V
B.6 Specificity of baselines w.r.t. common and unique broadcast categories VI
B.7 Accuracy of baselines w.r.t. common and unique messages VII
B.8 Precision, Recall, and F1 scores of baselines w.r.t. common and

unique messages . VII

xv

List of Tables

B.9 Specificity of baselines w.r.t. common and unique messages VIII

xvi

List of Code

1 Shared memory cache type implementation using Python’s ctypes -
and sharedctypes -modules . 15

2 Tuned parameters of Text Vectorization layer 31
3 Dataset configuration for the baselines 32
4 Hyperparameter configuration of the AutoBERT models 33
5 Confidence interval bootstrap sampling algorithm 37
6 AutoBERT run-time configuration . II
7 Base class implementation of the C-type structure for tokenized sen-

tences. X
8 C-type structure for datapoints . XI
9 Continuation of C-type structure for datapoints XII

xvii

List of Code

xviii

1
Introduction

Languages are ever-evolving and vary greatly in terms of both syntax and semantics.
A variation in one of these terms does not necessarily imply a variation in the other.
For example, different languages have their own set of grammar rules that define the
syntax of the language. These rules are then used to construct sentences meant to
mediate the intended semantic value. In the opposite case, the semantics of a phrase,
sentence, or any other word construct can vary greatly depending on the context in
which it occurs. Communities, as an example of context, may have specific ways
of communication which affect the perception of the communicated language to a
quantifiable degree [1], even though the syntax remains unchanged. Within the field
of text moderation – the practice of identifying and modifying inappropriate pieces
of text – these variations give rise to a difficult problem as the moderator is required
to have enough domain knowledge to correctly interpret the text and to not make
mistakes.

In general, variations in the semantics of a language can cause issues, not only
for moderators, since misinterpretation is likely to happen if reader does not have
knowledge of the semantic nuances contained associated with the specific context.
Furthermore, with the evolution of large platforms on the Internet, the growing in-
flux of content has reached a point where purely human text moderation has become
unmanageable. To make this influx more manageable, algorithmic text moderation
– among other algorithmic moderation systems – has been developed to process
user-generated text in significantly shorter timeframes and at scale [2]; albeit, by
introducing additional ambiguity to non-trivial subjects regarding interpretation [2]
and potential bias in the algorithmic decision making process [3].

1.1 An Overview of Manual- and Algorithmic Text
Moderation

In simple terms, two kinds of errors can be done when moderating text: moderating
appropriate text and not moderating inappropriate text. “Moderation” in this con-
text means any form of modification of the original text, up to the point of removing
it completely. Incorrectly identifying a piece of text as appropriate (false positive) is
problematic as it may negatively affect the receiving end, e.g., hurting or insulting
the recipient of the text. However, incorrectly identifying a piece of text as inappro-
priate (false negative) is also problematic as it might instead negatively affect the

1

1. Introduction

writer, e.g., by evoking a feeling of mistreatment. Therefore, well-performed text
moderation is a balance act, where being too focused on one side causes you to fall
off the other.

When considering algorithmic text moderation with the intention of mitigating the
issues mentioned in [2, 3], a new dimension of complexity is added to the problem;
not only is the required domain knowledge necessary, but the domain knowledge
also needs to be learned by the moderation model. Furthermore, since this type
of model is difficult to interpret, verifying that the model is appropriately perform-
ing the balance act that is text moderation at a level deeper than simple metrics,
e.g., Accuracy or F1 Score, becomes intractable. There has been successful work
done related to identifying changes within word semantics both over time and be-
tween communities, where the proposed solution yields intuitive and interpretable
results [4]. Moreover, the results from [4] suggests that there are semantic nuances
to be inferred from contextual information, which may act as learnable domain
knowledge for a moderation model. While keeping this possibility of learnable do-
main knowledge in mind, [5] proves this possibility by proposing and evaluating a
classification technique. This technique combines the implicit patterns occurring
in textual content – comments – with contextual information – a social network of
the users who wrote the comments – to both score and classify the content. Com-
pared with more traditional methods, which were decision trees and Support Vector
Machines (SVM), the proposed technique outperformed the traditional techniques
with regards to accuracy and executed faster than the SVM model; therefore, the
remaining question is “what contextual information contains the inferrable semantic
nuances?”.

1.2 Large-Scale Text Moderation at Twitch
At Twitch1, a live-streaming service where users can broadcast various types of con-
tent live via channels for others to view, the stream chat functionality is a prime
example of large quantities of text in need of moderation. On channels with many
viewers, the viewers that distinguish themselves may be offered the role of human
moderator2 for that channel’s chat. However, as previously mentioned, this becomes
unmanageable as a channel grows. In order to make this task more manageable for
both broadcaster and moderator, Twitch’s current solution is the algorithmic mod-
eration tool AutoMod – “a moderation tool that blocks inappropriate or harassing
chat with powerful moderator control” [6].

With the work performed in this thesis, the goal is to explore and find potential
answers to the aforementioned question in the context of Twitch’s stream chat and
AutoMod – what information can improve AutoMod and allow it to understand the
semantic nuances occurring in the plethora of communities residing in the channels of
Twitch? Furthermore, in order to quantify the value of introducing such information,
the tradeoff between potential performance gain and introduced complexity will be

1Twitch’s About page: https://www.twitch.tv/p/en/about/
2“Human moderator” will from hereon also be synonymous to “moderator”.

2

https://www.twitch.tv/p/en/about/

1. Introduction

measured in order to yield results which may be applicable in a more general setting.

1.2.1 History of AutoMod and Its Current Shortcomings
In alignment with the general issue of word semantics differing depending on the
context in which they occur, Twitch has identified that AutoMod – their current
algorithmic moderation tool – is not granular enough in its predictions to perform
well over differing contexts. AutoMod is intended to capture chat messages which
the tool considers inappropriate or harassing and then holds these messages for
either the broadcaster or moderators of the channel to allow or deny. If the message
is allowed, it will show up in chat, if it is denied it will not. An example of this
moderation flow for both the sender and the moderator is shown in figure 1.1.
Furthermore, if the captured message is ignored by the broadcaster or moderator,
this message will remain captured by AutoMod, meaning that the message will not
show up in chat in this case either. Therefore, compared to the previous definition
of moderation in section 1.1, the role of a moderator in Twitch chat is simplified
to only being required to identify what messages are appropriate and inappropriate
and then ensure that the inappropriate messages are not shown in chat.

Figure 1.1: Moderation flow from viewpoints of both the sender and moderator
of a sent message and how AutoMod functions in conjunction with a moderator.
Frames in turquoise borders and without a sword in the upper-left corner are from
the sender’s viewpoint and the ones with that are in green borders with the sword
are from the moderator’s viewpoint.

AutoMod does not consider the complete context in which a piece of text occurs,
but only depends on the piece of text that constitutes a chat message to make its
prediction. In the early days following AutoMod’s introduction, when Twitch had
a more consistent context in the form of mainly major game titles, only considering
the chat message was enough. However, now that Twitch is expanding their con-
tent catalogue both horizontally (additional types of streams) and vertically (more
categories in each type of stream), AutoMod is starting to show its shortcomings.
As one channel can be drastically different in content and community compared to
another, assuming a consistent context becomes a problem.

3

1. Introduction

1.2.2 Motivating the Interest for Improvement
For example, imagine that a broadcaster is playing Assassin’s Creed3; a game fran-
chise in the adventure and sneak’em up genres, where killing is a frequent and
non-stigmatized action. Furthermore, consider the event where the viewers are dis-
cussing what actions the broadcaster should take in order to progress. A viewer
sends the message “You just need to sit in a dark corner, wait for the them to walk
past you and then walk out and kill them”. Out of context, this may sound serious
and highly inappropriate, meaning that this message could be captured by Auto-
Mod. Conversely, given the current context, the message is meant to be helpful, has
no ill intentions and is highly appropriate.

Similarly, in the case of different channel contexts, the message “They have AK47s”
is perfectly relevant in a channel streaming a first-person shooter (FPS) game, such
as Counter Strike: Global Offensive. However, in a channel that is in the category
“Just Chatting” and nothing related to violence should occur, this message would
likely be inappropriate.

Therefore, there is a need to investigate the possibilities of leveraging the large
quantities of stream-related data they house; along with related metadata, such as
games metadata (e.g., genres or summaries) or creative arts metadata (e.g., music
or painting), to help AutoMod “contemplate” and become more granular in its
approach when classifying text for appropriacy. More concretely, the idea is to
have AutoMod learn to capture the nuances that define a channel’s true moderation
preferences by learning from the actions of channels’ human moderators and to
generalize these nuances across streams that appear similar by using various types
of related data.

1.3 Aim
As previously mentioned in the end of the introduction of this chapter, the aim of this
thesis is to investigate the possibilities of improving the performance of AutoMod
by adding more comprehensive layers of contextual information for the analysed
text. Furthermore, the performance- and complexity tradeoff brought by each layer
will be measured to give results that are applicable in a more general context.
The contextual information is intended to comprise stream metadata, data that
relates to the stream metadata, as well as any data that can be referenced within
the analysed text itself. Data that is not referred to as “stream metadata” will
henceforth be synonymous with “external data” and are intended to be gathered
from external sources. Examples of external data are (1) game metadata for a
game that is currently being played in a stream, (2) a notable/famous personality
within the community, and (3) information about applicable products/accessories
and their manufacturers. An illustrative example of how these information layers
relate to each other and with a chat message, as well as how all components jointly
represent a context for the problem can be found in figure 1.2.

3Information about the franchise from the publisher Ubisoft: https://www.ubisoft.com/en-
gb/game/assassins-creed

4

https://www.ubisoft.com/en-gb/game/assassins-creed
https://www.ubisoft.com/en-gb/game/assassins-creed

1. Introduction

Chat
Message

Stream
Metadata

External Data
(games, people, products)

Occurs in Channel

Content Refers to

Summarizes

Refers to

Defines a

Defines a

ContextOccurs in

Represented by

Figure 1.2: Relationship diagram of how a stream chat message, stream metadata
for the channel, and data from external sources help define the appropriacy of the
chat message. Note that the stream metadata summarizes the channel, but not
necessarily completely represents the channel in the way that the context intends to
do.

By the end of the project, the intended outcome is to have a deliverable proof of
concept application that uses contextual information to improve the predictive per-
formance of Twitch’s current AutoMod solution. In conjunction with the deliverable,
the measurements for the aforementioned performance- and complexity tradeoffs for
each layer is intended to have been collected in order to justify whether or not a
specific layer of information is worth introducing.

1.4 Delimitations
Since the complete domain that is Twitch is expansive and continuously growing,
producing a deliverable that models the complete domain is not feasible within
neither the timeframe nor headcount of this project. Therefore, to scope the project
to a feasible scale, the following delimitations are taken into account:

1. Since AutoMod is opt-in for broadcasters, only channels that are using Auto-
Mod will be considered

2. Only channels that are identified as English-speaking will be considered

3. Only messages that have been captured by AutoMod or manually removed
will be used for training and validation

4. Only channels that have a concurrent viewer count within 100-1000 will be

5

1. Introduction

considered

5. Categories will be selected to be as diverse as possible to capture various kinds
of contexts

6. Data gathered from external sources will be limited to the Internet Game
Database (IGDB) [7]

Regarding item 3, only messages captured by AutoMod or manually removed by a
moderator are considered as these have inferrable labels based on moderator interac-
tion; why only these cases are inferrable is explained when describing the inference
procedure. For item 4, only a concurrent viewer count of 100-1000 is considered
as the number must be high enough to have a constant influx of messages yet low
enough to mitigate the risk of inferring incorrect labels. Going above 1000 concur-
rent viewers increases the risk of messages overflowing, making it difficult for the
moderators to keep up.

1.5 Specification of Issue Under Investigation
To concretize the aim of the thesis further, the project is intended to investigate and
either accept or reject each of the following hypotheses:

1. Adding a layer of stream metadata to an algorithmic moderator tool based on
AutoMod’s output will result in significant improvement of moderator perfor-
mance

2. Adding a layer of domain-specific data relating to the stream metadata of
item 1 to an algorithmic moderator tool based on AutoMod’s output will
result in significant improvement of moderator performance

3. Improved performance results of each additional layer of information outweigh
the time and complexity that follows from incorporating the layers’ information
into an algorithmic moderator tool based on AutoMod

1.6 Thesis Outline
For the remainder of this thesis, the work towards reaching a conclusion regarding
the aforementioned hypotheses are presented. In chapter 2, more in-depth informa-
tion is presented regarding the domain that is Twitch chat, the domain language
itself, and how moderation in the domain functions with regards to AutoMod. Fol-
lowing this domain information is a more in-depth description of how the system
that is AutoMod is constructed. Components of the system which are brought up
mainly revolve around those which are depended upon in this work. Then, a more
concrete definition of what defines a “context” within Twitch chat is given, which can
also be generalized to other domains within algorithmic content moderation. Going
into more formal language, the mathematical notation which is used throughout the
thesis is outlined as a reference. Lastly, multiprocessing and shared memory within
Python is described as this is used within the project for loading and processing

6

1. Introduction

data in parallel, as well as performing parallel training of the models using multiple
GPUs.

In chapter 3, the procurement process of the data for training- and validation sets
is described along with the process of splitting the data into their respective sets.
Additionally, the process of procuring both the additional stream metadata from
within Twitch and the games data from the Internet Game Database (IGDB) is
described. Lastly, the procurement process of the test set is described.

Next is chapter 4, where the architecture, implementation, and iteration of the
model is described. First, the mathematical formulation of the problem is given
with a mathematical definition of the involved components, such as the involved
data and the loss function. Next, the baselines are defined in conjunction with
the general architecture of both the baselines and the main model itself. In this
part, a small ablation study of feature importance within the current AutoMod
system is also performed. After that, the architecture and implementation of the
main model is described, along with the iterative process of incorporating the two
additional layers of information. With the implementations described, the process
of tuning both the baselines and the model iterations is described along with the
chosen hyperparameter configuration. Lastly, the evaluation process of all models,
including baselines, is outlined along with the methods used for procuring confidence
intervals.

In chapter 5, the results for both the baselines and the model iterations are presented
following the process outlined at the end of chapter 4. First, general statistics
about the procured training- and validation sets are given. Then, the results from
evaluating all models on the validation data are presented, along with some analysis
of the results. Lastly, the results from the final evaluation on the test set are
presented.

Following the results, in chapter 6, the results are discussed in more detail. Fur-
thermore, some discussion is done regarding issues related to unexpected behavior
which occurred during the training of one of the models in order to try and find an
answer for the unexpected behavior. Limitations with regards to this work are also
brought up and discussed as to how and where the achieved results may prove valid
or not. Lastly, multiple ideas for future work are presented on how to improve upon
the work done here as well as potential alternative routes to take.

Lastly, in chapter 7, the final verdict regarding the hypotheses outlined in section 1.5
are given. Additionally, some closing thoughts tied to the results and discussion are
given along with how this work has contributed to the domain of algorithmic text
moderation.

7

1. Introduction

8

2
Theory

In order to give some additional information to explain underlying concepts which
are not directly relevant for the main thesis, this chapter is to present this infor-
mation in an unobtrusive manner. The following sections describe the necessary
domain language for Twitch, how AutoMod is used for text moderation of chat, and
what is defined as a context within text moderation. Furthermore, some mathemat-
ical notation is introduced for easier reading in the following chapters. Lastly, some
relevant theory regarding how shared memory in Python works and how it was used
in conjunction with PyTorch in this project.

2.1 Twitch Domain Language
In chapter 1, Twitch was introduced as “... a live-streaming platform where users can
broadcast various types of content live via channels for others to view...”. This ex-
cerpt introduces some fundamental concepts for the Twitch-domain; namely, broad-
casting users and types of content. Every user at Twitch can broadcast, or usually
referred to as stream, content via their channel. The content can be of any type as
long as it is “stream-friendly” and not inappropriate.

Each time a user starts broadcasting, at the stage where they are a broadcaster,
their channel goes live and other users can watch the stream entering the channel
on the platform. When a channel goes live, the broadcaster is able to modify the
channel title to describe what their stream is about in free-text form. If a user finds
the channel intriguing and joins in, they become a viewer of the channel.

Every viewer of a channel can interact with the broadcaster and other viewers via the
channel’s chat function. In order to ensure that the language in chat is appropriate,
some form of moderation needs to be introduced. At Twitch, the broadcaster can
choose at least one of three options: (1) Manually moderate the chat themselves, (2)
Assign one or more viewers as moderators for whom the broadcaster deems fit the
role and then have them moderate the chat, or (3) make use of Twitch’s algorithmic
moderation tool AutoMod [6]. As a channel grows, the broadcaster usually chooses a
combination of (2) and (3) to delegate the task and focus on delivering their content
in the stream.

Regarding the content, a broadcaster can describe what the primary content of their
broadcast is using broadcast categories which can range from game titles, e.g., Dota

9

2. Theory

Chat

Broadcaster

StreamChannel

User

Viewer

Title Category

Tags

Is aIs a Sets

Describe

DescribeHas a

When live,
has a

Sets

Has a

Communicate in

Has a

Becomes when
broadcasting

Broadcasts a

Becomes when
viewing stream

May moderate

Figure 2.1: Domain model diagram of Twitch for the problem domain of chat
moderation.

2 or Assassin’s Creed, to professional and creative arts, e.g., Music or Science and
Technology, or even simple casual conversations in Just Chatting. Each category is
also associated with category tags which are a small subset of all tags at Twitch which
describe the category itself, e.g., game genres such as Action or MMO, or what the
non-game category involves, e.g., Creative or IRL (In Real Life) [8]. Furthermore, a
broadcaster can choose to tag the stream itself by using stream tags to add additional
flavor to their own channel. Tags such as AMA (Ask Me Anything), Anime, and
Singleplayer are examples among many other [8].

All of the emphasized terms up until this point, except for the examples of different
tags, are key terms within the problem domain of Twitch chat and this project.
Therefore, in order to give a more clear picture of how these terms relate and interact
with each other, a domain model diagram is presented of this problem domain in
figure 2.1.

2.2 Text Moderation using AutoMod
In order to get a more comprehensive understanding of how AutoMod functions, this
section gives a complete overview of the parts of AutoMod that are relevant within
this project. AutoMod as a system does more than simply classifying pieces of chat
messages as appropriate and inappropriate; it allows the broadcaster to define sets
of permitted and blocked words or phrases and also to configure how aggressive
the system should be in moderation on a level from 0 (no moderation) to 4 (more
moderation on discrimination, sexual content and profanity, and most moderation
on hostility) [6]. Furthermore, before classifying the chat message itself, the system
performs other checks in order to determine whether the message is allowed to occur
in the chat to begin with. These checks include, among others, checking the ban

10

2. Theory

status of the sender, verifying that the message does not contain any banned phrases
defined by the broadcaster, and that the sender has not been flagged as a bot.

In the case of all checks passing, the classification of the message is done before it is
shown in chat. This classification makes use of an internal machine learning-model
which produces a set of severity scores between [0,1] for the filters listed in the
level-section of [6]. If any severity score is above the threshold for what is defined
based on the broadcaster’s set AutoMod level, the message is captured and shown
privately to the broadcaster and their moderators for any of them to take action and
either approve or deny the message. If the message is instead ignored, it remains in
the queue of messages to process and will not show up in chat unless approved by a
moderator, implicitly making it denied from the chat’s point of view.

The internal model runs on all sent chat messages at Twitch up-front, making it
the first action AutoMod takes before performing all other checks and eventually
using the internal model’s output to classify the appropriacy of the message. A more
concrete picture of how a message flows through AutoMod is presented in figure 2.2
to further illustrate the process.

All Passing Yes

...

