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Department of Electrical Engineering
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Abstract
Driver monitoring systems provide increased safety in vehicles by studying the face
of the driver and drawing conclusions about the driver’s attention and focus. An
important feature of driver monitoring systems is the ability to accurately calculate
which areas or objects inside a car drivers look at. Objects that a driver could
be looking at are for example the rear mirror, the center entertainment stack, or
the left window. Many driver monitoring systems rely on a calibration step ahead
of a driving session to provide an accurate gaze measurement. However, such a
step needs to be repeated any time conditions change, such as for every new driver,
which is not always feasible or desirable in a real-life implementation in a production
vehicle. Further, in many driver monitoring systems, the driver’s gaze is not always
visible to the camera, as many production systems only contain a single camera
setup. This thesis presents a solution to these problems that incorporates a mix of a
regression model and unsupervised learning. Input data in the form of gaze direction
and head pose direction from a single-camera system is used to approximate the
current gaze direction. This new gaze direction is clustered using a modified version
of the expectation-maximization clustering algorithm. The clustering algorithm is
then used to classify the gaze point. The result is an algorithm that adapts to an
unknown user and calculates the best possible gaze direction and finally uses this
information to find the most likely object that the driver is focusing on. The results
show that the final algorithm can correctly classify ≈ 35% of the gaze measurements
using a single-camera system, which is only ≈ 0.66% less than using a multi-camera
system. Although the accuracy has the potential to improve, this still shows that
the proposed solution can handle lower quality data from a single-camera system
and still provide similar results as when working with higher quality data from a
multi-camera system. As no previous work for a self-calibrated algorithm applied to
provide a gaze sector indication in a vehicle setting has been found by the authors,
this thesis is deemed a good starting position for further development.

Keywords: Gaze Sector Analysis, Clustering, Unsupervised Learning, Driver Moni-
toring Systems, Multi-layer Perceptron Regression

v





Acknowledgements
We would like to thank everyone at Smart Eye AB in Gothenburg for welcoming us
and showing us how a good cup of Italian coffee is made. A special thanks to our
supervisor Henrik Lind and everyone at the Research department for making us feel
like a part of your team and for helping us grow as data scientists.

Our greatest thanks go out to Torsten Wilhelm for patiently guiding us through
this process, dissecting any and all of our infeasible ideas, and helping us wipe the
dirt off any gold nuggets we stumbled upon. This thesis would not have been pos-
sible without your help.

We also want to thank our examiner at Chalmers, Karinne Ramirez-Amaro, for
giving us excellent feedback. We could not have wished for better academic support
than what you gave us.

Victor Brandt & Christoffer Hansson, Gothenburg, May 2020

vii





Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Ethical and Sustainability Considerations . . . . . . . . . . . . . . . . 5
1.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Methods 9
2.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Areas of Interest . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Head Position . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Track Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Gaze Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.5 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Gaze Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Correlation Grid . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Fuzzy C-means . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Expectation Maximization . . . . . . . . . . . . . . . . . . . . 22
2.3.4 Gaussian Binary Gravity (Modified EM) . . . . . . . . . . . . 24
2.3.5 Density-Based Spatial Clustering of Applications with Noise . 25
2.3.6 Density-Based Clustering with Constraints . . . . . . . . . . 26

2.4 Gaze Sector Model Correction . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Viterbi Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Results 31
3.1 Gaze Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Correlation Grid . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



Contents

3.1.2 Regression model . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Expectation Maximization . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Gaussian Binary Gravity . . . . . . . . . . . . . . . . . . . . . 42

3.3 Cluster Update Handling . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Statistical Correction with Hidden Markov Model . . . . . . . . . . . 45

4 Final Algorithm 51
4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Conclusion 65
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Further Development and Implementation . . . . . . . . . . . . . . . 67

5.3.1 Additional Development . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 Testing & Verification . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 69

A Appendix I
A.1 Batch Handling Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . I
A.2 Confusion Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV

A.2.1 id5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV
A.2.2 id12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
A.2.3 id29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI
A.2.4 id64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

x



List of Figures

1.1 Flowchart of the main chapters of this thesis . . . . . . . . . . . . . . 4

2.1 Rendering of the vehicle interior with the nine different sectors over-
laid, marked with red ellipses. Placement of cameras is also shown,
where the single-camera is marked in green and the multi-cameras are
marked in yellow and green (five cameras). All cameras are aimed at
the driver’s face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Projection of the nine sectors in the car, which corresponds to the red
ellipses in Figure 2.1. Note that the perspective here is that of the
driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Violin plot of the deviation of head position for the driver during
vehicle operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 The coordinate system of the vehicle. . . . . . . . . . . . . . . . . . . 12
2.5 Gaze Heading (x-axis) and Gaze Pitch (y-axis) plotted on top of a 2D

spherical projection of the car model around the mean head position
of the driver. The data is captured from the same driving session.
Note that the SEP data on average is of higher quality, and also that
the TC data rarely is of high quality in the periphery. . . . . . . . . . 14

2.6 Average distance between two synchronized points in a SEP Data file
and TC Data file. Each data point is assigned a quality value between
0 and 1. Categorized by the combination of SEP gaze quality and TC
gaze quality. Unit of the values in the cells is radians. Green color
corresponds to smaller values, dark red to greater. . . . . . . . . . . . 15

2.7 Grid with the width of 15 bins and height of 10 bins displayed on top
of the projected interior of the vehicle from origo . . . . . . . . . . . 17

2.8 MLP model with one hidden layer. . . . . . . . . . . . . . . . . . . . 18
2.9 Markov Chain with two states A and E. There are two possible events

at each state: switch state or remain. The probability of each event
happening is represented by the number next to each event’s arrow. . 27

2.10 Example of a Trellis Diagram showing the most likely path (red)
between four hidden states (A, B, C, D). . . . . . . . . . . . . . . . . 30

3.1 Distributions of probability densities from estimates for each of the
three implementations of gaze estimators . . . . . . . . . . . . . . . . 32

3.2 Grid with the width of 30 bins and height of 20 bins displayed on top
of the projected interior of the vehicle from origo . . . . . . . . . . . 33

xi



List of Figures

3.3 Vector plot with 1000 samples going from head pose direction to gaze
direction for a single individual. . . . . . . . . . . . . . . . . . . . . . 34

3.4 15-10 Grid trained on 10 individuals with a linear quality impact
ratio. The red dots represent the corresponding mean of the gaze
distribution of the bin from which the blue line originates from. . . . 35

3.5 30-20 Grid trained on 10 individuals with a linear quality impact
ratio. The red dots represent the corresponding mean of the gaze
distribution of the bin from which the blue line originates from. . . . 35

3.6 Accuracy test of the mean error between the estimated gaze and the
true gaze point done on three different individuals using only head
pose as input. The x-axis denotes how many individuals the model
has been trained on and the dashed lines displays one standard devi-
ation from the mean value. . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Plot of the sizes and locations of the initialized clusters overlayed over
a simplified projection of the car interior consisting of the objects of
interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Plot of clustered points with the color corresponding to the cluster
inherency generated from the standard EM algorithm . . . . . . . . . 41

3.9 Confusion matrices of raw SEP data clustered with the EM algorithm 41
3.10 Plot of clustered points with the color corresponding to the cluster

inherency generated from the GBG algorithm . . . . . . . . . . . . . 42
3.11 Plot of new (turquoise) and old (black) cluster centers generated from

the GBG algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.12 Confusion matrices of raw SEP data clustered with the GBG algorithm 43
3.13 Plots of the difference between clusters between batches with different

handling of batch storage for the data file id59 . . . . . . . . . . . . . 45
3.14 Flowchart of the testing process of the hidden Markov model. . . . . 46

4.1 Flow chart of the Final Algorithm. c is a counter variable and
BatchThreshold is a constant value set before the algorithm is started.
Note that this algorithm will run online, and thus has no built-in stop-
ping point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Flow chart of how the Gaze Estimator operates within the final algo-
rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Two examples of the resulting distributions acquired using equations
4.1 and 4.2. The magenta ellipse is the result of a covariance inter-
section of the blue and red ellipses. . . . . . . . . . . . . . . . . . . . 53

4.4 Flow chart of how the Clustering Prediction operates within the final
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Flow chart of how the Clustering Update operates within the final
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Confusion matrices generated from the log file id9 . . . . . . . . . . . 58

xii



List of Figures

4.7 Gaze Heading (x-axis) and Gaze Pitch (y-axis) plotted on top of a 2D
spherical projection of the car model around the mean head position
of the driver. The data is captured from the same driving session.
Note that the SEP data on average is of higher quality, and also that
the TC data rarely is of high quality in the periphery. . . . . . . . . . 59

4.8 Confusion matrices generated from the log file id51 . . . . . . . . . . 61

A.1 Plots of the difference between clusters between batches with different
handling of batch storage for the data file id9 . . . . . . . . . . . . . I

A.2 Plots of the difference between clusters between batches with different
handling of batch storage for the data file id12 . . . . . . . . . . . . . II

A.3 Plots of the difference between clusters between batches with different
handling of batch storage for the data file id29 . . . . . . . . . . . . . III

A.4 Confusion matrices generated from the log file id5 . . . . . . . . . . . IV
A.5 Confusion matrices generated from the log file id12 . . . . . . . . . . V
A.6 Confusion matrices generated from the log file id29 . . . . . . . . . . VI
A.7 Confusion matrices generated from the log file id64 . . . . . . . . . . VII

xiii



List of Figures

xiv



List of Tables

2.1 All data files that were available for training and evaluation in this
thesis. Each id-number represents a specific individual. . . . . . . . . 10

3.1 Starting probability of the Hidden Markov Model from four synchro-
nized data files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Transition probability of the Hidden Markov Model from four syn-
chronized data files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Emission probability of the Hidden Markov Model from four synchro-
nized data files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Confusion matrix showing the predicted objects from the Viterbi al-
gorithm (columns) intersected with the actual objects, as determined
by the SEP data (rows). Note that the Viterbi algorithm never pre-
dicted any points on WL, MR, or WR. . . . . . . . . . . . . . . . . . 49

3.5 Confusion matrix showing the predicted objects from the baseline as
determined by the TC data (columns) intersected with the actual
objects, as determined by the SEP data (rows). . . . . . . . . . . . . 50

4.1 Table of acronyms used in the confusion matrices . . . . . . . . . . . 57
4.2 Table showing the clustering times for the algorithm implementations

on the different data files. All algorithms are run on the entire data
set except the one denoted with "Batches". All results are in seconds. 62

4.3 Table showing the total clustering accuracy for the algorithm’s im-
plementations on the different data files. All algorithms are run on
the entire data set except the one denoted with "Batches". All results
are in percent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xv



List of Tables

xvi



1
Introduction

Vehicle safety has been undergoing a massive change in the past decade. This field
has historically been dominated by passive safety, an umbrella term for techniques
that aim to minimize the harm done to passengers during an accident, such as
safety belts and airbags. Presently, vehicle safety is expanding into the area of ac-
tive safety. In contrast to passive safety, active safety looks to prevent car accidents
from happening in the first place. This area of technology includes not only control
of traditional components such as brakes and headlights but also advanced driver
assistance systems that rely on software. The latter is a cornerstone to achieve safe
autonomous vehicles.

The organization Society of Automotive Engineers has defined a six-level scale for
autonomous driving [1], spanning from no autonomy (level 0), to fully autonomous
driving (level 6), which does not require any human input. Although such fully
autonomous vehicles are still facing legal, ethical, and technological obstacles, we
are seeing lower level, partially autonomous driving systems being incorporated into
such active safety systems that work in cooperation with a human driver to prevent
accidents. An example of this could be a situation where the active safety system
receives sensor input that the vehicle in front is braking sharply while the driver of
the subject car is inattentive to the road ahead, and in response the active safety
system engages the brakes to avoid a collision.

In the example above, the autonomous system concluded that the driver was dis-
tracted from the road and acted based on that. Had the driver been paying atten-
tion to the road, the autonomous system could have acted differently, for example
by triggering a warning to the driver and allowing the driver to make a decision
themselves. This example highlights the importance of driver monitoring systems
making accurate conclusions about the attention of the driver, as falsely concluding
that the driver is attentive to the road ahead could result in an accident.

1.1 Background

Driver monitoring systems (DMS) are increasingly becoming more common as con-
sumer demand and legislation are pushing for this functionality to be implemented.
The Parliament of the European Union [2] and the Council of the European Union [3]
has approved legislation that mandates all vehicles to be fitted with advanced safety
systems, including driver monitoring systems, by the year 2022. As over 15 million
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1. Introduction

new car registrations occurred in the European Union in 2019 [4], this new legisla-
tion exemplifies the growing need for a driver monitoring system that is reliable and
convenient to use for consumers.

The company Smart Eye AB has developed a state-of-the-art driver monitoring
system for integration in passenger cars and other vehicles, currently in production
in six vehicle models [5]. This DMS facilitates better safety as well as functions that
improve the user experience. The DMS contains eye-tracking, artificial intelligence
software which, by studying a person’s eye, face, and head movements, can draw
conclusions about a person’s alertness, attention, and focus. The DMS is available
both for multi-camera systems (multiple cameras observing the driver’s face from
different angles) and single-camera systems.

In any high-performance gaze measurement systems, for example the Smart Eye
DMS, an initial gaze calibration step must be performed to identify the exact eye
geometry of the person using the system. This explicit calibration step typically
requires the driver to explicitly look at a series of specific coordinates in the car,
spending a few seconds looking at each point. Through this, a precise 3D gaze
direction vector can be calculated based on the positions of the pupil and glints
(corneal reflections from infrared light sources with known positions) and this gaze
vector can be intersected with objects of a 3D model of the world to estimate the
driver’s direction of attention. Knowledge of the driver’s attention can then be used
to prevent accidents, such as the one in the example above.

However, driver monitoring systems such as the Smart Eye DMS still face several
problems:

• An explicit gaze calibration step is neither always feasible or desirable. The
system has to adapt to an unknown user and calculate the best possible gaze
direction.

• Precise gaze includes noise factors from refraction in glasses and contact lenses.
• If the DMS uses only one camera, then exact 3D measurements are not pos-

sible to obtain (follows from the fact that a single 2D image is insufficient to
represent a 3D measurement).

• The driver’s eyes are not fully visible to the camera, e.g. when the driver is
looking towards the outer mirrors.

With these problems in mind, it appears that there exists a demand in the auto-
motive industry for a solution for driver monitoring systems that is able to auto-
calibrate (i.e., does not need an explicit calibration step), works for a single-camera
system and can estimate the gaze direction even when the eyes are not fully visible.

1.2 Objective
The purpose of this master’s thesis is to enhance the functionality of the company
Smart Eye’s eye-tracking algorithm in the area of gaze sector analysis. More specif-
ically, the objective is to determine what area of the vehicle interior the driver is
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1. Introduction

looking at. This is an essential step towards a higher level of automation and inter-
active environment in the interior of vehicles, as well as creating a more robust driver
awareness observation to aid the active safety functions that are growing in both
popularity and capability in today’s market. Such active safety functions include
tracking dangerous behavior while driving, for example handling a smartphone or
falling asleep, and acting to prevent such dangerous behavior from causing acci-
dents [5].

Due to requirements from Smart Eye’s original equipment manufacturer clients,
it is not possible to expect a calibration session to be performed ahead of each driv-
ing session. Therefore, in order to estimate the visual attention of the driver, the
software must be automatically calibrated while driving. As a result, this thesis
focuses on finding methods of creating a general attention model without requiring
the driver to explicitly calibrate the software to achieve sufficient accuracy to detect
the driver’s attention. Instead, calibration will be performed with data from the
camera(s) without specifically prompting the driver to take any action to calibrate;
we call this implicit calibration.

Further, the resulting algorithm needs to work with a single-camera setup as this is
the setup used in the production vehicles of Smart Eye’s customers. Contrary to the
multi-camera setups found in Smart Eye’s testing-vehicles, these single-camera sys-
tems provide a substantially lower measurement accuracy than their multi-camera
counterpart, especially when the head of the driver is facing away from the camera.
Therefore, the resulting algorithm needs to work with Smart Eye’s single-camera
system, and use the available data to extract a comparable sector prediction to the
one obtained using the multi-camera setup.

Lastly, as the objective is to determine what general area in the car the driver
is looking at, it is not necessary to know the exact position of the intersection be-
tween the driver’s gaze direction and the objects in the car. Instead, the determining
of what object is currently being looked at will be done by classifying the gaze data
to provide a probability vector that contains the probability that, at a certain time
frame, the drivers is looking at a certain object. Here, an object refers to for example
the side mirror, the center entertainment stack, or the speedometer.

