
Accelerating a Machine Learning Algo-
rithm on a Graphics Processing Unit

Master’s thesis in Embedded Electronic System Design

PRASANNA KOTRAPPA
PRADEEP LOGANATHAN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master thesis 2021

Accelerating a Machine Learning Algorithm on a
Graphics Processing Unit

PRASANNA KOTRAPPA
PRADEEP LOGANATHAN

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Accelerating a Machine Learning Algorithm on a Graphics Processing Unit

© Prasanna Kotrappa, January 2021.
© Pradeep Loganathan, January 2021.

Supervisor: Per Stenström
Examiner: Per Larsson-Edefors

Master Thesis 2021
Department of Computer Science and Engineering
Division of Computer Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Department of Computer Science and Engineering
Gothenburg, Sweden 2021.

iv

Accelerating a Machine Learning Algorithm on a Graphics Processing Unit
PRASANNA KOTRAPPA

PRADEEP LOGANATHAN
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Life long learning from zero(LL0) is a lifelong learning algorithm that has a dy-
namic neural network architecture. Many machine learning tools perform poorly
on dynamic structures due to the overhead of growing computational maps with
expanding networks. This thesis explores the possibility of delivering higher per-
formance for the LL0 algorithm compared to the existing PyTorch implementation
by developing a custom solution. This developed solution has a strongly coupled
mapping of the LL0 algorithm with the GPU to achieve hardware acceleration. A
set of benchmarks are defined to compare the performance of the between imple-
mentations.

Furthermore, the thesis develops a methodology to investigate potential bottlenecks
and parallelism with the implementation mapped to a GPU. The thesis achieves a
significant speedup of ×19.48 on the number of feedforward per unit of time, com-
pared with the similar PyTorch implementation, on an MNIST dataset.

Keywords: GPU, Hardware Acceleration, Machine Learning, Life Long Learning
Algorithms, CUDA, Dynamic Architecture.

v

Glossary

GPU - Graphics Processing Unit
DNN - Deep Neural Network
LL0 - Lifelong Learning from Zero
NAS - Neural architecture search
NVP - NVIDIA Visual Profiler
CPU - Central processing unit
API - Application Programming Interface
GUI - Graphical User Interface
RAM - Random Access Memory
ROM - Read Only Memory
OOP - Object oriented programming
AutoML - Automated Machine Learning
CUDA - Compute Unified Device Architecture
ML - Machine Learning
GDDR - Graphics Double Data Rate
SP - Streaming Processors
SM - Streaming Mutliprocessor
SDRAM - Synchronous dynamic random-access memory
DRAM - Dynamic Random-Access Memory
GFLOPS - Giga floating-point operations per second

vii

Acknowledgements
We would like to thank our supervisor Per Stenström for his guidance and support
during our thesis and Industrial supervisor Niklas Engsner for his feedback and
insights. A special thanks to Claes Strannegård for his feedback on the algorithms.
We would like to thank our examiner Per Larsson-Edefors for his feedbacks.

Further we would like to thank our families for the support and continuous encour-
agement throughout our studies.

Prasanna Kotrappa and Pradeep Loganathan, Gothenburg, January 2021

viii

x

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Problem Description . 2
1.2 Scope . 3

2 Background 5
2.1 Machine Learning and Toolkit . 5

2.1.1 Machine Learning . 5
2.1.2 Toolkit . 6

2.2 GPU Platform . 7
2.2.1 GPU Architecture . 8
2.2.2 Structure of a Streaming Multiprocessor 9
2.2.3 Memory Hierarchy . 10

2.3 CUDA Programming Paradigm . 11
2.3.1 CUDA Programming Framework 11
2.3.2 CUDA Thread Hierarchy . 12
2.3.3 CUDA Thread Execution . 13
2.3.4 CUDA Memory Hierarchy . 14
2.3.5 CUDA Runtime API . 15

2.4 Performance Evaluation in GPU . 16
2.5 Profiling Tools . 17

2.5.1 nvprof . 17
2.5.2 NVIDIA Visual Profiler(NVP) 18

2.6 Visual Studio Performance Profiler 19
2.7 Principles for an Energy Efficient Design 21
2.8 Dataset . 22

2.8.1 IRIS Dataset . 22
2.8.2 MNIST Dataset . 22

2.9 Problem Statement . 23

3 Overview of Lifelong Learning from Zero (LL0) Algorithm 27
3.1 LL0 Algorithm . 27
3.2 Mathematical Activation Function . 28

3.2.1 Gaussian Activation Function 28

xi

Contents

3.2.2 Sigmoid Activation Function 29
3.2.3 Softmax Activation Function 30

4 Software Architecture 33
4.1 Software Architecture . 33

4.1.1 Architecture . 34
4.1.1.1 Data Storage . 35
4.1.1.2 Layers . 35

5 The LL0 Implementation 39
5.1 Basic Units of LL0 Algorithm . 39
5.2 Extension . 42

5.2.1 Extension Set . 42
5.2.2 Extension Rules . 43

5.3 Hyper Parameters . 44
5.4 Backpropagation . 46

6 Experimental Methodology 49
6.1 Methodology Approach . 49

6.1.1 Verification . 50
6.1.2 Executing Benchmarks . 50
6.1.3 Profiling . 50
6.1.4 Identifying Bottlenecks . 51
6.1.5 Modify Software Architecture 51
6.1.6 Exit Strategy . 51

6.2 Hardware Resource . 51
6.3 Setting up of Benchmarks . 51

6.3.1 Benchmark: Number of Feedforward in the unit of Time . . . 52
6.3.2 Benchmark: Time Consumed for Multiple Epoch 52

6.4 Profiling Strategy . 52
6.4.1 API Calls Analysis . 53
6.4.2 Application Profiling . 53

6.4.2.1 Kernel Execution Analysis 53
6.4.2.2 Wrap Profiling . 54

7 Results 57
7.1 Reflection of Software Architecture 57
7.2 Verifying the implementation . 58
7.3 Benchmark of Performance: Number of Feedforward in units of Time 59

8 Discussion 63
8.1 Verifying the implementation . 63
8.2 Benchmarking of Performance . 64
8.3 Shortcomings of the System . 65
8.4 Future Work . 66

8.4.1 Suggestion . 67

xii

Contents

9 Conclusion 69

Bibliography 71

xiii

Contents

xiv

List of Figures

2.1 CUDA Capable GPU Architecture with gigabytes of Graphics Dou-
ble Data Rate(GDDR) and Synchronous DRAM(SDRAM), known as
Global memory [1] . 8

2.2 Multiprocessor Structure, Illustration of N multiprocessor with M
cores each and details of every block of a core with the connection
between the processor and the device memory [2]. 9

2.3 CUDA Thread Organization depicting how CUDA capable architec-
ture, splits the device into grids, blocks, and threads in a hierarchical
structure. Illustration of how Host(CPU) launches kernels along with
its associated grids on the device(GPU) with a batch of thread blocks
[3]. 12

2.4 CUDA Thread Execution illustrating CPU serial code runs first fol-
lowed by GPU parallel code where nBIK and nTid refers to several
blocks and threads per kernel respectively. Once GPU completed its
execution, the CPU starts its execution [3]. 13

2.5 CUDA Memory Hierarchy depicting different types of memory in the
CUDA device, Host transfer data to/from Global and constant mem-
ories on the device [3]. 14

2.6 Illustration of CUDA API located between Application, Library, and
driver to translate the high-level instruction into the low level to man-
age CUDA driver API [4]. 16

2.7 NVIDIA Visual Profiler depicting the number of computing resources
consumed by each function, for example, the gaussian activation con-
sumes 13.4%, the linear layer consumes 9.3%, etc. The data transfer
between Central processing unit (CPU) and Graphics Processing Unit
(GPU) is observed in section MemCpy(HtoD - DtoH). The runtime
Application Programming Interface (API) calls when the application
was loaded with an MNIST dataset of 60000 images of size [28× 28]
pixel. 19

xv

List of Figures

2.8 Visual Studio Performance Profiler depicting process memory be-
haviour on a memory scale of Megabyte(MB), Percentage of CPU us-
age and heap memory consumption when the application was loaded
with MNIST dataset of 60000 images of size [28×28] pixel. To deter-
mine memory consumption, two snapshots have been taken at 19.71s
and 19.72s. By looking closely on the memory usage, the heap mem-
ory usage has been increased by 86.94KB during the second snapshot
at 19.72s. 20

3.1 Gaussian activation functions g(x) = exp
(
− (x−µ)2

2σ2

)
, where µ = 0.5,

σ = 0.5. 29
3.2 Sigmoid activation functions f(x) = 1

1+e−x , where x defines the slope
of the curve. 30

4.1 The solution to the challenges of LL0 implementation. 35
4.2 Components of the layer: base function, neural layer and neural net-

working merging to form layer. Layer is the building block of imple-
mentation of LL0. 36

4.3 A representation of LL0 network with hidden layer and nodes. 37
4.4 Software architecture of the implementation of LL0 depicting the data

path and the hidden layer compartmentalisation. 37

5.1 Input Node depicting multiple outgoing edges to the value nodes. . . 39
5.2 Value Node depicting one incoming edge either from Input Node or

Concept Node and outgoing edge to the concept node. 40
5.3 Concept Node depicting incoming edges from value node and outgoing

edges to value node and output nodes. 40
5.4 Output node depicting incoming edges from every concept nodes and

outgoing edge is the output of the softmax activation function. 41
5.5 Illustration of how the new node is added into the neural network

from the Input Node . 43
5.6 Illustration of how the new node is added into the neural network

from the concept nodes . 43

6.1 Methodology iteration flow. 50

7.1 Accuracy of C++ and PyTorch implementation on MNIST 60,000
training data and having a correlation of 0.9660. 58

7.2 Accuracy of C++ and Python implementation on MNIST 10,000 test-
ing data and having a correlation of 0.9103. 59

7.3 The total time consumed, in logarithmic scale, for sending 60,000
training data point of MNIST data set with respect to different batch
sizes. 60

7.4 The total time consumed, in logarithmic scale, for sending 10,000
testing data point of MNIST data set with respect to different batch
sizes. 61

xvi

List of Tables

7.1 Time taken for Mnist 60,000 Feed forwards for different batch sizes
by Python and C++ implementation followed by speed up of C++ over
the Python implementation . 60

7.2 Time taken for MNIST 10,000 Feed forwards for different batch sizes
by Python and C++ implementation. The last column depicts the
speed up of C++ over the Python implementation. 60

xvii

List of Tables

xviii

1
Introduction

Historically programmers have written sequential programs, based on the model de-
scribed in 1945 by Von Neumann [5]. Further they have relied on the advancement
of microprocessors to make an application to run faster, develop new features, and
improve the capabilities of the software. This development in hardware capabilities
came to a staggering halt in 2003 due to limitations in aspects of physics such as
heat-dissipation and energy consumption. These limitations curbed the increase of
the clock frequency and stalled the growth in activities that can be performed in
each clock cycle within a single CPU [6].

To solve this issue, the semiconductor industry has followed two main trajectories
for designing microprocessors [7]. First one being, the multi-core (2 - 8 or so cores)
trajectory which seeks to double the core count with each core sustaining the highest
execution speed of sequential programs. The other path being the many-core (hun-
dreds of core) trajectory, which concentrates on improving the throughput of the
parallel applications. Both these paths have benefited immensely from the doubling
effect of semiconductor process generation [8]. The characteristics of the application
determine the performance it takes from the microprocessor. The sequential com-
putation has benefits using multi-core architecture, whereas the applications with
potential parallelism are advantageous to run on many-core architecture [9].

The development of many-core devices has opened a new avenue for programmers
to write multi-threaded parallel code for applications which have inherent paral-
lelism, and now can be exploited due to the existence of such devices. GPU is
one such many-core device that has over the years developed in response to intense
demand from the video game industry. The computational intensive workload of
computer-generated graphics has resulted in the development of the modern GPU
architecture, which is robust to handle applications that require high throughput,
are computationally heavy or needs lower latency. Machine learning-based applica-
tion is one such area where GPU is being used, as a hardware accelerator, and is
showing astounding potential [10][11].

Machine learning is the field of study that utilizes algorithms to find patterns in
data, which then allows a computer to learn automatically without human help or
interventions. It is making significant advances to complex problems like image and
speech recognition which were difficult to solve using traditional methods [12][13].
One of such algorithms is Life Long learning from Zero (LL0), a machine learning
algorithm with a dynamic approach [14].

1

1. Introduction

The LL0 is a patent-pending algorithm developed by Dynamic Topologies AB, Swe-
den, a machine learning-based startup based in Gothenburg. The algorithm has
shown that it can outperform traditional machine learning algorithms when tested
across numerous data sets of distinct types, on versatility and has shown fast learn-
ing with low energy consumption [15].

This algorithm uses the concept of neuroplasticity, which is the biological ability of
a brain to change the neural structure to adapt to the environment [16]. LL0 em-
ploys a dynamic neural network structure which mimics animal behavioral learning
such as forgetting, generalization, and expanding to achieve lifelong learning, unlike
algorithms with static structure [15].

1.1 Problem Description
The implementation of LL0 is a prototype built to test the theory of the algorithm,
and it uses PyTorch libraries for optimization on a GPU platform [17]. PyTorch is
the most commonly used machine learning toolkit used in the community [18]. How-
ever, the PyTorch implementation of the LL0 algorithm scales poorly on large data
sets due to two major factors. Firstly, the PyTorch implementation is incompatible
because the graph-based structure was used to implement LL0 whereas PyTorch is
an array-based programming model. Secondly, there is an increase in computational
overhead for defining a complex dynamic structure in PyTorch. Besides, there are
additional challenges to the implementation concerning the dynamic nature of LL0.

The paper [19] argues that the most common machine learning toolkit performs
poorly on algorithms that have dynamic structures. This is due to the challenges
and the complexity involved in developing robust systems that match the require-
ment of an evolving structure and also deliver substantial performance. This thesis
explores a solution that will exploit the unique properties of LL0 and the inherent
parallelism to overcome these limitations, as mentioned in [19], and to outperform
the implementation in PyTorch.