Severity
Scores

No

Block
Message

Internal
Checks

Internal
Model

Scoring

Internal
Checks

Classify

Start
Chat Message

Passing

AutoMod
Level

Yes

No

Manual
Moderation

Display Chat
Message In
Stream Chat

Approved

Yes

No

End

End

Figure 2.2: Flowchart of how AutoMod processes a message before it is either
shown immediately in chat, sent for manual moderation by a moderator, or blocked
directly by AutoMod.

11

2. Theory

2.3 Defining a Context Within Text Moderation
Context is a word which may describe many different things depending on the set-
ting. The word is a noun and is defined in the Oxford Dictionary of English as
“the situation in which something happens and that helps you to understand it” [9].
Within the domain of text moderation, this “something” is the piece of text that
is to be moderated. The “situation” which helps one understand the text is the
aforementioned knowledge that is required to correctly moderate the text.

In a sense, any information which relates to the text could be seen as a context.
However, whether the information is helpful in the sense that the final verdict is cor-
rect may be highly subjective to the moderator. Therefore, here two categories of
contexts are defined: (1) informative context and (2) uninformative context. Infor-
mative context is the context which is useful for the moderator to reach the correct
verdict, whilst uninformative context is the context which contributes nothing, or
even negatively, towards the final verdict.

With these two categories of context, the setting of this project can be interpreted
and summarized as “investigating what contextual information can be categorized
as informative and uninformative when moderating Twitch chat with the moderator
being an algorithmic moderation tool”.

2.4 Mathematical Notation
In some parts of this thesis, mathematical notation is used to concretize and further
illustrate how mathematics are used and implemented inside the models. Therefore,
a small notational framework is outlined here to give sufficient knowledge of how to
read the mathematics in the remainder of this thesis.

Variables of one dimension are denoted using an italicized typeface, e.g., y for a
target response or label. Variables of multiple dimensions, i.e., vectors, are instead
denoted using a bold typeface, e.g., x for predictors or features of a datapoint or y
for a vector of target responses.

Matrices of arbitrary dimensions M × N are denoted using capitalized letters in a
bold typeface, e.g., X for the predictors of a collection of datapoints. If need be, the
dimensions will be specified in conjunction with the matrix itself, e.g., “the matrix
X, where dim(X) = M ×N .”

Sets are denoted using a calligraphic typeface, e.g., S for the set of all possible
strings, except for the cases where sets are already well-defined in mathematics,
e.g., R for the real numbers. Primary sets of interest in this paper are the following:

• S – the set of all possible strings

• R – the real numbers

• P = Sk×Rl – the set of possible string- and number-based predictor pairs for
string vectors of dimension k and number vectors of dimension l

12

2. Theory

• B – the set of messages, i.e., the predictors that do not define a context

• C – the set of contextual information for B

• Y – the set of labels, i.e., the target responses mapping to B

Other sets do occur, but these are defined in conjunction with them being declared.

2.4.1 Types of Variables and Functions
Apart from regular mathematical notation, types are used to give better context
as to what a mathematical atom is. In general, this is usually done for functions,
or mappings, e.g., f : D → R. Here, D is the domain and R is the range of the
function.

However, this can be generalized to arbitrary mathematical expressions or variables,
e.g., x : B, which states that the variable x has the associated type B. If x instead
is a concrete value or element of B, then is instead denoted as x ∈ B.

For the case of vectors and matrices, their concrete type can also be used instead
of the more abstract data-related type (e.g., B for the set of messages). A vector
of strings s containing k strings would then be denoted as s : Sk, much like for the
aforementioned predictor type P = Sk×Rl, where both string- and number vectors
are used.

For expressions containing pairs, or tuples, of variables, i.e., (x, y, z), regular carte-
sian product of all variable types are used: (x, y, z) : A×B×C. In the case of nested
tuples, e.g.,

(
(x, y), z

)
, the inner cartesian products is enclosed within parentheses

to emphasize the nested structure of the tuples:
(
(x, y), z

)
: (A× B)× C.

Throughout this paper, this generalized form of typing is used in order to help dis-
ambiguate what an expression is. One place where these typings are used extensively
are in code listings, where type annotations are used in documentation or as Python
type hints [10] inside the code itself.

2.5 Shared Memory in Python and PyTorch
Working with machine learning models involves training and evaluation on data.
In PyTorch, these data are represented using Datasets and DataLoaders [11];
Datasets act as representations of data and how to access to it, and Data Loaders
manage the sampling, loading, and batching of the data.

After trial and error of loading in data efficiently, indexing and preprocessing of the
raw data is performed in batches which are then stored in a cache managed by a
custom implementation of the Dataset -class. By utilizing the cache, the expensive
preprocessing of the data is only necessary during the first epoch, after which the
cache is filled and is used instead of the raw data.

Data loading is often a bottle-neck during training of models, which is somewhat
remedied by using multiple worker processes for loading. The number of worker

13

2. Theory

processes to use is easily set in the DataLoader -class’ constructor [11]. However,
by using multiple worker processes, the required memory is copied to new separate
processes to achieve true parallelism as the global interpreter lock (GIL), the global
lock which enforces only one thread to have control of a Python interpreter, does not
allow parallelism via simple threads [12]. In the case of data loading, the Dataset -
instance is copied across each worker process, cloning the current state of the original
Dataset -instance each time they are instantiated. This instantiation occurs at the
start of each sampling iteration of the DataLoader -instance, e.g., at the beginning
of each epoch. In this case, the processes are then killed at the end of each epoch.

With the worker processes cloning the Dataset each time they are started and
sampling different indices of the data [11] to ensure each datapoint occurring only
once per epoch, using a simple cache is not feasible since each worker process will
cache their own equally-sized subset of the data in their own Dataset -instance.
Therefore, in order to use both the cache and parallel data loading, the custom
Dataset -class uses shared memory to store the data in memory space shared by all
Python processes [12]. Native Python shared memory was introduced in version 3.8,
allowing multiple processes to use shared memory defined using any form of valid
Python value [13]. However, as this project is implemented to be run in the cloud,
the Python version is locked to version 3.6 and the only form of shared memory is
done using sharedctypes and the ctypes -module [12, 14].

Using shared memory via sharedctypes involves constructing a C-type structure
using the C-bindings in the ctypes -module and then instantiating a shared array-
object of the correct size, i.e., len(data) * cache_type , where the cache_type
is the C-type structure class. To then write and read cache entries of the shared
array, the Python representation needs to be transformed to and from the C-type
structure. This procedure of reading back and forth is however significantly faster
than performing the preprocessing repeatedly over the lifetime of the Dataset -
instance. An example implementation for the C-type structure and the transforma-
tion functions are shown in listing 1, where the simplest cache type for this project
is presented. Furthermore, instantiation of the shared memory with a dataset is
shown in the function init_dataset at the bottom of listing 1.

Do note that some dependencies are exempt in listing 1, i.e., the classes which are
derived from for the concrete types TOKENIZED_SENTENCE and BASE_TYPE . These
are instead presented in listings 7 to 9 in appendix C. In order to make use of the
shared array using a custom C-type in multiple processes, the classes need to be
statically defined as classes themselves are not copied across processes when using
the multiprocessing -module [12].

Going with a shared memory cache could arguably be avoided by using the main
thread for data loading and let the loading take longer. However, since this project
also utilizes DistributedDataParallel -module in PyTorch for parallel training
with multiple GPUs, the work is distributed across each GPU by replicating the
main process once for each GPU [15]. Therefore, even though the main thread is
used for data loading, the shared memory cache is still necessary in order to utilize a
cache with multiple GPUs, much like with multiple worker processes for one dataset.

14

2. Theory

Listing 1: Shared memory cache type implementation using Python’s ctypes
- and sharedctypes -modules. Note that the DerivedDataset -class is only a
placeholder-class, meaning that it lacks an implementation. Additional code for the
classes which are derived from can be found in listings 7 to 9.

''' Example snippet of the simplest CACHE_TYPE C-structure and
how it can be used using multiprocessing as a cache

'''
import ctypes
import torch.multiprocessing as mp
from custom_dataset import DerivedDataset # Dummy class,

needs implementation
TOKEN_ARR = ctypes.c_long * 128
ATTENTION_ARR = ctypes.c_int8 * 128
LABEL = ctypes.c_float

class TOKENIZED_MESSAGE(TOKENIZED_SENTENCE):
''' Derived C-type data class for transformers.BatchEncoding '''
_token_type = TOKEN_ARR * 1
_attention_type = ATTENTION_ARR * 1
fields = [("input_ids", _token_type),

("attention_mask", _attention_type)]

class BASE_TYPE(CACHE_TYPE):
''' Derived C-type data class for torch.utils.data.Dataset

cache using sharedctypes

This class consists of a tokenized sentence
from transformers.PreTrainedTokenizer,
the severity score vector of AutoMod's
internal model for the datapoint,
and the output label.

'''
_sentence_type = TOKENIZED_MESSAGE
_vector_type = ctypes.c_float * 10
_label_type = LABEL
fields = [

("sentence_tokens", _sentence_type),
("vector", _vector_type),
("label", _label_type)

]

def init_dataset(data):
initialize C-type shared memory array
using multiprocessing's shared arrays.
cache = mp.Array(BASE_TYPE, len(data))
initialize dataset logic here...
dataset = DerivedDataset(data, cache, ...)
return dataset 15

2. Theory

16

3
Procuring, Refining, and

Preparing Datasets

Fulfilling the defined aim of this project will involve different procedures, methods,
and tools. For the sake of consistency and coherence, the project is structured into
two primary components: the datasets and the moderator model. Each of these
components may have multiple variations which consist of smaller subcomponents
that are implemented at different stages of the project’s progression.

For the datasets, these are defined as the sets of predictor-response pairs (x, y) :
P × {0, 1} that are to be used for training, validation, and testing of each variation
of the model. Predictors X are the messages sent in the chat of any Twitch chan-
nel which fulfill all criteria listed in section 1.4, along with potential string-based-
or real number-based metadata about the content which form a context. The re-
sponses y are binary encodings of boolean values representing whether each message
is appropriate (True = 1) or not (False = 0).

3.1 Procurement of Data from Twitch

In order to begin investigating the impact on performance from layering additional
information onto Twitch chat, the first step is to produce the necessary dataset in
which all potential models can be trained and validated against. What is considered
as necessary data are the predictors M : S, i.e., the chat messages from chat, and
the labels y, which are inferred from the predictions made by AutoMod in its current
state and the interaction of moderators.

To be more precise, let A,C,D : S → {True,False} be predicates working on
messages defined as

A(m) := “m is allowed by a moderator′′,
C(m) := “m is captured by AutoMod′′,
D(m) := “m is manually deleted by moderator′′.

17

3. Procuring, Refining, and Preparing Datasets

Then, given the message m, the corresponding label y is inferred as

y(x) :=

1, if A(m) ∧ C(m),
0, if ¬A(m) ∧ C(m) ∨D(m),
−1, otherwise.

(3.1)

Do note that the third return value (-1) of equation (3.1) is defined for the set of
messages which are either captured by AutoMod and ignored by moderators (i.e.,
the appropriacy of the message is ambiguous) or not captured by AutoMod and
not manually deleted by a moderator (i.e., the message is correctly identified as
appropriate). In both cases, it is not certain that the inferred label should be zero
or one, since the prior case could be a false negative from AutoMod and the latter
a false positive; without any interaction from the moderators, it is not possible to
distinguish such cases from true negatives and true positives, respectively.

Furthermore, with the first additional layer of information being the metadata of the
broadcast at the time of each message being sent, procuring these data in conjunction
with the necessary data described above is a sound idea. Therefore, the following
broadcast metadata is fetched along with the necessary data:

1. Severity scores of the categories of inappropriate words from AutoMod’s in-
ternal model

2. Current channel title of the broadcast at the time of message (on a per-minute
basis)

3. Channel category

4. Broadcast tags

5. Broadcast category tags

6. User category

For more information regarding items 2 to 6, refer to section 2.1.

Each category’s severity score (item 1) is defined to be within the range [0,1], with
0 being no severity and 1 being utmost severity. Currently, the categories which are
considered by AutoMod are defined as follows:

1. Aggression – Threatening, inciting, or promoting violence or other harm

2. -- Name-calling, insults, or antagonization

3. Disability – Demonstrating hatred or prejudice based on perceived or actual
mental or physical abilities

4. Sexuality, sex, or gender – Demonstrating hatred or prejudice based on sexual
identity, sexual orientation, gender identity, or gender expression

5. Misogyny – Demonstrating hatred or prejudice against women, including sex-
ual objectification

18

3. Procuring, Refining, and Preparing Datasets

6. Race, ethnicity, or religion – Demonstrating hatred or prejudice based on race,
ethnicity, or religion

7. Sex-based terms – Sexual acts, anatomy

8. Swearing

All these data, both necessary data and broadcast metadata, are gathered from
Twitch’s data warehouse, housed inside Amazon Redshift1 and unloaded in the
Apache Parquet2 tabular format.

In order to get as much data as possible under the delimitations defined in section 1.4,
the timeframe of which the data are gathered from the data warehouse is April 15th,
2020 to November 1st, 2020 since April 15th, 2020 is the date of which the current
internal model of AutoMod was introduced. There have been some configuration
changes to the model over this timeframe; however, the assumption is made that
these changes should not have a significant impact on the overall outcome of the
investigation. Since the same datasets will be used across the implemented model
variations during training and validation, the aim of investigating the impact of
additional context should not be affected. Furthermore, since each datapoint in the
datasets are subject to the eyes of a moderator, the labels in the dataset should
still be correct w.r.t. appropriacy, assuming that the moderator is doing their task
correctly.

The unloaded data is then stored in a storage bucket within Amazon S3 3, where the
data is then accessible for the next step of splitting it into training- and validation
sets, followed by the process of separating the necessary data from the broadcast
metadata.

3.1.1 Constructing the Training- and Validation Sets
With the necessary data for training and validation having been gathered, along with
the broadcast metadata, the next step is to split these data into reusable training-
and validation sets. Depending on the data quantity, the considered options are
either, in the case of larger data quantities, to go with hold-out cross-validation of the
data or, in the case of smaller data quantities, to go with k-fold cross validation [16].
In this instance, where the data is of large quantity (2,647,048 datapoints), going
with hold-out validation should suffice to get representative results. Furthermore,
a single split is preferred on this scale, since it will reduce the training times by a
factor of k compared to k-fold cross validation [17]. The training-validation ratio
is chosen to be 9 : 1, meaning that approximately 90% of the data will be used for
training of the models and the remaining 10% will be used for validation.

Another important factor to consider is how the data is split/sampled to reduce both
the bias and variance in the model’s performance [16]. Having a validation set which
mimics the test set is also important since the validation set is intended to act as the

1Amazon Redshift Overview Page: https://aws.amazon.com/redshift/
2Apache Parquet Documentation: https://parquet.apache.org/documentation/latest/
3Amazon S3 Overview Page: https://aws.amazon.com/s3/

19

https://aws.amazon.com/redshift/
https://parquet.apache.org/documentation/latest/
https://aws.amazon.com/s3/

3. Procuring, Refining, and Preparing Datasets

basis of performance indication during training and tuning of a model [18]. Since the
problem at hand involves real-time moderation of chat, it has the goal of correctly
classifying appropriacy of chat messages sent in the future and, hence, involves time
series forecasting. Therefore, the choice of sampling method is the time-dependent
technique convenience sampling for its efficiency and determinism [16], which is
frequently used when working with time series [19, 20].

More concretely, the necessary data is ordered with regards to the chat messages’
timestamp and then segmented on a fixed date where the approximate 9 : 1 ratio
is maintained between the training- and validation sets. Segmentation is performed
such that all messages within the validation set occurred the day after the last
message occurred in the training set; this is to mimic the behavior of the test data,
where the messages will occur at a later time than for the messages in both the
training- and validation sets.

With the hold-out cross-validation being done using convenience sampling and a
training-validation ratio of 9 : 1, the resulting sets are saved as separate files in
Apache Parquet format in the same Amazon S3 bucket as the original data which was
fetched from Twitch’s data warehouse; ready for consumption by the implemented
model variations. In addition, in order to keep the necessary data separate from
the broadcast metadata, the latter is sampled in the same manner as the former
and then stored alongside the datasets in separate metadata-datasets: one for the
training dataset and one for the validation dataset.

3.1.2 Investigating Robustness and Generalization Against
Unseen Data

Apart from simply evaluating each model on the validation set, the models are also
evaluated on specific subsets of the validation dataset. These subsets are defined
such that different aspects of interest are considered; namely, (1) channel ID – the
channel itself, (2) broadcast category – the content of the stream, and (3) message
body – the content of the sent message. For each of these aspects, the validation
dataset is split into two subsets; one where the value of the aspect is shared with the
training set and one where the value is unique to the validation set, i.e., it has not
before been seen by a model during training. More formally, let a be an aspect of
interest, V and T the validation- and training sets, and let d be a datapoint. Then,
the subsets can be defined as follows:

Vua = {d | d ∈ V , d(a) ∈ V(a) \ T (a)}, (3.2)
Vca = {d | d ∈ V , d(a) ∈ V(a) ∩ T (a)}, (3.3)

The parenthesized superscripts of the two sets and datapoint represents the value
w.r.t. the aspect (feature), e.g., for a := “channel ID”, d(a) is the datapoint’s channel
ID and V(a) is the set of all channel IDs within the validation set. Equation (3.2)
is the equation for validation data with unique (or unseen) values of a and equa-

20

3. Procuring, Refining, and Preparing Datasets

tion (3.3) is the equation for the validation data with values in common with the
training data.

3.2 Procurement of External Data
In one of the models to be produced, the intention is to incorporate information
from external sources to investigate how external information may provide more
contextual value. More precisely, as listed in section 1.4, this project is scoped to
only depend on the data provided by IGDB. IGDB’s data is open to the public
and available via their API [21]. What the data provided by IGDB consists of are
metadata about games. With games being the primary source of content at Twitch,
the reasoning is that the model will improve in understanding the appropriacy of a
viewer’s chat message when the message is paired with additional information about
the game content of the stream.

As IGDB is a part of Twitch, there exists a mapping between the category IDs at
Twitch with the game IDs at IGDB, making it easy to join the two data sources
together. Of all the metadata, the metadata of interest which are also in a relatively
concise representation are the following:

• Summary – A short paragraph describing the main points of the game title.

• Genres – A list of genres that apply to the game, e.g., FPS or RPG.

• Themes – A list of themes that apply to the game, e.g., Adventure or Open
world.

• Franchises – A list of franchises that the game title belongs to, e.g., Assassin’s
Creed for any Assassin’s Creed game.

An important aspect to note, however, is that IGDB only requires there to exist
a game title for the game to be recognized as an entity in the database. In this
instance, that means that the game data are far from complete and there are large
amounts of data gaps, especially for less known titles. To handle this issue, each
“data hole” is filled with a default value, "[]" – an empty list as a string – for
multi-entity data and "" – the empty string – for single-entity data, in order to
avoid unexpected behavior when manipulating the data during the preprocessing
steps. Each default value is a string since each well-defined value of the raw data is
of this type before they are parsed using Python’s ast -module [22].

3.3 Procurement of the Test Dataset
After having procured all necessary data for training and validating the models and
having trained them all, procuring the test data is the next and final step regarding
data. In order to ensure that the test set is large enough to show significant results,
the minimum required sample size is estimated using the formula for standard error
of a proportion, i.e., the standard error SE(p) for a sample proportion p is

21

3. Procuring, Refining, and Preparing Datasets

SE(p) =
√
p(1− p)

n
.

