7 ® %

1% 0
Y, \\‘

CHALMERS @
V SWANCES Y J
S i

829 O
0N X /=

Gulliver: Design and Implementation of a
Miniature Vehicular System

Master of Science Thesis in the Programme Communication
Engineering

BENJAMIN VEDDER

CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Department of Computer Science and Engineering
Goteborg, Sweden, November 2012

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or other
material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Gulliver: Design and Implementation of a Miniature Vehicular System
Benjamin Vedder

(© Benjamin Vedder, November 2012

Examiner: Elad M. Schiller

Chalmers University of Technology University of Gothenburg Department of Computer
Science and Engineering SE-412 96 Goteborg Sweden Telephone + 46 (0)31-772 1000

Cover: Photo of the Gulliver 1:8 Car with the 9-degrees-of-freedom sensor removed.

Department of Computer Science and Engineering
Goteborg, Sweden, November 2012

Abstract

Traffic increases all over the world and problems such as toxic emissions and congestion
are consequences of that. To encounter those problems and to optimize traffic throughput
and safety, a miniature vehicular test platform that can be used together with simulation
tools can be very useful.

This project deals with the construction, control, communication and navigation of the
autonomous 1:8 scale miniature vehicles used in the Gulliver project. The goal is to
make the vehicles drive along a generated route, do lane changing between routes and
to write software to interface with these vehicles.

Part of the work has been spent on a custom motor controller used to control brushless
DC motors, for which many safety mechanisms were implemented. Other areas cov-
ered include the fusion of several sensors with Ranging and Communication Modules
to achieve indoor localization and algorithms to drive the vehicle autonomously along
a pre-defined route while accepting high-level commands such as stop, go and change
lanes from external sources. Another part of the project was to evaluate the high-level
commands using MICAz motes that run a virtual service agent to act as virtual traffic
lights.

At the end all of the goals were achieved and the vehicles were able to drive along a
route and accept commands from the MICAz motes. This is very useful as many details
that not always are covered by pure simulations can be included while it is much easier
and less costly than the same implementation with full-scale vehicles.

Acknowledgements

I would like to thank Elad Michael Schiller and Roger Johansson for their guidance
during this project, it would not have been possible for me to achieve the same result
without their help. Further, I would like to thank Mohamed Mustafa and Mitra Pahlavan
for their help with the MICAz motes and their participation with the evaluation of the
system. It is thanks to them that the entire system could be evaluated with a simple
realistic scenario at all.

There were also many bachelor students involved in this project, and I would like to
express my gratitude to all of them:

Alexander Altby
Tobias Bostrém
Erik Dahlgren
Johan Grundén
Daniel Gunnarson
Nadia Holtryd
Anmar Khazal
Timur Sibgatullin
Karl Stjérne
Viktor Swantesson

Further, I would like to thank everyone at Chalmers Robotics Society (CRF) who par-
ticipated in the construction of the Gulliver vehicles:

Peter Kaldén
Erik Sterna
Nigul Ilves
Mikael Tulldahl
Michael Nilsson

I would also like to thank Henk Wymeersch and Gabriel Garcia for their expertise regard-
ing the localization of the vehicles. Further, I would like to thank Brandon Dewberry

from TimeDomain for visiting us at Chalmers and for holding a seminar about the P400
RCMs.

It was privileged and honoured for me to work with so many brilliant people during this
project.

Benjamin Vedder - Wednesday 14" November, 2012

Glossary

ACK acknowledgement. 26
ADC Analog-to-Digital Converter. 13

BEMF Back Electro-Motive Force. 6, 13
BLDC Brushless Direct Current. 5, 6, 13, 14

Bluetooth is a wireless technology standard for exchanging data over short distances.
24

commutation is the act of switching the polarity between different windings in an
electric motor to make the electromagnetic force contribute to the same angular
direction at all times. 5, 6, 9, 15

CRC Cyclic Redundancy Check. 16, 17, 25, 26

DC Direct Current. 5

dead reckoning is (in this project) the process of estimating a vehicles position by
advancing the previous position based on data from encoders in the wheels and
the steering angle. 6, 7, 10, 21

DOF Degrees of Freedom. 10, 21, 24
encoder is a device that converts mechanical movement into electrical pulses. i, 5, 9
GUI Graphical User Interface. ii, 5, 7, 8, 25, 26

IDE Integrated Development Environment. 8

Glossary

Linux (or GNU/Linux) is a Unix-like computer operating system that uses the Linux
kernel. 7

MAC Media Access Control. 3
MATLAB (matrix laboratory) is a numerical computing environment. 13, 15

MICAz is a 2.4 GHz Mote module, which is able to exchange data with other MICAz
motes. 4, 11, 24, 28, 31

mini-ITX is a 17x17 ¢cm motherboard form factor. 9, 11, 24
MOSFET Metal-Oxide—Semiconductor Field-Effect Transistor. 5

PCB Printed Circuit Board. 13
PID Proportional-Integral-Derivative. 15
PWM Pulse Width Modulation. 13-15

Qt is a cross-platform application framework that is used for developing software with
a Graphical User Interface (GUI). In addition to the GUI, Qt also provides func-
tionality in many other areas, such as Transmission Control Protocol (TCP) con-
nections (see http://qt.nokia.com/). 4, 7-9, 18, 23, 25, 26

RC Radio Controlled. 1, 5
RCM Ranging and Communications Module. 2, 3, 7, 11, 12, 16, 21, 24, 30

RF Radio Frequency. 24

route is in this document defined a set of points that define a path for vehicles to follow.
24, 21-23

TCP Transmission Control Protocol. ii, 7, 11, 24-26

UART Universal Asynchronous Receiver/Transmitter. 10, 11, 13, 15-17, 24
USB Universal Serial Bus. 24, 25
UWB Ultra Wideband. 11

Wi-Fi is a technology that allows devices to exchange data wirelessly over a computer
network. 25

ii

Contents

1 Introduction

1.1 Goalof this Work
1.2 Previous and Related Work
1.2.1 The Initial Construction of the Gulliver Vehicles
1.2.2 The Localization Project
1.2.3 The Integration Project
1.3 Delimitations e

Theory and Related Studies
2.1 The Gulliver Platform
2.2 Basics of Brushless Direct Current Motors
2.2.1 Sensored Compared to Sensorless Commutation
2.3 Localization and Navigation in Mobile Robot Platforms
2.3.1 Motion Planning o oL
2.4 GUI and Network Programming
2.4.1 The Functionality of the GTK+, Qt and WxWidgets Toolkits . . .
2.4.2 Ease of Use and Documentation for the GTK+, Qt and WxWid-
gets Toolkits

Brief System Overview

3.1 The Motor Controller
3.2 The Main Controller
3.3 The Sensor Board and the 9-Degrees of Freedom Board
3.4 The Ranging and Communication Module
3.5 The MICAz Interface,
3.6 The Sensors Board
3.7 The External Interface Board
3.8 The Mini-ITX Computer
3.9 The Anchors

iii

CONTENTS

4 The Motor and its Controller 15
4.1 Sensorless Commutationo 15
4.2 Speed Controller 17
4.3 Communications to the Main Controller 18
4.4 Safety Considerations 19

5 The Main Controller and Related Software 20
5.1 The Localization Algorithm 20

5.1.1 Position Updates Based on Tachometer and Steering Servo 22
5.1.2 Position Updates Based on the Ranging and Communications Mod-

ule . .o 23

5.1.3 Position Updates Based on the 9-Degrees of Freedom Sensor . . . 23

5.2 How Navigation is achieved 23

5.2.1 The Lane Changing Algorithm 25

5.2.2 Adaptive Cruise Control 25

5.3 Local and External Communications 25

5.3.1 Local Communications 25

5.3.2 External Communications 27

5.4 The Gulliver Client Program 28

6 A simple Traffic Scenario Application 30
6.1 Suggested Improvements 30

7 Conclusions 32
7.1 Suggested Future Work 32

Bibliography 36

Appendix A 40

v

Introduction

S TRAFFIC INCREASES all over the world it is required to increase the capacity
of the roads. The traditional way to do this has been to build more roads, but
this alone will not be enough in the long run, which is why new approaches are
required. One way to conquer this is to simulate different traffic scenarios for

which we could implement traffic coordination algorithms to increase traffic safety and
throughput, however, simulation alone will not be enough to cover every detail that has
to be considered before implementation on real traffic. The next step, after simulation, is
traditionally to test and verify the simulation on physical full-scale vehicles. This tends
to be very expensive in many aspects, making this step impossible for most organizations
due to cost and space restrictions.

The difficulty in going from simulations to physical full-scale vehicles was addressed in [1],
where a method to make this process easier was proposed: the creation of a platform with
physical miniature vehicles where large scale experiments could be conducted together
with simulations. Thus, this project deals with the construction of miniature vehicles
for a miniature vehicular system.

1.1 Goal of this Work

The goal of this project is to participate in the construction of a small scale platform with
physical miniature vehicles to test different traffic scenarios. These vehicles are common
1:8 scale ' common Radio Controlled (RC) cars modified for this purpose, where the
modifications include, but are not limited to, the following points:

1This scale refers to the way common radio controlled model cars are scaled.

1.2. PREVIOUS AND RELATED WORK CHAPTER 1. INTRODUCTION

e Localization for all the vehicles that is accurate and fast enough to make it possible
to drive the vehicles autonomously.

e The vehicles should be able to accept high level commands such as stop, go and
change lane. Moreover, remote programming of main functionality should be al-
lowed.

e Possibility to remote control the vehicles and to record routes should be present.
This means that one should be able to drive one vehicle and record the driven
path, and store it as a route.

e It should be possible to upload the routes to a computer, change and download
them to the vehicle again. It should also be possible to download routes to the
vehicle that are completely generated by software on a computer.

e On-board sensors on the vehicle should avoid driving into obstacles even if the
navigation and control software claim that there is nothing in the way. This reduces
the necessity to externally monitor the area where the vehicles drive to avoid
unexpected objects.

1.2 Previous and Related Work

Two vehicles were constructed, assembled and partly tested in another project [2, see
Appendix A] in collaboration with the work of this project. Parallel to this project, other
projects on different aspects of these vehicles and their integration into other systems
were also carried out, where one project focused on improving the localization of the
vehicles [3] and the other one focused on integrating the Gulliver vehicles into other
systems [4].

1.2.1 The Initial Construction of the Gulliver Vehicles

Part of this project was to participate in a project where the initial construction of the
Gulliver vehicles was conducted [2, see Appendix A]. In this project, two vehicles were
constructed and very basic software was written to test the functions of the different
systems on the vehicles. At the end of this project, one vehicle was able to follow a
hard-coded route to some extent.

