
Active Learning for Surrogate Models to
Augment AI-Driven Molecular Design

Master’s thesis in Computer science and engineering

CHRISTIAN JOSEFSON
CLARA NYMAN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Master’s thesis 2022

Active Learning for Surrogate Models to
Augment AI-Driven Molecular Design

CHRISTIAN JOSEFSON
CLARA NYMAN

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

Active Learning for Surrogate Models to Augment AI-Driven Molecular Design

CHRISTIAN JOSEFSON
CLARA NYMAN

© CHRISTIAN JOSEFSON, CLARA NYMAN, 2022.

Industrial Supervisor: Jeff Guo, AstraZeneca
Academic Supervisor: Morteza Haghir Chehreghani, Department of Computer Sci-
ence and Engineering
Examiner: Devdatt Dubhashi, Department of Computer Science and Engineering

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2022

iii

Active Learning for Surrogate Models to Augment AI-Driven Molecular Design

CHRISTIAN JOSEFSON
CLARA NYMAN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This project investigated whether an active learning (AL) framework can help mit-
igate computational costs for AI-driven molecular design, without negatively im-
pacting accuracy. The surrogate models Random Forest (RF) and Support Vector
Regression (SVR) were tested together with the acquisition functions (AF) Random,
Thompson Sampling (TS), Tanimoto Similarity, Expected Improvement (EI), Prob-
ability of Improvement (PI), Upper Confidence Bound (UCB) and ε−Greedy. Of
these, the combination RF and Random acquisition were concluded to perform the
best with regards to error rate, measured as root mean square error, and time con-
sumption, measured in runtime per epoch. SVR had slightly lower error, but took
substantially longer time. Depending on the choice of AF, one run using RF took
approximately 2-17.5 hours, while one run using SVR took approximately 100-175
hours. Four tuning parameters were introduced to see if they could further opti-
mize the framework. It was discovered that a longer retrain interval and a smaller
acquisition batch did not significantly impact accuracy while shortening the time
consumption. To summarise, an RF model with the Random AF with a 5 epoch
initial pooling, no warm-up phase, a retrain interval of 20 and an acquisition batch
size of 20 was selected to mitigate computational costs while simultaneously keeping
the error stable.

Keywords: active learning, bayesian optimization, de novo design, molecular design,
drug discovery, surrogate model, machine learning, molecular docking

iv

Acknowledgements

There are many people we wish to thank for helping us in finishing this Master’s
Thesis. In particular, we are deeply indebted to our brilliant supervisor, Jeff Guo,
whose patience and expertise were invaluable to us throughout the project.
We would also like to give thanks to our other supervisors at AstraZeneca who helped
guide us, Hampus Gummesson, Christian Margreitter, Samuel Genheden and Pallavi
Banerjee, as well as our academic supervisor, Morteza Haghir Chehreghani. We also
extend a thank you to Ola Engkvist for believing in us in the first place and giving
us the chance to do this project.
Additionally, we want to express our gratitude to Harry Moore and Jon Paul Janet
for helping us along and providing their much needed expertise. Also thank you to
to our opponents, Caroline Bükk and Linda Hoang.
And lastly, we would like to express our gratitude to our friends and loved ones who
provided inspiration and whose comments, criticisms, and suggestions have made
this project so much better than it otherwise would have been. Special thanks
to Daniel Andersson who kept insisting we knew what we were doing, despite all
evidence to the contrary.

Christian Josefson & Clara Nyman, Gothenburg, July 2022

vi

Contents

Glossary x

1 Introduction 1
1.1 Background . 1

1.1.1 Bayesian Optimization . 2
1.1.2 Active Learning . 3
1.1.3 Molecular Generation Tool for Small Molecules 3

1.2 Purpose and Goal . 5
1.2.1 Objective . 6

1.3 Demarcations . 6
1.4 Ethics and Societal Impacts . 7

1.4.1 The Good . 7
1.4.2 The Bad . 7
1.4.3 The Ugly . 8

2 Method 9
2.1 Overview of Project . 9
2.2 Creation of Dataset . 11
2.3 Surrogate Models . 13

2.3.1 Random Forest . 14
2.3.2 Support Vector Regression . 15

2.4 Acquisition Functions . 16
2.4.1 Random . 17
2.4.2 Greedy and ε-Greedy . 17
2.4.3 Probability of Improvement 18
2.4.4 Expected Improvement . 18
2.4.5 Thompson Sampling . 18
2.4.6 Upper Confidence Bound . 18
2.4.7 Fingerprint Tanimoto Similarity 19

2.5 Parameters . 19

3 Results 21
3.1 Selection of Model and Acquisition Function 21
3.2 Selection of Tuning Parameters . 27

3.2.1 Initial Pooling . 28
3.2.1.1 RMSE . 28

viii

Contents

3.2.1.2 Time per Epoch . 28
3.2.2 Warm-up Phase . 29

3.2.2.1 RMSE . 29
3.2.2.2 Time per Epoch . 29

3.2.3 Retrain Interval . 30
3.2.3.1 RMSE . 30
3.2.3.2 Time per Epoch . 30

3.2.4 Acquisition Batch Size . 31
3.2.4.1 RMSE . 31
3.2.4.2 Time per Epoch . 31

3.2.5 Summary of Results . 31

4 Conclusion 34
4.1 Discussion . 35

4.1.1 The Random Acquisition Function 35
4.1.2 The effect of Parameter tuning 36
4.1.3 Outlier Analysis . 37
4.1.4 Future Research . 39

Bibliography 40

A Selection of Model and Acquisition Function I

B Parameter Tuning XII

ix

Glossary

AB Acquisition Batch
AF Acquisition Function
AL Active Learning

ECFP Extended Connectivity Fingerprints
EI Expected Improvement

FTS Fingerprint Tanimoto Similarity
GRU Gated Recurrent Unit

LSTM Long Short-Term Memory
ML Machine Learning

MPO Multi-Parameter Optimization
PI Probability of Improvement

QED Quantitative Estimate of Drug likness
RF Random Forest

ReLU Rectified Linear Unit
RL Reinforcement Learning

RMSE Root Mean Squared Error
SMILES Simplified Molecular Input Line System

SVM Support Vector Machine
SVR Support Vector Regression

TS Thompson Sampling
UCB Upper Confidence Bound

x

1
Introduction

The fact that the development of new drugs is important to humanity is hardly
hard to argue, especially now when the world has recently gone through one of the
greatest health crises in modern time. However, drug design is an expensive and
time consuming process.[1] This is due to many factors, but the one this project
wishes to mitigate is the computational cost of molecular design by circumventing
the use of one of the more computationally expensive aspects of it: calculating if a
molecule can interact in the desired way with a protein.
This introductory chapter attempts to give the reader a relevant background to some
of the project’s key concepts such as active learning, Bayesian optimization and the
tool used for the molecular generation and design, REINVENT. Then it moves on to
expand on the project’s purpose and goal as well as the demarcations of the project.
Lastly, ethical considerations and potential societal impacts are touched upon.

1.1 Background
The set of all possible biologically relevant molecules, defined collectively as the
“drug-like” chemical space, is estimated to be on the order of 1023 to 1060 number of
molecules[2]. This immense size entails a difficulty in finding one’s way within the
space. De novo molecular design means to generate a new molecule from scratch, and
includes traversing chemical space in the quest for a set of molecules with bespoke
properties. Thus, any tool that enables one to more easily find a way within chemical
space will be beneficial for de novo molecular design.
Predictive modelling, defined here as computational predictions of molecular prop-
erties, can be applied to aid or augment computer simulated (in silico) de novo
molecular design[3], by alleviating brute force search of drug-like chemical space.
Computational oracles enable predictive modelling and are defined as functions that
compute the properties of a given input molecule, typically used to identify whether
the molecule has desired properties. However, oracles have no way of traversing
chemical space efficiently on their own. Often, researchers narrow the search space
of molecules manually in order to keep the computation time to manageable levels.
This is a major challenge of molecular design: traversing the vast chemical space
while simultaneously satisfying a large number of desired properties.
Multi-parameter optimization (MPO) objectives, which are common within molec-
ular design, involve satisfying multiple desired properties. Querying oracles can be

1

1. Introduction

used to steer towards molecules which satisfy the MPOs. Efficient treatment of the
corresponding MPO objective enables a much greater number of molecules to be
triaged and has shown promise in identifying candidate molecules that have been
experimentally validated.[4]
Recently, advances in machine learning (ML) have shown potential in accelerating
the rate of molecular discovery. [5] This has been done using generative models[6],
genetic algorithms[7], and by learning a molecular latent space[8]. These methods
guide molecular design by intelligently identifying the solution space to the chosen
MPO objective. The combination of applying ML techniques and querying an oracle
has drastically accelerated the design of candidate molecules and has become the
status quo in industrial molecular discovery efforts.[9]
In an ideal world, calls to the oracle would be inexpensive enough for molecular
property predictions to be queried on an as-needed basis. However, this is rarely
the case as oracles typically involve computationally expensive chemistry methods.
Examples of these are molecular docking[4], molecular mechanics[10], and molecular
dynamics simulations[11], which require extensive CPU and GPU resources.
The use of surrogate models mitigate some computational costs associated with
expensive oracles. They do this by predicting the oracle output in order to replace
a portion of the oracle calls by instead using these predictions of the likely outcome.
[12] This has repeatedly been shown to be effective in reducing computational cost
in the context of drug discovery.[13, 14, 15] More details regarding surrogate models
can be found in section 2.3.
Querying the oracle according to predetermined strategies has previously yielded sig-
nificant reductions in amount of training required until the surrogate model achieves
satisfactory accuracy[16, 17]. Taken together, these strategies constitute an area of
ML called active learning. This will be further expanded upon in subsection 1.1.2.

1.1.1 Bayesian Optimization
Bayesian optimization is a strategy used to optimize objective functions, often when
the function is expensive or time consuming to evaluate.[18] It does this by building
a probabilistic model of the objective function and selects samples to evaluate the
true objective function.[19]
The true objective function is fixed and if the system has unlimited resources, it
could simply compute every single point of the objective function to know its actual
shape and thus receive perfect information. In reality, however, unlimited resources
do not exist, and therefore it can be beneficial to build a probability model instead
to act as a surrogate. Using the oracle to calculate a subset of the range of the ob-
jective function, the surrogate model is built to approximate the rest of the objective
function.
There are many different types of models; the ones used in this project are introduced
in section 2.3. To help reduce the amount of samples to be computed, the dataset
can be curated to improve accuracy while reducing dataset growth. One way to
curate the data is active learning.

2

1. Introduction

1.1.2 Active Learning
Active learning (AL) is a subfield of ML which explores different strategies to increase
the accuracy of a model using less data by ’intelligently’ picking data points to
augment the training data. The key question of AL is how to pick these data
points. AL is especially useful within fields where data is abundant but labelling is
expensive, since studies have shown that one can use AL to achieve equal accuracy
with fewer labelled data.[20] One example of a strategy is to, at every step, pick the
of points that the model is most uncertain about. These points are added to the
dataset to be trained on, and the cycle continues. [16]
The active learning loop contains four steps: Acquire, Query, Append and Train;
see Figure 1.1. Given a dataset of unlabelled data and a trained surrogate model, a
subset of the dataset is acquired according to a certain strategy, called an Acquisition
Function (AF). This subset is fed to an oracle, which labels it (this is sometimes
called querying the oracle) and then this pool of labelled data is appended to the
training pool. The model is then trained on this pool of labelled data and the cycle
is repeated.

Acquire Query

AppendTrain

acquired data

labelled data

pool of labelled data

predictions

Figure 1.1: Active learning loop. The model acquires points according to a chosen
strategy, it labels the acquired points and appends these labelled data to the training
pool. The model is trained and the cycle is repeated.