1.3 Implementation
The problems described will be solved in steps. First, a method of estimating the
gaze direction is developed. This method will be called whenever an accurate cal-
culation of the actual gaze direction is not possible, for example due to the driver’s
eyes not being fully visible to the camera. Next, the gaze direction (and estimated
gaze direction) will be classified to determine what object in the car the driver is
looking at. The gaze direction data will be grouped using a clustering method. This
clustering model will be initialized to fit the geometry of the interior of the car, and
then be continuously updated as the driver operates the vehicle and provides new
data.

3



1. Introduction

The proposed methods for solving these problems will be introduced in chapter
2. Following this, the results from these proposed methods will be presented and
discussed in chapter 3, after which a final algorithm proposal containing some of
the proposed methods will be presented and tested in chapter 4. This structure can
be seen in Figure 1.1. Lastly, a conclusion regarding the results of the thesis, as
well as the performance and takeaways of the proposed algorithm will be included
as chapter 5.

2
Methods

Introduction of the different methods
used for Gaze Estimation and Clustering

3
Results

Declaration of the results from the
different methods used for Gaze

Estimation and Clustering

4
Final Algorithm
Proposal of a Final Algorithm

architecture based on the results from
the tested methods

Figure 1.1: Flowchart of the main chapters of this thesis

During the process of this thesis, Victor Brandt was mainly responsible for chapters
2.2, 2.3.3, 2.3.4, 3.1, 3.2.1, 3.2.2, 3.3, 4.

Christoffer Hansson worked on parts of the project explained in the following chap-
ters: 2.1.1, 2.1.3, 2.1.4, 2.1.5, 2.3.1, 2.3.2, 2.3.5, 2.3.6, 2.4.1, 2.4.2, 2.4.3, 3.4, 4.1.

1.4 Limitations
Much of the groundwork when it comes to the software of the Smart Eye DMS
had already been done and was at the time of writing the thesis in use by Smart
Eye. This leads to the scope of this project incorporating the essential functionality
described in this section, and not the elementary functionality of the eye-tracking
system. Moreover, a substantial data collection had already been done by Smart
Eye, and no further data needed to be collected. This data along with a 3D CAD
model of the car had already been implemented in existing scripts that were available
to project and visualize the existing data. These scripts were used and modified for
projection and visualization, to allocate as much time as possible on the functional
parts of the algorithm development.

The main focus of this thesis is highway driving as opposed to driving in an ur-
ban setting. In terms of complexity, the difference is that driving on a highway
generally requires less head motion and gives more predictability in terms of what
sector the driver focuses his or her attention on. Once highway driving has been
sufficiently solved, meaning that the results are of the algorithm are satisfactory,
the next natural step is to continue to incorporate driving in an urban environment.
This would, however, be outside the scope of this project. Further, the software
that this project results in needs to be able to produce satisfactory results with a
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1. Introduction

one-camera system, as this more closely resembles the product that most customers
of Smart Eye use. However, the more accurate data from the multi-camera system
was used to build an offline model which is incorporated in the algorithm that the
single-camera system uses. This multi-camera setup data was also used as a per-
formance baseline for testing, as the goal is to obtain similar performance to the
multi-camera system using only a single-camera setup.

The project will be limited to developing a method for separating and classify-
ing of the gaze sector, and will thus not examine or develop anything related to the
functionality or usage of the results.

To summarize, this thesis is limited to
• Developing a gaze sector classifier, rather than calculating a precise gaze di-

rection
• Only using data recorded during highway driving
• Operating on single-camera live data, however, training may include multi-

camera data

This master’s thesis was developed under a non-disclosure agreement.

1.5 Ethical and Sustainability Considerations
This project aimed to enhance Smart Eye’s eye-tracking algorithm which is used in
cars to provide safety features while driving, as well as enhancing the user experience
of the car. The increased safety that follows from this contributes to the United Na-
tions’ (UN) Sustainable Development Goal #3 [6], where one of the sub-goals is to
reduce the number of deaths and injuries from road traffic accidents. The outcome
of this project can thus be seen as supporting this Sustainable development goal.

On the other hand, the features that enhance the user experience but provide no
added safety could be seen as extravagant, and thus perhaps could conflict with
the UN goal #12 [6] that relates to responsible consumption and production. These
features are not something that adds value in accordance with any of the UN Sus-
tainable Development goals, while at the same time theses features might increase
the desirability of the product and thus might create an increased demand for a new
car that contains these features. This would lead to an increase in material and
energy consumed, which is in conflict with UN goal #12.

As the results from this thesis are not yet ready for commercial use, the actual
impact is yet to be determined.

1.6 Related Work
The first found work considered to incorporate the field of cluster analysis was pub-
lished nearly a century ago [7] and offered an approach to classify cultural aspects in
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the field of anthropology. Since then different methods of clustering have been de-
veloped for classification and optimization purposes. The applications can be found
in almost any field of study where distinguishing features are present, and more
recently it has become one of the building blocks which data mining heavily relies
on.

The interest in machine learning has grown in recent times. Machine learning algo-
rithms generally fall into one of two categories; supervised and unsupervised. Su-
pervised algorithms are trained using labeled data, i.e. the desired result is known
ahead of training, and a ground truth to compare against can easily be obtained.
Supervised algorithms include backpropagation and artificial neural networks. Clus-
tering is instead an example of an unsupervised type of algorithm. Unsupervised
learning does not work with labeled data, and is thus unaware of the desired out-
come. Instead, it looks for similarities in the input data and attempts to group
the data accordingly. In other words, supervised learning is aware of the expected
result and tries to find a model that returns output close to the expected while
unsupervised learning is unaware of what the true result should be and instead tries
to find a model based on the correlation of the data. Clustering is therefore a way
of categorizing unlabeled data based on the differences and similarities between all
the samples, to be able to draw conclusions from the information within the data set.

Using clustering methods is valuable when the size of a given data set is large,
and the time required to manually annotate the data is not worth the slight increase
in accuracy because of the type of problem that is faced. Assessing differences and
similarities between data is an example of a well-suited problem for unsupervised
learning in general, and clustering especially. It should be emphasized that more
accurate results could have been obtained, had the data been properly labeled. How-
ever, in many real-life applications, labeled data is unavailable.

The literature available regarding methods of estimating low-quality gaze data and
the clustering of this without prior calibration, that can be directly applied to this
project, is limited. Some research has been done on how to utilize a one-camera
system [8] in a vehicle setting to estimate and cluster gaze angles, however, this is
primarily done through investigating how to extract feature vectors and gaze vectors,
while largely ignoring how these interplay with the model of the car, for example by
identifying what sectors the driver’s gaze is focusing on. There has also been work
on gaze patterns in train drivers [9]. In this work, however, the drivers wore an eye
tracking device, meaning that the issue of losing gaze data due to facing away from
the camera was avoided. A useful resource was the work done by Lee et al. [10],
which studied how gaze in a car environment can be estimated in real-time. This
work, however, assumes that the gaze direction has been explicitly calibrated ahead
of running the algorithm.

Also, the literature on applications within cluster-analysis of images has been quite
one-sided, where most of the applications of clustering have been used for help-
ing with categorizing segmented objects from semantic segmentation, such as [11]
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and [12]. Applying a clustering algorithm to eye-tracking data to predict what ob-
ject a person is looking at is therefore quite a new field with high potential, which
is why this thesis aims to provide a good base for further work.

Calibration of gaze direction has been shown to have a significant impact on ac-
curacy. In [13], Krafka et al. studied the impact of calibration for gaze tracking
while using a mobile phone and tablet, and found that the average error distance
was lowered by 22% and 17% respectively after calibrating on 13 points compared
to no calibration.
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2
Methods

The purpose of the following sections is to introduce the main building blocks that
make up this thesis, namely the gaze estimation (section 2.2) and the clustering al-
gorithm (section 2.3). The gaze estimation section describes the different approaches
that aimed to provide information to where the driver of the vehicle is looking based
on the head pose direction while the gaze tracking quality is sub-optimal. The clus-
tering algorithm section describes the methods used to relate this resulting gaze
data (both measurements and estimations) from the estimator to sections of the
vehicle interior. Section 2.1 aims to explain how the data was structured, analyzed,
and prepared for usage in these latter sections, as well as which simplifications and
assumptions were made based on these analyses.

2.1 Data Analysis
A substantial amount of data in the form of driver monitoring video recordings were
available to use in this project. This data consists of 15 different individuals provid-
ing circa 30 minutes of driving data each (see table 2.1). Two algorithms, one for
multi-camera systems and one for single-camera systems, developed by Smart Eye
has been run on these videos to create two different log files for each video. The
cameras work at around 60 fps and each log file consists of about thirty minutes
of driving, resulting in each file containing about 100,000 data points. Each line of
data consists of around 175 columns, of which the columns tracking gaze direction
and head pose in Euler angles were of most importance to this project.

The multi-camera system, also known as Smart Eye Pro or SEP, consists of five
cameras aimed at the driver from different angles. The single-camera system is
known as Tracker Core or TC. The placement of the cameras are shown in Figure
2.1. As the SEP system is able to view the driver’s face from more angles, it also
achieves higher accuracy than the TC system in tracking the driver’s gaze. As a
reminder, this project looked to developed an algorithm that is successful in esti-
mating what object the driver is looking at using the TC system. However, it is
only required that the system works for the TC system while running online. As
the SEP data has been made available for this project, its higher accuracy has been
used to train a model offline and to find correlations between the output from the
TC system and the SEP system. It has also been used as a performance baseline
to compare how well the proposed algorithm can make the TC data provide similar
performance as the SEP data for the sector analysis.
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ID Length of data (no. measurements)
id5 99613
id9 103012
id12 95336
id19 79569
id29 91107
id32 108593
id51 102846
id56 99842
id57 101570
id59 90622
id60 121462
id61 101570
id64 90622
id76 23564
id86 87088

Table 2.1: All data files that were available for training and evaluation in this
thesis. Each id-number represents a specific individual.

In order to evaluate the performance of the algorithms, a ground truth had to be
defined, to which the tested algorithms’ performance were compared. The most
accurate method available during this project was to find the 3D gaze direction
from the multi-camera system and calculate what object in the car this intersects
with. The objects were defined in the CAD model of the car used for testing, and
from this the object that the driver is looking at could be determined by finding the
intersection point from the gaze vector. However, due to factors such as low gaze
quality (see Chapter 2.1.3) and the gaze cone (see Chapter 2.1.4), this ground truth
often contains inaccuracies in regards to what object the driver might be looking at.
Due to the lack of a fully accurate annotation on which object each data point is
correlated to, it is not possible to exactly assess the accuracy of this ground truth.
However, from manual inspection of the ground truth and its 3D intersections being
at least a gaze cone diameter from the border of each object, it was found that the
accuracy was ≈ 60− 75%.

This sub-chapter details how the available data was used to extract useful infor-
mation about the drivers’ gaze direction and head pose.

2.1.1 Areas of Interest
Detecting every single object in the vehicle interior that a driver might interact with
or look at during driving is a daunting task, and the demands on the system to be
able to do this with accuracy is not possible using the technology available today.
Such accuracy, however, is not necessary when it comes to functionality. It is not
exceedingly relevant to be aware of all objects a driver might look at, but moreover,
the most important general areas of the interior are useful to obtain information
about. This information can be useful for different functionality applications in ac-
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tive safety and comfort of use.

With that in mind, this thesis has chosen to divide the vehicle interior into nine
different sectors (see Figures 2.1 and 2.2). These are namely the left and right
windows, left, right, and center rearview mirrors as well as the front windshield,
tachometer cluster, and the center stack (a.k.a. entertainment system column). De-
pending on the desired application of the gaze tracking system, these sectors may be
changed according to the specific areas of interest in their respective applications.
For this thesis, these nine sectors are used.

Figure 2.1: Rendering of the vehicle interior with the nine different sectors overlaid,
marked with red ellipses. Placement of cameras is also shown, where the single-
camera is marked in green and the multi-cameras are marked in yellow and green
(five cameras). All cameras are aimed at the driver’s face.

Figure 2.2: Projection of the nine sectors in the car, which corresponds to the red
ellipses in Figure 2.1. Note that the perspective here is that of the driver.
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2.1.2 Head Position
To be able to justify assumptions about the driver’s head position during driving a
statistical analysis had to take place. Both single individuals and groups of individ-
uals were taken into account to be able to draw conclusions on this matter.

All available SEP data was used to generate this data, where the 3D head position
of each individual from the data set was collected and plotted. These distributions,
therefore, shows the average position of the head of the current driver, as well as
the deviation amount from this point during driving. This data was visualized for
one individual in subfigure (a) and for all individuals collectively in subfigure (b)
of Figure 2.3. This was done to obtain information regarding the average deviation
from the mean head position for an individual, as well as the span of locations where
it is expected that the head positions of the majority of individuals lie within. The
coordinate system is defined with the x-axis denoting the horizontal axis, increasing
towards the left side of the car, the y-axis denoting the vertical axis, increasing to-
wards the roof of the car, and the z-axis denoting the depth axis, increasing towards
the front of the car as displayed in figure 2.4.

(a) One Individual (id57) (b) All Individuals

Figure 2.3: Violin plot of the deviation of head position for the driver during
vehicle operation.

(a) Top view (b) Side view

Figure 2.4: The coordinate system of the vehicle.
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For the average person, the head movement during driving is typically quite small.
One important difference between individuals is the mean head position, which is
why the spread of the plot in (b) is wider and more populated than the plot of one
individual in (a) of Figure 2.3. What is also notable in figure (a) is that in the x and
y axis, the individual only tends to deviate from the mean head position with about
2.5 cm. It is only in the z axis the deviation is larger, but it is still only a deviation
of about 10 cm. Altogether, this does not provide a notable change in the locations
of the areas of interest from the perspective of the driver, either for one individual
during a driving session or comparing different individuals to each other. This leads
to the qualified conclusion that the circumstances for operation of the algorithms
could be simplified as the head movement according to these tests is negligible.

2.1.3 Track Quality

In addition to gauging the gaze direction and head direction, the Smart Eye algo-
rithm also makes an assessment of the quality of these data points. For example,
if the head is facing away such that only one eye is visible to the camera, then the
quality of the gaze direction estimate will be affected and the algorithm gives this
data point a lower grade in terms of quality. Although the quality of this data point
is lower, it still contains information that can be used to make an assessment but
it is helpful to know to what extent this can be trusted. Similarly, the head pose
quality is also determined for each data point. The head direction quality was found
to be sufficiently high consistently. The quality of data can be utilized to filter out
data of substandard quality, as shown in Figure 2.5.

Further, to visualize how much of an impact the gaze quality has for each camera
system (SEP and TC), an experiment was conducted. The two files were synchro-
nized and for each time frame, the L2-norm between the corresponding SEP and
TC point was stored. The hypothesis was that if the gaze quality is high for both
the SEP dataframe and the TC dataframe, then the two gaze points are likely to be
close to each other, while if the quality is low, then the measurement is less sure and
the distance is likely to increase, as the measurement in the error should increase
with the error in the measurement. This hypothesis was confirmed by the results
shown in figure 2.6. Here, the average distance between SEP and TC gaze points
are shown, and the smallest average difference is found when both the SEP quality
and the TC quality is high.
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(a) 15,000 samples of SEP data with corresponding quality

(b) 15,000 samples of TC data with corresponding quality

Figure 2.5: Gaze Heading (x-axis) and Gaze Pitch (y-axis) plotted on top of a 2D
spherical projection of the car model around the mean head position of the driver.
The data is captured from the same driving session. Note that the SEP data on
average is of higher quality, and also that the TC data rarely is of high quality in
the periphery.
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Figure 2.6: Average distance between two synchronized points in a SEP Data file
and TC Data file. Each data point is assigned a quality value between 0 and 1.
Categorized by the combination of SEP gaze quality and TC gaze quality. Unit of
the values in the cells is radians. Green color corresponds to smaller values, dark
red to greater.

2.1.4 Gaze Cone
When calculating the gaze direction, the result is approximated as a single point
described by a heading angle and a pitch angle originating from the eyes of the
driver. However, in reality, humans do not focus on just a single spot, but rather on
a circular area as projected from the eye. This area is referred to as the gaze cone.
In the average person, the gaze cone makes up just less than 12◦ in diameter [14].
This means that even if the gaze direction could be perfectly estimated, it is likely
that the actual area of focus is anywhere within the gaze cone, where the projected
point is the center of the cone.

This gaze cone will be represented by a mean µ and a covariance Σ =
[
σ2 0
0 σ2

]
,

where the mean is the actual gaze measurement for that data point and the stan-
dard deviation σ is the radius of the gaze cone in radians.