To get an adequate measure of significance, the SE is chosen such that a result for
a metric is significant with a 95% confidence interval. The greatest SE occurs when
p = 0.5, meaning that if the metric which falls closest to 0.5 in general among the
models is chosen and optimized for, the other metrics should also be safe as long
as the SE is chosen to be small enough for all metrics to not have an overlap in
the confidence interval. In this instance, based on the validation results, the metric
closest to 0.5 happened to be Precision (about 0.62), with F1 Score being the metric
with the narrowest difference in scores (about 0.03).

By letting SE(p = 0.62) = 0.03/1.96, where 1.96 is the approximate value of the
97.5 percentile of the normal distribution, and then solve for the sample size n, we
get an estimated sample size of

n >
p(1− p)
SE(p)2

>
0.62(1− 0.62)

(0.03
1.96)2

> 1005.6455
≥ 1006.

(3.4)

With the estimated sample size calculated in equation (3.4), a test set of data is
gathered from November 2nd until January 22nd with a subset of channels where
there are moderators who have shown interest in helping Twitch with data tasks,
e.g., surveys and data labeling. By following the constraints for the data listed in
section 1.4, with some relaxed constraints, a total of 3,532 entries were gathered
within the aforementioned timeframe. The constraint which has to be relaxed is the
range of allowed concurrent viewers, which is changed from [100, 1000] to [30, 2000].
Without this relaxation, the total sample size is less than the estimated sample size
of 1,006.

By having gathered the data, the moderators who belong to the channels where the
data constraints are fulfilled were contacted. These are a total of 11, with varying
quantities of data for their respective channels. The goal is for each of them to fill
in a minimum of 50 samples (if they have that many) up to as many as they like,
with the hopes of those with more than 50 entries filling in about 100 on average.
In the end, this is (optimistically) expected to yield about 1,200 manually labeled
datapoints, which is done by the domain experts themselves.

22

4
Architecturing, Implementing, and

Iterating on the Model

With regards to the second primary component of the project – the moderator
model, which is the predictive component of the project – the model will act as
the probability function g : B × C → [0, 1], where C will vary depending on the
use of contextual information. For example, in the case of a AutoMod, C = ∅
as the model does not use any additional contextual information. Conversely, the
“complete model” with regards to the project aim will have a C =M×E , whereM
and E are the sets of stream metadata and external data, respectively. Furthermore,
since the external data are gathered from the source IGDB, E ∈ {∅, I} where I is
the set of datapoints from IGDB. Note that ∅ is part of the set of external datasets
since incorporating only M to the training process is the first layer to be tested
after the baseline is defined.

As for the loss function, logistic loss [23] will be used since the task is a binary
classification task. That is, the loss function L(x, y, c) : B ×Y × C → R+ is defined
as

L(x, y, c) := −
(
y log

[
g(x, c)

]
+ (1− y) log

[
1− g(x, c)

])
, (4.1)

where g is an instance of the moderator model, (x, y) is a pair of the predictor and
response belonging to the dataset and c is the contextual data related to the pair
and of the shape aligning with the requirements of g. Do note that the chat message
x : B and the corresponding context c : C are separated here, compared to how they
are jointly defined as predictors x : P in chapter 3. These two notations are used to
highlight different aspects; P being directed towards the predictors in the form of
data and B, C depicting more how the predictors are used by the moderator model
g.

4.1 Defining a Baseline
At this point, the training- and validation sets have been defined and stored for
reuse, which concludes the preliminary work that is necessary to start producing a
model. Therefore, the next step is to produce a baseline model to compare the other
variations against. In order to also compare against the current AutoMod, two types
of baselines are constructed: one baseline is inferred from the labels produced by

23

4. Architecturing, Implementing, and Iterating on the Model

AutoMod, and the other is defined as a Bag of Words (BoW) model [24], where the
BoW-model is applied only on the chat messages X. Do note that the first baseline
is based on calculations of AutoMod’s output and not a trained model whilst the
BoW-model is trained on the BoW-representation of each chat message.

Furthermore, two additional baseline models are constructed where the severity score
vector of AutoMod’s internal model (see list two of section 3.1) is introduced as a
separate channel. One model only depends on this channel (SSV) and the other is an
extension of the BoW-model (EBoW) where the severity vector-channel is combined
with the BoW-transformed chat messages; the motivation is to investigate the effect
of the internal model’s classification on performance and to see if the implemented
model is able to learn useful information from these severity scores. All three models
BoW, EBoW, and SSV are implemented using Keras’ functional API [25] within
the library TensorFlow [26]. In figure 4.1, a legend describing the meaning behind
the coloring and shape of each component in the following architecture diagrams.
The general component architecture for all models is shown in figure 4.2a and the
concrete baseline architecture of the models is shown in figure 4.2b.

All baselines, including both the SSV and EBoW models, are also compared to the
performance of always selecting the majority label (a “Dummy classifier”) in order
to determine whether or not they are able to learn anything of value from the input
data as to improve their predictions.

Raw data

Preprocessing

Input Layer

Internal Layer

Activation

Figure 4.1: Legend description of what the color and shape encodes for each
architecture diagram. Red is for raw data, green is for preprocessing procedures,
and blue is for a model itself. Blue trapezoids are the inputs of a model, blue
rectangles are intermediary layers, and ellipses are the activation functions used on
a layer’s output.

24

4. Architecturing, Implementing, and Iterating on the Model

Text Input

Classification Component

Real Number
Input

Normalization
Component

Text
Preprocessing

Raw Text DataText Data Real Number Data

LabelUsed in Loss

Embedding
Component

(a) General architecture of all mod-
els on a component level. There
are three main components of each
model; (1) the Embedding component
for text input, (2) the Normalization
component for real number input, and
(3) the Prediction component for in-
terpreting the internally-processed in-
puts to produce and output.

Text Input

Linear Layer

Real Number
Input

Normalization
Transform

Vectorization
Adaptation

Raw Text DataText Data Real Number Data

LabelUsed in Loss

Vectorization
Transform

Normalization
Adaptation

Save
Adaptation

Weights

(b) Architecture diagram of the BoW,
EBoW, and SSV models. Do note
that the BoW model only uses the left
(text) channel, the SSV model only
uses the right (number) channel, and
the EBoW model uses both channels.

Figure 4.2: General architecture- and baseline architecture diagrams. Note that
each component of the general architecture may be defined by different implemen-
tations and have additional layers placed before/after depending on what the actual
model is, as shown in the baseline model.

4.1.1 A Small Ablation Study of Chat Messages and Sever-
ity Scores

In order to investigate the importance and effect of the chat messages and the sever-
ity scores produced by AutoMod’s internal model, a small ablation study is per-
formed by training the baseline BoW, EBoW, and SSV models and then evaluating
them on the validation dataset. With the validation results and trained weights of
the linear layer for each baseline, some interpretation of the effect of the two data
types can be done.

For example, if any of the weights for the severity score vector from the internal

25

4. Architecturing, Implementing, and Iterating on the Model

model of AutoMod is positive within either the EBoW or SSV models, then this
could be an indication of there being a positive correlation between a message being
appropriate and any identified severity from the internal model. More concretely, as
the classification component of each baseline model being simple logistic regression,
by letting w represent the weights of the linear layer and x be the preprocessed
predictors, the output probability ŷ is given by

ŷ = σ(wᵀx)

Since each component of the severity vector is bound within [0, 1], the sign of each
component k in the dot product is determined by the sign of wk. Therefore, if
sign(wk) = 1, then

wk · xk ≥ 0
will indicate that the higher the severity is of type k (see the second list in sec-
tion 3.1), the more likely ŷ will tend towards one since

lim
wᵀx→∞

σ(wᵀx) = 1.

This could answer why AutoMod misinterprets some of the data, as a high severity
score should be a sign of inappropriate language and not the inverse.

4.2 Defining the Main Model
With baselines having been defined for comparison, the next step is to define the
model that is to be used for investigating the hypotheses defined in section 1.5.
Much like the EBoW baseline, the architecture of this model, called AutoBERT,
is designed to consist of two separate channels due to the shape of the data; one
for string inputs and one for numerical inputs. What differentiates AutoBERT
from the baselines are the Embedding- and Classification components of the general
architecture shown in figure 4.2a.

Instead of using a BoW-representation, the embeddings will be generated by sen-
tence transformers – an extension of the BERT model called Sentence-BERT [27].
The authors of [27] provide state-of-the-art pretrained models for various tasks
within natural language processing (NLP). These models can be applied on sen-
tences and are available from the Transformers-library1. For this project, where the
problem involves sequence classification through semantic textual similarity (STS),
the pretrained models fine-tuned for STS-tasks are perfect candidates for the task
of embedding the text-based inputs. In this instance, the choice of model is the
RoBERTa Base model, a more robust version of its predecessor BERT [28], after
being fine-tuned for STS [29], as it performed in the top while also having a high
speed performance for transforming tokenized sentences into embeddings compared
to other models2. Nonetheless, introducing a sentence transformer involves more
work than simply changing out the embedding component. First off, the sentence

1Transformers library: https://huggingface.co/
2STS Transformers benchmarks: https://docs.google.com/spreadsheets/d/14QplCdT[...]

26

https://huggingface.co/
https://docs.google.com/spreadsheets/d/14QplCdTCDwEmTqrn1LH4yrbKvdogK4oQvYO1K1aPR5M/edit#gid=0

4. Architecturing, Implementing, and Iterating on the Model

transformers are recommended to be used with PyTorch instead of Tensorflow as the
implementation itself is based on PyTorch [27, 30]. Documentation of the library
and the examples of the transformers are also written using PyTorch [29]. Therefore,
in order to have the easiest time incorporating the transformers, the data loading
and preprocessing pipeline needs to be revised and defined in PyTorch as well.

Furthermore, in order to use a transformer on a GPU for accelerated computation
in PyTorch, the strings need to be tokenized to an encoding representations be-
fore they are transferred onto the GPU as PyTorch does not support strings to be
stored in tensors [31] – the multi-dimensional matrices used for computations in
PyTorch. What this means is that tokenization will be part of the data loading and
preprocessing step, which will be performed by the Fast Tokenizer, a word tokenizer
which uses byte-pair encoding [32], which is paired with the sentence transformer
of choice. Before tokenization, each piece of raw text is transformed to sentence
form, which is simply a mapping m : S → S. An example of these mappings is
the one for Twitch categories, which takes a category C : S, e.g., “Assassin’s Creed
Valhalla” and returns the string “with the content of the stream being ‘Assassin’s
Creed Valhalla’ ”. These transformed pieces of text are then concatenated together
with the delimit-token <s/> interspersed inbetween, as per the documentation of
RoBERTa [32]. By interspersing the delimit-token, the tokenizer can reason about
what defines a sentence and tokenize the text fragments while considering a sentence
structure. Doing this procedure results in each text input being constructed as a
template string, which should help the sentence transformer reason about the inputs
easier as it is trained on fluent natural languages.

With tokenization being performed in the data loading step and since data loading
within PyTorch uses multiprocessing [11], the dataset definition within PyTorch is
a custom class which is defined to make use of a shared memory cache in order to
avoid unnecessary duplicate work during data loading. Details on how this custom
class is implemented is further described in section 2.5. From using the shared
memory cache, each data loader will work on a subset of the complete dataset to
perform all preprocessing, which is then stored in the dataset cache during the first
epoch. From thereon out, the shared memory cache is used by all data loaders,
meaning that the preprocessing is only performed once and never duplicated across
any worker processes, independent of the worker process’ lifecycle. A complete
architecture diagram of the AutoBERT model and the surrounding data loading is
shown in figure 4.3 to further concretize how the data flows on a per-batch level.

After the tokenized strings have been transformed by the sentence transformer, the
output is first mean pooled, i.e., the collection of word embedding W : R768×k of
the sentence is averaged over k to produce a “sentence embedding” s : R768, as per
the recommendations in [27], and then normalized to ensure that the magnitude
between the fixed vector embeddings and normalized vector inputs are not large
enough to skew the importance of the respective channels. After the sentence/para-
graph has been normalized, the normalized embeddings are fed into the classification
component along with the normalized vector input to produce the final prediction
score.

27

4. Architecturing, Implementing, and Iterating on the Model

Tokenized Input

Embedding
Transform

Linear Layer

Real Number
Input

Batch
Normalization

Normalization

Tokenization

Structured Text
Transform

Raw Text Data

Shared Mem.
Cache

Reuse data
after first Epoch

Fully Connected
Network

Text Data Real Number Data

Label

Mean Pooling

Used in Loss

Figure 4.3: Model and data loading architecture of the AutoBERT model. During
the first epoch, the data is loaded from the raw table data within a dataset. The
string data is then tokenized, followed by being combined with the number data
and target label for storing in the dataset cache. Once stored in the dataset cache,
the cache is then queried instead of the raw table data the next time it is queried
for. The label is also stored withing the cache as the data loader within PyTorch
requires both predictors and targets to be returned in the loaded batches.

As shown in figure 4.3, the classification component is a fully connected network
instead of a simple linear layer. The complete fully connected network architecture

28

4. Architecturing, Implementing, and Iterating on the Model

is shown in figure A.1. Apart from the linear layer, which is seen as the input layer
of the network, four hidden linear layers with interspersed Leaky ReLU (LReLU)
activations constitute the classification component, with the last activation being
the Sigmoid activation function, much like for the baselines. LReLU is similar to the
regular ReLU activation function, but with the contrast of having a negative slope
k for the case of x < 0 instead of simply zero [33]. More concretely, the LReLU-
and ReLU activations are defined as

LReLU(x; k) =

x, if x ≥ 0
k · x, otherwise,

(4.2)

ReLU(x) =

x, if x ≥ 0
0, otherwise.

(4.3)

Each of the dimensions for the hidden layers; as well as many other hyperparameters,
such as learning rate, batch size, etc.; are defined using configurations.

4.2.1 AutoBERT Configurations of each Variation
With each AutoBERT variation depending on additional data, the input dimensions
to each model will vary and the model instances need to be configured accordingly.
Therefore, each model is instantiated from a run-time configuration that has been
predefined to incorporate the correct data into the inputs and how these data should
be segmented into text-based- and number-based inputs. The three model variations
are defined as follows:

1. Base – Depending on both chat messages and the severity score vectors from
AutoMod’s internal model which are listed in the second list in section 3.1

2. Stream – Depending on the same data as Base, but also stream metadata
defined in the first list of section 3.1

3. IGDB – Depending on the same data as Stream, but also games metadata
from IGDB, listed in the first list of section 3.2

Since the data of each new variation is a superset of the prior, the configuration
for the IGDB variation will also include the relevant information for the Base- and
Stream variations. The configuration for the IGDB variation is listed in listing 6.

In the mixins -field in listing 6, the dedicated text transformations are mapped to
their corresponding data types. Note that all are specific to each data type, except
for the MESSAGE_BODY - and SUMMARY fields, which have the identity function
id : a → a. These two fields are free-text data, meaning that their lengths are
arbitrary. Therefore, the identity function is used in order to minimize the risk of
having the tokenizer truncate the tokenized input to its maximum size of 128 tokens.
The other transformations are simply functions which put the data into sentence
form, e.g., the aforementioned category mapper described in section 4.2.

29

4. Architecturing, Implementing, and Iterating on the Model

4.3 Training the Models
In order to have the models learn to solve the problem, it is trivial that they need
to be trained. Therefore, each model (both baselines and AutoBERT variations) is
trained and validated on the training- and validation sets described in section 3.1.1.
Since the baseline models are implemented in Keras/TensorFlow and the AutoBERT
models are implemented in PyTorch, the training procedures are not identical for the
two types of models. However, both adhere to the typical training- and validation
flow, where the model is trained on shuffled training data which is sampled without
replacement until no more training samples remain in the training set. Once there
are no more training samples, i.e., one epoch has finished, the model is evaluated on
the validation set.

Furthermore, during a training session, i.e., over the time of multiple epochs, the
best-performing weights are tracked on a per-epoch basis by tracking where the
lowest validation loss, described in equation (4.1), occurs based on the full validation
set. Each time there is improvement, a checkpoint is saved for that model and reused
later on during evaluation.

Once the parameters of the models themselves are tuned in accordance to the val-
idation set and their best-performing checkpoints are saved, the decision threshold
for each model is tuned by selecting the threshold which yields the highest F1 Score
in the validation set, where the threshold is from the range [0,1] with 0.1 step incre-
ments. These thresholds are then used for the final evaluation on the validation- and
test sets, as well as in the investigation of generalization and robustness described
in section 3.1.2.

In the following subsections, the differing factors of the training procedure are out-
lined for both the baseline- and AutoBERT models. Such factors include hyperpa-
rameters, data loading, and data preprocessing.

4.3.1 Baseline Model Training and Hyperparameters
When training the baseline models, the data loading and data preprocessing is
identical, except for what data type each model depends on, i.e., what channels to
depend on in figure 4.2b. In fact, they reuse the same preprocessing layer instances.
After being adapted to the training data once before training the first model, the
preprocessing layer instances are saved and then loaded in depending on if the data
type each layer manages (chat messages or severity scores) is needed by the model to
be trained. Before persisting the Text Vectorization layer (see figure 4.2b), however,
the hyperparemeters of the layer had to be tuned. Keras’ regular Normalization
layer does not have any real hyperparameters, except if one knows a preset mean
and variance to normalize from. In this instance, these parameters are unknown
and have to be determined via the layer’s adapt -method before being saved.

Tuning of the hyperparameters of the Text Vectorization layer involved the param-
eters:

1. max_tokens (vocabulary size)

30

4. Architecturing, Implementing, and Iterating on the Model

2. standardize

3. split

4. n_grams

5. output_mode

The tuning procedure involved first instantiating the layer with the parameters to
tune and then calling that instance’s adapt -method on the training dataset. Once
the layer had adapted to the training data, the BoW baseline was trained on the
training set and then evaluated on the validation set. The configuration of the Text
Vectorization layer for the best-performing BoW model after 10 epochs was chosen
as the tuned parameter configuration. When having tuned these parameters, the
best configuration of the layer was found to be the configuration shown in listing 2.

Listing 2: Keras’ Text Vectorization layer configuration after hyperparameter tun-
ing. Note that the parameters which are exempt are left to default and that the
parameters which are occurring without the mention of being tuned are necessary
for the model to work.

TextVectorization(
max_tokens=10000,
standardize=LOWER_AND_STRIP_PUNCTUATION,
split=SPLIT_ON_WHITESPACE,
ngrams=2,
output_mode='tf-idf'

)

Apart from tuning the Text Vectorization layer, not much else of the model could
be tuned. The linear layer of the baselines are dependent on the max_tokens -
parameter and the dimensions of the severity score vectors, since the dimensionality
of these layers are equivalent to dim(BoW)+dim(SSV), where dim(BoW) = 10000
and dim(SSV) = 10 in the case of the parameters tuned for in listing 2. Do note
that for the BoW baseline dim(SSV) = 0 and for the SSV baseline, dim(BoW) = 0,
as these channels are not used in the respective models.

4.3.1.1 Hyperparameters for Loading and Processing of Data

Regarding hyperparameters of the data loading and data processing, the training
data loader was configured to shuffle data in buffers of size 1024 and had a batch size
of 256. What the shuffle buffer size results in is a 1024 size buffer of elements which
the batches are sampled from. Each time an element in the buffer is selected, it is
replaced with the first element in the remainder of the dataset. For example, initially,
the buffer will contain the first 1024 rows of the training set. When an element i is
selected, it is replaced with the 1025th element of the training set. This is not true
shuffling, as is stated in the TensorFlow documentation [34]. However, by setting
the parameter reshuffle_each_iteration=True , the dataset is pseudorandomly
reshuffled each epoch, making the shuffling more stochastic and likely stochastic
enough given a batch size of 256 and the size of the dataset.

