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Abstract

Acquiring good models of biological and biochemical systems is important in e.g.
drug development. These systems are commonly modeled as continuous dynamical
systems via ordinary differential equations (ODEs). Measurements on these systems
are often taken at discrete time instants, which together with the ODEs yields a
system of both continuous and discrete equations. It is usually not realistic to
expect the ODEs to provide an exact description of the system. Modeling the
system with stochastic differential equations, together with adding noise terms to
the measurement equations, is a formal way of including the uncertainties in both the
system and the measurement model. This thesis addresses the problem of estimating
parameters in this class of models.

The parameter estimation framework that we develop consists of maximum like-
lihood estimation of the parameters, where the likelihood is approximated via pre-
dictions from the unscented Kalman filter. The optimization in the parameter space
is performed using a local gradient based method. The gradient is computed ana-
lytically by differentiating the filter equations of the unscented Kalman filter with
respect to the parameters.

This framework is implemented in Mathematica and validated using two bench-
mark problems. The performance is compared to that of a corresponding, previously
used, framework using the extended Kalman filter. The framework is also compared
with frameworks using first and second order finite difference approximations of the
gradient. For the two benchmark problems, no improvement is observed by using
the unscented Kalman filter instead of the extended Kalman filter. The framework
using analytical gradient is computationally faster than those using finite differ-
ences for both of the benchmark problems. For one of the benchmark problems,
the framework using the analytical gradient gives parameter estimates comparable
to both the finite difference frameworks; for the other benchmark problem, the first
order difference framework gives considerably worse parameter estimates than the
second order difference framework and the framework using the analytical gradient.
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1 Introduction

In Section 1.1, we first give some background to the subject. Then we summarize some
of the previous work done by other researchers within the field, and finish by listing the
contributions of this thesis. In Section 1.2, we present the outline of the thesis.

1.1 Mathematical models for describing reality and predicting the future

Mathematical models are often used in engineering applications, e.g in control design
and for simulation of a process to improve one’s understanding of it. Reliable models
that describe the actual process well are therefore crucial. Physical processes are often
continuous dynamical systems and are naturally modeled with ordinary differential equa-
tions (ODEs). Regarding biochemical systems, the actual reactions between individual
molecules occur at discrete time instants. But because the number of molecules is large,
the variation of concentrations appear continuous, and the system is often modeled by
ODEs. An ODE that describes the dynamics of a process can often be derived using
physical insight and laws of nature. When doing physical modeling, approximations and
simplifications are often introduced to lower the complexity of the model. Examples
of such approximations or simplifications can be to assume that a liquid is incompress-
ible, or that the whole mass of a body is contained in its center of mass. Because of
the simplifications it is not reasonable to assume that the model will capture the full
dynamics of the true process. Even in cases when it is possible to account for all dy-
namics and thus construct a model that very thoroughly describes the true system, it
is often not desired if it results in a very large and complicated model [8]. Instead of
using ODEs, it is possible to model the process with a system of stochastic differential
equations (SDEs). The stochastic part of the equations can then account for unmodeled
dynamics as well as pure stochastic effects that might influence the system. Biological
and biochemical processes are often very complex and the exact mechanism behind an
observed phenomenon is often not fully understood; thus the process model is uncertain
and is naturally modeled by a system of SDEs.

To test whether a model gives a good description of a true system or not, the true
system needs to be observed and compared against the model. Observations of a process
can be made by measuring certain interesting output signals. These measurements are
often taken at discrete time instants [3]. Because the physical or biological process often
is inherently time-continuous, a natural description of a process is a system of SDEs
describing the dynamics of the process, together with a set of discrete time measurement
equations.

When a model of the process has been formulated, the equations contain parameters,
e.g. coefficients for reaction rates. Often the parameters are not known and thus have to
be estimated. This master thesis addresses the problem of estimating these parameters.

For a specific set of parameter values, it is possible to simulate the model and compare
the simulation to the measurements obtained from the real process. Naturally we seek
values of the parameters that will make the model simulation imitate the real process
as well as possible, i.e. predict its future behavior well.
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Previous contributions The papers [7], [16] and [17] all study the problem of parameter
estimation in a dynamical system using a model structure consisting of a set of non-
linear SDEs describing the process dynamics, and measurements taken at discrete time
instants with added measurement noise. The general idea in these papers is the same,
namely: estimate the system state using some non-linear Kalman filter and calculate
the prediction errors and their covariance matrices. Then use the maximum likelihood
criterion to perform a prediction error minimization. Thus, the parameter estimation
problem is solved as an optimization problem where the negative log-likelihood function
is minimized w.r.t. the parameters using gradient based optimization.

The paper [7] uses the continuous-discrete extended Kalman filter (CD-EKF) for
state estimation. Both [16] and [17] are to a large extent based on [7], but with some
important differences. The paper [16] also uses the CD-EKF as state estimator, but
calculates the objective function gradient analytically, whereas [7] approximates it using
finite differences. In [17], they use the unscented Kalman filter (UKF) as state estimator
and compare it with the EKF. Although they formulate a model where an SDE describes
the process dynamics, they discretize the SDE using the Euler method, thus transforming
the problem into discrete time. Because they convert the problem into discrete time,
i.e. both the process dynamics and measurements are discrete in time, they use the
discrete-discrete UKF (DD-UKF) and discrete-discrete EKF (DD-EKF). They claim
that the DD-UKF gives better parameter estimates than the DD-EKF. Just like [7], they
approximate the objective function gradient with finite differences when performing the
optimization.

Because the parameter estimation approach taken by [7], [16] and [17] relies on
estimating the system state, the quality of the state estimation will affect the quality of
the parameter estimates. It is stated in many papers, e.g. [19] and [4], that the DD-
UKF provides better state estimation than the DD-EKF for highly nonlinear systems;
[17] claimed that this was probably why the DD-UKF performed better than the DD-
EKF in their tests. For the continuous-continuous (CC) case, i.e. the case when both the
process dynamics and the measurement model are continuous, [15] states that the CC-
UKF is a better state estimator than the CC-EKF in cases where the model nonlinearities
and estimation uncertainties are significant.

Contributions of this thesis In this thesis, we use the same model structure and the same
parameter estimation framework consisting of maximum likelihood plus state estimator,
as [7], [16] and [17] do. The thesis contains two major new contributions that, as far as
we know, have not been done before.

• We use the CD-UKF as state estimator. The motivation for using the CD-UKF
is that, as discussed above, previous results indicate that the DD-UKF as well
as the CC-UKF is a better state estimator than the DD-EKF and the CC-EKF,
respectively. Thus it is likely that also the CD-UKF is a better state estimator
than the CD-EKF. It is therefore interesting to investigate whether using the CD-
UKF as state estimator in the parameter estimation framework can provide better
parameter estimates than if the CD-EKF is used.
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• We also calculate the gradient of the objective function (log-likelihood function)
analytically, which requires differentiation of all the equations in the CD-UKF
w.r.t. the parameters. There are two reasons for doing this: investigate whether
performing the optimization with the analytical gradient can reduce the computa-
tional time of the optimization compared to if a gradient approximation based on
finite differences is used. Second, a gradient approximation based on finite differ-
ences can be sensitive to numerical errors caused by small errors in the solution of
the involved ODEs, as discussed in Section 5.3.

In our benchmark section, we compare the performance of the CD-UKF with an-
alytical gradient against the CD-UKF with numerical gradient and the CD-EKF with
analytical gradient on two benchmark problems.

1.2 Outline of thesis

In Section 2 we present the theory that underlies the concepts of the used parameter
estimation framework. In Section 3 we give a detailed explanation of the parameter
estimation framework and some notes on its implementation. In Section 4 we perform
symbolic differentiation of the objective function and the CD-UKF which is needed for
using the analytical gradient in the optimization. In Section 5 we test and evaluate the
algorithms on two benchmark problems and present the results.
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2 Theory behind the parameter estimation framework

This section describes the theoretical background of the parameter estimation framework
used in this thesis. Section 2.1 describes the stochastic state space model used to model
a system. Section 2.2 describes two different approaches to parameter estimation, gray
box models which we use, and white box models that is an alternative. The used measure
of goodness of a set of parameters is the likelihood, which is described in Section 2.3.
The filtering techniques described in Section 2.4 are necessary to compute the prediction
errors and corresponding covariance matrices needed for the likelihood. Finally, in order
to find the maximum likelihood estimate of the parameters, optimization has to be
performed. This is described in Section 2.5.

2.1 Modeling systems with stochastic differential equations (SDEs)

The continuous-discrete non-linear state space model used is [3, 17, 15]:

dxt = f(xt, ut, t, θ)dt+ L(t, θ)dβt, t ≥ t0 (2.1)

yk = h(xk, tk, θ) + rk(θ), k = 1, 2, ..., N, (2.2)

where xt ∈ Rn is the (unobserved) state at time t (xk is the state at time tk); yk ∈ Rm are
the measurements taken at discrete time instants tk; ut ∈ Rr is a vector of input signals;
θ ∈ Rp is a vector of parameters; f(·) and h(·) are non-linear functions; L(t, θ) ∈ Rn×s
is an arbitrary matrix; βt ∈ Rs is a standard Wiener process; rk is Gaussian white noise
with covariance matrix Rk(θ) ∈ Rm×m; tk, k = 0, 1, ..., N satisfies t0 < t1 < ... < tN .
The mean and covariance of the initial state x0 are m0(θ) and P0(θ), respectively. The
first and second term on the right hand side of (2.1) are denoted the drift term and
diffusion term, respectively.

Equation (2.1) is meaningful only insofar as its integral is defined [3]:

xt − xt0 =

∫ t

t0

f(xτ , uτ , τ, θ)dτ +

∫ t

t0

L(τ, θ)dβτ .

The state space model is continuous-discrete in the sense that the state xt is contin-
uous in time, whereas the measurements yk are discrete in time.

We refer to (2.1) as the process (model), (2.2) as the measurement (model) and the
two together as the system.

Markov property For a deterministic process described by an ODE, the evolution of
the state is given by

dxt
dt

= f(xt, t).

In words, the rate of change of the state xt at time t depends only on xt, i.e. the current
state and not on earlier values of the state. This means that the current state contains
all information needed to predict the future evolution of the state.
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For stochastic processes the corresponding property is called Markov property. In
terms of probability density functions, the Markov property is formulated as

p(xtn |xt1 , xt2 , ..., xtn−1) = p(xtn |xtn−1).

The Markov property states that the conditional probability distribution of the process
at time tn given the whole history of the process up to and including time tn−1, depends
only on the process state at time tn−1. Another way of putting this is: the future can
be predicted from knowledge of the present.

The stochastic state space model treated in this section is Markov [3].

2.2 System identification and parameter estimation

The method of building mathematical models of real processes from measurement data
is called system identification. In this thesis we investigate the problem of estimating
unknown parameters in a model structure that has been obtained from physical modeling
of the process. To be able to obtain a model with good predictive properties we have
to have informative measurement data and a suitable model structure that is able to
capture the dynamics of the process.

A process model consisting of a set of ODEs obtained from physical modeling is
often called a white-box model. Modeled correctly, white-box models often capture the
inherently nonlinear dynamics very well.

The model described in section 2.1, which is sometimes referred to as a gray-box
model, is more general than a white-box model. It provides a way of allowing prior
physical knowledge to be taken into account and, at the same time, the noise is used for
modeling uncertainties in the process dynamics. In many cases the system is not truly
stochastic, instead the stochasticity is only used for representing the model uncertainties
[14].

Grey-box models allow for a decomposition of the system noise into a process noise
term and a measurement noise term. This prediction error decomposition (PED), makes
it possible to estimate parameters in gray-box models in a prediction error (PE) setting
(described in Section 2.2.2). In white-box models this can only be done in an output
error (OE) setting (described below), which tends to give biased and less reproducible
results, because random effects are absorbed into the parameter estimates [6].

2.2.1 Parameter estimation in white-box models

When a continuous-discrete non-linear white-box model is postulated, the following dy-
namic model is used to describe the process:

dxt
dt

= f(xt, ut, t, θ), (2.3)

yk = h(xk, tk, θ) + rk, (2.4)

µk = h(xk, tk, θ). (2.5)
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This is the same as the state space model presented in Section 2.1, except that the SDE
is replaced with an ODE, i.e., there is no process noise. With this model structure one
implicitly assumes that there is no uncertainty in the process equations, and hence all
deviations from the predicted model output µk are assumed to be measurement noise.
Therefore, this model structure is called output error (OE).

Parameter estimation in an OE model is typically done using least squares fitting. The
objective function to be minimized is Vls = 1

2

∑N
k=1 εk(θ)

T εk(θ) where εk(θ) = yk−µk(θ)
is the output error. The least squares fit is given by the nonlinear optimization problem
[11]

argmin
θ∈Θ

Vls = argmin
θ∈Θ

1

2

N∑
k=1

εk(θ)
T εk(θ). (2.6)

The predicted model outputs (k = 1, ..., N) are acquired through h(·) in (2.5), after
an initial value simulation of (2.3) over the time period over which the measurements
are collected.

The objective function Vls, corresponding to the OE problem formulation, is known
for having many local optima. If gradient based local optimization is used, there is
a large risk that the minimum found is not the global one, unless the optimization is
started very close to the global minimum. In general, if the found parameter estimates
give a bad fit, there is no way of knowing if this is due to convergence to a local minimum
or an unsatisfactory model structure [13].

One approach to solving these OE problems with many local minima is to use global
optimization methods. This approach is taken in [9] and many other studies within the
field of systems biology.

2.2.2 Parameter estimation in gray-box models

As was mentioned above, parameter estimation in a gray-box model is approached differ-
ently, since this model contains both measurement noise and process noise, thus allowing
parameter estimation in a prediction error (PE) setting. In this setting, the differential
equations describing the (deterministic) process dynamics are not solved as an initial
value simulation. Instead a so called multiple shooting method is used where the differ-
ential equations are integrated from one shooting point to the next. A natural choice
of shooting points are the time instants of measurements. Information contained in the
measurements is then used to reinitialize at proper values at the shooting points.

The multiple shooting point approach often results in a better conditioned problem
containing fewer local optima [13]. The method for parameter estimation used in this
thesis is a multiple shooting point method and is described in Section 3.