2.1.5 Input Data
To run the algorithms explained in chapter 2, the first step was to choose what data
to use for clustering and gaze estimation. For the clustering itself, a natural ap-
proach for noting where the driver is currently looking is the gaze heading and gaze
pitch. These measurements are the horizontal and vertical angles respectively for
the direction of the gaze vector originating from the head of the driver. The reason
for using these angles instead of the 3D gaze vectors themselves was mainly due
to the very small amount of head movement that the driver shows during highway
driving (displayed in section 2.1.2). This leads to no further accuracy by using a 3D
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representation to describe each gaze point, and thus only provides more complexity
to calculations and visualization.

For the ground truth generation however, the 3D gaze direction vectors were used
to find the intersection objects for each measurement, as this was necessary to be
able to interact with the model of the car and to provide the most accuracy possible.

A few different combinations of data were tested as input to the gaze estimation
algorithm. The proposed idea is that there should be some correlation between
head direction and gaze direction, as the head tends to move in the same direction
as the gaze. Similar to the gaze direction, only the 2D euler angles head heading
and head pitch were used to describe the head direction. In addition to this a head
direction velocity (vi) was also calculated and applied in one of the versions, by
dividing the difference from the current vector (xi) to the vector at the previous
time step (xi−1) and dividing by the frame rate (Rf ). This was done to see if this
additional information would provide better resulting accuracy in the estimates.

vi = xi − xi−1

Rf

(2.1)

2.2 Gaze Estimation
To ensure that a reasonable gaze sector estimate can be maintained even when the
gaze tracking quality is lower, a relation between the head pose direction and the
gaze direction needs to be established. The gaze tracking quality tends to decrease
in the periphery towards the side windows and rear view mirrors due to the eyes fac-
ing away from the camera. In contrast, the head pose estimate remains accurate in
these regions. Therefore, a gaze direction estimate based on the head pose direction
could provide valuable data on what the driver might be directing their attention to.
Further, such estimates also have the potential to provide more accuracy in cases
where the gaze quality is high but the cluster probabilities are near a tie for two or
more clusters.

This section introduces the two main methods tested in this thesis that aims to
provide a solution to this described phenomenon. All methods are trained offline on
SEP data as the accuracy and coverage of that system is greater than TC, and the
trained model is then applied on TC data for online usage.

2.2.1 Correlation Grid
The Correlation Grid method was considered as a candidate to solve the gaze es-
timation problem during early discussions in the project. Using an input data set
and a corresponding output data set, the method creates a grid of squares over the
state space of the input data (see Figure 2.7) to divide it into subsections. This
essentially becomes a 2D histogram, where every head pose measurement (input
data) gets classified to belonging to a certain bin in the grid. During the training of
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the grid, this is done for all data points, which leads to every measurement getting
a corresponding bin.

The next step in the training is then to correlate these bins to corresponding gaze
directions (output data), based on the output data for the measurements classified
into the bins. To do this it is necessary to calculate the relative difference between
gaze direction yn (output data) and head pose direction xn (input data) for each
measurement n according to ∆n = ||yn − xn||. For each bin (i, j), the belonging
∆n’s are collected and used to calculate a covariance Σi,j and a mean µi,j.
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Figure 2.7: Grid with the width of 15 bins and height of 10 bins displayed on top
of the projected interior of the vehicle from origo

To obtain the estimated gaze mean µe and covariance Σe for a head pose measure-
ment xn, its corresponding bin first gets identified with its grid coordinates i and j.
The mean and covariance of the distribution for the measurement is then calculated
according to equations 2.2 and 2.3, where µi,j is the mean and Σi,j the covariance
of bin i, j.

µe = xn + µi,j (2.2)

Σe = Σi,j (2.3)
The mean and covariance generated can then be used as a distribution to sample
estimated gaze points from, which after having their respective cluster probabilities
calculated can be summed and normalized to obtain a cluster probability vector
representative of the distribution generated.

2.2.2 Regression Model
Due to the correlation grid having issues with total coverage over the entire state
space, further research was done to find an alternative solution for comparison pur-
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poses. An alternative was found in the Multi-layer Perceptron (MLP), which utilizes
a simple neural network structure with hidden layers of neurons which, by introduc-
ing data sets for training adjusts the weights for each neuron to minimize the loss.
This method can thus be used as a regression analysis tool to find a solution for a
relationship problem between input and output data.

The methodology of the MLP is in its essence a simple neural network contain-
ing an input layer, one or more hidden layers, and an output layer. The neurons
that these layers consist of are called perceptrons, and the idea of them was intro-
duced in 1958 by Rosenblatt [15], but at that point, these perceptrons were only
discussed as singular entities, however. As one perceptron alone just computes one
output from many real-valued inputs through linear combinations using weights and
a nonlinear activation function, it is not that useful on its own. However, when a
number of these perceptrons are interconnected to obtain a neural network structure
(see Figure 2.8) the result is the Multi-layer Perceptron model [16].
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Figure 2.8: MLP model with one hidden layer.

This approach utilizes input data and a matching ground truth to train the network
to predict the ground truth from the training data. This is done by adjusting the
corresponding weights for each perceptron in the network to minimize the collective
estimation error between the output of the network and the ground truth. This is
done by regression, where the model trains using backpropagation without an acti-
vation function in the output layer. Because of this, the model uses the square error
as the loss function. This was implemented using SciKit [17], where the foundation
for the algorithm was already created.

Using a given set of training data (x1,y1), (x2,y2), ..., (xn,yn) where xi ∈ Rn is
the input data vector for sample i and yi ∈ {0, 1} the corresponding correct output.
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An MLP with one hidden layer and one hidden neuron then learns the function
described in equation 2.4.

f(x) = W2(W T
1 x + b1) + b2 (2.4)

Here, W1 ∈ Rm and W2, b1, b2 ∈ R are model parameters. b1 and b2 represent the
bias added to the hidden layer and output layer (displayed in Figure 2.8) andW1,W2
contains the weights of the input layer and hidden layer. The activation function is
then given by the hyperbolic tan

g(z) = ez − e−z

ez + e−z
(2.5)

For a classification case that is not binary, i.e. with more than two classes, the learn-
ing function f(x) (equation 2.4) becomes a vector of the same size as the number
of the classes. Because of the regression functionality of the MLP model utilized in
this thesis, the output simply becomes f(x), where the output activation function
just becomes the identity function.

A loss function is then applied with random initial weights, where the MLP is
allowed to minimize this function by updating the weights and evaluating.

Loss(ŷ,y,W) = 1
2 ||ŷ− y||22 + α

2 ||W||
2
2 (2.6)

Here, α||W||22 is an L2-regularization term, which provides penalties onto complex
models, and α > 0 is just a non-negative parameter to adjust how much the penalty
term affects the result. After this loss is calculated, a backward pass is used to
propagate the loss onto the previous layers, which results in each weight parameter
being given an update value to obtain a decrease in loss.

Given a large enough amount of data, this should then let the MLP regressor obtain
a rough estimate of where the gaze point for a given measurement should be located
given information about the head of the driver.

To not skew the estimate towards the more dense areas of the data, the input
data needed to be scaled accordingly. This prevents faulty estimates due to the
collection of data around for example the EOR-area (which receives about 62% of
all gaze points, see 3.1), and gives the data set a more uniform distribution.

The MLP-model does not obtain a covariance estimate automatically based on the
accuracy of the estimates, so this functionality needed to be implemented in another
way. The solution became to exclude a few individuals from the training set, and
then use this excluded data to obtain an accuracy measurement, and thus build
a covariance from the difference between the estimate and ground truth of unseen
data. With this addition, the method provides both a resulting estimated gaze
mean µe and covariance Σe for a head pose measurement xn. These values can later
be used to sample estimated gaze points from, which after having their respective
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cluster probabilities calculated can be summed and normalized to obtain a cluster
probability vector representative of the distribution generated.

2.3 Clustering Methods
Clustering is a sub-method to one of the two fundamental parts of machine learning,
namely unsupervised learning [18]. This method, contrary to supervised learning,
does not require pre-annotated or labeled data to be able to extract information.
Clustering algorithms are used to group data points into different classes, or clusters
as they are also known. It is a technique that is highly utilized when the dimension-
ality of the data is higher than two or three, which is where the similarities between
points become hard to distinguish by eye due to the difficulty in visualization. By
applying a clustering algorithm on this type of problem, a more scientific approach
on similarity statistics and correlation provides the necessary basis to draw a quali-
fied conclusion from when no apparent correlation can be found by hand.

Despite this, clustering is used for low dimensional data in the means of this thesis,
namely two dimensions (gaze direction in Euler angles). This is due to the need for
self-classification and autonomy that is the purpose of the project, in which clus-
tering provides a good and easily visualizable solution. In this section, the different
clustering methods tested in the thesis are introduced and explained separately.

2.3.1 K-means
The k-means clustering method [19] was introduced in 1967. Each cluster contains
one parameter; the cluster center represented as a coordinate in a d-dimensional
space where d matches the number of dimensions of the data to be clustered. The
algorithm aims to cluster n data points into k clusters by minimizing the sum of the
squared distance between each data point and center of its assigned cluster. Each
cluster j is defined by its center coordinate cj, which is simply the mean value of
that cluster, hence the name "k-means".

The algorithm is initialized by providing the number of clusters k and assigning
random coordinate values to each of the k cluster centers cj, j = 1, ..., k. Each data
point x is then assigned to the cluster whose center point is closest to it. The no-
tation xci = j refers to the ith point in the data set belonging to cluster j. The
clusters are then assigned as such:

xci = argj min(||xi − cj||, j = 1, ..., k) (2.7)

The variable mi,j denotes if data point i is assigned to cluster j. If i is assigned to j,
then mi,j = 1, else mi,j = 0. Once an assignment has been done, the mean position
of all data points within one cluster is calculated and the cluster center is moved to
this mean coordinate:

cj =
∑n
i=1(mi,jxi)∑n
i=1mi,j

(2.8)
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Once all cluster centers have been updated, the algorithm repeats until no data
points switch cluster label between two iterations; the algorithm is then said to have
converged. However, it might also not be possible to find a converging solution. For
such cases, a maximum number of iterations is determined and the algorithm halts
once this number of iterations has been reached. Since the number of clusters k is
given as input to the algorithm, the user needs to know how many clusters can be
expected to find in the data set.

This algorithm is easy to implement and runs fast, however, it works best when
the clusters are assumed to be spherical. This leads to difficulties when more com-
plex cluster shapes are required for the implementation, which is the case in this
thesis and is therefore not ideal for all problems. Its simplicity also means that the
algorithm is less suitable for more complex data sets, such as the ones used for this
project. Because of this, the K-means algorithm was not decided to be a further
candidate for this thesis.

2.3.2 Fuzzy C-means
The Fuzzy C-means algorithm was presented and developed by Dunn in 1973 [20],
and an improved version was later introduced by Bezdek in 1984 [21]. Fuzzy C-
means can be regarded as an extension to the K-means algorithm (see section 2.3.1)
with the difference that the cluster labeling of each point is non-binary. Instead,
each data of the N points xi is assigned a floating-point value between 0 and 1 for
each cluster. In other words, each data point can belong to several clusters simul-
taneously, hence the "fuzzy" part of the name.

The algorithm is initialized by specifying the number of clusters the model con-
tains (the "C" parameter), as well as selecting random initial values for the cluster
belonging of each data point in the "U" matrix. This matrix consists of elements
ui,j that corresponds to the probability that data point i belongs to cluster j. The
center coordinate cj of each cluster j is then calculated as such:

cj =
∑N
i=1 u

m
i,jxi∑N

i=1 u
m
i,j

(2.9)

The next weight matrix U (k+1) is then updated as such:

ui,j = 1∑C
k=1( ||xi−cj ||

||xi−ck||
)

2
m−1

(2.10)

If the norm difference between the new and the previous weight matrices exceeds
some parameters ε, then the algorithm has converged:

||U (k+1) − U (k)|| < ε (2.11)

Else, the algorithm resumes at the center coordinate calculation step.
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As with the K-means algorithm (see section 2.3.1), Fuzzy C-means is easy to imple-
ment and runs fast on the data available in this project. The addition of the fuzzy
logic provides valuable additional information regarding the probabilities of the data
points belonging to all clusters, which is a requirement in this project. Regardless,
the clustering ability of this algorithm is biased towards creating simple, equidis-
tant clusters which are not useful for this project. Hence it was not considered as a
further candidate for this thesis.

2.3.3 Expectation Maximization
Expectation-Maximization is a clustering method utilized in the so-called Gaussian
Mixture Model type algorithms. Each cluster is defined as a k-dimensional Gaussian
approximation with the parameters mean and covariances. The parameters for each
cluster are updated through maximum likelihood estimates until convergence, which
is defined as a change in parameters lower than a set tolerance.

As explained in [22] Expectation-Maximization utilizes two major steps in its al-
gorithm. First, the expectation step, or E-step, is carried out, which utilizes either
the randomized or the pre-defined means and covariances for the clusters and calcu-
lates the relative probabilities for each point in the introduced dataset belonging to
each of the clusters. For each point, all of its probabilities are normalized to obtain
a full probability of each point belonging to each cluster.

As each cluster is defined as being a Gaussian distribution, N (µ,Σ) can be used
to describe every cluster. These clusters are initialized randomly though this equa-
tion. It is then possible to describe the probability of a point xn belonging to cluster
k by the following equation.

p(znk = 1|xn) = πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

= γ(znk) (2.12)

Where z is a binary variable that becomes 1 when xn belongs to cluster k and 0
otherwise. The E-step equation then boils down to simply solving this equation
using the old parameter values.

After this, the maximization step, or M-step, commences. The maximization is
calculated and evaluated by a log-likelihood function until convergence, which then
yields the new means and covariances for all clusters based on the data fitted.

The first part of the M-step creates a maximizable function to utilize in optimizing
the best placements and sizes for the clusters. This equation is defined as

Q(θ∗, θ) = E[ln p(X,Z|θ∗)] =
∑
Z
p(Z,X|θ) ln p(X,Z|θ∗) (2.13)

Here equation 2.12 substitutes p(Z,X|θ), which together with ln p(X,Z|θ∗) being
defined as
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ln p(X,Z|θ∗) =
N∑
n=1

K∑
k=1

znk[ln πk + lnN (xn|µk,Σk)] (2.14)

Which is the logarithmic expression of the joint probability calculation of all obser-
vations and z’s. Putting equations 2.12 and 2.14 into equation 2.13 thus results in
the final equation as

Q(θ∗, θ) =
N∑
n=1

K∑
k=1

γ(znk)[ln πk + lnN (xn|µk,Σk)] (2.15)

Where θ = {π, µ,Σ} is the model parameters and θ∗ is the revised parameters
needed to be found through maximizing equation 2.15.

These revised parameters are found using θ∗ = argmaxθQ(θ∗, θ), but Q also needs
to incorporate the fact that all π-values needs to sum up to one. This is done
through the addition of a Lagrange multiplier to equation 2.15 which results in the
following equation.

Q(θ∗, θ) =
N∑
n=1

K∑
k=1

γ(znk)[ln πk + lnN (xn|µk,Σk)]− λ
(

K∑
k=1

πk − 1
)

(2.16)

Now it is possible to determine the parameters using maximum likelihood. This
is done by first taking the derivative ∂Q(θ∗,θ)

∂πk
and setting it equal to zero. Then

this equation is rearranged to obtain an expression for πk, and using the previously
stated fact about the probabilities over k summing to 1 yields

π∗k =
∑N
n=1 γ(znk)
N

(2.17)

In the same manner, the other two derivatives ∂Q(θ∗,θ)
∂µk

and ∂Q(θ∗,θ)
∂Σk

are calculated
and rearranged with the same assumptions to obtain the last two equations used in
the M-step as follows.

µ∗k =
∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

(2.18)

Σ∗k =
∑N
n=1 γ(znk)(xn − µk)(xn − µk)T∑N

n=1 γ(znk)
(2.19)

These are then iterated until the likelihood value calculated in equation 2.20 con-
verges to a local maximum.

ln p(X) = ln
N∏
n=1

p(xn) =
N∑
n=1

ln
K∑
k=1

πkN (xn|µk,Σk) (2.20)

This algorithm was first mentioned in 1977 in [23], and one of the earliest appli-
cations was for counting genes to estimate allele frequencies. The seemingly simple
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approach opened up big opportunities to analyze and classify data of low dimension-
ality. It is a very intuitive solution which makes the ease of use and the application
of the algorithm much easier compared to most of the recent approaches to the
clustering problem.

This clustering method was despite its seemingly complex structure quite fast to
run, but consists of more computations than the simpler algorithms like K-means
(section 2.3.1) or Fuzzy C-means (section 2.3.2). This is nothing that impacts the
real-time usage in any noticeable way, however, and with the perks of the cluster
definitions and update scheme, this is one of the clustering algorithms that seemed
promising for future use in the means of this project.