While this was a great step in the progress of constructing vehicles as proposed in [1],
there were many things left to be done in order to reach the goal. The following list
points out a number of those issues, which this project report will focus on:

e When two vehicles were driving at the same time they interfered with each other
and the accuracy for the position decreased. When switching on another one of
the Ranging and Communications Modules (RCMs), effectively adding another

1.2. PREVIOUS AND RELATED WORK CHAPTER 1. INTRODUCTION

vehicle to the ranging network, the localization got too much interference due to
collisions that navigation became impossible. This issue will mainly be addressed
in [3], however, there was much collaboration between this project and their work.

e The localization had a very simple algorithm that did not consider the quality of
the measurements from the different sources even if the information was there.
For instance, the RCMs provide an indication about the quality of each range
measurement [5] that was not taken into account. Like the previous issue, this will
be addressed in [3] with collaboration from this project.

e There was no way to upload new routes to the vehicles while they were driving,
so in order to change the route the firmware had to be changed by connecting
a programming cable and uploading it. As the routes (and the firmware) were
changed often during the experiments much time was used for picking up the
vehicles, reprogramming them, and putting them back on the floor. This is one of
the areas that was focused on during this project by implementing the necessary
communication links and computer programs to remotely reconfigure the vehicles.

e An RF-transceiver was used to communicate with one vehicle at a time. There was
no way to receive data from more than one vehicle at a time and the transmission
power was low enough to cause lost packets frequently. Like the previous point,
this was addressed during this project.

e The motor controller didn’t have enough ”sanity checks” for the received commands,
which caused defective electronic components when certain errors were present in
the program of the main controller on the vehicle. One of the main tasks of this
thesis was to improve the motor controller and fix these issues.

1.2.2 The Localization Project

The localization project [3] was carried out in parallel to this project. This project’s
purpose was to improve the localization on the vehicles in two different areas: improving
the algorithm for the position estimation and making the localization work with many
vehicles at the same time.

In order to make the position estimation more accurate a Kalman filter [6] was used. This
filter merged data from the RCMs and the on-board sensors of the vehicle to estimate
the vehicle current position and a confidence interval around that position.

To coordinate the ranging of the vehicles in a way that avoids collisions was the other
major part of this project. For this purpose a custom Media Access Control (MAC)
layer was created that uses one or multiple communication units on the vehicle to keep
a global clock and coordinate the ranging operations. The so-called timeslot manager
adapted the timing scheme for the ranging dynamically when new vehicles entered or
left the area.

1.3. DELIMITATIONS CHAPTER 1. INTRODUCTION

1.2.3 The Integration Project

In the integration project [4], the Gulliver vehicles were connected to MICAz motes used
to interact with the SUMO simulator [7]. This was carried out in parallel to this project
and the external interface to the vehicles was tested together with this project. One part
of this project was to drive simulated vehicles together with the physical vehicles on the
same virtual map and make the simulated and physical vehicles aware of each other. At
the end this worked quite well and a demonstration of this was made [4].

Another part of this project was to work on a map editor to create routes for the vehicles.
This was done in close collaboration with the work on the external interface written in
Qt during this project.

1.3 Delimitations

The miniature vehicle proposed in [1] leave room for a large number of possibilities, and
obviously not all of them can be implemented in full detail the scope of this masters
thesis. Therefore, it is important to make it clear that only the most important features
necessary to show the basic concept of the vehicles were implemented. Also, the features
that were implemented, such as the localization and navigation algorithms, leave room
for further development. Further, the system will not be tested with a large number of
physical vehicles due to resource and time limitations.

Another thing to point out is that this paper does not cover all the details of the im-
plementations made, but only the concepts and the most important details. There are
approximately 25000 lines of C/C++ code written for the microcontrollers and the desk-
top computer programs. The entire design of the printed circuit boards, source code and
a construction tutorial can be retrieved via the Gulliver website .

Lwww.gulliver-testbed.net.

Theory and Related Studies

HIS CHAPTER covers fields and studies related to this project. Many decisions
regarding the design and implementation of different systems on the vehicles
were made based on the material that is reviewed and compared here. More
precisely, this chapter covers: background about the Gulliver platform, Brush-

less Direct Current (BLDC) motors, localization and Graphical User Interface (GUI)
programming.

2.1 The Gulliver Platform

In order to determine what is required by the Gulliver vehicles, it is important to study
the environment in which they are going to operate. As is described in [1], the vehicles
are going to work together with a motion manager (the MICAz mote, see Chapter 6 for
further details) which will provide high-level commands to perform different maneuvers.
Therefore, it is important that the vehicles are aware of their own location and have
algorithms to perform motion planning. To make it convenient to work with the simula-
tor mentioned in [1] and to debug the vehicles, it is also important to have an interface
where maps and routes can be edited and visualized. It is also important to plot the
vehicles on these maps in real-time to see how they perform and what is observed from
their perspective. The GUI that is developed in this project to control the vehicles can
be compared to the base station described in [1].

With this considered, the additions required for a common RC car to suite the Gulliver
platform are:

e A good motor controller to give precise control of the maneuvers of the vehicles.

2.2. BLDC MOTOR BASICS CHAPTER 2. THEORY

e Hardware and software able to carry localization and navigation in real-time.

e The necessary interface software to control and debug the experiments made with
this platform.

How all of this fits together will be presented in this project report.

2.2 Basics of Brushless Direct Current Motors

For model RC cars and other smaller motor-driven applications it is common to use
brushed Direct Current (DC) motors because they are easy to control, however, they
have a few drawbacks compared to BLDC motors:

e They require more maintenance because the brushes wear out.
e Their power density and efficiency is lower.

e Since the commutation is done mechanically, brushed DC motors cannot be used
as pulse encoders. The angular speed of the motor can only be estimated by
measuring the current and voltage, unless an external encoder is used.

In comparison, the BLDC motor does not suffer from those issues. With a custom motor
controller one has good knowledge about the angular position of the rotor and the motor
requires very little maintenance since there are essentially no parts that wear out. The
drawback is that those motors are more difficult to control. The reason for that is that
instead of mechanically switching between the different windings for the commutation,
as is the case with the brushed motor, the windings of the motor are stationary and
the commutation is done electronically with Metal-Oxide—Semiconductor Field-Effect
Transistors (MOSFETSs). In order for this to work the position of the motor has to be
known at all times, which is a problem that has two possible solutions:

1. Sensored commutation: sensors mounted in the motor are used to detect its
position.

2. Sensorless commutation: as one of the connections of the motor is always
floating, i.e., is not connected to any of the power rails, it can be used to detect
the position of the motor by measuring the Back Electro-Motive Force (BEMF) of
the motor.

2.2.1 Sensored Compared to Sensorless Commutation

Sensored commutation works very well from startup of the motor until high speeds
without glitches and is relatively easy to implement on the motor controller; which is
because the sensors directly provide the position of the rotor and it is easy to read
them. The problem is that it only works for BLDC motors with sensors, which are

2.3. LOCALIZATION AND NAVIGATION CHAPTER 2. THEORY

a bit more difficult to find and more expensive. On the contrary, a motor controller
designed for sensorless BLDC motors works with any motor and requires less wires and
less components. The drawback is that it is harder to implement the motor controller
and most methods used to control the motors have limitations during startup and low
speeds [8, 9]. This is because the BEMF created by the motor, used to detect its position,
is proportional to the rotational speed of the motor and hence non-existent when the
motor is not moving.

The most common way to start sensorless BLDC motors, as proposed in [8, 9], is to
use a known sequence of commutations based on knowledge about the motor and its
load, and then switch to closed loop control when the motor speeds up. There are also
more advanced ways to start BLDC motors that rely on heavier calculations and more
accurate measurement of the BEMF [10] where the start is smoother.

2.3 Localization and Navigation in other Mobile Robot
Platforms

Indoor localization and motion planning are common issues when dealing with mobile
robot platforms. One platform where these issues were encountered by the developers
is the autonomous robot Blanche [11]. Blanche is a three-wheeled cart designed to
navigate autonomously in structured office environments. Blanche navigates based on
dead reckoning and on-board sensors which are combined to estimate its current position.
It is assumed that a path, consisting of straight lines and circle segments, is provided in
advance for the cart to follow. The cart controller will continuously update the motor
output power and steering angle based on the reference position and feedback from the
motor odometry and a model for the movement of the cart.

The concept of combining different sensors to estimate the current position will be imple-
mented for the Gulliver vehicles as well. The dead reckoning will be attempted almost
identical to the way it is done on Blanche, however, the RCMs will provide a more
accurate position than the other sensors on Blanche.

2.3.1 Motion Planning

The path for the Gulliver Vehicles consists of a set of points and the vehicles themselves
make decisions on how to drive to the next point based on the current position, perform-
ing simple motion planning. One way to do motion planning, as suggested by [12], is to
calculate a number of paths to reach the goal and pick the best one based on minimizing
the cost to of the selected path. This optimization takes the distance, speed and energy
consumption into account and many details on how to do this are provided. Even though
the areas covered in this paper are relevant for the Gulliver project, most of them are
not implemented during the work in this project as it would require considerably more

2.4. GUI AND NETWORK CHAPTER 2. THEORY

time than there is available. It should however be noted that more advanced motion
planning, as suggested in this paper [12], would be very useful for work on the Gulliver
vehicles in the future.

2.4 GUI and Network Programming

As a major part of this project involves writing a GUI to control the vehicles and
communicating over a Transmission Control Protocol (TCP) network, it is important
to choose a toolkit that can handle those tasks. The work will be performed using the
Linux operating system, so it is important that the chosen toolkit will run on Linux.
Three modern and common such toolkits are GTK+ [13], Qt [14] and WxWidgets [15].
These toolkits will be compared in the areas of functionality and how easy they are to
use.

2.4.1 The Functionality of the GTK+, Qt and WxWidgets Toolkits

Regarding the ability to draw GUI components (or widgets), all toolkits are able to do
the job. Qt and GTK will draw widgets by themselves trying to emulate the behaviour
of the operating system, while WxWidgets will use the native widgets provided by the
operating system. For comparison, a few aspects of the languages will be considered:

Multi-threading, which is important because network communications often take rel-
atively long time, is supported on GTK+ and WxWidgets to some extent; however it
has to be handled carefully and can cause many problems [13, 15]. On the contrary, Qt
has been designed with multi-threading in mind and threads can easily be synchronized
with not only mutexes, but also with signals and slots [14]. This gives Qt an advantage
regarding multi-threading.

Network Support, which is built into WxWidgets and Qt. GTK+ lacks built-in
libraries with network support. However, external libraries could be used to provide
this functionality !. When comparing the network support in Qt with WxWidgets, Qt’s
network classes are more feature rich and provide better multi-threading support [14, 15].
This, again, gives Qt an advantage.

2.4.2 Ease of Use and Documentation for the GTK+, Qt and WxWid-
gets Toolkits

Both GTK+ and Qt have excellent and updated documentation available online which
makes it obvious where to get started 2. Qt also has an Integrated Development Environ-

!see http://developer.gnome.org/gnet /.
%see http://doc.qt.nokia.com/ and http://www.gtk.org/documentation.php.

2.4. GUI AND NETWORK CHAPTER 2. THEORY

ment (IDE) with built-in documentation and examples, called QtCreator 3, which makes
it very easy to find documentation during the development process. On the contrary,
WxWidgets lacks in some areas of the documentation and often refers to a book that is
seven years old at the time of this writing [15]; it is not obvious how to get started when
using WxWidgets. Thereby, GTK+ and Qt have an advantage over WxWidgets in the
area of documentation.

It should also be noted that both GTK+ and Qt provide a graphical GUI designer where
components easily can be dragged and dropped [13, 14] to create the GUI, whereas
WxWidgets doesn’t provide any open-source GUI designer.