1.1.3 Molecular Generation Tool for Small Molecules
REINVENT is a tool for de novo design of small molecules. It is an application that
uses a generative model to create small molecules that can be used for discovering
new molecules to use in drug design.
REINVENT’s generative model uses a dataset from ChEMBL which is a database
consisting of bioactive molecules with drug like characteristics that has been manu-
ally curated.[21] This dataset is then set to create randomised simplified molecular-
input line-entry systems (SMILES) to train on.[9] SMILES is a form of line notation

3

1. Introduction

for describing a molecule using ASCII strings in order to easily analyse and store
them digitally.[22]
For every epoch in REINVENT, it samples a number of SMILES equal to the gen-
erational batch size (within REINVENT this is merely called the batch size but to
avoid confusion with the acquisition batch size, defined later in the text, it will be
labelled as the generational batch size here). The generational batch size used for
this project is 128. Sometimes the number of molecules returned by REINVENT is
less than the generational batch size; this can happen when REINVENT generates
invalid SMILES (meaning they cannot be transformed into a molecule) which are
then discarded.[6] The valid SMILES are then randomised during training.
The reason for the randomisation of the SMILES is that by randomising the com-
pounds’ multiple SMILES encodings, REINVENT “will likely learn the grammar
rather than memorizing specific strings or parts of them”.[6] The resulting model
shows improved generalization potential when compared with previous models and
produces SMILES strings with a validity above 99%.[9]
The generative model in REINVENT is built using a recurrent neural network
(RNN) model built on either Long Short-Term Memory (LSTM) or Gated Recurrent
Unit (GRU) layers.[23] This model generates SMILES strings sequentially using con-
ditional probabilities. Equation 1.1 contains the probability of generating a string
S, consisting of tokens s1, ..., sT .[24]

p(S) = p(s1)
T∏

t=2
p (st | st−1, . . . , s1) (1.1)

Take for example the SMILES string “N#N”, representing dinitrogen. The first
token has probability p(“N”) to be generated, after which the following tokens
have to be conditioned on the preceding tokens. The second token has probability
p(“#”|“N”) to be generated, and the final token has probability p(“N”|“N#”). Thus
the entire string is generated with probability p(“N”) · p(“#”|“N ′′) · p(“N”|“N#”).
In order to generate SMILES that represent molecules with desired properties, the
problem is framed as a partially observable Markov decision process, where the next
character to be generated is chosen by an agent based on the current state. In
reality, the agent is an RNN, which works in conjunction with another RNN termed
the prior. The prior was trained using maximum likelihood estimation to obtain a
policy for generation of molecules. [25]
In Equation 1.2, an augmented likelihood is defined as the sum of the prior likelihood
and σS(A), where σ is a scalar and S(A) is a scoring function which quantifies the
desirability of a sequence. [25]

log P (A)U = log P (A)prior + σS(A) (1.2)

From this G(A) is defined, which measures the agreement between the agent likeli-
hood log P (A)A and the augmented likelihood,

G(A) = − [log P (A)U − log P (A)A]2 . (1.3)

4

1. Introduction

In order to ensure an agent policy which agrees with the augmented likelihood as
well as possible, Equation 1.3 should be maximized. The loss J(Θ) used is defined
as

J(Θ) = −G. (1.4)

The scoring function S(A) itself contains multiple components, e.g. including slow
predictive models, and by version 3.0 of REINVENT also molecular docking.[26]
Molecular docking predicts favourable binding orientations between a molecule and
a target based on thermodynamic contributions. This can in turn be used to predict
the binding affinity between two molecules if implemented into a scoring function.[27]
The docking component of the scoring function is set up through Icolos, which is
a workflow manager that is used as a wrapper for computational chemistry tools
in REINVENT, including molecular docking.[26] Molecular docking is used to en-
courage REINVENT to generate SMILES with similar docking scores to known
inhibitors. The scoring function is the costliest part of the RL loop due to it con-
taining components that are computationally intensive.[6] This project will focus
on alleviating this computational cost by building an AL framework to act as a
surrogate for molecular docking.
When training generative ML models, a balance between two separate objectives
called exploration and exploitation is sought after. In the case of drug-like molecules,
exploration refers to generating molecules which are spread out in chemical space.
This is to encourage a more encompassing spread of molecules, as well as to discour-
age getting stuck in local optima. Exploitation, however, is then seen as generating
molecules with higher probability of being global optima, or a higher probability
of satisfying the MPO well. [28] Balancing these two goals is a difficult task. If
the model explores too much it will not hone in on promising molecules, and if the
model exploits too much it will get stuck in sub-optimal regions.
In order to discourage excessive exploitation, REINVENT is outfitted with diversity
filters. These filters can discourage the frequent generation of similar compounds by
penalizing the scoring function when the model has sampled from the same chemical
space too often.[6]

1.2 Purpose and Goal
The purpose of this project consists of investigating whether the machine learning
technique active learning can help mitigate the computational costs of querying
oracles for molecular design without negatively impacting accuracy. Our goal is to
devise an active learning framework that can mitigate the computational cost by
reducing the number of calls to an expensive oracle and instead use a surrogate
model to predict its output. In order to do so, different strategies for improving the
surrogate models are evaluated for how well they account for the sampling behavior
of the REINVENT generative model. How these are connected can be seen in
Figure 1.2.

5

1. Introduction

REINVENT

Acquisition Function

Oracle Model

acquired SMILES non-acquired SMILES

queried scores

new SMILES

predicted scoresqueried scores

Icolos

Figure 1.2: An overview of the surrounding architecture of the active learning
framework. The nodes in red are the components this project will focus on.

The results of this work will be beneficial to augment AI-driven molecular design
with potential to significantly increase accessibility and throughput to real-life drug
discovery tasks.

1.2.1 Objective
The project has three main objectives:

• Elucidate the best practices for using active learning to train surrogate models
in the context of generative models.

• Show that surrogate models can achieve sufficient performance to replace or-
acle calls, both with respect to time and error.

• Investigate the impact of acquisition function choice on the performance of the
surrogate models.

1.3 Demarcations
The project aims to investigate best practices to train surrogate models to predict
computationally expensive molecular descriptors via active learning. Application of
the findings will help mitigate computational costs of using generative models for
molecular design tasks.

6

1. Introduction

The project does not aim to improve the generative process per se, but to maintain
a sufficient level of accuracy. Thus, the project will make no changes to the core
architectures of REINVENT and Icolos.
The project will not investigate alternative machine learning methods for molecular
generation nor tune the hyperparameters of the surrogate models since the optimal
hyperparameters will differ greatly depending on the predetermined desired proper-
ties of the molecules.

1.4 Ethics and Societal Impacts
Within any research, and within medical research especially, considering the end
use (and potential abuse) of the result is of paramount importance. It is crucial
to always have in mind where the research might lead, and to be conscious of how
scientists shape and interpret the data both given and generated.

1.4.1 The Good
What happens if the best case scenario presents itself; a more cost effective way to
discover new molecules for drug discovery is successfully built?
There are many answers to this question, depending on levels of optimism. Creating
new drugs to take to market is for many reasons an incredibly expensive process.
Taking a new drug to market from pre-clinical phases requires a minimum time
frame of 10-12 years and over 2 billion dollars in resources.[1][29]
To add to that, the success rates for drugs entering Phase I clinical trials have
approximately 10% chance of gaining FDA approval for the desired indication, with
similar or sometimes worse rates within the EU market.[30]
However, the time and resources necessary for proper clinical trials are not inherently
something one might wish to change. Rigorous trials to prove safety and efficacy
of a new compound is a safeguard for the end-user and a way to uphold the stan-
dards of modern medicine. However, since the trial process is so time consuming
and expensive, making the actual drug discovery process faster is of even greater
importance.
If this work enables more efficient drug discovery then this can lead to better treat-
ments and therapies for people who need it and maybe even the development of
cures to illnesses that have so far eluded modern medicine. Finding new solutions to
old problems is also of value for many. To find a cheaper way of treating an illness
might save as many lives as finding a treatment to a previously untreatable illness.

1.4.2 The Bad
The bad outcome that runs the highest risk of coming to fruition with this kind of
exploratory project is for the result to not be useable. If the generated data turns
out to not be a good representation of real data, for example, then the analysis is

7

1. Introduction

of no use to anyone. This is also true if it turns out that the implementation of the
the models or acquisition functions are incorrect.
What would not be an entirely useless but maybe slightly disappointing outcome
would be if it was discovered that there was next to no difference between our
different models and acquisition functions. If such a conclusion is made, however,
that will at least tell future researchers where not to look in terms of building a
more efficient system for drug discovery.

1.4.3 The Ugly
The section name here refers to if the project is successful in its goal and has created
a way to make the drug discovery process more cost efficient, but the tools created
are being used with “ugly” intentions. This dilemma is often called the dual-use
dilemma. The dual-use dilemma refers to the dual nature of, for example, efficient
drug discovery. It can bring immense good to many people by discovering drugs
that can help to mitigate, alleviate and possibly even cure illness. However, it can
also be used to discover molecules that can do massive harm in unspeakably efficient
ways. [31]
In 2022, The Swiss Federal Institute for Nuclear, Biological and Chemical Protec-
tion set up a conference to identify developments in chemistry, biology and enabling
technologies that may have implications for the Chemical and Biological Weapons
Conventions.[32] At this conference a company used its own artificial intelligence
network, built for toxicity prediction, to explore how AI could be used to design
toxic molecules. What began as a thought exercise ultimately evolved into a com-
putational proof of concept for making biochemical weapons.[33]
Within 6 hours of running their newly optimised network they generated over 40 000
compounds within their own threshold for human toxicity. In addition, many known
chemical warfare agents were identified through visual confirmation with structures
in public chemistry databases. Many new molecules were also designed which were
predicted to be more toxic than publicly known chemical warfare agents.[33]
This is not a problem this project is in any way equipped to solve or even handle.
However, it is important to keep these perspectives in mind when making exploratory
research and be conscious of the nefarious scenarios the research might lead to as
well as the good ones.

8

2
Method

This chapter goes through both the theory and implementation of the project and de-
tails the data used in the retrospective analytical runs. Further, it goes through the
acquisition functions and surrogate models used in the comparative study. Pseudo
code snippets are shown to give the reader insight into the programming structure,
when appropriate.

2.1 Overview of Project
The goal of this project was to create an active learning framework and evaluate if
this could be used to replace a portion of the expensive oracle calls used in molecular
docking. The active learning framework consists of two parts: a model to train and
an acquisition function to acquire points to add to the training data. As can be seen
in 2.1, REINVENT generates new SMILES. These are fed through the acquisition
function which acquires a subset of the SMILES that it thinks are most important
to train on. These are then sent to the oracle, the acquired SMILES’s docking scores
are calculated and then sent to the model.
The next step is the model then uses these acquired SMILES where the docking
score is known to train on and from this data it tries to predict what the docking
scores of the rest of the non-acquired SMILES should be. Then both the queried
scores and the predicted ones are fed back into REINVENT and the cycle should
start again.
In a real use-case the queried and predicted scores would be fed back into REIN-
VENT where its own generative model would use this data to better generate the
new batch of SMILES. However, the experiments for this project were made using
a retrospective pregenerated dataset, so the output does not affect REINVENT’s
molecule generation for this study.

9

2. Method

Acquisition Function

Oracle Model

new SMILES

queried scores predicted scores

acquired SMILES non-acquired SMILES

queried scores

Figure 2.1: Overview of the implemented active learning with the surrogate model.
REINVENT generates new SMILES, the AF takes in and samples the SMILES. It
acquires points based on a specific strategy and queries the oracle for the score
of these SMILES. The surrogate model then acquires new sampled SMILES every
epoch based on the selection of the acquisition function and uses these points to
predict the score of the non-acquired SMILES. The labelled scores and of those
predicted by the model are then fed back into REINVENT.

In this project, two models and eight acquisition functions were evaluated based on
their accuracy and time consumption. The focus is mainly on time consumption as
the goal is not to optimize the framework but to make it faster. As long as the error
rate is within acceptable bounds, time consumption is the more important metric.
The main code loop used in this project can be seen in Algorithm 1.
First, initial pooling is done: for the first n epochs, where n is the parameter initial
pooling, data is read from an input file (the input is molecules in the SMILES
format), and every point is labelled and added to the labelled pool. The model is
then fit on the pool of acquired data.
For every subsequent epoch, a fraction of the input data is collected and a model
prediction is made for the rest. The data points are acquired based on the chosen
acquisition function and then labelled by querying the oracle. This labelled data
is then added to the pool of labelled data, so for every epoch the pool of labelled
data grows. Then, if the amount of epochs since last training is equal to the retrain
parameter, the model is trained on the data; the end of the loop iteration has then
been reached.