2.3 Maximum likelihood (ML)

The idea of maximum likelihood (ML) estimation [5] is to find the set of model param-
eters θ that maximizes the probability of generating a given measurement series. More
intuitive might be to ask: given a measurement series, what are the most probable (in
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the mathematical sense) parameters θ? That is however an illegitimate question [11],
since the parameters are not statistically distributed, but instead there was in fact one
specific set of parameters that generated the data (the measurements on the other hand
are drawn from a statistical distribution generated by the model). That is why we in-
stead talk of a likelihood and define the likelihood function for the parameters as the
joint probability density of the data given the parameters:

L(θ; YN ) = p(YN |θ), (2.7)

where

Yk = {yk, yk−1, ..., y1}

is a set of measurements. The aim is then to maximize L(θ; YN ) with respect to θ.
Equation (2.7) can be written as a product of conditional probability densities via

successive use of the definition of the conditional probability, P (A ∩B) = P (A|B)P (B)
[12]:

L(θ; YN ) =

(
N∏
k=2

p(yk|Yk−1, θ)

)
p(y1|θ). (2.8)

The state estimators that we use (EKF and UKF) produce Gaussian approximations
of the probability densities in (2.8), given by the mean µk(θ) and covariance Sk(θ). Using
this Gaussian approximation and the innovation εk(θ) = yk−µk(θ), (2.8) can be written

L(θ; YN ) =
N∏
k=1

exp
(
−1

2εk(θ)
TSk(θ)

−1εk(θ)
)√

det(Sk(θ))(
√

2π)m
,

where m is the dimension of yk as described in Section 2.1. Taking the negative logarithm
[5] gives the objective function V (θ; YN ):

V (θ; YN ) ≡ −log(L(θ; YN )) =
1

2

N∑
k=1

(
log(det(Sk(θ)) + εk(θ)

TSk(θ)
−1εk(θ) +m log(2π)

)
.

(2.9)
By minimizing V (θ; YN ) with respect to θ we maximize the likelihood and hence find

the ML estimate of the parameters:

θ̂ = argmin
θ∈Θ

V (θ; YN ). (2.10)

2.3.1 Relation to least squares

For simplicity, this section uses measurements yk with only one output signal (so that
yTk yk = y2

k). Least squares fitting is an alternative to the maximum likelihood estimation
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to estimate the parameters θ. It is presented in (2.6), and the following objective function
is to be minimized:

Vls =
1

2

N∑
k=1

εk(θ)
T εk(θ). (2.11)

Assuming some specific properties of the state space model in Equations (2.1) and (2.2),
it turns out that minimizing the log-likelihood is equivalent to using the least-squares
fit [11]. Suppose that the process noise is zero, i.e. L(t, θ) = 0 in (2.1). Assume further
that the measurement noise is constant over time and independent of θ, i.e. Rk(θ) = R
in (2.2). Then it follows that the measurements yk are independent, so that the joint
probability density in (2.7) is a product of the individual probability densities. The
likelihood then becomes

L(θ; YN ) =

N∏
k=1

exp
(
−1

2
εk(θ)2

S

)
√

2πS
,

where S = R is the variance of yk. Taking the negative logarithm gives

− logL(θ; YN ) =
1

2

N∑
k=1

εk(θ)
2

S
+ log

√
2πS.

Since S is constant, minimizing this is equivalent to minimizing (2.11).

2.3.2 Using multiple measurement series

The likelihood function using one measurement series is defined by L(θ; YN ) = p(YN |θ)
in (2.7). Consider s independent measurement series, Y i

N , i = 1, ..., s, of equal length.
The likelihood function using these measurement series is then defined by L(θ; Y 1

N , ..,Y
s
N )

= p(Y 1
N , ..,Y

s
N |θ) =

∏s
i=1 p(Y

i
N |θ) =

∏s
i=1 L(θ; Y i

N ). The second equality follows since
the measurement series are independent. See [7] for a similar treatment. The objective
function V (θ; YN ) now becomes

V (θ; Y 1
N , ..,Y

s
N ) = −log(

s∏
i=1

L(θ; Y i
N )) =

s∑
i=1

−logL(θ; Y i
N ) =

s∑
i=1

V (θ; Y i
N ).

2.4 Filtering theory

The problem of estimating the unknown state of a stochastic dynamical system from
noisy measurements on the system, given a measurement model and a model of the
process dynamics, is called the filtering problem [3].

In this thesis we are mainly interested in estimating the state of the the continuous-
discrete state space model given in Section 2.1. The recursive real-time estimation
algorithms for these filtering problems are called (optimal) continuous-discrete filters.

The formal solution to the problem of optimal non-linear filtering is well known, and
consists of sequential solving of the Kolmogorov forward equation and the application
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of Bayes’ rule. To solve the Kolmogorov partial differential equation is however in the
general case impossible, because it would require an infinite amount of computations.
In some special cases the analytical closed form solution exists. This is for example the
case when the system dynamics are linear, and the measurement and process noise are
Gaussian. The continuous-discrete Kalman filter is then the optimal filter [14].

If, on the other hand, the dynamics are nonlinear and/or the noise is non-Gaussian,
one has to resort to approximate solutions. The extended Kalman filter (EKF) linearizes
the non-linearities and then uses the Kalman filter. The unscented Kalman filter (UKF)
approximates the filtering distributions by Gaussian distributions, i.e. Gaussian noise
and Gaussian state and output distributions.

2.4.1 Continuous-discrete Kalman filter (CD-KF)

As mentioned above, the Kalman filter is the optimal filter when the system dynamics
are linear and the measurement and process noise are Gaussian. It is optimal in the
sense that it gives the minimum variance estimate of the system state [3]. The purpose
of optimal filtering is to compute the conditional distribution of the system state x(t),
given the history of the measurements up to time t:

p(xt|Yk, θ), tk < t < tk+1.

Because the noise is Gaussian and the system dynamics are linear, the filtering
distributions will be Gaussian. The Gaussian density is completely characterized by
its first and second moments, or equivalently, its mean vector mt and covariance matrix
Pt.

The continuous-discrete Kalman filter consists of the following initialization, predic-
tion and update steps:

• At the time of initialization, initial values for the mean m0(θ) and the state co-
variance P0(θ) have to be provided.

• At the prediction step, the differential equations

dmt

dt
= F (t, θ)mt +B(t, θ)ut (2.12)

dPt
dt

= F (t, θ)Pt + PtF (t, θ)T + L(t, θ)L(t, θ)T (2.13)

are integrated from time tk−1, with initial conditions mtk−1
= mk−1, Ptk−1

= Pk−1,
to time instant tk. The predicted mean and covariance are m−k = mtkand P−k =
Ptk , respectively. F (t, θ) ∈ Rn×n is the process matrix and B(t, θ) ∈ Rn×r is the
input matrix. F (·) and B(·) replaces f(·) in Equation (2.1) for a linear state space
model.

• At the update step, the measurement and its covariance are taken into account to
improve the state estimates:

µk = Hk(θ)m
−
k (2.14)
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Sk = Hk(θ)P
−
k Hk(θ)

T +Rk(θ) (2.15)

Kk = P−k Hk(θ)
TS−1

k (2.16)

mk = m−k +Kk(yk − µk) (2.17)

Pk = P−k −KkSkK
T
k . (2.18)

Sk is the covariance matrix of measurement k; Kk is the Kalman filter gain matrix;
mk is the updated state mean at time tk and Pk is the updated state mean at time
tk. Hk(θ) ∈ Rm×n is the measurement matrix, that replaces h(xk, tk, θ) in Equation
(2.2) for a linear state space model.

The Kalman filter is a so called recursive filter, and thus, the amount of computations
is the same for all time steps, i.e. previously processed data need not be stored and
processed again. Instead, only the most recent data is used in the calculations. This is
a consequence of the state space model having Markov properties.

2.4.2 Prediction and update step of Kalman filters

The continuous-discrete Kalman filter in Section 2.4.1 is a state estimator. The continuous-
discrete extended Kalman filter (CD-EKF) and the continuous discrete unscented Kalman
filter (CD-UKF), described in Section 2.4.3 and 2.4.5, respectively, are also state esti-
mators. The computations of the CD-KF, CD-EKF and CD-UKF are divided into a
prediction step and an update step. Here we give an interpretation of this formalism,
and describe in words what the Kalman filter does:

• In the prediction step a prediction of the system state is formed by propagating
the state through the deterministic part of the SDE, from the time instant of one
measurement to the time instant of the next.

• The update step is performed at the time instants of the measurements. The
state estimation is improved using the additional information contained in the
measurement. This update correction gives a jump in the state estimate, leading
to a state estimation trajectory that is piecewise continuous (see Figure 1).
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Figure 1: Piecewise continuous state trajectory where jumps at the
instants of measurements can be seen. Note that the directions of the
jumps are always towards the measurements.

When using a Kalman filter (KF, EKF or UKF), both the measurement and model
prediction are used to form the state estimate. Thus a better estimate is achieved than
if just one of them is used. The relative magnitude between process and measurement
noise will affect the filter’s amount of correction at the update steps. If the process noise
is large compared to the measurement noise, measurements are greatly trusted, and a
large correction is made. If at the other hand the process noise is small compared to
the measurement noise the model is trusted more than the measurements and a smaller
correction is made. The amount of correction is controlled by the Kalman gain Kk,
Equation (2.16).

2.4.3 Continuous-discrete extended Kalman filter (CD-EKF)

The most frequently used method for state estimation when the drift function f , or the
measurement function h, is nonlinear, is to use the extended Kalman filter (EKF). It
uses a Taylor series approximation of the non-linear functions and forms a Gaussian
process approximation [14].

The first order CD-EKF uses a first order Taylor expansion, i.e. linearization, of f
and h to get their Jacobian matrices. It consists of the following initialization, prediction
and update steps:

• At the time of initialization, initial values for the mean m0(θ) and the state co-
variance P0(θ) have to be provided.

• At the prediction step, the differential equations

dmt

dt
= f(mt, ut, t, θ) (2.19)
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dPt
dt

= Fx(mt, ut, t, θ)Pt + PtFx(mt, ut, t, θ)
T + L(t, θ)L(t, θ)T (2.20)

are integrated from time tk−1, with initial conditions mtk−1
= mk−1, Ptk−1

= Pk−1,
to time instant tk. The predicted mean and covariance are given as m−k = mtk

and P−k = Ptk , respectively. Fx(mt, ut, t, θ) ∈ Rn×n is the Jacobian matrix of f

with elements [Fx(mt, ut, t, θ)]i,j = ∂fi(x,ut,t,θ)
∂xj

|x=mt.

• At the update step, the measurement and its covariance are taken into account to
improve the state estimates:

µk = h(m−k , tk, θ) (2.21)

Sk = Hx(m−k , tk, θ)P
−
k Hx(m−k , tk, θ)

T +Rk(θ) (2.22)

Kk = P−k Hx(m−k , tk, θ)
TS−1

k (2.23)

mk = m−k +Kk (yk − µk) (2.24)

Pk = P−k −KkSkK
T
k . (2.25)

Sk is the covariance matrix of measurement k; Kk is the Kalman filter gain ma-
trix; mk is the updated state mean at time tk and Pk is the updated state mean
at time tk. Hx(m−k , tk, θ) ∈ Rm×n is the Jacobian matrix of h with elements

[Hx(m−k , tk, θ)]i,j = ∂hi(x,tk,θ)
∂xj

|x=m−
k

.

In (2.19) and (2.24) f and h are used directly in the filter. Apart from this, the EKF
uses the ordinary (linear) Kalman filter equations, but with F (·) and Hk(·) replaced
with the Jacobians of f(·) and h(·), respectively.

2.4.4 Unscented Transform (UT)

The unscented transform (UT) [15, 19] is used in the CD-UKF. It is a method that
can be used for forming a Gaussian approximation of the joint distribution of random
variables x and y, when the random variable y is obtained by a nonlinear transformation
of the Gaussian random variable x as follows:

x ∼ N(m,P )

y = g(x),

where x ∈ Rn; y ∈ Rm and g : Rn → Rm is a non-linear function.
The idea of the UT is to form a set of so called sigma points, that capture the mean

and covariance of x exactly. These are propagated through the nonlinear function g,
and are then used to approximate the mean and covariance of the transformed variable
y. The Gaussian approximation of the joint distribution of x and y is now[

x
y

]
∼ N

([
m
µU

]
,

[
P CU
CTU SU

])
, (2.26)
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where m and P are the mean vector and covariance matrix of x; µU and SU are the
approximate mean vector and covariance matrix of y and CU is the approximate cross-
covariance of x and y.

Below the UT is presented in two different forms, denoted Summation form and
Matrix form. The latter is a more compact notation where the weighted sums over
sigma points are replaced by equivalent matrix expressions.

Summation form The UT in summation form is defined by the following four steps:

1. Compute the d ≡ 2n+ 1 sigma points

x(i) =


m if i = 0,

m+
√
n+ λAi if i = 1, ..., n,

m−
√
n+ λAi−n if i = n+ 1, ..., 2n,

(2.27)

and the corresponding weights

W
(m)
0 =

λ

n+ λ
,

W
(c)
0 =

λ

n+ λ
+ 1− α2 + β,

W
(m)
i =

1

2(n+ λ)
, i = 1, ..., 2n,

W
(c)
i =

1

2(n+ λ)
, i = 1, ..., 2n.

The matrix A is the lower triangular matrix in the Cholesky decomposition of P ,
i.e.

AAT = P (2.28)

with A lower triangular. Ai denotes the ith column of A. The Cholesky decompo-
sition is only defined for positive definite matrices P .

The constants α, β and κ are used as parameters of the method. α determines the
spread of the sigma points around m and is usually set to 10−4 ≤ α ≤ 1. κ is a
secondary scaling parameter which is usually set to 0. β is used to incorporate prior
knowledge of the distribution of x (for Gaussian distributions, β = 2 is optimal)
[18].

The scalar λ is defined by λ = α2(n+ κ)− n.

Note that the sigma points in (2.27) are sampled symmetrically around the mean
m.

2. Transform the sigma points according to

y(i) = g(x(i)), i = 0, ..., 2n.

18



3. Compute mean and covariance estimates for y as

µU =

2n∑
i=0

W
(m)
i y(i),

SU =
2n∑
i=0

W
(c)
i (y(i) − µU )(y(i) − µU )T .

4. Estimate the cross-covariance of x and y as

CU =

2n∑
i=0

W
(c)
i (x(i) −m)(y(i) − µU )T .

Matrix Form In the matrix form of the UT, the matrix X and the function gM (X) are
used. They are defined as follows:

• The matrix X ∈ Rn×d is defined by

Xi = x(i), i = 0, .., 2n, (2.29)

where Xi denotes the ith column of X and x(i) is the ith sigma point.

• The function gM : Rn×d → Rm×d is defined by

(gM (X))i = g(Xi), i = 0, .., 2n, (2.30)

where (gM (X))i denotes the ith column of gM (X).