At the end, it was decided to use the Qt toolkit to write the GUI and the network
interface as it seems to have the most advantages for this task.

3see http://qt.nokia.com/products/developer-tools.

Brief System Overview

N this chapter a brief description will be given about each one of the subsystems on
the Gulliver vehicles in order to provide a picture about the whole system, to make
it easier to follow later when the subsystems are described in detail. An overview
of the system on the vehicles can be seen in the block diagram in Figure 3.2.

Each vehicle consists of a network of nodes connected over the same, or independent,
communication buses. Some of the nodes are connected to actuators and others are
connected to sensors. Where everything is located on the physical vehicles can be seen
in Figure 3.1. The system of several vehicles and anchors along with the distances
measured by ranging can be seen in Figure 3.3.

The work in this project involves every system described in this section to some extent;
in particular the main controller, the motor controller and the mini-ITX computer. A lot
of effort was also spent into writing a program using the Qt framework to communicate
with and control the Gulliver vehicles.

3.1 The Motor Controller

This node is responsible for controlling the main motor and the steering servo. The main
motor has built-in sensors used to detect the position of the motor for commutation,
which additionally are used as encoders for sensing the travelled distance. The steering
servo has an internal control system for the positioning of the front wheels. The motor
controller only communicates with the servo in one direction when setting the desired
steering angle and the rest of the system on the vehicle will assume that the servo is at
the requested position at all times. Because of the importance of the motor controller it
has it’s own communication bus.

10

3.2. THE MAIN CONTROLLER CHAPTER 3. BRIEF SYSTEM OVERVIEW

Main Controller Mini-ITX

Sensor Boar MICAZ

Interface

_Motor Controller” J§

Distance Sensor

Figure 3.1: Location of the different components on the Gulliver vehicle. The 9-Degrees
of Freedom sensor is not attached in this picture. It is located on a stick attached to the
vehicle, so it can easily be seen on the real vehicle.

3.2 The Main Controller

The main controller communicates with the other nodes on the vehicle and runs the al-
gorithms for localization, dead reckoning and sensor data fusion. Further, the algorithms
for autonomous driving (or navigation) of the vehicle also run on this one.

3.3 The Sensor Board and the 9-Degrees of Freedom Board

The sensor board and the 9-Degrees of Freedom (DOF) board are responsible for col-
lecting data from external sensors on the vehicle and applying some rough scaling and
filtering to it. These boards are connected to the same multi-Universal Asynchronous
Receiver/Transmitter (UART) bus.

11

3.4. THE RCM CHAPTER 3. BRIEF SYSTEM OVERVIEW

..
o

Servo
(for steering)

nterface Board
USB-to-RF adapter

[
(USB-to-UART)

Figure 3.2: Overview of the control system on the vehicles

3.4 The Ranging and Communication Module

The RCM [16] is connected directly to the main controller via UART and is used to
measure the distance to fixed anchors on the area where the vehicle navigates, thereby
providing an absolute position reference. The RCMs use Ultra Wideband (UWB) radios
to measure the time-of-flight of the signal to calculate the distance between them.

3.5 The MICAz Interface

This is an interface board used for communicating between the Gulliver Vehicle and
MICAz motes. Many of the people who are involved with this project are familiar with
the MICAz motes, so therefore it is important that they can be used with the Gulliver
vehicles.

12

3.6. THE SENSORS BOARD CHAPTER 3. BRIEF SYSTEM OVERVIEW

2} -
x C
< i
>I— (x3, y3)
Do '-Q '
3
\V) |
.
Nl
-
O [
& u
0
. a0y :
(’L \ %
-/ (;é
Q [N '

‘ X-Axis

RCM 1 RCM 3

Figure 3.3: The whole set-up with the Gulliver vehicles, the anchor RCMs and the mea-
sured distances.

3.6 The Sensors Board

This module is connected to a set of distance sensors that are used to detect obstacles
close to the vehicle. A number of proximity sensors are connected to this module and
their data is filtered and converted to meaningful units.

3.7 The External Interface Board

This module can be used to establish a simple wireless connection between the vehicles
and any computer. It can be used if the optional mini-ITX computer is not mounted on
the vehicles, however, it has many limitations which are described later.

13

3.8. THE MINI-ITX COMPUTER CHAPTER 3. BRIEF SYSTEM OVERVIEW

3.8 The Mini-ITX Computer

The mini-ITX computer is optional and can be mounted in order to provide a convenient
interface to monitor, control and re-configure the vehicles wirelessly. This computer is
connected to a wireless network and to the main controller of the vehicle, running a
TCP-server for remote access. This computer was not mounted previously [2] and the
software to communicate with it’s TCP-server was a major part of this project.

3.9 The Anchors

The anchors are RCMs that passively respond to ranging requests from the vehicles.
The Gulliver vehicles know where the anchors are located and at least three anchors are
required to determine the position of the vehicles. An illustration of this can be seen in
Figure 3.3.

14

The Motor and its Controller

HE MOTOR CONTROLLER is one of the central parts of the Gulliver vehicles and
will be addressed in this chapter. The motor of the vehicle is a permanent
magnet Brushless Direct Current (BLDC) motor with sensors to detect its
rotor position.

4.1 Experiments with Sensorless Commutation

The first two vehicles from the previous project [2] were equipped with sensored BLDC
motors, however, the construction of more vehicles was planned. Therefore it would be
beneficial to make the motor controller work with sensorless motors (see section 2.2.1).

Another revision of the motor controller Printed Circuit Board (PCB) was made with the
addition of Back Electro-Motive Force (BEMF) measurement with a resistor-capacitor
voltage divider, shown in figure 4.1, as proposed by an application note from Atmel
[17]. The outputs from those three combined voltage dividers/filters were connected to
Analog-to-Digital Converter (ADC) inputs of the microcontroller on the motor controller
PCB.

With the BEMF measurement in place, the Universal Asynchronous Receiver /Transmit-
ter (UART) link was connected to MATLAB and the measured back-emf was plotted
with a 3-sample mean value (figure 4.2) and a 3-sample median value (figure 4.3) filter.

The reason that the median filter performs much better is that, according to measure-
ments with an oscilloscope, the noise is caused by the Pulse Width Modulation (PWM)
switching noise. To avoid the switching noise and thus get a higher sampling rate with
less computational power wasted on filtering, the ADC sampling could be synchronized

15

4.1. SENSORLESS COMMUTATION

CHAPTER 4. MOTOR CONTROLLER

to the timer responsible for generating the motor control PWM [18]. However, the im-
portant aspect of this experiment was to test the performance of the startup of the
motor, so this was left for implementation in case it turns out that the startup works

well.

The startup was implemented in the most common way, as proposed by others [8, 9],
and did the job to start the motor. However, the start was not very smooth and the
motor was not able to handle sufficient loads when running slowly, so the decision after

—{ k2 }——

<

10n

Figure 4.1: Resistor-Capacitor voltage divider /filter

55

e L, S

u AAL;;;“;

——r
|
|
|

Figure 4.2: The BEMF filtered with a 3-sample mean value filter

this experiment was to continue with the use of sensored BLDC motors.

16

4.2. SPEED CONTROLLER CHAPTER 4. MOTOR CONTROLLER

phase

——-Y, "Duylz
i —— BEMF,
BEMF,
8- | —— - BEMF,

Figure 4.3: The BEMF filtered with a 3-sample median value filter. It can clearly be seen
that there is less noise compared to the mean-value filter.

4.2 Speed Controller

The motor controller is not only responsible for the commutation of the motor, but also
for controlling its speed. The main controller of the vehicle will tell the motor controller
to run the motor at a certain speed and it is the task of the motor controller to adjust
the PWM in such a way that the requested speed is maintained as good as possible,
regardless of the load on the motor. For this purpose a Proportional-Integral-Derivative
(PID) controller is used. The current speed of the motor is determined by measuring
and filtering the time between commutations, after which it is fed to the PID controller,
where the PWM duty cycle is adjusted.

There are many ways to implement PID controllers [19, 20], and which method to choose
depends on the system to be controlled and the requirements of the implementation.
In order to determine how difficult it is to control the motor, the step response was
measured using the UART connection and plotted using MATLAB (see figure 4.4). As
it turns out, the motor responds almost immediately and changes direction in less than
10 milliseconds. It was also noted that the load the vehicle causes has no major influence
on the angular speed of the motor. Given this information, a very simple approach to
design the PID controller, as described by [21], was used. The resulting speed control
worked really well and was used for the motor controller.

17

4.3. COMMUNICATION CHAPTER 4. MOTOR CONTROLLER

Direction
— Phase
—— -V, (advalue) []

| == -mPmrionn

Figure 4.4: The commutations and angular speed of the motor when changing direction

4.3 Communications to the Main Controller

Communication with the motor controller is done by using a UART line. The initial
program, written for the tests in [2], sent raw data over the line with no measures to
check for errors. Also, the communication blocked the main controller, wasting clock
cycles. Because of this a new way to communicate was introduced, which is based on
packets and a separate packet handling layer.

The data is divided into packets with start and stop bytes, a byte specifying the length
of the packet, an identifier byte, the parameters for the type of packet determined by the
identifier and a 2-byte Cyclic Redundancy Check (CRC) checksum [22]. What this looks
like can be seen in table 4.1. The same type of packet is used when data is sent from the
main controller to the motor controller and also when data is sent back from the motor
controller to the main controller. This was inspired by the way the P400 Ranging and
Communications Modules (RCMs) handle their communication [5].

The receiver is implemented in such a way that each time a byte is received on the UART
line, the state of a state machine is updated, and when the entire packet is received and
the checksum is correct the packet handler is executed with a pointer to the packet
data and its length. Therefore no time is wasted on waiting for data, thus utilizing the
available computational power in a useful way. What also should be mentioned is that
the state machine has a timeout and resets to its initial state in case no new data arrives
for a longer time than expected. This is done in order to prevent the communication
link from freezing if the state machine gets out of synchronization.

18

4.4. SAFETY CONSIDERATIONS CHAPTER 4. MOTOR CONTROLLER

Bytes | Value | Description

1 0x02 Start byte

1 N The length of the packet

1 X The identifier. Used to determine how to inter-
pret the payload.

N-1 X The payload of the packet

2 X A CRC checksum.

1 0x03 Stop byte

Table 4.1: Packet format for motor controller

4.4 Safety Considerations

A lot of power can be delivered by the motor (about 1.6 kW) and it is therefore important
that nothing goes wrong easily. The following list names a number of methods that have
been implemented in order to minimize the probability for accidents:

e Each packet sent over the UART communication link has a CRC checksum and
will only be used if the checksum corresponds to the payload. If data is altered
due to noise, the probability that the checksum passes is very low.

e If no new commands that specify how fast to drive the motor have been received
for more than 0.5 seconds, the motor will stop. So, if the vehicle is driving and
someone disconnects the UART cable to the motor controller, the motor will stop
after 0.5 seconds.

e The power output to the motor cannot be changed too rapidly. For instance, if
the motor is running at full speed in one direction and the direction is changed to
full speed in the reverse direction, the power will not be changed in one step; it
will be ramped down to zero and then ramped to the desired power in the other
direction. This is to avoid braking mechanical and electronic parts.

e There is a programmable limit to the maximum speed of the motor; if a higher
speed is requested, it will be truncated to the highest allowed speed.