31

4. Architecturing, Implementing, and Iterating on the Model

Do note that the shuffle buffer size was not tuned, but the batch size was tuned
for performance in both speed and loss. In the end, the dataset configuration was
defined as shown in listing 3. The baseline_mapper is simply a model-specific
mapping function from the dataset to the predictors and labels, i.e.,

baseline_mapper : R→ (x, y),

where R is a dataset row, (x, y) is the predictor-response pair as described in the
second paragraph of chapter 3.

Listing 3: Dataset configuration for the three baseline models. Note that for the
validation set, the shuffle -call is exempt. Furthermore, the argument baseline_ c

mapper is a mapping function from a complete row of data to only the necessary
predictors and the label, e.g., the chat message and label for the BoW model. The
argument tf.data.experimental.AUTOTUNE is a variable set by TensorFlow’s
engine which allows the system to dynamically optimize for parallel workers when
this is possible.

dataset = data_source.map(
baseline_mapper,
num_parallel_calls=tf.data.experimental.AUTOTUNE

).shuffle(1024) \
.batch(256) \
.prefetch(tf.data.experimental.AUTOTUNE)

As for training duration, each baseline model was trained for 10 epochs each as
this was found to be enough time for the best checkpoint to occur before the last
epoch and without having performance increases at the end of the duration, i.e., the
model’s learning had stagnated or it had started to overfit.

4.3.2 AutoBERT Model Training and Hyperparameters
When training the AutoBERT models, much like for the baselines, the data loading
and data processing is generalized such that the same procedures are used, indepen-
dent of the data types that each model depends on. However, nothing more can be
persisted between runs except for the model checkpoints themselves, as the heavy
lifting is done by the internal RoBERTa model when transforming the tokenized sen-
tences into embeddings and the tokenized sentences will differ between each model
variation due to the difference in transformed string data before tokenization.

Do note, however, that all tokenized sentences are stored in a shared memory cache
such that the raw data of each dataset is only traversed in the first epoch, as shown in
figure 4.3. After the first epoch has finished, the shared memory cache is used instead
in order to save time when prefetching- and preprocessing data during training. More
on how the shared memory cache and how it interacts with the dataset and data
loading can be found in section 2.5.

As for hyperparameters of AutoBERT, the involved parameters are: (1) hidden_ c

dims , (2) learning_rate , (3) max_learning_rate , and (4) epochs . Parameter

32

4. Architecturing, Implementing, and Iterating on the Model

Listing 4: Hyperparameter configuration of the AutoBERT models.

autobert_conf = {
"hidden_dims": (300, 300, 72, 72),
"learning_rate": 0.001,
"max_learning_rate": 0.01,
"epochs": 20

}

hidden_dims is a tuple of four positive integers defining the number of neurons in
each hidden layer of the classification component, shown in figure A.1.

Both learning_rate and max_learning_rate define the range in which the
learning rate will be cycled, using cyclical learning rate with a triangular2 config-
uration [35]. If max_learning_rate is omitted, then the learning rate will be
static across all epochs of a run. Per the recommendations of [35], the stepsize,
i.e., the number of iterations between minimum and maximum learning rates, is set
to be 2 · |epoch| where |epoch| is the number of batches in an epoch. In [35], the
recommended stepsize is somewhere in [2 · |epoch|, 10 · |epoch|]

Regarding epochs , this parameter defines the number of epochs for a complete
run. Tuning of this parameter was not performed very rigorously, since the best-
performing model checkpoint was always saved in either case. Therefore, the goal
of this parameter was for it to be set high enough for the model to converge before
the last epoch, much like the motivation for setting the epochs of the baselines in
section 4.3.1.

One last thing to note is that the tuning was performed for both the Base- and
Stream variations, but not for the IGDB variation due to lack of time. Instead,
the same hyperparameters of the Stream variation was used in the IGDB variation,
which also ended up being the same for the Base variation. The decided upon
hyperparameters for all three model variations are listed in listing 4.

4.3.2.1 Hyperparameters for Loading and Processing Data

When it instead involves hyperparameters for the loading and processing of data,
the involved parameters are: (1) batch_size , (2) sample_batch_size , and (3)
data_workers . batch_size and sample_batch_size combined define the total
batch size for a run. The former parameter defines how many “sample batches” of
size sample_batch_size which should be joined together as a batch. The latter
parameter instead defines how many string data entries should be tokenized in a
batch, as the tokenizer also works faster when working on batched data.

As for data_workers , this parameter defines how many parallel processes should
work with loading data and preparing the batches for the model, i.e., either loading
raw data, preprocess it, and store it in the cache; or fetch the already preprocessed
data entries from the cache. The indices for each sample batch comes fully shuffled
using a Random Sampler from PyTorch, and the batch indices corresponding to
batch_size instead come from PyTorch’s Batch Sampler; resulting in fully shuffled

33

4. Architecturing, Implementing, and Iterating on the Model

Table 4.1: Tuned hyperparameters for each AutoBERT model with regards to
loading and processing data before it is ingested into AutoBERT.

batch_size sample_batch_size data_workers
Model
Base 4 256 4

Stream 4 128 3
IGDB 3 128 1

batches every epoch, as compared with the solution for the baselines.

In order to leverage the computation resources as much as possible, each model
variation has been tuned to focus on filling up the GPU memory in order to have
RoBERTa embed as many paragraphs as possible in order to minimize the lead time
during the embedding transformation. Furthermore, with the use of four GPUs, the
models were trained in a parallel and distributed manner using PyTorch’s Data
Distributed Parallel- and Process Group modules. This meant that the total batch
size was quadrupled as compared to only running on a single GPU.

All data-related tuned parameters for each model are listed in table 4.1. Do note
the drop in all variables as more data are included for tokenization and embedding
transformation. For the Base model, i.e., only chat messages in the embedding data,
the GPU memory filled up at around a total batch size of 1024 entries per GPU.
However, in order to have the data loading keep up with the fast tokenizer, the size
had to be dropped in order to have a higher data_workers value set. As more data
were introduced, data_workers also had to be reduced in tandem with the other
parameters; not due to the GPU memory filling up, but due to the shared memory
limit of 64MB when running SageMaker (Jupyter) in local mode. This caused many
workers to fail and become zombie processes and locking up memory in the GPUs,
eventually causing the training to fail due to memory leakage.

4.4 Evaluating the Models
With the models being trained, the next and final step is the evaluation of each
model. Evaluation is done by first selecting the best-performing epoch of each model
w.r.t. validation loss via their saved checkpoint, as described in section 4.3. After
selecting the best epoch for a model, the model is re-evaluated on the validation set
to find the best decision threshold by varying the threshold and picking the case
where the F1 Score is the greatest.

When a decision threshold is made, the primary evaluation is performed; first by
re-evaluating the model on the full validation set, second by performing the ro-
bustness and generalization of each model using the validation subsets described in
section 3.1.2, and lastly by evaluating the model on the test set described in sec-
tion 3.3. In all three cases, with true positives = TP , false positives = FP , true
negatives = TN , and false negatives = FN , the used metrics are a subset of:

34

4. Architecturing, Implementing, and Iterating on the Model

1. Accuracy: TP + TN

TP + FP + TN + FN

2. Precision: TP

TP + FP

3. Recall3: TP

TP + FN

4. F1 Score: 2 · Precision ·Recall
Precision+Recall

5. Specificity: TN

TN + FP

6. Area under ROC curve (AUROC) – Exempt for the investigation of robustness
and generalization

7. Area under Precision-Recall curve (AUPR) – Exempt for the investigation of
robustness and generalization

These metrics are selected in order to interpret each model’s predictive abilities on
both a dependent and independent level w.r.t. the decision threshold. Furthermore,
in each part of the evaluation, confidence bounds are estimated for each metrics
using the found best-performing algorithm in [36]. In the following subsection, this
algorithm is described in more detail.

4.4.1 Estimation of Confidence Bounds
With the distribution of each metric being unknown, parametric confidence intervals
are not certain to be representative. Therefore, the iterative bootstrap-sampling ap-
proach described in [36] is used as it is both straightforward and was found to be one
of the best-performing methods for the case of estimating confidence intervals with
small confidence interval widths. Based on the described method in [36], the inter-
preted and implemented algorithm is described in listing 5. Using this algorithm,
the confidence interval for each of the metrics listed in section 4.4 are estimated.

4.5 Summarizing the Baselines and AutoBERT
Models

Up until this point, much information has been given regarding the different base-
lines, the AutoBERT models, and what each model is intended to do. In the fol-
lowing sections, the two types of models and their respective instances are briefly
summarized.

4.5.1 Baseline Model Summary
To reiterate, the baseline models are as follows:

3Recall is also referred to as Sensitivity when looked at along with Specificity

35

4. Architecturing, Implementing, and Iterating on the Model

1. Bag of Words (BoW) – Depending on only the chat messages themselves

2. Severity Score Vectors (SSV) – Depending only on AutoMod’s model’s severity
scores which are listed in the second list in section 3.1

3. Extended Bag of Words (EBoW) – Depending on both chat messages and the
severity score vectors from AutoMod’s internal model which are listed in the
second list in section 3.1

Each of the three baseline models are used for two purposes: first, to act as baseline
benchmarks for the AutoBERT models to beat in the evaluation process described in
section 4.4; second, to be used for the small ablation study described in section 4.1.1.
The baselines follow the architecture found in figure 4.2b and their hyperparameters
are defined in section 4.3.1.

4.5.2 AutoBERT Model Summary
To reiterate, the AutoBERT models are as follows:

1. Base – Depending on both chat messages and the severity score vectors from
AutoMod’s internal model which are listed in the second list in section 3.1

2. Stream – Depending on the same data as Base, but also stream metadata
defined in the first list of section 3.1

3. IGDB – Depending on the same data as Stream, but also games metadata
from IGDB, listed in the first list of section 3.2

Each of the three AutoBERT models are used for one purpose: to accept or reject the
hypotheses listed in section 1.5 by evaluating them against the baselines using the
precedures described in section 4.4. The AutoBERT models follow the architecture
found in figure 4.2b, where their classification component is found in figure A.1. All
hyperparameters of the AutoBERT models are defined in section 4.3.2.

36

4. Architecturing, Implementing, and Iterating on the Model

Listing 5: Confidence interval sampling algorithm based on the procedure descrip-
tion of [36]. Note that the implementation is pseudocode using Python syntax and
not the real implementation itself.

''' Confidence interval bootstrap sampling algorithm

Functions:
- sample : ([int], int, bool) -> [int]

- Takes a list of indices, a number `n` of samples to draw,
and whether to sample with replacement.
Returns a list of `n` indices

- percentile : ([[float]], [float]) -> [float]
- Takes a list of sample vectors of same length and a list of

percentiles to interpolate values for based on the samples.
Returns a list of same length as the provided percentiles with
the corresponding values

Arguments:
- y_true : [float]

- True labels
- y_pred : [float]

- Predicted labels
- metric : ([float], [float]) -> float

- Metric function
- n_trials : int

- Number of iterations of sampling results
- q : int

- q-th percentile for confidence interval
- one-tailed : bool

- Perform a one-tailed or two-tailed interval estimation

Returns: (float)
One or two confidence intervals depending on `one_tailed`,
corresponding to a confidence interval with an alpha = `q` or `q`/2

'''
def sample_confidence_intervals(y_true, y_pred,

metric, n_trials=1000,
q=5, one_tailed=False):

n_samples = len(y_true)
point_range = range(n_samples)
bootstrapped_results = []
for _ in range(n_trials):

Sample a new prediction vector of indices with replacement
indices = sample(point_range, n_samples, replace=True)
y_true_ = y_true[indices]
y_pred_ = y_pred[indices]
bootstrapped_results.append(metric(y_true_, y_pred_))

if not one_tailed:
q = [q/2, 100-q/2]

return percentile(bootstrapped_results, q)
37

4. Architecturing, Implementing, and Iterating on the Model

38

5
Results

Statistics of the procured data and the results from evaluating each model are nec-
essary to measure improvement with regards to the hypotheses in section 1.5. In
this chapter, some relevant statistics of each dataset are presented. Following these
statistics are the results from evaluating both the baselines and the AutoBERT
model variations, first with regards to the validation set, then with regards to the
subsets of the validation data as described in section 3.1.2, and lastly with regards
to the manually labeled test set.

5.1 Data Statistics
Basic statistics for the training- and validation sets can be found in table 5.1.

Table 5.1: Basic statistics depicting some of the differences between the training-
and validation sets, based on the made decisions regarding the sampling of training-
and validation data in section 3.1.1. Recall that the positive labels frequency rep-
resents the proportion of appropriate messages in the dataset.

Training Set Validation Set
Statistic

Date range (DD/MM/YY) 15/04/20-13/10/20 14/10/20-01/11/20
n samples 2,382,705 264,343

% of all data 90.014% 9.986%
Positive label frequency 0.2490 0.2755

Tying back to section 3.1.2, the counts of all aspects w.r.t. uniqueness of both the
training- and validation sets, as well as counts of what instances are shared between
the two are shown in table 5.2.

However, this does not show the complete distribution w.r.t. each feature as none
of them are weighted, i.e., we assume a uniform distribution of all features when
conditioned upon, which is likely incorrect.

39

5. Results

5.1.1 Test Dataset
Looking at the test set, which was procured in accordance with section 3.3, the
resulting data from the contacted moderators are shown in table 5.3. Unfortunately,
the number of datapoints is significantly smaller than originally anticipated and falls
below the estimated optimal lower bound from equation (3.4) (n = 1006). Out of
the 11 contacted moderators, only two replied before the results were produced.

When comparing with the inference procedure in equation (3.1) w.r.t. Accuracy,
Sensitivity (Recall), and Specificity, it becomes clear that the inferred labels are
inaccurate half of the time. Most often, this is due to the lack of identifying true
positives (Sensitivity) and is also indicated by the inferred label frequency, which is
about 0.25% (10) of all the labels.

These results suggest that the inference procedure is not representative of the un-
derlying label distribution and is heavily biased towards negatives. The fact that
the procedure would be inaccurate is not to be unexpected, since it assumes that
moderators do not make mistakes, which is unlikely to be the case. It is also impor-
tant to remember that the mindset of the moderators might have changed over time,
meaning that their action at the time of the stream may be different from what they
labeled for the same datapoint. Furthermore, there is the fact that the context they
were given in the labeling task, i.e., the broadcast category at the time, is far from
the complete context the moderators had at the time of the stream itself. Lastly,
the case might also be that the moderator who interacted with the message during
the stream is not the same moderator as the one who labeled the data, since some
channels have multiple moderators. Nonetheless, it is interesting that the procedure
is inaccurate to such a high degree.

5.2 Baseline Results
After training each baseline and saving the best-performing checkpoint, the check-
points were evaluated once more to determine the decision threshold for optimal
performance. The decision threshold was determined based on the maximal F1
Score within the range [0,1] with 0.1 step increments. The results for the BoW-,

Table 5.2: Counts of unique instances of the aspects Category, Channel, and Mes-
sage Body within each of the training- and validation sets, as well as the intersection
of shared features between the two sets. Note that there is a majority of unique val-
ues within these features of the validation set compared to what is shared with the
training set.

Training Set Validation Set Intersection
Aspect

Category 2,999 1,135 887
Channel 17,380 7,024 5,772

Message Body 1,984,884 234,725 17,114

40

5. Results

Table 5.3: Basic statistics of the test set with labels obtained from moderators, as
described in section 3.3. Note that the “Inference positive label frequency” is the fre-
quency of the inferred labels, whilst the “Positive Label Frequency” is the frequency
for the “gold standard” moderator labels. Do also note the Accuracy, Sensitivity,
and Specificity metrics which compare the inference procedure’s labeling perfor-
mance compared to the moderator labels. All metrics are defined in section 4.4.

Test Set
Statistic

Date range (DD/MM/YY) 02/11/20-22/01/21
n samples 400

Positive label frequency 0.4625
Inference Pos. label freq. 0.0250

Inference Accuracy 0.5375
Inference Sensitivity 0.0270
Inference Specificity 0.9767

SSV- and EBoW models are shown in table 5.4. In table 5.4, we can see that the
SSV model performed the best with threshold = 0.2 and both the BoW- and EBoW
models performed the best with the threshold = 0.3.

Table 5.4: F1 Scores on the validation set depending on a varying decision threshold
with 0.1 step increments for each of the three baseline models. Note that the best-
performing threshold is marked in bold. Note that for the case of Threshold=1,
the F1 Score is undefined since Precision will be undefined and Recall will be zero.
Summaries about the models are presented in section 4.5.1.

BoW SSV EBoW
Threshold

0.0 0.4319 0.4319 0.4319
0.1 0.5264 0.4319 0.5615
0.2 0.6790 0.7034 0.7231
0.3 0.6996 0.5906 0.7235
0.4 0.6747 0.4366 0.6888
0.5 0.6293 0.3561 0.6383
0.6 0.5645 0.2740 0.5651
0.7 0.4702 0.1653 0.4682
0.8 0.3452 0.0555 0.3399
0.9 0.1933 0.0176 0.1860

With the best thresholds selected, each baseline was evaluated on the validation
set once more to measure all metrics defined in section 4.4. This time, however,
the threshold was fixed to the value where each model performed the best, which
resulted in the metrics found in tables 5.5a to 5.5c. In these tables, we can see that
the overall best-performing model is the EBoW baseline model, meaning that both

41

5. Results

messages and severity score vectors play a significant role for predictor performance.

Table 5.5: Accuracy, Precision, Recall, F1 Scores, and Specificity scores when
evaluated on the validation set for the inferred AutoMod predictions, the dummy
classifier, the three baselines SSV, BoW, and EBoW, and the three AutoBERT
model variations Base, Stream, and IGDB at their respective best decision thresh-
olds. All metrics are calculated with 95% confidence intervals. The best scoring
baseline and AutoBERT model is marked in bold. Summaries about the models are
presented in section 4.5 and the metrics are defined in section 4.4.

(a) Accuracy scores of the inferred
AutoMod labels, dummy classifier,
baseline models, and AutoBERT
models.

Accuracy
Model

Dummy 0.7245
AutoMod 0.1104
SSV (0.2) 0.8120 (±0.0014)
BoW (0.3) 0.8292 (±0.0015)

EBoW (0.3) 0.8430 (±0.0014)
Base (0.3) 0.8286 (±0.0014)

Stream (0.4) 0.8743 (±0.0013)
IGDB (0.2) 0.8623 (±0.0013)

(b) Specificity scores of the in-
ferred AutoMod labels, dummy classi-
fier, baseline models, and AutoBERT
models.

Specificity
Model

Dummy 1
AutoMod 0.1524
SSV (0.2) 0.8131 (±0.0018)
BoW (0.3) 0.8699 (±0.0016)

EBoW (0.3) 0.8799 (±0.0015)
Base (0.3) 0.8302 (±0.0017)

Stream (0.4) 0.8943 (±0.0014)
IGDB (0.2) 0.8701 (±0.0015)

(c) Precision, Recall, and F1 Scores of the inferred AutoMod labels, dummy classi-
fier, baseline models, and AutoBERT models. Note that for the case of the dummy
classifier and AutoMod, some Precision and F1 Scores are undefined due to zeros in
the denominator.