The UT in matrix form is now written

X =
[
m ... m

]
+
√
c
[

0 A −A
]

(2.31)

Y = gM (X) (2.32)

µU = Y wm (2.33)

SU = YWY T (2.34)

CU = XWY T , (2.35)

where c = α2(n+ κ); the vector wm ∈ Rn of sigma point weights is defined by

wm =
[
W

(0)
m ... W

(2n)
m

]T
,

and the matrix W is defined by

W =
(
I −

[
wm ... wm

] )
×diag

([
W

(0)
c ... W

(2n)
c

])
×
(
I −

[
wm ... wm

] )T
,

where diag(v) is a diagonal matrix with v on the diagonal.
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Example 1. In this example we perform a nonlinear transformation of a Gaussian
random variable and approximates the distribution of the transformed random variable
using the UT, which is used in the UKF, and the linear approximation used in the EKF.
We compare the results with the true distribution of the transformed random variable.

Consider the random vector x =

[
x1

x2

]
distributed as follows:

x ∼ N
([

0
0

]
,

[
π2/4 0

0 1

])
, (2.36)

The distribution of x is illustrated in Figure 2(a). x is transformed to y = g(x) according
to [

y1

y2

]
=

[
x2

−sin(x1)

]
. (2.37)

Using the UT a set of 5 (2n + 1) sigma points are formed to capture the mean and
covariance of x according to Equation (2.31), as indicated in the figure. The sigma
points are transformed according to (2.32). Estimates of the mean and covariance of y
are calculated according to (2.33) and (2.34), respectively.

For the linear approximation, the estimate of the mean of y is µlin = g(x), analogous
to (2.21), and the estimate of the covariance of y is Slin = Gx(x)PGx(x)T where Gx(x)
is the Jacobian of g(x). This is analogous to (2.22), but without the noise term.

In this example, both the UT and the linear approximation calculate the mean of y
correctly. The covariance approximations of y are the follwing:

• For the UT:

SUT =

[
1 0
0 0.3166

]
. (2.38)

• For the linear approximation:

Slin =

[
1 0
0 2.467

]
. (2.39)

• And the true covariance of y is

Sy =

[
1 0

0 1
2 −

1
2e
−π2/2

]
≈
[

1 0
0 0.4964

]
. (2.40)

As can be seen from the covariance matrices, the UT underestimates the variance
of y2 slightly, and the linear approximation overestimates it quite a lot. This is also
illustrated in Figure 2(b), where the true distribution of the transformed random variable
y is shown together with the approximated distributions given by the UT and the linear
approximation.

A few remarks are in place to explain some of the details concerning Figure 2:
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• To calculate the true mean and covariance of y, we make use of the formula [12]

E(g(x1, x2)) =

∫ ∞
−∞

∫ ∞
−∞

g(x′1, x
′
2)fx(x′1, x

′
2)dx′1dx

′
2, (2.41)

where E(·) is the expected value and fx(·) is the pdf of x. Using (2.41), it is possible
to compute all the moments necessary to find the mean vector and covariance
matrix of y.

• The covariance ellipses in Figure 2 are constructed from the respective covariance
matrix and mean vector. The directions of the semi-axes are given by the eigen-
vectors to the covariance matrix, and the length of the semi-axes are given by the
square root of the corresponding eigenvalues. The ellipses are centered at the mean
vector. Constructed in this way, the ellipses are contour lines to the probability
density function (pdf), when the distribution is bivariate normal [1]. This holds
for x, the linear approximation of y and the UT approximation of y, but y on the
other hand is obtained from a non-linear transformation of a Gaussian variable
(x), and is thus not Gaussian. The covariance ellipse will in this case not be a
contour line to the pdf, but is still used to illustrate the distribution.
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(a) (b)

Figure 2: Illustration of distributions and sigma points from Example
1. a) Distribution of x. The mean of the distribution is indicated in
the center of the figure, but coincides with the zeroth sigma point and
is not clearly visible. The sigma points are indicated with dots and
are symmetrically sampled around the mean. b) Distribution of y and
the linear approximation and the UT approximation of the distribu-
tion of y. The dashed covariance (smallest) ellipse belongs to the UT
approximation, the dashed-dotted (largest) covariance ellipse belongs
to the linear approximation and the full line covariance ellipse belongs
to y. The mean of y, the mean of the UT approximation and linear
approximation of y, and one of the sigma points coincide at the origin.
The transformed sigma points happen to be symmetrical around the
mean, but in general the sigma points are not symmetrical around the
mean after a non-linear transformation.

2.4.5 Continuous-discrete Unscented Kalman Filter (CD-UKF)

The original UKF is concerned with the discrete-discrete state space model where, in
contrast to the state space model described in Section 2.1, the state is discrete in time
[4]. The continuous-discrete UKF presented here is derived from the original UKF in
[15].

The continuous-discrete UKF uses the UT to propagate random variables through
f(·) and h(·). This is particularly clear in Equations (2.44)-(2.48). The sigma matrix X−k
is formed, propagated through hM (·), and weighted to acquire µk, Sk and Ck. Compare
with (2.31)-(2.35), but note that the term Rk in (2.47) does not originate from the
propagation through hM (·), and is thus not a result of the UT; rather, it is added to
account for the measurement noise in (2.2). It is also quite clear how the UT is used in
(2.42), where the sigma matrix X is formed, transformed via fM (·) and weighted with
wm (compare with Equations (2.31)-(2.33)).
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• Prediction step: Integrate

dmt

dt
= fM (Xt, ut, t, θ)wm (2.42)

dPt
dt

= XtWfM (Xt, ut, t, θ)
T + fM (Xt, ut, t, θ)WXT

t + L(t, θ)L(t, θ)T (2.43)

from time tk−1 to tk. Xt is the sigma point matrix X in (2.31) at time t and fM (·)
is a mapping of f(·) on the sigma points, analogous to gM (·) in (2.30). The initial
conditions are mtk−1

= mk−1 and Ptk−1
= Pk−1. The predicted state mean m−k and

state covariance P−k are given as mtk and Ptk .

• Update step: Compute the predicted matrix of sigma points X−k ; the transformed
sigma matrix Y −k ; the mean µk and covariance Sk of the measurement; the cross-
covariance of the state and measurement Ck; the Kalman gain Kk, and the updated
mean mk and covariance Pk of the state:

X−k =
(
m−k ... m−k

)
+
√
c
(

0 A−k −A−k
)

(2.44)

Y −k = hM (X−k , tk, θ), (2.45)

µk = Y −k wm (2.46)

Sk = Y −k W (Y −k )T +Rk(θ) (2.47)

Ck = X−k W (Y −k )T (2.48)

Kk = CkS
−1
k (2.49)

mk = m−k +Kk(yk − µk) (2.50)

Pk = P−k −KkSkK
T
k , (2.51)

where A−k is the lower triangular Cholesky factor of P−k , analogous to the relation
between A and P in Section 2.4.4 and hM (·) is a mapping of h(·) on the sigma
points, analogous to fM (·).

2.5 Optimization

The estimates of the parameters θ are obtained by solving the unconstrained minimiza-
tion problem (2.10), which is restated here:

argmin
θ∈Θ

{V (θ; YN )},

where θ̂ is the estimate of the parameters. Given the objective function V (θ; YN ),
this corresponds to minimization in the multidimensional parameter space, with one
dimension for each component of θ. There are many algorithms available for this kind
of problem, for example Newton’s method and various quasi-Newton methods, which
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are all local methods. In this thesis, we have used the BFGS method, which is a quasi-
Newton method. With Newton’s method and the BFGS method, a starting guess is
supplied, and then the algorithm iteratively takes steps in the parameter space to get
closer to the minimum. Using Newton’s method, the gradient and the Hessian of the
objective function are calculated either symbolically or by finite differences in order to
find the next step. In the BFGS method, the Hessian is not calculated symbolically or by
finite differences, but instead approximated using information from function and gradient
evaluations from previous steps. In both Newton’s method and the BFGS method, the
search direction is computed from the gradient and Hessian approximations. In addition
to that, a line search can be performed to determine how far to go in that direction.
In this thesis, we use the BFGS method together with a line search. See [20] for more
details of how these methods are implemented in Mathematica.

2.5.1 Finite difference approximations of derivatives

When using finite differences to approximate the derivative (gradient), one can use dif-
ferent types of approximations, first order, second order and so on. A kth order approx-
imation means that the truncation error is O(hk) where h is the step size.

The first order approximation of the derivative of a single variable function is:

df(x)

dx

∣∣∣∣
x=a

=
f(a+ h)− f(a)

h
. (2.52)

The extension to partial derivative w.r.t. one variable for a multivariable function is:

∂f(x)

∂xl

∣∣∣∣
(x1,...,xl,...,xp)=(a1,...,al,...,ap)

=
f(a1, ..., al + h, ..., ap)− f(a1, ..., al, ..., ap)

h
. (2.53)

The gradient is composed of partial derivatives with respect to each of the p parameters.
It can be inferred from the above equation that the gradient evaluation requires p + 1
distinct function evaluations. For sufficiently large values of p, the number of function
evaluations increases approximately linearly with p.

The second order approximation of the derivative of a single variable function is:

df(x)

dx

∣∣∣∣
x=a

=
f(a+ h)− f(a− h)

2h
. (2.54)

And the extension to partial derivative w.r.t. one variable for a multi variable func-
tion is:

∂f(x)

∂xl

∣∣∣∣
(x1,...,xl,...,xp)=(a1,...,al,...,ap)

=
f(a1, ..., al + h, ..., ap)− f(a1, ..., al − h, ..., ap)

2h
.

(2.55)
It can be inferred from the above equation that the gradient in this case requires 2p
distinct function evaluations. The number of evaluations thus increases linearly with
the number of parameters.

Letting the step size h go to zero in the above equations, the approximations will
approach the true derivatives, by definition of the derivative.
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3 Method for parameter estimation

In this section we present the method used in this thesis to estimate parameters in a
stochastic state space model (see Section 2.1) also known as a stochastic gray-box model.
The method used is essentially the same as the one treated in [7]. In Section 1 we point
out the differences between our approach and theirs.

3.1 Using Maximum likelihood together with a state estimator to estimate the model
parameters θ

To estimate the parameters θ we perform a prediction error minimization by using the
maximum likelihood (ML) method (see Section 2.3). Maximizing the likelihood function
is equivalent to finding the set of parameters that is most likely to have produced the
given measurement series [5]. As was stated in section 2.3, maximizing the likelihood
function is equivalent to minimizing the negative log-likelihood function. The negative
log-likelihood is our choice of objective function and is restated here:

V (θ; YN )) ≡ −ln(L(θ; YN )) =
1

2

N∑
k=1

(
ln(det(Sk) + εTk S

−1
k εk +m · ln(2π)

)
. (3.1)

By minimizing V (θ; YN ) with respect to θ we maximize the likelihood and hence find
the ML estimates of the parameters:

θ̂ = argmin
θ∈Θ

{V (θ; YN )}. (3.2)

Thus, the parameter estimation problem is solved as an optimization problem parametrized
by the parameters θ.

The general idea of our method can be summarized as:

• For a given parameter vector θ, Kalman filtering is used to estimate the system
state and will for each measurement k, obtained at time tk, provide the innovation
εk and its covariance matrix Sk, needed to calculate the objective function V (θ; YN )
in (3.1). The system state will then be a function of the current parameter vector
and the given measurement sequence

YN = [y1, y2, ..., yN−1, yN ]. (3.3)

To get the innovation εk and its covariance matrix Sk for each time tk, a filter has
to be run recursively. The Kalman filter is the choice if the dynamics is linear, and
EKF or UKF is used if it is nonlinear. For details and filter equations, see Section
2.4

• When the filter has been run from start time t0 to final time tN , the objective
function value V (θ; YN ) can be calculated for the particular vector θ. Now the
optimization problem stated in (3.2) is solved as follows: search for the parameter
vector that minimizes V (θ; YN ), by using gradient based optimization w.r.t. the
parameter vector θ.
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As mentioned above, several different filters can be used. In this thesis the focus is
on the CD-UKF, described in Section 2.4.5.

Also, as stated above we use gradient-based optimization to minimize V (θ; YN ), thus
the objective function gradient is needed in the optimization. The most straightforward
approach is to approximate the gradient with finite differences. We have, however,
calculated it analytically for the CD-UKF. This was done by differentiating V (θ; YN )
and the whole CD-UKF scheme, i.e. all equations with respect to θ. This is done in
Section 4. In the benchmark section (Section 5) we compare the performance of the
analytic gradient with the finite difference approximated gradient.

When both the CD-UKF filter and the differentiated filter are available (or some
other filter for that matter), the optimization procedure is the following:

• Choose an initial guess of the parameter vector θ. Often prior knowledge of the
system or simple experiments involving it can provide a good initial guess.

• For this particular parameter vector V (θ; YN ) is computed as described above.
A good θ will give a small function value. If the analytical gradient is used, the
gradient of the objective function (see Section 4.1) is computed by running the
differentiated scheme in the same way as the filter scheme.

• The computed gradient is used in the optimization to find new and better pa-
rameter estimates. The optimization method used is of quasi-Newton type and is
described in Section 2.5.

• This search procedure is iterated until a termination criterion is fulfilled, and thus
a local minimum has been reached. The corresponding minimum point, θ̂, is then
the proposed parameter vector.

3.2 Implementation

The programming language used in this thesis is Mathematica. A clear benefit of us-
ing Mathematica is that it is possible to do calculations symbolically, rather than just
numerically. Thus for example when differentiating f with respect to θ, we can do so
analytically with the particular f used. In Section 3.2.1 we present the structure, in
terms of functions used, for the parameter estimation framework. Section 3.2.2 covers
some details on how the optimization is performed in Mathematica.

3.2.1 The implemented framework for parameter estimation

The parameter estimation framework makes use of two function packages, described
below, which are not part of the standard Mathematica language.

DynamicSystems This is a function package developed at Fraunhofer-Chalmers Re-
search Centre for Industrial Mathematics (FCC). We make use of three functions in
this package:
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• DynamicModelObject creates a DynamicModel instance. A DynamicModel in-
stance contains the particular system used, i.e. process equations (Equation (2.1))
and measurement equations (Equation (2.2)).

• DynamicModelObserve creates simulated measurements from a DynamicModel in-
stance at specified time instants.

• DynamicModelSolvePredictor runs a filter and returns the value of the objective
function (see Equation (3.1)) in the case the filter is CD-EKF or CD-UKF. If the
filter that is run is the differentiated CD-EKF or the differentiated CD-UKF, Dy-
namicModelSolvePredictor returns the gradient of the objective function. Possible
options include different values for the initial state covariance P0, and for the ex-
tra method parameters of the CD-UKF: α, β and κ. DynamicModelSolvePredictor
uses the x0 specified in the DynamicModel instance as m0.