2

1. Introduction

1.2 Scope
The thesis aims to study the LL0 algorithm to identify potential points of hardware
accelerations. This includes developing custom mapping of the algorithm with the
GPU, setting up a methodology to eliminate bottlenecks and improve parallelism.
Additionally, we will verify that the implementation works as the algorithm intends
and define benchmarks to quantify the performance for comparison.

The thesis goal is accomplished by writing a customized software architecture, to
capture the dynamic nature of the LL0, and writing dedicated Compute Unified
Device Architecture (CUDA) kernel and data paths for GPU optimization. The
functionality of the architecture is verified by testing on MNIST dataset [20], and
IRIS dataset [21].

Hardware acceleration of algorithms can be limited by bottlenecks caused by data
transfer, computation overhead, or underutilized parallelism. A methodology is
framed to improve the performance of the implementation by profiling it for bottle-
necks. The methodology standardizes the finding and fixing of bottlenecks into an
iterative process that improves the performance of the implementation.

Tools like visual studio profiler and Nvidia profiler are used for profiling and analyz-
ing potential sources of parallelism. Further to compare the performance between
the two implementations, benchmarks are created which capture the essence of the
LL0 algorithm and are used for comparison.

The rest of the thesis organization is as follows. Section 2 provides details on the
background of the machine learning toolkit, GPU architecture, CUDA programming
paradigm, and principals for performance gain. Section 3 introduces an overview of
the LL0 algorithm. Section 4 explains the proposed software architecture for the im-
plementation of LL0, and Section 5 provides the details of the LL0 implementation.
Section 6 explains the experimental methodology. Section 7 presents the results
from the thesis and the performance comparison with the python library implemen-
tation on a GPU platform, followed by discussions in Section 8 and conclusions of
the thesis in Section 9.

3

1. Introduction

4

2
Background

This section briefly describes about machine learning toolkits, graphics processing
unit(GPU) architecture and Compute Unified Device Architecture(CUDA) platform
and its framework, principles of energy efficient design, datasets used to test the
performance gain and accuracy and a brief explanation of problem statement.

2.1 Machine Learning and Toolkit

2.1.1 Machine Learning
Machine learning has contributed successfully in the advancement in fields of im-
age recognition, speech recognition [22][23], gaming [24], language recognition and
analysis [25][26]. This is accomplished by relying on feature engineering [27]. Fea-
tures are input data transformed into a numerical representation, which is easier
to handle by the algorithms such as classifiers to produce better results. Feature
engineering is about sections of the right features to be applied to data which results
in algorithms giving the best prediction to problems. For example, in the case of
identification of handwritten digits. The digits were predicted using features such
as edges, angles of slopes, or enclosed holes. These features were estimated by filters.

Until around 2000, feature engineering was a manual process in which engineers
handcrafted features for different data sets and repeated the process to find the
best features. This was completely transformed with the concept of deep learning.
Deep learning automated the process of feature selection which resulted in ground-
breaking results and led to the current remarkable growth in the field of machine
learning.

Deep learning identifies the best features automatically by iterating over the raw
data. For example, in the above-mentioned identification of handwritten digits prob-
lem, the processes of deep learning start with a base filter for predictions. It iterates
over the raw data multiple times, while incrementally changing the parameters of
the filter, to achieve a better prediction after the next iteration. These incremental
changes are governed by mathematical algorithms, such as gradient descent, which
results in better predictions. At the same time, it avoids taking the big step sizes
which help in achieving an optimal solution. This advancement helped to automate
the painstaking process of creating handcrafted features.

5

2. Background

2.1.2 Toolkit
The contribution to the advancement in machine learning field are primarily due to
development of sophisticated learning models [12][28], large scale open source data
sets [29][30] and powerful software toolkits which help researchers to put conceptual
models into practice by utilizing computational resources for training models [31][32].

Deep learning practitioner investigates on experimenting with new models for novel
research areas or examining new designs. However, before researching there are nu-
merous additional challenges such as accelerating programs from a single device to
running on data center clusters, to handle dataset preprocessing, statistical analy-
sis, plotting, and more. These are nontrivial engineering challenges and impractical
for a single practitioner to have skillsets to solve. Machine learning toolkits solve
this problem by handling these engineering challenges in the backend and provide a
platform for the deep learning practitioner to research on machine learning.

The most common programming paradigm used by various toolkits [33][34][35][36]
is static declaration. Under this paradigm the solution is divided into two parts:

• Definition of a computational architecture: The front end part of toolkit
where the deep learning practitioner describes the model, a structure or a neu-
ral network best suited for the algorithm. Toolkits provide a level of abstrac-
tion to the users which makes it simpler to express their models.

• Execution of the computation: The toolkit manages the hardware re-
sources and makes optimisation necessary to get the acceleration from the
underlying hardware.

Machine learning deals with computationally heavy workload, and the tools have
to balance between providing users with a simple environment for development and
manage the hardware resources effectively. This is achieved by with the help of com-
putational graphs. A computational graph is a symbolic representation of complex
numerical statements which consists of primarily computation operators. A com-
piler then maps it to the hardware which helps in maximum utilisation of underlying
hardware [33].

The success of toolkit is in converting the user-provided abstractions into a compu-
tational graph. The user now can define a model and run it across different hardware
architectures and also on a large number of devices in data centres with absolutely
no knowledge of how the hardware works.

6

2. Background

2.2 GPU Platform
GPUs are many-core computational devices that provide a platform for parallel com-
putation. It is in contrast to CPU. Modern CPUs are multi-core and are efficient in
terms of sequential processing. It supports tasks like operating systems, I/O devices,
and software applications, which makes it more suitable to support computation for
diverse applications. However, it is disadvantageous in the case of applications re-
quires to perform complex repetitive operations. For example graphics processing.
It is better to have multiple cores of small compute engines to perform the same
task, instead of having one powerful compute engine to perform the heavy operation.
This results in a speedup over sequential execution [1], and many such applications
can be accelerated efficiently using GPU.

A GPU that is capable of handling many computations that were traditionally han-
dled by CPU is known as general-purpose GPU (GPGPU). The GPU performance
has provided a significant edge over the CPU concerning Giga floating-point oper-
ations per second (Gigaflops), computation speed. This provides an incentive for
programmers to utilize the massively parallel computation offered by GPU and make
the applications GPU-oriented.

Traditionally, GPUs were designed for rendering graphics pipelines influenced by
the needs of computer graphics and accelerating 3-D and 2-D graphics. Thus, the
processing capacity of the GPU was limited and inflexible for GPGPU. However,
Machine Learning (ML) has recently emerged as a crucial application that is one of
the guiding factors for the future of the design architecture of GPU. ML algorithms
require high computational power and GPU has multiprocessing units which makes
it a promising computing platform.

The GPU as a platform has assisted researchers in the fields of statistical physics,
bioinformatics, computational finance, and many more. The GPGPU has become
a prominent scientific, computing platform choice after NVIDIA Corporation intro-
duced CUDA platform [37]. CUDA is NVIDIA’s parallel programming paradigm
and offers a software environment that enabled programmers to use high-level pro-
gramming languages, for example, C/C++ to write instructions on massively parallel
GPU traditionally shader-based framework was used to program the GPU [38]. This
motivates further development of next-generation GPU algorithms [39].

7

2. Background

2.2.1 GPU Architecture
The architecture of a CUDA-capable GPU is organized into multiple streaming mul-
tiprocessors (SM) that consist of multiple processors running the same instruction
or threads as shown in Figure 2.1. A thread is an action or job that is performed
on a processor. The amount of SMs varies from generation in GPU architecture.
Each SM has an array of Streaming Processors(SPs) that share an instruction cache
and control logic as shown in Figure 2.1. In an SM 32 threads that have the same
instruction are executed together and this is called a warp. Each SM manages mul-
tiple warps using a warp scheduler. Modern GPUs come with gigabytes of Graphics
Double Data Rate(GDDR) and Synchronous DRAM(SDRAM), referred to as global
memory in Figure 2.1. The GPU has a separate RAM from the CPU, used for frame
buffer memory which is needed for rendering graphics. The CUDA application trans-
fers data between the CPU’s system memory and GPU’s global memory. During
runtime, the application holds the data in the global memory and establishes a con-
nection to system memory when data must be transferred between the GPU and
CPU.

Parallel Data Cache

Texture

Parallel Data Cache

Texture

Parallel Data Cache

Texture

Parallel Data Cache

Texture

Thread Execution Manager

Input Assembler

Host

Load/Store Load/Store Load/Store Load/Store

Global Memory

Figure 2.1: CUDA Capable GPU Architecture with gigabytes of Graphics Double
Data Rate(GDDR) and Synchronous DRAM(SDRAM), known as Global memory
[1]

8

2. Background

2.2.2 Structure of a Streaming Multiprocessor

A GPU consists of an array of SM with several processors each, as shown in Fig-
ure 2.2, i.e N multiprocessor with M cores each. As illustrated in Figure 2.2 the
processors share the same instruction unit, texture cache, and constant cache.

In NVIDIA GPU architecture, each SM has multiple CUDA cores, and the number
of cores depends on the generation of the architecture. A CUDA core is a specialized
processor for integers and single point floating operations, which are used to run the
threads for GPGPU computations [40].

Every SM is a collection of 32 threads having the same instructions executed at
the same time. Multiple warps are managed and run concurrently by an SM using
a warp scheduler. Any thread inside a warp having a different instruction leads
to warp divergence, which leads to poor performance since the thread batch loses
parallelisms and becomes sequential.

Shared Memory

Processor 1 Processor 2 Processor M

Registers RegistersRegisters

Microprocessor N

Microprocessor 1

Microprocessor 2

Device

Device Memory

Instruction
Unit

Constant
cache

Texture
Cache

Figure 2.2: Multiprocessor Structure, Illustration of N multiprocessor with M
cores each and details of every block of a core with the connection between the
processor and the device memory [2].

9

2. Background

2.2.3 Memory Hierarchy
Memory access is one of the biggest bottlenecks of computing [41], which is due to
uneven growth in the performance of CPU and the lower performance of memory.
This makes it expensive to complete memory access compared to CPU computation.
Modern CPU manages this with large caches. A cache is a small chunk of memory
that sits between the CPU and the main memory and offers faster access than main
memory.

A GPU approaches the slower memory access problem using a different strategy: It
uses massive parallelism to fill with computation while waiting for memory access.
For example, an application like video processing, image processing, or simulations
is well suited for GPU because the computational load is intensive enough to reduce
the effect of memory access time. The memory hierarchy of GPU is designed to in-
crease the throughput besides matching this strategy. Memory hierarchy has many
layers as illustrated in Figure 2.5

• Registers: The fastest piece of the memory block which is located in each
SM. Thus is used to store a local variable of the kernel and is limited in size.

• Local memory: It sits inside the global memory and acts as an additional
memory space for SM. It is 150× slower than registers.

• Shared memory: A memory bank that lies inside an SM and has the same
hardware structure as the L1 cache, is across blocks and is explained in detail
in Section 2.3.4.

• Global memory: The vast majority of the memory and also the slowest. It
is equivalent to RAM in CPU but differs in hardware structure.

• L1\L2\L3 cache: It behaves similarly to the cache of CPU and is used by
compilers to cache memory blocks for GPU.

• Constant memory: It is a special memory block that is located in the global
memory. It is used to store constants, which cannot be compiled into the pro-
gram and values to be passed to kernels.

10

2. Background

2.3 CUDA Programming Paradigm
Since 2003, attempts were made to use GPU’s computational power for non-graphics
applications, such as protein folding, quantitative trading, and software accelera-
tion. However, to use GPUs as GPGPUs, the application developers had to use
graphic-specific programs like Directx or OpenGL. To use such software application
developers needed to have intricate details on how graphics work and how to use
these graphical APIs.

To assist programmers in general-purpose computing on a GPU [42], NVIDIA de-
veloped CUDA, which is a parallel computing programming model. CUDA provides
a platform for application developers to directly control the GPU hardware and use
GPU’s computational power to accelerate applications.

CUDA offers a scalable programming model with a low learning curve for devel-
opers with standard programming languages. The programming model consists of
breaking the problem into small sections of independently-run parallel sub-programs.
These subprograms are organized into blocks of thread, which is an independent line
of code that can be run in parallel with similar independent lines of code. Appli-
cation developers can control the execution of the threads and also the formations
of the blocks. CUDA manages the mapping of these blocks on the GPU and man-
ages memory. The CUDA programming paradigm has unlocked the potential of
applications that can now use GPU as hardware accelerators.

2.3.1 CUDA Programming Framework
The CUDA program is a unified source code divided into two parts, host code, and
device code. Generally, the code runs on the CPU and executes serially is known as
host code. The code that exhibits a high degree of parallelism and is executed on
the GPU is known as device code. Since CUDA is an extension of C, the host code
of the program is written using C, and the device code is declared using CUDA C
syntax. The applications can utilize the GPU features by calling the kernel written
using the CUDA function. During compilation, the NVCC compiler [43] separates
these two codes, the host code is compiled with the standard C compiler, whereas
the device code is compiled with the NVCC compiler mapped to the GPU.

The CUDA program can be triggered by executing the kernel functions. During
compilation, the kernel will allocate multiple threads to the GPU. There is a dis-
tinct syntax to call CUDA programs like Global,Device and Host. CPU uses the
Global keyword to invoke a kernel on GPU and the Host keyword can be used to
run the kernel on CPU. The GPU can invoke kernel using the Device keyword.

11

2. Background

2.3.2 CUDA Thread Hierarchy
High performance of the processing system can be achieved by breaking the prob-
lem into small sections and process these individual sections parallelly. The GPU
processes instructions parallelly by allocating multiple threads to each task. The
threads generated by the kernel are called as grid, and grids are created for each
invoked CUDA function. CUDA organizes these threads into logical blocks, where
each thread is synchronized and has its ID to determine which data to work on,
within the block that executes the single function. Thousands of threads together
execute one function, referred to as kernel. However, data managed by each thread
is different.

A group of one or more blocks is known as grids and blocks are made of threads as
shown in Figure 2.3. These threads operate on individual cores of the GPU multi-
processor. The CUDA paradigm enables each core to execute the same instruction
on different data and each thread execution is managed using its index threadIdx.
There is a limit to the number of threads per block and a maximum of 1024 threads
can be present in one block considering all the threads share the same limited mem-
ory resource of the block. Blocks in the grids can be managed using blockIdx.