10

2. Method

Algorithm 1: Main loop
for epoch in range(1 to n): # n is initial pooling

data ← collect data # read from file or directly from REINVENT
extend pool with data

fit model on pool
for epoch in range(n to final epoch): # n is initial pooling

data ← collect data # read from file or directly from REINVENT
pred ← model predictions for data
acquire datapoints from data according to AF
query oracle to label acquired data
extend pool with added labelled data
if epoch number mod m = 0 : # m is the retrain parameter

fit model on pool
calculate errors between labelled and predicted scores

2.2 Creation of Dataset
While running the surrogate model during a prospective REINVENT run would give
a more accurate representation of the behavior of our framework, doing so during
development would amount to introducing expensive computational overhead at a
time where the positive effects of doing so are uncertain. Instead a retrospective
analysis was done, the results from which can be found in chapter 3.
To create the data, REINVENT was run using the parameters seen in Table 2.1.
The scoring function was made using a weighted geometric average containing dock-
ing, quantitative estimate of drug likeness [34], molecular weight and number of
hydrogen-bond donors. For docking, the target protein was COX2, using a protein
database structure of 1CX2. Molecular weight is enforced to be in the range 200
to 550, while the number of hydrogen-bond donors is enforced to the range 0 to 7.
These are then transformed into the [0,1] range using a reverse sigmoid transforma-
tion. The diversity filter used was IdenticalMurckoScaffold, with a bucket size of
25.
The reason behind using these other oracles within the scoring function besides
molecular docking, the one of interest, is to ensure that the retrospective analysis
more resembles an actual use case. A danger with only using docking would be
that the REINVENT agent might generate molecules which dock well but are not
biologically relevant. In other words, the other objectives help ensure biological
relevance when generating molecules.

11

2. Method

Parameter Value
Epochs 1000
σ 128
Learning rate 0.0001
Generational batch size 128
Diversity filter IdenticalMurckoScaffold, bucket

size 25
Scoring function Custom product with Icolos

(docking), QED, molecular
weight and number of hydrogen-
bond donors.

Table 2.1: Parameters used in REINVENT to generate the datasets used. The
parameter σ is a coefficient that controls the impact of the scoring compared to the
prior likelihood (see [25] for more details). The scoring function is a custom product
containing docking, QED (quantitative estimate of drug likness, see [34]), molecular
weight (enforced to within 200-550) and number of hydrogen-bond donors (enforced
to within 0-7). The diversity filter used was IdenticalMurckoScaffold with a bucket
size of 25.

An additional part of the scoring function is the score transformation. The score
transformation used when creating the three retrospective datasets entails that er-
rors have different impacts not only depending on their size but also where the scores
in question are located.
Score transformations are typically used to ensure that the scores are more uniform
in order to not weight different scoring functions unduly, when working with MPOs.
They can also weight different parts of the input space for the objectives. See for
example Figure 2.2, which visualizes the score transformation used here.

12

2. Method

Figure 2.2: The score transformation used when creating the datasets used, a
reverse sigmoid. Due to the steepness in the middle, an error close to -10 would
entail a larger difference in score, i.e. it penalizes errors close to the midpoint.

Note that for this transformation, errors close to the mid point are penalized heavier
than errors closer to the edges. As such, the definition of what an acceptable error
size is not a question that can be answered definitively, as it depends on the location
of the scores, both predicted and ground truth.
The dataset was created in batches of 128 molecules encoded in the form of SMILES,
although sometimes some were excluded as a result of the diversity filter, and their
corresponding docking scores. The docking scores are negative numbers where a
lower score is better (i.e. the further away from zero a score is, the better). If a
molecule did not dock at all, it was assigned a docking score of 0. In pursuit of
reproducibility, three separate runs were done to create three replicate datasets.

2.3 Surrogate Models
Two models which have been shown to work well for similar problems are Random
Forest (RF) and Support Vector Regression (SVR).[12, 35]
There are a selection of different hyperparameters to tune for each model, however
this will be outside the scope of this investigation as this project is not primarily
looking to build the most accurate model to predict docking scores. It is rather aim-
ing to train a sufficiently accurate model, that can be used for any protein receptor,
in which the optimal hyperparameters would likely vary. This leads to a combi-
natorial explosion of possible hyperparameters and since the aim is to introduce a

13

2. Method

general method of using active learning for prospective generative model runs this
is not desirable.

2.3.1 Random Forest
An RF model is an ensemble method utilizing decision trees. A decision tree is
a linear partitioning of input space; for a given point, the tree repeatedly checks
whether the point is lesser or greater than different lines. This process is often visu-
alized as a binary tree, where at each branch such a comparison is made. The leaves
correspond to different decisions, typically either classification or regression.[36]

Figure 2.3: Image visualising the difference between an ordinary decision tree an
RF model.[37]

A random forest is an ensemble of decision trees with randomly selected features
to be considered, a visualisation of this can be seen in figure 2.3. Mathematically,
given a dataset containing p features, m < p random features are selected to be
considered at every branch, and the input space is partitioned into two subspaces
using hyperplanes parallel to an axis. The trees then make a decision by committee.
For the case of regression, which will be used here, the final decision of the random
forest is the mean of the decisions made by the trees. This has the added benefit of
preventing overfitting as it is an ensemble method because of the random partitioning
of features.[36]
The forest as a collection of trees is used to calculate the standard deviation for
a score. What this means is that every separate tree is used to predict scores for
every molecule and then the different scores for a molecule is used to generate its
standard deviation. Thus, if a forest containing 100 trees is used, every molecule has
100 different predicted scores which are used to calculate the standard deviation.

14

2. Method

2.3.2 Support Vector Regression
A support-vector machine (SVM) is a machine learning model traditionally used
in classification tasks that tries to classify data by finding hyperplanes that divides
the data into classes. It then classifies the new point depending on whether it
lies on the positive or negative side of the hyperplane depending on the classes to
predict. Support Vector Regression (SVR) uses the same tactic as the SVM, but for
regression problems.[38]
In most linear regression models, the objective is to minimize the sum of squared
errors. However, there are problems where the interest does not lie in reducing the
error as much as possible but rather to stay within a certain range. This is true for
the problem this project wishes to solve as the goal is to minimize computational
cost while staying within acceptable error rates.
Here is where SVR can be of use, as it uses a decision boundary to define the
acceptable error and find an appropriate hyperplane to fit the data. As opposed to
trying to minimize the sum of squared errors, the objective function of SVR is to
minimize the l2-norm of the coefficient vector, w.[39]
In SVR the absolute error is set to less than or equal to a specific margin called
the maximum error, ε. The objective function and its constraints are constructed
thusly:

Minimize: 1
2 ||w||

2

Constraints: |yi − wixi| ≤ ε,

where xi and yi represent input data and score, respectively. A visualization of an
SVR can be seen in Figure 2.4.

15

2. Method

ε

wixi

wixi+ ε

wixi− ε

Figure 2.4: A simple example showing the decision boundaries defined by the
maximum error, ε.

Calculating standard variation for SVR is problematic. SVR is a deterministic
method, and thus ensemble methods do not work. Several of the AFs are thus not
possible to implement; these AFs will not be included when running the experiments
with SVR.

2.4 Acquisition Functions
A key step of bayesian optimization is which acquisition function to use. The role
of this acquisition function is to decide which data point to query, i.e. which data
point is to be labelled next. Depending on the strategy, the AF can be more or less
exploratory or exploitative. For example, the Greedy acquisition function which
samples only the best scoring points is very exploitative. Random, on the other
hand, which samples points randomly, is very exploratory.[16]
Worth nothing here is that the EI, PI and TS acquisition functions assumes that the
standard deviation derived from the surrogate model follows a normal distribution.
If the data follows a different distribution other functions are needed.
The standard deviation is needed for a measure of uncertainty for some acquisition
functions. This is done in different ways depending on the model being used. No-
tably, SVR does not lend itself well to calculating standard deviation and as such
the acquisition functions that require it are not used for this model.
For a mathematical overview of the functions used for each AF, see table 2.2. In

16

2. Method

essence, for a list of molecules x, a corresponding score list y(x) is calculated accord-
ing to the second column. The top scores in y(x) are then selected to be acquired.

Acquisition function Score

Random y(x) ∼ uniform(0, 1)

ε−Greedy y(x)

∼ uniform(0, 1) with probability ε

= µ(x) otherwise.

Tanimoto y(x) = − 1
n

n∑
i=1

T (x, xi)

PI y(x) = Φ(ζ(x))

EI y(x) = γ(x)Φ (ζ(x)) + σ(x)ϕ (ζ(x))

TS y(x) ∼ normal (µ(x), σ2(x))

UCB y(x) = µ(x) + βσ(x)

Table 2.2: Acquisition functions and their corresponding ways of calculating the
scores. For a given list of molecules, the score y is found using the above, and
the top results are acquired by the acquisition function. The functions ϕ and Φ
are the probability density function and the cumulative distribution function for
the standard normal distribution. Here, µ(x) is the mean of x, i.e. the prediction
given by the surrogate model, σ(x) is the standard deviation and y∗ is the current

optimum found. For brevity, we define γ(x) = µ − y∗ + ξ and ζ(x) = γ(x)
σ(x) . The

parameters used in these experiments were β = 2 and ξ = 0.01. For Tanimoto,
xi are the molecules already in the pool, and T (x, xi) is the Tanimoto Similarity
between the molecules x and xi.

2.4.1 Random
The random AF consists of picking points at random. The implementation is pre-
dictably simple, merely randomly shuffling the points and acquiring the first points
equal to the acquisition batch.
The random AF is used as a baseline and to see if the AFs have a positive impact
compared to a random selection.

2.4.2 Greedy and ε-Greedy
The greedy strategy uses the surrogate model to predict a score for all new molecules
and picks the best performing ones; in our case it picks the points which are predicted
to dock best. Greedy is a highly exploitative algorithm, focusing entirely on what
the model already knows.[16]
To acquire the best scoring points, the data is predicted and sorted by the docking
score. Then the n best scoring points are sampled, where n is the acquisition batch

17

2. Method

size.
ε-Greedy is very similar to Greedy, but with the addition of a probability, ε, that
random acquisition is used instead. This is one way to encourage exploration in an
otherwise exploitation-heavy AF.[40]

2.4.3 Probability of Improvement
The first acquisition function designed for Bayesian optimization was Probability of
Improvement (PI).[16] This function is sometimes called the ”P-algorithm” and was
pioneered in the 60s by H.J Kushner [41]. The function itself can be seen in table
2.2. A factor to note with PI is that it is very exploitative since points that high
probability of being even the tiniest bit better will be prioritised over points with a
lower probability of a much larger gain.[42]
To mitigate this, a trade-off parameter value ξ is added so that the improvement
must be at least larger than ξ to be sampled. This is in order to encourage more
exploration and the higher the ξ the more the function will explore. This project
uses a ξ = 0.01, based on promising results from previous studies[12][42].

2.4.4 Expected Improvement
The Expected Improvement (EI) acquisition function uses not only the probabil-
ity of the improvement but takes the magnitude of the improvement into account
as well.[42, 43] With EI, the goal is to minimize the expected deviation from f ∗

when choosing a new point to sample. This can be seen mathematically in table
2.2. The expectation of the improvement function is to strike a better balance be-
tween exploitation and exploration than PI does. Meaning, it is built to be more
exploratory.

2.4.5 Thompson Sampling
Thompson sampling has previously been shown to have strong empirical perfor-
mance and been applied to several different domains with great success, for example
recommendation systems and revenue management. [44]
Practically, to utilize Thompson sampling in this particular domain, every potential
molecule is assigned a normal distribution which is then sampled from. If yi is
the score of molecule i, µi is the molecules mean prediction and σi is its standard
deviation, it is assumed that yi ∼ normal(µi, σ2

i), and such yi are sampled. The
molecules with highest sampled yi are then acquired. The function for this is also
shown in table 2.2.

2.4.6 Upper Confidence Bound
Upper Confidence Bound (UCB) selects the points based on uncertainty and is
formulated as a linear combination between the surrogate models mean prediction
and standard deviation; UCB is sometimes referred to as an optimistic strategy. [28]

18

2. Method

The UCB balances exploration and exploitation through the hyperparameter β, as
illustrated in table 2.2. If β is increased, the points selected will be of an exploratory
nature, and if it is decreased the function will shift more towards an exploitative
nature. The implementation for this project will be using a fixed value of β = 2,
since that has shown promising results in previous studies [12] but others sample β
from a gamma distribution [28] to optimize the exploration/exploitation trade-off.