2.3.4 Gaussian Binary Gravity (Modified EM)
The standard Expectation-Maximization algorithm brings a lot of useful concepts
and approaches to the clustering problem faced in this thesis, for example, the
definition of the clusters as multivariate gaussian distributions. Some of its inner
workings, however, are not optimal when data cannot be assumed to be normalized
and evenly distributed. It is also not ideal when the placements and distributions
of the clusters can be assumed to have logical placement and size based on a pre-
determined model to which the data needs to be correlated, which is the case for
this thesis. Due to the problem being of this character, a new modified version
loosely based on the Expectation-Maximization algorithm is proposed to utilize the
intuitive character of the data and the sought after result.

There are two main differences between this new proposed algorithm and the orig-
inal EM algorithm. Firstly, as the areas that are of interest of being detected have
a known and fixed size, the covariances Σk are fixed when initializing the algorithm
and does not change during the maximization step. This provides the proper cov-
erage for each area of interest by its intended cluster and removes the possibility
of the cluster shrinking if the data provided in that area would be more compact
than expected. If this was not the case, and new data not being as close to the first
datum but still within the area of interest was introduced, the new data would have
a higher risk of being misclassified. This would also destroy the correlation between
the predetermined model and the clusters.

Secondly, the means of each cluster µi,k, which are the values actively updated
during the algorithm, are only affected by the points which have the largest in-
dividual probability of belonging to said cluster. This is done through weighting
each of the points being most probable to belong to a certain cluster based on the
percentage of their probability belonging to the cluster. This then scales the vector
between the current cluster center and the point itself, which is done for all points
belonging to the cluster and is then normalized by dividing with the total number
of points in the dataset. This provides robustness to the absence of data points in
certain areas where it is known there exists a cluster, but the driver has simply not
gazed in that area yet.
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Furthermore, this approach does not require to pre-train the algorithm with any
data as it is designed to adjust for each individual separately and only the initial-
ization dictates what accuracy can be gained and what the model should incorporate.

The prediction step simply uses equation 2.21 to calculate the probability vector
of measurement m = 1, ...,M belonging to each of the clusters k at iteration i. Here
µi,k denotes the center and Σk the covariance of cluster k at iteration i. As the
covariance never changes no iteration index is needed on that variable. Further, K
symbolizes the total amount of clusters.

pi,m =
∑K
k=1N (xm|µi,k,Σk)

K
(2.21)

The update step then uses this prediction together with the binary variable zi,m,k
(see equation 2.22) to locate which cluster the measurement has the highest prob-
ability of belonging to, given the current cluster locations. The vector between the
measurement and the inherent cluster is then combined with the binary variable, as
well as the probability of the measurement belonging to that cluster and the gaze
quality for the measurement. This is done for all points and divided on the number
of points for each cluster, to obtain one moving vector vi,k for each cluster k in itera-
tion i as can be seen in equation 2.23. The cluster center locations are then updated
through equation 2.24 and the whole process iterates until µi+1,k−µi,k < tol. Here,
M symbolizes the total amount of measurements.

zi,m,k =

1 if argmax(pi,m) = k

0 otherwise
(2.22)

vi,k =
∑M
m=1(xm − µi,k)zi,m,kpi,m,kQm

M
(2.23)

µi+1,k = µi,k + vi,k (2.24)
When it comes to suitability in the realm of this project, the GBG algorithm has
the most upside of all clustering methods that has been introduced. The structure
of the update step creates a good basis for maintaining the model integrity of the
areas of interest and makes it a prime candidate for the potential candidate for this
thesis, despite the calculation strain being slightly higher than any other method in
this chapter.

2.3.5 Density-Based Spatial Clustering of Applications with
Noise

Density-Based Spatial Clustering of Applications with Noise, or DBSCAN, was first
proposed in 1996 [24]. The algorithm takes the dataset and two parameters, the
neighborhood radius ε and the neighbor amount threshold dmin, as input. For each
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unlabelled data point xi in the input, an n-dimensional sphere neighborhood of ra-
dius ε is created. The number of points inside this neighborhood is calculated, and
if this number, including the datapoint xi, is lower than dmin then xi is labeled as
noise. Else, xi is classified as a core point and the set of remaining points within
the neighborhood are classified as border points within the same cluster. If any of
the neighboring points belong to a different cluster already, all of these points are
updated so that they belong to the same cluster. The algorithm halts once there
are no unlabelled data points left. The algorithm is deterministic in the sense that
it will always reach the same cluster labeling as output given that the same input
data and the same parameters were used.

With appropriate parameter values, the algorithm proved quite successful in finding
and separating major objects, such as eyes on road (EOR), front windshield, or the
tachometer cluster, which was relevant to this project. However, the algorithm was
not successful in separating "clusters in clusters", such as the left side mirror which,
when projected from the driver’s head position lies within the left window. Further,
the clustering is computationally heavy and is therefore not an ideal candidate for
a system that needs to be able to run online to continuously update the clusters
during use.

2.3.6 Density-Based Clustering with Constraints

Density-Based clustering with constraints [25], or CDBSCAN, was proposed as an
extension of DBSCAN. By providing constraints in the form of cannot-link and
must-link, data points are forced to belong to different clusters or merged to belong
to the same cluster respectively. The authors of [25] present one of the purposes
of this algorithm to be to cluster geographical data within the field of cartography
where there might be a priori known barriers, such as rivers. By designing corre-
sponding cannot-link constraints for points that are connected over the river would
force clusters spanning across a river to be split up.

The original idea in this project was to first attempt to label data offline, then
utilize this pre-labelled data to train a model which then could be used to define
cluster centers, between which cannot-link constraints could be defined. Similarly,
data points very close to these cluster centers could be forced to join that cluster
by imposing must-link constraints. However, although the data in this project can
be modelled as a geometrical data, the input data is subject to measurement errors
that resulted in inaccuracies in terms of assessing where the cluster centers actually
should be as opposed to where they are calculated to be. If the exact positions
of cluster centers were known, then there would be no reason to cluster the data.
Therefore, this method has been discarded due to difficulties in defining accurate
constraints.
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2.4 Gaze Sector Model Correction

The theory studied so far in this chapter can be applied without looking at temporal
data. The clustering methods, for example, look at a given data point but draw no
conclusion from what cluster the previous data point in time was assigned. It is
assumed, however, that useful information could be extracted by analyzing patterns
in data points over time. One hypothesis is that a driver might, in an attempt
to check the environment behind the car, go from the left rear mirror to the right
rear mirror, i.e. show a higher probability of going to the right rear mirror if the
previous sector focused on was the left rear mirror. This sub-chapter outlines the
Markov chain, and how this can be used to increase the accuracy in the prediction
of low-quality data points.

2.4.1 Markov Chain

A Markov Chain is a model used within system theory. The Markov Chain contains
two properties: states and events, see Figure 2.9. In terms of this project, states
are used to represent the sectors of the car, e.g. eyes on road, central rear mirror,
left side mirror, while events represent the transition between states that happens
between two adjacent timeframes. Note that the set of transitions include self-loops;
a transition can start and end in the same state. The model describes the probability
of events transitioning between the states. The model is created from data where
a sequence of state-event-state is known. Based on this, it is possible to calculate
an a priori estimate of the probability that each event can transition to any other
state (or itself). Once the model has been trained, the process is memoryless. This
means that the process only looks at the current state while ignoring the previously
visited states. The hidden Markov model described in chapter 2.4.2 is an extension
of the Markov chain.

Figure 2.9: Markov Chain with two states A and E. There are two possible events
at each state: switch state or remain. The probability of each event happening is
represented by the number next to each event’s arrow.
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2.4.2 Hidden Markov Model

The hidden Markov model is an extension of the Markov chain. The system is
assumed to contain two sets of states: observable and non-observable (hidden) states.
The model is constructed and trained from an input consisting of one sequence
of states for each set. Based on these two sequences, the idea is to analyze the
probability that a transition occurs in the hidden states as well as the probability
that an observable state coincides with a hidden state. Three assumptions are made:
(i) At any given time, the system visits one and only one of the hidden states,

and at each time one and only one state is observed.
(ii) Each of these sets can be modeled as a Markov chain, a model can be built to

predict the probability of the hidden states given the observable states.
(iii) The two sequences align temporally, such that each item in the hidden sequence

has a corresponding item in the observed sequence that occurred at the same
time.

Let us call the set of hidden states X = {xi}, i = 1, ..., n where n is the number of
hidden states, and the set of observable states Y = {yi}, i = 1, ...,m where m is the
number of observable states. The input is a sequence of hidden states {hi} : hi ∈ X
∀i of length nh, and analogously a sequence of observable states {oi} : oi ∈ X ∀i
of length no. The hidden Markov model consists of three matrices that need to
be computed using the input above: initial probability matrix, transition probability
matrix, and emission probability matrix.

The initial probability is simply the occurrence frequency of each of the hidden
states. This gives { ki∑n

i
ki
}, i = 1, ..., n where ki denotes the number of occurrences

of hidden state xi in the hidden sequence. Note that the sum of this vector is one.

The transition probability matrix is the Markov chain for hidden states, as explained
in Chapter 2.4.1. This provides a matrix such that element i, j of the matrix cor-
responds to the probability that each hidden state xi ∈ X transitions to state xj.
Note that xi and xj may refer to the same state, such that xi = xj if the transi-
tion returns to the same state. The rows are normalized such that the sum of each
row equals one, and the result is thus a square matrix of probabilities of size nh×no.

The emission probability represents the probability that an observed state y cor-
responds to a hidden state x at a given point in time t. The emission probability
matrix is calculated by iterating over the sequence of hidden state and the sequence
of observed states simultaneously. For each (synchronized) time step, the correla-
tion between hidden state xi and observed state yj is stored by increasing the value
of element i, j in the matrix by one. Once the sequence is complete, each row is
normalized. This matrix is rectangular of shape nh × no. The emission probability
matrix is the very essence of the hidden Markov model as it answers the following
question: given an observable state y, what actual (hidden) state x does this corre-
spond to?

The hidden Markov model is necessary to use the Viterbi algorithm described in
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chapter 2.4.3.

2.4.3 Viterbi Algorithm

The Viterbi algorithm [26] is an algorithm that can be used to find the most likely
sequence of hidden states in a hidden Markov model, given a sequence of observed
states. The prerequisites are the three matrices outlined in chapter 2.4.2. The algo-
rithm uses dynamic programming to find a path that corresponds to the sequence
of states with the highest likelihood based on the sequence of observed states.

Given a problem with nh hidden states and no observable states, the following is
obtained from the hidden Markov model:

• initial probability matrix P of size nh × 1

• transition probability matrix T of size nh × nh

• emission probability matrix E of size nh × no

The algorithm also requires a sequence of observed states, {oi} of size ne to be eval-
uated.

The algorithm keeps track of two tables T1 and T2 of size nh × ne (the number
of hidden states multiplied by the length of the observed sequence to be evaluated).
Here index i, j of T1 stores the probability of the most likely path of hidden states
x1, ..., xk where xk is the ith element in the most likely hidden sequence, given the
observed sequence y1, ..., yj. The table T2 is the corresponding most likely path of
table T1.

The algorithm is initialized by populating the first row of the T1 with the mul-
tiplication product of the starting probability and the corresponding likelihood of
the first item in the observed sequence from the emission probability matrix. The T1
table is then populated for each element in the observed sequence such that the most
likely path from the following index as obtained from the product sum of the emis-
sion probability matrix and the transition probability matrix and the corresponding
item in the previous index of the T1 table. Similarly, that index is then stored in the
T2 table. When this has been completed for all elements in the observed sequence,
the most likely path is found by backtracing the T2, starting in the element which
had the highest probability at the last index.

The output of the Viterbi algorithm is a sequence of hidden states such that the
likelihood is maximized. This sequence can be visualized in a Trellis diagram, see
Figure 2.10.
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Figure 2.10: Example of a Trellis Diagram showing the most likely path (red)
between four hidden states (A, B, C, D).

The output of the Viterbi algorithm (further explained in chapter 3.4) did not im-
prove the overall accuracy of the algorithm and was thus discarded. However, further
research is encouraged, specifically in terms of pre-processing the input data to the
hidden Markov model.
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Results

This chapter presents and discusses the results obtained during this project. Section
3.1 looks at methods of estimating the gaze when the gaze quality is low. Results
from experiments showed that a multi-layer perceptron regressor provided the most
convincing results, and this method was thus chosen to estimate gaze direction for
the final algorithm.

Next, in section 3.2, the proposed clustering methods are evaluated. The gaus-
sian binary gravity clustering method was chosen as the most suitable method due
to this method providing accurate clustering results while also being simple to ini-
tialize and update.

Then, in section 3.3 the results from the cluster update step are shown. This is
an essential step in providing an automatic calibration of the algorithm while it is
running online.

Lastly, in section 3.4, results are shown from the proposed method to perform statis-
tical correction using the Viterbi algorithm on a pre-trained hidden Markov model.
The results from this algorithm did not improve the accuracy of the final algorithm
and were thus discarded from use there. However, as this method was deemed
promising for further work, the results are still displayed.

3.1 Gaze Estimation
This section presents and discusses the obtained results for the approaches and
methods tested in this project related to the manipulation of raw data. Specifically,
the objective of these methods is to utilize information from the head pose direction
to estimate a more accurate gaze direction when the gaze quality is low. This will
in turn improve accuracy in the classification as well as the cluster update step.

The main comparison tool used in this section is the distribution of the proba-
bility densities for the estimates, such as the ones shown in Figure 3.1. Given an
input (such as the head position), an estimator is given as an output with a mean
position and a covariance. This estimator is denoted N (xtrue|µest,Σest). The closer
to the center a proposed "true" gaze point xtrue is, the greater the value of the output
of the estimate is. These densities are calculated for a data set, and the distribution
of these densities is what can be seen in Figure 3.1. Also, since the integral of the
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probability density distribution is always 1, the maximum value of the density of
the function increases as the covariance decreases. As the shape of the probability
density function for a given input comes from the data it has been trained on, a
more confident estimate will have a smaller covariance and a less confident estimate
will have a larger one. This will result in higher density values for confident esti-
mates being reasonably correct, but much lower density values when the estimates
are incorrect. The less confident estimates do not become as penalized for having
an imperfect estimate but do not gain as high of a density value when the estimate
is good, as the covariance is quite large.
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(b) Qgaze > 0.8
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Figure 3.1: Distributions of probability densities from estimates for each of the
three implementations of gaze estimators

In Figure 3.1, three implementations are compared. Firstly the Correlation Grid
(section 2.2.1) is displayed in green, and secondly two different versions of the re-
gression model (section 2.2.2); one using only head position to estimate the gaze
direction in red, and one using both head position and velocity to estimate the gaze
direction in blue, are included. Subfigure (a) shows the performance in the situa-
tions where the gaze quality is considered bad (Qgaze < 0.5, subfigure (b) shows the
performance when the gaze quality is considered good (Qgaze > 0.8) and subfigure
(c) displays the collective performance for all gaze qualities.
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3.1.1 Correlation Grid
To obtain results that could be evaluated and compared, a few different parameters
of the grid itself were adjusted. The adjustable parameters used were the grid size
itself, the contribution of each point to its respective bin, as well as the number of
files used to train the grid. All training was performed using data from the multi-
camera system (SEP) to ensure the best accuracy of the measurements as possible
for offline use.

First the grid size was evaluated between having the bin-resolution of 15x10 (see
Figure 2.7) and 30x20 (see Figure 3.2). It is deductible even from simply evaluating
the grids by eye that in the latter case, the bins are very small compared to the
corresponding projected sectors of the vehicle. This subsequently leads to the risk
of the head pose measurements belonging to a certain bin being few and thus not
having enough data to provide a reliable distribution. Because the main use for
this grid is to obtain a rough estimate to help deduct in which general area the
current gaze point should reside in, this will lead to a bad estimation in each bin,
as not enough data exists to build a dependable distribution from. The differences
between neighboring bins also tend to be larger because of this, especially closer to
the periphery. Because of this, it was decided to use the bin resolution of 15x10
when implementing this method.
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Figure 3.2: Grid with the width of 30 bins and height of 20 bins displayed on top
of the projected interior of the vehicle from origo

In the aspect of the contribution every point has on its corresponding bin, a couple
of different methods were used. The first was to simply discard all points with a
Qgaze < 0.9 from making any impact at all. This yielded a robust estimation, but
the coverage over the entire grid became significantly worse. This is especially un-
wanted in this circumstance as the main use of this method is to get estimates where
the Qgaze tends to be sub-optimal. Because of this, the other method implemented
a simple linear function (Equation 3.1) depending on the Qgaze of the measurement.
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This equation results in a gaze multiplier Mgaze that is used to scale each contribu-
tion more suitably according to the corresponding gaze quality.

This gaze multiplier is used during training to penalize the contributing samples
of lesser quality and inhibit them from unresonably diverging the estimate. Each
contribution to a bin for one measurement was named z, and the calculation is de-
scribed in equation 3.2. Here x denotes the head pose for one measurement and y
the gaze direction for the same measurement.