Kernel 2

Kernel 1

Device
Grid 1

Block
(0,0)

Block
(1,0)

Block
(2,0)

Block
(0,1)

Block
(1,1)

Block
(2,1)

Grid 2

Block (1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Host

Figure 2.3: CUDA Thread Organization depicting how CUDA capable architec-
ture, splits the device into grids, blocks, and threads in a hierarchical structure.
Illustration of how Host(CPU) launches kernels along with its associated grids on
the device(GPU) with a batch of thread blocks [3].

12

2. Background

Problems with a high degree of parallelism can be solved using multidimensional
arrays and CUDA offers built-in multidimensional thread indexing called dim3. If
the application is multidimensional, the threads and blocks can be launched into
three dimensions. The thread and block IDs can be 1D, 2D, or 3D and their index
can be managed using gridDim and blockDim respectively. All the threads in
the blocks execute the same function by efficiently sharing the data through a low
latency shared memory, thus making it ideal for parallel processing. Additionally,
there is no dependency between the two blocks of a grid i.e. two threads from two
different blocks work independently without any synchronization.

2.3.3 CUDA Thread Execution
The CUDA thread execution is illustrated in Figure 2.4. The program starts with
the execution of the host code (CPU code). When the kernel function is invoked,
the device code will execute by launching a large number of threads to exploit data
parallelism. As stated earlier several blocks form a grid and multiple threads in
block execute an instruction parallelly by utilizing massive GPU processing power.
The processor in the GPU multiprocessor facilitates the threads to collectively ex-
ecute single instruction on different data. There are two kinds of thread execution
in CUDA, Synchronous and Asynchronous. In synchronous execution, when the
host invokes the device kernel, the host will suspend its execution until the GPU
completes its tasks. However, in asynchronous execution, the host will continue to
operate while the GPU is executing its set of instructions. When all the threads
of the kernel complete its execution, the corresponding grid is terminated until the
host invokes another kernel, resulting in the generation of another set of threads,
grid, as shown in Figure 2.4.

Grid 0

Grid 1

GPU Parallel Kernel
KernelA<<<nBIK, nTId>>>(args);

GPU Parallel Kernel
KernelA<<<nBIK, nTId>>>(args);

CPU Serial Code

CPU Serial Code

Figure 2.4: CUDA Thread Execution illustrating CPU serial code runs first fol-
lowed by GPU parallel code where nBIK and nTid refers to several blocks and
threads per kernel respectively. Once GPU completed its execution, the CPU starts
its execution [3].

13

2. Background

2.3.4 CUDA Memory Hierarchy
The memory hierarchy is an important component of the CUDA platform because
memory access plays an important role in the computation time of the system. The
memory structure of the CUDA is depicted in Figure 2.5. The physical components
of memory are discussed in Section 2.2.3. The interaction of CUDA, the memory
hierarchy and the control it provides to developers is the reason for the success of
GPU as a hardware accelerator for general purpose applications.

Shared Memory

Registers Registers

Thread
(0, 0)

Thread
(1, 0)

Block(0, 0)

Shared Memory

Registers Registers

Thread
(0, 0)

Thread
(1, 0)

Block(1, 0)

Constant Memory

Global Memory

Host

Device(Grid)

Figure 2.5: CUDA Memory Hierarchy depicting different types of memory in the
CUDA device, Host transfer data to/from Global and constant memories on the
device [3].

The CUDA programming paradigm allows a program, with a sufficient amount of
parallelism, to be broken down into several sub-components of computationally sim-
ilar units which are then is mapped on a GPU for computation. A kernel is invoked
to execute this sub-component. The CUDA executes the threads in the form of grids
of blocks and maps individual blocks on an SM. Each block that is assigned to an
individual SM is broken down into warps, which consists of 32 threads and executed
parallelly on the SM.

14

2. Background

To achieve high throughput each SM has a register, shared memory and L1 cache.
The register is an extremely fast memory of a limited size where each thread can
access for storing and retrieving data. The variables declared inside the kernels are
stored here. Shared memory is a large block of memory having the same hardware
architecture as that of L1cache. Shared memory is completely in control of users
and the memory is shared by all the threads of a block. This control provides users
to write optimized memory access using complete hardware-specific memory pat-
terns. For example, the output could be built on shared memory before offloading
it to global memory which saves a large number of clock cycles. L1cache is used by
the compiler to bring the instruction and data from the large global memory.

A GPU is designed to have a high throughput and a large amount of its memory is
off-chip called global memory which is separate from the GPU core. This memory
is used to store data besides it is slow. L3 and L2 caches are used for transporting
the data from global memory to SM and behave similarly to the caching mechanism
of the CPU.

The flexibility provided by CUDA to control the memory hierarchy gives the devel-
oper an option to optimize the code and deliver better results than using a software
library.

2.3.5 CUDA Runtime API
The intermediate layer between the application and CUDA driver referred to as
CUDA runtime API is illustrated in Figure 2.6. The CUDA consists of a high-level
runtime API and a low-level driver API. All the instructions are translated and
processed by low-level API drivers. CUDA libraries can also invoke the CUDA run-
time API. CUDA frameworks provide a controllable hierarchy to access the CUDA
drivers.

15

2. Background

CUDA Driver

CUDA Runtime

Application

CUDA
Libraries

(FFT, BLAS)

CPU

GPU

Application

Figure 2.6: Illustration of CUDA API located between Application, Library, and
driver to translate the high-level instruction into the low level to manage CUDA
driver API [4].

2.4 Performance Evaluation in GPU
In ML applications, GPU is used as a coprocessor, which handles computationally
heavy workloads whose neural structure is stored in the GPU RAM. CPU manages
the control flow of logic, initiates function calls for the GPU and transfers necessary
data required.

It is essential to evaluate whether the parts of the application are worth computing
in GPU. Inefficient mapping of algorithms or applications will lead to performance
throttling. Frequent data transfer with the CPU is also an expensive task that con-
sumes multiple clock cycles causing slowdowns. Many useful general-purpose guides
have been created to give an idea of how to better harness GPU power [44][45].
Evaluation helps to understand the extent of the concurrent processing power of the
GPU being underutilized.

In the CPU world, a wide range of tools have been employed to investigate new
concepts and designs such as binary instrumentation tools, simulators, instruction
sampling tools, and profilers. These tools provide a variety of features and capa-
bilities to the computer architects to develop new computer architecture [46]. On
the other hand, GPU computing for scientific research has been steadily increasing

16

2. Background

and it follows a different programming paradigm. The GPU manufacturers have
developed similar tools leveraging hardware profiling and GPU debugging such as
NVIDIA’s visual profiler [47], NVIDIA nsight systems [48], and nvprof. nvprof helps
to profile the application from the command line, diversely Nvidia visual profiler and
nsight systems are GUI-based tools. But these tools are largely limited by the fixed
amount of features and do not offer the user the flexibility provided by the CPU.

Simulators are used to gauge the performance of the GPU application. They are
flexible and provide fine-grained details of execution. Further, they provide the most
control over architecture under investigation and are fundamental for many types of
detailed studies. However, they are time-consuming to develop and are moderately
slow in simulation rates, which force the researcher to provide small-scale and tailor-
made input so that the experiments execute within the time limit [46]. Thus for
input-dependent applications, users cannot collect data for real workload execution
conditions and its data sets. Also, due to the lack of interruptions and simultaneous
multithreading(SMT) in GPU, it is difficult to measure the periodic sampling [49].

Profiling provides information on the performance of the application on GPU, which
helps to evaluate the mapping of the functions on the device. Profiling enables the
optimization of the performance of the application by providing insight into how
the application uses the architecture. This includes memory access, stall times,
and measuring the performance at the thread level [49]. Further, profiling helps to
identify the inherent root cause of performance degradation of an application.

2.5 Profiling Tools
The performance of the LL0 implementation can be enhanced by eliminating all
the potential performance bottlenecks without affecting the behavior of the system.
These bottlenecks can be identified with the help of tools, referred to as nvprof
and NVIDIA Visual Profiler (NVP). It is essential to identify and exploit the op-
portunities to optimize the application for high performance and understand how
well the application is executed on the GPU, which design feature contributes to the
performance degradation. To obtain detailed performance metrics, the application
is evaluated on nvprof and NVP tools.

2.5.1 nvprof
CUDA is equipped with a powerful tool known as nvprof. Nvprof is a light-weight
profiler and it provides information on how the CUDA kernels running on NVIDIA
GPU. It can profile the applications written using different programming languages
such as C++, python, etc. But, these applications should launch the kernel using
the CUDA runtime API.

Data transfer is expensive in terms of energy consumption, where communication
between the GPU and CPU through the bus is one of the bottlenecks which leads
to a reduction in the performance of the system concerning time. Time spent on

17

2. Background

transferring the data is the time lost on computing. Unoptimized and avoidable
data transfer is introduced in the system while implementing the algorithms in the
higher-level languages such as C++ and Python. To reduce the amount of data
transfer, it is necessary to trace the CUDA calls and identify the specific portion of
the program which is slow and improve the data path.

2.5.2 NVIDIA Visual Profiler(NVP)
The NVP provides profiling information using GUI, and it helps to assess each child
process computation time i.e. the amount of time consumed by each child process
in GPU and CPU, overall resources used by these child processes at a specific time,
and the data migration between GPU to CPU.

In Figure 2.7, the application is loaded with MNIST dataset of 60000 images of size
[28 × 28] pixel, observed the total number of runtime API calls between 140s and
380s. In the thread section, data migration which is the movement of data from
GPU to CPU can be seen under the section unified memory. The overall data
transfer between GPU and CPU can be observed under the section CUDA where
MemCpy(HtoD) denotes data being copied from CPU to GPU and MemCpy(DtoH)
denotes data being copied from GPU to CPU, here H denotes Host (CPU) and D
denotes Device(GPU). Overall computing resources consumed by each function can
be viewed under the section compute.

For Example, the Gaussian activation forward function is consuming 13.4% GPU
resource, and sigmoid activation forward consuming about 0.6% of GPU resources.
These data help in analyzing the computation overhead and the application is ac-
celerated by efficiently using these resources.

18

2. Background

Figure 2.7: NVIDIA Visual Profiler depicting the number of computing resources
consumed by each function, for example, the gaussian activation consumes 13.4%,
the linear layer consumes 9.3%, etc. The data transfer between CPU and GPU
is observed in section MemCpy(HtoD - DtoH). The runtime API calls when the
application was loaded with an MNIST dataset of 60000 images of size [28 × 28]
pixel.

2.6 Visual Studio Performance Profiler
Efficient memory management contributes to the overall performance of the system.
The visual studio performance profiler is used to identify the memory consumption
of each function. It is predominantly used for measuring stack and heap memories
of CPU utilization with the help of an integrated development environment(IDE)
Microsoft Visual Studio. The Visual studio facilitates users to insert breakpoints
between the function calls, which results in the program execution halting. At that
point, a snapshot can be taken that helps to determine the heap and stack memory
consumption. Additionally, it provides the user to granularly analyze which process
is responsible for high memory consumption or the memory leak.

19

2. Background

In Figure 2.8, the process memory(MB) is the Random Access Memory (RAM) of
the system, CPU(% of all processors) denotes the percentage of CPU being used.
Memory usage denotes the amount of memory allocated and the change of heap
memory.

Figure 2.8: Visual Studio Performance Profiler depicting process memory be-
haviour on a memory scale of Megabyte(MB), Percentage of CPU usage and heap
memory consumption when the application was loaded with MNIST dataset of 60000
images of size [28 × 28] pixel. To determine memory consumption, two snapshots
have been taken at 19.71s and 19.72s. By looking closely on the memory usage, the
heap memory usage has been increased by 86.94KB during the second snapshot at
19.72s.

In Figure 2.8, the tool visual studio profiler is used to observe the CPU memory
and utilization. For this profiling section, a program is loaded with MNIST datasets
of 60000 images of size [28 × 28] pixel each. There are four unique peaks observed
which are explained below.

20

2. Background

The initial linear rise in the memory is because of 60,000 training images and 10,000
test images being transferred from the Read Only Memory (ROM) to RAM followed
by transferring of labels.

The first peak (marked as 1 in Figure 2.8) is due to the transfer of 60000 training
images and their labels from RAM to GPU memory. The second peak(2) is due to
the transfer of 10000 test images and their labels. The dip in process memory is
because of freeing up of RAM memory. The third peak(3) denotes that a new layer
in the neural network has been created. The reference point 4 indicates freeing up
CPU memory since all the data has been transferred to GPU.

2.7 Principles for an Energy Efficient Design
The ML computation workload involves a large number of repetitive operations of
matrix multiplication, additions, and floating-point operations. Repetitious opera-
tions of such kind are energy inefficient in CPU because the cores are not designed
for these kinds of operations. Modern hardware accelerators resolve these strains
with high efficiency. However, the intense energy consumption of ML workload is
not due to the operation themselves rather because of the data movement. The
excessive energy consumption is primarily due to constant data movement from off-
chip to on-chip or from on-chip to cache[50][51]. ML algorithms need to process
large amounts of data to work, where the energy consumption for the transfer of
data from the data storage to hardware accelerators is an order of magnitude higher
than the computation of data itself.

The key to having an energy-efficient design is to have less data movement. There
are two major design philosophies to reduce the data movement in multi-level stor-
age systems. One is the creation of data paths, and the other is exploiting system
parallelism.

• Data Path: Creation of the data path leads to the management of the data
flow. It assists in the scheduling for data reuse and data locality. This results
in high energy efficiency design as the data remains in the closest level of
storage hierarchy and prevents costly access to higher levels of storage.

• Parallelism: The exploitation of the inherent parallelism of the machine
learning systems increases the throughput of data being sent to a hardware
accelerator. This increases the energy efficiency of the system because a large
amount of data can be processed. Increased throughput of data results in data
spending lesser time in memory subsystems.