2.4.7 Fingerprint Tanimoto Similarity
Fingerprint Tanimoto Similarity selects the points based on possessing low Tanimoto
similarities of the molecular fingerprints to the current training data.[45] We will for
convenience refer to the Fingerprint Tanimoto Similarity acquisition function as the
Tanimoto acquisition function henceforth.
Molecular fingerprints are a way of uniquely encoding the structure of a molecule.
This encoding can then be used to determine the similarity of molecules in order
to for example find a match for a query substructure. The most common type of
fingerprint for small molecules are Morgan fingerprints, which is a type of Extended
Connectivity Fingerprints (ECFP).[46] This is also the ones used for this project.
In short, given a list of potential molecules to acquire and a list of molecules that
has already been acquired, the Tanimoto AF does pairwise comparison between ev-
ery potential molecule and every already acquired molecule. The similarities are
averaged per molecule in the list of molecules to acquire, resulting in a scalar per
potential molecule which measures the average Tanimoto similarity of that molecule
compared to the pool. The lowest similarities are then acquired, to encourage selec-
tion of molecules which are dissimilar to the pooled data.

2.5 Parameters
In order to speed up the computation or increase accuracy, four tuning parameters
were implemented. The first, warm-up, handles how many epochs are submitted
entirely to the oracle function until the surrogate model is activated. The reasoning
behind this parameter stems from the fact that in the beginning of a REINVENT
run, the molecules typically do not satisfy the scoring function, e.g. do not dock
well.[6] This leads to REINVENT likely exploring more during these initial epochs.
In order to avoid a negative impact of this phase on the surrogate model, we hy-
pothesise that warm-up can be used to skip past it and to start acquiring at a time
where molecules are more likely to be relevant to the desired objective.
The second, retrain, handles how many epochs to go between each update of the
surrogate model; a retraining parameter of 1 equates to training the surrogate model
every epoch. As training the surrogate model is time-intensive, a larger interval
between each retrain will lessen the overall time of a run. However, retraining
cannot be skipped entirely, and so a set of intermediate values are evaluated.
Additionally, a third parameter was introduced to generate a sufficient initial train-
ing set so that an effective surrogate model can be trained, especially during the
earlier epochs. This parameter controls the number of epochs where initial pooling

19

2. Method

is done; this simply means that every data point is acquired instead of a smaller
fraction of them. As some models require large amounts of data, the theory is that
this parameter will decrease the initial error.
The fourth parameter, acquisition batch (AB), controls how many points are to be
acquired at each step. A larger AB leads to a greater pool of data for the surrogate
model to train on, which leads to a greater predictive performance. However, due
to said growth of the pool, the training takes longer.

20

3
Results

This section covers the findings of the comparative retrospective study. Firstly, an
experiment was run comparing the models with their respective available acquisition
functions in order to find the best use case. A model and acquisition function was
then selected and with these followed parameter tuning experiments with differing
values of initial pooling, retrain interval, acquisition batch size, and warm-up phase.
In these experiments, the model predicted docking score for the molecules generated
during the current epoch, and the predicted docking scores were compared to the
ground truth which is the docking score derived from the oracle. The metrics used
were root mean square error (RMSE) and time consumption per epoch.
For ease of comparison, the docking scores are negative numbers, in the case of the
specific docking target used in these experiments, commonly in the range -5 to -10,
where a lower score is better, and molecules that did not dock were given a docking
score of 0.
In order to ensure reproducibility, all of the runs were done in triplicate; there
were three separate datasets created, and every run was done separately on each of
them. The intention was to reduce interference from stochasticity and, when time
was investigated, to reduce the impact of practicalities which are not of interest,
e.g. impact from other processes running on the same computer. The results are
averaged. Any shading in a figure shows the maximum and minimum values, which
is taken to represent the variation in the runs.
A selection has been made as to which results are shown, especially when investi-
gating which model and AF to use. For graphs showing more raw (and complete)
data, see Appendix A.

3.1 Selection of Model and Acquisition Function
The models to be evaluated are RF and SVR. Since only the performance of the
models were of interest in this part of the study, other parameters were the same
between both models. This was done with the default parameters seen in table 3.1.

21

3. Results

Default Parameters for Model Comparison
Acquisition Batch Size 40
Warm-up 200
Initial Pooling 5
Retrain 5
Number of Epochs 1000

Table 3.1: Default parameters for each surrogate model.

However, some factors could not be kept identical between models. Due to differ-
ences in implementation mentioned in subsection 2.3.2, SVR is incompatible with
the AFs using standard deviation. Due to this, SVR was evaluated with four ac-
quisition functions: Random, Greedy, ε-Greedy and Tanimoto Similarity. RF was
implemented using eight acquisition functions: Random, Greedy, ε-Greedy, Tani-
moto, EI, PI, UCB and TS.
In Figure 3.1 and 3.2, rolling averages of RMSE for RF and SVR, respectively,
are shown. The combination of model and AF that achieves the minimum rolling
average RMSE is SVR and Tanimoto Similarity, with the minimum rolling average
RMSE 1.55 kcal/mol. Note that in both models the Random AF is among the
best performing, with comparable error to the Tanimoto Similarity for SVR. The
Random AF is thus picked for both models to enable a model-centric comparison;
see Figure 3.3, which shows the rolling average RMSE for the Random AF between
the two models. SVR has smaller errors overall, but the difference between the
models is smaller than the internal variation.

22

3. Results

200 300 400 500 600 700 800 900 1000
Epoch

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Er
ro

r [
kc

al
/m

ol
]

Rolling average of 10 for RMSE for model RF
Random
Greedy
-Greedy

PI
EI
Thompson Sampling
UCB
Tanimoto Similarity

Figure 3.1: Rolling average of RMSE for RF and all AFs. There is a cluster of AFs
in the bottom, consisting of Random, Greedy, ε-Greedy, EI, Thompson Sampling
and Tanimoto Similarity.

23

3. Results

200 300 400 500 600 700 800 900 1000
Epoch

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Er
ro

r [
kc

al
/m

ol
]

Rolling average of 10 for RMSE for model SVR
Random
Greedy
-Greedy

Tanimoto Similarity

Figure 3.2: Rolling average of RMSE for SVR and all AFs. The four AFs cluster
entirely in the second half, while a small distinction occurs between two pairs of
AFs in the first 300 epochs. The pair with lower error is Random and Tanimoto
Similarity, while the pair with higher error is Greedy and ε-Greedy.

24

3. Results

200 300 400 500 600 700 800 900 1000
Epoch

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Er
ro

r [
kc

al
/m

ol
]

Rolling average of 10 for RMSE for Random acquisition
Random Forest
Support Vector Regression

Figure 3.3: Comparison of the rolling average of the RMSE for RF and SVR using
the Random AF. The errors are similar between the models; there is more internal
variation than there is variation between them.

However, the difference in amount of time the surrogate model training take help
distinguish between them. Figure 3.4 shows this difference. More specifically it
is the difference in cumulative runtime, i.e. how much longer an SVR run took
compared to an RF run. In fact, it is a comparison between the quickest run (which
was using the Random AF) for SVR and the slowest run (which was using the UCB
AF) for RF. At best, SVR takes 120 hours longer than RF. Figure 3.5 shows the
amount of time taken by RF. As such, the extra amount of time taken by SVR is a
factor 10 larger than the overall time taken by RF.

25

3. Results

200 300 400 500 600 700 800 900 1000
Epoch

0

20

40

60

80

100

120

140

160

Ti
m

e
[h

]
Difference in cumulative time for SVR compared to RF

Figure 3.4: The difference in cumulative run times for SVR and RF. The specific
runs chosen are the ones with the least difference, i.e. the quickest SVR run and
the slowest RF run. These were using the Random AF for SVR and the UCB AF
for RF. The minimum and maximum over three replicates is shown as the shaded
area around the curve.

26

3. Results

200 300 400 500 600 700 800 900 1000
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
[h

]
Cumulative time for model RF

Random
Greedy
-greedy

PI
EI
Thompson Sampling
UCB
Tanimoto Similarity

Figure 3.5: Cumulative run times for the different AFs used with RF. Notice the
two groups of AFs. The quicker group contains Random, Greedy, ε-greedy and
Tanimoto Similarity. The slower group contains PI, EI, Thompson Sampling and
UCB. The salient difference between these groups is that the slower group contains
the AFs that require the calculation of standard deviation.

As such, the decision was to continue using the RF model for any further experi-
ments.
In order to prevent a combinatorial explosion in amount of experiments when further
investigating the differences in errors and run times between different parameter
combinations, four AFs were chosen based on the results in Figure 3.1. The final
decision, based on the results shown in Figures 3.1 and 3.5, was to use Random,
ε-greedy, Thompson Sampling and Tanimoto Similarity.

3.2 Selection of Tuning Parameters
In this section the chosen model and acquisition function is evaluated for the param-
eters mentioned in section 2.5. The plots show the difference, ∆, between the RMSE
for each respective comparison parameter value, ec, when compared to the default
value, ed, and for the difference between time used per epoch for the comparison
and the default value, tc and td.

ec−ed = ∆e

tc−td = ∆t

27

3. Results

For the RMSE plots, a negative value means that default value, ed, is worse than the
comparison value, ec, since it means that the ec is smaller than the default value and
therefore has a smaller RMSE error. A positive value for the RMSE plots means
that ed performs better than the compared value. A value close to zero means that
there is close to no difference. Similarly, the difference between td and tc is visualized
with a negative value being a shorter time and a positive value being a longer time.
The values shown for the time per epoch are the averages over the entire run, so an
average difference in error of 1 means that on average, the comparison value ec is
one higher than default value ed for the same epoch, and a difference in time of 1
means that on average, the comparison run took one second longer per epoch.
For further visualisations of all parameter tuning runs, see Appendix B.

3.2.1 Initial Pooling
The initial pooling parameter was introduced to generate a sufficient initial training
set so that an effective surrogate model can be trained, especially during the earlier
epochs. This parameter controls the number of epochs where initial pooling is done;
this simply means that every data point is acquired instead of a smaller fraction of
them. As some models require large amounts of data, the hope was that a higher
initial pooling parameter will decrease the initial error without adversely affecting
the time.

3.2.1.1 RMSE

For the Random and Tanimoto AF there seems to be an initial decreased error for
the first 300 epochs. After this initial decrease, the difference between the initial
pooling values evens out. However, looking at the magnitude of the error difference,
it is apparent that the error decrease for both the Random and Tanimoto AF is not
big enough to justify labelling it an improvement.
For the ε-Greedy and the TS AF, the initial error does not decrease at all for neither
initial pooling 10 or 15.

3.2.1.2 Time per Epoch

For the cumulative time study there are varying results across the AFs. For the Ran-
dom AF, a shorter initial pooling seems to correlate with a lesser time consumption.
For ε-Greedy, the initial pooling of 10 seems to be faster than the default initial
pooling of 5 but the trend does not hold with the 15 initial pooling being slower. To
reiterate, a 10 epoch initial pooling is faster than 5 epoch initial pooling but a 15
initial pooling is slower than both.
For the TS AF both the initial pooling of 10 and 15 epochs is faster than the default
parameter of 5. The 15 epoch initial pooling does however flatten out while the
difference for 10 initial pooling keeps growing.
For the Tanimoto AF the initial pooling of 15 is slower but the initial pooling of 10
is once again faster than the default value of 5 epoch initial pooling.

28

3. Results

To summarise, some counter intuitive results since the expected behavior would
be that for a larger initial pool the time per epoch would grow. More on this in
chapter 4.

3.2.2 Warm-up Phase
The warm-up parameter handles how many epochs the oracle will be queried for
all the points before the surrogate model is activated. The reasoning behind this
parameter is that REINVENT will initially be more exploratory and therefore not
find many molecules that dock well, so it might be more helpful to start acquiring
points at a time where the molecules generated by REINVENT are more relevant
to the objective.

3.2.2.1 RMSE

The default parameter of 200 warm-up consistently performs better across all AFs.
The magnitude, however, differs between AFs with TS having the largest difference
and Random having the smallest.

3.2.2.2 Time per Epoch

The time per epoch consistently shows that having a warm-up of 200 epochs is
faster compared to a warm-up of 0, due to the fact that the 200 warm-up contains
fewer datapoints to train on. There are however differences in intensity between
AFs with the ε-Greedy AF having the largest average difference and TS AF having
the smallest.
One aspect of the warm-up parameter that is not reflected in the results below is
that although a warm-up of 0 leads to longer average time per epoch, there is also a
gain in time from not querying the oracle for every molecule. As such, the full run
times have been estimated according to Equation 3.1, resulting in Table 3.2.