KalmanFilters This is a function package that we have developed. It contains functions
that are used by DynamicModelSolvePredictor described above. When DynamicModel-
SolvePredictor runs a filter, it does so in two steps. First it calls a function that defines
functions such as f(·) and h(·) (see Equations (2.1)-(2.2)). This is referred to as the
preparation step. Then it calls a function that runs the actual filter, i.e. performs the
loop of predictions and updates, and returns the value of the objective function (see
Equation (3.1)) or the value of the gradient of the objective function.

The functions that perform the preparation step are prepareCDEKF, prepareCDUKF,
prepareCDEKFD and prepareCDUKFD. prepareCDEKF prepares the CD-EKF filter;
prepareCDEKFD prepares the differentiated CD-EKF filter, and analogously for the CD-
UKF. The corresponding functions for performing the loop of predictions and updates
are loopCDEKF, loopCDUKF, loopCDEKFD and loopCDUKFD.

3.2.2 Minimization in Mathematica

The built-in function FindMinimum is used to perform local minimization. Its arguments
are the function to be minimized as well as a starting guess. It can be supplied with
various options specifying which methods to use etc. As described in Section 2.5, we
use the BFGS method together with a line search, which is also the default setting
for FindMinimum. The BFGS method uses the gradient of the objective function in
determining the search direction. The gradient can be computed by FindMinimum using
finite differences. It can also be supplied to FindMinimum in the form of a function.
The latter approach is used in this thesis since we compute the gradient analytically.

Any iterative optimization algorithm will need a termination criterion, determining
when the solution is accurate enough to stop the optimization. FindMinimum includes
two options for determining this: PrecisionGoal and AccuracyGoal. By specifying the
values p and a of the PrecisionGoal and AccuracyGoal options respectively, FindMini-
mum attempts to use the following termination criterion:

||θk − θ∗|| ≤ max(10−a, 10−p||θk||) and ||∇f(θk)|| ≤ 10−a,
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where θk is the value of θ in the k:th step and θ∗ is the minimum point. Of course,
θ∗ is not known, and the quantity ||θk − θ∗|| has to be estimated. To our experience,
FindMinimum does not always issue a warning if it does not succeed in reaching the
criterion ||∇f(θk)|| ≤ 10−a.

If FindMinimum cannot reach the termination conditions, it is our experience that
it will eventually stop and give a message that the line search cannot find a sufficient
decrease in the function. To choose a very strict termination condition, for example a =
∞, which can never be fulfilled, and letting FindMinimum continue until it cannot find
a sufficient decrease in the function, should be a way to find the best possible estimate of
θ∗. This is because FindMinimum will then continue to minimize the objective function
until it cannot do any better, instead of stopping because of a termination condition.

The objective function we use can usually not be evaluated for all possible values of
the parameter vector θ. For example, some values of θ might cause the solutions to the
differential equations in the prediction steps of the filters to explode (see e.g. Equation
(2.42)). It is thus crucial that the steps taken by FindMinimum does not get outside
the region where the objective function is possible to evaluate. A complicating matter
is that, to our experience, FindMinimum sometimes performs function evaluations far
away from the steps taken as part of the line search. We avoid these problems by
supplying FindMinimum with the vectors θmin and θmax, specifying that θ should be in
the range θmin ≤ θ ≤ θmax. This vector inequality should be interpreted to hold for each
component of θ. According to the Mathematica documentation [20], using these limits
causes the optimization to stop whenever θ gets outside the specified range. However,
it is our experience that FindMinimum will also not perform any function evaluations
outside this range. This is ideal for us since we want to avoid function evaluations where
the objective function cannot be evaluated. Note that problems can occur if the search
reaches the limits of the range, and the search direction points outside the region. The
search will stop with an error message in that case.
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4 Differentiating the objective function of the parameter estimation
framework

At the heart of the parameter estimation framework described in Section 3, is the mini-
mization of the objective function V (θ; YN ) with respect to θ, as stated in Equation (3.2).
V (θ; YN ) is defined in Equation (3.1) as V (θ; YN )) ≡ −log(L(θ; YN )), where L(θ; YN )
is the likelihood function. The minimization is performed using a gradient based search
method, and we calculate the gradient analytically. The first step in computing the
analytical gradient of V (θ; YN ) is taken in Section 4.1, where the gradient of V (θ; YN )
is computed in terms of quantities that can be retrieved from the CD-UKF and the
differentiated CD-UKF. The second step is thus naturally to differentiate the CD-UKF,
and this is done in Section 4.2.

4.1 Gradient of the likelihood function

The gradient of the likelihood function has previously been computed in [16]. The lth
component of the gradient of V (θ; YN ) can be computed as follows:

dV (θ; YN )

dθl
=

1

2

N∑
k=1

(
d

dθl
(log(det(Sk)) +

d

dθl
(εTk S

−1
k εk)

)
, (4.1)

where

d

dθl
(log(det(Sk)) =

1

det(Sk)
· d
dθl

(det(Sk)) = Tr

(
S−1
k

dSk
dθl

)
(4.2)

and

d

dθl
(εTk S

−1
k εk) =

dεTk
dθl

S−1
k εk + εTk

d

dθl

(
S−1
k

)
εk + εTk S

−1
k

dεk
dθl

, (4.3)

where

d

dθl

(
S−1
k

)
= −S−1

k

dSk
dθl

S−1
k (4.4)

The derivative of a matrix determinant with respect to a scalar, as in (4.2), is given in
[10]:

d

dθl
(det(Sk)) = det(Sk) · Tr

(
S−1
k

dSk
dθl

)
,

where Tr denotes matrix trace. The derivative of the inverse of a matrix used in (4.4) is
also given in [10].

The quantities necessary to compute dV (θ;YN )
dθl

are εk, Sk,
dεk
dθl

and dSk
dθl

, where εk =

yk − µk and dεk
dθl

= −dµk
dθl

. µk and Sk are calculated for k = 1, .., N by running the

CD-UKF. Analogously, dµk
dθl

and dSk
dθl

are calculated by running the differentiated CD-
UKF, in which all the filter equations have been differentiated with respect to θl. (An
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explanation as to why it is necessary to differentiate all the filter equations is given in
the beginning of Section 4.2)

4.1.1 Multiple measurement series

The objective function V (θ; Y 1
N , ..,Y

s
N ) using multiple measurement series is just

s∑
i=1

V (θ; Y i
N ),

where V (θ; Y i
N ) are the objective functions for the individual measurement series. This

is described in Section 2.3.2. The derivative of V (θ; Y 1
N , ..,Y

s
N ) is thus

s∑
i=1

dV (θ; Y i
N )

dθl
,

since differentiation is a linear operation.

4.2 Differentiated CD-UKF

The differentiated CD-UKF is run by providing the initial conditions dm0
dθl

and dP0
dθl

,
l = 1, .., p, and iterating the scheme through the prediction and update equations (4.5)-

(4.20). dm0(θ)
dθl

and dP0(θ)
dθl

are calculated by simply performing the derivatives of m0(θ)
and P0(θ) with respect to θl.

As discussed at the end of Section 4.1, the reason for differentiating the CD-UKF
is to be able to calculate dµk

dθl
and dSk

dθl
, as they are needed to compute dV (θ;YN )

dθl
. Is it

not possible to simply differentiate the filter equations for µk and Sk (Equation (2.46)
and (2.47)) and not the whole set of filter equations? The differentiation of (2.46) and

(2.47) in (4.15) and (4.16), respectively, shows that dµk
dθl

and dSk
dθl

depends on dY −

dθl
. This

in turn depends on dX−

dθl
(Equation (4.14)). Continuing in the same manner leads to the

conclusion that in order to calculate for example dµk
dθl

for k = 4, it is necessary to start

from dm0
dθl

and dP0
dθl

and go through all of the differentiated filter equations from k = 1 to
k = 4.

For simplicity, time dependent quantities such as L(t) will in this section simply be
denoted L. Also, the input signal ut does not depend on the parameters θ, and will
not be written out (so that f(xt, ut, t, θ) and fM (Xt, ut, t, θ) will be written f(x, θ) and
fM (X, θ), respectively).

Φ(·) takes a matrix M and is defined by

Φij(M) =


Mij if i > j
1
2Mij if i = j

0 if i < j,

which results in a lower triangular matrix.
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• Prediction step

The derivative of (2.42) with respect to θl is

d

dθl

(
dm

dt

)
=

d

dt

(
dm

dθl

)
=
dfM (X, θ)

dθl
wm. (4.5)

The ith column of fM (X, θ), denoted (fM (X, θ))i, is f(Xi, θ) (see Equations (2.30)

and (2.42)), so the ith column of dfM (X,θ)
dθl

is

d(fM (X, θ))i
dθl

=
df(Xi, θ)

dθl
=
∂f(Xi, θ)

∂Xi

dXi

dθl
+
∂f(Xi, θ)

∂θl
. (4.6)

X is defined in (2.31):

X =
[
m ... m

]
+
√
c
[

0 A −A
]
, (4.7)

so dX
dθl

is

dX

dθl
=
[

dm
dθl

... dm
dθl

]
+
√
c
[

0 dA
dθl

− dA
dθl

]
. (4.8)

In (2.28), A is defined as the lower triangular factor of the Cholesky decomposition
of P . In [15], the following relation between the derivative of A and the derivative
of P is derived:

dA

dt
= AΦ

(
A−1dP

dt
A−T

)
. (4.9)

t in this relation only plays the role of a scalar variable, so we can replace it with
θl, which gives the relation

dA

dθl
= AΦ

(
A−1dP

dθl
A−T

)
. (4.10)

The derivative of (2.43) is

d

dθl

(
dP

dt

)
=

d

dt

(
dP

dθl

)
=
dX

dθl
WfTM (X, θ) +XW

d
(
fTM (X, θ)

)
dθl

+ (4.11)

d (fM (X, θ))

dθl
WXT + fM (X, θ)W

dXT

dθl
+
∂L(θ)

∂θl
L(θ)T + L(θ)

∂L(θ)T

∂θl
,

where dX
dθl

and d(fM (X,θ))
dθl

have been computed in (4.8) and (4.6), respectively.

• Update step

The derivative of (2.44) with respect to θl is

dX−

dθl
=
[

dm−

dθl
... dm−

dθl

]
+
√
c
[

0 dA−

dθl
−dA−

dθl

]
. (4.12)

31



The derivative of (2.45) is

dY −

dθl
=
dhM (X−, θ)

dθl
, (4.13)

where the ith column of dhM (X−,θ)
dθl

is given by

∂h(X−i , θ)

∂X−i

dX−i
dθl

+
∂h(X−i , θ)

∂θl
(4.14)

analogous to (4.6). Furthermore, the derivatives of (2.46)-(2.51) are

dµ

dθl
=
dY −

dθl
wm, (4.15)

dS

dθl
=
dY −

dθl
W (Y −)T + Y −W

d(Y −)T

dθl
+
∂R(θ)

∂θl
, (4.16)

dC

dθl
=
dX−

dθl
W (Y −)T +X−W

d(Y −)T

dθl
, (4.17)

dK

dθl
=
dC

dθl
S−1 − CS−1 dS

dθl
S−1, (4.18)

dm

dθl
=
dm−

dθl
+
dK

dθl
(y − µ)−K dµ

dθl
(4.19)

and
dP

dθl
=
dP−

dθl
− dK

dθl
SKT −K dS

dθl
KT −KSdK

T

dθl
, (4.20)

respectively.
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5 Benchmarking

5.1 The logistic equation

The main purpose of using this benchmark model is to verify that the framework for
parameter estimation is correct. The measurements used are generated from the logistic
equation (Equation (5.1) and (5.2)). It is thus not real experimental data, but instead
simulated data. To validate the analytical gradient of the CD-UKF, we will compare with
the numerical gradient in Section 5.1.2. In that section we also compare with CD-EKF.
It is not expected to give exactly the same results (since it is a different algorithm), but
if it gets close, that is a good indication. In Section 5.1.3 we will create measurements
without noise, to see if we can get close to the nominal parameter values.

We will also investigate some more properties of the framework in Section 5.1.4, where
we plot the likelihood functions and look at the state-estimates using found parameter
estimates and starting guesses of parameter estimates.

5.1.1 The system equations

The logistic equation describes the population growth in an ecological system. The state
xt is the population size at time t. The rate of reproduction is proportional to both the
existing population and the amount of available resources. For a small population the
growth rate is approximately exponential with growth factor a. As the population size
increases, the limited resources causes the growth rate to decrease and approaches zero
at the steady state population b.

dxt = axt

(
1− 1

b
xt

)
+ Ldwt (5.1)

yk = xk + vk, (5.2)

where vk has variance R.

5.1.2 Comparison with numerical gradient and CD-EKF

The structural parameters a and b were estimated 100 times with each of the following
methods:

• Using the CD-UKF with analytical gradient.

• Using the CD-UKF with a numerical gradient based on first order finite differences
(see Section 2.5.1).

• Using the CD-UKF with a numerical gradient based on second order finite differ-
ences.

• Using the CD-EKF with analytical gradient.

33



Experimental parameters The parameter values used to generate the measurements were
a = 1, b = 2, L = 0.05, R = 0.004, x0 = 0.2 and tk = 0.16, 0.32, ..., 8. Note that the
process noise variance is L2 = 0.0025, and the measurement noise variance is R = 0.004.
The measurements for one realization are shown in Figure 3.

Figure 3: Simulated measurements for one realization of the logistic
equation (dots), using process noise and measurement noise. The noise
free system is also included (line). For this particular measurement
series, the ML parameter estimates were â = 1.099 and b̂ = 1.935,
whereas the nominal values were a = 1 and b = 2. Thus, the parameter
estimates are not very close to the nominal values. From the plot it is
seen that the steady state value for the measurement series (b̂) is lower
than the steady state value of the noise free curve b, and that the
measurement series is growing faster (controlled by the growth factor
a) than the noise free curve. Thus, it seems reasonable that the ML
method proposed b̂ to be smaller than b, and â to be larger than a.

Method parameters The parameter values used in the filters were L = 0.05, R = 0.004,
m0 = 0.2 and P0 = 10−6. The value of P0 was chosen by computing the likelihood for
a few different values of P0, using nominal values of a and b, and choosing a P0 that
gives a low value of the likelihood. The limits θmin and θmax used in the minimization
(see Section 3.2.2) were 0.1 times the nominal values and 10 times the nominal values,
respectively. The starting guesses of the parameters were drawn uniformly on the interval
0.5-2 times the nominal values. The termination condition was specified by letting the
AccuracyGoal option in FindMinimum have the value ∞ (see Section 3.2.2). For the
CD-UKF, the additional method parameters (compared to the CD-EKF) α, κ and β
were set to 1, 0 and 2, respectively.

