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Abstract

The automotive industry is constantly trying to make cars safer. While automotive
engineers try to add additional safety features to cope with human error, computer
scientists try to remove the driver completely. Computers can do things a lot faster
and more consistently than humans, provided that they have correct instructions
and data. Moving towards a computer controlled car is a logical step. Therefore,
the industry is striving towards building new functionality which replaces human
involvement in driving.
In this thesis, the aim is to develop a lateral control algorithm for high speed lane
following. One type of controller that has shown promising results in vehicle path
following is the Model Predictive Controller. With knowledge about the system
dynamics, the MPC can predict the system state in the future and optimize the
control signal to a desired behavior. An MPC controller and a finite horizon linear
quadratic regulator (LQR) controller are developed for comparison in performance.
The controllers uses a similar approach to solve a convex optimization problem, but
the MPC offers the ability to set actuator constraints. Both the MPC and the finite
horizon LQR controller show promising results in simulation and real world tests.

Keywords: lateral control, vehicle dynamics, model predictive control, modeling and
simulation.
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Notation

Acronyms

LKA Lane Keeping Aid
TJA Traffic Jam Assist
ACC Adaptive Cruise Control
LF Lane Following
CT Continuous Time
DT Discrete Time

Capital letters

A CT motion matrix
Ad DT motion matrix
Am CT Mathematica generated motion matrix
B CT input vector
Bd DT input vector
Bm CT Mathematica generated input vector
Cf Front cornering stiffness
Cm CT Mathematica generated output matrix
Cr Rear cornering stiffness
Ffxw Longitudinal force on front axle in front wheel coordinate system
Ffyw Lateral force on front axle in front wheel coordinate system
Ffz Vertical force on front axle
Frx Longitudinal force on rear axle
Fry Lateral force on rear axle
Frz Vertial force on rear axle
Izz Yaw inertia around the center of gravity
J Cost function
L Length between front and rear axle
M Number of control updates (Control horizon)
N Number of predictions (Prediction horizon)
Q Weight matrix
R Radius of the curvature
TMPC Sample time for the MPC
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Contents

Lower case letters

a Lane marker coefficients
ax Longitudinal acceleration
ay Lateral acceleration
c0 Tire stiffness parameter
c1 Tire stiffness parameter
g Gravity
h Discretization time
lf Length between front axle and center of gravity
lr Length between rear axle and center of gravity
m Total mass of the vehicle
py Lateral position at the center of gravity
ri References for trajectory
umax Maximum value on input signal
umin Minimum value on input signal
u̇max Maximum rate on input signal
u̇min Minimum rate on input signal
vf Velocity at the front axle
vfxw Longitudinal velocity at the front axle in front wheel coordinate system
vfyw Lateral velocity at the front axle in front wheel coordinate system
vr Velocity at the rear axle
vrx Longitudinal velocity at the rear axle
vry Lateral velocity at the rear axle
vx Longitudinal velocity at the center of gravity
v̇x Time derivative of longitudinal velocity
vy Lateral velocity at the center of gravity
v̇y Time derivative of lateral velocity
x State vector
z Optimization vector

Greek letters

α Lateral side slip angle at the center if gravity
αfy Lateral side slip angle at the front axle
αry Lateral side slip angle at the rear axle
δf Steering angle on front wheel
δEPAS Input to the power steering interface
δstw Steering wheel angle
δratio Linear relationship between δf and δstw
κ Curvature of the road
ωi State weightings of the controller behavior
ωz Yaw rate at the center of gravity
ψz Yaw angle at the center of gravity
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1
Introduction

Since the dawn of the development of vehicles, car manufacturers have always tried
to simplify the task of driving the car as well as making it safer. The first fully
automatic gearbox was introduced by General Motors in 1940 [13]. Since then, a lot
of other safety and comfort functions have been developed and added to cars, such
as seat belts, anti-lock braking system, electronic stability control, adaptive cruise
control and many more.
The post point of no return safety, i.e. a safety function that acts only when an
accident is going to happen or already happening, is reaching its limit. There are
only so many mechanical safety features one can add to the chassis structure before
other factors such as aesthetic look, fuel consumption or road handling become com-
promised. Now that the cars of today are reaching this limit, car manufacturers are
looking to completely exclude another factor from the equation: the factor of human
error. When given some thought, it makes more sense to reduce the probability of
getting into an accident, than to make the car more resilient to accidents.
While humans have sufficient capabilities to take in all the information necessary to
read a traffic situation, we can still lose focus due to distractions, and subsequently
fail to see upcoming dangers. We can all make errors and mistakes. Due to the
human factor, car manufacturers are implementing so called Advanced Driver As-
sistance Systems or ADAS for short. ADAS intends to aid the driver in recognizing
danger before it is too late and thereby warning or intervening, while at the same
time taking the car dynamics into account. Computer systems can do this precise
and exact, whereas humans can make estimates based on prior experience and our
limited senses.
One of the key components in ADAS is the sensors which deliver information about
the surrounding environment. Two sensor types that have an increase in use for
the past few years are the camera and the radar. With their low cost and yet high
capabilities, cameras and radars are used in many active safety systems today. They
both have their strengths and weaknesses; the camera and associated algorithms can
classify objects and detect visual features such as lane markings and traffic signs,
whereas the exact range to and velocity of the object is difficult for the camera to
estimate. That’s where the radar comes in; with accurate range and range rate
measurements, the relative position and velocity of other objects can be estimated.
The radar can however not determine what kind of an object that reflected the ra-
dio waves. Using a mathematical method called sensor fusion, algorithms use the
strengths of the two sensors to provide accurate measurements of the surrounding
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1. Introduction