Test = toracle · nwarm-up + toracle · (nfull − nwarm-up) · nAB

nGB
+ TAL

≈ 182 · nwarm-up + 182 · (1000− nwarm-up) · 13 + TAL

(3.1)

Here, nGB is the amount of molecules generated, nAB is the number of acquired
moleculs (the acquisition batch) and toracle is the average time per epoch for the
oracle. In the creation of this data, toracle = 182 s. In reality, the fraction between
acquired molecules and generated molecules varies depending on how many SMILES
strings are deemed invalid. It is approximated with 1/3 (≈ 40/128), as typically
only a few molecules are deemed invalid. TAL is the time that the AL framework
took, i.e. the times reported by the program itself.
For convenience, the estimated full run times of the AL framework are also listed in
the table, and the times have been converted to hours.

29

3. Results

Warm-up Random ε-greedy TS Tanimoto

Only AL (TAL) 0 5.59 6.34 17.11 6.17
200 3.45 3.85 13.07 4.12

Estimated (Test)
0 22.45 23.20 33.96 23.02

200 27.04 27.44 36.66 27.71

Table 3.2: Estimated full run times of the warm-up experiments. “Only AL”
refers to the time the programs were run, while “Estimated” refers to the estimate
described in Equation 3.1. The times have been converted to hours.

3.2.3 Retrain Interval
The retrain parameter handles the interval of each update of the surrogate model; a
retraining parameter of 1 equates to training the surrogate model every epoch. As
training the surrogate model is time-intensive, a higher value of retrain will likely
lessen the overall time of a run.

3.2.3.1 RMSE

The difference for both 10, 15 and 20 retrain intervals fluctuate around 0, showing
very little effect on the RMSE initially or over more epochs across all AFs. For the
Tanimoto AF the difference is consistently positive, meaning the default parameter
of 5 attains a lower RMSE. The difference, however, is very small and not likely to
have any effect.

3.2.3.2 Time per Epoch

The time consumption is consistently lower for longer intervals of retrain across all
AFs except for the TS AF where the behavior deviates from the trend of the other
AFs. The retrain interval of 20 seems to be the slowest and the retrain interval of
15 the fastest, as can be seen in Figure 3.6.

30

3. Results

200 300 400 500 600 700 800 900 1000
Epoch

−8000

−6000

−4000

−2000

0

2000

Di
ffe

re
nc

e
in
 ti
m
e
[
]

Difference in cumulative time compared to Retrain 5 for Thomp on Sampling

Retrain 10
Retrain 15
Retrain 20

Figure 3.6: Comparison parameters for retrain of 10, 15 and 20 compared with
the default parameter of 5 for the TS AF. Here one can see that for a larger interval
between retrains, the model actually gets slower.

3.2.4 Acquisition Batch Size
The AB controls how many points are to be acquired each epoch. A larger AB leads
to a greater pool of data for the surrogate model to train on, which should lead to
a more accurate predictive performance. However, a larger acquisition batch also
means more oracle calls, the avoidance of which is the entire purpose of this project.

3.2.4.1 RMSE

An AB of 20 consistently performs worse than the default AB of 40. A larger AB
of 60 produces a smaller average error in both the Random and the Tanimoto AF,
but the difference is very small and it performs worse than the default for both the
ε-Greedy and the TS AF.

3.2.4.2 Time per Epoch

A larger AB of 60 consistently takes longer to run across all AFs and the smaller
AF of 20 is faster for all AFs except for the TS AF where it was faster than an AB
of 40.

3.2.5 Summary of Results
Table 3.3 shows the averages of each comparison made against the default param-
eter for RMSE and for time per epoch. To reiterate, a negative value means that

31

3. Results

comparison value, ec, performs better than the default value, ed, since it means that
the ec is smaller than the default value and therefore has a smaller RMSE error.
Similarly, the difference between td and tc is visualized with a negative value being
a shorter time for the comparison value and a positive value being a longer time for
the comparison value.

parameter ec
RMSE Average Difference per AF
Random ε-greedy TS Tanimoto

initial pooling 10 -0.000 -0.001 -0.002 -0.004
15 0.002 0.015 0.018 -0.004

Warm-up 0 0.048 0.114 0.167 0.088
retrain 10 0.001 0.005 -0.002 0.004

15 -0.004 0.005 0.010 0.008
20 0.017 0.005 0.024 0.012

AB 20 0.033 0.030 0.153 0.094
60 -0.022 0.043 0.008 -0.069

parameter tc
Time Average Difference per AF

Random ε-greedy TS Tanimoto
initial pooling 10 1.816 -1.672 -5.962 -1.366

15 1.787 1.741 -0.490 -0.014
Warm-up 0 8.471 9.926 6.306 8.008

retrain 10 -6.572 -8.255 -3.481 -9.621
15 -8.975 -10.166 -9.939 -12.218
20 -10.757 -12.886 3.017 -12.835

AB 20 -6.376 -7.595 -3.050 -8.976
60 10.961 10.210 9.266 7.327

Table 3.3: Table showing the average difference for all parameters across all AFs
for the full 800 or 1000 epochs, depending on the tuning parameter. The errors are
in kcal/mol, and the times are in seconds.

For the RMSE comparison, the average difference across all AFs for all parameters
is very small, with the largest difference being 0.167 kcal/mol for a warm-up of 0
instead of 200 for the TS AF, meaning that for a warm-up of 200 there is a decrease
of the RMSE by an average of 0.167 kcal/mol every epoch.
For the time per epoch comparison, there are larger differences across the tuning
parameters and AFs. The retrain parameter has the largest impact on time per
epoch, with a larger retrain interval correlating with a shorter time consumption.
There is an outlier for the TS AF for the retrain interval of 20, which takes longer
when the trend shows it should be faster. This will be discussed in chapter 4.

32

3. Results

Average time per epoch per AF
Run Random ε-greedy TS Tanimoto

Standard 15.6 17.4 59.2 18.7
AB 20 9.3 9.8 56.1 9.7

60 26.6 27.6 68.4 26.0
Warm-up 0 20.2 22.9 61.9 22.3

Initial pooling 10 17.5 15.8 53.3 17.4
15 17.6 19.4 58.9 18.9

Retrain 10 9.1 9.2 55.7 9.1
15 6.7 7.2 49.2 6.4
20 4.9 4.5 62.2 5.8

Table 3.4: Average times per epoch of the different runs. The times are given in
seconds.

33

4
Conclusion

This project concludes that out of the evaluated combinations of surrogate model
and AF, the RF surrogate model paired with the Random AF performed the best
with regards to time per epoch and acceptable error. It reached a minimum RMSE
of 1.796294 within 1000 epochs and took approximately 3.5 hours to finish. There
were combinations which performed better if only RMSE is regarded, but with a
substantial time increase involved, e.g. SVR with Tanimoto which had a minimum
RMSE of 1.553680 but a run time of approximately 152 hours.
It is worth noting that these experiments were performed using retrospective data
and that any potential errors of the surrogate model do not impact the REINVENT
agent. A prospective run might develop different behavior, good or bad, especially
since there is currently no way to see how the active learning framework affects
REINVENT’s reinforcement learning. The recommendation is therefore to also use
other AFs than the Random AF when performing additional tests, as the difference
between AFs for these experiments were at times negligible.
For the parameter tuning experiments, only small differences in RMSE performance
could be gleaned and no difference large enough to warrant a change from default
parameters. However, the time difference was more noticeable, especially for the
retrain interval. With only an increase of 0.033 in RMSE when comparing a retrain
value of 5 to 20 with a decrease of 10.757 seconds per epoch for the Random AF,
it is worthwhile to consider a longer retrain interval. The TS AF is an outlier for
the retrain interval parameter, wherein a retrain interval of 20 takes longer than an
interval of 5. The reason for this behavior is unclear.
A smaller AB would be preferable since it would reduce oracle calls and could shorten
computation time while not unduly affecting the RMSE. There is a time decrease
of between 6.376 seconds per epoch for the Random AF to up to 8.976 seconds
per epoch for the Tanimoto AF while only affecting the RMSE by 0.033 to 0.092,
respectively. Worth noting here is that the TS AF is yet again an outlier, where the
RMSE is affected more dramatically and the decrease in time per epoch is not as
substantial.
The rationale behind implementing the warm-up parameter was to account for the
initially volatile behavior of the REINVENT agent. However, there is little difference
in RMSE between no warm-up and a warm-up of 200, and thus the time should be
the deciding factor.
Changing from a warm-up of 200 to a warm-up of 0 leads to an increase of 2.5 hours,
on average. These results should not be compared entirely in a vacuum, however,

34

4. Conclusion

as this is merely an increase in how long the AL framework is active. A warm-up of
200 entails that the oracle is run for all molecules during those initial epochs, and
as the oracle is costlier than the surrogate model, a larger warm-up leads to a net
increase in time. On average, decreasing the warm-up from 200 to 0 leads to an
decreasing of approximately 4 hours for the entire run.
Summarily, this project recommends the active learning framework parameters seen
in the table below. Here the recommendation is the Random AF due to its slightly
superior performance in this study, but as stated above any future research should
consider testing multiple AFs, as the behavior of the AF might be different for other
use-cases.

E Fabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbcdddddddddddd

The AL Framework

Model RF
AF Random

Initial pooling 5
Warm-up 0

Retrain 20
AB 20

eeeeeeeeeeeefgggggggggggggggggggggggggggggggggh
H G
4.1 Discussion
Although there are definitive distinctions between different AFs and surrogate mod-
els, especially with regards to time, the errors are large enough that improvements
are likely required to effectively utilize the framework in realistic contexts. However,
the true behavior of the AL framework cannot be known from only retrospective
analysis as there is no feedback from the framework back into REINVENT as there
would be in a prospective run. The parameter combination mentioned above are
then to be seen as a suggestion for initial exploration, not as a definitive answer.

4.1.1 The Random Acquisition Function
The random acquisition function consistently performed the best over both models
and all tuning parameter runs. This might seem counter intuitive when the point
of active learning is to intelligently pick points to acquire to augment the training
data. To pick points randomly is the opposite of intelligent selection, so why does
it perform so well?
One major aspect worth noting is the choice of metrics investigated during the
project, i.e RMSE and time per epoch. Choosing these metrics resulted in a focus

35

4. Conclusion

on efficiency and accuracy in predicting the score of the molecule, but there is no
focus on the docking score itself.
This matters because the exploitative AFs, like Greedy for example, do not optimize
for accuracy but for a higher docking score. In other words, the more exploitative
acquisition functions try to use existing knowledge to reach a balance between ac-
curacy and the molecular docking score, while purely exploratory AFs only take
accuracy into account. However, since the score is not a metric considered, then
there is no visible payoff for exploitation at all in the analysis.
In short, there is no way for any exploitation strategy to gain any advantage when
only looking at RMSE and time per epoch since an exploratory AF will always be
more diverse and a more accurate general model.

4.1.2 The effect of Parameter tuning
The difference in RMSE performance across all AFs and all parameter values is as
previously mentioned quite small. There are likely many reasons for this. For the
initial pooling parameter the difference is among the smallest, and there are two
reasons why this might be the case. It might have to do with the REINVENT
policy update. The agent might not “move” across chemical space fast enough for
an initial pooling difference of 10 or 15 to make much of a difference since what
REINVENT is sampling very similar SMILES in either case. Additionally, if the
initial pooling is 5 this means that the active learning will be activated at the 6th
epoch and the 0-5 epochs have been pooled. For an initial pooling of 10, the active
learning will be activated on the 11th epoch, meaning the 0-10 epochs have been
pooled. Note the 50% overlap in the respective pools. This is likely a major culprit
of the similar performance and hints at the need to use a larger initial pooling to
get a proper performance boost. However, due to the limited data points and the
increase in computational time, this is likely not a practical solution for this project.
The AB parameter is also not producing a dramatic change in the RMSE. It is,
however, slowing down the run time since if the framework acquires more points per
epoch it will take longer to train. Additionally, a larger acquisition batch means
more oracle calls, which is not desirable since the point of this project is to do away
with as many oracle calls as possible. While acquiring more points per epoch leads to
a more exploratory behavior which has shown to be advantageous for the framework
(seeing as the Random AF performs the best out of the AFs) our research indicates
that an AB of 20 is enough to receive a sufficiently exploratory behavior. There
is little benefit to acquiring more points than 20 since it adds substantially to the
computational cost.
There is a similar behavior for the retrain interval. A surprisingly stable RMSE
can be seen even for longer retrain intervals. This is why the decision was made
to change from the default parameter of 5 retrain to an interval of 20. For further
research, it might be worth looking into even longer retrain intervals to see if the
RMSE can retain its stability while further reducing the time.