Precision Recall F1 Score
Model

Dummy – 0 –
AutoMod 0 0 –
SSV (0.2) 0.6220 (±0.0032) 0.8091 (±0.0030) 0.7034 (±0.0025)
BoW (0.3) 0.6784 (±0.0035) 0.7221 (±0.0031) 0.6996 (±0.0026)

EBoW (0.3) 0.7024 (±0.0033) 0.7458 (±0.0031) 0.7235 (±0.0026)
Base (0.3) 0.6486 (±0.0031) 0.8241 (±0.0027) 0.7259 (±0.0024)

Stream (0.4) 0.7472 (±0.0031) 0.8217 (±0.0028) 0.7827 (±0.0021)
IGDB (0.2) 0.7113 (±0.0032) 0.8418 (±0.0025) 0.7711 (±0.0024)

Lastly, in order to determine the performance regardless of the decision threshold,
both ROC curves and Precision-Recall curves are drawn along with their respective
area under curve (AUC) scores. The ROC- and Precision-Recall curves for all three

42

5. Results

Table 5.6: AUROC and AUPR scores for the three baseline models and the three
AutoBERT models with 95% confidence intervals when evaluated on the validation
set. The best scoring baseline and AutoBERT model is marked in bold. Summaries
about the models are presented in section 4.5.

AUROC AUPR
Model

SSV (0.2) 0.8408 (±0.0014) 0.6467 (±0.0051)
BoW (0.3) 0.8680 (±0.0016) 0.6833 (±0.0027)

EBoW (0.3) 0.8912 (±0.0014) 0.7080 (±0.0033)
Base (0.3) 0.8819 (±0.0015) 0.7434 (±0.0033)

Stream (0.4) 0.9349 (±0.0011) 0.8374 (±0.0023)
IGDB (0.2) 0.9272 (±0.0011) 0.8239 (±0.0024)

baselines can be found in figures 5.1a and 5.1b and their respective AUC values are
listed in table 5.6.

Overall, from the results shown in figure 5.1 and tables 5.5 and 5.6, it becomes clear
that the EBoW baseline performs the best, meaning that both the messages and
severity score vectors have a significant effect on how to determine the appropriacy
of message contents. Out of all metrics, only Recall is the metric where EBoW
performs worse than any baseline, where it is beaten by SSV. Therefore, as the
EBoW performed best overall, this baseline will be the one which the AutoBERT
models are compared against, given that the EBoW model is beating the current
AutoMod predictions on the data and a simple majority vote.

(a) ROC curves for the three baseline
models.

(b) Precision-Recall curves for the
three baseline models.

Figure 5.1: ROC- and Precision-Recall curves for the baseline models when eval-
uated on the validation set. Summaries about the models are presented in sec-
tion 4.5.1

43

5. Results

5.2.1 Inferred AutoMod Performance and Baseline Perfor-
mance

In order to evaluate whether or not the baselines are performing well enough to
be compared against, their non-threshold dependent metrics were compared against
the inferred AutoMod label metrics as well as the majority vote of labels (dummy
classifier) in the training set. As shown in table 5.1, the positive label frequency is
less than 0.5, meaning that the majority vote of both sets is False. As before, the
results are listed in tables 5.5a to 5.5c.

Comparing the inferred labels from AutoMod with the baselines, as well as the
dummy classifier, it is shown that the baselines do beat the dummy classifier w.r.t.
Accuracy and that the inferred AutoMod performance being the worst overall. As
shown in table 5.5b, the dummy classifier is best w.r.t. Specificity. However, since
the dummy classifier classifies all datapoints as inappropriate, this metric is not
relevant. Furthermore, with both the inferred AutoMod- and dummy classifier per-
formance in table 5.5c being zero or undefined, there is stronger indication that the
baselines are representative for comparing the AutoBERT models against. Do also
note, however, that the poor performance of the inferred AutoMod scores is due to
the fact that all datapoints are from cases where AutoMod has been determined to
act poorly, as described in section 3.1.

With the baselines having been confirmed to be representative for comparing the
AutoBERT models against, the following step is the evaluation of the AutoBERT
model variations.

5.3 AutoBERT Comparison to Baseline
When evaluating the AutoBERT model variations, the evaluation should be done
with regards to the hypotheses specified in section 1.5. In order to highlight the
tradeoff between gained performance and introduced time and complexity from each
layer (hypothesis 3), loss curves over both epochs and hours are shown in figures 5.2a
and 5.2b.

From these curves it is shown that the Base variation performs similarly w.r.t. loss
as the EBow baseline, indicating that not much more information could be derived
from the messages and severity score vectors alone even though the model is more
complex. With stream metadata introduced, the lowest loss on the validation set
is reached in the Stream variation, indicating the best performance in terms of
loss. Similar performance, but not as great, is reached with the combined stream
metadata and IGDB data in the IGDB variation.

Convergence also takes the same number of epochs for all models, reaching a some-
what steady loss after one epoch. This is reasonable, however, since the training
dataset is quite large. The loss then tends to stagnate and fluctuate around the
same point for the remainder of the training time, except for the Stream and IGDB
variations. Instead, both of these tend to slowly but surely decrease their training
loss further, with the validation loss fluctuating somewhat during the time.

44

5. Results

Furthermore, the training times themselves increase drastically for each additional
layer of information. Do also recall that the AutoBERT models are trained on four
GPUs in parallel, whilst the baseline is trained on a single GPU. Therefore, given
the same resources as the baselines, the training times for the AutoBERT models
should be about four times as long, with some potential decrease due to reduced
synchronization overhead from parallel computation.

Lastly, note that the validation loss curve for the IGDB variation lacks some points
around epoch 14 and onwards. This is due to the validation loss suddenly hitting
∞ at epoch 14 and then undefined and −∞ in the 17th and 18th epochs. Due to
the 18th epoch hitting −∞, this checkpoint was saved as the best model for the
IGDB variation. With the hopes of getting back to around the best found loss up
until then, the best validation loss was reset and the training was continued for five
more epochs to see if the model would recuperate, hence the additional three epochs
from the specified number in listing 4. Therefore, the IGDB model checkpoint is
unfortunately not the best one found during training, but rather the one from epoch
20.

(a) Loss curves over epochs. Do note
the gaps of validation loss for the
IGDB variation between epochs 14
and 18 and the lack of loss for epoch
23. This is due to the validation loss
becoming either undefined or ±∞.
Also note that the EBoW loss curve
is included for comparison (ending at
10 epochs). Non-dashed lines are for
loss on the training set and the dashed
lines are for loss on the validation set.

(b) Loss curves over hours. Note that
the EBoW loss curve is also included
for comparison in training times. Do
also note the markers which indicate
the start and end of adjacent epochs.
Non-dashed lines are for loss on the
training set and the dashed lines are
for loss on the validation set.

Figure 5.2: Loss curves of the best baseline model (EBoW) and the AutoBERT
model variations with (1) the same input as EBoW (Base), (2) the added stream
metadata information (Stream), and (3) the combined stream metadata and IGDB
games metadata (IGDB). Each AutoBERT variation was trained for 20 epochs, ex-
cept for the IGDB variation which was trained for 23 epochs. Do also recall that each
AutoBERT instance is trained on four GPUs in parallel, whilst the baselines only
trained on a single GPU. Summaries about the models are presented in section 4.5.

45

5. Results

5.3.1 Evaluating Decision Thresholds
Regarding the remaining hypotheses in section 1.5 (hypothesis 1 and 2), the Auto-
BERT model variations need to be evaluated. As with the the baseline models, the
best decision threshold is decided on in the threshold range [0,1] with 0.1 step incre-
ments and selecting the threshold which yields the highest F1 Score. In table 5.7,
the results are listed along with the EBoW results from table 5.4. Interestingly, the
Base model has both the same decision threshold and a similar F1 Score (with a
difference of 0.0024).

Furthermore, the Stream model has the highest F1 Score overall and the decision
threshold which lies closest to 0.5, indicating that the decision regarding appropriacy
is more balanced when also depending on stream metadata. Conversely, the decision
threshold for the IGDB model is the lowest, along with the SSV baseline in table 5.4.
However, the IGDB model also has the second highest F1 Score with a 0.0116 lower
score compared to the Stream model.

Table 5.7: F1 Scores on the validation set depending on a varying decision threshold
with 0.1 step increments for each of the three AutoBERT model variations and a
comparison with the best-performing baseline (EBoW) model. Note that the best-
performing threshold is marked in bold. Also note that for the case of Threshold=1,
the F1 Score is undefined since Precision will be undefined and Recall will be zero.
Summaries about the models are presented in section 4.5 and the metric is defined
in section 4.4.

EBoW Base Stream IGDB
Threshold

0.0 0.4319 0.4319 0.4319 0.4319
0.1 0.5615 0.6435 0.7106 0.7474
0.2 0.7231 0.7176 0.7601 0.7711
0.3 0.7235 0.7259 0.7793 0.7677
0.4 0.6888 0.7238 0.7827 0.7511
0.5 0.6383 0.6924 0.7741 0.7183
0.6 0.5651 0.6358 0.7410 0.6573
0.7 0.4682 0.5305 0.6806 0.5513
0.8 0.3399 0.3210 0.5677 0.3783
0.9 0.1860 0.0349 0.3432 0.1348

The results for the decided upon thresholds can be along with the baseline results
in tables 5.5 and 5.6. Furthermore, the ROC- and Precision-Recall curves for each
AutoMod model variation is illustrated in figure 5.3. From these results, it becomes
clear that the EBoW baseline and AutoBERT Base perform similarly, with EBoW
having higher Recall and Base having higher Precision, yielding about the same F1
Score. EBoW is more accurate, has higher Specificity and AUROC, but loses in
AUPR. When looking at the ROC and Precision-Recall curves in figure A.1, both
the EBoW and Base curves are close to each other in both cases. Overall, this shows
that with only messages and severity score vectors, the EBoW model is enough to

46

5. Results

(a) ROC curves for the three Auto-
BERT models.

(b) Precision-Recall curves for the
three AutoBERT models.

Figure 5.3: ROC- and Precision-Recall curves for the AutoBERT models when
evaluated on the validation set. Summaries about the models are presented in
section 4.5.2.

recognize the relevant information within these features.

When looking at the Stream and IGDB variations of the AutoBERT model, the
story is different. The best-performing model overall is the Stream variation, with a
validation accuracy higher than all other models to a significant degree; the IGDB
variation being a close second with about 1.2 percent units less accuracy. This
pattern seems to repeat itself across all metrics, except for Recall, where the IGDB
model performs the best. However, this is compensated for by the Stream model
with its higher Precision, leading to a higher F1 Score in the end. As for AUROC
and AUPR, Stream beats IGDB with about 1 percent unit in both cases, AUROC
being a bit less and AUPR a bit more. This is also highlighted in figure 5.3, where
the Stream curves are approximately above the IGDB curve at all points. All in
all, this shows that the introduction of more contextual information proves to yield
statistically significant performance improvements across the board.

5.4 Investigation of Robustness and Generaliza-
tion Regarding Unseen Data

When also looking at investigating each model’s robustness and ability to generalize
in terms of unseen values for different aspects, as described in section 3.1.2, we can
get another view on how well a model performs in general in conjunction with a test
set. In the following subsections, the results for the three aspects (1) channel ID,
(2) broadcast category, and (3) message body are presented; both for the baselines
and the AutoBERT model variations. Similarly to how the performance has been
measured using the metrics defined in section 4.4, the results of this investigation
will be represented by a subset; namely the metrics Precision, Recall, F1 Score, and
Specificity. These are chosen as they are more indicative of how well the models’
will perform in practice with regards to unseen data. Results for all of these metrics
are instead presented in appendix B.

47

5. Results

Table 5.8: Precision, Recall, F1 Scores, and Specificity of the baseline- and Auto-
BERT models w.r.t. common and unique channels of the validation set with 95%
confidence intervals. Summaries about the models are presented in section 4.5 and
the metrics are defined in section 4.4.

(a) Common channels of the validation set, i.e., channels present in the training
set.

Precision Recall F1 Score Specificity
Model
SSV 0.6192 (±0.0033) 0.8077 (±0.0030) 0.7010 (±0.0027) 0.8166 (±0.0018)
BoW 0.6770 (±0.0036) 0.7242 (±0.0035) 0.6998 (±0.0028) 0.8724 (±0.0015)

EBoW 0.7012 (±0.0033) 0.7484 (±0.0032) 0.7240 (±0.0028) 0.8823 (±0.0015)
Base 0.6464 (±0.0034) 0.8239 (±0.0029) 0.7245 (±0.0024) 0.8336 (±0.0018)

Stream 0.7477 (±0.0033) 0.8247 (±0.0030) 0.7843 (±0.0025) 0.8973 (±0.0015)
IGDB 0.7113 (±0.0033) 0.8430 (±0.0028) 0.7716 (±0.0024) 0.8737 (±0.0016)

(b) Unique channels of the validation set, i.e., channels not present in the training
set.

Precision Recall F1 Score Specificity
Model
SSV 0.6625 (±0.0126) 0.8285 (±0.0110) 0.7363 (±0.0091) 0.7318 (±0.0096)
BoW 0.6994 (±0.0144) 0.6933 (±0.0127) 0.6963 (±0.0105) 0.8106 (±0.0085)

EBoW 0.7203 (±0.0135) 0.7112 (±0.0119) 0.7157 (±0.0096) 0.8244 (±0.0084)
Base 0.6792 (±0.0114) 0.8265 (±0.0104) 0.7457 (±0.0089) 0.7519 (±0.0099)

Stream 0.7398 (±0.0125) 0.7818 (±0.0127) 0.7602 (±0.0090) 0.8252 (±0.0081)
IGDB 0.7115 (±0.0123) 0.8255 (±0.0107) 0.7643 (±0.0091) 0.7873 (±0.0095)

5.4.1 Conditioning on Channels
Investigating the models w.r.t. channels involves conditioning the training set on
channel IDs and evaluating the models on the two subsets where channel IDs are
unique to the validation set and where they are shared with the training set. Be-
low, the results are presented in table 5.8 and they are analyzed in the following
subsections, first for the baselines and then for the AutoBERT model variations.

5.4.1.1 Baselines

In table 5.8, with table 5.8a being the results for the channels which are shared with
the training set and table 5.8b being the results for the channels which are unique to
the validation set, the EBoW baseline performs best overall regarding performance
changes on the two datasets. The exception, however, being for the Recall in both
subsets and the F1 Score in the unique channels subset, where the SSV model
performs the best. Do also note that the confidence intervals in table 5.8b is about

48

5. Results

three to four times larger than in table 5.8a, indicating that there is a difference in
sample size for the two sets or that the common subset contains more varied data.

Furthermore, the SSV seems to perform better on the unique channels w.r.t. Preci-
sion, Recall and F1 Score compared to the common channels. Why this is the case
is hard to to reason about. One potential reason could be that AutoMod’s inter-
nal model’s configuration has not changed for a time – configuration changes are
mentioned in section 3.1. If the current configuration is well-aligned with what the
SSV model has learned to interpret as appropriate versus inappropriate in a more
generalized extent, then this could definitely be the case.

5.4.1.2 AutoBERT Models

When instead looking at the AutoBERT models, the Stream variation seems to be
the best model overall. However, the IGDB variation is not far behind and beats the
Stream variation in Recall on both subsets and in F1 Score on the unique subset.
The F1 Score does not seem statistically significant, nonetheless.

Furthermore, the Base variation is best overall in Recall on the unique subset and
even improves its Precision and thus also the F1 Score on this set. This comes at
the cost of a lower Specificity compared to the other models, however.

Overall, it seems that all AutoBERT models seem to not degrade in Precision when
given unseen messages from unseen channels. Furthermore, the Recall and F1 Scores
tend to change similarly to how the baselines changed – some increase a bit and some
instead decrease within a range of [0,2] percent units. Specificity also seems to drop
significantly when going from already-seen channels to unseen ones, much like with
the baselines. For AutoBERT, however, the drop is about as significant as for the
SSV model, which dropped the most among the baselines.

All in all, when it comes to predicting appropriate language, the performance of all
AutoBERT variations tend to adapt quite well when working on unseen channels,
but with a large enough gap to seem statistically significant. This could be due to
the fact that the stream metadata, e.g., stream titles, tie channels together in means
that the plain messages could not, which the Stream and IGDB models then were
able to learn to identify and thus generalizes better. As for predicting inappropriate
language, the generalization tends to be worse, with a drop being two to four times
as large as for predicting appropriate language when facing unseen channels.

5.4.2 Conditioning on Broadcast Categories
Investigating the models w.r.t. broadcast categories involves conditioning the train-
ing set on the broadcast category and evaluating the models on the two subsets
where the categories are unique to the validation set and where they are shared
with the training set. Below, the results are presented in table 5.9 and they are ana-
lyzed in the following subsections, first for the baselines and then for the AutoBERT
model variations.

49

5. Results

Table 5.9: Precision, Recall, F1 Scores, and Specificity of the baseline- and Au-
toBERT models w.r.t. common and unique broadcast categories of the validation
set with 95% confidence intervals. Summaries about the models are presented in
section 4.5 and the metrics are defined in section 4.4.

(a) Common broadcast categories of the validation set, i.e., broadcast categories
present in the training set.

Precision Recall F1 Score Specificity
Model
SSV 0.6182 (±0.0032) 0.8090 (±0.0029) 0.7008 (±0.0025) 0.8132 (±0.0018)
BoW 0.6753 (±0.0035) 0.7223 (±0.0036) 0.6980 (±0.0028) 0.8702 (±0.0015)

EBoW 0.6998 (±0.0035) 0.7463 (±0.0032) 0.7223 (±0.0025) 0.8803 (±0.0015)
Base 0.6439 (±0.0031) 0.8235 (±0.0029) 0.7227 (±0.0025) 0.8312 (±0.0018)

Stream 0.7450 (±0.0033) 0.8214 (±0.0030) 0.7814 (±0.0024) 0.8958 (±0.0015)
IGDB 0.7091 (±0.0030) 0.8411 (±0.0029) 0.7695 (±0.0025) 0.8721 (±0.0015)

(b) Unique broadcast categories of the validation set, i.e., broadcast categories not
present in the training set.

Precision Recall F1 Score Specificity
Model
SSV 0.7873 (±0.0194) 0.8134 (±0.0187) 0.8001 (±0.0148) 0.8184 (±0.0160)
BoW 0.8088 (±0.0205) 0.7393 (±0.0217) 0.7725 (±0.0161) 0.8556 (±0.0151)

EBoW 0.8284 (±0.0182) 0.7636 (±0.0198) 0.7947 (±0.0147) 0.8693 (±0.0149)
Base 0.8375 (±0.0207) 0.8504 (±0.0194) 0.8439 (±0.0152) 0.8355 (±0.0213)

Stream 0.8539 (±0.0180) 0.8745 (±0.0172) 0.8640 (±0.0140) 0.8508 (±0.0181)
IGDB 0.8366 (±0.0206) 0.8818 (±0.0164) 0.8586 (±0.0147) 0.8282 (±0.0189)

5.4.2.1 Baselines

In table 5.9, with table 5.9a being the results for the broadcast categories which
are shared with the training set and table 5.9b being the results for the broadcast
categories which are unique to the validation set, the EBoW model performs the
best overall. Much like for the prior case, Recall in both subsets and F1 Scores in
the common subset are the exceptions and SSV is the best-performing model once
again for these metrics.

What is different here, however, is that the performance drops between the common
and unique sets are smaller and all models perform better on unique categories
w.r.t. Precision, Recall, and F1 Score. However, the improvements do not seem to
be statistically significant in the case of Recall. In Specificity, SSV also improves
on the unique categories compared to the common ones, though not enough to be
statistically significant.

These results indicate a positive generalization with regards to categories, meaning

50

5. Results

that the baselines tend to be independent of what the current broadcast category
when the messages occur. This can be expected, nonetheless, since the models do
not depend on any such information. Conversely, the case could also be that the
appropriacy of messages itself is independent of broadcast categories. If this is the
case, then the performance of AutoBERT Stream and IGDB should not improve
due to the category information.