Based on experiments with the vehicles, this covers all trivial error sources encountered.
There are still other things that can go wrong, such as requesting that the vehicle
drives into a wall, but they cannot easily be avoided from the perspective of the motor
controller. How other things than can go wrong are handled on the Gulliver vehicles can
be seen in chapter 5, section 5.2.2.

19

The Main Controller and Related
Software

HE MAIN CONTROLLER is where the algorithms for localization and navigation
are carried out. Further, the communication between all modules is initiated
from here. This chapter will describe how the localization works, how al-
gorithms for driving the vehicle are carried out and how the communication

between the vehicle and the Qt program to control the vehicle works. An overview about
the connection between the different pieces of software can be seen in figure 5.1.

5.1 The Localization Algorithm

The localization is achieved by combining different sources of information to make an
estimate of the current position of the vehicle. This is a form of sensor fusion, which
is a common practice when dealing with mobile robots [23, 24]. The algorithm does
not require all sensors to be connected at the same time and will handle removal and
addition of sensors dynamically with the current design.

The position of the vehicle is defined as its z- and y-position and angle 6 on a two-
dimensional coordinate system. The center of the vehicle is defined as the point between
the rear wheels. An illustration of this is shown in figure 5.2.

Part of the program running on the main controller is responsible for estimating the
current position of the vehicle, and has a set of methods to update the current position
based on measurements from different sensors. These methods can be called in any order
and not all of them have to be used, which is why the program can handle different

20

5.1. LOCALIZATION CHAPTER 5. MAIN CONTROLLER

Gulliver Vehicle External Client

USB Port

Linux Computer

Figure 5.1: Overview of the external interface to the Gulliver vehicles

Y-Axis

X-Axis
>

Figure 5.2: Definition of the position for the Gulliver vehicles

amounts of sensors dynamically. It is possible to extend this with more sensors if a more
accurate position estimate is required. The following parts will describe how some of the

21

5.1. LOCALIZATION CHAPTER 5. MAIN CONTROLLER

position update methods are implemented.

5.1.1 Position Updates Based on Tachometer and Steering Servo

The motor controller will continuously count the pulses the motor generates while moving
and this value is read and reset from the main controller. This value is sent to the
localization part of the program together with the last angle for the steering servo to
update the position and angle of the vehicle. This assumes that the steering servo has
been in a constant position during that movement and that the tires do not slip too much.
This method to update the position has very fast update rate and low noise, however,
the estimation of the position will drift over time. In the C programming language, this
update looks like the following:

1| void dr_update_position_angle(double xpos_x, double xpos_y, double xangle) {
2 // Read the current steering angle
3 const double steering_angle = dr_get_steering_angle();
4 // Read the travelled distance from motor controller since last update
5 const double travel distance = dr_get_travel_distance();
6
7 if (travel distance == 0) {
8 // No movement since last update... abort
9 return;
10 !
11
12 if (fabs(steering angle) < 0.001) {
13 // Avoid division by zero.. approzimate small angles as going straight
14 *pos_x += cos(*angle) * travel distance;
15 *pos_y += sin(*angle) * travel distance;
16 } else {
17 const double turn rad rear = DR_AXIS_DISTANCE / tan(steering_angle);
18 double turn_rad_front = sqrt(
19 DR_AXIS DISTANCE % DR_AXIS DISTANCE
20 + turn_rad_rear * turn_rad_rear);
21
22 if (turn rad rear < 0) {
23 turn_rad_front = —turn_rad_front;
24
25 const double angle diff = (travel distance * 2.0) / (turn_rad rear + turn rad_front);
26
27 xpos_x += turn_rad rear * (sin(xangle + angle diff) — sin(xangle));
28 *pos_y += turn_rad_rear * (cos(xangle — angle_diff) — cos(xangle));
29 xangle += angle_diff;
30
31 // Make sure that the angle is within range (0 — 2PI)
32 while (xangle > 2.0 x M_PI) {
33 xangle —= 2.0 « M_PI,;
34
35 while (xangle < 0) {
36 xangle += 2.0 x M_PI;
37 }
38}
39| }

While this concept was developed and tested during the work of this project, the Local-
ization Project [3] improved this function to also estimate a confidence interval for the

22

5.2. NAVIGATION CHAPTER 5. MAIN CONTROLLER

current position based on measurements made with the vehicle [3]. This was done by
driving the vehicle on the floor and measuring how much this position estimate deviates
from the actual position over distance.

Finally, it should be noted that this method to update the position of the vehicle will
not work alone for a long time as there is no absolute reference, thus the deviation will
just grow over time and has no upper bound.

5.1.2 Position Updates Based on the Ranging and Communications
Module

Every time the Ranging and Communications Module (RCM) ranges with one of the
anchors the measured distance, the location of that anchor and the measured standard
deviation is sent to one specific position update method. This information is used to
correct the z- and y-position of the vehicle. A Kalman-filter [6] is then used to update
the estimated position of the vehicle and the current standard deviation. The algorithm
for this was part of the localization project [3], so the details will not be covered here. It
should be noted that the angle of the vehicle (see angle € in figure 5.2) is not corrected
from the RCMs at the time of this writing, so additional means are required to correct
the angle of the vehicle.

5.1.3 Position Updates Based on the 9-Degrees of Freedom Sensor

The 9-Degrees of Freedom (DOF) sensor contains one three-axis accelerometer, one
three-axis gyroscope and one three-axis magnetometer; which are the 9-DOF. In this
application, only two out of three axes of the magnetometer are used to detect the
magnetic field of the earth, effectively acting as a compass. This information is used to
correct the angle of the Gulliver vehicles and is really important as the dead reckoning
(see Glossary) depends on a correct angle to work properly.

5.2 How Navigation is achieved

The navigation, or the “driving algorithm”, assumes that the current position of the
vehicle is always known and uses a map, defined as a set of routes (see figure 5.3), to
drive the vehicle along one of the routes. The algorithm is called approximately 100
times per second and in each iteration the motor controller is updated with a new speed
and steering setpoint. The speed is calculated by weighting the desired speed of the
previous and next point on the current route with the relative distance to the points.
The calculation looks as the following;:

23

5.2. NAVIGATION CHAPTER 5. MAIN CONTROLLER

dnext
k. rev — 7, 7 1
P dprev + dneazt (5)

VU = Uprev * kprev + Unext * (1 - kprev) (52)

where dyeq¢ is the distance to the next point on the route, d.e, is the distance to the
previous point and v is the speed sent to the motor controller based on the set speed for
the previous and next point (Vprey and vpest).

Gulliver Controller

Main Cars TCP Readings Settings | Map

(mm) Map Editing

#6 0.50

co0bo ;Q/ZST #7 0.50mfs

#5 s. ' @187, 6550) ’_lJ x 4’
T #8 0.50m/s. L) L) J

=l : __d_ﬂ 8, 5757) Addroute Remove

Move
L] ° \ #9 0.50m/s| O \\‘ M
4 0.50m/: ® [~@l6249, 4217] | | | | | |
L.50my/s n -
.fﬁ 842, 3499) ° .\ Rotate Resize Opposite
2800 | #10 0.50m/s I T a

®) ~@o106, 255 e |

Active Node Speed
® g | s (""i
o #3 0.50mfs Anchor|a | | ™ | J
=l— 877 -14)). 0,0) T USOm/E Connect Info Clean
'Y (10512,-611)

\dd nod fify Rou ake Ar¢
| L J | J
AddNode Verify Make area

-2800 ® . 2

#2_0:50m/ ® Circle .
.(—7703,5359; fmz .50m/s. |-
® @{10034,-3710} Make circle
L]
#1 0.50m/s ® L]
-5600 (5341, -5449) #0 0.50m/s
———4(-1289]-5918) P 13 0.50m/s
#16 0.50m/s (8635, -6553)
(838, -6856)
#15 0.50m/s
2936,-7650) #14.-@:50m/s
lh 35, -8145)
L Car Control
-11200 -8400 -5600 -2800 o 2800 5600 8400 11200 140 Video Stream

Not connected

Figure 5.3: Map example in map editor with two routes (or lanes)

The steering angle is calculated such that the vehicle will follow an arc that goes through
the next point on the current route. The steering angle also has a certain gain based on
the distance to the next point to avoid driving a long detour when the next point is far
away.

It should be noted that this navigation algorithm is very simple and that there are many
considerably more advanced path planning algorithms [12, 25], but it works well for this
case as the map is relatively well defined.

24

5.3. COMMUNICATIONS CHAPTER 5. MAIN CONTROLLER

5.2.1 The Lane Changing Algorithm

Lane changing is the act of starting to follow another route from some point on the
current route. Lane changing can be done in two ways:

1. One point on the current route together with one point on another route can be
defined to change lanes. This means when the vehicle arrives at that point on the
current route it will start driving towards the defined point on the other route and
then continue on that route.

2. An automatic lane change can be done from any position by finding the closest
point in another route and picking the second point after that one. The reason
that two points are skipped is to avoid too sharp turns. The fact that exactly two
points is a good number has been determined experimentally.

The most common and easiest way to change lanes is the automatic one, but the other
one has been created to give more control over the lane change in case that is required.

5.2.2 Adaptive Cruise Control

Adaptive cruise control refers to the ability to adjust the speed of one vehicle to match
the speed of the vehicle in front of it. This function is always active on the Gulliver
vehicles and works in the following manner: The on-board sensors measure the distance
to the object in front of the vehicle and if they are closer than a configurable distance, the
speed is adjusted proportional to the distance to that object. This way, faster vehicles
will slow down to match the speed of what is in front of them. There is also a configurable
lower limit for the distance to the object in front of the vehicles, below which the motor
will stop; thus this also acts as collision avoidance.

5.3 Local and External Communications

This section will cover how the communication between the nodes on the Gulliver vehicle
is handled and also how the communication between the vehicle and the external Qt
program is handled.

5.3.1 Local Communications

An overview about the communication links on the vehicles can be seen in figure 3.2.
Most of the communications are initiated by the main controller and the other nodes
respond to that. Every communication link has a timeout to make sure that the system
does not freeze if that link fails. Also, the system has been designed in such a way that
it does not require all communication links to function, as long as the important ones

25

5.3. COMMUNICATIONS CHAPTER 5. MAIN CONTROLLER

are intact. For example, if the compass is disconnected the localization will still continue
with the other sources of information, but the performance will not be as good. The
individual communication links can be described as follows:

Motor Controller Communications

The communication between the main controller and the motor controller is carried out
on a dedicated bus as it is important. The main controller will send packets to the motor
controller (see chapter 4) with commands and for some of them the motor controller
will respond. For example, the main controller may send “read and reset tachometer”
and when the response is received the last tachometer value will be provided to the
localization part of the program. If the communication link fails (for instance, if the
cable is disconnected) the motor controller will stop the motor if no commands are
received for more than 0.5 seconds, for safety.

RCM Communications

The communication to RCM is handled in a similar way to that of the motor controller.
Range request packets are sent to the RCM from the timeslot manager [3] and the
RCM will respond to them. When the response is received, it will be provided to the
localization part of the program.