Results The results are presented in Table 1. θnom are the nominal, or true, values of
θ; θ̂mean is the sample mean of the estimates of θ; θ̂std is the sample standard deviation
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of the estimates of θ; V min is the sample mean of the value of V at the minimum; Time
is the average total time spent on the optimization; Steps is the average number of steps
taken by the minimization algorithm.

Table 1: Results with noise for 100 estimations of the parameters

Method θnom θ̂mean θ̂std V min Time Steps

a = 1 1.012 0.07895
CD-UKFanalytical b = 2 1.999 0.03117

−150.7 39.04 11.21

a = 1 1.012 0.07890
CD-UKF1st numerical b = 2 1.999 0.03114

−150.7 52.30 11.92

a = 1 1.012 0.07895
CD-UKF2nd numerical b = 2 1.999 0.03117

−150.7 40.69 11.63

a = 1 1.011 0.07891
CD-EKFanalytical b = 2 1.999 0.03117

−150.7 9.532 11.14

The parameter estimates are essentially the same for the four settings. One purpose
of these simulations was to verify that the analytical gradient of the CD-UKF is correct.
It is therefore reassuring that the first order numerical gradient gives results close to the
analytical gradient, and that the second order numerical gradient is even closer.

The parameter estimates using CD-EKF are similar to those of the CD-UKF (in fact,
slightly better in this example).

5.1.3 Parameter estimation without noise

In this section, the measurements were generated without any system noise, i.e. neither
process noise nor measurement noise. We estimated the structural parameters a and b
starting from 100 different, randomly chosen, starting guesses drawn uniformly on the
interval 0.5-2 times the nominal values.

The measurements were created without noise, but we cannot in the same way let the
noise levels in the filters be zero. Doing so would force the state covariance P towards
zero, since the filters would be certain about the system state after each measurement.
If P is zero, the Cholesky decomposition used in the CD-UKF fails, since it requires a
positive definite matrix. For these reasons, we use small positive values for the noise
parameters in the filters.

Since the measurements do not contain any noise, they are deterministic, and there
is only one possible measurement series for the given system to try the parameter es-
timation framework on. The parameter estimation framework is deterministic by con-
struction, and therefore using the same measurement series many times will produce the
same likelihood function. When using different starting guesses for the parameters, we
should end up in approximately the same point if the likelihood function has only one
minimum in the region covered by the starting guesses.
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Experimental parameters The parameter values used to generate the measurements were
a = 1, b = 2, L = 0, R = 0, x0 = 0.2 and tk = 0.16, 0.32, ..., 8. The measurements are
shown in Figure 4.

Figure 4: Noise-free measurements of the logistic equation.

Method parameters The method parameters used was the same as in Section 5.1.2
except that now L, R and P0 were given the values 10−5, 10−14 and 10−10, respectively.

Results The results are presented in Table 2. The low values of θ̂std implies that the
parameter estimation found the nominal parameters with good accuracy each time.

Table 2: Results without noise for 100 estimations of the parameters

Method θnom θ̂mean θ̂std V min Time Steps

a = 1 1.000 2.248 · 10−8

CD-UKFanalytical b = 2 2.000 9.322 · 10−9 −622.0 43.14 11.85

5.1.4 Plots of likelihood functions and state estimates

The likelihood function using the noise-free measurements in Section 5.1.3 are shown
in Figure 5. The figure also includes the steps taken by the minimization algorithm,
using the starting guess a = 0.9624, b = 3.751. The likelihood looks quite flat in some
directions. However, the parameter estimation in Section 5.1.3 converged to the nominal
parameters for 100 starting guesses uniformly drawn from the interval 0.5 ≤ a ≤ 2,
1 ≤ b ≤ 4, indicating that there is in fact a unique minimum in the region covered by
the starting guesses. A contour plot is shown in Figure 6, where it is clear that there is a
minimum at the nominal values of the parameters. The steps taken by the minimization
algorithm are again included.
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Figure 5: 3D Plot of the likelihood function for the noise free measure-
ments. Included are the steps taken by the minimization algorithm
for the starting guess a = 0.9624, b = 3.751. The minimum point was
found to be at a = 1.000, b = 2.000.

Figure 6: Contour plot of the likelihood function for the noise free
measurements. Included are the steps taken by the minimization al-
gorithm for the starting guess a = 0.9624, b = 3.751. The minimum
point was found to be at a = 1.000, b = 2.000.

Figure 7 shows a plot of the likelihood function for the measurements with noise
shown in Figure 3. Figure 8 shows a contour plot. Comparing with the noise free
likelihood in Figure 5 and 6, we see that the noise makes the likelihood function more
flat (compare the axes in Figure 5 and 7) and the minimum is slightly shifted away from
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the nominal parameters. The qualitative appearance is however the same.

Figure 7: 3D Plot of the likelihood function for the measurements with
noise. Included are the steps taken by the minimization algorithm for
the starting guess a = 0.9624, b = 3.751. The minimum point was
found to be at a = 1.099, b = 1.935.

Figure 8: Contour plot of the likelihood function for the measurements
with noise. Included are the steps taken by the minimization algorithm
for the starting guess a = 0.9624, b = 3.751. The minimum point was
found to be at a = 1.099, b = 1.935.

Figure 9 and 10 shows the state estimation using the starting guess and the found
parameter estimates respectively, for the noise free measurements. Figure 11 and 12
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shows the corresponding plots for the system with noise.

Figure 9: State estimation (line) with CD-UKF for the noise free
measurements (dots) with the parameter starting guess a = 0.9624,
b = 3.751. Notice that in the beginning, when x is small, the line is
very close to the dots, but when the steady state phase is reached the
state estimates are diverging between measurements, and pulled back
at the measurement update. This is because for this particular starting
guess, the growth factor a that dominates the dynamics for small x is
close to the nominal value, but the steady state value b that dominates
in the saturation phase is far from the nominal value.

Figure 10: State estimation (line) with CD-UKF for the noise free
measurements (dots), and with the ML parameter estimates â = 1.000,
b̂ = 2.000, which (almost) coincides with the nominal parameters.
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Figure 11: State estimation (line) with CD-UKF for a realization with
noise (dots). It is the same realization as the one in Figure 3. The
parameter starting guess a = 0.9624, b = 3.751 is used. In the steady
state phase it is clearly seen that at the measurement update, the state
estimate is pulled towards the measurements, but not all the way as
in Figure 9. This is because in this Figure LLT and R are of the
same order of magnitude in the filters and thus, measurements and
model are given approximately the same confidence. For the state
estimation in Figure 9, LLT is much bigger than R in the filters, i.e,
the measurements are trusted more than the model predictions, and
the state estimate is pulled all the way to the measurement.

Figure 12: State estimation (line) with CD-UKF for the realization
with noise (dots) shown in Figure 11. Now the ML parameter estimates
â = 1.099, b̂ = 1.935 are used.

5.2 Moles Mendes Banga biochemical pathway

This system is used to test the performance on a more challenging and realistic problem.
This problem is studied in [9] and [13], but with a different approach, described in Section
5.2.1. Just like with the logistic equation, we compare the CD-UKF using analytical
gradient with CD-UKF using numerical gradient and CD-EKF using analytical gradient.
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5.2.1 The system equations

This is a dynamic model of a nonlinear biochemical pathway. It describes the variation of
metabolite concentrations over time. The eight states, M1t , M2t , E1t , E2t , E3t , G1t , G2t

and G3t , represents the concentrations of the species involved in the different biochemical
reactions. S and P are initial concentrations of pathway substrate and pathway product,
respectively. The equations contain 36 parameters [9].

dG1t

dt
=

V1

1 +
(

P
Ki1

)ni1
+
(
Ka1
S

)na1 − k1G1t (5.3)

dG2t

dt
=

V2

1 +
(

P
Ki2

)ni2
+
(
Ka2
M1t

)na2 − k2G2t (5.4)

dG3t

dt
=

V3

1 +
(

P
Ki3

)ni3
+
(
Ka3
M2t

)na3 − k3G3t (5.5)

dE1t

dt
=

V4G1t

K4 +G1t

− k4E1t (5.6)

dE2t

dt
=

V5G2t

K5 +G2t

− k5E2t (5.7)

dE3t

dt
=

V6G3t

K6 +G3t

− k6E3t (5.8)

dM1t

dt
=

kcat1
Km1

E1t(S −M1t)

1 + S
Km1

+
M1t
Km2

−
kcat2
Km3

E2t(M1t −M2t)

1 +
M1t
Km3

+
M2t
Km4

(5.9)

dM2t

dt
=

kcat2
Km3

E2t(M1t −M2t)

1 +
M1t
Km3

+
M2t
Km4

−
kcat3
Km5

E3t(M2t)− P

1 +
M2t
Km5

+ P
Km6

(5.10)

The paper [9] also attempts parameter estimation in this model. However, they
approach the problem in a different way:

• They do not use a stochastic state space model (Section 2.1) to describe the process
dynamics. Instead they use a white-box model, i.e. replace the SDE with an ODE,
and take the output error (OE) approach discussed in Section 2.2.1 when estimating
the parameters.

• They neither have process noise nor measurement noise when creating their mea-
surement series. Thus, their measurements are completely deterministic, and if
the nominal parameters are found, a perfect fit is achieved.

• As discussed in [9] and in section 2.2.1, the objective function corresponding to the
OE problem formulation, is known for having many local optima, and one easily
ends up in a local optimum if gradient based optimization is used. For this reason,
they approach the problem using global optimization methods.
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• They estimate all 36 structural parameters, whereas we only estimate 10.

5.2.2 Comparison with numerical gradient and CD-EKF

The measurements used have been generated by simulating (5.3) - (5.10), but with added
process noise to all states. The outputs are simply all the state variables with added
measurement noise. Sixteen measurement series are used with different combinations of
values for S and P .

The reason for using several measurement series with different values for S and P ,
and not just one series, is that a larger set of dynamics is covered. Thus, the model
is more thoroughly examined, and hence, the system dynamics is more easily revealed.
This makes it easier to estimate the parameters (the likelihood function will be less flat).

The objective function using multiple measurement series V (θ; Y 1
N , ..,Y

s
N ), presented

in Section 2.3.2, is a sum of the objective functions V (θ; Y i
N ) for the individual mea-

surement series Y i
N , i = 1, .., s (in this case, s = 16). When computing the objective

function for a particular measurement series, the particular values of S and P used to
generate the measurement series is also used in the filter.

Experimental parameters The values of L and R are presented in Table 3. The different
values for S and P are presented in Table 4. The four values of S and the four values of
P are combined in the 16 possible unique ways, one for each measurement series. Apart
from S and P , (5.3) - (5.10) contain 36 structural parameters. They have fixed values
through the 16 measurement series, and are presented in Table 5 together with their
numeric values. We attempt to estimate 10 of these parameters, presented in Table
7. For each of the 16 experiments, the model was simulated for 120 time units and
measurements were taken at tk = 6, 12, ..., 120, i.e. 20 measurements per experiment.
The initial states were the same for all 16 experiments and are given in Table 6.

Table 3: The noise matrices L (process noise) and R (measurement
noise) for the experiment generation, where In denotes the n×n iden-
tity matrix. NB: the values in L are standard deviations, but R is a
covariance matrix. For ease of comparison against R, LLT states the
process noise covariance.

L 10−3I8

R 4 · 10−6I8

LLT 10−6I8

Table 4: The following values of S and P were combined in 16 ways,
one for each measurement series

P 0.05 0.136 0.368 1.0
S 0.1 0.464 2.15 10
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Table 5: Nominal parameter values for measurement generation

Parameter Numeric value Parameter Numeric value Parameter Numeric value

V1 1 V3 1 V6 0.1
Ki1 1 Ki3 1 K6 1
ni1 2 ni3 2 k6 0.1
Ka1 1 Ka3 1 kcat1 1
na1 2 na3 2 Km1 1
k1 1 k3 1 Km2 1
V2 1 V4 0.1 kcat2 1
Ki2 1 K4 1 Km3 1
ni2 2 k4 0.1 Km4 1
Ka2 1 V5 0.1 kcat3 1
na2 2 K5 1 Km5 1
k2 1 k5 0.1 Km6 1

Table 6: Initial states used in all 16 experiments

G10 0.66667 E20 0.36409
G20 0.57254 E30 0.29457
G30 0.41758 M10 1.419
E10 0.4 M20 0.93464

Method parameters For the UKF, α, κ and β were set to 1, 0 and 2, respectively. In
FindMinimum, the default values were used for AccuracyGoal and PrecisionGoal. In
the filters, m0 was chosen as the true initial state given in Table 6. P0 was chosen as the
process noise variance, which is 10−6I8. L and R were chosen equal to the nominal values
used for the experiment generation (see Table 3). Using the nominal noise parameter
values in the filters means that the filters completely know the noise properties. Of
course, when using real experiment data, the noise properties are seldom known. In that
case, one approach is to estimate the noise parameters in the same way as the structural
parameters are estimated. Another way is to fix them to some reasonable value.

Optimization results The 10 structural parameters, kcat1, Km1, Km2, V4, K4, k4, k5,
k6, V1 and Ki1, were estimated once with the following methods:

• Using the CD-UKF with analytical gradient.

• Using the CD-UKF with a numerical gradient based on first order finite differences.

• Using the CD-UKF with a numerical gradient based on second order finite differ-
ences.
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• Using the CD-EKF with analytical gradient.

The parameter starting guess, provided to the optimization routine, was drawn from
a uniform distribution 0.5-2 times the nominal values and is shown in Table 7. The limits
θmin and θmax was set to 10−12 and 1012, respectively. The results of the optimization
is shown in Table 8.