5.4.2.2 AutoBERT Models

Much like for the baselines, all AutoBERT models tend to improve in Precision,
Recall and F1 Score, yet also in Specificity. This seems to reaffirm the hypothesis
that the appropriacy of messages should be independent of broadcast categories. If
not, then the IGDB model should have a performance change that is greater than the
Stream model since the added information there revolves around giving additional
metadata about the broadcast categories themselves. However, this is not the case.

Furthermore, Precision, Recall, and F1 Scores tend to be significantly higher than
for the baselines across the two subsets, showing once more that the AutoBERT
models tend to improve in overall performance by being able to reduce the number
of false negatives, i.e., correctly identifying appropriate language. However, the
Specificity tends to remain similar to the Specificity of the baselines, meaning that
the models’ ability to identify inappropriate language tends to be unaffected when
regarding old and new broadcast categories.

5.4.3 Conditioning on Messages
Investigating the models w.r.t. messages involves conditioning the training set on
message bodies and evaluating the models on the two subsets where the messages
are unique to the validation set and where they are shared with the training set.
Below, the results are presented in table 5.10 and they are analyzed in the following
subsections, first for the baselines and then for the AutoBERT model variations.

5.4.3.1 Baselines

In table 5.10, with table 5.10a being the results for the message bodies which are
shared with the training set and table 5.10b being the results for the message bodies
which are unique to the validation set, the EBoW model performs the best overall,
once more. For the messages, SSV only outperforms the EBoW model with Recall
on both subsets. Furthermore, the Precision of all baselines seem to have taken a
significant hit as they are all below 0.6 in the common subset.

Interestingly, all baselines also seem to perform better on the unique subset regarding
Precision and, consequently, F1 Score. The confidence intervals for these metrics
are similar to the inverse case as for the channels in table 5.8, which could be an
indication of more varied data in the unique dataset, i.e., that the messages are
much more distinctive than in the common subsets.

Lastly, the Recall remains somewhat unchanged between the two subsets, whilst
the Specificity drops significantly for both BoW and EBoW when evaluated on the

51

5. Results

unique subset. This behavior is interesting, as it shows that the baselines tend to
be able to recall what is appropriate regardless of seen/unseen messages. However,
both BoW and EBoW have a harder time to be specific about what is inappropriate
on when faced with unseen messages.

5.4.3.2 AutoBERT Models

Looking at the performance of the AutoBERT variations, it becomes clear that
additional contextual information helps the model to identify appropriate language
better as the Precision and F1 Scores are significantly higher in the Stream and
IGDB cases compared to the Base case. The Recall, however, is not higher than
for the Base variation, which could indicate that the additional information helps
more in defining what is appropriate language (Precision) rather than what messages
themselves are appropriate (Recall).

Furthermore, the Specificity drops significantly for each AutoBERT variation, much

Table 5.10: Precision, Recall, F1 Scores, and Specificity of the baseline- and Au-
toBERT models w.r.t. common and unique messages of the validation set with 95%
confidence intervals. Summaries about the models are presented in section 4.5 and
the metrics are defined in section 4.4.

(a) Common messages of the validation set, i.e., messages present in the training
set.

Precision Recall F1 Score Specificity
Model
SSV 0.4189 (±0.0092) 0.8106 (±0.0107) 0.5524 (±0.0098) 0.8170 (±0.0041)
BoW 0.5898 (±0.0116) 0.7385 (±0.0112) 0.6558 (±0.0099) 0.9164 (±0.0029)

EBoW 0.5771 (±0.0120) 0.7495 (±0.0122) 0.6521 (±0.0090) 0.9106 (±0.0031)
Base 0.5163 (±0.0113) 0.8378 (±0.0098) 0.6389 (±0.0095) 0.8722 (±0.0035)

Stream 0.7083 (±0.0107) 0.7957 (±0.0101) 0.7495 (±0.0084) 0.9467 (±0.0024)
IGDB 0.6637 (±0.0114) 0.8051 (±0.0101) 0.7276 (±0.0090) 0.9336 (±0.0027)

(b) Unique messages of the validation set, i.e., messages not present in the training
set.

Precision Recall F1 Score Specificity
Model
SSV 0.6485 (±0.0031) 0.8090 (±0.0031) 0.7199 (±0.0027) 0.8122 (±0.0019)
BoW 0.6873 (±0.0035) 0.7207 (±0.0033) 0.7036 (±0.0028) 0.8596 (±0.0018)

EBoW 0.7155 (±0.0035) 0.7455 (±0.0033) 0.7302 (±0.0027) 0.8731 (±0.0017)
Base 0.6631 (±0.0033) 0.8230 (±0.0031) 0.7344 (±0.0024) 0.8210 (±0.0020)

Stream 0.7505 (±0.0034) 0.8239 (±0.0028) 0.7855 (±0.0024) 0.8827 (±0.0016)
IGDB 0.7154 (±0.0030) 0.8449 (±0.0030) 0.7748 (±0.0025) 0.8561 (±0.0018)

52

5. Results

like in the broadcast category-case. Interestingly enough, the metrics for the unique
subset in table 5.10b align nicely with the overall scores for the AutoBERT variations
in tables 5.5b and 5.5c, where the scores in table 5.10a instead are significantly
higher.

5.5 Final Evaluation on Test Set
From performing the final evaluation on the test set procured as described in sec-
tion 3.3, the results are presented in tables 5.11 and 5.12. Interestingly, on the test
set, the IGDB variation is the best-performing model overall; compared to the vali-
dation set results in tables 5.5 and 5.6, where the Stream variation was the overall
best model.

Another important note is the drastic performance drop the models have compared

Table 5.11: Accuracy, Precision, Recall, F1 Scores, and Specificity scores when
evaluated on the test set for the three baselines SSV, BoW, and EBoW, and the
three AutoBERT model variations Base, Stream, and IGDB at their respective best
decision thresholds. All metrics are calculated with 95% confidence intervals. The
best scoring baseline and AutoBERT model is marked in bold. Summaries about
the models are presented in section 4.5 and the metrics are defined in section 4.4.

(a) Accuracy scores of the baseline-
and AutoBERT models.

Accuracy
Model
SSV 0.4850 (±0.0525)
BoW 0.5000 (±0.0500)
EBoW 0.5175 (±0.0476)
Base 0.4950 (±0.0500)
Stream 0.5250 (±0.0500)
IGDB 0.5775 (±0.0525)

(b) Specificity scores of the baseline-
and AutoBERT models.

Specificity
Model
SSV 0.8651 (±0.0495)
BoW 0.8279 (±0.0517)
EBoW 0.8744 (±0.0441)
Base 0.8744 (±0.0452)
Stream 0.8791 (±0.0437)
IGDB 0.8419 (±0.0524)

(c) Precision, Recall, and F1 Scores of the baseline- and AutoBERT models.

Precision Recall F1 Score
Model
SSV 0.2162 (±0.1352) 0.0432 (±0.0306) 0.0721 (±0.0506)
BoW 0.3729 (±0.1271) 0.1189 (±0.0496) 0.1803 (±0.0648)
EBoW 0.4130 (±0.1426) 0.1027 (±0.0455) 0.1645 (±0.0667)
Base 0.2703 (±0.1415) 0.0541 (±0.0350) 0.0901 (±0.0510)
Stream 0.4468 (±0.1490) 0.1135 (±0.0469) 0.1810 (±0.0670)
IGDB 0.5952 (±0.1153) 0.2703 (±0.0651) 0.3717 (±0.0783)

53

5. Results

to the validation set, apart from the Specificity which remains relatively unaffected.
As mentioned in section 5.1.1, however, the inference procedure tends to be in-
accurate and favors negatives over positives, which is shown in both table 5.3 by
the imbalanced inference positive label frequency compared to the true (moderator)
positive label frequency.

Furthermore, the Stream variation does not appear to be significantly better than
the EBoW baseline. The BoW baseline also appears to be evenly matched with
the EBoW when looking at the confidence intervals, which could indicate that the
severity scores have little to no significant effect on classifying the appropriacy of
chat messages.

Table 5.12: AUROC and AUPR scores for the three baseline models and the three
AutoBERT models with 95% confidence intervals when evaluated on the test set.
The best scoring baseline and AutoBERT model is marked in bold. Summaries
about the models are presented in section 4.5.

AUROC AUPR
Model
SSV 0.4384 (±0.0337) 0.3420 (±0.0754)
BoW 0.4454 (±0.0696) 0.4233 (±0.0681)
EBoW 0.4450 (±0.0647) 0.4329 (±0.0681)
Base 0.4799 (±0.0688) 0.4313 (±0.0693)
Stream 0.5237 (±0.0522) 0.4733 (±0.0654)
IGDB 0.6288 (±0.0567) 0.5490 (±0.0832)

In the case of AUROC and AUPR, both the Stream- and IGDB variations are signif-
icantly better than the baselines w.r.t. AUROC, as shown in table 5.12. However,
none of the two are significantly better than the EBoW- or BoW models w.r.t.
AUPR.

Nonetheless, as mentioned in section 5.1.1, the test data was obtained from only
two moderators, meaning that the messages come from only two channels. By only
having data from two channels, there is a risk of the messages being skewed and are
likely not representative of the whole distribution of messages which are encompassed
by the specified delimitations in section 1.4.

54

6
Discussion

Using the results presented in the previous chapter, this chapter further reflects on
the meaning of the results and further tries to explain some of the underlying causes
of them. It then goes into talking about the limiting factors of the work done in
this thesis. Lastly, this chapter is rounded off with a set of propositions for future
work branching off of the findings in this work.

6.1 Performance Differences Between AutoBERT
Stream- and IGDB Configurations

When looking at the validation results of all models in tables 5.5 and 5.6, the
performance of the Stream model is slightly better than the IGDB model in all
cases, and to a significant degree. This shows that more information is not always
good information when it comes to having the model learn.

Nonetheless, plainly based on these results, the benefits of an additional external
data layer cannot be ruled out. For example, when looking at the final evaluation
results on the test data in tables 5.11 and 5.12, the IGDB variation is instead
the model which performs significantly better compared to the baselines in the
metrics where there is a statistical significance at all. As previously mentioned in
section 5.1.1, only two moderators out of the contacted 11 responded before the final
evaluation on the test set was executed; therefore, the test results may be skewed as
the test set is likely not representative of the distribution of messages coming from
all channels where the delimitations in section 1.4 are fulfilled.

One potential explanation of the IGDB model performing similarly to or worse
than the Stream model could be due to data gaps in IGDB data, causing either
tokenization to yield empty or static token strings for all entries which have the
same gaps. What the vector will be depends on how the tokenizer and sentence
transformer interpret the data gaps. If the tokenizer does not recognize anything in
the gap, e.g., due to no words in the vocabulary being in the default string, then a
null encoding is returned. Furthermore, depending on how the sentence transformer
interprets each encoding, it will either return a null- or static vector for the same
encoding since it is a deterministic mapping. In turn, this means that null- or static
vectors are created for the sentences that are empty or static. In the case of static
vectors, this may cause the mean pooling of the embedded sentences to skew each

55

6. Discussion

batch during normalization as the data gaps are encoded to a specific point in the
embedding space rather than to origin.

Therefore, in hindsight, having good default strings could more or less be confusing
to the model rather than helping after these are embedded. Instead, ensuring that
the data gaps are always encoded as null vectors could at least help in more stable
embeddings based on the information that is available rather than the information
that is not.

Another potential improvement would be introducing some form of data imputation.
If such a process could be performed on the data before tokenization, the gaps
themselves would be excluded from the tokenized strings and this potential issue
could be avoided altogether. Nonetheless, good imputation methods require multiple
estimates to yield good standard errors and confidence intervals [37] and simpler
methods such as overall mean imputation and the missing-indicator method tend to
always yield biased estimates [37], which might result in similar performance as the
good default strings used in this project.

One other reason for the IGDB variation not performing better than the Stream
model could be due to the classification component not containing enough neurons
to understand and learn from the added information. Therefore, adding either
additional layers or more neurons in the existing ones could help. This was the case
initially, where only a linear layer was used on the RoBERTa embeddings, much
like with the baselines. In order see further improvements, the four hidden layers
shown in figure A.1 had to be added before the Stream variation began learning
more. Do note however, that layers were added two at a time with the two higher
dimensional layers first, followed by the lower dimensional layers after. Therefore,
the configuration of (300, 300, 72, 72) is likely not the optimal configuration.

6.1.1 Complexity- and Performance Tradeoffs Between Lay-
ers of Information

Tying back to hypothesis 3 in section 1.5, it becomes clear from figure 5.2b that each
added layer of information significantly increases the training time of AutoBERT.
Looking at the trends and with the implementation details in mind, the number of
hours it took to train the each AutoBERT model tended to be strongly correlated
with the number of tokenized sentences had to be constructed for each datapoint.
When also looking at the prediction times for each AutoBERT variation, measured
from the average forward pass time using the first batch of the test set for 20
iterations, the times for each AutoBERT model are as follows:

• Base – 2.565 seconds per batch (51.3 seconds over 20 iterations)

• Stream – 5.95 seconds per batch (119 seconds over 20 iterations)

• IGDB – 9.55 seconds per batch (191 seconds over 20 iterations)

With the Base variation, only messages were tokenized in a single 128 elements long
token sentence. As additional stream metadata were introduced, both messages
and the metadata itself were tokenized as two separate token sentences; one for the

56

6. Discussion

arbitrarily long chat messages and one for the metadata listed in section 3.1. As
IGDB data were introduced as well, the inputs grew to four tokenized sentences
per datapoint instead; the two added token sentences being one for the arbitrarily
long game summaries and the other for the remaining metadata listed in section 3.2.
The two arbitrarily long data types were decided to be given their separate token
sentences in order to mitigate the risk of truncating information, since the used
tokenizer truncates sentences longer than 128 tokens.

With each added token sentence per datapoint, about one additional hour of com-
putation time was added per epoch, showing a linear growth in time complexity
with regards to token sentences. This also indicates that the bulk of the time spent
training is spent on RoBERTa embedding the inputs. From prediction times above,
the linear time complexity of the number of token sentences is also indicated, since
the Base variation is about twice as fast per batch as the Stream variation, which
in turn is about twice as fast as the IGDB variation. Since the architecture of the
classification component for each AutoBERT model has remained the same, this
further strengthens the argument that RoBERTa is the bottleneck.

One could argue that the tokenized sentences could be pre-tokenized and use the
tokenized output as the string-based inputs instead of the raw strings. Nonetheless,
as shown in figure 4.3, all tokenized sentences are stored in a shared memory cache
such that the raw data of each dataset is only traversed in the first epoch. After
that, the shared memory cache is used instead in order to save time loading in- and
preprocessing data during training, which allows the complete dataset to be loaded
in less than three minutes with multiple data loaders. More on how the shared
memory cache works and how it interacts with the dataset and data loading can be
found in section 2.5.

Another alternative is to strip out the RoBERTa model from AutoBERT and embed
all sentences upfront. This would result in AutoBERT taking the embeddings as
the direct input instead of the tokenized strings, which will likely speed up the
model significantly since the embedding transformations are the most expensive
operation. With all sentences embedded beforehand, each model which depend on
multiple embedded sentences would then start with the mean pooling step shown in
figure 4.2b to merge the embeddings into a single embedding instead.

However, the embeddings take up much space; about 600 embedded sentences for
the AutoBERT instance which depends on additional stream metadata occupied
about 1.5GB of memory on disk, meaning that embedding all sentences of the data
would take up approximately

1.5 · 2, 647, 048
600 = 6, 617.62 ≈ 6, 617GB,

i.e., 6.6TB of data. Mixing in the embeddings for all IGDB data as well would mean
twice the memory, i.e., 12.2TB of data, since two more sentences are produced
for each datapoint. Keeping all embeddings in memory will practically infeasible
and prefetching from disk adds on additional layers of complexity with regards to
implementation, which is preferrably avoided.

57

6. Discussion

Nonetheless, it would be interesting to see how an increase in both space- and
implementation complexity would decrease the time complexity. If training times
would be reduced significantly, then the forward pass would likely be faster as well,
meaning that the model could potentially be productionized for real-time purposes,
such as Twitch chat. The main issue remains, however – the chat messages along
with the contextual information needs to be embedded in real-time as well.

6.2 Sudden Undefined and Positive/Negative In-
finite Loss of AutoBERT IGDB Configuration

During the validation period of epoch 14 when training AutoBERT IGDB, the vali-
dation loss suddenly hit ∞ due to multiple batches being computed as such. Then,
in epochs 17 and 23, the validation loss instead hit NaN , first due to two batches
failing and second due to multiple batches failing. Lastly, in the following epoch, the
validation loss instead hit −∞, this time again due to two batches failing. Due to
the fact that the loss is calculated on a batch basis, it is impossible to say whether
or not the issue was caused by singular predictions or if there were multiple failing
predictions in each batch. Since the used loss is PyTorch’s binary cross entropy with
logits-loss (BCELog), which is supposed to be more stable than regular sigmoid ac-
tivation followed by binary cross entropy loss (BCE loss) thanks to the log-sum-exp
trick [38], the likelihood of this behavior occurring should be mitigated.

The primary factor that could cause these erroneous predictions is a combination
of severe misclassification of the model, e.g., the model predicting close to zero for
a problem with label=1, and the fact that the model uses 16-bit floating point
precision. By having 16-bit floating point precision, the memory usage of the GPU
is reduced by half compared to 32-bit precision. However, this comes at the cost
of fewer and less accurate decimal places. In turn, this could mean that when a
prediction is misclassified and close to either zero or one, the machine lacks enough
precision to not interpret it as the respective integers, causing the BCE loss to
become ∞. For example, in the aforementioned case where y = 1 we get a BCE of

lim
σ(x)→0

L(x, y = 1) = lim
σ(x)→0

−
(
y · log(σ(x)) + (1− y) · log(1− σ(x))

)
(6.1)

= lim
σ(x)→0

−
(
1 · log(σ(x)) + 0 · log(1− σ(x))

)
= −1 · log(0)
=∞.

(6.2)

One potential cause for this severe misclassification could be some exploding gradient
causing the output of the model x = ∞ and thus σ(x) = 0 (or 1 for x = −∞),
which results in the total loss being ∞ as well. Since both the input vectors and
embeddings are normalized, the risk of exploding gradients should be mitigated [39]
to some extent. However, normalization is only performed on the inputs to the
classification component itself, which is not the case in [39, 40], where intermediary
batch normalization is used as it helps reduce internal covariate shift [41] – which is
defined by the authors as “... the change in the distribution of network activations

58

6. Discussion

due to the change in network parameters during training.” Therefore, adding in
intermediary batch normalization between the hidden layers of the classification
component of AutoBERT could both resolve the undefined/infinity loss issue and
also help the model converge faster [41]. In the case for epoch 18, however, a valid
explanation is hard to reason out.

Interestingly, the troublesome loss behavior only occurred in the IGDB model vari-
ation, where the highest amount of contextual information was introduced. This
raises the question whether or not the added information is more confusing to the
network rather than informative. Since the Stream variation reached better per-
formance and converged in fewer epochs, as shown in figure 5.2a, the answer leans
towards this added information being confusing. Furthermore, as more information
is embedded by the RoBERTa transformer, having greater magnitudes of internal
covariate shift in AutoBERT is not unreasonable as an effect. However, as men-
tioned section 6.1, there could also be other factors which explain the difference in
performance.

6.3 Where Contextual Information Improves Pre-
dictions

As noted in sections 5.4.1 and 5.4.3, adding additional contextual information tends
to lead to an improved ability in defining what is appropriate language, which is also
highlighted in table 5.5c by the significant difference in Precision between the models
which depend on contextual information (severity score vectors are exempt), and
those which do not. Practically speaking, this should result in fewer false positives,
i.e., incorrectly identifying of inappropriate language as appropriate. Furthermore,
from the test results, both Precision and Recall gains a significant performance
boost in the IGDB variation when compared to the other models. These results are
indicating that the IGDB variation is able to better identify appropriate language
(Precision) and to reduce erroneous classification of messages that are appropriate
(Recall).