Sensors and 9-DOF Board Communications

The proximity sensors and the 9-DOF board are connected to the same bus. The main
controller will address one of them at a time and ask for values and then wait for them
with a very short timeout (they should respond immediately). If they respond, the
response will be sent to the corresponding part of the program.

MICAz Communications

The MICAz will send packets to the MICAz interface board and they will be stored
there. The interface board is also connected to the same bus as the sensors and at
regular time intervals the main controller will address the interface board and read the
packets received from the MICAz and sometimes send packets to the MICAz via the
interface board. Note that in this case interface board does not refer to the external
Universal Serial Bus (USB)-to-RF interface board, but the interface board between the
MICAz and the multi-Universal Asynchronous Receiver/Transmitter (UART) bus.

26

5.3. COMMUNICATIONS CHAPTER 5. MAIN CONTROLLER

5.3.2 External Communications

Communication to external clients can be done over USB, Bluetooth or a general-purpose
Radio Frequency (RF) transceiver; however, in this project only the USB interface has
been covered. The USB interface is a USB-to-UART converter and shows up as a serial
port on the mini-ITX computer, where a simple Transmission Control Protocol (TCP)
server application forwards data between that serial port and a TCP socket (see figure
5.1). Other clients can connect to that server using any interface that allows TCP
connections, e.g. Wi-Fi.

The USB/TCP interface works with packets, very similar to the way the motor controller
communication is implemented (see chapter 4.3). There are mainly two types of packets
sent from the external client to the main controller: one that is sent when a response with
data is expected, e.g., when asking for the current position of the vehicle; and another
one that is sent when no response data is expected, e.g., when setting the speed and
steering angle when the vehicle is driven manually from a joystick. What those packets
look like can be seen in table 5.1.

Bytes | Value | Description

1 0x7E | Start byte

1 N The length of the packet

1 X The identifier. Used to determine what type of
packet this is.

1 X The sub-identifier. Used to determine how to
interpret the payload of the packet.

N-2 X The payload of the packet

2 X A Cyclic Redundancy Check (CRC) checksum.

1 0x7E | Stop byte

Table 5.1: Packet format for packet sent from an external client to the Gulliver Main
Controller

The main controller will always respond to packets received. When no data is expected
in the response an acknowledgement packet is sent back to confirm that the packet has
been received and processed; when data is expected a packet with the requested data
will be sent back. What the response packet looks like, sent from the main controller to
the external client, can be seen in table 5.2.

27

5.4. CLIENT PROGRAM CHAPTER 5. MAIN CONTROLLER

Bytes | Value | Description

1 0x7E Start byte
1 N The length of the packet
1 X The identifier. Used to determine what type of

packet this is and how to interpret the payload
of the packet.

-1 X The payload of the packet
X A CRC checksum.
0x7E | Stop byte

)—‘I\DZ

Table 5.2: Packet format for packet sent from the Gulliver Main Controller to an external
client

5.4 The Gulliver Client Program

A program has been written, using the Qt toolkit, to provide a Graphical User Interface
(GUI) for the Gulliver vehicles. It can be used to connect to any number of vehicles
using the TCP interface described in section 5.3.2. From the beginning, the design has
been made in such a way that communicating with the vehicles never blocks the GUIL.
What this interface looks like when two vehicles are connected can be seen in figure 5.4.

By using the Cars TCP tab, vehicles can be added dynamically and each vehicle will
be plotted on the Map tab. Each vehicle will have its own communication and control
object where data can be read from and written to the vehicle. In order to not block
the GUI while communication is performed, threads and Qt’s signals and slots [14] have
been used. The communication procedure, using the high-level non-blocking methods,
can be described as follows:

1. Call the method for the desired operation, for instance the one that reads the
position of the vehicle. The returned result will be true or false depending on
the status of the TCP socket, but no data from the connected vehicle is returned.
Another thread will start the blocking communication and fetch the data.

2. When the result is received, a Qt signal will be emitted, containing the result.
Every class that has a slot connected to that signal can process the data once it
arrives. If the method called in step 1 only sent a command (not requesting data),
another signal will be emitted, telling the listener that an acknowledgement (ACK)
was received.

3. In case of a time out, another signal will be emitted to the listeners, telling that a
timeout occurred and what caused it. This can be used in order to, for instance,
show a notification about the timeout to the user.

28

5.4. CLIENT PROGRAM CHAPTER 5. MAIN CONTROLLER

A Gulliver Contraller g & &%
File Edit

Main | Cars TCP | Readings @ Settings | Map
Car0 | Car1
IP Address (127.0.0.1 & Connect %% Disconnect
0 - Routes
Q ’L‘S o ¥ set Routes
O {} Get Routes

K Clearroutes

RecordRoute OM

RecordRoute OFF

(} Get Areas

O set Areas
_Stream Camera K ClearAreas

k.4 Stop

0 4] Set Route
Localization
Autopilot
Send Joystick

e 0 @ /‘ : UpdatePos

» Add Car ©4 Connect Joystick

Not connected

Figure 5.4: Two tabs with vehicle controls. More can be added with the Add Car button.

It should be noted that the map part of the program also has access to the interface
objects connected to the vehicles and can do everything that can be done from the tabs
(the tabs are shown in figure 5.4) with some simple modifications if the people working
on the map editor decide to do so [4].

The connected Gulliver vehicles can also be maneuvered individually from a joystick
from this program. Further, the interface can stream video from the vehicles in real
time if a camera is mounted and a server for video streaming is running.

29

A simple Traffic Scenario
Application

ITH EVERYTHING CONNECTED, a test of the system has been done with the
MICAz motes connected to two vehicles. A simple scenario with two indi-
vidual connected routes and two intersections, as shown in figure 6.1, has
been set up.

The MICAz motes did run a virtual traffic light with a certain schedule for each inter-
section, shown as red areas in figure 6.1. The design of that schedule was not a part of
this project, so the details will not be discussed here.

When the vehicles entered the intersection there were three things they could do, based
on the decision from the MICAz mote: continue on the same route, change lanes and
continue on the other route or stop and wait for other vehicles to pass. This did work well
for this scenario and the whole scenario could also be followed from the map editor/viewer
in real time.

6.1 Suggested Improvements based on this Experiment

During this experiment, a few issues with the current platform were noted that could be
improved in the future, namely:

e The stop and go commands were not very smooth. When the decision from the
MICAZz was stop in the intersection, the vehicle would brake at full power. It would
give a better impression if a smooth slowdown was implemented.

30

6.1. SUGGESTED IMPROVEMENTS CHAPTER 6. TRAFFIC SCENARIO

Figure 6.1: Intersection scenario with two routes and two intersection areas

e The direction of the collision sensors should be combined with the current steering
angle of the vehicle. For instance, if the current steering angle is towards the left
and some obstacle is getting closer on the right side, it might not be necessary to
slow down.

In other aspects, this experiment went very well and can be considered as successful.

31

Conclusions

HE AIM of this project was to participate in the construction of a miniature
vehicular platform with basic functionality to accept high level commands for
navigation (see chapter 1, section 1.1 for more details). The Gulliver vehicles
are now able to drive autonomously by carrying out simple high-level com-

mands provided from another platform, such as the SUMO simulator [7].

In the end, everything in the goals and even some additional features, such as the camera
stream, was implemented. It can be concluded that the Gulliver vehicles now are a bit
closer to being useful in larger experiments as proposed in [1], however, there are many
areas left that could and should be improved in future projects.

7.1 Suggested Future Work

For future reference, the following improvements are suggested, based on the work of
this project:

e A new main controller with a more powerful microcontroller should be created.
Currently, only small routes can be stored (about 400 points) and there is no
hardware floating point unit, making all floating point operations considerably
slower than fixed-point math.

e The algorithms for localization based on the Ranging and Communications Mod-
ules (RCMs) should be improved, such that the angle of the vehicle is considered.
Currently, only the compass is used to correct the angle, and it is very sensitive to
metal and other disturbances that come close to the vehicle.

32

7.1.

SUGGESTED FUTURE WORK CHAPTER 7. CONCLUSIONS

e Better algorithms for navigation should be written to handle more complex traffic

situations. For instance, currently there is no method to park the vehicle in a tight
parking lot. A good reference for path-planning is [12], where a set of paths are
generated and the one with the minimal cost based on a set of requirements is
picked.

It would be useful if every vehicle was aware of the other vehicles that are close
by. Thereby, collision avoidance could be implemented based on localization in
addition to the current implementation based on the on-board sensors.

More work should be spent on integrating the Gulliver vehicles with other systems.
The current on-board communication interface is specifically made for the MICAz
motes and new commands are difficult to implement. Also, the client program (see
section 5.4) should provide an external interface to connect to other programs,
such as the SUMO simulator [7], directly, without involving the MICAz motes.

33

1]

Bibliography

M. Pahlavan, M. Papatriantafilou, E. M. Schiller, Gulliver: a test-bed for develop-
ing, demonstrating and prototyping vehicular systems, in: Proceedings of the 9th
ACM international symposium on Mobility management and wireless access, Mo-
biWac '11, ACM, New York, NY, USA, 2011, pp. 1-8.

URL http://doi.acm.org/10.1145/2069131.2069133

P. Kaldén, E. Sterna, M. Tulldahl, M. Nilsson, N. Ilves, The gulliver car, Tech. rep.,
Chalmers University of Technology (2012).

A. Altby, T. Bostrom, T. Sibgatullin, K. Stjirne, Robusta och noggranna posi-
tioneringssystem baserade pa avstandsmétningar mellan mobila noder, Tech. rep.,
Chalmers University of Technology (2012).

E. Dahlgren, J. Grundén, D. Gunnarson, N. Holtryd, A. Khazal, V. Swantesson, En
plattform for testning, utveckling och demonstration med hjilp av miniatyrfordon,
Tech. rep., Chalmers University of Technology (2012).

Time Domain, Application Programming Interface (API) Specification, PulsON 400
RCM (2011).

G. Welch, G. Bishop, An introduction to the kalman filter, Tech. rep., University
of North Carolina at Chapel Hill (1997).

M. Behrisch, L. Bieker, J. Erdmann, D. Krajzewicz, Sumo - simulation of urban
mobility: An overview, in: SIMUL 2011, The Third International Conference on
Advances in System Simulation, Barcelona, Spain, 2011, pp. 63-68.

J. Shao, D. Nolan, M. Teissier, D. Swanson, A novel microcontroller-based sensorless
brushless dc (bldc) motor drive for automotive fuel pumps, in: IEEE transactions
on industry applications, Vol. 39, 2003.

J. Shao, D. Nolan, T. Hopkins, A novel direct back emf detection for sensorless
brushless dc (bldc) motor drives, in: STMicroelectronics Power Systems Applica-
tions Lab, 2002.

34

http://doi.acm.org/10.1145/2069131.2069133

BIBLIOGRAPHY BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

T.-H. Kim, M. Ehsani, Sensorless control of the bldc motors from near-zero to high
speeds, in: IEEE transactions on power electronics, Vol. 19, 2004.

I. Cox, Blanche-an experiment in guidance and navigation of an autonomous robot
vehicle, Robotics and Automation, IEEE Transactions on 7 (2) (1991) 193 —204.

Z. Shiller, Y.-R. Gwo, Dynamic motion planning of autonomous vehicles, in: IEEE
transactions on robotics and automation, Vol. 7, 1991.