21

2. Background

2.8 Dataset
Machine learning algorithms, in general, are tested against datasets to determine
the accuracy, energy consumption, and performance of an algorithm. Benchmark-
ing the ML algorithm with classic datasets gives an advantage of comparing with
a large set of algorithms. There are different kinds of datasets available depending
on the purpose of the ML applications such as image and speech recognition etc.
Machine learning algorithms are normally of two types Classification and Regression.

Regression predicts the values and has independent and dependent variables. Pre-
dicting the value of an independent variable by varying dependent variables is known
as regression, for example, predicting the forest fire by providing RH - relative hu-
midity, temperature, and rain, etc. details as input data [52][21].

Classification refers to categorizing the new data based on previously trained data
during training. For example, age of abalone can be predicted by providing physical
measurements like length, height, diameter, and the number of rings, etc as input
to the training [21].

In this thesis, multiple datasets were used during benchmarking and proof of verifi-
cation. Some of them are explained below.

2.8.1 IRIS Dataset
The IRIS dataset contains a set of Iris flower data known as Fisher’s data. Typ-
ically this is used for statistical classification purposes. It contains a total of 150
data points information of the Iris setosa, Iris virginica, and Iris versicolour with 50
samples each. Classification in the iris dataset is performed based on four properties
or features of flowers such as length and width of the sepals and Petals(measured in
centimeters) and species [21].

Iris is a fairly simple dataset to test on a machine learning algorithm. In this
thesis, the iris dataset has been used to test the classifying capability of machine
learning during the initial stage of the algorithm development. This dataset is useful
to examine the accuracy of the algorithm and after achieving acceptable results the
algorithm is tested against large and difficult datasets like MNIST which is explained
in the next section 2.8.2.

2.8.2 MNIST Dataset
Modified National Institute of Standards and Technology(MNIST) is a large hand-
written dataset consist of 60000 image samples for training and 10000 image sample
for testing purposes. MNIST database is derived from a large National Institute
of Standards and Technology(NIST) database as NIST is not suitable for machine
learning applications. MNIST is one of the commonly used datasets in the field of
machine learning like image processing, and pattern recognition because the data is

22

2. Background

readily available and doesn’t require formatting and preprocessing.

The MNSIT database is a set of images of [28×28] pixel each with grayscale contain-
ing digits information bound between [0, 9]. So this is used in supervised learning
to classify numbers between [0, 9]. Each image in MNIST is annotated with labels
denoting the correct number. Since the MNIST has achieved success in terms of
benchmarking dataset, similar MNIST like datasets have been created for a differ-
ent purpose such as Fashion-MNIST, Kannada MNIST, etc.

In this thesis, MNIST dataset have been used to measure the accuracy of the system
and determine the performance bottleneck by providing all 60000 images as an input
to the system.

2.9 Problem Statement
ML toolkits assist deep learning practitioners with their research. The most popular
programming model for the tools is static declaration[19]. However, these kinds of
models perform poorly on the machine algorithms that have the following unique
features[19]:

• Variably sized inputs: A common occurrence in natural language process-
ing algorithm is the differences in speech pattern sizes.

• Variably structured inputs: Tree[53] and graph structure[54] algorithm
where structure of computation varies with input.

• Variably structured outputs: Unique scenario when the algorithm search
space is restrictive to popular points [55].

LL0, the dynamic machine learning algorithm which is the focus of this thesis shares
the majority of the above-mentioned traits. This makes it unique and the common
toolkit will perform poorly for these algorithms.
The tool-kits [19][56] have provisions to handle the above mentioned unique prop-
erties. This is achieved at a cost by implementing a dynamic declaration paradigm,
which increases the computational cost.

PyTorch [18], which is inspired by [19][56], is the most famous toolkit in the machine
learning community for researching models. However, when the implementation of
LL0 was built it faced scalability and performance issues. Similarly, [17] implemen-
tation of LL0, built on NumPy, faced an identical issue.

This thesis has identified two reasons for these issues, firstly, the implementation of
LL0 was graph-based whereas PyTorch is an array-based programming modeland
thus it encountered a compatibility issue. Secondly, PyTorch is designed for flexi-
bility to describe models. But, LL0 has unique features described in Section 5. The
very high level of granular control which is provided by PyTorch adds complexity in

23

2. Background

describing LL0 which increases the overhead of control flow and data flow descrip-
tions.

The solution is to invent a unique software architecture, which defines LLO and has
granular control to deliver high performance when compared to the implementation
described in PyTorch. The paper [19] best describes the following challenges in-
volved with building unique solutions:

• Difficulty in expressing complex flow-control logic: When an algorithm
needs a complex data structure to define itself or require a nontrivial control
flow. It is difficult to implement them correctly in a higher-level language and
implementing them directly on a computational graph toolkit is more compli-
cated and needs significant efforts from the user.

• Complexity of the computation graph implementation: The result
of a custom data structure implemented on a preexisting computation graph
doesn’t support such structures. This increases the complexity of implemen-
tation and reduces the possibility of optimization resulting in a nontrivial
challenge.

• Difficulty in debugging: The best location for catching an error is during
the time of declaration. However, in the case of an algorithm that is dynamic,
logical errors might occur during the execution. This is because the structure
might change from that of its original declarations, which makes it difficult to
identify the location of crashes thus making the debugging process inherently
demanding.

This thesis explores a software architecture, described in Section 4.1, which provides
a basic platform for users to build dynamic structures. The proposed software ar-
chitecture has overcome the above-mentioned challenges by introducing a complex
data structure called layers which captures the essence of the LL0 algorithm.

The usage of concepts of layers instead of a computational graph helps in defining
the structures. This defines the LL0 algorithm better than the fine-grain control
provided by the computation graphs. The complex control flow logic and the op-
timization are done in the backend, which is invisible to the users. The burden
of debugging is also reduced because tests and checks for logic errors can be built
directly upon the layers at the time of the declaration itself.

The proposed architecture is then optimized for performance and energy efficiency.

24

2. Background

25

2. Background

26

3
Overview of LL0 Algorithm

LL0 is a machine learning algorithm that focuses on learning continuously from the
environment, and this process is known as life-long learning [57]. To accomplish
this, it leverages deep learning to build and train a network. LL0 predominantly
focuses on forming an efficient network for individual data set with high accuracy.
This is achieved by using network-modification mechanisms for making predictions
with precision. The LL0 network starts from a blank state and develops its structure
dynamically according to the algorithm described below.

3.1 LL0 Algorithm
The LL0 has the dynamic capability to grow and reduce the size of the network,
by adding or removing neural nodes, continuously during training. The network is
developed to predict an outcome by recognizing a pattern from the available training
data. The main loop of the algorithm is as shown in Algorithm 1[15].

The neural network starts with no neural nodes and develops its structure based
on the input, and recognizes a pattern from the available training data. The net-
work predicts a result by computing the incoming data. If the prediction matches
with actual output, a fine-tuning of the learning parameters is performed known
as backpropagation, explained in detail in Section 5.4. Or else the new nodes are
created which is known as the extension, which is explained in detail in Section 5.2.
LL0 creates a complex dynamic network during training and these structure changes
based on the input data. Generalization is performed to generalize the data to get
better accuracy. The LL0 needs to update the current classifier by accommodating
new continuous streams of data without affecting the previously acquired knowl-
edge. This process is continued until every data point is fed to the system. Learning
from input data results in memory expansion which affects the performance of the
system. Thus it would be better to discard the relatively less used nodes and these
obsolete nodes are removed by executing forgetting as illustrated in Algorithm 1.

27

3. Overview of LL0 Algorithm

Algorithm 1: Main Loop of LL0
receive the first data point (x, y) ;
form |x| input nodes and |y| output nodes ;
while true do

compute network output ŷ produced by input x;
if prediction (ŷ) 6= y then

generalization;
Extension;

else
backpropagation;

end
forgetting;
receives new data points (x, y);

end

Unlike traditional Deep Neural Network (DNN), LL0 uses four different forms of
neuroplasticity [15]:
(i) backpropagation, which fine-tunes the parameters;
(ii) extension, which builds the network by adding new nodes;
(iii) forgetting, which removes the least used nodes;
(iv) generalization, which adjusts the node parameter that potentially prevents cre-
ating extra nodes due to extension.

LL0 has four types of nodes where each node constitute distinct activation func-
tions: input node, which has identity activation function. Output node, which has
softmax activation function. value node, which has Gaussian activation function.
Concept node, which has sigmoid activation function. These activation functions
are explained in the next section.

3.2 Mathematical Activation Function
The activation function is an abstraction that represents whether or not the node
is activated. The activation function facilitates the output to stay between the
acceptable interval. Nonlinearity is introduced in the form of the activation function
where nonlinearity is a threshold-based function. To explain it better we can consider
an example: If the value of the node is above the threshold then the node is said to be
activated. When more than one node has a non-zero value, the activation function
decides to fire the correct classified nodes whose value is above the threshold.

3.2.1 Gaussian Activation Function
The Gaussian activation function constitutes the value node in LL0, which is rare
among neural networks because it has two parameters that are expensive to compute.
The output of the Gaussian activation function is bound between [0, 1] and the

28

3. Overview of LL0 Algorithm

Gaussian function is defined in equation 3.1.

g(x) = exp
(
−(x− µ)2

2σ2

)
(3.1)

where µ denotes the peak of the activation function. The slope of the curve is
controlled by σ. For example in Figure 3.1 the value of both µ and σ is 0.5.

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

x

g
(x

)

Figure 3.1: Gaussian activation functions g(x) = exp
(
− (x−µ)2

2σ2

)
, where µ = 0.5,

σ = 0.5.

3.2.2 Sigmoid Activation Function
The sigmoid activation function is an activation function of the concept node and
is a regularly used activation function in a neural network because of its nonlinear
nature. The sigmoid function is differentiable, which has a non-negative derivative
at each point [58]. The output of the sigmoid function is always bounded within
the range [0,1] which makes it easier to make a distinct prediction. A small change
in the value of x has a significant effect on f(x) when the x value is close to zero.
Besides, f(x) responds slowly at the far end because of a small gradient shown in
Figure 3.2. Sigmoid function can be expressed as equation 3.2.

f(x) = 1
1 + e−x

(3.2)

29

3. Overview of LL0 Algorithm

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

x

f
(x

)

Figure 3.2: Sigmoid activation functions f(x) = 1
1+e−x , where x defines the slope

of the curve.

3.2.3 Softmax Activation Function
The softmax function is an activation function of the output node, which is fre-
quently used for classification purposes. Softmax function accepts the set of inputs
and outputs the probability of the predicted neuron. Softmax function can be de-
fined as equation 3.3.

Softmax(zj(L)) = ezi
(L)

Σjezj
(L) (3.3)

where ezi
(L) stands for weighted sum of the ith softmax neuron and Σje

zj
(L) is the

sum of all j softmax neurons.

30

3. Overview of LL0 Algorithm

31

3. Overview of LL0 Algorithm

32

4
Software Architecture

This section describes the proposed software architecture for the implementation
of LL0. It includes a description of data storage, dynamic networks, and the key
concept of layers.

4.1 Software Architecture
The LL0 algorithm has a dynamic neural network structure. The paper [19] ar-
gues that the machine learning toolkits will face performance issues on the dynamic
structure. One such toolkit is PyTorch[18] , which is derived from [19][56]. When
LL0 was implemented on PyTorch, it encountered a scalability issue [17]. The paper
[17] suggested a need for a specialized solution. This thesis conceives a software ar-
chitecture for LL0 which delivers better results than the implementation in PyTorch.

The most common machine learning toolkit [33][34][35] uses the computational graph
as a central design principle for software architecture. A computational graph is a
symbolic representation of a numerical equation that is used to optimize the work-
load of machine learning algorithms. The use of a computational graph provides
fine-grain control over the implementation of the algorithm. However, complex con-
trol flow and the data flow logic are needed to use this fine-grain control. The
computational overhead of the toolkit increases proportionally to the complexity in
defining the structure of an algorithm.

The shape of the LL0 neural network grows with the data. When implementing
the algorithm in a toolkit, the computational graph will grow proportionally to the
LL0 neural network. This adds overhead and the constant recomputation will make
performance diminish over time. Hence the core principle of the proposed software
architecture is to limit this growing complexity and overhead of an expanding LL0
neural network.

The design principle of the proposed architecture is inspired by Caffe [59]. It is a
machine learning toolkit specialized for images that use the concept of layers over
computational graphs. Layers, in essence, resembles a neural network layer where it
accepts input and drives output after computation. Layers are well suited to resolve
the problem of the growing complexity of expanding LL0 neural network.

33

4. Software Architecture

In layers, the logic and data flow of expansion can be built inside. Therefore, when
the network grows, only new layers have to be added. Adding new layers only in-
creases the computation cost of data. It also saves the overhead of complex data
paths and recomputation of graphs. The growing complexity is limited by having
them pre-computed and built-in layers.

Every time the LL0 neural network changes, the computational graph have to be
recomputed. However, in the case of layers, the logic of expansion is inbuilt, which
needs no recomputation. Additionally, it reduces the overall overhead of the network.
There are few disadvantages as well, unlike the computational graph, the layers need
manual optimization and support to build the structural shape of LL0.

4.1.1 Architecture
There are two major challenges for this software architecture to overcome. Firstly,
it has to provide the users with an abstraction. This abstraction has to be simple
enough for users to define algorithm and various dynamic neural networks. It also
has to capture the dynamic nature of the LL0 and hide underlying systems and
hardware dependencies. Secondly, it has to provide performance. The goal of this
thesis is to provide better performance than existing solutions. The abstraction has
to have a tightly coupled mapping with the GPU.

The proposed software solves these challenges by utilizing the concept of layers,
shown in Figure 4.1. The abstraction was built using the concepts of Runtime
polymorphism and Object oriented programming (OOP). These are used to hide
the inner working from the users. It also provides an abstraction that is used
for building LL0. The performance challenge was solved by breaking layers into
multiple subunits, shown in Figure 4.2. Each subunit holds optimized GPU kernel
invocations for computations. It ensures better mapping of algorithms and easier to
profile the code.

34

4. Software Architecture

Dynamic Structure & GPU Invocation

Dynamic Structure GPU Invocation

Layer

Base Function

Run
tim

e p
oly

morp
his

m

OOP

Figure 4.1: The solution to the challenges of LL0 implementation.