Looking at the inverse case of false positives, a positive improvement does exist for
the Stream variation when looking at Specificity in table 5.5b. However, it is not
as pronounced as in the prior case and the results in section 5.4 yield mixed results
overall, making it hard to tell whether or not there is a significant improvement.
Likewise, from the test results in table 5.11b, the Specificity does not change signif-
icantly for neither the Stream- nor IGDB variations, although the IGDB variation
has a decreased observed Specificity compared to both the EBoW baseline and the
Stream variation by about 3.5 percent units.

To further highlight where the AutoBERT models improve over the baselines and
where they instead fall short, table 6.1 shows a set of messages from the validation
set where the Stream model, EBoW baseline, and the true labels are listed next
to it. These are procured by looking at the most extreme cases of failure of the
Stream model and EBoW baselines, as they are likely the datapoints which lie on
the boundary between being appropriate and inappropriate.

59

6. Discussion

Table 6.1: Messages and predictions of best baseline and AutoBERT model com-
pared to the true label from the validation set. Output labels for each model are
listed in parentheses. Do recall that the decision thresholds for the EBoW and
Stream models are 0.3 and 0.4, as shown in table 5.7. Note that some messages
are not in English, even though that was the only allowed language based on the
database query. The entries above the line are based on the greatest absolute dis-
tance of the EBoW model compared to the actual label and the entries below are
instead based on the greatest absolute distance between the AutoBERT Stream
model and the actual label. Do note that the language here may be inappro-
priate.

Message EBoW Stream Label
BatChest 0.0015 (0) 0.0161 (0) 1
₤7 for a second marble strip Keepo 0.0016 (0) 0.0471 (0) 1
\PogChamp/ i never knew you can do licky lic... 0.0021 (0) 0.8090 (1) 1
that’s a nice butt tho. 0.0069 (0) 0.3601 (0) 1
C00chie Police. Ma’am, I’m going to need s... 0.0074 (0) 0.0445 (0) 1
chaattuurbate de yayın açsa paranın anasını si... 0.0342 (0) 0.0000 (0) 1
@l*****r но увы альтернативы телеги ща нет, чт... 0.8658 (0) 0.0000 (0) 1
Yo, your areola be showing......just a bit 0.3214 (1) 0.0003 (0) 1
Firm ass 0.3696 (1) 0.0005 (0) 1
little asseater 0.0818 (0) 0.0006 (0) 1

In table 6.1, the first thing to note is that some labels are deemed appropriate even
though the language may not be, e.g., the last row which clearly is usage of Sex-
based terms and potentially Aggression or Bullying, which are categories considered
by AutoMod as presented in section 3.1. This indicates that the inferred labels
are not fully accurate, which can be expected since the labels depend on the job
of the moderators themselves. Moderators whom cannot be taken for granted to
do a flawless job, especially when the activity in chat is high. It is also important
to note that some messages may be deemed appropriate depending on stream’s
configuration of AutoMod, as described insection 2.2, meaning that the leniency
of the moderator might still be valid. Therefore, without the knowledge of the
configuration of AutoMod, it is hard to tell whether or not a message is appropriate.

Another thing to note is that the Stream model tended to have issues primarily with
foreign languages according to the labels. However, as the language is not English,
it is hard to tell whether or not the model is correct. The RoBERTa model is trained
to work on multiple languages, meaning that the Stream model may very well be
correct in that the language is inappropriate whilst the actual label is appropriate.
To begin with, since the chat is supposed to be English-only, one might argue that
these languages are inappropriate. However, since the moderators have allowed the
message by marking it as appropriate, this argument may fall flat.

60

6. Discussion

6.4 Limitations
Considering the results that have been presented up to now, there are some limi-
tations to consider. Firstly, the dataset itself does not contain any fully accepted
messages, i.e., neither captured by AutoMod nor deleted by moderators, meaning
that the dataset itself is imbalanced to a degree. Therefore, it is best to interpret
AutoBERT as a model which is trained to improve, or “boost”, the residual error of
AutoMod since it has only been trained on data where some human intervention is
needed. It would be interesting, however, to see how AutoBERT fairs against Auto-
Mod on the original message distribution, i.e., including the fully accepted messages
as [42] had success in content moderation by training their model on partially labeled
data which consisted of only negatives and unlabeled data.

Secondly, the data that was procured is not evenly distributed either, since there are
a significant majority of negative labels in both the training and validation sets, as
shown in table 5.1. This explains why many of the models have a higher Specificity
than Recall, as shown in table 5.5. However, the Stream and IGDB variations of
AutoBERT seem to be able to balance out these metrics by increasing the Recall re-
markably and maintaining a Specificity similar to the baselines. Nonetheless, some
form of data augmentation and/or balancing sampling methods would be appropri-
ate to ensure that the distribution of labels is closer to 50/50 and train the models
on such a set instead to mitigate the risk of bias.

Thirdly, the choice of convenience sampling, described in section 3.1.1, may prove
to be problematic due to non-periodicity and/or long-time trends [16], which is
reasonable as it is difficult to tell what the trends of message bodies look like. It
is also reasonable to think that the periodicity of message bodies is long with the
constant influence of new trends, e.g., memes and other viralities, which help shape
the language used on the Internet. Furthermore, with this uncertainty in periodicity
and trends, it becomes hard to decide on a useful temporal cut-off point where the
messages prior to this date are superfluous or outdated. Nonetheless, this factor
is likely more related to improving performance of a model rather than verifying
whether or not it functions. In this project, however, the choice was to use as much
data that was available in order to see if the hypotheses could be accepted.

Fourthly, as mentioned previously in both section 5.1.1 and section 6.1, the test
set contains datapoints which only refer to two specific channels. Furthermore,
the datapoints are labeled by only two moderators, each labeling approximately
half of the datapoints each. With this in mind, it is questionable whether the test
set is representative of the same distribution of messages that has been trained
and validated against. If this is the case, then the inference procedure outlined in
equation (3.1) is instead severely lacking since it tends to be heavily biased towards
classifying messages as inappropriate when compared to the moderator labels in
table 5.3. Nonetheless, in order to further ensure that the observed performance of
the models w.r.t. the test set, additional datapoints should be added from other
channels as well. Preferably, all 11 of the contacted moderators, or potentially other
once in the future, would respond and label at least 50 datapoints each as this
would (1) result in more diversified samples in the test set, increasing the likelihood

61

6. Discussion

of being representative of the complete distribution of messages which adhere to
the delimitations in section 1.4; (2) yield more datapoints than the estimated lower
bound in equation (3.4) and thus yield greater confidence in the results.

Lastly, the robustness investigation described in section 3.1.2 does not take the
number of datapoints into consideration of each subset, which partially explains
the difference in confidence intervals presented in section 5.4. The increase in per-
formance on the unique subsets are unlikely going to be higher compared to the
common subsets if they were to be of similar size, since the model should theo-
retically perform better on data that it has seen before rather than what it has
not.

6.5 Future Work
As for the continuation of this work, there are plenty of paths to take in the future.
A first proposal would be to try and improve the performance of AutoBERT Stream
model. This could be done by fine-tuning a sentence transformer, e.g., RoBERTa,
to the specific domain, in this case Twitch chat. Fine-tuning the weights to such
a domain would likely improve the quality of the embeddings themselves and help
build stronger semantic relationships.

As a second proposal, the computational speed of the producing embeddings could
be investigated. One option would be to work with distilled sentence transformers,
e.g., DistilRoBERTa, to scale the embedding performance on a vertical axis. To
instead scale horizontally, one could investigate the possibilities of separating out
the embedding model and have multiple instances embed information in parallel, as
discussed in section 6.1.1.

The third proposal would be to work with investigating what the underlying cause
of the IGDB variation not improving, as discussed discussed in section 6.1. This
could be done by working with imputation methods to fill in the data gaps or
further increasing the complexity of the classification component of AutoBERT.
Other methods could also be helpful, e.g., by changing activation functions in the
hidden layers. Furthermore, introducing intermediary normalization layers could
help with the stability of the model and cause faster convergence, as discussed in
section 6.2.

Lastly, similar to the small study done on the messages versus severity score vectors,
described in section 4.1.1, a larger ablation study could be done to investigate the
feature importance of each introduced data type of each added layer of information.
If not all features are relevant to the model, then its complexity could be reduced and
potentially reduce the training time complexity since the number of token sentences
could be reduced.

62

7
Conclusion

Rounding of the discussion made in the previous chapter, this chapter aims to answer
the main research questions stated at the beginning of this thesis. After that,
it summarizes and reflects upon the work that was done and how it could have
been executed differently. To finish off, this chapter then brings up what this work
contributes to the field of algorithmic text moderation.

7.1 Answering the Questions Under Investigation
To reiterate the goal of this work, the aim has been to investigate the possibility to
improve algorithmic text moderation by introducing additional layers of contextual
information. In this case, the setting has been in Twitch chat with the hypotheses
being that (1) introducing a layer of stream metadata along with the chat messages
will have a significant impact on the moderator model’s performance, (2) introducing
a layer of external domain-specific data, here games metadata from IGDB, will
result in significant improvement on the moderator model’s performance, and (3) the
improved performance resulting from each additional layer of information outweighs
the time and complexity that follows from incorporating the layers’ information into
the moderator model.

With the results of the Stream variation of AutoBERT, the following conclusions
can be made:

1. Adding a layer of stream metadata to an algorithmic moderator tool
based on AutoMod’s output will result in significant improvement of
moderator performance. Adding stream metadata as contextual information
can potentially be concluded as accepted as this was the model which was signifi-
cantly better when compared to all baselines and the other model variations w.r.t.
the validation data. As the Stream variation also had the second best performance
on the test set, though not to a significant degree compared to the EBoW baseline,
adding additional stream metadata as context is indicative of yielding improved pre-
dictive performance. However, further investigation is needed, both w.r.t. a better
labeling procedure to lessen the gap between validation- and test sets and w.r.t.
obtaining additional test data to narrow down the confidence bounds.

63

7. Conclusion

2. Adding a layer of domain-specific data relating to the stream metadata
of (1) to an algorithmic moderator tool based on AutoMod’s output will
result in significant improvement of moderator performance. As for the
IGDB variation of AutoBERT, since it did not perform better than the Stream
variation on the validation set, it is not possible to conclude (2) as accepted with
certainty. However, as it did perform the best on the test set, albeit with significant
performance drops compared to the validation set, more work needs to be done
before (2) can be either accepted or rejected with certainty. Furthermore, the cause
behind the validation performance not improving, when the test performance did,
has yet to be determined.

3. Improved performance results of each additional layer of information
outweigh the time and complexity that follows from incorporating the
layers’ information into an algorithmic moderator tool based on Auto-
Mod. With neither (1) nor (2) being accepted for certain, (3) cannot be fully
accepted either. Nonetheless, depending on what is decided to be complex and
time-consuming for the specific setting, e.g., the speed of forward passes (see sec-
tion 6.1.1), (3) may be partially accepted since AutoBERT Stream performed better
than the best baseline within the range of 2-6 percent units across all metrics on the
validation data. Furthermore, AutoBERT IGDB was significantly better than all
baselines in all metrics except for Specificity, and only lost to the Stream variation
in Specificity, as shown in table 5.11. If the aforementioned investigation of (1) is
performed and if (1) is accepted with confidence; and if the time complexity for the
IGDB variation prediction can be reduced, potentially using the methods mentioned
in section 6.1.1; then (3) can be fully accepted. This leaves most of the hypotheses
potentially accepted; however, to come to a solid conclusion.

7.2 Summarizing and Reflecting on the Work
Regarding the work done in this thesis, it has involved data procuration, model im-
plementation, and model evaluation. First, the process of procuring training- and
validation data was done by accessing a large data lake in section 3.1. In this step,
the stream metadata for the Stream layer was also procured. Then, baselines were
produced in section 4.1 along with an ablation study to investigate some feature
importance of severity scores from AutoMod’s internal model and chat messages
themselves, described in section 4.1.1. Following the implementation of the base-
lines, AutoBERT was designed for the Base variation, which was then followed by
the Stream variation in section 4.2. Afterwards, the games metadata from IGDB
was procured and joined with the already-existing datasets, described in section 3.2.
With the IGDB data procured, the last variation of AutoBERT was trained. As the
IGDB variation of AutoBERT was training, the test set data was procured and sent
out for manual labeling by moderators at Twitch in their respective domains, de-
scribed in section 3.3. Lastly, all models, both baselines and AutoBERT variations,
were evaluated following the procedure outlined in section 4.4.

In hindsight, there are multiple actions that could have been taken differently in

64

7. Conclusion

order to save time and produce more results. First of all, using the baselines, learning
curves of the training data could be procured in order to see how much data was
needed before performance improvements stagnated. At first, using all data seemed
to be the right way to go as it did not take long to train the baselines. However,
as the training of AutoBERT commenced, it became apparent how fast the models
tended to converge; every model reached a high performance after about 1 epoch, as
shown in figure 5.2a. Had the training set been smaller but still potentially yielded
as good results, then training could have been quicker and additional efforts could
have been done with troubleshooting the IGDB variation’s unexpected behavior and
lack of performance increase.

Second, further preparatory research could have been made regarding sentence trans-
formers and the recommendation of using PyTorch instead of TensorFlow, which
would have saved time and duplicate work related to loading and processing of
data. Also, if a distilled transformer model had been used, e.g., DistilRoBERTa,
then the training could have gone faster since these models are smaller and tend to
have significantly higher embedding speeds.

Third, with more time being saved from the two prior actions, more time could have
been spent on investigating the procured data itself. With a deeper understanding
of the data under investigation, e.g., via further ablation studies, the produced
models would not only be useful from a performance perspective, but also in the
perspective of finding mechanistic explanations to model the behavior of Twitch
chat. Such findings could help broaden the spectrum of what can be researched and
raise new and interesting questions regarding Twitch chat from perspectives other
then moderation as well.

7.3 Contributions to the Field
To wrap things up, it is time to talk about what this work contributes to the field
of algorithmic text moderation. Much like the work done in [5], where algorithmic
text moderation of comments was successfully improved by producing a model that
combining the underlying implicit patterns of the comments’ content with a context
defined by patterns hidden in the related social network of the comments, this
work has successfully shown that moderation of chat messages can be improved by
incorporating contextual information based on the surrounding stream data where
the chat message occurs.

Furthermore, it shows that the use of sentence transformers fine-tuned for semantic
textual similarity tasks can be used in ways similar to the models in [5, 43]. However,
instead of comments, the available metadata surrounding chat messages allows the
sentence transformers to be applied on chat with significant improvements.

Lastly, this work illustrates how sentence transformers may be leveraged to easily
embed additional layers of information to further investigate what text-based infor-
mation can be used to construct an informative context for a classification model.
Albeit, at the cost of linear time complexity for each new token sentence that needs
to be added per datapoint.

65

7. Conclusion

66

Bibliography

[1] M. D. Tredici and R. Fernández, Semantic variation in online communities of
practice, 2018. arXiv: 1806.05847 [cs.CL].

[2] R. Gorwa, R. Binns, and C. Katzenbach, “Algorithmic content moderation:
Technical and political challenges in the automation of platform governance”,
Big Data & Society, vol. 7, no. 1, p. 2 053 951 719 897 945, 2020.

[3] R. Binns, M. Veale, M. Van Kleek, and N. Shadbolt, “Like trainer, like bot?
inheritance of bias in algorithmic content moderation”, in International con-
ference on social informatics, Springer, 2017, pp. 405–415.

[4] I. Brigadir, D. Greene, and P. Cunningham, “Analyzing discourse communities
with distributional semantic models”, in Proceedings of the ACM Web Science
Conference, ser. WebSci ’15, Oxford, United Kingdom: Association for Com-
puting Machinery, 2015, isbn: 9781450336727. doi: 10.1145/2786451.2786470.
[Online]. Available: https://doi.org/10.1145/2786451.2786470.

[5] A. Veloso, W. Meira, T. Macambira, D. O. Guedes, and H. Almeida, “Auto-
matic moderation of comments in a large on-line journalistic environment”, in
ICWSM, 2007.

[6] Twitch Staff, How to use automod. [Online]. Available: https://help.twitch.
tv/s/article/how-to-use-automod?language=en_US (visited on 09/30/2020).

[7] IGDB Staff, Welcome to the guiding star in your world of gaming. [Online].
Available: https://www.igdb.com/ (visited on 01/30/2021).

[8] Twitch Staff, List of all tags. [Online]. Available: https ://www.twitch.tv/
directory/all/tags (visited on 01/30/2021).

[9] Oxford University Press, Context. [Online]. Available: https://www.oxfordlearnersdictionaries.
com/definition/english/context (visited on 01/30/2021).

[10] Python Software Foundation, Typing – support for type hints. [Online]. Avail-
able: https://docs.python.org/3.6/library/typing.html (visited on 01/30/2021).

[11] Torch Contributors, Torch.utils.data. [Online]. Available: https://pytorch.org/
docs/stable/data.html (visited on 01/30/2021).

[12] Python Software Foundation, Multiprocesing – process-based parallelism. [On-
line]. Available: https://docs.python.org/3.6/library/multiprocessing.html
(visited on 01/30/2021).

[13] Python Software Foundation,Multiprocessing.shared_memory — provides shared
memory for direct access across processes. [Online]. Available: https://docs.
python . org / 3 / library /multiprocessing . shared_memory. html (visited on
01/30/2021).

67

https://arxiv.org/abs/1806.05847
https://doi.org/10.1145/2786451.2786470
https://doi.org/10.1145/2786451.2786470
https://help.twitch.tv/s/article/how-to-use-automod?language=en_US
https://help.twitch.tv/s/article/how-to-use-automod?language=en_US
https://www.igdb.com/
https://www.twitch.tv/directory/all/tags
https://www.twitch.tv/directory/all/tags
https://www.oxfordlearnersdictionaries.com/definition/english/context
https://www.oxfordlearnersdictionaries.com/definition/english/context
https://docs.python.org/3.6/library/typing.html
https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/data.html
https://docs.python.org/3.6/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.shared_memory.html
https://docs.python.org/3/library/multiprocessing.shared_memory.html

Bibliography

[14] Python Software Foundation, Ctypes – a foreign function library for python.
[Online]. Available: https://docs.python.org/3.6/library/ctypes.html (visited
on 01/30/2021).

[15] Torch Contributors,Distributeddataparallel. [Online]. Available: https://pytorch.
org/docs/master/generated/torch.nn.parallel.DistributedDataParallel.html
(visited on 01/31/2021).

[16] Z. Reitermanova, “Data splitting”, in WDS, vol. 10, 2010, pp. 31–36.
[17] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning:

data mining, inference, and prediction, 2nd ed. Springer Science & Business
Media, 2009, ch. 7, pp. 241–248, isbn: 9780387848570.

[18] Y. Xu and R. Goodacre, “On splitting training and validation set: A com-
parative study of cross-validation, bootstrap and systematic sampling for es-
timating the generalization performance of supervised learning”, Journal of
Analysis and Testing, vol. 2, no. 3, pp. 249–262, 2018.

[19] G. P. Zhang and V. Berardi, “Time series forecasting with neural network
ensembles: An application for exchange rate prediction”, Journal of the oper-
ational research society, vol. 52, no. 6, pp. 652–664, 2001.

[20] G. J. Bowden, H. R. Maier, and G. C. Dandy, “Optimal division of data
for neural network models in water resources applications”, Water Resources
Research, vol. 38, no. 2, pp. 2–1, 2002.