Mgaze =


1 if Qgaze > TM

1
TM−Tm

Qgaze + 1− TM

TM−Tm
if TM > Qgaze < Tm

0 if Tm > Qgaze

(3.1)

z = (y− x)Mgaze (3.2)

Figure 3.3: Vector plot with 1000 samples going from head pose direction to gaze
direction for a single individual.

What became increasingly prevalent during testing was that the correlation between
head direction and gaze direction had quite the opposite result of the hypothesis of
the behavior that was based on early tests that displayed raw samples from the data
(see Figure 3.3). Instead of showing results of gaze points located further towards
the periphery when the head direction deviates from the immediate, straight-forward
direction, the collective gaze directions tended to be directed towards the center as
can be seen in Figures 3.4 and 3.5. After some discussion, it was deducted that this
was the result of neglecting the velocity vector from the training of the grid, which
with its absence did not account for the moments when the intended gaze point
is moving and not fixed on an object. This led to the discovery of an interesting
phenomenon in which the driver tends to lead the movement of the gaze direction
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with the eyes, and then the head follows a split second later. This leads to some
gaze points that are already moving being registered in the bin which the current
head direction is residing in, before the head movement commences and follows the
eyes. Subsequently, due to the sheer amount of data points consisting of gaze points
in the general EOR (eyes on road) area and that this area is the most common one
to switch to, this led to a bias being created towards the center of the coordinate
system.
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Figure 3.4: 15-10 Grid trained on 10 individuals with a linear quality impact ratio.
The red dots represent the corresponding mean of the gaze distribution of the bin
from which the blue line originates from.

−1.5 −1 −0.5 0 0.5 1 1.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Heading (Radians)

Pi
tc

h 
(R

ad
ia

ns
)

Figure 3.5: 30-20 Grid trained on 10 individuals with a linear quality impact ratio.
The red dots represent the corresponding mean of the gaze distribution of the bin
from which the blue line originates from.
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The results that this method therefore yielded could provide helpful data about
the whereabouts of the gaze direction based on the head direction, but is far from
perfect. However, it provided some usable knowledge about the gaze tendencies
during head movement that could provide helpful insights in the future.

3.1.2 Regression model
The Multi-layer Perceptron Regressor in general obtained quite reasonable accuracy
results in general. This can be noted from Figure 3.6 where the average difference
between the predicted gaze direction and the true gaze direction is displayed depend-
ing on how many individuals were used for training the model. From this figure, it
is notable that regardless of how many individuals are used for training the model,
the average distance between the estimated gaze direction and the true one is circa
0.2 radians (12 degrees). This can be compared to the general uncertainty for a real
gaze measurement based on the gaze cone introduced in section 2.1.4, which has a
radius of about 0.1 radians. To obtain only a slightly worse accuracy between the
estimate and the true measurement compared to the accuracy of the actual gaze
measurements is therefore promising.

However, the output itself simply generates a predicted absolute position of the gaze
direction. Due to the prediction not being perfect and to the structure of the rest
of the system, this will yield results that deviate from the true gaze direction in
the majority of the time and it will not be possible to interpolate between the pre-
dictions and the measurements in a probabilistic manner. Therefore it was decided
that the results of these tests can be used to create an uncertainty covariance around
the predicted point to obtain a probability distribution of where the true gaze mea-
surement should be located. By doing this, and also defining the true gaze point as
a probability distribution based on the gaze cone (see section 2.1.4), it enables an
intersection of the covariances to be extracted and thus creating a weighted estimate
based both on the estimate and the true gaze direction.

The distribution was created through training the covariance of the already trained
MLP model with new data sets, where the covariance around the estimate became
the variance of the estimates compared to the true gaze points for these measure-
ments. This also enables the testing and comparison between this method and the
Grid Correlation to be carried out in a more just way. This procedure generated
the following covariance matrix for the model using only head pose direction:

Σest =
[ 0.0192 −0.0058
−0.0058 0.0202

]
And the following covariance matrix for the model using both head pose direction
and head pose velocity:

Σest =
[ 0.0199 −0.0055
−0.0055 0.0196

]
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The matrices above only differ slightly, and the standard deviations σxx and σyy
for both covariances becomes ≈ 0.14, which is expected as it lies within one stan-
dard deviation in the tests displayed in Figure 3.6.
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Figure 3.6: Accuracy test of the mean error between the estimated gaze and the
true gaze point done on three different individuals using only head pose as input.
The x-axis denotes how many individuals the model has been trained on and the
dashed lines displays one standard deviation from the mean value.

The results of this comparison can be seen in Figure 3.1, where two versions of
the regression model were implemented; one using only head pose direction as in-
put, and one using both head pose direction and head pose velocity. The plots
displayed are the distributions of probability densities of the true gaze directions
xtrue in the corresponding covariances generated from the gaze estimators µest,Σest

as N (xtrue|µest,Σest). What can be noted is that the performance of both of the
regression models is more or less equivalent to the grid at the higher spectrum of
Qgaze’s. When the Qgaze gets lower however, the regression model starts to become
more accurate.
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This largely has to do with the difference in handling the periphery in the im-
plementations. The grid model has a different distribution for each bin, and this
distribution tends to become larger in the periphery where the gaze quality worsens.
This is despite the use of the gaze multiplier (equation 3.1) when training the grid
correlator. The regression models on the other hand create a more continuous rela-
tion between the input and output, as well as having a fixed size of the distribution
for the entire state space based on the covariance training mentioned above.

Another thing that could be noted was that velocity does not seem to provide better
performance. This is most likely due to the simple assumption of just adding the
head velocity to the input is a simplified model of the behavior that fails to provide
any additional useful information. To be able to utilize this potential, more time
needs to be invested in researching behavior patterns and what other assumptions
can be made to improve the gaze estimate with the MLP regression model.

With this data in mind, it becomes clear that in the purpose of gaze estimation
when the gaze quality is sub-par, the regression model outperforms the correlation
grid in the accuracy department. It also has greater potential when it comes to fur-
ther development, as the head pose velocity could provide more valuable information
if it is implemented correctly. This demands more time dedicated to behavior stud-
ies on head movement, however. Therefore the regression model using head pose
direction as input was chosen as the candidate for gaze estimation.

3.2 Clustering Methods
To compare the performance of different clustering methods, a basis for this testing
needed to be defined. Important features to compare include the accuracy of the
clustering itself, the speed of the prediction and update steps of the algorithms, as
well as the ease of correlating the clusters to the points of interests in the vehicle
interior. Although the latter metric is not quantifiable, it is of great importance
as some methods do not allow for manual initialization of the clusters or even the
number of clusters in some circumstances. This can subsequently lead to a difficult
task of correlating the clusters to the physical objects of interest inside the vehicle.

This directly eliminates both the K-means algorithm (see section 2.3.1) and the
Fuzzy C-means method (see section 2.3.2) as potential clustering methods, as the
robustness based on replicability will be very low and due to the dynamic behavior
of the data and the individual differences between drivers, this will lead to an unpre-
dictable algorithm that is hard to obtain the intended information from. This is also
a part of the reason for not carrying out any large scale tests on the DBSCAN (see
section 2.3.5) and CDBSCAN (see section 2.3.6) algorithms, together with the fact
that these methods required large amounts of data to be able to form any clusters.
Therefore, these methods were also deemed not suitable for the purposes of this
thesis.

The most obvious way to compare the different clustering methods became (be-
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cause of the reasons mentioned above) to firstly visually judge the results and to
what extent they might resemble the sectors of interest in the vehicle. After this,
a quantifiable comparison was done by analyzing the classification of every point
compared to what interior object their corresponding 3D gaze vector intersected
with, as well as the handling of uncertainties in the model.

The comparisons between the 3D intersection points and the cluster needed a bench-
mark to determine if the results can be considered to improve the accuracy or not.
Therefore it was decided that the raw SEP data would be used with each clustering
algorithm to get a baseline confusion matrix describing what type of intersection
points got classified as what object and thus which performance can be expected
from each method. The chosen algorithm will thereafter be implemented to its full
extent together with the chosen gaze estimator and update scheme, after which the
same confusion matrix will be generated with the less accurate TC data to compare
the performance.

For testing of the clustering algorithms, the input data used for clustering was the
gaze direction data from SEP. After the clustering was performed, the estimated
clusters inherencies were then compared to the intersected 3D object of the vehicle
from the 3D gaze vectors, using SEP for maximum accuracy. Thereafter an analysis
if the gaze direction measurement was classified as the correct object or not was
carried out and the results were displayed in confusion matrices, which shows the
percentages of all the points intersecting with a certain object being classified as
each object.

A common and expected issue with the chosen fitness metric is the lack of a "true"
ground truth in the matter of what object is being observed at each data point. The
solution of taking the most accurate data and using it to find the 3D intersection
points with the model of the car thus introduces a few common errors and faulty
classifications that have nothing to do with the clustering algorithms themselves.
Due to the limited scope and time frame of this thesis, no time could be allocated to
create a better ground truth for this purpose, as the only "perfect" solution would
have been to manually annotate about 8 hours of video recordings.

With this in mind, a few errors in the confusion matrix should be expected. Firstly,
the physical area classified as the EOR is substantially smaller than the actual area
corresponding to the driver looking at the road. This leads to a substantial amount
of data points that actually are EOR-points, to have their respective ground truth
objects being the windshield. Secondly, the cluster corresponding to the front wind-
shield is located on the left side of the window (see Figure 3.7). The purpose of
this is that the main part of the gaze points located on the left side are either EOR
or located on the inner mirror, as well as the only distinguishable points where a
person is looking through the front windshield and not on the road is on the left
side.
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Figure 3.7: Plot of the sizes and locations of the initialized clusters overlayed over
a simplified projection of the car interior consisting of the objects of interest.

These two things result in a large number of points having their ground truth set as
the front windshield but predicted as being EOR when the majority of these points
are mislabeled due to the ground truth generation not being perfect.

In addition to this, the clusters corresponding to the side mirrors are larger than
the physical mirrors themselves. This is due to the accuracy of the non-calibrated
system not being perfect, which leads to many points having their respective ground
truths set as the side window but predicted as the side mirror. As mentioned above,
this is also a behavior that stems from the ground truth generation, and all of these
mentioned behaviors should be regarded when looking and analyzing the results
below.

3.2.1 Expectation Maximization

During the process of testing and evaluating the Expectation Maximization algo-
rithm, it was initialized and trained the same way for each case, and evaluation was
carried out with the same data. This was done to keep the results as comparable as
possible. Additional numerical results than the ones displayed here can be found in
Appendix A.2.

One of the largest contributing factors to the apparent success of the EM algo-
rithm was the ability to initialize the locations of the cluster themselves. This was
very important for the purpose of this thesis, as the structural integrity of the loca-
tions of the interior points of interest was ruined if the clusters were not placed and
sized according to the general locations of the objects to be detected.
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(a) Without Mean Initialization (b) With Mean Initialization

Figure 3.8: Plot of clustered points with the color corresponding to the cluster
inherency generated from the standard EM algorithm

Simply initializing the means and covariances of the clusters did not happen to be
quite enough to solve the entire problem, however, as the algorithm still has the
ability to morph the covariances to find a local maximum according to equation
2.20. This phenomenon can be seen in Figure 3.8, where simply initializing the
means and covariances in the correct locations does not ensure convergence to a
model representative of the actual locations of the objects. This is also visible
in Figure 3.9, where the results are not terrible, but in areas such as the right rear
view mirror and right window, the effect of the morphing of the covariances becomes
prevalent. For some data collections, the clusters can also totally converge on the
wrong data, which can be seen specifically on subfigure (b) in Figure 3.9 where the
vast majority of the left rearview mirror data points were classified as belonging to
the left window.

Predicted Objects
LM WL C EOR MI WF CS MR WR

LM 100 0 0 0 0 0 0 0 0

WL 81 17.6 0 0 0 1.4 0 0 0
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C 0 0 89.8 0 0 10.2 0 0 0

EOR 0.5 0 0 99.2 0.3 0 0 0 0

MI 0 0 0 0 100 0 0 0 0

WF 9.4 0 1.8 64.3 19.9 1.9 0 2.7 0

CS 0 0 0 0 0 19.2 80.8 0 0

MR 0 0 0 0 0 25 0 75 0

WR 0 0 0 0 0 19.7 0 7 73.3

(a) id59
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EOR 0 0 0 99 0 1 0 0 0

MI 0.4 0 0 0 73.6 17.5 0 8.5 0

WF 10 0 0 57.5 0.3 27.2 2.1 2.9 0

CS 0 0 0 0 0 0 100 0 0

MR 0 0 0 0 0 0 0 98.8 1.2

WR 0 0 0 0 0 0 0 70.7 29.3

(b) id86

Figure 3.9: Confusion matrices of raw SEP data clustered with the EM algorithm

The biggest issue with the EM algorithm was however that it requires a substantial
amount of data belonging to each area of interest at every update step. If this is
not the case, the cluster connected to an area in the vehicle that is more seldom
visited will start to morph and converge on another group of data points, as the
algorithm cannot adjust the number of clusters used. This causes divergence in the
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model from the actual geometry of the interior, which is difficult to avoid.

This was the main reason for the construction of the GBG algorithm (see section
3.2.2), where the covariances are kept fixed and each point only affects its inherent
cluster. This becomes more suitable for live use where it cannot be expected to have
access to data where all areas of interest are covered.

In addition to this, the same initial conditions might not result in the same solution
twice with all affecting factors being the same, which inhibits the reproducibility
and the reliability of the system.

3.2.2 Gaussian Binary Gravity

To combat the prevalent issues in the EM algorithm, the GBG algorithm was in-
troduced, and based on the results of the two methods, this seemed to come out on
top. Firstly, the issue of the clusters losing connection with their respective physical
objects of interest is not prevalent in GBG (see Figure 3.10 and 3.11). This was
largely due to the change of the update step of the clusters, as well as how the
covariance is handled. This procedure is explained in section 2.3.4.

Figure 3.10: Plot of clustered points with the color corresponding to the cluster
inherency generated from the GBG algorithm
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Figure 3.11: Plot of new (turquoise) and old (black) cluster centers generated from
the GBG algorithm

Mostly, the results were promising, as can be seen in both subfigures of Figure 3.12
(more results can be found in Appendix A.2). What can be noted is that the issues of
the false positives in these matrices are largely due to the questionable ground truth
that was discussed at the beginning of this section. Despite that, the areas around
the periphery tend to be more prone to misclassification. This is mainly due to the
gaze quality plummeting in those areas of the state space (see Figure 2.5), but also a
result of the current cluster initializations. With more time allocated to tuning, this
is mendable through an iterative process to find an optimal initialization point for
each cluster, or perhaps an automatic placement based on the head position of the
individual. This was neglected in this project due to the quite limited time frame
available.
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EOR 0 0 0 99.9 0.1 0 0 0 0

MI 0 0 0 0 99.9 0 0 0.1 0

WF 0.7 0 1.6 80.4 13 3.9 0 0.4 0

CS 0 0 0.9 0 0 0 99.1 0 0

MR 0 0 0 0 0 0 0 100 0

WR 0 0 0 0 0 0 0 10.8 89.2
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EOR 0 0 0 100 0 0 0 0 0

MI 0 0 0 0 98.2 1.8 0. 0 0

WF 0.3 0 1 82 11.3 5.4 0 0 0

CS 0 0 0.2 0 0 0 99.8 0 0

MR 0 0 0 0 0 0 0 100 0

WR 0 0 0 0 0 0 0 83.6 16.4

(b) id86

Figure 3.12: Confusion matrices of raw SEP data clustered with the GBG algo-
rithm

With this said, comparing the performance between the different clustering algo-
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rithms discussed in this thesis, the GBG method is by far the most suitable for
this project. The performance itself is quite good when the data is of good quality,
which means that it can distinguish between the necessary areas of interest provided
decent data. It also provides robustness in the aspect of maintaining the structural
integrity of the vehicle interior, which leads to the usability when data in all areas of
interest cannot be expected at all times during real-time use. Due to these reasons,
the GBG algorithm was chosen as the candidate for clustering.

3.3 Cluster Update Handling
In real-time use, the update of the clustering algorithm introduces a few issues.
First of all the updates need to happen continuously in order for the model to grad-
ually adapt and converge for each individual driver. Secondly, to save every single
measurement indefinitely to provide the clustering algorithm with the proper in-
formation to converge is not feasible, as storage is limited and computational time
will increase as more information is collected. This is the reason for the need of a
handling scheme for the update of the algorithm.

To determine how to handle this update, a few tests were carried out to gain knowl-
edge of how the chosen algorithm behaves during sequential updates. The results of
this have the main purpose of being a guideline of how fast the algorithm converges,
and consequently how to handle both the amount of data needed for the model to
be maintained as well as the importance of not impacting the computational strain
and storage strain on the system in an unnecessary manner.