Table 7: Estimated parameters together with nominal values and start-
ing guesses provided to the optimization routine

Parameter Nominal value Starting guess

kcat1 1 1.545
Km1 1 1.532
Km2 1 1.503
V4 0.1 0.1497
K4 1 1.722
k4 0.1 0.1768
k5 0.1 0.1135
k6 0.1 0.08143
V1 1 1.885
Ki1 1 1.782
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Table 8: Results of optimization of Moles Mendes Banga pathway. The
estimated parameters are the ones in Table 7 (in the same order)

Method θ̂ V min Time Steps

0.9974
0.9998
1.009
0.09997
0.9959

CD-UKFanalytical 0.1003 −13980 8 h 35 min 72

0.1001
0.1
0.9999
1.001

0.9434
1.101
1.468
0.1205
1.674

CD-UKF1st numerical 0.08755 −12910 11 h 18 min 46

0.1001
0.1
0.9991
1.005

0.9974
0.9998
1.009
0.09998
0.996

CD-UKF2nd numerical 0.1003 −13980 21 h 42 min 72

0.1001
0.1
0.9999
1.001

0.9974
0.9999
1.009
0.09997
0.9959

CD-EKFanalytical 0.1003 −13980 0 h 54 min 71

0.1001
0.1
0.9999
1.001
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As can be seen in Table 8, the parameter estimates are in principle the same for all
three methods, except the one using first order finite difference approximations of the
gradient. Also, they are very close to the nominal parameter values, which are shown in
Table 7. The value of the likelihood function is the same for these three methods with
the presented number of digits. The method using first order finite differences reaches
an estimate with a much worse likelihood value. Its proposed parameter estimate θ̂ is
not as close to the nominal values as the parameter estimates produced by the other
three methods. The number of steps taken is lowest for the method using first order
differences. However, since it reaches a completely different solution, no conclusion can
be drawn from this. For the two other UKF-based methods, the number of steps were
the same (72), whereas the EKF stopped after 71 steps.

The path to the minimum is very similar for CD-UKFanalytical and CD-UKF2nd numerical,
see Appendix A. They take the same number of steps and they end up in approximately
the same estimate. This indicates that the second order numerical gradient approxi-
mates the analytical gradient very well. The poor result for the CD-UKF1st numerical on
the other hand, indicates that the first order approximation does not. This is further
discussed in Section 5.3.

Even though the CD-UKF2nd numerical took the same number of steps and reached
practically the same parameter estimates, the computation time was approximately 2.5
times that of the CD-UKFanalytical.

For this particular example, both the CD-EKF and CD-UKF arrived practically at
the same solution, but the CD-EKF was almost 10 times faster. Thus, for this example,
there is no gain in using the CD-UKF over the CD-EKF.

For our first benchmark example, the logistic equation (see Section 5.1), we performed
100 optimization runs, and could therefore draw conclusions from a statistical point of
view. For this bigger example, the computational time is much larger, and thus we only
performed one run.

5.3 Exploration of the bad results using first order finite differences when computing
the gradient

In the previous sections where the benchmark results were presented, it was noted that
the optimization result was different when using CD-UKF with first order finite differ-
ences approximation of the gradient, compared to the case with analytic gradient and
second order difference approximation. This was very clear in the case of the Moles
Mendes Banga biochemical pathway in Section 5.2. In Section 5.1, where the logistic
equation was studied, this was not as evident, but the CD-UKF1st numerical took more
steps and considerably longer time compared to CD-UKF2nd numerical.

The reason for the poor result using first order finite differences to approximate the
gradient stems from Mathematica’s NDSolve, that is used to solve the involved ODEs.
When NDSolve numerically integrates the ODE

dxt
dt

= f(xt, ut, t, θ) (5.11)

46



it uses adaptive step length. If (5.11) is solved with NDSolve for a particular parameter
vector θ, and then solved again, but with a very small change in θ, then by continuity,
a very small change is expected in the solution to the ODE as well (assuming no bifur-
cation). However, a small change in θ can cause NDSolve to take a different set of steps
when solving the ODE, leading to a (relatively) large change in the solution. This will
introduce spikes in the objective function V (θ; YN ) (see Figure 13), which introduces
errors in the finite differences used to approximate the gradient. The spikes can be
thought of as numerical noise.

Truncation error and rounding error In Section 2.5.1 finite difference approximations of
derivatives were introduced. The first order approximation of the derivative of a single
variable function f(x) is

f(x+ h)− f(x)

h
= f ′(x) +O(h), (5.12)

where h is the step size. There are two types of errors associated with using this formula
to approximate f ′(x) [2]: truncation error and rounding error. The truncation error
is captured by the O(h)-term. The rounding error is caused by errors in the function
values, caused by the finite precision in evaluating f(x). If the error in f(x) is bounded
by ε, the rounding error in evaluating the left hand side of (5.12) is bounded by 2ε/h.
The total computational error can now be expressed as the sum of the truncation error
and rounding error:

2ε

h
+O(h). (5.13)

Decreasing the step size h will decrease the truncation error, but increase the rounding
error.

Logistic system Figure 13 shows a plot of the objective function for the logistic system
using the settings with noise as in Section 5.1.2. The objective function is plotted around
a randomly chosen point, denoted a0 = 0.9624, b0 = 3.751, in the a-direction. The value
of the objective function in that point is V (a0, b0) ≡ V0 = 568.7. We can see that there
is a noise-like feature in the objective function. The noise is approximately on the order
of 10−7. The noise looks rather random and uncorrelated, so a reasonable approach is
to consider the noise to cause a decrease in the precision of the objective function, as
modeled by ε above. In this case, we thus let ε be of the order 10−7, ε ∼ 10−7.
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Figure 13: Objective function for the logistic system. The noise is due
to adaptive step length in the numerically solved ODEs.

The noisy appearance of the objective function may or may not introduce significant
errors in the finite difference approximations of derivatives. Referring to (5.12) and
(5.13), the rounding error is significant if

2ε

h
& f ′(x). (5.14)

Looking at a few examples, we have seen that when Mathematica uses first order dif-
ferences, h ∼ 10−8; when it uses a second order scheme, h ∼ 10−5. With a first order
scheme and ε ∼ 10−7 (as in Figure 13), the error will then be significant if f ′(x) . 10.

In Figure 13, ∂V (a,b0)
∂a ∼ 1000, so the rounding error is not a problem in that case. That

is also clear from the figure, since the noise is relatively small (compared to the slope of
the curve) already when a is varied on a 10−9-scale.

To convince ourselves that the noise in the objective function is caused by the adap-
tive step length used in NDSolve, we will reproduce Figure 13, but using a fixed step
length in NDSolve. This is done in Figure 14. The value of the objective function is now
slightly different, V0 = 568.6. We used the explicit Euler method with a fixed step size
of 1/1000.
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Figure 14: Objective function of the logistic system using fixed step
length in the numerically solved ODEs. There is no visible noise in the
objective function when a varies over this scale.

We can see that the objective function no longer appears noisy on this scale. Since
the computations are done with finite precision, the objective function will of course be
noisy, or at least quantized, on some scale. We investigate when this effect occurs when
using fixed step length in Figure 15. The uncertainty in the objective function (ε) is in
this case on the order of 10−12.

Figure 15: Objective function of the logistic system using fixed step
length in the numerically solved ODEs. a now varies on the working
precision scale (≈ 10−16), and the ”noise” in the objective function is
on the order of 10−12.

Moles Mendes Banga biochemical pathway Using this system, the optimization using
first order finite differences (CD-UKF1st numerical) arrived at a completely different solu-
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tion than those using second order finite differences (CD-UKF2nd numerical) and analytical
gradient (CD-UKFanalytical). Comparing the steps taken by the optimization algorithms
(see Appendix A), the steps taken by the CD-UKF1st numerical takes a different path (but
not very different) the first 35-40 steps or so, compared with CD-UKF2nd numerical and
CD-UKFanalytical. In the following steps, CD-UKF2nd numerical and CD-UKFanalytical con-
siderably improve the estimates, but CD-UKF1st numerical gets stuck and fails to improve
the estimates. The steps taken by CD-UKF2nd numerical and CD-UKFanalytical are quite
similar to each other through the whole optimization.

We will now show that the noise in the objective function causes significant errors in
the gradient when using first order finite differences. The first component of the gradient,
∂V

∂kcat1
, was computed with the settings used in Section 5.2 and with the θ-parameters set

to the starting guess that was used in the parameter estimation in Section 5.2. ∂V
∂kcat1

was
computed using analytical gradient, as well as first and second order finite differences;
the results were 836700, 1.550 × 106 and 836600, respectively. The error is thus on the
order of 106 using first order differences.

The step sizes used by FindMinimum in the optimization using first and second order
finite differences were h1 = 2.302×10−8 and h2 = 9.356×10−6, respectively. If the error
using first order differences is caused by the noisy objective function, the noise should be
of the order ε ∼ 10−2. Then 2ε/h1 ∼ 10−2/10−8 = 106. Figure 16 shows the objective
function, where noise appears, and it is on the order of 10−2. The noisy objective
function can thus explain the error in the first order finite difference approximation of
∂V

∂kcat1
.

There is still the possibility that the error in the approximation of ∂V
∂kcat1

is caused
by both rounding error from noise, and by truncation error. To exclude the second
possibility, we compute ∂V

∂kcat1
using a larger step size h1. This should increase the

truncation error (Equation (5.13)), so if the approximation of ∂V
∂kcat1

becomes accurate,

the truncation error is not significant. Using h1 = 10−4 should give rounding errors
of the order 10−2/10−4 = 102. The value of ∂V

∂kcat1
using a first order difference with

h1 = 10−4 was 836800, which is approximately as accurate as the second order difference
approximation.
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Figure 16: Objective function of the Moles Mendes Banga biochemical
pathway from Section 5.3. The dots indicate where the objective func-
tion was evaluated (the objective function is quite heavy to compute,
so we limited the number of points to evaluate it in). The objective
function appears to be noisy on the order of 10−2. The value of V0,
which is V (kcat10), is 1.271× 107.
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6 Discussion

Comparison between CD-UKF and CD-EKF In Section 5 we compared the CD-UKF
with the CD-EKF as state estimators in the parameter estimation framework, using two
benchmark problems. We tested the CD-EKF and CD-UKF using the analytical gradient
of the objective function, as well as two different numerical gradient approximations in
the case of the CD-UKF. Using the analytical gradient with both CD-UKF and CD-EKF,
a fair comparison between the filters can be made and it is discussed below.

As was discussed in Section 1, [17] conducted a similar comparison between the DD-
UKF and the DD-EKF. They claimed that the DD-UKF gave better parameter estimates
than the DD-EKF. As was further discussed in Section 1, both the DD-UKF and the
CC-UKF provide better state estimation than their respective EKF. The authors to
[17] inferred this as the reason why the DD-UKF gave better parameter estimates than
the DD-EKF in their study. Therefore, we had reasons to believe that using the CD-
UKF would improve the parameter estimates compared to using the CD-EKF as state
estimator. In our tests however, we could not repeat the results of [17] for the CD-UKF.
Instead the CD-EKF and CD-UKF gave in principle the same parameter estimates in
both benchmark problems, but the CD-EKF needs significantly less computation time.
According to [15], the CC-UKF is a better state estimator than the CC-EKF when the
estimation uncertainties are significant, i.e. in case of large system noise. Thus, it is
possible that the CD-UKF had surpassed the CD-EKF in our benchmarking section,
had we used more system noise.

Comparison between analytical gradient and numerically approximated gradient A major
part of our work has been to derive expressions for the analytical gradient of the ob-
jective function and implement it in Mathematica. As discussed above, in Section 5
we compared the analytical gradient with two different numerical gradient approxima-
tions in the case of the CD-UKF. The first gradient approximation used first order finite
differences, and the second used second order finite differences. As shown in Section 5,
using second order differences to approximate the gradient gave in principle the same pa-
rameter estimates as using the analytical gradient for both our benchmarking problems.
For the problem in Section 5.2, the method using first order gradient approximations
got a much worse result than the method using the analytical gradient. In Section 5.3,
we showed that this was due to numerical errors caused by the fact that Mathematicas
NDSolve uses adaptive step length when integrating ODEs. These errors introduced
numerical noise on the objective function.

However, we have observed that in our experiments, when Mathematica’s FindMin-
imum uses first order finite differences to approximate the objective function gradient,
it uses a step length of the order 10−8 (see Section 5.3). This small step length gives,
in the example treating the Moles Mendes Banga problem in Section 5.3, a significant
rounding error. It is also shown in Section 5.3 that increasing the step size to 10−4 made
the first order approximation of the gradient close to the analytical gradient, i.e. both
the truncation error and rounding error were small. This suggests that, even though
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numerical errors causes the objective function to be spiky, by choosing a proper step
length, first order differences can give a good approximation of the objective function
gradient. But then the question of what actually is a good step length arises, and the
answer may vary from problem to problem. In Section 5.1 it was seen that the optimiza-
tion using first order differences needed more computation time than the optimization
using second order differences. This is not expected based on the fact that approximat-
ing the gradient with first order differences requires less function evaluations than using
a second order difference approximation, as discussed in Section 2.5.1. The cause of the
larger computation time was probably the numerical noise introduced by NDSolve.

It should be noted that the investigation of the numerical gradient approximations in
Section 5.3 was done far from the minimum of the objective function. When getting close
to the minimum of the objective function, the norm of the gradient is small. To avoid
too large rounding error compared to the true value of the gradient near the minimum, it
may be necessary to increase the step length (see Equation (5.14)). However, increasing
the step length will increase the truncation error instead. One approach to this issue can
be to use first order differences in the beginning of the optimization and, as the norm of
the gradient decreases, swap to second order differences. If one uses that approach one
must confront the problem of deciding what is a proper step length and when to switch
from first order to second order differences. If one instead uses the analytical gradient,
no such decisions need to be taken.

Of course, one wants to arrive to the minimum as fast as possible, so an interesting
question is: is the analytical gradient faster than a numerical approximation or not? In
our benchmarking problems, the method using the analytical gradient was the fastest
for both our problems. For the logistic equation, where two parameters were estimated,
using second order differences was almost as fast as using the analytical gradient (see
Table 1). Remember from Section 2.5.1 that a second order approximation of the gra-
dient requires 2p objective function evaluations (where p is the number of parameters),
whereas a first order approximation requires only p + 1 evaluations. Thus, if a proper
step length had been used for the optimization using first order differences, it is ex-
pected that it would have required less computation time than the optimization using
the analytical gradient.

On the Moles Mendes Banga problem, described in Section 5.2, where 10 parameters
were estimated, the optimization using second order differences required approximately
2.5 times more computation time than using the analytical gradient. If the first or-
der difference approximation had been as accurate as the second order approximation,
the computation time of the optimization would have dropped slightly less than 50%
compared with using second order differences. But this is still more compuation time
than using analytical gradient. In Section 2.5.1 it was shown that the computation time
for approximating the gradient with finite differences increases (approximately) linearly
in the number of parameters. It may be that the computation time for the analytical
gradient increases slower than linearly in the parameters, and would in that case be the
fastest alternative when estimating many parameters. To say something with certainty
on this matter, more tests must be done.
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6.1 Possible future work

In this thesis we only estimated the structural parameters, i.e. parameters in f(·) and h(·)
in Equations (2.1) and (2.2), respectively, and not the noise parameters, i.e. parameters
in L(·) and rk(·). Estimating the noise parameters is desirable because it provides a
measure of the model uncertainty. It is possible to estimate the noise parameters (in the
same manner as the structural parameters) within our implemented framework.