[21] IGDB Staff, Welcome to the guiding star in your world of gaming. [Online].
Available: https://api-docs.igdb.com/ (visited on 01/30/2021).

[22] Python Software Foundation, Ast — abstract syntax trees. [Online]. Available:
https://docs.python.org/3.6/library/ast.html (visited on 01/31/2021).

[23] M. Collins, R. E. Schapire, and Y. Singer, “Logistic regression, adaboost and
bregman distances”, Machine Learning, vol. 48, no. 1, pp. 253–285, 2002.

[24] Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding bag-of-words model: A
statistical framework”, International Journal of Machine Learning and Cyber-
netics, vol. 1, no. 1-4, pp. 43–52, 2010.

[25] F. Chollet, The functional api. [Online]. Available: https://www.tensorflow.
org/guide/keras/functional (visited on 10/23/2020).

[26] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng, TensorFlow: Large-scale machine learning on heteroge-
neous systems, Software available from tensorflow.org, 2015. [Online]. Avail-
able: https://www.tensorflow.org/.

[27] N. Reimers and I. Gurevych, Sentence-bert: Sentence embeddings using siamese
bert-networks, 2019. arXiv: 1908.10084 [cs.CL].

68

https://docs.python.org/3.6/library/ctypes.html
https://pytorch.org/docs/master/generated/torch.nn.parallel.DistributedDataParallel.html
https://pytorch.org/docs/master/generated/torch.nn.parallel.DistributedDataParallel.html
https://api-docs.igdb.com/
https://docs.python.org/3.6/library/ast.html
https://www.tensorflow.org/guide/keras/functional
https://www.tensorflow.org/guide/keras/functional
https://www.tensorflow.org/
https://arxiv.org/abs/1908.10084

Bibliography

[28] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L.
Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretrain-
ing approach”, arXiv preprint arXiv:1907.11692, 2019.

[29] N. Reimers, Sentencetransformers documentation. [Online]. Available: https:
//www.sbert.net/ (visited on 02/01/2021).

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, “Pytorch: An imperative style, high-performance deep learn-
ing library”, in Advances in Neural Information Processing Systems 32, H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Gar-
nett, Eds., Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available:
http://papers .neurips .cc/paper/9015- pytorch- an- imperative- style- high-
performance-deep-learning-library.pdf.

[31] Torch Contributors, Torch.tensor. [Online]. Available: https://pytorch.org/
docs/stable/tensors.html (visited on 02/09/2021).

[32] The Hugging Face Team, Roberta. [Online]. Available: https://huggingface.
co/transformers/model_doc/roberta.html (visited on 02/08/2021).

[33] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified acti-
vations in convolutional network”, arXiv preprint arXiv:1505.00853, 2015.

[34] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng, Tf.data.dataset. [Online]. Available: https://www.tensorflow.
org/api_docs/python/tf/data/Dataset#shuffle (visited on 10/23/2020).

[35] L. N. Smith, “Cyclical learning rates for training neural networks”, in 2017
IEEE winter conference on applications of computer vision (WACV), IEEE,
2017, pp. 464–472.

[36] B. van Zaane, Y. Vergouwe, A. R. T. Donders, and K. G. Moons, “Compari-
son of approaches to estimate confidence intervals of post-test probabilities of
diagnostic test results in a nested case-control study”, BMC Medical Research
Methodology, vol. 12, no. 1, p. 166, 2012.

[37] A. R. T. Donders, G. J. Van Der Heijden, T. Stijnen, and K. G. Moons,
“A gentle introduction to imputation of missing values”, Journal of clinical
epidemiology, vol. 59, no. 10, pp. 1087–1091, 2006.

[38] Torch Contributors, Bcewithlogitsloss. [Online]. Available: https ://pytorch .
org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html (visited on
01/30/2021).

[39] J. Bjorck, C. Gomes, B. Selman, and K. Q. Weinberger, “Understanding batch
normalization”, arXiv preprint arXiv:1806.02375, 2018.

69

https://www.sbert.net/
https://www.sbert.net/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://pytorch.org/docs/stable/tensors.html
https://pytorch.org/docs/stable/tensors.html
https://huggingface.co/transformers/model_doc/roberta.html
https://huggingface.co/transformers/model_doc/roberta.html
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shuffle
https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shuffle
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

Bibliography

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion”, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2016.

[41] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”, in International conference on
machine learning, PMLR, 2015, pp. 448–456.

[42] J.-Y. Delort, B. Arunasalam, and C. Paris, “Automatic moderation of online
discussion sites”, International Journal of Electronic Commerce, vol. 15, no. 3,
pp. 9–30, 2011.

[43] J. Pavlopoulos, P. Malakasiotis, and I. Androutsopoulos, “Deep learning for
user comment moderation”, arXiv preprint arXiv:1705.09993, 2017.

70

A
AutoBERT

A.1 Classification Component

Linear Layer

Leaky ReLU

Linear Layer

Leaky ReLU

Linear Layer

Leaky ReLU

Linear Layer

Leaky ReLU

Linear Layer

Figure A.1: Fully connected network architecture of the classification component of
AutoBERT. Note that the first Linear Layer is wider than the other layers to signify
the concatenated inputs from both input channels of the AutoBERT architecture
shown in figure 4.3

I

A. AutoBERT

A.2 Run-time Configuration

Listing 6: AutoBERT run-time configuration for the IGDB iteration. Do note
that each field in data_vars defines a data type of the data and has a comment
annotating at what iteration this data type was introduced. The structure -field
defines the structure of the dataset using sets of indices; the first set of indices
defines the text inputs, the second defines the number inputs, and the third defines
the output label(s). The mixins -field defines which transformations should be
applied to each text input type to be used when loading the data inside the dataset.

igdb_config = DatasetConfig(
data_vars=[

String-based columns
MESSAGE_BODY, # Base
SUMMARY, # IGDB
CHANNEL_TITLE, CHANNEL_CATEGORY, # Stream
BROADCAST_TAGS, CATEGORY_TAGS, # Stream
GENRES, # IGDB
THEMES, FRANCHISES, # IGDB
Number-based columns
SEVERITY_ABLEIST, SEVERITY_AGGRESSION, # Stream
SEVERITY_HOMOPHOBIC, SEVERITY_MISOGYNISTIC, # Stream
SEVERITY_N_WORD, SEVERITY_NAMECALLING, # Stream
SEVERITY_NATIONALIST, SEVERITY_RACIST, # Stream
SEVERITY_SEXWORDS, SEVERITY_SWEARING, # Stream
AUTOMOD_LVL_1, AUTOMOD_LVL_2, # IGDB
AUTOMOD_LVL_3, AUTOMOD_LVL_4, # IGDB
Output
LABEL # Base

],
structure=[slice(0, 9), slice(9, -1), -1],
mixins={

MESSAGE_BODY: identity,
SUMMARY: identity,
CHANNEL_TITLE: channel_mapper,
CHANNEL_CATEGORY: category_mapper,
BROADCAST_TAGS: broadcast_tag_mapper,
CATEGORY_TAGS: category_tag_mapper,
GENRES: genres_mapper,
THEMES: themes_mapper,
FRANCHISES: franchise_mapper

}
)

II

B
Robustness Investigation Results

B.1 Channels

Table B.1: Accuracy scores of the baseline models w.r.t. common and unique
channels of the validation set.

(a) Common channels of the valida-
tion set, i.e. channels present in the
training set.

Accuracy
Model
SSV 0.8142 (±0.0016)
BoW 0.8325 (±0.0015)

EBoW 0.8462 (±0.0014)

(b) Unique channels of the validation
set, i.e. channels not present in the
training set.

Accuracy
Model
SSV 0.7694 (±0.0077)
BoW 0.7650 (±0.0081)

EBoW 0.7804 (±0.0073)

III

B. Robustness Investigation Results

Table B.2: Precision, Recall, and F1 scores of the baseline models w.r.t. common
and unique channels of the validation set.

(a) Common channels of the validation set, i.e. channels present in the training set.

Precision Recall F1 Score
Model
SSV 0.6192 (±0.0033) 0.8077 (±0.0030) 0.7010 (±0.0027)
BoW 0.6770 (±0.0036) 0.7242 (±0.0035) 0.6998 (±0.0028)

EBoW 0.7012 (±0.0033) 0.7484 (±0.0032) 0.7240 (±0.0028)

(b) Unique channels of the validation set, i.e. channels not present in the training
set.

Precision Recall F1 Score
Model
SSV 0.6625 (±0.0126) 0.8285 (±0.0110) 0.7363 (±0.0091)
BoW 0.6994 (±0.0144) 0.6933 (±0.0127) 0.6963 (±0.0105)

EBoW 0.7203 (±0.0135) 0.7112 (±0.0119) 0.7157 (±0.0096)

Table B.3: Specificity scores of the baseline models w.r.t. common and unique
channels of the validation set.

(a) Common channels of the valida-
tion set, i.e. channels present in the
training set.

Specificity
Model
SSV 0.8166 (±0.0018)
BoW 0.8724 (±0.0015)

EBoW 0.8823 (±0.0015)

(b) Unique channels of the validation
set, i.e. channels not present in the
training set.

Specificity
Model
SSV 0.7318 (±0.0096)
BoW 0.8106 (±0.0085)

EBoW 0.8244 (±0.0084)

IV

B. Robustness Investigation Results

B.2 Broadcast Categories

Table B.4: Accuracy scores of the baseline models w.r.t. common and unique
broadcast categories of the validation set.

(a) Common broadcast categories of
the validation set, i.e. broadcast cat-
egories present in the training set.

Accuracy
Model
SSV 0.8121 (±0.0016)
BoW 0.8299 (±0.0015)

EBoW 0.8439 (±0.0015)

(b) Unique broadcast categories of
the validation set, i.e. broadcast cate-
gories not present in the training set.

Accuracy
Model
SSV 0.8161 (±0.0123)
BoW 0.8030 (±0.0123)

EBoW 0.8215 (±0.0131)

Table B.5: Precision, Recall, and F1 scores of the baseline models w.r.t. common
and unique broadcast categories of the validation set.

(a) Common broadcast categories of the validation set, i.e. broadcast categories
present in the training set.

Precision Recall F1 Score
Model
SSV 0.6182 (±0.0032) 0.8090 (±0.0029) 0.7008 (±0.0025)
BoW 0.6753 (±0.0035) 0.7223 (±0.0036) 0.6980 (±0.0028)

EBoW 0.6998 (±0.0035) 0.7463 (±0.0032) 0.7223 (±0.0025)

(b) Unique broadcast categories of the validation set, i.e. broadcast categories not
present in the training set.

Precision Recall F1 Score
Model
SSV 0.7873 (±0.0194) 0.8134 (±0.0187) 0.8001 (±0.0148)
BoW 0.8088 (±0.0205) 0.7393 (±0.0217) 0.7725 (±0.0161)

EBoW 0.8284 (±0.0182) 0.7636 (±0.0198) 0.7947 (±0.0147)

V

B. Robustness Investigation Results

Table B.6: Specificity scores of the baseline models w.r.t. common and unique
broadcast categories of the validation set.

(a) Common broadcast categories of
the validation set, i.e. broadcast cat-
egories present in the training set.

Specificity
Model
SSV 0.8132 (±0.0018)
BoW 0.8702 (±0.0015)

EBoW 0.8803 (±0.0015)

(b) Unique broadcast categories of
the validation set, i.e. broadcast cate-
gories not present in the training set.

Specificity
Model
SSV 0.8184 (±0.0160)
BoW 0.8556 (±0.0151)

EBoW 0.8693 (±0.0149)

VI

B. Robustness Investigation Results

B.3 Messages

Table B.7: Accuracy scores of the baseline models w.r.t. common and unique
messages of the validation set.

(a) Common messages of the valida-
tion set, i.e. messages present in the
training set.

Accuracy
Model
SSV 0.8161 (±0.0039)
BoW 0.8915 (±0.0031)

EBoW 0.8880 (±0.0030)

(b) Unique messages of the validation
set, i.e. messages not present in the
training set.

Accuracy
Model
SSV 0.8113 (±0.0017)
BoW 0.8180 (±0.0017)

EBoW 0.8349 (±0.0016)

Table B.8: Precision, Recall, and F1 scores of the baseline models w.r.t. common
and unique messages of the validation set.

(a) Common messages of the validation set, i.e. messages present in the training
set.

Precision Recall F1 Score
Model
SSV 0.4189 (±0.0092) 0.8106 (±0.0107) 0.5524 (±0.0098)
BoW 0.5898 (±0.0116) 0.7385 (±0.0112) 0.6558 (±0.0099)

EBoW 0.5771 (±0.0120) 0.7495 (±0.0122) 0.6521 (±0.0090)

(b) Unique messages of the validation set, i.e. messages not present in the training
set.

Precision Recall F1 Score
Model
SSV 0.6485 (±0.0031) 0.8090 (±0.0031) 0.7199 (±0.0027)
BoW 0.6873 (±0.0035) 0.7207 (±0.0033) 0.7036 (±0.0028)

EBoW 0.7155 (±0.0035) 0.7455 (±0.0033) 0.7302 (±0.0027)

VII

B. Robustness Investigation Results

Table B.9: Specificity scores of the baseline models w.r.t. common and unique
messages of the validation set.

(a) Common messages of the valida-
tion set, i.e. messages present in the
training set.

Specificity
Model
SSV 0.8170 (±0.0041)
BoW 0.9164 (±0.0029)

EBoW 0.9106 (±0.0031)

(b) Unique messages of the validation
set, i.e. messages not present in the
training set.

Specificity
Model
SSV 0.8122 (±0.0019)
BoW 0.8596 (±0.0018)

EBoW 0.8731 (±0.0017)

VIII

C
Shared Memory in Python

IX

C. Shared Memory in Python

Listing 7: Base class implementation of the C-type structure for tokenized sen-
tences.

import ctypes
from transformers import BatchEncoding

class TOKENIZED_SENTENCE(ctypes.Structure):
initialized = False
_shape = None

def __init__(self, token_ids, attention_mask):
return super().__init__(token_ids, attention_mask)

@classmethod
def from_torch(cls, batch_encoding):

token_ids = batch_encoding['input_ids']
attention_mask = batch_encoding['attention_mask']
token_ids_ = cls._token_type(

*[TOKEN_ARR(*ts) for ts in token_ids.tolist()]
)

attention_mask_ = cls._attention_type(
*[ATTENTION_ARR(*ts) for ts in attention_mask.tolist()]

)

if cls._shape is None:
cls._shape = {

'input_ids': token_ids.size(),
'attention_mask': attention_mask.size()

}

return cls(token_ids_, attention_mask_)

def as_torch(self, shape=None):
encoding = {}
for k, _ in self._fields_:

encoding[k] = torch.from_numpy(
np.ctypeslib.as_array(self.__getattribute__(k)) \

.reshape(shape[k] \
if shape is not None \
else self._shape[k]

)
)

return BatchEncoding(encoding)

X

C. Shared Memory in Python

Listing 8: Base class implementation of the C-type structure for datapoints con-
sisting of a message, a severity score vector, and the target response. Do note that
the snippet continues in listing 9.

import ctypes
from transformers import BatchEncoding

class CACHE_TYPE(ctypes.Structure):
initialized = False
_shape = None
_n_sentences = None
_n_vector_dims = None

def __init__(self, tokens, vectors, label):
super().__init__(tokens, vectors, label)

@classmethod
def init(cls, n_sentences, n_vector_dims):

if hasattr(cls, "_fields_") or cls._initialized_:
raise AttributeError(
"""Tried to initialize CACHE_TYPE
class when it has already been initialized"""

)
cls._n_sentences = n_sentences
cls._n_vector_dims = n_vector_dims
cls._sentence_type = TOKENIZED_SENTENCE.init(n_sentences)
cls._vector_type = ctypes.c_float * n_vector_dims
cls._label_type = LABEL
cls._fields_ = [

("sentence_tokens", cls._sentence_type),
("vector", cls._vector_type),
("label", cls._label_type)

]
cls._initialized_ = True
return cls

''' ... continuation in next listing '''

XI

C. Shared Memory in Python

Listing 9: Base class implementation of the C-type structure for datapoints con-
sisting of a message, a severity score vector, and the target response. Do note that
the snippet is a continuation of listing 8.

'''Continuation of previous listing'''
@classmethod
def from_torch(cls, tokens, vector, label):

tokens_ = cls._sentence_type.from_torch(tokens)
vector_ = cls._vector_type(*vector.flatten().tolist())
label_ = cls._label_type(label.item())

if cls._shape is None:
cls._shape = {

"sentence_tokens": tokens_._shape,
"vector": vector.size(),
"label": label.size()

}
return cls(tokens_, vector_, label_)

def as_torch(self, shape=None):
tokens = self.sentence_tokens.as_torch(shape['sentence_tokens'] \

if shape is not None else self._shape['sentence_tokens'])
vector = torch.from_numpy(

np.ctypeslib.as_array(self.vector) \
.reshape(shape['vector'] \
if shape is not None else self._shape['vector'])

).half()
label = torch.from_numpy(

np.ctypeslib.as_array(self.label) \
.reshape(shape['label'] \
if shape is not None else self._shape['label'])

).half()
return tokens, vector, label

XII

	List of Figures
	List of Tables
	List of Code
	Introduction
	An Overview of Manual- and Algorithmic Text Moderation
	Large-Scale Text Moderation at Twitch
	History of AutoMod and Its Current Shortcomings
	Motivating the Interest for Improvement

	Aim
	Delimitations
	Specification of Issue Under Investigation
	Thesis Outline

	Theory
	Twitch Domain Language
	Text Moderation using AutoMod
	Defining a Context Within Text Moderation
	Mathematical Notation
	Types of Variables and Functions

	Shared Memory in Python and PyTorch

	Procuring, Refining, and Preparing Datasets
	Procurement of Data from Twitch
	Constructing the Training- and Validation Sets
	Investigating Robustness and Generalization Against Unseen Data

	Procurement of External Data
	Procurement of the Test Dataset

	Architecturing, Implementing, and Iterating on the Model
	Defining a Baseline
	A Small Ablation Study of Chat Messages and Severity Scores

	Defining the Main Model
	AutoBERT Configurations of each Variation

	Training the Models
	Baseline Model Training and Hyperparameters
	Hyperparameters for Loading and Processing of Data

	AutoBERT Model Training and Hyperparameters
	Hyperparameters for Loading and Processing Data

	Evaluating the Models
	Estimation of Confidence Bounds

	Summarizing the Baselines and AutoBERT Models
	Baseline Model Summary
	AutoBERT Model Summary

	Results
	Data Statistics
	Test Dataset

	Baseline Results
	Inferred AutoMod Performance and Baseline Performance

	AutoBERT Comparison to Baseline
	Evaluating Decision Thresholds

	Investigation of Robustness and Generalization Regarding Unseen Data
	Conditioning on Channels
	Baselines
	AutoBERT Models

	Conditioning on Broadcast Categories
	Baselines
	AutoBERT Models

	Conditioning on Messages
	Baselines
	AutoBERT Models

	Final Evaluation on Test Set

	Discussion
	Performance Differences Between AutoBERT Stream- and IGDB Configurations
	Complexity- and Performance Tradeoffs Between Layers of Information

	Sudden Undefined and Positive/Negative Infinite Loss of AutoBERT IGDB Configuration
	Where Contextual Information Improves Predictions
	Limitations
	Future Work

	Conclusion
	Answering the Questions Under Investigation
	Summarizing and Reflecting on the Work
	Contributions to the Field

	Bibliography
	AutoBERT
	Classification Component
	Run-time Configuration

	Robustness Investigation Results
	Channels
	Broadcast Categories
	Messages

	Shared Memory in Python