The following part contains the description of the proposed architecture.

4.1.1.1 Data Storage

The software architecture utilizes a single type of structure for data storage known
as the mat, which is a multidimensional array with multiple CPU and GPU invo-
cation inbuilt functions. The mat can be used to store input data, parameters, or
placeholders. This is used by layers as a memory storage unit.

The mat includes functions for the tasks of, ‘reserving memory in the GPU Dynamic
Random-Access Memory (DRAM)’, ‘releasing memory’, and ‘pointers to access data
stored in it’. Usage of the mat has three main advantages over generic data struc-
tures. The first one is the reduction in development time by providing a storage
structure compatible for LL0. The second one is an increase in performance because
the data storage is in GPU DRAM and lastly the mat uses an array-based storage
system, which is better equipped to handle matrix calculations.

4.1.1.2 Layers

The concept of layers in Caffe[59] serves as a neural network. However, in the pro-
posed software architecture, the layers is modular and behaves as a neural network
or as an activation function. The behavior depends on the combination of its un-
derlying subunit. The layers also contains detailed data flow logic which dictates
the computation.

35

4. Software Architecture

LL0 is comprised of the input, value, concept, and output nodes, described in detail
in Section 5.1. These nodes have a unique property and are distinct in functionality.
A specific combination of these nodes forms the LL0 network as shown in Figure 4.3.
Their rules of combination are discussed in section 5.2.2.

The software architecture uses layers to build the LL0 network. Layers are modular
and swapping the underlying subunits can represent the nodes. A specific combina-
tion of subunits can resemble all the unique and distinct nodes, which are described
in the below sections. To create the LL0 network with the software architecture the
layers are combined in the fashion described in section 5.2.2.

Layers consist of three subunits called base function, neural layer, and neural net-
work as shown in Figure 4.2:

Layer

Neural Network

Base Function

Neural Layer

Figure 4.2: Components of the layer: base function, neural layer and neural net-
working merging to form layer. Layer is the building block of implementation of
LL0.

Base Function: The base function contains all the declarations and the GPU in-
vocation needed for a particular node type.
Neural Layer: The neural layer is a template for combining all different kinds of
base functions together.
Neural Network: Neural Network is a template designed to hold multiple layers
which together form the LL0 network.

Figure 4.3 shows a pictorial description of the LL0 algorithm. It consists of a combi-
nation of input, value, concept, and output nodes. To recreate the identical structure
in software, the architecture uses layers. By changing the base function, it can rep-
resent all the above nodes. To combine the different layers, users can use the neural
network. Figure 4.4 is the visual representation of the algorithm implemented in the
thesis software architecture.

36

4. Software Architecture

Input Node

Concept Node
Output Node

Value Node

Input Hidden Layer 1 Hidden Layer 2

Output

Input

Figure 4.3: A representation of LL0 network with hidden layer and nodes.

There are some limitations of this software architecture. As the software architecture
is centered around the LL0 algorithm, the performance of the architecture on other
machine learning algorithms is unknown. Also, this software architecture is commit-
ted to a CPU-GPU combination and a single machine implementation. Therefore
it offers no support for different hardware accelerators or to multiple devices.

G
L

S
O

G
L

S
O

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

S Softmax Layer

IInput Layer
GGaussian Layer

S
Sigmoid Layer

L
Linear Layer

O

Output Layer

Figure 4.4: Software architecture of the implementation of LL0 depicting the data
path and the hidden layer compartmentalisation.

37

4. Software Architecture

38

5
The LL0 Implementation

This section aims to provide information about the implementation of LL0 based on
the proposed software architecture and its key concepts in detail. Further this section
provides a detailed description of each node, extension rules, and backpropagation.
This is inspired by the theory of neuroplasticity. Additionally, it outlines the impact
of hyperparameters.

5.1 Basic Units of LL0 Algorithm
LL0 is a machine learning algorithm with a dynamic structure as presented in Sec-
tion 3.1. Besides, this is a unique ML algorithm when compared to other ML
algorithms as it doesn’t have a neural structure in the beginning. LL0 constructs
its structure as and when data is supplied to the system.

LL0 is comprised of four types of nodes, namely Input node, Value node, Concept
node and Output node. In the beginning, LL0 consists of only an input node and
an output node. When the network makes the incorrect prediction, a new value
node and the concept nodes are created to rectify this error. This method of adding
new nodes to the network is called Extension, where the extension is bound with
stringent rules to add new nodes to the network.

As described in Section 3.1 each node constitutes distinct activation function. The
four node types are:

• Input Node: It has an identity activation function and it always broadcasts its
value to the value nodes. Input nodes have multiple outgoing edges connected
to every value nodes as shown in Figure 5.1.

Input To Value Node

Figure 5.1: Input Node depicting multiple outgoing edges to the value nodes.

39

5. The LL0 Implementation

• Value Node: It has a Gaussian activation function that always receives data
from the input node. The middle of the Gaussian activation function defines
the value of the node to be retained. The width of the slope is determined by
standard deviation, σ. The value node is an expensive function to compute
as it has two parameters µ and σ. The value node always has one incoming
and outgoing edge. The outgoing edge is always connected to concept nodes
as shown in Figure 5.2.

From Input or
 Concept Node To Concept Nodes1 1

Figure 5.2: Value Node depicting one incoming edge either from Input Node or
Concept Node and outgoing edge to the concept node.

• Concept Node: It has a sigmoid activation function that always receives data
from the value nodes. Concept nodes can receive data from multiple value
nodes. It computes the sigmoid activation function based on the incoming
data. The outgoing edge of the concept nodes are connected to both value
nodes and every output node as shown in Figure 5.3.

From
Value Nodes

To Value Nodes and
Output Nodes

Figure 5.3: Concept Node depicting incoming edges from value node and outgoing
edges to value node and output nodes.

• Output Node: It has a softmax activation function. Each output node has
incoming edges from all the concept nodes in the neural network. The outgoing
edge is the output of the softmax function shown in Figure 5.4.

40

5. The LL0 Implementation

From
Concept Nodes

Output

Figure 5.4: Output node depicting incoming edges from every concept nodes and
outgoing edge is the output of the softmax activation function.

As specified earlier, LL0 develops its neural network depending on the principles
of neuroplasticity, which is transformed into mathematical forms knows as Exten-
sion, Backpropagation, Generalisation and Forgetting. These rules constitute the
LL0 algorithm illustrated in Algorithm 2. When the system is provided with the
data (x, y) where |x| is data with its label |y|, the prediction denoted by ŷ is eval-
uated first by performing feedforward and backpropagation, which is explained in
Section 5.4. The predicted output is then compared with the actual output. If the
prediction is incorrect, new nodes are created by executing an extension, where the
extension is restricted by a set of extension rules. Further, feedforward is performed
to determine the correctness of the data. When the new prediction matches with
actual data, new data points (x, y) are received. This process continues until all the
data points are supplied to the network,

41

5. The LL0 Implementation

Algorithm 2: Main Loop of LL0
Receives data points (x, y) with data |x| and label |y| ;
The predicted output of x is denoted by ŷ ;
while true do

Feedforward;
Backpropagation;
if prediction ŷ 6= y then

Extension set;
Extension rule;
Feedforward;

end
Receives new data points (x, y);

end

5.2 Extension
The strength of the LL0 algorithm is to add new nodes to the network, known as
extension. This gives LL0 a dynamic approach not only by adding new nodes to the
existing network but consequently making the network expand on its own. When
the input data is fed to the network, if the network’s prediction is incorrect the new
nodes are created to correct the error. However, the extension process has stringent
rules to add additional new nodes to the network as shown in Algorithm 3. The
rules for extensions may differ depending on the position in the network where the
extension is triggered. These rules are explained in Section 5.2.2. However, the
control on extension is decided by the machine learning practitioner for fine-tuning
the model for distinct data sets.

5.2.1 Extension Set
During feedforward, when the network makes an incorrect prediction, where it
doesn’t recognize the pattern i.e. predicted output does not correspond with ac-
tual output, then the extension is triggered. Firstly the algorithm scan for the
extension set, which is created based on the value of concept node x. The value
of the concept node x must be higher than the value of predetermined threshold t
(x ≥ t). Additionally, it should not have a child node. The concept node meeting
these two criteria gets activated and is therefore referred to as the parent node.
Two or more concept nodes that have values greater than threshold t constitute an
extension set. These parent nodes get eliminated from the extension set as a result
of child nodes being formed from them. It is should be noted that the extension set
can be formed either by the concept nodes or input nodes.

42

5. The LL0 Implementation

5.2.2 Extension Rules
When the extension is triggered, the extension sets are created. It is essential to
follow some protocol to determine where to add new nodes in the network that can
correct the error and improve the overall result. The rules are described below.

As illustrated in Figure 5.5, when the extension is triggered and if only one concept
node is activated, then the network must be extended from the input nodes. If the
network makes an incorrect prediction, a new node (3) is created from the input
nodes (0) and (1). This is because only one concept node (2) exists in the network.
As per the extension policy, at least two or more nodes in the network have to be
activated in-order to extend from the concept nodes.

0

1

2

0

1

2

3

Figure 5.5: Illustration of how the new node is added into the neural network from
the Input Node

When an extension is triggered and if one or more concept nodes are activated, then
the network can be expanded from the concept nodes whose value is above a certain
threshold. When the network executes an incorrect prediction and a new node(4)
is created from the concept node (2) and (3) if these nodes have activation above
threshold as shown in Figure 5.6.

0

1

2

3

0

1

2

3

4

Figure 5.6: Illustration of how the new node is added into the neural network from
the concept nodes

43

5. The LL0 Implementation

As presented in Figure 5.5 and Figure 5.6, the value node is created between the
concept and input node. In addition, this can also be created between the two con-
cept nodes. The outgoing edge of the concept node is connected to all output nodes.

Updating the extension policy and rules, now the algorithm can be described as
shown in Algorithm 3.

Algorithm 3: Main Loop of LL0 with Extension Rule
Receives data points (x, y) with data |x| and label |y| ;
The predicted output of x is denoted by ŷ ;
while true do

Feedforward;
Backpropagation;
if prediction ŷ 6= y then

Extension Triggered ;
Scan for Extension Set;
if Extension Set Found then

Extend from concept node;
Extension rule;
Feedforward;

else
Extend from Input node;
Extension rule;
Feedforward;

end
end
Receives new data points (x, y);

end

5.3 Hyper Parameters
The initial parameter values of the nodes affect the accuracy of the algorithm. It
is necessary to have accurate values for all the nodes because the determination of
pattern recognition is dependent on these values. When the data is supplied to the
system, if the parameter values are incorrect, unnecessary nodes are created that
results in low accuracy and performance. The activation function recognizes data
patterns if these parameters have the correct value. Further, the newly created nodes
will also have the correct value. The node values are decided by parameters such as
µ, σ in the Gaussian function, bias b in the sigmoid function, and weights w in the
linear function as specified in Section 3.2. The initial values for these parameters
are determined by using hyper-parameter such as av and bc, where av controls the
slope of the Gaussian activation function and bc is responsible for the slope of the
curve in sigmoid function.

44

5. The LL0 Implementation

The equation used to determine the parameter av for the Gaussian equation is
presented as:

g(x) = exp
(
−(x− µ)2

2σ2

)
= 0.5, x = µ+ av (5.1)

By setting x = µ+av, the result of 0.5 can be achieved by moving av away from the
center. In the above equation 5.1, µ denote the center of the activation function.
When the value node is created, the activation value of the parent node is assigned
to the value of the center. The hyper-parameter av denotes the distance away from
the parent activation. It is necessary to move av away from the center to achieve
the 50% of the input. This is because the incoming weights to the value nodes are
constant 1 and they do not affect the value node’s behavior.

Standard deviation, σ, can be found by solving the above equation and it is noted
that the initial value of the σ is dependent on hyper-parameter av as shown in the
equation below,

σ = ± av√
2
√
ln(2)

(5.2)

For Sigmoid activation function, below equations are used,

f(nw + b) = 1
1 + e−(nw+b) = 0.9 (5.3)

f(acnw − bcnw + b) = 1
1 + e−(acnw−bcnw+b) = 0.5 (5.4)

where ac is always equal to 1 and bc is the ratio of the value nodes, to get the output
of sigmoid as 0.5. b is the bias, w is the incoming weights to the concept nodes
and n is the total number of parents to the concept node. The initial value of the
concept node is determined by solving the above equation. It is observed that these
initial values are dependent on parameters ac and bc as shown below,

w ≈ −2.19722
n(ac − bc − 1) , n(ac − bc − 1) 6= 0 (5.5)

b = logit(0.9)− 2.19722
−ac + bc + 1 , (−ac + bc + 1) 6= 0 (5.6)

where logit(x) represents inverse of the sigmoid function. After the tuning parame-
ters ac and bc are set, equations 5.5 and 5.6 are used to get the initial values for the
concept node. Since each concept node receives data from a distinct parent node,
setting up the correct initial value to achieve good prediction is difficult. Since the
network assigns these values dynamically during extension, it is important to set
the initial parameter to the correct value otherwise unnecessary nodes get created.
For example, if a wrong concept node is activated and it doesn’t recognize the pat-
tern, the new node will get created based on the values of activated nodes(parent
node). Since these values are incorrect, this affects the accuracy and performance
of the network. If the initial parameter value is slightly inaccurate, and if the new

45

5. The LL0 Implementation

nodes are created from these nodes. Their values can be adjusted by executing
backpropagation which is explained in Section 5.4.

5.4 Backpropagation
LL0 exercises backpropagation to adjust the learned parameters to achieve a better
result. Once feedforward is completed, the backpropagation is triggered and the fol-
lowing parameters of bias (b(l)

i), mean (µ(l)
i), standard deviation (σ(l)

i), weights (w(l)
i)

and (W (l)
i) are fine-tuned or updated after the backpropagation task is completed.

The backpropagation in LL0 is calculated backwards, i.e. the calculation starts from
the output node and continues until input nodes. Additionally, the cross-entropy
error function is used in LL0.