Q. Ni, W. Sun, X. Liang, Developing solaris gui application with gtk-+, in: Informa-
tion Science and Engineering (ICISE), 2009 1st International Conference on, 2009,
pp. 3283 —3286.

J. Blanchette, M. Summerfield, C++ gui programming with qt 4, 2nd Edition,
Prentice Hall Press, Upper Saddle River, NJ, USA, 2008.

J. Smart, K. Hock, S. Csomor, Cross-Platform GUI Programming with wxWidgets
(Bruce Perens Open Source), Prentice Hall PTR, Upper Saddle River, NJ, USA,
2005.

Time Domain, Ultra Wideband Ranging and Communications Module, pulsON 400
RCM (2011).

Atmel Corporation, Sensorless control of 3-phase brushless DC motors, application
note AVR444 (2005).

Microchip Technology Inc., dsPIC33F /PIC24H Family Reference Manual, Section
14. Motor Control PWM (2010).

R.-M. Jan, C.-S. Tseng, R.-J. Liu, Robust pid control design for permanent magnet
synchronous motor: A genetic approach, Tech. rep., Ming Hsin University of Science
and Technology (2007).

O. Montiel, R. Septulveda, P. Melin, O. Castillo, M. Angel Porta, I. M. Meza,
Performance of a simple tuned fuzzy controller and a pid controller on a dc motor,
in: Proceedings of the 2007 IEEE Symposium on Foundations of Computational
Intelligence, 2007.

T. Wescott, Pid without a phd, in: Embedded Systems Programming, 2000.

P. Koopman, T. Chakravarty, Cyclic redundancy code (crc) polynomial selection
for embedded networks, in: The International Conference on Dependable Systems
and Networks, DSN-2004, 2004.

M. Kam, X. Zhu, P. Kalata, Sensor fusion for mobile robot navigation, in: proceed-
ings of the IEEE, Vol. 85, 1997.

H. P. Moravec, Sensorfusion in certainty grids for mobile robot, in: AI Magazine,
Vol. 9, 1988.

35

BIBLIOGRAPHY

[25] Y. Kanayama, B. I. Hartman, Smooth local path planning for autonomous vehicles,
Tech. rep., University of California, Department of Computer Science (1989).

36

3.1

3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

6.1

List of Figures

Location of the different components on the Gulliver vehicle. The 9-
Degrees of Freedom sensor is not attached in this picture. It is located on
a stick attached to the vehicle, so it can easily be seen on the real vehicle.
Overview of the control system on the vehicles
The whole set-up with the Gulliver vehicles, the anchor RCMs and the
measured distances.

Resistor-Capacitor voltage divider/filter
BEMF with mean value filter
BEMF with median filter

Commutation and angular speed

External interface overview L.
Position definition
Map example with tworoutes
Vehicle control tabs

Intersection scenario

37

List of Tables

4.1 Packet format for motor controller

5.1 External-to-main controller packet format
5.2 Main controller-to-external packet format

38

APPENDIX A: THE GULLIVER CAR

A PART OF THE GULLIVER PROJECT

STUDENTS
Peter Kaldén 870705-5136 kalenp@student.chalmers.se
Erik Sterna 880924-6930 sterna@student.chalmers.se
Nigul Ilves 900908-5637 nigul.ilves@gmail.com

Mikael Tulldahl 901007-5977
Michael Nilsson 870918-5030
(Benjamin Vedder 871026-7090

mikael.tulldahl@live.se
nilmic@student.chalmers.se
vedder@student.chalmers.se)

Department of Computer Science and Engineering
Chalmers University of Technology
Goteborg, Sweden 2011

6 juni 2012

Appendix A: Gulliver Car

Summary

This report details the design and construction of a small scale test platform for simulation
of traffic senarios. The platform is designed with a chassis from a remote controlled car as a
base to approximate the behavior of a real car. On top of this base a system for controlling
the platform has been constructed with purpose designed circuitboards. These circuitboards
interface with the car’s various subsystems to for example enable it track to it’s own position
and sense the distance to nearby objects. The car can also easily communicate with various
host systems, such as a computer.

Appendix A: Gulliver Car

Sammanfattning

Den hér rapporten behandlar designen och konstruktionen av en testplattform i liten skala for
simulering av trafiksituationer. Plattformen ar designad med en radiostyrd bil som bas for att
uppvisa beteende som liknar en riktig bil. P4 denna bas har ett specialdesignat kontrollsystem
byggts som kontrollerar bilens undersystem. Dessa undersystem mdjliggor bilen att t.ex. spara
sin egen position i forhallande till omgivning och kinna av avstandet till nirliggande objekt.

Appendix A: Gulliver Car INNEHALL

Innehall

1 Inledning 5
2 Designmal 6
2.1 Mekaniska konsiderationer 6
2.2 Elektriska konsiderationer 6

3 Mekanisk Konstruktion 7
3.1 Chassimodifikationer L 7
3.2 Motor 8
3.3 Stryservo . .. oL 8

4 Sensorer 9
4.1 Omgivningsensorero 9
4.1.1 Val av ultraljudsensor Lo 9

4.1.2 Val avinfrardéd sensor 9

4.2 Odemetri e e e e e e 10
4.2.1 Val av Odemetrisensorer v v v v v v e e e e e 10

4.3 Positionering L 10
4.3.1 Val av positioneringssensor 0w e 11

4.4 Riktningssensoro 11
4.4.1 Val av riktningssensoro o L 11

5 Elektrisk konstruktion 12
5.1 Motorkontroller oo 12
5.2 9-DOF-sensor 12
5.3 Distanssensorkort L 12
54 P400 RCM 12
5.5 Interface-kort 12
56 Huvudkort 12

6 Mjukvara 14
6.1 Motorkontroller 14
6.2 9-DOF-sensor 14
6.3 Distanssensorkort 14
6.4 Interface-kort e 14
6.5 Huvudkortet. 14
6.5.1 RCM-kommunikation 15

6.5.2 Styrkommandono 15

7 Avslutning 16
7.1 Resultat 16
7.2 Diskussion och forbéttringsmdjlighetero 16
7.3 Reflektioner pa gruppen 17

Appendix A: Gulliver Car

INNEHALL

Tack

Flera person har hjilpt oss under projektets gang och vi har varit glada for att fatt arbeta
tillsammans med sd manga kompetenta personer. Vi vill, utéver att tacka dessa, dven speciellt
tacka foljande personer.

Benjamin Vedder
Elad Schiller
Mitra Pahlavan
Roger Johansson
Henk Wymeers
Gabriel Garcia
Amir Tohidi

Mohamed Mustafa

Appendix A: Gulliver Car 1 INLEDNING

1 Inledning

Dagens bilar ror sig allt mer mot automatisering, med system som tex automatiskt bromsar
eller viger undan om du haller pa att krocka, system som upptécker djur pa vigen och system
s& ser haller dig mitt i filen och mérker nér da haller pa att somna. Nagon gang inom en inte
allt for snar framtid s kommer det finnas helautomatiserade bilar. For att bana vig for det
behover det finnas effektiva sitt att kontrollera trafikfloden. Det géar forstas att simulera i en
dator, men da det finns s& manga faktorer sa ar det svart att helt forsta alla situationer utan
att verifiera simulationerna i verkligheten. Dock sa ar det dyrt och omstandligt att verifiera i
full skala och det &r héar Gulliver &r ténkt att komma in, som en testplattform som enkelt kan
anvanda for att verifiera simulationer utan att behdva gora en fullskalig verifiering.

Appendix A: Gulliver Car 2 DESIGNMAL

2 Designmal

Da det ar tankt att Gulliver skall bete sig liknande en vanlig bil beh6vs en mekanisk struktur
som mdjliggor ett liknande beteende. Samtidigt krévs ett elektriskt system som kan kontrollera
de mekaniska delarna pa ett sdtt som ger det beteende som eftersoks. Vidare krivs ocksa
aterkoppling i form av sensorer sa att bilen sjilv kan kontrolleras mer precist och ha en
referens till de instruktioner som den far.

2.1 Mekaniska konsiderationer

D& en bils mojliga beteende ar relativt begransat sa kravs det inte mycket mer dn en motor
for att adka framat och bakit samt en motor for att svinga. Dock &r ar det en fordel med
ddampning och fjadring d& dessa kan gora konstruktionen mer stabil och 6ka dess livslingd.
Den mekaniska konstruktionen ar dock inte avsedd att simulera de fysiska delarna av en bil
utan snarare mer konceptet.

2.2 Elektriska konsiderationer

Det elektriska kontrollsystemet krédver mer ingdende konsiderationer, d& det méaste kunna
kidnna av omgivningen och dess egna absoluta position. Dessutom maste det &ven kunna kon-
trollera det mekaniska delarna att kunna folja de instruktioner som bilen far. Figur 2.1 visar
den foreslagna topologin for det elektriska systemet.

Motor Servo
(for steering)

Sensors:

OF sensor
egrees of Freedom

or controller ance sensors

nterface board

FTDI
(USB on computer]

Figur 2.1: Topologin

De grona linjerna symboliserar en fysisk kontakt mellan tva moduler, de prickade blaa linjerna
representerar tradlés kommunikation och ladorna pa modulerna visar vilket protokoll som
anvands.

Appendix A: Gulliver Car 3 MEKANISK KONSTRUKTION

3 Mekanisk Konstruktion

Att konstruera ett eget chassi ansags vara allt for tidskravande sa darfor valdes ett chassi till
en radiostyrd bil ut till som chassi. Detta gav en bas som uppfyllde manga av plattformens
mekaniska krav. Chassit som valdes var av typ OFNA Dirt Electric. Det hade stétddmpare
och fjadring pa samtliga hjul, anpassad inféstning for en elektrisk motor och ett styrservo och
anlénde 80 procent férkonstruerat. Figur 3.1 visar chassit nar det ar fullt hopsatt och styrservo
och motor dr monterat.

Figur 3.1: Bilen utan egna plastdetaljer

3.1 Chassimodifikationer

D4 chassit saknade bra yta for att montera elektroniken behdvdes det byggas en sadan yta.
For att denna skulle bli korrekt och for att kunna bedéma olika mdéjliga 16sningar s& gjordes
en CAD-modell av chassit varefter en plattform i flera delar designades till chassit. Dessutom
sa designades en roll-bar for att skydda elektroniken och dven fésten till sensorerna som latt
kunde riktas om och placeras pa flera olika stéllen pa plattformen. Figur ?? visar den fiardiga
designen CAD-modellen, notera sensorféstena (bla pé bilden), plattformen (réd pé bilden) och
rollbaren (grén pa bilden). Dessa delar tillverkades sedan i en CNC-frés alternativt laserskérare
utifran deras respektive CAD-modeller.

Appendix A: Gulliver Car 3 MEKANISK KONSTRUKTION

Figur 3.2: Bilen i 3D, vinkel 2

3.2 Motor

Motorn valdes efter kriterierna att den skulle vara en borstlos DC-motor med mycket effekt.
Utover detta var det viktigt for den motorstyrning som fanns tillgdnglig att motorn hade
sensorer inmonterade. Den motorn som valdes var en Team Orion Vortex MRS vilken var
kapabel att ge ut 1500 Watt och ge bilen en topphastighet pa c:a 50 km/h.