Firstly, to simply perform a clustering update for every single sample is not a solution
to the problem of needing to save all collected measurements to perform clustering
that converges correctly. In this case, the model itself will fully be affected by one
single sample when the algorithm itself is constructed to work in a probabilistic
manner which requires a set of data to be effective. This will lead to the model
never converging and the accuracy of the clustering will be questionable at best. On
the other hand, not updating the model until the current driving session is over will
strongly impact the live performance, mainly during the first driving session, as the
default values of the cluster locations will be used for prediction during this session.
It will also create issues with future constraint implementations, as each update will
be done on all data at once, which will make it harder to detect when a constraint
is violated and thus how to handle it.

The solution is to instead have batch updates, which simply collects all recorded
samples during a smaller period of time starting from the last update and using this
set of samples to update the model. During this project, one batch was defined as
3,600 data points, which on average corresponds to 60 seconds of video data. To
deduct what amount of data the chosen algorithm needs to converge and maintain
this geometrical relationship, batch tests were performed. In Figure 3.13 it is visi-
ble that using only one batch does not lead to any convergence at all (see subplot
(a)), as the cluster movement fluctuates significantly. It is also noticeable that when
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keeping all batches (see subplot (b)), the model tends to converge at around 12
batches. With this information, a test using a batch memory of 12 batches at all
times was carried out, which subplot (c) displays. This provides almost the same
convergence amount, while not needing to keep all data points for every update step.
More figures that reinforce this conclusion can be found in appendix A.1.
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(b) Cumulative Batches

5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

1.2

Number of BatchesS
um

 o
f 
D

iff
er

en
ce

 o
f 
C
ur

re
nt

 a
nd

 L
as

t 
C
lu

st
er

 P
os

iti
on

s

(c) Max 12 Batches

Figure 3.13: Plots of the difference between clusters between batches with different
handling of batch storage for the data file id59

3.4 Statistical Correction with Hidden Markov Model
To further improve the accuracy of the algorithm predictions, particularly when the
gaze quality is low, a hidden Markov model was implemented and trained. The hy-
pothesis is that given a sequence of predicted clusters, where predicted refers to the
cluster with the highest probability for a given data point, the pattern of behavior
from previous data points provides a baseline from which the next observed clus-
ter can be predicted. This estimate will then support the gaze estimate extracted
from the regression model, which uses the head direction and head direction velocity.

The flow of the correction algorithm is shown in Figure 3.14. Cluster predictions
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from the Smart Eye Pro multi-camera system was used to supply the model with
the hidden states, which have a higher accuracy in gaze direction, while data from
the less accurate single-camera Tracker Core system was used to obtain observable
states.

Figure 3.14: Flowchart of the testing process of the hidden Markov model.

The first step was to synchronize the data from the multi-camera system with data
from the single-camera system. To verify that the two data sets are synchronized,
we look at the time stamp for each frame. Both systems were used simultaneously
to record each driving session, however, there were some differences in how these
work, which affected the data. More specifically, two problems needed to be solved:

1 Time unit discrepancy. The single-camera system stores time in Unix Epoch
time, while the multi-camera system stores time in Windows Epoch time.
Therefore, the time unit needs to be taken into account when comparing the
two time-columns.

2 Misaligned data. Even after converting the time units, there was a slight mis-
match in the data. Therefore, a method was developed which matches each
single-camera system data frame to a multi-camera system data frame such
that the time difference is minimized.

To address the two issues described above, a method was implemented that converts
the time format in the TC files (Unix Epoch time) to the time format in the SEP
files (Windows Epoch time). The two camera-systems capture images at the same
rate, meaning that the average time difference between any two consecutive frames
in the data sets are sufficiently similar that we can assume a linear slope. As a
result, it was good enough to simply shift the two lines so that they align. Any
items that did not align were discarded. To counter small variations in the frame
rate, each item in the SEP data that was matched with the corresponding item in
the TC data such that the difference in time was minimized.
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The final cluster model was trained on ten multi-camera system-files (SEP), all
with different driver IDs. Next, four SEP data files were synchronized with their
respective TC data file, such that for every timestamp in each of the SEP data set
there is a corresponding data frame from the TC data from the same driver ID.
These two data sets were then given as input to the clustering algorithm to find the
sequence of most likely clusters. These two sequences were then used to train the
hidden Markov model, where the sequence of clustered SEP data was used as hidden
states sequence, and the TC data was used as observable states. The three matri-
ces (starting probability, transition probability, emission probability) are shown in
Tables 3.1, 3.2, and 3.3 respectively.

Lastly, the test and verification data sets were created by synchronizing a TC data
file with a SEP data file and then finding the most likely sequence was for each of
these sets found. The process to obtain an improved sequence then goes as follows:
For each item in the test TC data sequence, the quality was inspected. If the quality
is higher than a threshold, the item was added to the improved sequence. If the
data is below the threshold, the improved sequence was given as input to the Viterbi
algorithm (see chapter 2.4.3) to obtain a best estimate of the next item, and this
was used to replace the low-quality cluster estimate. This was then compared to
the verification data set, which comes from the SEP data system.

The performance of the algorithm with the hidden Markov model enabled, trained
on different numbers of individuals, was illustrated as a confusion matrix is shown
in Table 3.4 along with the baseline case of the unmodified sequence of TC cluster
objects in Table 3.5. The results show that the unmodified sequence of TC cluster
objects obtained an accuracy of 76.74%, while the sequence which was modified by
the Viterbi algorithm after training a hidden Markov model obtained an accuracy
of 48.47%.

Unfortunately, this means that the model did not show sufficiently good results
to include the hidden Markov model in the final algorithm, as the overall accuracy
decreased with this module implemented compared to without.

Possible explanations to the poor results are that this is either due to a lack of
high-quality data in the periphery of the car, or due to the fuzzy classification of
sectors, or a combination of the two. The hidden Markov model relies on certain
data in the hidden sequence and observed sequence to create the matrices later used
by the Viterbi algorithm. However, with the GBG clustering algorithm used in this
project, the classification of a data point returns a vector of probabilities. It could
for example be classified as 50% eyes on road, 20% left mirror, and 30% left window.
As the hidden Markov model does not work with fuzzy values, this needs to be ap-
proximated as 100% eyes on road. This means that even if the highest probability
of a sector from the classification is only 25%, that sector will be treated as if it
was 100% in the hidden Markov model. Further, the quality of data also varies,
especially in the periphery of the car. Even if the classification of a gaze point re-
turns a single object with 100% confidence, if that gaze point had a low quality we
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cannot fully trust that measurement. Any such uncertainty will be reflected both
in the clustering, and then again in the creation of the hidden Markov model, this
indeed seems to undermine the precision of the output in the Viterbi algorithm.
Introducing a quality threshold or a certainty threshold to avoid any low-quality
data might increase the accuracy in areas where high-quality data is abundant, but
will also lead to a smaller statistical sample which increases uncertainty in regions
where high-quality data is scarce.

LM WL C EOR MI WF CS MR WR
31.93 0.01 10.79 61.99 9.41 6.68 4.48 3.20 0.25

Table 3.1: Starting probability of the Hidden Markov Model from four synchronized
data files.

Object of Destination
LM WL C EOR MI WF CS MR WR

LM 91.78 0.02 3.39 4.74 0.00 0.02 0.06 0.00 0.00

WL 33.33 33.33 16.67 0.00 0.00 0.00 16.67 0.00 0.00

O
bj
ec
t
of

O
ri
gi
n C 0.78 0.01 92.36 3.56 0.04 0.86 2.38 0.00 0.00

EOR 0.25 0.00 0.52 98.21 0.59 0.39 0.02 0.00 0.00

MI 0.00 0.00 0.07 3.85 92.31 3.56 0.03 0.17 0.01

WF 0.01 0.00 1.46 3.67 5.21 87.79 0.84 0.99 0.04

CS 0.03 0.00 5.90 0.29 0.07 1.39 91.83 0.03 0.46

MR 0.00 0.00 0.00 0.00 0.43 2.01 0.12 97.00 0.44

WR 0.00 0.00 0.00 0.00 0.79 1.83 12.57 9.42 75.39

Table 3.2: Transition probability of the Hidden Markov Model from four synchro-
nized data files.
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Object in Observed Sequence
LM WL C EOR MI WF CS MR WR

LM 88.82 0.02 0.75 10.42 0.00 0.00 0.00 0.00 0.00

O
bj
ec
t
in

H
id
de

n
Se

qu
en

ce
WL 33.33 0.00 66.67 0.00 0.00 0.00 0.00 0.00 0.00

C 9.88 0.02 67.05 14.09 0.00 0.68 8.28 0.00 0.00

EOR 1.14 0.00 0.68 97.02 0.02 1.13 0.00 0.00 0.00

MI 0.00 0.00 0.13 15.69 17.45 66.35 0.10 0.28 0.00

WF 0.30 0.00 9.86 12.19 0.16 67.44 7.52 1.02 1.52

CS 0.34 0.00 9.06 0.80 0.00 0.11 89.39 0.20 0.10

MR 0.00 0.00 0.00 0.00 0.00 5.99 18.89 46.67 28.45

WR 0.00 0.00 0.00 0.00 0.00 0.00 31.06 27.33 41.62

Table 3.3: Emission probability of the Hidden Markov Model from four synchro-
nized data files.

Predicted Object
LM WL C EOR MI WF CS MR WR

LM 68.81 0.00 7.78 21.16 0.51 0.00 1.74 0.00 0.00

WL 10.81 0.00 13.51 45.95 24.32 0.00 5.41 0.00 0.00

A
ct
ua

l
O
bj
ec
t C 9.78 0.00 53.09 23.07 3.84 0.00 10.23 0.00 0.00

EOR 16.55 0.00 18.45 61.74 1.40 0.06 1.79 0.00 0.00

MI 29.20 0.00 21.45 42.59 6.32 0.27 0.17 0.00 0.00

WF 21.93 0.00 32.49 18.07 19.51 1.28 6.71 0.00 0.00

CS 4.38 0.00 24.82 25.33 5.68 0.00 39.79 0.00 0.00

MR 13.60 0.00 12.11 66.67 6.88 0.00 0.75 0.00 0.00

WR 2.72 0.00 18.28 73.20 4.75 0.00 1.05 0.00 0.00

Table 3.4: Confusion matrix showing the predicted objects from the Viterbi algo-
rithm (columns) intersected with the actual objects, as determined by the SEP data
(rows). Note that the Viterbi algorithm never predicted any points on WL, MR, or
WR.
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Predicted Object
LM WL C EOR MI WF CS MR WR

LM 89.65 1.93 1.48 6.56 0.00 0.00 0.39 0.00 0.00

WL 21.62 32.43 0.00 10.81 0.00 05.41 27.03 0.00 2.70
A
ct
ua

l
O
bj
ec
t C 10.33 0.55 66.96 13.23 0.23 1.98 6.52 0.04 0.15

EOR 3.07 2.52 2.24 85.43 0.38 1.36 1.89 0.15 2.96

MI 3.60 0.01 22.51 34.06 36.31 0.15 0.15 0.61 0.63

WF 0.57 0.01 12.11 9.28 3.92 64.16 8.03 1.28 0.60

CS 0.48 0.07 2.70 2.65 0.65 5.01 83.97 3.52 0.96

MR 0.00 0.00 0.00 1.05 5.23 7.77 5.38 62.93 17.64

WR 0.00 0.00 0.28 2.44 0.56 1.40 4.75 40.27 50.31

Table 3.5: Confusion matrix showing the predicted objects from the baseline as
determined by the TC data (columns) intersected with the actual objects, as deter-
mined by the SEP data (rows).
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Final Algorithm

This chapter presents the final algorithm, the results obtained from it, and compares
this to results from other solutions. The algorithm combines the individual meth-
ods deemed most successful at their tasks, namely the gaze estimator, the clustering
methods, and the cluster update step. The statistical correction step, which uses
the Viterbi algorithm on a trained hidden Markov model was not included in the
final algorithm due to the decrease in accuracy it caused during testing.

In section 4.1, the algorithm is visualized using a flow chart and discussed in detail.
Section 4.2 presents the results from the final algorithm and compares this to other
versions of the algorithm.

4.1 Architecture

To create the final algorithm, the structure of the working parts needed to be estab-
lished. The main workhorse, the clustering algorithm, needs gaze points to cluster,
so logically the gaze estimation needed to be incorporated before the clustering al-
gorithm itself. Thereafter the batch update scheme needs to perform the cluster
updates correctly. These working parts and how they interact with one another is
displayed in figure 4.1.

First, the operation of the final algorithm depending on the gaze quality needs to
be addressed. The TC data that the algorithm expects to get as input data is gen-
erally less accurate than the SEP data, even at high gaze qualities. Therefore, this
uncertainty needed to be accounted for in the system. This was done by modeling
each gaze point with an uncertainty covariance, which is then used by the clustering
algorithm to draw samples from to obtain the cluster probability vector for the dis-
tribution. This distribution is modified depending on the gaze quality by the first
building block, the Gaze Estimator, which due to the results presented in chapter
3 was chosen to be the Multi-layer Perceptron Regressor using head direction to
estimate the gaze points. A solution for how to implement the regressor was needed
however, as the estimate only provides improvement to the measurement when the
measurement itself is deemed to be of "bad" quality. Because of this the algorithm
needed to take the gaze quality into account when deciding on which distribution to
use for every data point, and the flowchart in figure 4.2 shows the decision process
for this entire gaze estimator.
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New Measurement
(c = c+1)

Gaze Estimator

Cluster Prediction

Is c = Batch Size?
True False Save Measurement to

Batch

Cluster Update
w. Batch Memory

c = 0

Add Batch to Batch
Memory

Is 
len(Batch Memory) >

Batch Threshold?

Remove oldest Batch
from Batch Memory

START

True False

Figure 4.1: Flow chart of the Final Algorithm. c is a counter variable and
BatchThreshold is a constant value set before the algorithm is started. Note that
this algorithm will run online, and thus has no built-in stopping point.

When the gaze quality is above the set high threshold, the chosen distribution be-
comes centered in the gaze measurement, while the covariance gets decided by the
definition of the gaze cone introduced in Section 2.1.4. When the gaze quality in-
stead is below the set low threshold, the chosen distribution simply becomes centered
in the regressor estimate of where the gaze point is expected to be located, and the
covariance becomes the estimated covariance that the regressor has calculated ac-
cording to the explanation in section 2.2.2.

When the gaze quality is between the high and low thresholds however, both the
measurement and the estimate need to affect the resulting distribution to improve
the measurement with the estimate. This is done by utilizing the so-called covariance
intersection algorithm, defined by the two equations

Σr = Σ1(Σ1 + Σ0)−1Σ0 (4.1)

µr = Σ1(Σ1 + Σ0)−1µ0 + Σ0(Σ1 + Σ0)−1µ1 (4.2)

Where, given two multivariate distributions N (µ0,Σ0) and N (µ1,Σ1) the resultant
distribution N (µr,Σr) obtains a mean and covariance according to equations 4.1
and 4.2 (see Figure 4.3). Here the gaze cone will be defining Σ0, the gaze direction
measurement µ0, the estimated gaze direction µ1, and the estimated gaze distribu-
tion Σ1. This will effectively increase the certainty of the distribution if the gaze
point is okay while maintaining a robust behavior and creating qualified guesses
when the data is mediocre, as it creates a statistically based combination of the two
distributions.
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Input Data

gazeQ>HT

gazeQ<LT

True False

Gaze:
Scale Gaze Cov.
Based on gazeQ,

mean = Gaze Point

Estimated Gaze
Gaussian becomes

distribution

False

True

Gaze:
Gaze Cov is fixed,
mean = Gaze Point

Multiply Gaze
Gaussian w.

Estimated Gaze
Gaussian to create

distribution

Estimated Gaze:
Multi Layer

Perceptron Regressor

Gaze Gaussian
becomes distribution

Output:
Mean of distribution &

probability vector

Figure 4.2: Flow chart of how the Gaze Estimator operates within the final algo-
rithm

(a) (b)

Figure 4.3: Two examples of the resulting distributions acquired using equations
4.1 and 4.2. The magenta ellipse is the result of a covariance intersection of the blue
and red ellipses.