E =
D∑
d=0

td ∗ y(L)
d (5.7)

Where D is the output dimension of the problem, td is the target label and y(L)
d is

the output of the softmax activation function which is the output of the network.
The derivative of the error concerning the parameters is calculated to determine the
update rule for each parameter.

The partial derivative of the error with respect to the weighted sum of the output
node is given below,

∂E

∂z
(L)
i

= y
(L)
i − ti (5.8)

Equation 5.8 denotes the derivative of the error through the softmax function to
the weighted sum. This equation is used in all the concept nodes considering all
of them are connected to every output node. As stated, backpropagation starts
from output nodes and continues until the input nodes. For each concept nodes,
derivative for bias (b(l)

i), and weights (W (l)
i) between concept nodes and output nodes

are calculated and are presented as follows,

∂E

∂Wi,j

= ∂E

∂z
(L)
j

∗ y(l)
i (5.9)

∂E

∂y
(l)
i

=
∑

o
(L)
j ∈OutputNodes

(∂E

∂z
(L)
j

∗Wi,j ∗ y(l)
i) +

∑
υ

(l+1)
j ∈children(c(l)

i)

(∂E

∂z
(l+1)
j

) (5.10)

∂E

∂z
(l)
i

= sigmoid(z(l)
i)(1− sigmoid(z(l)

i)) ∗ ∂E

∂y
(l)
i

(5.11)

∂E

∂b
(l)
i

= ∂E

∂z
(l)
i

(5.12)

46

5. The LL0 Implementation

Equation 5.9 is obtained upon performing backpropagation from output nodes to
concept nodes by applying the chain rule. Similarly, equation 5.10 is obtained which
defines the incoming derivatives. It is necessary to compute concept nodes deriva-
tives carefully as they receive derivatives from both output nodes and value nodes.
The first sum in Equation 5.10 denotes the incoming values from the output nodes
and the second sum computes the incoming derivative from the value nodes. c

(l)
i

denotes the set of children node of the type value node. The deepest(rightmost side)
nodes in the network don’t have children nodes, so the incoming derivatives from
the value nodes are zero because they are only connected to output nodes.

For value nodes, derivative of the mean (µ(l)
i), standard deviation (σ(l)

i) and weights
(w(l)

i) are calculated and are given as below,

∂E

∂wi,j
= ∂E

∂z
(l)
j

y
(l−1)
i (5.13)

∂E

∂y
(l−1)
i

= ∂E

∂z
(l)
j

wi,j, j = child_id(υ(l−1)
i) (5.14)

∂E

∂µ
(l−1)
i

= ∂E

∂y
(l−1)
i

(z(l−1)
i − µ(l−1)

i) exp[− (z(l−1)
i −µ(l−1)

i)2

2(σ(l−1)
i)2]

(σ(l−1)
i)2

∂E

∂σ
(l−1)
i

= ∂E

∂y
(l−1)
i

(z(l−1)
i − µ(l−1)

i)2 exp[− (z(l−1)
i −µ(l−1)

i)2

2(σ(l−1)
i)2]

(σ(l−1)
i)3

∂E

∂z
(l−1)
i

= ∂E

∂y
(l−1)
i

∗ −
(z(l−1)
i − µ(l−1)

i) exp[− (z(l−1)
i −µ(l−1)

i)2

2(σ(l−1)
i)2]

(σ(l−1)
i)2

Since value nodes have one incoming and outgoing edge, where the incoming edge
is always ’1’ and the outgoing edge is trainable which is derived in Equation 5.13.
∂E

∂z
(l−1)
i

is used to find the derivatives of the recursive nodes which can be noticed in
Equation 5.10.

These equations are needed to find the derivatives of both the value and concept
nodes. This procedure is continued until backpropagation has reached to input
nodes. Once backpropagation is completed, the parameters are updated such that
the network error is minimized. The parameters are updated using the gradient
descent as shown below,

pi ←− pi − δ ∗
∂E

∂pi
(5.15)

Where δ is the learning rate. The backpropagation propagates through all the nodes
in the network until it reaches input nodes and adjusts all the parameters to get
good accuracy.

47

5. The LL0 Implementation

48

6
Experimental Methodology

This section presents the experimental methodology used to improve the perfor-
mance of the thesis implementation. Additionally, it presents how to quantify the
performance by setting up the benchmark and strategies for profiling, to increase
the performance.

6.1 Methodology Approach

The goal of this thesis is to create a new implementation of the LL0 algorithm
that performs better than the existing PyTorch implementation. To achieve this
objective, the LL0 is implemented using C++, and its performance has improved by
following the methodology.

The methodology is a framework for improving the performance of the system. It
involves defining and measuring performance and analyzing results. Performance is
evaluated as a set of benchmarks. The flow includes the use of tools such as nvprof
and visual studio profiling tools for analysis. Hereafter, this framework for improv-
ing the performance is referred to as methodology in this report.

The hardware platform is established before the execution of the below steps. This
is because of two main reasons. Firstly, the benchmark can be evaluated over the
same platform. This eliminates any unfair hardware advantages. Secondly, the fine-
tuning for performance is dependent on the comprehensive utilization of the GPU.

The below-mentioned steps form the methodology and are explained briefly below.
For this section, the thesis implementation is referred to as C++ implementation.

1. Verification
2. Executing benchmarks on C++ and PyTorch implementation.
3. Profiling.
4. Identifying bottleneck.
5. Modify software structure to relieve the bottleneck.
6. If no new bottleneck is found exit the step or else iterate.

49

6. Experimental Methodology

Benchmark on C++ and
PyTorch implementation

Profiling

No

Yes
bottleneck

Exit

Change software
structure to relieve

the bottleneck

Verification

Figure 6.1: Methodology iteration flow.

6.1.1 Verification
Modifying software architecture opens the possibility of affecting the functionality
of the implementation. Since the C++ implementation is a custom-made solution,
modifying it for performance might lead to deviation from the working of LL0 al-
gorithm. Verifying the functionality of implementation prevents deviation from the
algorithm.

6.1.2 Executing Benchmarks
The next step of the methodology is to execute the benchmarking with both the
implementations. Benchmarks execution provides valuable information in regards
to variations in performance. The impact of improvement in performance on the
removal of potential bottlenecks in the C++ implementation is studied.

6.1.3 Profiling
Profiling tools are run while monitoring the C++ implementation executing datasets.
The information from the tools is used in further steps for identifying bottlenecks.
The explanation of the profiling strategy is in the following subsections. To avoid
fine-tuning the performance for a specific dataset, multiple datasets are used for
analysis.

50

6. Experimental Methodology

6.1.4 Identifying Bottlenecks
Data from profiling tools and benchmarking results are analyzed. Potential bottle-
necks and datapaths for parallelism are identified for performance improvement.

6.1.5 Modify Software Architecture
After identifying the potential bottlenecks, modification is performed on the soft-
ware architecture which opens the possibility of the implementation to deviate from
LL0. Some optimization has more effect than others. For example, modifications for
mapping of implementation with the streaming multiprocessors do not affect func-
tionality. However, changing the data path of computations affects the functionality
of the systems, which need to be tested.

6.1.6 Exit Strategy
Since the methodology is iterative, it is exited when no potential bottlenecks are
found.

6.2 Hardware Resource
To compare two different implementations of an algorithm, there is a need to set
up a common platform that will provide a common ground to compare the im-
plementation. This helps to eliminate any advantages which might occur if the
implementation were running on a separate device.

The development environment of this thesis consists of Intel core i5-7600 CPU @
3.50GHz processor, 32 GB RAM, and NVIDIA GeForce GTX 1060 6 GB, with 10
streaming multiprocessor(SM), with 1280 CUDA Cores, 6144 MB GDDR5 memory
(192.19 GB/s bandwidth) connected in a PCI-Express x16 Gen 3 slot [60].

6.3 Setting up of Benchmarks
Benchmark is defined as standardized monitoring of performance, which is repeated
for comparisons between the systems. There are mainly two types of benchmarking
namely micro and macro-benchmark. Microbenchmarks are for measuring compo-
nents and units where as macro benchmarks are for the entire system.

For the thesis, the focus is on microbenchmarks because the goal is to achieve hard-
ware acceleration of the algorithm over the building of machine learning toolchains.

In this thesis, the comparisons are between custom-built C++ and PyTorch. Here
the PyTorch implementation is a treated black box whose inner working of the sys-
tem is unknown, which adds a challenge in finding a benchmark for comparisons.
Quantitative properties like time and memory consumption can be evaluated, unlike

51

6. Experimental Methodology

qualitative properties like the number of floating-point operations.

Total time spent and memory consumption can be the potential benchmark. How-
ever, it falls short as these metrics do not provide valuable performance information,
for example, the effect on performance when scaling up of implementation on larger
datasets. The below-described benchmarks are used for comparisons.

6.3.1 Benchmark: Number of Feedforward in the unit of
Time

The movement of data from input to output in a ML neural network is called
feedforward or inference. This process is used by the neural network to make a
prediction from a given set of input data. Feedforward is statistically the most
reoccurring process in ML algorithms both in the training and the testing phase.
The bulk of the work is measured by averaging the number of feedforward in a
unit of time. This benchmark enables us to comment on the scalability of the
implementations.

6.3.2 Benchmark: Time Consumed for Multiple Epoch
In the training phase of LL0 algorithm, the first epoch is used for training and
building the network. The subsequent epochs are identical to each other and they
are only used for training the network. The time consumed for the first epoch is
stochastic as the network is growing. This randomness will vary between implemen-
tations and data sets.

In the subsequent epochs after the first epoch, the stochasticity is reduced as the
network stops its expansion. Hence, the average time consumed for the subsequent
epochs is a good measurement of performance.

6.4 Profiling Strategy
In this thesis, the profiling strategy is performed by tracing the GPU activities and
monitoring memory traffic. The Nvidia tool kit nvprof , a command-line profiling
tool, and NVCC compiler are used to generate a detailed report for each kernel at
the thread level.

To identify the bottlenecks in a mapping of algorithm in GPU, it is essential to
keep track of CUDA launch, memory transfer between the CPU & GPU, and also
the amount of Application Programming Interface(API) calls. Nvprof and NVP
provides detailed information about these traits through the command line and
Graphical User Interface (GUI) respectively.

52

6. Experimental Methodology

Additionally, detailed thread-level information is analyzed to identify sources of
parallelism in the kernel code, which is then modified to increase the bandwidth.
Similarly, memory consumption is traced using a visual studio performance profiler
by placing the breaking point. This assists in analyzing both the stack and heap
memory. Combing results from these tools provide information about memory man-
agement.

A secondary profiling strategy is employed to obtain detailed performance metrics
by analyzing API calls and Kernel execution. This is crucial to identify the pos-
sibilities to enhance the application performance and determine better mapping to
GPU. This profiling method helps in reviewing GPU utilization for each section of
code.

The following are indebt profiling and analysis strategies employed to fine-tune per-
formance.

6.4.1 API Calls Analysis
CUDA provides API for tasks such as transferring data between CPU and GPU,
allocating memory on GPU, internal data movement, and general computations on
GPU.

Analyzing the reports generated from nvprof helps to determine the number of an
API function invocation, the overall percentage of time of execution, and the average
time of execution with minimum and maximum time consumed. Monitoring API
calls provide vital information about GPU utilization. By optimizing parameters
such as the number of API invocations, the timing of API invocation, and the order
of API invocation maximizes GPU utilization.

6.4.2 Application Profiling
The GPU performance analysis is carried out using application profiling while con-
sidering the GPU idle time, in addition to combining the result of kernel profiling
and wrap profiling.

6.4.2.1 Kernel Execution Analysis

In CUDA, a portion of code running on GPU is called a kernel. Further kernel
is broken into threads. Threads are single instructions that run individually in the
streaming multiprocessor. Managing the threads in the kernel is crucial to capitalize
on the parallel processing of the GPU.

In the GPU environment, a large number of threads are created concurrently. It
leads to potential race conditions and time-intensive synchronization. Detailed re-
ports of kernel execution are generated using the NVCC compiler to identify and
correct this problem.

53

6. Experimental Methodology

The compiler manages the hardware resources in GPU and the user is responsible
for the mapping of the kernels. Efficient mapping leads to high parallelism and
higher GPU utilization. Thus, the emphasis is given to the efficient breakdown of
data and associate it with a relevant number of threads, blocks, and grids.

6.4.2.2 Wrap Profiling

The application execution time and the GPU activities are measured at the thread
level. These measurements are averaged and provided as the quantitative analysis
at the wrap level: Kernel Execution Time, Communicating, Computing, Reading,
Writing, Device Synchronization, and Wasted Computation.

The quantitative analysis at the wrap level is described as,

• Kernel Execution Time: Overall time of execution of each kernel is deter-
mined. Further, the number of times each kernel function is invoked, and the
minimum and maximum time taken by each kernel to compute is observed.
Also, the percentage of each kernel engaged GPU time is calculated.

• Idle: Provides the information about the amount of the time GPU is idle or
waiting for another execution to complete is determined.

• Communicating: No processing takes place during data transfer between
the CPU and the GPU. This time is determined.

• Reading: The amount of the time taken to read data from the GPU memory
and time spent to load instructions are observed.

• Writing: The amount of time taken to write to GPU memory and time spent
to store instructions are calculated.

• Device Synchronization: Time taken to synchronize threads in the device
after kernel function execution is determined. Multiple threads from the same
wrap might be executing the same function but have divergent execution paths
and the compiler needs to synchronize these threads after completing the ex-
ecution.

• Wasted Computation: Emphasis is given to avoid threads from a wrap
to diverge and execute a portion of code segments. The GPU architecture
provides conditional execution of instructions which perhaps an efficient ap-
proach. The instructions are executed if the boolean variable predicate is true,
restricting branching and allowing threads in a wrap to execute together. If
the predicate is false, the instruction execution time is termed as wasted com-
putation.

54

6. Experimental Methodology

55

6. Experimental Methodology

56

7
Results

In this thesis, a customized implementation of the LL0 algorithm was developed.
This implementation was found to perform better than the existing solutions and
its results are discussed below. A methodology has been followed to achieve higher
performance as described in Section 6.1. This methodology was used for identifying
the bottlenecks, improve parallelism, and have a better mapping with GPU. The
performance difference with PyTorch implementation was compared against bench-
marks.