3.3 Stryservo

Styrservo valdes efter kriterierna kvalitet och vridmoment da sviéinghastighet inte &r nagon
storre vikt. Kvaliteten anségs viktig av den anledning att lagkvalitetsservon ofta ar kénsliga
och gar latt sonder och att de kan daliga egenskaper. Servot som valdes var av modell Turnigy
HV-767 Digital HV-2S.

Appendix A: Gulliver Car 4 SENSORER

4 Sensorer

Det elektriska systemet designades efter de sensorer som valdes ut for att kunna fullfélja de
krav som stélldes framforallt pa positioneringen men dven pa méjlighet att kinna omgivningen.
De sensorer som valdes var foljande.

4.1 Omgivningsensorer

For att upptéicka omgivande objekt hade en laserscanner varit ideal d& denna kan scanna
nastan 360 grader samtidigt med en modul. Denna fick dock viljas bort d& den var utanfor
budgeten. Istillet valdes en kombination av ultraljud och infrardda sensorer, detta da dessa
kompletterar varandra bra och i tillrdcklig méngd kan ge liknande funktion som en laserscanner
skulle ge.

4.1.1 Val av ultraljudsensor

De ultraljudssensorer som valdes ut var av typen Ultrasonic Ranger SRF08 och de fungerar
helt enkelt sa att de skickar ut en ljudpuls och méter tiden till att reflektionen kommer tillbaka
till sensorn. Genom att méta tiden tills ekot kommer tillbaka och baserat pa ljudets hastighet
sa kan sensorn ta reda pa avstandet till det objekt som reflekterade ljudet. Det finns ett par
aspekter att tdnka pa da dessa sensorer anvinds. Delvis kan ultraljudssensorerna regera pa
andra sensorers pulser ifall de sitter pa ett sddant sdtt och om de méter for tatt, vilket skulle
innebéra att de kan rapportera felaktig métdata. Dessutom har de en bred métkon vilket
ldmpar sig mer for att upptéicka hinder snarare &n att mer precist méta avstandet till nagot
vilkant objekt. Fordelen med ljudsensorer &r dven att de ar fargoberoende, till skillnad fran
méanga ljusbaserad sensorer som kan ha svart att se svarta objekt.

Figur 4.1: Ultraljudssensor, SRF08

4.1.2 Val av infrar6d sensor

De infraréda (IR) sensorer som valdes ut &r av tillverkad av SHARP och dr analoga avstandssen-
sorer som med hjilp av triangulering kan méta avstandet till objekt. De skickar ut en infrarod
ljusstrale som reflekteras av objekt och sedan méter sensorn infallsvinkeln pé ljuset och tar
med hjilpa av triangulering fram avstandet till objektet. Tva olika modeller av denna sensor
valdes: GP2Y0D21YK, som maéter avstand mellan 10 och 80 cm, samt GP2Y0A02YK, som
miter avstand mellan 20 och 150 c¢cm. Dessa sensorer &r mer ldmpade att méta avstand till
storre objekt da de har en métstrale snarare dn en métkon vilket gor att de inte paverkas
av andra nérliggande objekt. Dessa sensorer har &ven en stor fordel gentemot manga andra
ljusbaserade sensorer som innebar att de &r nastan fargoberoende (d& de anvénder sig av
triangulering).

Appendix A: Gulliver Car 4 SENSORER

(a) SHARP 10-80 cm (b) SHARP 20-150 cm

Figur 4.2: Infrared distance sensors

4.2 Odemetri

Odemetri innebér att med sensorer méta hur nagonting ror sig baserat pa att veta négonting
om sitt eget system och anta att det &r deterministiskt (d.v.s. en styrsignal alltid ger sam-
ma resultat). Detta kallas ibland dodrakning. Med hjulens rotationshastighet kan fordonets
hastighet berdknas och om hjulstorleken ar kind kan ocksa hur langt fordonet fardats beréknas.
Om fordonets hjulvinkel finns tillgdnglig kan baserat pa fordonets axelavstand och hjulavstand
en fardcirkelradie riknas ut vilket helt enkelt ar fordonets nuvarande svingradie. Genom denna
sviangradie kan banan fordonets fardas i rdknas ut. I en perfekt vérld sa vore detta tillrackligt
for att spara ett fordons position forutsatt att ursprungspositionen ar kind. Dock slirar hjul,
det finns métfel o.s.v. vilket innebdr att odemetri inte ar tillrdckligt d& denna kommer att
gradvis avvika allt mer fran verkligheten ju ldngre tiden gar om endast odemetri anvinds.

4.2.1 Val av Odemetrisensorer

Motorn kommer med inbyggda sensorer vilka sparar motorns position i varvet. Dessa anvinds
av motorkontrollern for att styra motorn da denna sorts indikation ar nédvéndig for att driva en
motor av typen borstlos DC-motor nir varvtalet dr lagt (och forenklar dven avsevirt styrningen
vid belastning). Genom att drivlinan &r kéind, d.v.s. hur motorrotation svarar mot hjulrotation
sd kan dessa sensorer ocksa anvindas till odemetri. Motorkontrollern styr ocksa servot som i
sin tur styr hjulens vinkel (servon dr internt reglerade positionsaterkopplade motorer). Detta
innebdr att nir systemet ar kalibrerat s& kan den position som skickats ut till servot réknas
som styrvinkel.

4.3 Positionering

For att odemetrin inte skall gradvis skall borja avvika fran verkligheten sa krévs att nagonting
kompenserar for denna avvikelse. Detta gors genom att uppdatera fordonets absoluta position
i det koordinatsystem den befinner sig i fran en annan kélla. Om detta gors tillriackligt ofta
jamfoért med hur snabbt odemetrin avviker s& hinner odemetrin inte avvika mellan uppda-
teringarna.

10

Appendix A: Gulliver Car 4 SENSORER

4.3.1 Val av positioneringssensor

For att ge en absolut positionsreferens anvinds ett flertal moduler av typen PulsOn400 RCM
fran Time Domain. Dessa &r bredbandsradiomoduler som kan méta avstandet till varandra
genom att méata radions gangtid fran modul till modul. D& minst tre av dessa moduler ar
utplacerade som ankaresd kan fordonet med hjalp av en fjarde modul monterad pa fordonet
mata avstandet till dessa ankare. Med avstandet till dessa ankare och deras positioner i ett
fordefinierat koordinatsystem kan fordonet rdkna fram sin egen position.

Figur 4.3: PulsOn400 RCM

4.4 Riktningssensor

For att snabbare kunna kompensera for gradvis avvikelse av odemetrin s& krévs utéver posi-

tioneringskorrigering dven riktningskorrigering eftersom ifall den uppskattade riktningen avviker
fran den faktiska riktningen kommer den faktiska positionen att snabbt avvika fran den up-

pskattade. Det gar att anvinda successiva positioner istéllet for en riktningssensor men da

systemet dr kénsligare for riktningsavvikelser behévs hogre uppdateringsfrekvens for riktnin-

gen.

4.4.1 Val av riktningssensor

For att méta riktningen sa valdes en "9 degrees of freedom-sensor som ar ett kretskort med
en 3-axlig accelerometer, 3-axligt gyro och en 3-axlig magnetsensor. For riktningsmétnings-
funktionaliteten &r magnetsensor den viktiga, d& den kiénner av jordens magnetfilt precis som
en kompass vilket ger oss den riktning som behovs. De évriga sensorerna (accelerometern och
gyrot) kan anvéndas for att kompensera for rotationer och plotsliga accelerationer som annars
kan ge tillfalliga fel.

Figur 4.4: 9-DOF-sensor

11

Appendix A: Gulliver Car 5 ELEKTRISK KONSTRUKTION

5 Elektrisk konstruktion

Samtliga sensorer kriver stod och kommunikationssystem och darfér behovs det ett elektriskt
system som ger dem de spénningar de behéver samt en kompatibel kommunikationskanal for
att sdnda datan 6ver. Dessutom behdvs det en central enhet som kan samordna alla sensorer
samt genomfora de instruktioner som krivs for att de trafikalgoritmer som skall testas. Nedan
forklaras de kretskort som ingér i systemet. Deras relationer beskrivs i figur 2.1.

5.1 Motorkontroller

Motorkontrollern anvinds for att styra motorn samt servot. Eftersom motorn &r borstlos krivs
det mer dn att bara skicka en spanning till den sa snurrar den. Motorn maste kommuteras
manuellt och styras beroende pa rotorns position. Motorkontrollern dr en egenutvecklad mo-
torkontroller som utvecklades utanfor detta projekt. Motorontrollern skickar dven ut en puls-
breddsmodulerad (PWM) signal som kontrollerar servot. For att kommunicera med motorkon-
trollern anvinds en dedikerad UART-kanal.

5.2 9-DOF-sensor

9-DOF-sensorn ar ett fardigt kort som koptes fran sparkfun. Den innehaller en 3-axlig ac-
celerometer, 3-axligt gyro och en 3-axlig magnetsensor samt en mikrokontroller (av typ AT-
mega328) som ldser av sensorerna samt gor lite filtrering. For att kunna kommunicera med
den via Multi-UART-bussen (MUART) tillverkades ett adapterkort.

5.3 Distanssensorkort

Distanskortet ar ett egendesignat kort som hanterar avstandssensorer. Som beskrevs i sektion
4 anvénds tva typer av sensorer: ultraljud och IR-sensorer. Pa kortet sitter en mikrokontroller
(&ven denna av typen ATmega328) som samlar in data fran sensorerna och kommunicerar detta
till huvudkortet 6ver MUART-bussen. Detta kort dr det enda som anvinder 5 V som logik-
spanning, eftersom IR-sensorerna kraver detta. Detta medfor att en spanningsnivaomvandlare
till MUART-bussen &r nédvindig.

54 P400 RCM

P400 RCM (&ven kallad endast RCM) ér en firdig modul fran Time Domain. Den miter
avstand till andra likadana moduler genom gangtidsmétning av radiovagor och anvinds for
att bilen ska kunna bestdmma en absolutposition. Huvudkortet kommunicerar med denna
modul med en dedikerad UART-kanal.

5.5 Interface-kort

Interface-kortet dr ett adapterkort som anvénds for att kunna kommunicera tradlést med bilen
via en generisk RF-modul. Den kopplas till datorn via en USB-kabel. Pa kortet sitter en krets
som tolkar USB och omvandlar det till UART som mikrokontrollern (av typ ATxmega32A4U)
tolkar for att sedan sénda vidare till bilen via RF-modulen.

5.6 Huvudkort

Huvudkortet dr den modul som samordnar alla enheter. P4 den sitter en mikrokontroller av
typ ATxmegal28A3 som tar in data fran alla sensorer och skickar kommandon till utenheterna.

12

Appendix A: Gulliver Car 5 ELEKTRISK KONSTRUKTION

Den har de kommunikationskanaler som namnts tidigare; dedikerad UART till RCM-modul
och motorkontroller; MUART till distanskort och 9DOF-kort. Dessutom finns det en krets som
omvandlar USB till UART dérigenom direkt kommunikation med en dator dr mdjlig och en RF-
modul som kan anvindas for att kommunicera med interface-kortet. Utéver detta finns plats
for ett SD-kort for datalagring och en blatandsmodul for ytterligare kommunikationskanaler.
Slutligen finns dven en dipswitch som anvéndaren kan anvénda for att stilla in bilens adress
med ifall det anvinds flera bilar.