Depending on the gaze quality of the measurement, the corresponding distribution
is then used to generate a set number (N) of samples X = {x1, ...,xN} from this
distribution. These points are individually tested with the current cluster locations
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according to equation 4.3 to obtain the probability vector of each point, where K
denotes the number of clusters and µk and Σk is the mean and covariance of cluster
k. These vectors are then summed and normalized in equation 4.4 to create the
resulting probability vector for the distribution. This entire process is visualized in
a flowchart in figure 4.2.

pn =
∑K
k=1N (xn|µk,Σk)

K
(4.3)

pd =
∑N
n=1 pn
N

(4.4)

The results are thereafter brought into the clustering algorithm, which has been cho-
sen as the variation of the EM method that has been named GBG (introduced in
section 2.3.4), for the prediction step. This is simply the calculation of each measure-
ment’s inherent cluster with the current cluster locations. For each measurement,
the prediction step uses the Gaussian distribution from the Gaze Estimator, from
which n points are sampled and evaluated one by one to each cluster to obtain a
normalized probability vector for each point (using equation 4.3). These probability
vectors are then summed and normalized to obtain an estimate of the cluster prob-
ability for the entire Gaussian distribution with equation 4.4. This procedure can
be viewed as a flowchart in Figure 4.4.

Sample n points from
distribution

Predict Cluster
Probabilities for Each

Point

Sum and Normalize

Output:
Probability vector

Input:
Mean and Cov of chosen

distribution

Figure 4.4: Flow chart of how the Clustering Prediction operates within the final
algorithm

To handle the update step of the final algorithm, the implementation mentioned
in section 3.3 using batches was implemented. To be able to utilize the desired
behavior, the storage of batches, and the point where the cluster algorithm update
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takes place needed to be decided. Because of this, the final algorithm works in
minute batches (c = 3600 with a frame rate of 60 Hz) in which each measurement
is only predicted, and is then saved into one single batch. When one minute worth
of measurements has been collected, the batch is added to what is called the Batch
Memory and this memory is used to update the cluster model. This memory con-
tains all the data the clustering algorithm uses for its update step and is used to not
let new data single-handedly control the update of the cluster, but instead keep a
certain amount of "old" data to maintain the structural integrity of the model. As
the results show in figure 3.13, after about 12 minutes the results of the clustering
tend to not improve significantly. What can also be noted is that the performance
when limiting the Batch Memory to contain 12 minutes of measurements only is
affected a small amount compared to the case where all measurements are used for
every update.

Due to this, the Batch Memory in the final algorithm has a cap on 12 batches,
and at the point when the memory is full and another batch is added, the oldest
batch in the memory is removed. This leads to roughly the same performance as
saving all measurements without both the computational strain caused by an in-
creased data set as well as the potentially infinite requirements on storage for this
algorithm to be able to run.

The final building block is then of course the cluster update itself. To enable the
distributions created by the gaze estimator to act as the update points for the algo-
rithm. It was decided to use the mean of the distributions as the point to calculate
the difference between the measurement and its inherent cluster as it becomes the
most natural reference point. This is because when the gazeQ is above the high
threshold the mean of the distribution becomes the actual gaze direction measure-
ment.

The probability vector for each measurement is calculated by sampling from its
distribution as described above, and all these factors are used to update the cluster
positions according to the GBG-algorithm. A flowchart of the procedure of this final
algorithm update step can be seen in Figure 4.5.
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Figure 4.5: Flow chart of how the Clustering Update operates within the final
algorithm

4.2 Results

During the gathering of results for the final algorithm, it was decided to use a
stepwise integration of the tree working parts in the algorithm to get a clear vision
of what performance they provide. The tests used were the same as described in
section 3, where the intersections of the 3D vectors from the SEP data on the 3D
model of the vehicle interior were used as ground truth. To get a basis of the expected
performance on the different test files, the standard GBG algorithm introduced in
section 2.3.4 was used to classify the SEP data. The same algorithm was then used
on TC data to gain knowledge of how the single algorithm performs on the data
that can be expected in real-life use to visualize the differences. Thereafter the gaze
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estimator was implemented together with the GBG algorithm and tested with TC
data to see how the difference of the introduction of the gaze cone and improving the
lower quality points affect the results, and finally, this algorithm was tested using
the batch update scheme described in this section. The resulting confusion matrices
for the data-id files id9 and id51 can be viewed in figures 4.6 and 4.8 respectively,
with additional results on other data-id files being found in appendix A.2. Please
refer to table 4.1 for an explanation of the acronyms used in the column and row
names.

Acronym Area of Interest
LM Left Rear View Mirror
WL Left Window
C Tachometer Cluster

EOR Eyes On Road
MI Inner Rear View Mirror
WF Front Windshield
CS Center Entertainment Stack
MR Right Rear View Mirror
WR Right Window

Table 4.1: Table of acronyms used in the confusion matrices

The main focus of these tests is to see how the performance of the different im-
plementations of the algorithm using TC data compares with the standard GBG
algorithm using the much more accurate SEP data. This GBG algorithm using
SEP data thus becomes the baseline of which performance is desirable, and the
results of the other implementations on TC data will show how well they hold up
when having less accurate data as well as what issues each method has.

What is immediately notable from these matrices is that the standard GBG al-
gorithm on the TC data performs quite well compared to the one using SEP data.
Many of the faulty predictions can be directly connected to the reasons described in
section 3.2 due to the ground truth not being perfect. However, in some of the tests,
it is prevalent that the inner center rearview mirror tends to be very difficult to
maintain a good track on based on the available ground truth when it comes to the
TC data. This is most likely due to the TC data’s tendency to be more compressed
around the x-axis, as can be seen in Figure 4.7, which leads to the difference be-
tween the inner mirror cluster and the EOR and front window clusters being much
smaller than in the SEP data. It is also noticeable that due to the single-camera
setup used to generate the TC data, the periphery clusters have a higher tendency
to be miss-classified, especially the right window as it requires a substantial amount
of head turn to gaze in that general area.
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Predicted Objects
LM WL C EOR MI WF CS MR WR

LM 100 0 0 0 0 0 0 0 0

WL 70.9 27.2 0 0 0.2 1.6 0 0 0

T
ru
e
O
bj
ec
ts

C 0 0 99 0 0 0 0.9 0 0

EOR 0.7 0 0 94.6 0.1 4.4 0 0 0

MI 0 0 0 0 99.8 0.1 0 0 0

WF 10.5 0 0.9 57 4.9 25.7 0 0 0.7

CS 0 0 0 0 0 0 99.3 0.6 0

MR 0 0 0 0 0 0 0 0 100

WR 0 0 0 0 0 0 0 0.1 99.9

(a) EM algorithm on SEP data

Predicted Objects
LM WL C EOR MI WF CS MR WR

LM 100 0 0 0 0 0 0 0 0

WL 93.2 6.8 0 0 0 0 0 0 0

T
ru
e
O
bj
ec
ts

C 0 0 100 0 0 0 0 0 0

EOR 0 0 0 100 0 0 0 0 0

MI 0 0 0 0 18.5 81.5 0 0 0

WF 0.9 0 0.8 85 0.4 12.8 0 0.1 0

CS 0 0 23.3 0 0 0 76.7 0 0

MR 0 0 0 0 0 0 0 100 0

WR 0 0 0 0 0 0 0 59.7 40.3

(b) GBG algorithm on SEP data

Predicted Objects
LM WL C EOR MI WF CS MR WR

LM 94 0.3 0 5.6 0 0 0 0 0

WL 83.4 7.8 0 8.6 0 0 0 0 0

T
ru
e
O
bj
ec
ts

C 0.1 0 94.3 4.7 0 0 0.7 0 0

EOR 0.1 0 0 99.7 0 0 0 0 0

MI 0 0 0 0.6 26.9 72.4 0 0 0

WF 1.3 0 0.3 86 0.4 11.5 0 0.1 0

CS 0 0 75.9 0.6 0 0.3 22.9 0 0

MR 0 0 0 0 0 0 0 94.2 5.7

WR 0 0 0 1.4 0.3 1.5 0.4 83.9 12.2

(c) GBG algorithm on TC data

Predicted Objects
LM WL C EOR MI WF CS MR WR

LM 86.5 0 0.4 12.9 0 0 0 0 0

WL 79.7 0.1 2.7 17.4 0 0 0 0 0
T
ru
e
O
bj
ec
ts

C 0 0 72.6 22 0 3.9 1.2 0 0

EOR 0 0 0.1 99.8 0 0 0 0 0

MI 0 0 0 14.7 5.8 79.4 0 0 0

WF 0.4 0 0.2 90.1 0.1 8.7 0.1 0 0

CS 0 0 15.6 8.5 0 1.9 73.8 0 0

MR 0 0 0 0 0 8.5 0.9 90.4 0

WR 0 0 0 0.2 0 15.7 7.2 73.2 3.5

(d) Final algorithm on TC data
Predicted Objects

LM WL C EOR MI WF CS MR WR
LM 89.2 0 0 10.7 0 0 0 0 0

WL 84 0.2 0.6 14.9 0 0 0 0 0

T
ru
e
O
bj
ec
ts

C 0 0 30.8 60.9 0 7.6 0.5 0 0

EOR 0.2 0 0 99.8 0 0 0 0 0

MI 0 0 0 14.6 6.2 79 0 0.1 0

WF 0.8 0 0 89.4 0.1 9.2 0 0.1 0

CS 0 0 59 7.4 0 17.8 15.5 0 0

MR 0 0 0 0 0 7.6 0.9 91.4 0

WR 0 0 0 0.1 1.4 14 5.6 73.8 4.7

(e) Final algorithm on TC data using
batches

Figure 4.6: Confusion matrices generated from the log file id9
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(a) 15,000 samples of SEP data with corresponding quality

(b) 15,000 samples of TC data with corresponding quality

Figure 4.7: Gaze Heading (x-axis) and Gaze Pitch (y-axis) plotted on top of a 2D
spherical projection of the car model around the mean head position of the driver.
The data is captured from the same driving session. Note that the SEP data on
average is of higher quality, and also that the TC data rarely is of high quality in
the periphery.

When looking at the addition of the gaze estimator to the algorithm, some things
stand out. The already well-predicted areas tend to be kept well defined, but when
the estimator provides additional information in the areas of lower gaze quality
(periphery) the estimates are not quite accurate enough to correctly affect the pre-
diction into the true cluster, and therefore slightly worsens these accuracies. This
is visible in subfigure (c) and (d) in figure 4.6, where the right window sees a ≈ 4%
drop and the right rear view mirror sees a ≈ 9% drop in accuracy. In the cases
where the raw GBG clustering incorrectly classifies the areas of interest with nega-
tive pitch angles (tachometer cluster and center entertainment stack) however, the
gaze estimator provides well defined additional information to correctly separate
these clusters. This is most prevalent in figure 4.6, where only applying the GBG
algorithm provides 4.7% correctly classified tachometer cluster measurements and
22.9% correctly classified center entertainment stack measurements (see subfigure
(c)). When adding the gaze estimator, which is displayed in subfigure (d), these
percentages increase to 22% for the tachometer cluster and 73.8% for the entertain-
ment stack respectively. This is a substantial increase in accuracy by being able to
adjust the clustering based on the head pose direction of the driver.
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The reason for this behavior is that the training of the gaze estimator only uses
data above a certain gaze quality to be able to provide a good and accurate es-
timate. These points tend to not include the periphery, but extreme pitch angles
(y-axis on plots) are not as affected. The TC-data is more prone to bad gaze quality
even at larger pitch angles, which is why in the cases where the gaze quality of the
data is bad in such areas as the tachometer cluster and center entertainment stack,
the performance tends to be improved. This also explains why the model cannot
handle the periphery estimates that well. The side mirrors and windows whose
correctly classified percentages tend to decrease after adding the gaze estimator,
has this behavior due to the estimator not being provided with good training data
in those areas. To remedy this, the gaze estimator would have to either conduct
sessions where good quality data in these areas are collected to have better overall
training data or incorporate a more advanced model of the head pose direction and
velocity to utilize more behavior factors to generate a better estimate.

With the batch update added to the algorithm (see subplot (e) in figure 4.8), the
model integrity of the GBG algorithm showed its upside. Despite having up to 12
minutes of measurements at one update step to conform the clustering, barley no
drop in performance was usually visible compared to the final algorithm without
batch updates (see subplot (d)). The one exception to this was in figure 4.6, where
the accuracy of for example the center entertainment stack drops from 73.8% to
15.5% (see subplots (d) and (e)), but this is an anomaly as it did not occur in any
other test. This means that the structural integrity of the model is kept fairly well
with a minimal amount of data needed to be saved, which is highly desirable when
real-life use is considered.

60



4. Final Algorithm

Predicted Objects
LM WL C EORMI WF CS MR WR

LM 99.8 0 0 0 0 0 0.1 0 0

WL 88.6 5.4 3.7 0 0 0 2.2 0 0

T
ru
e
O
bj
ec
ts

C 0 0 100 0 0 0 0 0 0

EOR 0 0 1.7 0 0 98.3 0 0 0

MI 0 0 0 0 99.4 0 0.5 0 0

WF 1.3 0 8.7 0 26.2 63.1 0.5 0 0

CS 0 0 95.1 0 0 0 4.8 0 0

MR 0 0 0 0 40 0 0 60 0

WR 0 0 0 0 14.1 0 4.3 44.8 36.6

(a) EM algorithm on SEP data

Predicted Objects
LM WL C EOR MI WF CS MR WR

LM 100 0 0 0 0 0 0 0 0

WL 99.4 0.5 0 0 0 0 0 0 0

T
ru
e
O
bj
ec
ts

C 0 0.0 99.9 0 0 0 0.1 0 0

EOR 0 0 0 99.6 0.4 0 0 0 0

MI 0 0 0 0 98 1.8 0 0.2 0

WF 0 0 1.2 62.2 25.2 10.8 0 0.6 0

CS 0 0 0.2 0 0 0 99.8 0 0

MR 0 0 0 0 0 0 0 100 0

WR 0 0 0 0 0 0 0 57.5 42.5

(b) GBG algorithm on SEP data

Predicted Objects
LM WL C EOR MI WF CS MR WR

LM 98.7 1.1 0 0.1 0 0 0 0 0

WL 95.2 3 0 1.6 0 0 0 0 0

T
ru
e
O
bj
ec
ts

C 18.3 0.1 50.6 30 0 0 0.7 0 0

EOR 0.5 0 0.1 99.4 0 0 0 0 0

MI 0 0.1 0 52.4 1.5 45.2 0.5 0 0

WF 1.8 0 0.3 82.4 0.7 14.1 0.2 0 0

CS 0.4 0.1 6.9 5 0 2.1 85.1 0 0

MR 0 0 0 0.9 0 91.4 0 7.6 0

WR 0 0 0 0.6 0 51.2 0.1 47.7 0.3

(c) GBG algorithm on TC data

Predicted Objects
LM WL C EOR MI WF CS MR WR

LM 93.7 0 3.8 2.4 0 0 0 0 0

WL 82.4 0 9.7 7.6 0 0 0 0 0
T
ru
e
O
bj
ec
ts

C 8.5 0 51.4 38.5 0 0.4 1 0 0

EOR 0.1 0 0.6 98.5 0 0.5 0.1 0 0

MI 0 0 0.7 10 0 82.1 7.1 0 0

WF 0.8 0 1.7 79.3 0.2 9 8.7 0 0

CS 0.1 0 2.8 7.3 0 2.5 87.1 0 0

MR 0 0 0 0 0 8.5 87.6 2.8 0.9

WR 0 0 0.2 0 0 7 51.9 40.4 0.3

(d) Final algorithm on TC data
Predicted Objects

LM WL C EOR MI WF CS MR WR
LM 95.3 0.3 1.9 2.3 0 0 0 0 0

WL 84.5 1 6.8 7.4 0 0 0.2 0 0

T
ru
e
O
bj
ec
ts

C 11.3 0 50.3 37 0 0.1 1 0 0

EOR 1.7 0 0.3 97.6 0 0 0.1 0 0

MI 0 0 0.6 67.6 0 25.4 6.2 0 0

WF 2.3 0 1.2 83.5 0.2 8.5 3.9 0 0

CS 0.2 0 2.3 9.6 0 0.8 86.9 0 0

MR 0 0 0 1.9 0 92.3 4.7 0.9 0

WR 0 0 0 0.2 0 56.3 4.3 38.3 0.6

(e) Final algorithm on TC data using
batches

Figure 4.8: Confusion matrices generated from the log file id51

To accompany these results two tables (4.2 and 4.3) containing the total clustering
times and the total accuracy of the different implementations of the algorithm was
also generated. What needs to be noted is that the Final Algo. Batches column in
figure 4.2 shows the clustering time per batch as opposed to for the entire process
of the data file.
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GBG - SEP GBG Final Algo. Final Algo. Batches

id5 72.6 s 76.7 s 1118.8 s 94.2 s

id9 53.8 s 53.3 s 525.1 s 115.2 s

id12 49 s 50.3 s 749.2 s 88.9 s

id29 41.7 s 41.2 s 2184 s 84.6 s

id51 51.8 s 51.3 s 2400.9 s 144.3 s

id64 46.2 s 43.6 s 984 s 83.3 s

Table 4.2: Table showing the clustering times for the algorithm implementations
on the different data files. All algorithms are run on the entire data set except the
one denoted with "Batches". All results are in seconds.