36

4. Conclusion

4.1.3 Outlier Analysis
There are some notable outliers for the parameter tuning experiments worth dis-
cussing. For example, the TS AF has some erratic behavior for the retrain experi-
ments. The time per epoch measurements show that the longer interval is actually
slower, which does not make intuitive sense since training the system more should
take more time.
The runs are all done in triplicate so as to mitigate outliers due to computational
fluctuations. However, when plotting these out in Figures 4.1, 4.2 and 4.3, looking at
the replicate runs individually we do see the outlier behavior in nearly all replicates,
when compared with the default run of a retrain of 5, also done in 3 replicates. The
only run that does not show this behavior is when comparing default replicate 1
with comparison replicate 2, where the retrain interval of 20 is faster than a retrain
interval value of 5, at least after about 350 epochs.

200 300 400 500 600 700 800 900 1000
Epoch

−1000

0

1000

2000

3000

4000

5000

6000

Di
ffe

re
nc

e
in

 ti
m

e
[s

]

Difference in cumulative times compared to Retrain 5 for Thompson Sampling
Retrain 20, replicate 1
Retrain 20, replicate 2
Retrain 20, replicate 3

Figure 4.1: Comparison of the difference in cumulative time between a retrain
interval of 20 and a retrain interval of 5 for, plotted for all 3 replicates of the
comparison value compared with replicate 1 for the default value.

37

4. Conclusion

200 300 400 500 600 700 800 900 1000
Epoch

−1000

0

1000

2000

3000

4000

5000

6000

Di
ffe

re
nc

e
in

 ti
m

e
[s

]
Difference in cumulative times compared to Retrain 5 for Thompson Sampling

Retrain 20, replicate 1
Retrain 20, replicate 2
Retrain 20, replicate 3

Figure 4.2: Comparison of the difference in cumulative time between a retrain
interval of 20 and a retrain interval of 5 for, plotted for all 3 replicates of the
comparison value compared with replicate 2 for the default value.

200 300 400 500 600 700 800 900 1000
Epoch

−4000

−3000

−2000

−1000

0

1000

2000

3000

Di
ffe

re
nc

e
in

 ti
m

e
[s

]

Difference in cumulative times compared to Retrain 5 for Thompson Sampling
Retrain 20, replicate 1
Retrain 20, replicate 2
Retrain 20, replicate 3

Figure 4.3: Comparison of the difference in cumulative time between a retrain
interval of 20 and a retrain interval of 5 for, plotted for all 3 replicates of the
comparison value compared with replicate 3 for the default value.

38

4. Conclusion

These runs were made within similar time frames so while the pervasive behavior
suggests that the behavior seen for the TS AF in regards to retrain interval is less
likely to be due to computational fluctuations, it is still a possible culprit. More
research is needed to properly identify the cause.

4.1.4 Future Research
The general context in which this study was made was to investigate whether active
learning could be used with a molecular design tool such as REINVENT to hasten
its training and enable more effective usage of such de novo molecular design tools.
A prospective run would use the results from the surrogate model as feedback for the
molecular design tool, impacting which molecules are generated. The errors are to be
seen as a measure of how well the surrogate model accounts for the sampling behavior
of the particular molecular design tool used, REINVENT. If the discrepancy between
said sampling behavior and the results from our surrogate model is large, utilizing
the model in a prospective context can lead to less useful molecular design tools.
Caution should thus be used when considering to replace an oracle such as docking
using this framework. It can however be used as a springboard for further analysis.
Additionally, there are aspects of this framework’s behavior that can only be illus-
trated using a prospective run, meaning when the framework fully integrates with
REINVENT and feeds the scores predicted by the model back into REINVENT.
Only then is it possible to know the overall effect of the AL framework on the
molecular design. This should be the first step in any further analysis of this frame-
work.
Moreover, other metrics than RMSE and time per epoch should be analysed, es-
pecially if prospective runs are made. As mentioned, the current analysis does not
take into account the quality of the molecules, only the accuracy of the surrogate
model. In theory, a more exploitative acquisition function could have a lower RMSE
but could still be a better choice since it might be better at predicting the scores of
molecules with a higher docking score. Meaning, it would be bad at predicting the
score of the molecules that would be discarded either way.
Finally, if the exploitation/exploration balance can be solved, and the framework
shows promising results in prospective runs, further parameter tuning to optimize
the framework could be of use. Testing even lower acquisition batches and longer
retrain intervals would be of interest in the name of further optimizing this frame-
work.

39

Bibliography

[1] Joseph A DiMasi. “Pharmaceutical R&D performance by firm size: Approval
success rates and economic returns”. In: American journal of therapeutics 21.1
(2014), pp. 26–34.

[2] Jean-Louis Reymond. “The chemical space project”. In: Accounts of Chemical
Research 48.3 (2015), pp. 722–730.

[3] Pavel G Polishchuk, Timur I Madzhidov, and Alexandre Varnek. “Estimation
of the size of drug-like chemical space based on GDB-17 data”. In: Journal of
computer-aided molecular design 27.8 (2013), pp. 675–679.

[4] Luca Pinzi and Giulio Rastelli. “Molecular docking: shifting paradigms in
drug discovery”. In: International journal of molecular sciences 20.18 (2019),
p. 4331.

[5] José Jiménez-Luna et al. “Artificial intelligence in drug discovery: Recent ad-
vances and future perspectives”. In: Expert Opinion on Drug Discovery (2021),
pp. 1–11.

[6] Thomas Blaschke et al. “REINVENT 2.0: an AI tool for de novo drug design”.
In: Journal of Chemical Information and Modeling 60.12 (2020), pp. 5918–
5922.

[7] AkshatKumar Nigam, Robert Pollice, and Alan Aspuru-Guzik. “JANUS: Par-
allel Tempered Genetic Algorithm Guided by Deep Neural Networks for In-
verse Molecular Design”. In: arXiv preprint arXiv:2106.04011 (2021).

[8] Rafael Gómez-Bombarelli et al. “Automatic chemical design using a data-
driven continuous representation of molecules”. In: ACS central science 4.2
(2018), pp. 268–276.

[9] Josep Arús-Pous et al. “Randomized SMILES strings improve the quality of
molecular generative models”. In: Journal of cheminformatics 11.1 (2019),
pp. 1–13.

[10] Veronica Salmaso and Stefano Moro. “Bridging molecular docking to molecular
dynamics in exploring ligand-protein recognition process: an overview”. In:
Frontiers in pharmacology 9 (2018), p. 923.

[11] Zoe Cournia et al. “Rigorous free energy simulations in virtual screening”. In:
Journal of Chemical Information and Modeling 60.9 (2020), pp. 4153–4169.

[12] David E Graff, Eugene I Shakhnovich, and Connor W Coley. “Accelerating
high-throughput virtual screening through molecular pool-based active learn-
ing”. In: Chemical Science (2021).

40

Bibliography

[13] Francesco Gentile et al. “Deep docking: a deep learning platform for augmen-
tation of structure based drug discovery”. In: ACS central science 6.6 (2020),
pp. 939–949.

[14] Ying Yang et al. “Efficient exploration of chemical space with docking and
deep learning”. In: Journal of Chemical Theory and Computation 17.11 (2021),
pp. 7106–7119.

[15] Wei Ma et al. “Deep Learning Model of Dock by Dock Process Significantly
Accelerate the Process of Docking-based Virtual Screening”. In: arXiv preprint
arXiv:2110.10918 (2021).

[16] Burr Settles. Active Learning Literature Survey. Computer Sciences Technical
Report 1648. University of Wisconsin–Madison, 2009.

[17] Xueying Zhan et al. “A Comparative Survey: Benchmarking for Pool-based
Active Learning”. In: Proceedings of the Thirtieth Joint Conference on Artifi-
cial Intelligence (IJCAI-21) (2021).

[18] Peter I Frazier. “A tutorial on Bayesian optimization”. In: arXiv preprint
arXiv:1807.02811 (2018).

[19] Jonas Mockus. Bayesian approach to global optimization: theory and applica-
tions. Vol. 37. Springer Science & Business Media, 2012.

[20] Yanyao Shen et al. “Deep active learning for named entity recognition”. In:
arXiv preprint arXiv:1707.05928 (2017).

[21] EMBL-EBI. ChEMBL Database. 2022. url: https : / / www . ebi . ac . uk /
chembl/ (visited on 05/05/2022).

[22] David Weininger. “SMILES, a chemical language and information system. 1.
Introduction to methodology and encoding rules”. In: Journal of chemical
information and computer sciences 28.1 (1988), pp. 31–36.

[23] Thomas Blaschke et al. Supporting Information REINVENT 2.0–an AI tool
for de novo drug design. url: https://pubs.acs.org/doi/10.1021/acs.
jcim.0c00915?goto=supporting-info.

[24] Marwin HS Segler et al. “Generating focused molecule libraries for drug dis-
covery with recurrent neural networks”. In: ACS central science 4.1 (2018),
pp. 120–131.

[25] Marcus Olivecrona et al. “Molecular de-novo design through deep reinforce-
ment learning”. In: Journal of cheminformatics 9.1 (2017), pp. 1–14.

[26] J Harry Moore et al. “Icolos: A workflow manager for structure based post-
processing of de novo generated small molecules”. In: (2022).

[27] Garrett Morris and Marguerita Lim-Wilby. “Molecular Docking”. In: Methods
in molecular biology (Clifton, N.J.) 443 (Feb. 2008), pp. 365–82. doi: 10.
1007/978-1-59745-177-2_19.

[28] Julian Berk et al. “Randomised gaussian process upper confidence bound for
bayesian optimisation”. In: arXiv preprint arXiv:2006.04296 (2020).

[29] Natalie K Boyd, Chengwen Teng, and Christopher R Frei. “Brief overview of
approaches and challenges in new antibiotic development: A focus on drug
repurposing”. In: Frontiers in Cellular and Infection Microbiology 11 (2021),
p. 442.

[30] Asher Mullard. “Parsing clinical success rates”. In: Nature Reviews Drug Dis-
covery 15.7 (2016), pp. 447–448.

41

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00915?goto=supporting-info
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00915?goto=supporting-info
https://doi.org/10.1007/978-1-59745-177-2_19
https://doi.org/10.1007/978-1-59745-177-2_19

Bibliography

[31] Seumas Miller and Michael J Selgelid. “Ethical and philosophical consideration
of the dual-use dilemma in the biological sciences”. In: Science and engineering
ethics 13.4 (2007), pp. 523–580.

[32] SPEIZ Laboratory. Spiez CONVERGENCE. 2022. url: https://www.spiezlab.
admin.ch/en/home/meta/refconvergence.html (visited on 05/09/2022).

[33] Fabio Urbina et al. “Dual use of artificial-intelligence-powered drug discovery”.
In: Nature Machine Intelligence 4.3 (2022), pp. 189–191.

[34] G Richard Bickerton et al. “Quantifying the chemical beauty of drugs”. In:
Nature chemistry 4.2 (2012), pp. 90–98.

[35] S Kavitha, S Varuna, and R Ramya. “A comparative analysis on linear regres-
sion and support vector regression”. In: 2016 online international conference
on green engineering and technologies (IC-GET). IEEE. 2016, pp. 1–5.

[36] Trevor Hastie et al. The elements of statistical learning: data mining, inference,
and prediction. Vol. 2. Springer, 2009.

[37] Jeremy Beauchamp. Decision Tree vs. Random Forest. 2020. url: https :
/ / commons . wikimedia . org / wiki / File : Decision _ Tree _ vs . _Random _
Forest.png (visited on 05/17/2022). This file is licensed under the Creative
Commons Attribution-Share Alike 4.0 International license.

[38] Alex J Smola and Bernhard Schölkopf. “A tutorial on support vector regres-
sion”. In: Statistics and computing 14.3 (2004), pp. 199–222.

[39] Mariette Awad and Rahul Khanna. “Support vector regression”. In: Efficient
learning machines. Springer, 2015, pp. 67–80.

[40] George De Ath et al. “ε-shotgun: ε-greedy batch bayesian optimisation”. In:
Proceedings of the 2020 Genetic and Evolutionary Computation Conference.
2020, pp. 787–795.

[41] Harold J Kushner. “A new method of locating the maximum point of an
arbitrary multipeak curve in the presence of noise”. In: (1964).