We wrote in the beginning of Section 6 that the UKF is a better state estimator than
the EKF in case of large system noise, and that it is thus possible that the CD-UKF
had surpassed the CD-EKF in our benchmarking section, had we used more system
noise. This is rather straight forward to investigate, one can e.g take our benchmarking
problems and repeat the parameter estimation but with more system noise.

It would be interesting to investigate how the computation time for the analytical
gradient increases as a function of the number of parameters. This could e.g. be done
using the Moles Mendes Banga problem. One could choose a point in the parameter
space (or several) and calculate the analytical gradient in this point, first w.r.t. one
parameter, then w.r.t. two parameters and so on. The computation time could then be
plotted as a function of the number of estimated parameters. In the same plot one could
also plot the same quantity for the finite differences approximated gradients, which are
expected to increase linearly in the parameters. An interesting question is thus: does
the computation time for the analytical gradient increases slower than linear in the
parameters?

Another interesting issue to investigate would be to generate measurements by sim-
ulating one system model and then conduct parameter estimation in a simplified model.
For example, consider simulating this nonlinear model of a pendulum:

dx1t = x2tdt

dx2t = −(a sin(x1t) + bx2t)dt,

and creating measurements by sampling it at discrete time instants, possibly with added
measurement noise. Then the parameters a and b could be estimated in the simpler,
linear model:

dx1t = x2tdt

dx2t = −(ax1t + bx2t)dt+ L(t, θ)dβt.

This is interesting because in reality, the real process is not known exactly and the
model always contains simplifications. It is therefore interesting to see if good estimates
of a and b could be achieved using the simplified model and also to estimate the noise
parameters to provide a measure of the model uncertainty. One could also conduct the
parameter estimation using a white box model, described in Section 2.2.1, and compare
the results.
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A Steps taken by the optimization algorithm on the Moles Mendes
Banga biochemical pathway system in Section 5.2

Table 9: Steps taken using the method CD-UKFanalytical (72 steps)

kcat1 Km1 Km2 V4 K4 k4 k5 k6 V1 Ki1

1.51656 1.54339 1.49573 0.0440611 1.72675 0.244549 1.00001 × 10−12 0.126862 1.01542 1.67273
1.5159 1.54356 1.49553 0.131066 1.72578 0.175252 0.115224 0.117604 0.841174 1.64962
1.51358 1.54443 1.49494 0.160572 1.72406 0.139545 0.0952009 0.106918 0.849169 1.64766
1.49215 1.55294 1.48934 0.157028 1.72349 0.126419 0.0986359 0.0649192 0.93664 1.64503
1.47221 1.56074 1.48414 0.155145 1.72372 0.120754 0.0975852 0.115441 0.971282 1.63866
1.46226 1.5645 1.48156 0.151153 1.72472 0.128421 0.09332 0.10034 0.930002 1.63063
1.4359 1.57451 1.47475 0.147076 1.72477 0.119077 0.0946422 0.0918363 0.927091 1.61774
1.32009 1.61809 1.44491 0.126402 1.72596 0.0918693 0.0975964 0.0804356 0.929944 1.56119
1.14357 1.6836 1.39965 0.0950498 1.7279 0.0604897 0.100969 0.0811472 0.93875 1.47089
1.09752 1.70032 1.38789 0.0869211 1.72808 0.0631907 0.102148 0.0915166 0.947504 1.43896
1.08802 1.70358 1.3854 0.0864713 1.72819 0.0603591 0.100759 0.102496 0.946121 1.41859
1.09553 1.70045 1.38728 0.087821 1.72811 0.0628923 0.100769 0.104846 0.949449 1.40617
1.10813 1.69322 1.39028 0.0910443 1.72806 0.068766 0.100697 0.112512 0.96575 1.30672
1.13041 1.6784 1.39552 0.0981762 1.72808 0.0781925 0.1006 0.120776 0.998414 1.05768
1.14446 1.67187 1.39912 0.101617 1.72801 0.0784449 0.10026 0.112964 1.00299 1.0287
1.14251 1.67086 1.39883 0.103196 1.72793 0.0740254 0.0996234 0.0975902 1.00085 1.01301
1.13611 1.67225 1.39724 0.102714 1.72792 0.0735921 0.0999494 0.0999821 1.00169 0.989248
1.13511 1.67262 1.39708 0.102543 1.72787 0.0732775 0.100003 0.100065 0.999438 1.00479
1.13532 1.67197 1.39723 0.102931 1.72783 0.0735536 0.0999413 0.0997366 0.999627 1.00338
1.13497 1.67044 1.39741 0.103821 1.72768 0.0741808 0.0999025 0.099494 0.999759 1.00185
1.1328 1.66421 1.39805 0.107365 1.72705 0.0766631 0.09984 0.0990247 0.999973 0.998999
1.12809 1.6528 1.3991 0.113608 1.72586 0.0810206 0.0998302 0.0987273 1.00007 0.997316
1.12035 1.63564 1.40058 0.122443 1.72405 0.0871788 0.0999205 0.0988722 0.999921 0.998456
1.11415 1.62257 1.40166 0.128278 1.72267 0.091249 0.100064 0.0994381 0.999593 1.00205
1.11114 1.61623 1.40219 0.129937 1.72204 0.0924143 0.100164 0.0999322 0.99934 1.00507
1.1082 1.60937 1.40281 0.130236 1.7214 0.0926379 0.100257 0.100426 0.999098 1.00807
1.10184 1.59264 1.40446 0.129789 1.71991 0.0923688 0.100392 0.10117 0.998737 1.01261
1.08628 1.54865 1.40897 0.128507 1.71606 0.0915944 0.100583 0.10226 0.9982 1.01936
1.04854 1.43728 1.42067 0.126191 1.70636 0.0902976 0.10083 0.103734 0.997441 1.02877
0.980741 1.23009 1.44281 0.122965 1.68838 0.0886549 0.100985 0.104816 0.996823 1.03616
0.941167 1.09998 1.45718 0.119573 1.67723 0.0866807 0.100751 0.103725 0.997391 1.02928
0.939097 1.08214 1.45961 0.115948 1.67589 0.0842038 0.100152 0.100555 0.99924 1.00772
0.94425 1.09941 1.45764 0.118545 1.67727 0.0859408 0.100045 0.0999205 0.999562 1.0038
0.943372 1.09564 1.45809 0.119664 1.67687 0.086769 0.100046 0.0999094 0.99954 1.00394
0.943157 1.0953 1.45809 0.120007 1.67677 0.0870358 0.10005 0.0999262 0.999528 1.00406
0.943241 1.09542 1.45805 0.120078 1.6767 0.0870948 0.100051 0.0999304 0.999524 1.00409
0.94348 1.09568 1.45777 0.120394 1.67607 0.0873681 0.100056 0.0999487 0.999512 1.00419
0.943899 1.09606 1.457 0.120832 1.67427 0.0877824 0.100065 0.0999756 0.999493 1.00434
0.94468 1.09651 1.4547 0.12152 1.66883 0.0885299 0.100078 0.100021 0.999463 1.0046
0.946165 1.09675 1.44839 0.122499 1.65371 0.0898711 0.100101 0.100095 0.999417 1.00499
0.949334 1.09576 1.43025 0.123849 1.60997 0.0925995 0.100141 0.100223 0.999345 1.00563
0.957877 1.08932 1.36978 0.125546 1.46366 0.099666 0.100224 0.100485 0.999224 1.00674
0.964648 1.08468 1.32178 0.124551 1.34785 0.103809 0.100272 0.100637 0.999193 1.00713
0.977645 1.08118 1.24163 0.117931 1.15597 0.10753 0.10034 0.10085 0.99923 1.00716
0.988516 1.08188 1.18505 0.108426 1.02157 0.106912 0.100372 0.100945 0.999358 1.00651
0.98711 1.05332 1.15255 0.100051 0.934218 0.105048 0.100193 0.100289 0.999841 1.00175
0.979293 1.03831 1.15642 0.103389 0.939274 0.10711 0.100082 0.0998981 0.999933 0.99995
0.973607 1.04439 1.18659 0.106147 1.01405 0.105623 0.100097 0.0999495 0.99981 1.00106
0.975742 1.04223 1.17026 0.103629 0.974563 0.10547 0.100123 0.10003 0.99982 1.00129
0.975253 1.03753 1.16514 0.102395 0.960838 0.104999 0.10012 0.100025 0.999854 1.00106
0.97486 1.03603 1.16299 0.100669 0.955543 0.103458 0.100114 0.100013 0.999885 1.0009
0.974682 1.0385 1.16777 0.0989329 0.968118 0.100821 0.100104 0.0999868 0.999905 1.00084
0.975674 1.04269 1.17024 0.0987567 0.975444 0.100224 0.100101 0.0999719 0.999903 1.00085
0.975872 1.04402 1.17217 0.0989596 0.980478 0.100164 0.100101 0.0999692 0.999897 1.00089
0.975831 1.04418 1.17252 0.099033 0.981396 0.100191 0.100101 0.0999697 0.999895 1.0009
0.975775 1.04412 1.17265 0.0990565 0.981753 0.100196 0.100101 0.0999701 0.999895 1.0009
0.975648 1.04397 1.17288 0.099105 0.982491 0.100205 0.100101 0.0999707 0.999894 1.00091
0.975479 1.04371 1.1731 0.0991725 0.983552 0.100215 0.100101 0.0999717 0.999892 1.00092
0.975228 1.04319 1.17314 0.0992872 0.985376 0.100232 0.100101 0.0999734 0.99989 1.00094
0.974933 1.04219 1.17241 0.0994692 0.988321 0.100256 0.100101 0.0999762 0.999886 1.00096
0.974726 1.04013 1.16915 0.0997617 0.993185 0.100286 0.100102 0.0999809 0.99988 1.00101
0.975088 1.03585 1.15898 0.100202 1.00086 0.100308 0.100105 0.0999886 0.99987 1.00109
0.977155 1.02763 1.13374 0.100749 1.01131 0.100279 0.10011 0.0999994 0.999856 1.0012
0.981856 1.01617 1.09207 0.10109 1.01964 0.100143 0.100117 0.100008 0.999847 1.00129
0.987554 1.00675 1.05362 0.100916 1.01878 0.0999836 0.100122 0.100008 0.99985 1.00129
0.993677 1.0018 1.0253 0.100266 1.00491 0.10007 0.100126 0.0999988 0.999866 1.00117
0.997422 1.00003 1.00813 0.0999746 0.994959 0.100333 0.100129 0.0999992 0.999871 1.00111
0.997134 1.00079 1.01226 0.0999164 0.994336 0.100299 0.100129 0.0999988 0.999871 1.00111
0.997248 1.00017 1.01011 0.099962 0.995764 0.100268 0.100129 0.0999992 0.99987 1.00112
0.997361 0.999958 1.00938 0.0999671 0.995836 0.10027 0.100129 0.0999993 0.99987 1.00112
0.997421 0.999833 1.00899 0.0999731 0.995936 0.100271 0.100129 0.0999995 0.99987 1.00112
0.997421 0.999832 1.00899 0.0999737 0.99594 0.100271 0.100129 0.0999995 0.99987 1.00112
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Table 10: Steps taken using the method CD-UKF1st numerical (46 steps)

kcat1 Km1 Km2 V4 K4 k4 k5 k6 V1 Ki1

1.48093 1.53518 1.49493 1.00001 × 10−12 1.72985 0.214333 0.024223 0.171454 0.829542 1.62157
1.47856 1.5329 1.49454 0.0924477 1.73069 0.125487 0.128853 0.143763 0.736934 1.60313
1.47527 1.53468 1.49409 0.127746 1.72989 0.0794328 0.0998802 0.114888 0.776347 1.60306
1.46396 1.53862 1.48974 0.118144 1.7314 0.0964513 0.102915 0.0691874 0.874056 1.60569
1.45481 1.54393 1.48693 0.118707 1.7324 0.101981 0.101495 0.0949455 0.935804 1.60575
1.43346 1.55019 1.48068 0.120776 1.73111 0.096586 0.0916374 0.0953184 0.933715 1.59466
1.20971 1.64677 1.43158 0.101822 1.7345 0.0618675 0.0930848 0.10232 0.968584 1.48935
1.04326 1.71928 1.39709 0.082376 1.738 0.054666 0.0977362 0.105147 0.966427 1.39961
1.13908 1.68246 1.41883 0.0921987 1.73851 0.0722888 0.100901 0.101768 0.948655 1.43719
1.12106 1.69028 1.41491 0.0915587 1.73931 0.0651892 0.101779 0.0999675 0.944639 1.41778
1.0913 1.70285 1.4088 0.0928079 1.73907 0.0638715 0.0998951 0.100192 0.950897 1.38513
1.0816 1.70402 1.40493 0.102787 1.73593 0.0733594 0.104155 0.0991941 0.948222 1.26509
1.06228 1.70548 1.39643 0.123764 1.7291 0.0895759 0.109415 0.097633 0.954814 1.01738
1.09884 1.68921 1.40459 0.120453 1.72942 0.085724 0.105709 0.0980925 0.962737 1.09714
1.1287 1.67141 1.40962 0.125973 1.72745 0.0895339 0.102758 0.0985283 0.978727 1.07215
1.13935 1.65897 1.40926 0.132953 1.72396 0.0946116 0.100233 0.0995488 1.00048 0.993064
1.1313 1.66313 1.40808 0.129946 1.72503 0.0928254 0.100136 0.0997808 0.998759 1.00926
1.11851 1.66584 1.4061 0.125248 1.72554 0.0887418 0.100321 0.100416 0.99953 1.01049
1.12207 1.66384 1.40676 0.125916 1.72523 0.0893666 0.100156 0.100109 0.999734 1.00601
1.12277 1.65952 1.40716 0.123805 1.72471 0.0878334 0.0998837 0.0996539 1.00118 0.992234
1.12304 1.6582 1.40753 0.122013 1.72466 0.0866253 0.0998905 0.0997109 1.00048 0.996068
1.12264 1.65307 1.4087 0.116731 1.7243 0.0831372 0.0999728 0.0998285 1.0005 1.00024
1.12456 1.6462 1.41066 0.11098 1.72392 0.0794373 0.100064 0.0998522 0.999702 1.00894
1.12394 1.64145 1.41157 0.106938 1.72358 0.0765455 0.100009 0.09979 0.998829 1.00858
1.12352 1.63694 1.4121 0.104627 1.72313 0.0748228 0.0998115 0.0996826 0.999102 1.00201
1.12243 1.63283 1.41253 0.10186 1.72276 0.0728693 0.0997351 0.0996685 0.999346 0.999394
1.12032 1.63199 1.41224 0.10172 1.72272 0.0727684 0.0998227 0.0997439 0.999974 0.998619
1.11452 1.63264 1.41134 0.103792 1.72287 0.0743415 0.100225 0.100099 1.00138 1.00352
1.11622 1.62934 1.41215 0.102845 1.72259 0.0736944 0.100128 0.0999596 1.00082 1.00217
1.11537 1.61562 1.41449 0.0991387 1.72124 0.0710312 0.100007 0.0996647 0.999723 0.998847
1.09047 1.49983 1.43034 0.0803342 1.71122 0.0587846 0.0995922 0.0994806 0.999782 0.992456
1.08017 1.49004 1.43016 0.084844 1.71038 0.0616763 0.0999194 0.0996602 0.999951 0.994916
1.01499 1.37011 1.43916 0.101368 1.7 0.0727457 0.100714 0.100347 1.0003 1.00339
0.961418 1.23206 1.4531 0.10396 1.6878 0.0745284 0.101044 0.100555 1.0006 1.00446
0.956066 1.1837 1.45942 0.103403 1.68307 0.0744215 0.100698 0.100305 1.00113 1.00117
0.928947 1.06152 1.4738 0.103802 1.67149 0.0752396 0.100221 0.100022 1.00176 0.996309
0.932769 1.07624 1.47155 0.109744 1.6726 0.0796512 0.100105 0.0999784 1.00122 0.997609
0.945248 1.12122 1.4655 0.119206 1.67628 0.0865982 0.0999943 0.0999518 1.00022 1.00085
0.940352 1.09598 1.46865 0.11786 1.6739 0.0855609 0.100109 0.0999553 1.00037 1.00076
0.943059 1.10071 1.46803 0.11993 1.67416 0.0870626 0.100099 0.0999845 1.00004 1.00149
0.943834 1.09931 1.46805 0.121407 1.67385 0.0881719 0.100052 0.0999219 0.999864 1.00265
0.943671 1.09854 1.46813 0.121439 1.67377 0.0882019 0.100047 0.0999129 0.999854 1.00281
0.943541 1.09852 1.46812 0.121705 1.67376 0.0883905 0.100049 0.0998928 0.999731 1.00339
0.94333 1.09866 1.46808 0.121924 1.67378 0.0885383 0.100053 0.099879 0.99961 1.00394
0.943286 1.09876 1.46806 0.121952 1.67379 0.0885557 0.100053 0.0998756 0.999581 1.00407
0.943377 1.10134 1.46825 0.120505 1.67377 0.087548 0.100065 0.100007 0.999108 1.0047
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Table 11: Steps taken using the method CD-UKF2nd numerical (72 steps)