13

Appendix A: Gulliver Car 6 MJUKVARA

6 Mjukvara

For att kunna utnyttja bilens funktioner krivs en stor mangd mjukvara. Varje kort har sin
egen mjukvara. I denna del behandlas endast den helt eller delvis egenproducerade mjukvaran.

6.1 Motorkontroller

Mjukvaran i motorkontrollern &r utanfor ramen for detta projekt, men i korthet sa méter den
positionen pa motorn och beroende pa detta skickar signaler till motorn sa att den roterar. Den
innehaller &ven en PID-regulator sa att den alltid forsoker hélla samma hastighet oavsett last
pa motorn. Vidare kontrollerar den styrservot med PWM-styrning. Den méiter kontinuerligt
motorns rotationshastighet, motorns temperatur, sin egen temperatur samt batterispinningen
pa bade logikbatteriet och motorbatteriet. Den tar emot kommandon fran huvudkortet via
UART. Den tar emot kommandon sésom hastighet och riktning pa motorn samt position pa
servot och kan dessutom rapportera tillbaka all sin data till huvudkortet.

6.2 9-DOF-sensor

9-DOF-sensorn samlar in data fran accelerometern, gyrot och magnetometern. Mikrokon-
trollern kommunicerar med de tre sensorerna med hjélp av I2C. Den har &ven stod for kali-
brering som gar till sa att extremvirdena noteras och direfter riknas det slutliga virdet for
varje sensor utifran detta. Detta &r nédvandigt da varje sensor ar individuell fran fabrik. Varje
sensor har dven inbyggd viss filtrering (lagpassfilter).

6.3 Distanssensorkort

Distanssensorkortet samlar in data fran distanssensorerna. Ultraljudssensorerna kommuniceras
till via 12C och for att 6ka samplingshastigheten utan att riskera att sensorerna stér varandra
utférs méitningar pa fysiskt motstdende sensorer samtidigt. Ultraljudssensorerna rapporterar
sitt avstand direkt i cm. IR-sensorernas avstand ges ut i en analog spannings och avldses med
den inbyggda analog-till-digital-omvandlaren (ADC). Virdet som sensorerna ger ut omvandlas
till avstand med hjalp av en look-up-tabell for att avlasta processorn, da den division som krévs
skulle innebdra mycket jobb for den.

6.4 Interface-kort

Interface-kortet dr ett adapterkort som anvénds for att kunna kommunicera tradlést med bilen
via en generisk RF-modul. Den far via USB-UART-omvandlaren in kommandon fran datorn
seriellt via UART som den sedan vidarebefordrar via SPI till RF-modulen som sedan sander
ut detta. Den kan dven ta emot data fran bilen via RF-modulen och skicka tillbaka den till
datorn.

6.5 Huvudkortet

Héar implementerades funktioner for grundliggande kommunikation till alla enheterna samt
grundlaggande styrfunktioner sdsom kor- och styrkommandon. Som tidigare ndmnts kommu-
nicerar den med alla de andra korten, frimst via UART (antingen dedikerad eller via MUART-
bussen), samt dven med SD-kortet och bilens RF-modul via SPI. Mjukvaran i huvudkortet &r
mycket omfattande och kommer darfor bara att beskrivas kort.

14

Appendix A: Gulliver Car 6 MJUKVARA

6.5.1 RCM-kommunikation

For att kommunicera med RCMen anvénds en paketstruktur. Paketet innehéller en header som
anvinds for synkronisering, ldngd pa meddelandet, kommando, meddelande-ID och slutligen
en CRC (cyclic redundancy check, anvinds for att kontrollera att meddelandet kommer fram
korrekt). Allt detta byggs i férvig upp och skickas sedan till RCM-modulen. RCM-modulen
svarar sedan med det man bad om, t.ex. avstandet till en annan RCM med en viss adress.
Huvudprocessorn ber bilens RCM att méta avstand till var och en ankar-RCMerna och réknar
baserat pa detta ut bilens position givet ankarnas positioner i det fordefinierade koordinatsys-
temet.

6.5.2 Styrkommandon

Forutom de enklare "kor-, stanna- och sving-kommando kan bilen &ven gora en del mer
avancerade kommandon. En av de grundldggande byggstenarna i mer avancerade anviandar-
funktioner &r kommandot "kor till en punkt i koordinatsystemet". Detta kommando anvander
sig utav odemetrin som den viger samman med positionen frain RCMen och riktningen fran
9-DOFen. Baserat pa sin egen position och riktning riknar den ut en cirkelbage som den kan
kora for att komma till den angivna punkten. Detta innebér att algoritmen producerar vildigt
vida svingar nir malet &r 1angt borta och skarpa svingar nira malet. For att stréckan inte ska
bli onddigt 1ang och indirekt vid mal langt borta, skalas styrvinkeln med avstandet till malet,
vilket gor att den fort svinger at ratt hall for att sedan dka ganska rakt mot malet. Genom att
att sekventiellt koppla samman ett flertal "kor till en punkt-kommandon kan man f& bilen att
kora en bana. Eftersom det kan vara svart att triaffa en punkt exakt har bilen en del funktioner
for att atgérda detta. Den har en viss tolerans-zonrunt varje punkt som innebédr att om bilen
kommer innanfér denna zon riknas den ar framme vid punkten och kan bérja g& mot nésta.
Den kan dven "6vergepunkter som den tycker dr for svara att komma till och fortsétta direkt
till nésta. Med hjélp av dessa grundstenar kan anvindaren bygga sin applikation for att fa
bilen att gora &nnu mer avancerade saker och med hjélp av detta testa sina scenarion.

15

Appendix A: Gulliver Car 7 AVSLUTNING

7 Avslutning

7.1 Resultat

Gruppen lyckades under projektet att ta fram en fungerade bil som kan navigera i ett rum
och analysera sin omgivning. Bilen som togs fram ar flexibel och robust med goda mojligheter
till utbyggnad bade vad géller hardvara och mjukvara. Det &r enkelt att kommunicera med
bilen fran en dator, d& det finns flera sitt att gora detta pa, samt att bilen innehaller en
del kommandon pé lite hogre niva forutom de mest grundldggande funktionerna. Det &r dven
enkelt att fa ut information om bilens status, t.ex. hastighet, position och sensordata som kan
anviandas for t.ex. visualisering av bilen och felsokning.

7.2 Diskussion och forbattringsmaojligheter

Generellt sett ser vi projektet som en lyckat projekt. Dock finns det en del utvecklingsmaj-
ligheter for framtiden. Det &r dock sjdlvklart upp till anvindaren att definiera vad denna
behover. Nedan foljer exempel pa saker som kan forbéttras samt forslag for fortsatt utveck-
ling:

e Mjukvaran skulle kunna vara mer strukturerad och enklare att forsta. Som det dr nu
fungerar den véldigt bra och ar vil optimerad. Med detta foljer som de flesta som jobbat
med programmering forstar att den samtidigt dr ganska svar att sétta sig in i for att
gbra nagra storre dndringar.

e Bittre integrering och anvéndning av avstandssensorer skulle vara bra. Detta dr dock
nagonting som skulle bero pa vilken applikation som bilen skulle anvéndas till och skulle
vara upp till anvindaren att designa. Som det dr nu har bilen endast mycket enkla
funktioner for att vara en sista utvig ifall den skulle vara pa vig att krocka.

o Integration av fler av sensorerna fran 9-DOFen &r ndgonting som funderats mycket pa un-
der projektets gang. Nar bilen testats har den frimst korts ganska langsamt. Accelerom-
etern och gyrot &dr sensorer som lampar sig bra for korrigering av plotsliga fordndringar.
Dock skulle integration av dessa sensorer kunna forbattra dédrékningen avsevirt.

e Mjukvara for datorn dr nidgonting som inte dr inom detta projekts ram, men nigonting
som skulle vara nédvindigt for fortsatt utveckling. Sadant dr dven nddvindigt vid ko-
ordinering av flera fordon.

e Hitta en billigare 16sning for positioneringen &r nodvéndigt for att halla priset nere. En
RCM-modul kostar mer dn resten av bilen. Detta &r dock svart att 16sa till ett billigt
pris med samma prestanda som RCMerna ger. Vid ett stérre system utomhus skulle
vanlig GPS kunna anvéndas, men for denna bil skulle detta innebédra alldeles for dalig
uppldsning och uppdateringshastighet.

e En annan 16sning for den tradlosa kommunikationen till bilen vore bra. Eftersom RF-
modulerna som anvinds inte dr extremt robusta hidnder det att datorn ibland tappar
kontakt med bilen. Bluetooth eller WLAN skulle kunna anvindas komplementért till
RF-modulen for att uppna hogre robusthet.

16

Appendix A: Gulliver Car 7 AVSLUTNING

7.3 Reflektioner pa gruppen

Vi har haft mycket nytta av den spridda expertis som fanns inom projektgruppen. Detta var
bra pa manga sétt, och vi nyttjade de olika personernas formagor vél, anser vi. Vissa av oss var
mycket duktiga pa elektronik, andra pad CAD och négra pé organisation av projektet. Dock &r
det av hogsta vikt att en teknisk grund och forstaelse om elektronik, mekanik och datorteknik,
nagot alla deltagare hade. Denna grundkunskap behdvs for att alla deltagare skall kunna pa
ett bra sétt diskutera design och uppligg av bilen och dess system samt kunna férsta problem
och vad problemen innebér vid diskussioner med personer i gruppen och utanfér gruppen.

17

	Introduction
	Goal of this Work
	Previous and Related Work
	The Initial Construction of the Gulliver Vehicles
	The Localization Project
	The Integration Project

	Delimitations

	Theory and Related Studies
	The Gulliver Platform
	Basics of Brushless Direct Current Motors
	Sensored Compared to Sensorless Commutation

	Localization and Navigation in Mobile Robot Platforms
	Motion Planning

	GUI and Network Programming
	The Functionality of the GTK+, Qt and WxWidgets Toolkits
	Ease of Use and Documentation for the GTK+, Qt and WxWidgets Toolkits

	Brief System Overview
	The Motor Controller
	The Main Controller
	The Sensor Board and the 9-Degrees of Freedom Board
	The Ranging and Communication Module
	The MICAz Interface
	The Sensors Board
	The External Interface Board
	The Mini-ITX Computer
	The Anchors

	The Motor and its Controller
	Sensorless Commutation
	Speed Controller
	Communications to the Main Controller
	Safety Considerations

	The Main Controller and Related Software
	The Localization Algorithm
	Position Updates Based on Tachometer and Steering Servo
	Position Updates Based on the Ranging and Communications Module
	Position Updates Based on the 9-Degrees of Freedom Sensor

	How Navigation is achieved
	The Lane Changing Algorithm
	Adaptive Cruise Control

	Local and External Communications
	Local Communications
	External Communications

	The Gulliver Client Program

	A simple Traffic Scenario Application
	Suggested Improvements

	Conclusions
	Suggested Future Work

	Bibliography
	Appendix A