This section further presents the result achieved, which includes the creation of
a custom solution for hardware acceleration, verification of the solution, and the
performance gain achieved when compared with PyTorch implementation. In this
section, the thesis implementation will be referred to as C++ implementation.

7.1 Reflection of Software Architecture
Several challenges were faced while creating the software architecture during this
thesis. The challenge was between providing flexibility to capture the dynamic na-
ture of the LL0 algorithm and achieving higher performance, which is described in
detail in Section 2.9.

Multiple architectures such as [18][19][56] were studied for concepts of software ar-
chitecture. After a design space exploration, software architecture was developed,
which was inspired by Caffe [59].

The software architecture was confirmed to have better performance than the Py-
Torch implementation and it provides a platform for deep learning practitioners to
explore the LL0 algorithm.

57

7. Results

7.2 Verifying the implementation

The PyTorch and C++ implementation are of the same LL0 algorithm. The differ-
ence was in the implementation’s handling of data and computation paths, which
affected the performance but not the output behavior. It is important to note that,
verifying the output behavior of the C++ implementation matching with that of Py-
Torch was a necessary step before comparison of performances.

To ensure the output behavior of the C++ implementation matches with that of the
PyTorch implementation, both the implementations were run on the same device
which makes it a fair comparison. The device used was, NVIDIA GTX 1060, and
information on the hardware architecture can be found in Section 6.2.

To analyze the degree of similarity between the implementations. Both are run with
identical datasets and their prediction is captured.

For this thesis, the MNIST training dataset, 60 thousand data, and testing dataset,
10 thousand data, is used. The prediction outputs from the implementations are
plotted for 15 epochs shown in Figure 7.1 and 7.2. A high degree of correlation of
0.9660 and 0.9103 is found between the implementations. This confirms that the
implementations are similar in their output behaviors.

87

88

89

90

91

92

93

94

95

96

97

98

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
cc

u
ra

cy

Epoch

Mnist Training 60k

Python C++

Figure 7.1: Accuracy of C++ and PyTorch implementation on MNIST 60,000
training data and having a correlation of 0.9660.

58

7. Results

88

89

90

91

92

93

94

95

96

97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
cc

u
ra

cy

Epoch

Mnist Test 10k

Python C++

Figure 7.2: Accuracy of C++ and Python implementation on MNIST 10,000 testing
data and having a correlation of 0.9103.

7.3 Benchmark of Performance: Number of Feed-
forward in units of Time

The benchmark was evaluated for the C++ and Python implementation against the
MNIST dataset for different batch sizes. The result of the feedforward of 60000
training data points is illustrated in Figure 7.3. Further, the result of 10000 testing
data points is depicted in Figure 7.4. Here, batch size refers to the number of data
points sent simultaneously/parallel to the system. Since the difference of time is in
the order of magnitude, the result is better represented in a logarithmic scale than
a linear scale for time.

The C++ implementation consistently outperforms the PyTorch implementation
with a maximum speed up of ×19.489 in the training dataset and ×17.892 in the
testing dataset as shown in table 7.1 and 7.2. It is also observed from the table
that the acceleration decreases when moving from a batch size of 1 to 500 for both
implementations.

59

7. Results

Mnist Train 60k
Batch Size Python Avg(sec) C++ Avg(sec) Speed up
1 109.534 5.6202 ×19.489
10 11.314 1.3258 ×8.534
20 7.424 1.164 ×6.378
100 4.8 0.9944 ×4.827
200 4.502 1.0264 ×4.386
500 4.366 1.0252 ×4.259

Table 7.1: Time taken for Mnist 60,000 Feed forwards for different batch sizes
by Python and C++ implementation followed by speed up of C++ over the Python
implementation

0

0.5

1

1.5

2

2.5

3

3.5

1 10 20 100 200 500

Batch Size

Lo
g(

1
0

*T
im

e(
Se

c)
)

Mnist Train 60k Data

Python C++

Figure 7.3: The total time consumed, in logarithmic scale, for sending 60,000
training data point of MNIST data set with respect to different batch sizes.

Mnist Test 10k
Batch Size Python Avg(sec) C++ Avg(sec) Speed up
1 17.824 0.9962 ×17.892
10 1.812 0.2364 ×7.665
20 1.206 0.208 ×5.798
100 0.848 0.1792 ×4.732
200 0.77 0.186 ×4.140
500 0.742 0.188 ×3.947

Table 7.2: Time taken for MNIST 10,000 Feed forwards for different batch sizes
by Python and C++ implementation. The last column depicts the speed up of C++
over the Python implementation.

60

7. Results

0

0.5

1

1.5

2

2.5

1 10 20 100 200 500

lo
g(

1
0

*T
IM

E(
Se

c)
)

Batch Size

Mnist Test 10k

Python C++

Figure 7.4: The total time consumed, in logarithmic scale, for sending 10,000
testing data point of MNIST data set with respect to different batch sizes.

The performance gain achieved in this thesis is discussed in Section 8.

61

7. Results

62

8
Discussion

In this section, we present the discussion about the results presented in the previous
Section 7. In addition, the shortcoming of the system, future work, and suggestions
are presented.

8.1 Verifying the implementation
To improve implementation performance, a methodology has been followed to iden-
tify the source of bottlenecks and fine-tune implementation to eliminate these bot-
tlenecks. This modification has the potential to alter the functionality of the im-
plementation from the LL0 algorithm. Therefore, it is essential to verify that each
revision to the implementation only leads to improved of performance and does not
change the functionality of the system.

A two-fold system of checks is performed to verify the implementation. Firstly,
a stringent checking of each functionality of the implementation is compared with
the LL0 algorithm. The algorithm has a distinct neural network and dynamic ca-
pability. This changing real-time network structure makes the manual verification
process complex.

Secondly, the output behavior of PyTorch and C++ implementations is compared to
check if they are correlated. This method verifies the output behavior of C++ imple-
mentation by comparing it with the PyTorch implementation whose functionality is
identical to LL0.

In ML algorithm, the output behavior may be similar but not identical because the
algorithms are inherently stochastic. To prove that the output behavior of the im-
plementations is similar, both were run with identical data-sets and their respective
predictions were noted for several iterations. These predictions were then used to
calculate the degree of correlation between the implementations.

63

8. Discussion

The MNIST dataset is used to train the system and the resulting predictions are
compared to the PyTorch implementation shown in Figure 7.1 and 7.2. The im-
plementation of the thesis and the PyTorch implementation achieved a quality of
correlation with the MNIST dataset as represented in Figure 7.1 and 7.2. The ac-
curacy of C++ closely follows that of the PyTorch implementation and has a high
degree of correlation of 0.9103 for 10,000 test data and a correlation of 0.9660 for
60,000 training data. This verifies that the output behavior of the implementation
is equivalent.

8.2 Benchmarking of Performance
In this thesis, the benchmarks are used to compare the implementation. It is also
used to track the performance improvement when following the methodology. This
thesis has defined two benchmarks, the number of feedforward in units of time and
total time consumed for multiple epochs.

The benchmarking of performance, number of feedforward in units of time, is a good
estimator for overall system performance because the function of feedforward/infer-
ence is statistically the most used functionality of machine learning algorithm.

Table 7.1 compares C++ implementation with PyTorch implementation for the
number of feedforward in units of time. It demonstrates the number of data points
sent to the system and reports the average time to execute 60,000 data points. The
output of the number of feedforwards is measured on two different data types namely
training, and test data as presented in Figure 7.3 and Figure 7.4 respectively. In
both instances, thesis implementation performs significantly better than PyTorch
implementation.

The number of feedforward for batch size 1 produced a speedup of up to 19 times
and up to 4 times in case of batch size 100 to 500. The increase in speed is primar-
ily due to the exclusion of bottlenecks. The memory throughput of the system is
significantly improved by writing custom kernel code. This increase in throughput
allowed exploiting the parallelism of the hardware. By analyzing memory access
patterns and profiling, the application has achieved an improvement in the band-
width. Profiling strategies are described in section 6.4.

The Speedup for batch sizes 100, 200, and 500 have resulted in 4 times boost. How-
ever, the time consumed decreases only about 70 - 30 milliseconds for batch sizes
from 100 to 500 as shown in Table 7.1. There is a significant increase in data trans-
fers when batch size is increased from 100 to 500, but the improvement in time is
negligible. This needs additional research as it is a bottleneck and has the potential
for gain in future performance. One hypothesis is the system is reaching the theo-
retical upper limit of the memory bandwidth of the GPU. However, calculation and
research are needed before reaching any conclusions.

64

8. Discussion

The benchmark of time consumption for multiple epoch was not evaluated because
the development of the performance version of the backpropagation faltered. To get
the high performance the differentiation was manually calculated and hardcoded
into the implementation. However, this became extremely complex in batch mode.
Furthermore, debugging became even more complicated.

PyTorch uses the AutoGrad tool to calculate complex differentiation. Integrating
AutoGrad with C++ implementation will require significant effort because Auto-
Grad requires computation graphs while C++ implementation was not built to
support computation graphs for performance reasons.

8.3 Shortcomings of the System
There are three major shortcoming of the systems which are discussed below.

Firstly, the thesis implementation’s software architecture only supports Nvidia GPUs.
It will require a significant change in software structure to support other hardware
architectures. This is the opposite of the PyTorch implementation. Implementation
based on the PyTorch framework makes it possible to scale across different underly-
ing hardware architectures including CPUs, GPUs, TPUs(Tensor Processing Units),
and future potential hardware without modifying the software database.

Secondly, in order to achieve high performance, the thesis implementation took a
trade-off between rapid prototyping vs performance. Every new machine learning
dataset that has a unique structure will require custom input and output kernels in
C++ implementation. The effects of this problem will diminish with more datasets
being supported by the architecture. However, it will not match the agility of drag
and drop and rapid prototyping of PyTorch implementation.

Finally, the methodology applied for improving the performance of the implementa-
tion involves analyzing and observing the custom written kernel CUDA blocks and
data paths using the Nvidia toolchains. This opens up a possibility of performance
to be fine-tuned towards the microarchitecture of the underlying GPU. Since the
software implementation is written in CUDA API, it is possible to run on another
class of Nvidia GPU. However, the performance may change in different microar-
chitectures and this would require fine-tuning for data parallelism and bandwidth
improvement.

65

8. Discussion

8.4 Future Work
There are a few possible enhancements that can be explored. Overcoming the short-
coming of the system is also a potential enhancement. For example, support for
multiple microarchitectures. Currently, the system supports only GPU, especially
NVIDIA CUDA cores. Since the software architecture is written in CUDA, there
is a possibility for supporting advanced hardware such as NVIDIA TESLA cores.
These new cores are built for heavy workloads, available for server-grade GPU, and
deliver higher performance.

The current system is designed to deliver performance utilizing hardware accelera-
tion. There is an option to convert it into a toolchain which deep learning practi-
tioners can use to study LL0. This would require utilizing the current system as the
engine and build tools. Features can be added for example, custom functions for
multiple datasets, multiple architectures, and support of multiple GPU and servers.

Furthermore, there is a possibility to have a higher performance system with a
GPU-FPGA combination. Currently, in the case of GPUs, the dynamic nature is
controlled by the software. However, the dynamic nature can be mapped by partial
reconfiguration of the FPGA systems. As LL0 grows rapidly during the initial phase
of training and then slows down. This phenomenon can be exploited by GPU and
FPGA systems. First, GPU trains the LL0 during the initial phase and after an
optimum point hands over to the FPGA for training. It would be interesting to
study the performance gains in such systems. The optimum point of handover can
be calculated on the cost of partial reconfiguration and the time it takes.

Also it is important to study the system performance and effects under the massive
datasets. As currently the system is tested only with datasets with sizes that fit into
the GPU memory resulting in faster access to data and decrease in the stall time of
hardware. However, massive datasets of size in the order of Terabytes are theoreti-
cally supported by the system which open up another dimension of optimization in
the fields of CPU-GPU memory space which needs to be researched upon.

Since the thesis implementation was completely written in C++ and CUDA pro-
gramming paradigm, the software can run in microcontrollers. Nvidia Jetson Xavier
and Jetson Nano are some of the Single Computer Boards (SCB) which are ideal
candidates to run the LL0. Porting of the LL0 application to the above-mentioned
boards is simple as it is written in a model supported by boards. LL0 running on
these boards would provide an opportunity to study machine-learning-based solu-
tions for signal processing, IoT data analytics, and many more.

Since the thesis implementation has achieved a boost up in speed compared to Py-
Torch implementation, a study on real-time processing of data is possible. This
is helpful for real-time machine learning-based prediction projects which can be a
value add to the industry.

66

8. Discussion

8.4.1 Suggestion
During the development and verification phase of the software architecture, it was
observed that the LL0 network would grow very swiftly and reach its limits at the
beginning of the training. This phenomenon was not limited to specific datasets and
was narrowed down to the condition for growing the network. In the LL0 algorithm,
if the network predicts correctly it performs backpropagation, the learning step, else
the network grows. The backpropagation step, described in Section 5.4, helps the
network remember the input. It is observed that when the network predicts wrong
output even with a small margin of error, the network grows. During the initial
phase of training, the network predominantly predicts the output with a small mar-
gin of error. The accumulation of wrongful predictions forces the network to grow
rapidly.

To overcome the rapid expansion of the LL0 structure, an additional step of back-
propagation before the condition check for network expansion needs to be carried
out. In this step during the training phase, if the network makes a wrong prediction,
a backpropagation is performed followed by another prediction. If the prediction is
wrong again then the network expands by adding a new node. This additional step
of backpropagation before the condition check has shown to stabilize the network
expansion.

There is also a possibility to have a high energy efficient implementation if the rules of
LL0 algorithm is modified. Currently, in the algorithm, for every wrong prediction,
the network expands. For example, if there are 32 wrong predictions, the network
expands 32 times. From a hardware perspective, this is a best-case scenario because
each streaming multiprocessor supports 32 threads and the above case is a highly
parallel and energy-efficient scenario. In contrast, if there are 33 wrong predictions,
the network expands 33 times. This is the worst-case scenario from the hardware
perspective because two streaming multiprocessors will be required and hardware
has to support 64 threads. But out of 64, only 33 are utilized, which is a high
energy-inefficient scenario. This thesis suggests tweaking the rule for expansion
in LL0 algorithm from a single wrong prediction to 32 wrong predictions. It will
improve hardware utilization and save energy. An optimum strategy can also be
researched.