GBG - SEP GBG Final Algo. Final Algo. Batches

id5 40% 39% 33% 27%

id9 39% 38% 36% 35%

id12 34% 33% 31% 32%

id29 39% 39% 36% 36%

id51 28% 27% 24% 23%

id64 35% 35% 34% 34%

Table 4.3: Table showing the total clustering accuracy for the algorithm’s imple-
mentations on the different data files. All algorithms are run on the entire data set
except the one denoted with "Batches". All results are in percent.

What is worth noting in these tables if firstly the immense difference in calculation
times between the raw GBG algorithm and the final algorithm. This is largely due
to the addition of the need for sampling and prediction from a distribution as ap-
posed to just predicting one point per measurement, which with the sample amount
N = 100 should roughly lead to a 100 times slower algorithm. In testing the average
was fluctuating around 25 times the calculation time which was slightly better than
expected. When the batch update scheme was applied, every batch had quite a hefty
calculation time despite the max number of measurements having a threshold. This
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update time decreases as the model converges however, which leads to the update
time decreasing as the model conforms to the driver.

Table 4.3 displays the total accuracy of the different implementations which is quite
underwhelming at first glance. These raw numbers become somewhat misleading,
however, as for example the front windshield tends to get wrongly classified due
to the ground truth definition, and as that area contains a large percentage of the
classified points it skews the total statistics a fair amount. But as mentioned at the
beginning of this section, this is not the important ground on which the comparison
should be done. The comparison should rather be done on the performance of the
different implementations using TC data compared to the GBG algorithm using SEP
data, as this is the best result that could be generated even with nearly perfect data.

When it comes to using the GBG algorithm directly with TC data, the overall
performance is surprisingly similar to the GBG algorithm using SEP data. As dis-
cussed above, the performance in the periphery is not nearly as good, but due to the
majority of the points the system faces being quite close to origo in the coordinate
system, this does not show up on the overall percentages. This leads to the con-
clusion that despite the drop in accuracy, the GBG clustering algorithm manages
to create and converge on a proper cluster geometry well suited for the gaze sector
detection faced, given that it is properly initialized. This is a good indication that
the process of only affecting the inherent cluster for each measurement prevents an
unreasonable divergence when the data quality declines. Therefore, a nearly equal
total accuracy can be achieved on the lower quality TC data as on the higher quality
SEP data. A drop in periphery accuracy should be expected though.

The implementation of the gaze estimator did not become quite as successful, how-
ever. In general, the estimator did provide some valuable information in areas such
as the tachometer cluster and the center entertainment stack, but oftentimes de-
creased the accuracy in the clusters located in the periphery. As mentioned above,
more work needs to be applied to this method to obtain reliable information from
the MLP regressor. However, the fact that estimates in areas where the training
data has been of good quality have provided improving information for a single cam-
era set up, this method shows some promise.

When it comes to the update scheme, the results show that due to the batch size
being chosen based on the tests discussed in section 3.3 no substantial drop in ac-
curacy was noted. It shows that it is possible to obtain a converging model that
maintains its geometry despite not having access to all data at every time instant,
which further shows that the GBG algorithm is well suited for the purpose described
in this thesis. As the development of the update scheme has not been the main pur-
pose of this thesis, however, more time could be invested in finding a more suitable
approach that is better optimized for the specific purpose of live usage.

As a whole, this proposed algorithm has provided some good input on that the
GBG clustering algorithm is well suited for the gaze sector application, even as the
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quality is sub-par. It has also shown the difficulties in estimating the gaze based
on only a simple head pose direction model, but has provided some indications on
that when properly trained an MLP regressor could be used in this type of setting.
These can be considered the main takeaways from the tests done in this thesis.
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5
Conclusion

This final chapter summarizes the results from the thesis in terms of accuracy (sec-
tion 5.1) and performance (section 5.2). Also, recommendations for further devel-
opment are given in section 5.3 along with comments on how results better can be
verified.

5.1 Summary
This master’s thesis has aimed to solve the task of providing a sector analysis of
the gaze data from a driver in a personal vehicle, in order to obtain information on
which general area of interest in the vehicle the driver is looking at. Specifically,
the task was narrowed down to only handle naturalistic highway driving from a
single-camera system when no explicit calibration of the gaze measurements can be
expected. This has been done by firstly analyzing the typical behavior of a driver
in these circumstances. This provided data on what assumptions could be made in
order to simplify the data needed to describe where the driver is looking, as well as
what data could be utilized to estimate the gaze direction to compensate for data
where the measurement quality is low.

The knowledge gained from this was then used as a basis to test potential algo-
rithms that could perform this sector analysis to be able to group the data into the
desired areas of interest. After researching and testing, it became clear that the ma-
chine learning branch of unsupervised learning, also known as clustering, was most
suitable for this. After some further consideration, a new algorithm based on the
Expectation-Maximization algorithm was proposed as the best candidate for this
purpose.

To follow this, a few models to improve the performance of this clustering method
when the quality of the measurements are not perfect were tested and implemented.
The main candidates performed quite well in isolated tests, but the most efficient
one that provided good information became the Multi-layer Perceptron Regressor
model, which with information of the head direction can predict where the corre-
sponding gaze direction probably lies. The gaze quality generally decreases as the
gaze direction diverges from the center, which can be explained by the fact that the
driver then is facing away from the single camera. Hence it was necessary to find a
method of approximating the gaze direction for data frames where the gaze quality
is low.
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These separate algorithms were then merged, with the addition of an update con-
troller using batches, to obtain a final proposal of an algorithm. This algorithm
provides predictions on what area of the vehicle the driver is currently looking at,
with a probability for each of the sectors at every time frame.

5.2 Performance
As the performance of the proposed algorithms in this thesis is concerned, there
are both positive and negative takeaways. The constructed clustering algorithm
Gaussian Binary Gravity (see section 2.3.4) provides a robust way of retaining a
predefined geometry in the clustering and opens the door for introducing more ad-
vanced constraints into the realm of clustering than what currently exists. The raw
performance of this implementation shows quite good results on the lower quality
single-camera TC data when compared to the multi-camera SEP data, and provides
a stepping stone for a real-life implementation in a consumer platform. The average
total accuracy drop when using this clustering method on TC data compared to SEP
data is only ≈ 0.66%, which is promising for the method itself. However, the local
accuracy in the right periphery areas tends to drop with between approximately 5%
and 90% depending on what quality and coverage this periphery area has in the TC
data used. The average lies at an accuracy drop of ≈ 30% for the right periphery
when looking at the results generated in this thesis, which is not desirable for a
real-time implemented system.

The implementation of the gaze estimator in the final algorithm aimed to rem-
edy this behavior but had mixed success in doing so. As explained in section 4.2,
the areas improved by the gaze estimator (tachometer cluster and center entertain-
ment stack) were improved because the quality of the SEP training data for the
estimator was good in those areas. On the other hand, the areas which saw the
accuracy decline as a result of the gaze estimator implementation (right and left
mirrors and windows) were not covered by high accuracy data in the SEP training
data, which led to the model not being properly prepared to provide high enough
estimates in those areas. As this was the most affected area of the accuracy drop in
the clustering, this method does not provide sufficient performance with the imple-
mentation done in this thesis. The potential is still present for the MLP regressor
however, as improving the training data and studying more advanced ways of us-
ing data for gaze estimation will most likely improve the performance of this method.

The findings regarding the driver tendencies for gaze directions based on the head
movement is also a usable piece of information that is not only important for this
particular purpose but also for the whole field of driver monitoring and could poten-
tially provide more knowledge on the behavior of the driver in some situations. The
fact that the driver tends to always lead their general attention with the gaze, and
that the head pose then follows could be a useful feature when constructing more
advanced models on driver behavior in the future.
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5. Conclusion

The implemented batch update scheme was simple but effective and the results
illustrate that convergence can be achieved within a reasonable computational cost.
When it comes to data amount, this method displayed that it is possible to obtain a
converged model with the equivalent of only ≈ 12 minutes of data saved at any given
time instance. This is paramount for future live implementations, where it cannot
be assumed that exceedingly large amounts of data can be stored. This also affects
the computational times, which without the batch threshold will keep growing for
each update instance. However, even with the batch threshold of 12 batches with
a batch size of 1 minute (3600 samples at 60 Hz), the computational time for each
update is longer than the time between update steps (> 60 seconds, see table 4.2).
This means that the algorithm will lag, which would not allow it to work in an online
setting. This is largely because no speed optimization of the code has been done,
as it was not the purpose of this thesis to have the algorithm being ready to run live.

With this said, the results of the final algorithm highlight the issues of trying to
model complex human behavior into a fast and usable algorithm. The far from
perfect periphery performance in testing is a result of the simplifications made in
this thesis, which leads the authors to believe that in order to gain a more accurate
gaze sector analysis the focal point needs to be to study driver behavior and create
a more advanced model to be able to estimate the gaze in sub-optimal conditions
and areas when a single camera setup is used.

The algorithm as a whole is not in an online, real-life usable state due to the low
accuracy in the periphery and the update times being too long, but an important
step has been taken in the direction to be able to extract valuable data from the
driver using a single camera setup. With more time invested in an update scheme
that is more time-efficient, an online operating version could be implemented and
tested further, which could significantly aid further development of the method.

5.3 Further Development and Implementation
Although this thesis has taken a first step towards a usable implementation of a gaze
sector detector without the need for calibration, it is not yet complete and ready
for commercial use. However, the method is general enough - it only needs to be
initialized once for each car model, and this should be done before the end-consumer
is involved - and thus it is easy to customize for new models.

5.3.1 Additional Development
As the results of this thesis have been gathered, combined with the untouched areas
of development that did not fit into the time frame of this project, a few interest-
ing and important points on which further development should be carried out have
arisen. Most obvious is the already mentioned improvement of the gaze estimator,
as this is duly needed to create more accurate predictions when the gaze quality is
low.
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5. Conclusion

Other areas that have potential is for example the addition of geometrical con-
straints to the clustering algorithm itself, as creating a relationship between the
different clusters to further maintain the relative relationships based on the geome-
try of the vehicle interior.

5.3.2 Testing & Verification
A big flaw during the work on this thesis is the lack of reliable verification data
available to the authors. Many results tend to become hard to conclude from as the
ground truth generated is somewhat flawed as it is not perfect. This leads to many
performance results having to be excessively explained before a qualified conclusion
can be drawn.

Training data is also a big point on which improvements could be made. For the gaze
estimator to provide the system with good quality estimates in areas with low gaze
quality, training data with high gaze quality in these problem-areas needs to be col-
lected. Using a multi-camera setup like SEP, this could be done through controlled
tests and thus give the estimator a better chance of translating head information to
gaze direction data.

When it comes to testing, the addition of a real-time testing rig to perform live
testing on the algorithm would have provided a lot of important and useful insights.
Due to COVID-19 being prevalent during the execution of this thesis, together with
the limited time frame, made this somewhat impossible. Many of the reoccurring
and hidden issues could, using such a rig, be more easily located and mended. This
would also prepare the algorithm for live use more quickly.
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A.1 Batch Handling Tests
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(a) Cumulative Batches
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(b) Single Batches
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Figure A.1: Plots of the difference between clusters between batches with different
handling of batch storage for the data file id9
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Figure A.2: Plots of the difference between clusters between batches with different
handling of batch storage for the data file id12
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Figure A.3: Plots of the difference between clusters between batches with different
handling of batch storage for the data file id29
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A.2 Confusion Matrices

A.2.1 id5
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(a) EM algorithm on SEP data
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(b) GBG algorithm on SEP data
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(c) GBG algorithm on TC data
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(d) Final algorithm on TC data
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Figure A.4: Confusion matrices generated from the log file id5
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A.2.2 id12
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Figure A.5: Confusion matrices generated from the log file id12
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A.2.3 id29
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(c) GBG algorithm on TC data

Predicted Objects
LM WL C EOR MI WF CS MR WR

LM 83.9 0 3.7 12.3 0 0 0 0 0

WL 68.3 0 9.2 22.4 0 0 0 0 0

T
ru
e
O
bj
ec
ts

C 0.2 0 78.8 18.1 0 1.7 0.9 0 0

EOR 0 0 0.2 98.5 0 0.9 0.2 0 0

MI 0 0 0 20.1 0 78.8 1.1 0 0

WF 0.3 0 2 83.4 0 11.1 2.8 0 0

CS 0 0 2 5.6 0 4 88.2 0 0

MR 0 0 0 0.7 0 70.5 15.1 13.6 0

WR 0 0 0 0.1 0 34.2 31.6 30.2 3.6

(d) Final algorithm on TC data
Predicted Objects

LM WL C EOR MI WF CS MR WR
LM 87.1 1.4 2.4 8.9 0 0 0 0 0

WL 73 2.1 6 18.7 0 0 0 0 0

T
ru
e
O
bj
ec
ts

C 0.7 0 78.8 17.9 0 1.7 0.8 0 0

EOR 0 0 0.5 98.2 0 0.9 0.1 0 0

MI 0 0 0 20.4 0.1 78.5 0.7 0 0

WF 0.9 0 2.5 82.4 0 11.6 2.2 0 0

CS 0 0 4.4 5 0 4.4 85.8 0 0

MR 0 0 0 0.7 0 77.6 8.6 12.9 0

WR 0 0 0 0.1 0.1 48.5 18.4 28.9 3.7

(e) Final algorithm on TC data using
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Figure A.6: Confusion matrices generated from the log file id29
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A.2.4 id64
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(a) EM algorithm on SEP data
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LM 100 0 0 0 0 0 0 0 0

WL 97.1 2.9 0 0 0 0 0 0 0

T
ru
e
O
bj
ec
ts

C 0.1 0 99.9 0 0 0 0 0 0

EOR 0 0 0 99.7 0.3 0 0 0 0

MI 0 0 0 0 100 0 0 0 0

WF 0.5 0 3.1 76.2 13.1 6.8 0 0.3 0

CS 0 0 4.9 0 0 0 95.1 0 0

MR 0 0 0 0 0 0 0 93.8 6.2

WR 0 0 0 0 0 0 0 40.9 59.1

(b) GBG algorithm on SEP data

Predicted Objects
LM WL C EOR MI WF CS MR WR

LM 98.2 0 0 1.7 0 0 0 0 0

WL 92.2 2.5 0 5.1 0 0 0 0 0

T
ru
e
O
bj
ec
ts

C 8.3 1.6 72.5 11.8 0.3 2.4 2.5 0 0.2

EOR 0.4 0 6.4 92.3 0.6 0.1 0 0 0

MI 0 0 0.2 0.5 77.9 21.1 0 0 0

WF 2.9 0.2 8.5 71.1 4.8 11.2 0.3 0.5 0

CS 0.1 0 2.7 2 0.1 2.2 91.7 0 0.5

MR 0 0 0 6.2 0 6.2 0 50 37.5

WR 0 0 0 2.3 2.3 1.8 0 26.6 66.7

(c) GBG algorithm on TC data

Predicted Objects
LM WL C EOR MI WF CS MR WR

LM 83.9 0 0 16 0 0 0 0 0

WL 82.5 0 1.2 16.1 0 0 0 0 0

T
ru
e
O
bj
ec
ts

C 6.6 0 42 26.2 0 20.3 4.4 0.1 0.1

EOR 0.3 0 0.1 98.1 0 1.2 0 0 0

MI 0 0 0 44.7 5.8 49.2 0 0 0

WF 1.7 0 1.4 83.2 0.2 12.4 0.6 0.1 0

CS 0 0 2.9 9.1 0 6.9 80.2 0 0.5

MR 0 0 0 0 0 25 31.2 18.7 25

WR 0 0 0 0.3 0.3 22.6 38.2 22.6 15.7

(d) Final algorithm on TC data
Predicted Objects

LM WL C EOR MI WF CS MR WR
LM 83.9 0 1.7 14.2 0 0 0 0 0

WL 82.9 0 0.8 16.1 0 0 0 0 0

T
ru
e
O
bj
ec
ts

C 6.9 0.1 41.5 26.1 0 20.7 4 0.1 0.3

EOR 0.4 0 0.4 97.8 0 1.3 0 0 0

MI 0 0 0 42.7 10.2 46.8 0 0 0

WF 1.8 0 2.7 81.6 0.4 12.6 0.4 0 0

CS 0.1 0 5.7 7.5 0 6.1 79.6 0 0.6

MR 0 0 0 0 0 25 18.7 12.5 43.7

WR 0 0 0.1 0.3 0.7 21.7 19.9 22.1 34.9

(e) Final algorithm on TC data using
batches

Figure A.7: Confusion matrices generated from the log file id64
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