[42] Eric Brochu, Vlad M Cora, and Nando De Freitas. “A tutorial on Bayesian op-
timization of expensive cost functions, with application to active user modeling
and hierarchical reinforcement learning”. In: arXiv preprint arXiv:1012.2599
(2010).

[43] Donald R Jones, Matthias Schonlau, and William J Welch. “Efficient global
optimization of expensive black-box functions”. In: Journal of Global optimiza-
tion 13.4 (1998), pp. 455–492.

[44] Daniel J Russo et al. “A tutorial on thompson sampling”. In: Foundations and
Trends® in Machine Learning 11.1 (2018), pp. 1–96.

[45] Peter Willett, John M Barnard, and Geoffrey M Downs. “Chemical similarity
searching”. In: Journal of chemical information and computer sciences 38.6
(1998), pp. 983–996.

[46] Harry L Morgan. “The generation of a unique machine description for chemical
structures-a technique developed at chemical abstracts service.” In: Journal of
chemical documentation 5.2 (1965), pp. 107–113.

42

https://www.spiezlab.admin.ch/en/home/meta/refconvergence.html
https://www.spiezlab.admin.ch/en/home/meta/refconvergence.html
https://commons.wikimedia.org/wiki/File:Decision_Tree_vs._Random_Forest.png
https://commons.wikimedia.org/wiki/File:Decision_Tree_vs._Random_Forest.png
https://commons.wikimedia.org/wiki/File:Decision_Tree_vs._Random_Forest.png

A
Selection of Model and

Acquisition Function

200 300 400 500 600 700 800 900 1000
Epoch

1.5

2.0

2.5

3.0

3.5

Er
ro

r [
kc

al
/m

ol
]

Root Mean Squared Error for model RF
Random
Greedy
-Greedy

PI
EI
Thompson Sampling
UCB
Tanimoto Similarity

Figure A.1: The RMSEs for all the acquisition functions using the Random Forest
model.

I

A. Selection of Model and Acquisition Function

200 300 400 500 600 700 800 900 1000
Epoch

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Er
ro

r [
kc

al
/m

ol
]

Rolling average of 10 for RMSE for model RF
Random
Greedy
-Greedy

PI
EI
Thompson Sampling
UCB
Tanimoto Similarity

Figure A.2: The rolling average of the RMSEs using the Random Forest model.
All acquisition functions are present. The window used for the rolling average is 10,
with a minimum window of 1.

II

A. Selection of Model and Acquisition Function

200 300 400 500 600 700 800 900 1000
Epoch

0

50

100

150

200

250

Ti
m

e
[s

]
Time per epoch for model RF

Random
Greedy
-greedy

PI
EI
Thompson Sampling
UCB
Tanimoto Similarity

Figure A.3: The times taken by every acquisition function using the Random
Forest model. Across all the acquisition functions, there are two lines shown: one
constant, which shows the time taken during epochs where retraining does not occur,
and one growing (typically linear), which represents the time taken during epochs
where retraining occurs.

III

A. Selection of Model and Acquisition Function

200 300 400 500 600 700 800 900 1000
Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
[h

]
Cumulative time for model RF

Random
Greedy
-greedy

PI
EI
Thompson Sampling
UCB
Tanimoto Similarity

Figure A.4: The cumulative time taken by the Random Forest model. There are
two groups present in the figure. The group that took less time, i.e. the lower one,
contains the acquisition functions that do not require calculation of the standard
deviation, while the one that took more time, i.e. the higher one, contains those
that do require standard deviation.

IV

A. Selection of Model and Acquisition Function

200 300 400 500 600 700 800 900 1000
Epoch

1.0

1.5

2.0

2.5

3.0

3.5

Er
ro

r [
kc

al
/m

ol
]

Root Mean Squared Error for model SVR
Random
Greedy
-Greedy

Tanimoto Similarity

Figure A.5: The RMSEs for all the acquisition functions using the Support Vector
Regression model. Note that there are fewer implemented than for the Random
Forest model. The acquisition functions missing are the ones requiring standard
deviation, as that was not implemented for the Support Vector Regression model.

V

A. Selection of Model and Acquisition Function

200 300 400 500 600 700 800 900 1000
Epoch

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Er
ro

r [
kc

al
/m

ol
]

Rolling average of 10 for RMSE for model SVR
Random
Greedy
-Greedy

Tanimoto Similarity

Figure A.6: The rolling average of the RMSEs using the Support Vector Regression
model. All implemented acquisitions, i.e. the ones not requiring standard deviation,
are present. The window used for the rolling average is 10, with a minimum window
of 1.

VI

A. Selection of Model and Acquisition Function

200 300 400 500 600 700 800 900 1000
Epoch

0

2000

4000

6000

8000

10000

12000

Ti
m

e
[s

]
Time per epoch for model SVR

Random
Greedy
-greedy

Tanimoto Similarity

Figure A.7: The times taken by every implemented acquisition function using the
Support Vector Regression model. There are two lines present for every acquisition
function, one constant (close to zero) and one growing. The constant line represents
the epochs where training does not occur, while the growing lines represent epochs
where the model is retrained.

VII

A. Selection of Model and Acquisition Function

200 300 400 500 600 700 800 900 1000
Epoch

0

25

50

75

100

125

150

175
Ti

m
e

[h
]

Cumulative time for model SVR
Random
Greedy
-greedy

Tanimoto Similarity

Figure A.8: The cumulative time taken by the Support Vector Regression model.

200 300 400 500 600 700 800 900 1000
Epoch

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Er
ro

r [
kc

al
/m

ol
]

Root Mean Squared Error for Random acquisition
Random Forest
Support Vector Regression

Figure A.9: Comparison of the RMSEs between the Random Forest model and
the Support Vector Regression model for the Random acquisition function.

VIII

A. Selection of Model and Acquisition Function

200 300 400 500 600 700 800 900 1000
Epoch

1.5

2.0

2.5

3.0

3.5
Er

ro
r [

kc
al

/m
ol

]
Root Mean Squared Error for Greedy

Random Forest
Support Vector Regression

Figure A.10: Comparison of the RMSEs between the Random Forest model and
the Support Vector Regression model for the Greedy acquisition function.

200 300 400 500 600 700 800 900 1000
Epoch

1.0

1.5

2.0

2.5

3.0

3.5

Er
ro

r [
kc

al
/m

ol
]

Root Mean Squared Error for -greedy
Random Forest
Support Vector Regression

Figure A.11: Comparison of the RMSEs between the Random Forest model and
the Support Vector Regression model for the ε-Greedy acquisition function.

IX

A. Selection of Model and Acquisition Function

200 300 400 500 600 700 800 900 1000
Epoch

1.0

1.5

2.0

2.5

3.0

Er
ro

r [
kc

al
/m

ol
]

Root Mean Squared Error for Tanimoto Similarity
Random Forest
Support Vector Regression

Figure A.12: Comparison of the RMSEs between the Random Forest model and
the Support Vector Regression model for the Tanimoto Similarity acquisition func-
tion.

X

A. Selection of Model and Acquisition Function

200 300 400 500 600 700 800 900 1000
Epoch

0

20

40

60

80

100

120

140

160

Ti
m

e
[h

]
Difference in cumulative time for SVR compared to RF

Random
Greedy
Epsilon-greedy
Tanimoto Similarity

Figure A.13: The difference in cumulative runtime between the Support Vector
Regression model and the Random Forest model. The curves measure how much
longer Support Vector Regression took than Random Forest.

XI

B
Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

Di
ffe

re
nc
e
in
 e
rro

r [
kc
al
/m

ol
]

Rolling average RMSE difference compared to Initial pooling 5 for Random acquisition
Initial pooling 10
Initial pooling 15

Figure B.1: Comparison parameters for initial pooling of 10 and 15 compared with
the default value of 5 for the Random AF. There is an initial decrease in error for
the first 100 epochs, after that the difference for both 10 and 15 fluctuate around 0,
showing very little effect on the RMSE initially or over more epochs.

XII

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−0.2

−0.1

0.0

0.1

0.2

Di
ffe
re
nc
e
in
 e
rro
r [
kc
al
/
ol
]

Rolling average RMSE difference co pared to Initial pooling 5 for ε-greedy
Initial pooling 10
Initial pooling 15

Figure B.2: Comparison parameters for initial pooling of 10 and 15 compared
with the default value of 5 for the ε-Greedy AF. The difference for both 10 and 15
fluctuate around 0, showing very little effect on the RMSE initially or over more
epochs.

XIII

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−0.2

−0.1

0.0

0.1

0.2

Di
ffe
re
nc
e
in
 e
rro
r [
kc
al
/
ol
]

Rolling average RMSE difference co pared to Initial pooling 5 for Tho pson Sa pling
Initial pooling 10
Initial pooling 15

Figure B.3: Comparison parameters for initial pooling of 10 and 15 compared with
the default value of 5 for the TS AF. The difference for both 10 and 15 fluctuate
around 0, showing very little effect on the RMSE initially or over more epochs.

XIV

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

Di
ffe
re
nc
e
in
 e
rro
r [
kc
al
/
ol
]

Rolling average RMSE difference co pared to Initial pooling 5 for Tani oto Si ilarity
Initial pooling 10
Initial pooling 15

Figure B.4: Comparison parameters for initial pooling of 10 and 15 compared with
the default value of 5 for the Tanimoto AF. There is an initial decrease in error for
the first 100 epochs, after that the difference for both 10 and 15 fluctuate around 0,
showing very little effect on the RMSE initially or over more epochs.

XV

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

0

200

400

600

800

1000

1200

1400

Di
ffe

re
nc

e
in
 ti
m
e
[s
]

Difference in cumulative times compared to Initial pooling 5 for Random acquisition
Initial pooling 10
Initial pooling 15

Figure B.5: Comparison parameters for initial pooling of 10 and 15 compared with
the default value of 5 for the Random AF. Both an initial pooling of 10 and 15 takes
longer than the default parameter of 5 initial pooling.

200 300 400 500 600 700 800 900 1000
Epoch

−1000

−500

0

500

1000

Di
ffe

re
nc

e
in

 i
m

e
[s

]

Difference in cumula ive imes compared o Ini ial pooling 5 for ε-greedy
Initial pooling 10
Initial pooling 15

Figure B.6: Comparison parameters for initial pooling of 10 and 15 compared with
the default value of 5 for the ε-Greedy AF. Here we see that an initial pooling of 10
is in fact faster than an initial pooling of 5.

XVI

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−5000

−4000

−3000

−2000

−1000

0

Di
ffe

re
nc

e
in
 ti
m
e
[
]

Difference in cumulative time compared to Initial pooling 5 for Thomp on Sampling

Initial pooling 10
Initial pooling 15

Figure B.7: Comparison parameters for initial pooling of 10 and 15 compared with
the default value of 5 for the TS AF. Here both the initial pooling of 10 and 15 are
faster, with the most dramatic difference in initial pooling 10.

200 300 400 500 600 700 800 900 1000
Epoch

−1000

−800

−600

−400

−200

0

Di
ffe

re
nc

e
in
 ti
m
e
[
]

Difference in cumulative time compared to Initial pooling 5 for Tanimoto Similarity

Initial pooling 10
Initial pooling 15

Figure B.8: Comparison parameters for initial pooling of 10 and 15 compared with
the default value of 5 for the Tanimoto AF. Here we see that an initial pooling of
15 is slightly worse, but an initial pooling of 10 is faster.

XVII

B. Parameter Tuning

0 100 200 300 400 500 600 700 800
Epoch

−0.10

−0.05

0.00

0.05

0.10

Di
ffe

re
nc
e
in
 e
rro

r [
kc
al
/m

ol
]

Rolling average RMSE difference compared to Warmup 200 for Random acquisition
Warmup 0

Figure B.9: Comparison parameters for warm-up of 0 compared with the default
value of 200 for the Random AF. Here most values are positive, meaning the com-
parison warm-up value of 0 has a larger RMSE error than the default value of 200
for the Random AF. Meaning, the default value of 200 warm-up performs better
than 0 warm-up.

XVIII

B. Parameter Tuning

0 100 200 300 400 500 600 700 800
Epoch

−0.1

0.0

0.1

0.2

0.3

Di
ffe

re
nc
e
in
 e
rro

r [
kc
al
/m

ol
]

Rolling average RMSE difference compared to Warmup 200 for ε-greedy
Warmup 0

Figure B.10: Comparison parameters for warm-up of 0 compared with the de-
fault value of 200 for the ε-Greedy AF. Here most values are positive, meaning the
comparison warm-up value of 0 has a larger RMSE error than the default value of
200 for the Random AF. In other words, the default value of 200 warm-up performs
better than 0 warm-up.