67

8. Discussion

68

9
Conclusion

The thesis aimed to study and analyze the possibility to create a performance ver-
sion of the LL0 algorithm. Software architecture is built and its performance is
improved by following a methodology. The study successfully determined that the
thesis version is significantly faster compared to the PyTorch version of the LL0.
Maximum acceleration of ×17.89 and ×19.48 for the MNSIT test and training data
sets was achieved for a batch size of one respectively, which can be seen in results
section in Table 7.1 and Table 7.2.

The benchmark for total time for multiple epochs is not evaluated because the per-
formance version of backpropagation in batch mode was not built. This is due to the
complication in the creation of manual differentiation of gradients. There is a possi-
bility to solve this, by integrating the tool AutoGrad into the thesis implementation.

In addition to hardware acceleration, the modular nature of the software architecture
in combination with CUDA solves the device portability issue, which supports all
NVIDIA GPU with CUDA cores. This allows the implementation to run on different
GPUs without modification. However, reasonable fine-tuning will be required for
achieving high performance in various GPU microarchitectures.

69

9. Conclusion

70

Bibliography

[1] D. B. Kirk and W. H. Wen-Mei, Programming massively parallel processors: a
hands-on approach. Morgan kaufmann, 2016.

[2] A. Lippert, “Nvidia gpu architecture for general purpose computing,” 2009.
[3] D. Patterson, “In praise of programming massively parallel processors: A hands-

on approach.”
[4] X. Lou, “Acceleration of distance-to-default with gpu,” Ph.D. dissertation,

Master-Thesis, School of Information & Communication Technology Royal . . . ,
2012.

[5] J. von Neumann, “First draft of a report on the edvac,” IEEE Annals of the
History of Computing, vol. 15, no. 4, pp. 27–75, 1993.

[6] H. Sutter, “The free lunch is over a fundamental turn toward concurrency in
software,” 2013.

[7] W. Hwu, K. Keutzer, and T. G. Mattson, “The concurrency challenge,” IEEE
Design Test of Computers, vol. 25, no. 4, pp. 312–320, July 2008.

[8] R. R. Schaller, “Moore’s law: past, present and future,” IEEE Spectrum, vol. 34,
no. 6, pp. 52–59, June 1997.

[9] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors:
A Hands-on Approach, 1st ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2010.

[10] K.-S. Oh and K. Jung, “Gpu implementation of neural networks,” Pattern
Recognition, vol. 37, no. 6, pp. 1311 – 1314, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320304000524

[11] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learn-
ing using graphics processors,” in Proceedings of the 26th annual international
conference on machine learning, 2009, pp. 873–880.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[13] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research
groups,” IEEE Signal processing magazine, vol. 29, no. 6, pp. 82–97, 2012.

[14] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual
lifelong learning with neural networks: A review,” Neural networks : the
official journal of the International Neural Network Society, vol. 113, p. 54—71,
May 2019. [Online]. Available: https://doi.org/10.1016/j.neunet.2019.01.012

71

http://www.sciencedirect.com/science/article/pii/S0031320304000524
https://doi.org/10.1016/j.neunet.2019.01.012

Bibliography

[15] C. Strannegård, H. Carlström, N. Engsner, F. Mäkeläinen, F. Slottner Seholm,
and M. Haghir Chehreghani, “Lifelong learning starting from zero,” in Artificial
General Intelligence, P. Hammer, P. Agrawal, B. Goertzel, and M. Iklé, Eds.
Cham: Springer International Publishing, 2019, pp. 188–197.

[16] J. D. Power and B. L. Schlaggar, “Neural plasticity across the lifespan,” Wiley
Interdisciplinary Reviews: Developmental Biology, vol. 6, no. 1, p. e216, 2017.

[17] H. Carlström and F. Slottner Seholm, “Supervised learning with dynamic net-
work architectures,” 2019.

[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information Pro-
cessing Systems, 2019, pp. 8024–8035.

[19] G. Neubig, C. Dyer, Y. Goldberg, A. Matthews, W. Ammar, A. Anastasopou-
los, M. Ballesteros, D. Chiang, D. Clothiaux, T. Cohn, K. Duh, M. Faruqui,
C. Gan, D. Garrette, Y. Ji, L. Kong, A. Kuncoro, G. Kumar, C. Malaviya,
P. Michel, Y. Oda, M. Richardson, N. Saphra, S. Swayamdipta, and P. Yin,
“Dynet: The dynamic neural network toolkit,” 2017.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, Nov 1998.

[21] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[22] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research
groups,” IEEE Signal processing magazine, vol. 29, no. 6, pp. 82–97, 2012.

[23] H. Ze, A. Senior, and M. Schuster, “Statistical parametric speech synthesis
using deep neural networks,” in 2013 ieee international conference on acoustics,
speech and signal processing. IEEE, 2013, pp. 7962–7966.

[24] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mas-
tering the game of go with deep neural networks and tree search,” nature, vol.
529, no. 7587, p. 484, 2016.

[25] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic
language model,” Journal of machine learning research, vol. 3, no. Feb, pp.
1137–1155, 2003.

[26] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,
“Natural language processing (almost) from scratch,” Journal of machine learn-
ing research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[27] A. Zheng and A. Casari, Feature engineering for machine learning: principles
and techniques for data scientists. " O’Reilly Media, Inc.", 2018.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529–533, 2015.

72

http://archive.ics.uci.edu/ml

Bibliography

[29] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robin-
son, “One billion word benchmark for measuring progress in statistical language
modeling,” 2013.

[30] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Imagenet
large scale visual recognition challenge,” 2014.

[31] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam:
Building an efficient and scalable deep learning training system,” in 11th
{USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 14), 2014, pp. 571–582.

[32] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang et al., “Large scale distributed deep networks,”
in Advances in neural information processing systems, 2012, pp. 1223–1231.

[33] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,
J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: A cpu and gpu math
compiler in python,” in Proc. 9th Python in Science Conf, vol. 1, 2010, pp.
3–10.

[34] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorflow: Large-scale machine learning on heterogeneous distributed systems,”
2016.

[35] D. Yu, A. Eversole, M. Seltzer, K. Yao, O. Kuchaiev, Y. Zhang, F. Seide,
Z. Huang, B. Guenter, H. Wang, J. Droppo, G. Zweig, C. Rossbach,
J. Gao, A. Stolcke, J. Currey, M. Slaney, G. Chen, A. Agarwal, C. Basoglu,
M. Padmilac, A. Kamenev, V. Ivanov, S. Cypher, H. Parthasarathi, B. Mitra,
B. Peng, and X. Huang, “An introduction to computational networks and the
computational network toolkit,” Tech. Rep. MSR-TR-2014-112, October 2014.
[Online]. Available: https://www.microsoft.com/en-us/research/publication/
an-introduction-to-computational-networks-and-the-computational-network-toolkit/

[36] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang, “Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems,” arXiv preprint arXiv:1512.01274, 2015.

[37] D. Schaa and D. Kaeli, “Exploring the multiple-gpu design space,” in 2009
IEEE International Symposium on Parallel Distributed Processing, May 2009,
pp. 1–12.

[38] J. Allard and B. Raffin, “A shader-based parallel rendering framework,” VIS
05. IEEE Visualization, 2005., pp. 127–134, 2005.

[39] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,
and T. J. Purcell, “A survey of general-purpose computation on graphics hard-
ware,” in Computer graphics forum, vol. 26, no. 1. Wiley Online Library, 2007,
pp. 80–113.

73

https://www.microsoft.com/en-us/research/publication/an-introduction-to-computational-networks-and-the-computational-network-toolkit/
https://www.microsoft.com/en-us/research/publication/an-introduction-to-computational-networks-and-the-computational-network-toolkit/

Bibliography

[40] Zhe Fan, Feng Qiu, A. Kaufman, and S. Yoakum-Stover, “Gpu cluster for
high performance computing,” in SC ’04: Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing, 2004, pp. 47–47.

[41] U. Drepper, “What every programmer should know about memory,” Red Hat,
Inc, vol. 11, p. 2007, 2007.

[42] C. Nvidia, “Nvidia cuda programming guide (version 1.0),” NVIDIA: Santa
Clara, CA, 2007.

[43] NVIDIA, “Nvidia cuda compiler,” https://en.wikipedia.org/wiki/Nvidia_
CUDA_Compiler.

[44] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-
m. W. Hwu, “Optimization principles and application performance evaluation
of a multithreaded gpu using cuda,” in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, 2008, pp. 73–82.

[45] NVIDIA, “Cuda c++ programming guide,” https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html.

[46] M. Stephenson, S. K. S. Hari, Y. Lee, E. Ebrahimi, D. R. Johnson, D. Nel-
lans, M. O’Connor, and S. W. Keckler, “Flexible software profiling of gpu ar-
chitectures,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2015, pp. 185–197.

[47] NVIDIA, “Nvidia profiler user’s guide,” https://docs.nvidia.com/cuda/pdf/
CUDA_Profiler_Users_Guide.pdf.

[48] “NVIDIA Nsight Systems User Guide, author = NVIDIA, note = https://docs.
nvidia.com/nsight-systems, note = Accessed: 27-5-2020,.”

[49] B. R. Coutinho, G. L. M. Teodoro, R. S. Oliveira, D. O. G. Neto, and R. A. C.
Ferreira, “Profiling general purpose gpu applications,” in 2009 21st Interna-
tional Symposium on Computer Architecture and High Performance Comput-
ing, 2009, pp. 11–18.

[50] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),”
in 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC). IEEE, 2014, pp. 10–14.

[51] B. Dally, “Power, programmability, and granularity: The challenges of exascale
computing,” in 2011 IEEE International Test Conference. IEEE, 2011, pp.
12–12.

[52] P. Cortez and A. Morais, “A data mining approach to predict forest fires using
meteorological data,” 01 2007.

[53] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic
representations from tree-structured long short-term memory networks,” in
Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Beijing, China: Association for
Computational Linguistics, Jul. 2015, pp. 1556–1566. [Online]. Available:
https://www.aclweb.org/anthology/P15-1150

[54] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan, “Semantic object parsing with
graph lstm,” Lecture Notes in Computer Science, p. 125–143, 2016. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-46448-0_8

74

https://en.wikipedia.org/wiki/Nvidia_CUDA_Compiler
https://en.wikipedia.org/wiki/Nvidia_CUDA_Compiler
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://docs.nvidia.com/nsight-systems
https://docs.nvidia.com/nsight-systems
https://www.aclweb.org/anthology/P15-1150
http://dx.doi.org/10.1007/978-3-319-46448-0_8

Bibliography

[55] J. Buckman, M. Ballesteros, and C. Dyer, “Transition-based dependency pars-
ing with heuristic backtracking,” in Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing; 2016 Nov 1-5; Austin, Texas,
USA. Stroudsburg (USA): Association for Computational Linguistics (ACL);
2016. p. 2313-18. ACL (Association for Computational Linguistics), 2016.

[56] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-generation open
source framework for deep learning,” in Proceedings of workshop on machine
learning systems (LearningSys) in the twenty-ninth annual conference on neural
information processing systems (NIPS), vol. 5, 2015, pp. 1–6.

[57] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual
lifelong learning with neural networks: A review,” Neural Networks, 2019.

[58] J. Han and C. Moraga, “The influence of the sigmoid function parameters on
the speed of backpropagation learning,” in From Natural to Artificial Neural
Computation, J. Mira and F. Sandoval, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1995, pp. 195–201.

[59] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.
[60] NVIDIA, “Nvidia gtx 1060 architecture,” https://www.nvidia.com/en-us/

geforce/news/geforce-gtx-1660-ti-advanced-shaders-streaming-multiprocessor/.

75

https://www.nvidia.com/en-us/geforce/news/geforce-gtx-1660-ti-advanced-shaders-streaming-multiprocessor/
https://www.nvidia.com/en-us/geforce/news/geforce-gtx-1660-ti-advanced-shaders-streaming-multiprocessor/

Bibliography

76

	List of Figures
	List of Tables
	Introduction
	Problem Description
	Scope

	Background
	Machine Learning and Toolkit
	Machine Learning
	Toolkit

	GPU Platform
	GPU Architecture
	Structure of a Streaming Multiprocessor
	Memory Hierarchy

	CUDA Programming Paradigm
	CUDA Programming Framework
	CUDA Thread Hierarchy
	CUDA Thread Execution
	CUDA Memory Hierarchy
	CUDA Runtime API

	Performance Evaluation in GPU
	Profiling Tools
	nvprof
	NVIDIA Visual Profiler(NVP)

	Visual Studio Performance Profiler
	Principles for an Energy Efficient Design
	Dataset
	IRIS Dataset
	MNIST Dataset

	Problem Statement

	Overview of LL0 Algorithm
	LL0 Algorithm
	Mathematical Activation Function
	Gaussian Activation Function
	Sigmoid Activation Function
	Softmax Activation Function

	Software Architecture
	Software Architecture
	Architecture
	Data Storage
	Layers

	The LL0 Implementation
	Basic Units of LL0 Algorithm
	Extension
	Extension Set
	Extension Rules

	Hyper Parameters
	Backpropagation

	Experimental Methodology
	Methodology Approach
	Verification
	Executing Benchmarks
	Profiling
	Identifying Bottlenecks
	Modify Software Architecture
	Exit Strategy

	Hardware Resource
	Setting up of Benchmarks
	Benchmark: Number of Feedforward in the unit of Time
	Benchmark: Time Consumed for Multiple Epoch

	Profiling Strategy
	API Calls Analysis
	Application Profiling
	Kernel Execution Analysis
	Wrap Profiling

	Results
	Reflection of Software Architecture
	Verifying the implementation
	Benchmark of Performance: Number of Feedforward in units of Time

	Discussion
	Verifying the implementation
	Benchmarking of Performance
	Shortcomings of the System
	Future Work
	Suggestion

	Conclusion
	Bibliography