kcat1 Km1 Km2 V4 K4 k4 k5 k6 V1 Ki1

1.51656 1.54338 1.49568 0.0439102 1.72676 0.244499 1.00001 × 10−12 0.12681 1.01535 1.67275
1.5159 1.54355 1.49548 0.130933 1.72579 0.175167 0.115212 0.117574 0.841063 1.64964
1.51358 1.54442 1.49489 0.160436 1.72407 0.139452 0.095189 0.10691 0.849064 1.64768
1.49215 1.55293 1.48928 0.156917 1.7235 0.126293 0.0986499 0.0649318 0.936681 1.64506
1.47223 1.56074 1.48408 0.155039 1.72373 0.120667 0.0975922 0.115501 0.97127 1.6387
1.46228 1.56449 1.48151 0.151046 1.72473 0.128347 0.0933146 0.100344 0.929983 1.63067
1.43594 1.5745 1.4747 0.146979 1.72477 0.118996 0.0946447 0.0918329 0.927093 1.61779
1.32051 1.61794 1.44496 0.126394 1.72595 0.0918702 0.0976024 0.0804568 0.929993 1.56143
1.14388 1.6835 1.39967 0.0950679 1.72787 0.0604789 0.100979 0.0811437 0.938808 1.47107
1.09754 1.70034 1.38783 0.0869091 1.72805 0.0631612 0.102158 0.0914973 0.947534 1.43901
1.08802 1.70361 1.38534 0.086463 1.72816 0.0603579 0.100758 0.102482 0.946115 1.41863
1.09551 1.70048 1.38721 0.0878092 1.72807 0.0628935 0.100767 0.10484 0.94943 1.40619
1.10815 1.69326 1.39023 0.0910273 1.72801 0.0687464 0.100684 0.112488 0.965595 1.30726
1.13017 1.67857 1.3954 0.0980892 1.72801 0.0781234 0.100587 0.120812 0.998216 1.05812
1.14433 1.672 1.39903 0.101538 1.72793 0.0783941 0.100253 0.113024 1.00288 1.02884
1.14258 1.67093 1.39878 0.103137 1.72784 0.0739765 0.0996208 0.0975603 1.00082 1.01336
1.13611 1.67233 1.39717 0.102656 1.72783 0.0735534 0.0999488 0.0999879 1.00172 0.988893
1.13518 1.67268 1.39703 0.102489 1.72779 0.0732453 0.100002 0.100066 0.999447 1.00478
1.13537 1.67204 1.39717 0.102877 1.72774 0.0735194 0.0999407 0.0997354 0.99963 1.00337
1.13501 1.67052 1.39735 0.103767 1.72759 0.0741438 0.0999024 0.0994936 0.999755 1.00185
1.1328 1.66429 1.39798 0.107338 1.72696 0.0766406 0.0998404 0.0990234 0.99996 0.998983
1.12809 1.65296 1.39902 0.113578 1.72578 0.0809933 0.099832 0.0987287 1.00004 0.997342
1.12039 1.63591 1.40049 0.122417 1.72398 0.0871539 0.0999229 0.0988787 0.999891 0.998519
1.11433 1.62313 1.40154 0.128148 1.72263 0.0911555 0.100065 0.099444 0.999579 1.0021
1.11138 1.61686 1.40207 0.129785 1.722 0.0923108 0.100164 0.0999368 0.999341 1.00509
1.10851 1.61005 1.40269 0.130077 1.72137 0.0925354 0.100256 0.100427 0.999115 1.00807
1.10217 1.59326 1.40435 0.129639 1.71988 0.0922805 0.10039 0.101174 0.998778 1.01258
1.0866 1.54906 1.4089 0.128393 1.71601 0.091544 0.100581 0.102268 0.998272 1.01932
1.04889 1.43757 1.42062 0.126134 1.7063 0.090303 0.100825 0.103742 0.997556 1.02868
0.980928 1.22982 1.44282 0.123015 1.68828 0.0887458 0.100979 0.104826 0.996963 1.03607
0.941164 1.09951 1.45718 0.119681 1.6771 0.0868 0.100748 0.103734 0.997498 1.0292
0.939154 1.08221 1.45953 0.116021 1.6758 0.084265 0.100152 0.100554 0.999261 1.00768
0.944237 1.09936 1.45757 0.118562 1.67717 0.0859566 0.100045 0.0999217 0.999562 1.00381
0.943379 1.09562 1.45802 0.119661 1.67677 0.0867699 0.100046 0.0999097 0.999539 1.00394
0.943149 1.09525 1.45802 0.120008 1.67667 0.0870402 0.10005 0.0999261 0.999528 1.00406
0.943246 1.0954 1.45798 0.120075 1.67661 0.0870955 0.100051 0.0999303 0.999525 1.00408
0.943579 1.09591 1.45767 0.120381 1.67599 0.087362 0.100056 0.0999484 0.999513 1.00418
0.944038 1.09641 1.45689 0.120786 1.67421 0.0877516 0.100064 0.0999744 0.999494 1.00434
0.945057 1.09741 1.45445 0.121439 1.66856 0.0884851 0.100077 0.100021 0.999463 1.00459
0.946722 1.098 1.44796 0.122354 1.65305 0.0897996 0.1001 0.100095 0.999414 1.00498
0.950328 1.09778 1.42912 0.123602 1.60768 0.0925207 0.100139 0.100224 0.999337 1.00561
0.960175 1.0926 1.36438 0.125141 1.45085 0.0998923 0.100224 0.1005 0.999202 1.00676
0.967558 1.08914 1.31563 0.123789 1.33307 0.103872 0.100271 0.10065 0.99917 1.00711
0.975677 1.08799 1.2679 0.119428 1.21858 0.105801 0.100308 0.100771 0.999196 1.00707
0.991704 1.08595 1.17778 0.106687 1.00243 0.106461 0.100349 0.100887 0.999375 1.00605
0.988939 1.06181 1.15742 0.100486 0.945359 0.104767 0.100216 0.100387 0.999751 1.00242
0.977775 1.02716 1.14959 0.102545 0.915576 0.107507 0.100027 0.0996889 1.00006 0.998549
0.973065 1.04319 1.18877 0.106278 1.01578 0.105606 0.100071 0.0998576 0.999852 1.00055
0.977508 1.04614 1.16858 0.103015 0.968617 0.105244 0.100135 0.100077 0.999807 1.0015
0.975751 1.03975 1.1674 0.102549 0.963682 0.104998 0.100122 0.100031 0.999847 1.00111
0.973874 1.0352 1.16785 0.101674 0.963508 0.103968 0.100099 0.099961 0.999896 1.00065
0.973238 1.03537 1.1704 0.100161 0.970002 0.101936 0.10009 0.0999336 0.99992 1.00052
0.974623 1.04029 1.17161 0.0990035 0.974744 0.10049 0.100094 0.0999473 0.999913 1.00069
0.975561 1.04368 1.173 0.0988976 0.979223 0.100159 0.100099 0.0999653 0.999902 1.00084
0.975749 1.0444 1.17335 0.0989757 0.980317 0.100195 0.100101 0.0999696 0.999897 1.00089
0.975696 1.04467 1.17401 0.0990676 0.982053 0.10019 0.100101 0.0999706 0.999895 1.0009
0.975598 1.04439 1.174 0.0990683 0.981976 0.100195 0.100101 0.0999704 0.999896 1.0009
0.975514 1.04401 1.17371 0.0990366 0.981209 0.100207 0.1001 0.0999697 0.999897 1.00088
0.975931 1.04532 1.1733 0.098953 0.98258 0.100034 0.100098 0.0999651 0.999841 1.00125
0.975977 1.04519 1.17309 0.0989875 0.982664 0.100068 0.1001 0.099969 0.999859 1.00112
0.976251 1.04303 1.16929 0.0990991 0.980549 0.100325 0.100109 0.0999879 0.999949 1.00047
0.977284 1.04274 1.16415 0.0992097 0.98194 0.100364 0.100113 0.0999955 0.999989 1.00018
0.984335 1.0386 1.12468 0.0998183 0.992349 0.100407 0.100128 0.100029 1.00015 0.999057
0.98905 1.03169 1.09204 0.100041 0.99752 0.100331 0.100134 0.100038 1.00016 0.999047
0.995026 1.01813 1.04424 0.100219 1.00191 0.100236 0.100138 0.100038 1.0001 0.999553
0.997734 1.00375 1.013 0.100072 1.00091 0.100097 0.100131 0.100014 0.999918 1.00093
0.997429 0.999672 1.00902 0.100047 0.997898 0.100233 0.100128 0.0999976 0.99987 1.00116
0.997578 0.999219 1.00741 0.100028 0.997143 0.100257 0.100129 0.0999986 0.99987 1.00112
0.997152 1.0001 1.01053 0.0999663 0.995677 0.100279 0.10013 0.100002 0.999873 1.00108
0.997344 0.999576 1.00892 0.0999695 0.995677 0.100282 0.100129 0.1 0.999871 1.00111
0.997462 0.999548 1.00838 0.0999778 0.995994 0.100272 0.100129 0.0999995 0.99987 1.00112
0.99737 0.999836 1.00919 0.0999765 0.99599 0.100271 0.100129 0.0999992 0.999871 1.00112
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B Differentiating the CD-EKF with respect to the parameters θ

In Section 4 the differentiated CD-UKF was derived and it was explained how it was used
in the minimization of the objective function V (θ; YN ), given in (3.1). In the benchmark-
ing in Section 5, it was further stated that one of the methods used was the CD-EKF
with analytical gradient. If one switches from using the CD-UKF to the CD-EKF in
the parameter estimation framework, one must also switch from using the differentiated
CD-UKF to the differentiated CD-EKF. We state here the symbolic differentiation of
the CD-EKF given in Section 2.4.3.

• Prediction step

The derivative of (2.19) with respect to θl is

d

dθl

(
dmt

dt

)
=

d

dt

(
dmt

dθl

)
=
∂f(mt, θ)

∂mt

dmt

dθl
+
∂f(mt, θ)

∂θl
. (B.1)

The derivative of (2.20) with respect to θl is

d

dθl

(
dPt
dt

)
=

d

dt

(
dPt
dθl

)
=
dFx(mt, θ)

dθl
Pt+Fx(mt, θ)

dPt
dθl

+
dPt
dθl

Fx(mt, θ)
T+ (B.2)

Pt
dFx(mt, θ)

dθl

T

+
∂L(θ)
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L(θ)T + L(θ)

∂L(θ)T

∂θl
,

where
dFx(mt, θ)

dθl
=
∂Fx(mt, θ)

∂mt

dmt

dθl
+
∂Fx(mt, θ)

∂θl
.

• Update step

The derivatives of (2.21) and (2.22) are

dµk
dθl

=
∂h(m−k , θ)

∂m−k

dm−k
dθl

+
∂h(m−k , θ)

∂θl
(B.3)

and

dSk
dθl

=
dHx(m−k , θ)

dθl
P−k Hx(m−k , θ)

T +Hx(m−k , θ)
dP−k
dθl

Hx(m−k , θ)
T+ (B.4)
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respectively, where

dHx(m−k , θ)

dθl
=
∂Hx(m−k , θ)

∂m−k

dm−k
dθl

+
∂Hx(m−k , θ)

∂θl
.
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Furthermore, the derivatives of (2.23)-(2.25) are

dKk

dθl
=
dP−k
dθl

Hx(m−k , θ)
TS−1

k + P−k
dHx(m−k , θ)

T

dθl
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dθl
=
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dθl
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dµk
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(B.6)

and
dPk
dθl

=
dP−k
dθl
− dKk

dθl
SkK

T
k −Kk

dSk
dθl

KT
k −KkSk

dKT
k

dθl
, (B.7)

respectively.
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