XIX

B. Parameter Tuning

0 100 200 300 400 500 600 700 800
Epoch

−0.1

0.0

0.1

0.2

0.3

0.4
Di
ffe

re
nc
e
in
 e
rro

r [
kc
al
/m

ol
]

Rolling average RMSE difference compared to Warmup 200 for Thompson Sampling
Warmup 0

Figure B.11: Comparison parameters for warm-up of 0 compared with the default
value of 200 for the TS AF. Here most values are positive, meaning the comparison
warm-up value of 0 has a larger RMSE error than the default value of 200 for the
Random AF. In other words, the default value of 200 warm-up performs better than
0 warm-up.

XX

B. Parameter Tuning

0 100 200 300 400 500 600 700 800
Epoch

0.00

0.05

0.10

0.15

0.20

Di
ffe

re
nc
e
in
 e
rro

r [
kc
al
/m

ol
]

Rolling average RMSE difference compared to Warmup 200 for Tanimoto Similarity
Warmup 0

Figure B.12: Comparison parameters for warm-up of 0 compared with the default
value of 200 for the Tanimoto AF. Here most values are positive, meaning the
comparison warm-up value of 0 has a larger RMSE error than the default value of
200 for the Random AF. In other words, the default value of 200 warm-up performs
better than 0 warm-up.

XXI

B. Parameter Tuning

0 100 200 300 400 500 600 700 800
Epoch

0

1000

2000

3000

4000

5000

6000

7000

8000
Di
ffe

re
nc
e
in
 ti
m
e
[s
]

Difference in cumulative times compared to Warmup 200 for Random acquisition
Warmup 0

Figure B.13: Comparison parameters for warm-up of 0 compared with the default
value of 200 for the Random AF. The comparison value of 0 warm-up is slower than
the default warm-up of 200.

0 100 200 300 400 500 600 700 800
Epoch

0

2000

4000

6000

8000

Di
ffe

re
nc
e
in
 ti
m
e
[s
]

Difference in cumulative times compared to Warmup 200 for ε-greedy
Warmup 0

Figure B.14: Comparison parameters for warm-up of 0 compared with the default
value of 200 for the ε-Greedy AF. The comparison value of 0 warm-up is slower than
the default warm-up of 200.

XXII

B. Parameter Tuning

0 100 200 300 400 500 600 700 800
Epoch

0

2000

4000

6000

8000

10000

12000

14000

Di
ffe

re
nc

e
in

 ti
m

e
[s

]
Difference in cumulative times compared to Warmup 200 for Thompson Sampling

Warmup 0

Figure B.15: Comparison parameters for warm-up of 0 compared with the default
value of 200 for the TS AF. The comparison value of 0 warm-up is slower than the
default warm-up of 200.

0 100 200 300 400 500 600 700 800
Epoch

0

1000

2000

3000

4000

5000

6000

7000

Di
ffe

re
nc
e
in
 ti
m
e
[s
]

Difference in cumulative times compared to Warmup 200 for Tanimoto Similarity
Warmup 0

Figure B.16: Comparison parameters for warm-up of 0 compared with the default
value of 200 for the Tanimoto AF. The comparison value of 0 warm-up is slower
than the default warm-up of 200.

XXIII

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−0.2

−0.1

0.0

0.1

0.2

Di
ffe

re
nc
e
in
 e
rro

r [
kc
al
/m

ol
]

Rolling average RMSE difference compared to Retrain 5 for Random acquisition
Retrain 10
Retrain 15
Retrain 20

Figure B.17: Comparison parameters for retrain of 10, 15 and 20 compared with
the default parameter of 5 for the Random AF. The difference for both 10, 15 and
20 fluctuate around 0, showing very little effect on the RMSE initially or over more
epochs.

XXIV

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

Di
ffe

re
nc
e
in
 e
rro

r [
kc
al
/m

ol
]

Rolling average RMSE difference compared to Retrain 5 for ε-greedy
Retrain 10
Retrain 15
Retrain 20

Figure B.18: Comparison parameters for retrain of 10, 15 and 20 compared with
the default parameter of 5 for the ε-greedy AF. The difference for both 10, 15 and
20 fluctuate around 0, showing very little effect on the RMSE initially or over more
epochs.

XXV

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Di
ffe

re
nc
e
in
 e
rro

r [
kc
al
/m

ol
]

Rolling average RMSE difference compared to Retrain 5 for Thompson Sampling
Retrain 10
Retrain 15
Retrain 20

Figure B.19: Comparison parameters for retrain of 10, 15 and 20 compared with
the default parameter of 5 for the TS AF. The difference for both 10, 15 and 20
fluctuate around 0, showing very little effect on the RMSE initially or over more
epochs.

XXVI

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

Di
ffe

re
nc
e
in
 e
rro

r [
kc
al
/m

ol
]

Rolling average RMSE difference compared to Retrain 5 for Tanimoto Similarity
Retrain 10
Retrain 15
Retrain 20

Figure B.20: Comparison parameters for retrain of 10, 15 and 20 compared with
the default parameter of 5 for the Tanimoto AF. Here, the difference is consistently
positive, meaning the default parameter of attains a lower RMSE. The difference,
however, is quite small.

XXVII

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−8000

−6000

−4000

−2000

0

Di
ffe

re
nc
e
in
 ti
m
e
[s
]

Difference in c m lative time compared to Retrain 5 for Random acq isition

Retrain 10
Retrain 15
Retrain 20

Figure B.21: Comparison parameters for retrain of 10, 15 and 20 compared with
the default parameter of 5 for the Random AF. For a larger interval of retrain the
the model gets faster.

200 300 400 500 600 700 800 900 1000
Epoch

−10000

−8000

−6000

−4000

−2000

0

Di
ffe

re
nc

e
in

 i
m

e
[s

]

Difference in cumula ive ime compared o Re rain 5 for ε-greedy

Retrain 10
Retrain 15
Retrain 20

Figure B.22: Comparison parameters for retrain of 10, 15 and 20 compared with
the default parameter of 5 for the ε-Greedy AF. For a larger interval of retrain the
the model gets faster.

XXVIII

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−8000

−6000

−4000

−2000

0

2000

Di
ffe

re
nc

e
in
 ti
m
e
[
]

Difference in cumulative time compared to Retrain 5 for Thomp on Sampling

Retrain 10
Retrain 15
Retrain 20

Figure B.23: Comparison parameters for retrain of 10, 15 and 20 compared with
the default parameter of 5 for the TS AF. Here one can see that for a larger interval
between retrains, the model actually gets slower.

XXIX

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−10000

−8000

−6000

−4000

−2000

0

Di
ffe

re
nc

e
in

 i
m

e
[s

]

Difference in cumula ive ime compared o Re rain 5 for Tanimo o Similari y

Re rain 10
Re rain 15
Re rain 20

Figure B.24: Comparison parameters for retrain of 10, 15 and 20 compared with
the default parameter of 5 for the Tanimoto AF. For a larger interval of retrain the
the model gets faster, there is however very little difference between retrain 15 and
20.

XXX

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Di
ffe
re
nc
e
in
 e
rro
r [
kc
al
/
ol
]

Rolling average RMSE difference co pared to Acquisition batch 40 for Rando acquisition

Acquisition batch 20
Acquisition batch 60

Figure B.25: Comparison parameters for Acquisition Batch Size of 20 and 60
compared with the default parameter of 40 for the Random AF. Both an AB of 20
and 60 show little difference, but the 60 AB does perform slightly better.

XXXI

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Di
ffe

re
nc

e
in

 e
rro

r [
kc

a
/m

o
]

Ro ing average RMSE difference compared to Acquisition batch 40 for ε-greedy

Acquisition batch 20
Acquisition batch 60

Figure B.26: Comparison parameters for Acquisition Batch Size of 20 and 60
compared with the default parameter of 40 for the ε-Greedy AF. The 60 AB is
initially worse than both the default AB, 40, and the 20 AB, but the difference
planes out by later epochs. Inversely, the 20 AB has a lower RMSE initially but
grows over later epochs.

XXXII

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4
Di

ffe
re

nc
e

in
 e

rro
r [

kc
a

/m
o

]
Ro ing average RMSE difference compared to Acquisition batch 40 for Thompson Samp ing

Acquisition batch 20
Acquisition batch 60

Figure B.27: Comparison parameters for Acquisition Batch Size of 20 and 60
compared with the default parameter of 40 for the TS AF. The 20 AB is consistently
worse than the default 40 AB. The 60 AB is initially worse but performs better after
about 600 epochs. The average difference is however close to 0.

XXXIII

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−0.2

−0.1

0.0

0.1

0.2

Di
ffe

re
nc

e
in

 e
rro

r [
kc

a
/m

o
]

Ro ing average RMSE difference compared to Acquisition batch 40 for Tanimoto Simi arity
Acquisition batch 20
Acquisition batch 60

Figure B.28: Comparison parameters for Acquisition Batch Size of 20 and 60
compared with the default parameter of 40 for the Tanimoto AF. The 20 AB is
consistently worse than the default 40 AB while the 60 AB is consistently better,
however the magnitude of the difference is small.

XXXIV

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−4000

−2000

0

2000

4000

6000

8000

Di
ffe

re
nc

e
in
 ti
m
e
[
]

Difference in cumulative time compared to Acqui ition batch 40 for Random acqui ition
Acqui ition batch 20
Acqui ition batch 60

Figure B.29: Comparison parameters for Acquisition Batch Size of 20 and 60
compared with the default parameter of 40 for the Random AF. A larger acquisition
batch seems to correlate with a slower run.

200 300 400 500 600 700 800 900 1000
Epoch

−6000

−4000

−2000

0

2000

4000

6000

8000

Di
ffe

re
nc

e
in

 ti
m

e
[s

]

Difference in cumulative time compared to Acquisition batch 40 for ε-greedy
Acquisition batch 20
Acquisition batch 60

Figure B.30: Comparison parameters for Acquisition Batch Size of 20 and 60
compared with the default parameter of 40 for the ε-Greedy AF. A larger acquisition
batch seems to correlate with a slower run.

XXXV

B. Parameter Tuning

200 300 400 500 600 700 800 900 1000
Epoch

−2000

0

2000

4000

6000

Di
ffe

re
nc
e
in
 ti
m
e
[s
]

Difference in cumulative time compared to Ac uisition batch 40 for Thompson Sampling
Ac uisition batch 20
Ac uisition batch 60

Figure B.31: Comparison parameters for Acquisition Batch Size of 20 and 60
compared with the default parameter of 40 for the TS AF. The 60 AB is slower but
the AB of 20 is almost equal to the default AB until epoch 600.

200 300 400 500 600 700 800 900 1000
Epoch

−6000

−4000

−2000

0

2000

4000

6000

Di
ffe

re
nc

e
in

 ti
m

e
[s

]

Difference in cumulative time compared to Acquisition batch 40 for Tanimoto Similarity
Acquisition batch 20
Acquisition batch 60

Figure B.32: Comparison parameters for Acquisition Batch Size of 20 and 60
compared with the default parameter of 40 for the Tanimoto AF. A larger acquisition
batch seems to correlate with a slower run.

XXXVI

	Glossary
	Introduction
	Background
	Bayesian Optimization
	Active Learning
	Molecular Generation Tool for Small Molecules

	Purpose and Goal
	Objective

	Demarcations
	Ethics and Societal Impacts
	The Good
	The Bad
	The Ugly

	Method
	Overview of Project
	Creation of Dataset
	Surrogate Models
	Random Forest
	Support Vector Regression

	Acquisition Functions
	Random
	Greedy and -Greedy
	Probability of Improvement
	Expected Improvement
	Thompson Sampling
	Upper Confidence Bound
	Fingerprint Tanimoto Similarity

	Parameters

	Results
	Selection of Model and Acquisition Function
	Selection of Tuning Parameters
	Initial Pooling
	RMSE
	Time per Epoch

	Warm-up Phase
	RMSE
	Time per Epoch

	Retrain Interval
	RMSE
	Time per Epoch

	Acquisition Batch Size
	RMSE
	Time per Epoch

	Summary of Results

	Conclusion
	Discussion
	The Random Acquisition Function
	The effect of Parameter tuning
	Outlier Analysis
	Future Research

	Bibliography
	Selection of Model and Acquisition Function
	Parameter Tuning