environment.

ADAS functions can be separated into two categories; safety functions and comfort
functions. Safety functions are there to minimize or prevent injuries when danger
is imminent, whereas comfort functions take away some of the tedious tasks that
comes with driving, such as following the lane on freeways, or constantly adjusting
the speed when catching up to other vehicles. In 1992 Mitsubishi introduced a crude
predecessor to the forward collision warning (FCW) system, which used a lidar based
system to alert the driver when the distance to the leading car was too small [12].
In today’s automotive industry, some of these functions are already implemented in
production cars, such as Adaptive Cruise Control (ACC), Traffic Jam Assist (TJA)
and Lane Following (LF). While none of these functions are capable of completely
controlling the car, they will still play an imperative role in the development of
autonomous cars.
In today’s automotive industry, autonomous driving technology is becoming an in-
creasingly popular investment for car manufacturers, and the race towards the fully
autonomous car is ongoing. In 2004, DARPA (Defense Advanced Research Projects
Agency) launched its autonomous driving challenge called DARPA Grand Chal-
lenge, in which universities and companies got the opportunity to develop their own
autonomous vehicle, and have it compete in a number of different challenges [3].
Since then, many companies have joined the race for the first autonomous car, with
giants such as Google, Baidu and Volvo amongst them [8][4].
There are many different functions required for autonomous driving, with different
logic handling different scenarios and situations. We as humans adapt to the sit-
uation that we are in; if we are driving in an urban area, we know that we must
stay alert and focus on many different elements such as other cars, obstacles and
pedestrians. If we are driving on the highway however, the scenario is pretty static,
and we only need to look ahead for braking cars and follow the curvature of the
road. For an autonomous car these different scenarios will demand different logic
and different controllers.
Lateral and longitudinal control are the two key concepts of autonomous cars. While
there are several algorithms that measures the environment and makes decisions
based on this information, in the end it all comes down to the control of the vehicle
motion. There are many different approaches to the lateral control of a highway
vehicle. Some suggest a sliding mode control approach [10] to achieve avoid oscil-
lations around the lane center. There has also been research in H∞ control [17]
which allows for model uncertainties. This report presents a comparison between
two different methods to control the vehicle laterally on freeways; namely the Model
Predictive Controller and the Finite Horizon Linear Quadratic Controller.
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1. Introduction

1.1 Problem formulation

This project aims to develop, implement and finally evaluate several different control
methods that controls a vehicle laterally at speeds above 70 km/h such that it follows
the lane on highways.
The controller will use a set of inputs and one output. The inputs to the controller
will consist of the road information and the vehicle state information. The road
information can be divided into two parts. One part describes the lateral offset y
from the road tangent line, as well as the angular offset θ from the road tangent
line. The other part is how the road is changing, which is described by the current
radius of curvature R. The controller will also use vehicle states such as lateral
and longitudinal velocity vy and vx as well as yaw rate ωz are used as input to the
system. Given all of these inputs, the controller shall calculate the steering wheel
angle which makes the car follow the road.
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Figure 1.1: Over view of the vehicle reference and angles.

Additionally, a set of issues are also to be answered.

• What kind of controller is best suited for this system?

• What kind of demands does this controller put on the sensor system?

• What kind of demands does this controller put on the actuator system?

• How realistic is it to implement the different controllers, in terms of computa-
tional complexity, on existing embedded hardware in automotive systems?
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1. Introduction

1.2 Limitations and Assumptions

A number of things are excluded in this project due to limitations in time and
physical availability.

• Vertical dynamics
The vertical dynamics is the movement of the car along the axis perpendicular
to the road plane. The vertical curvature of Swedish highways is relatively
low, and the vertical dynamics is therefore negligible. It is also difficult to
model, as it is only measured instantaneously, i.e. where the car is. If it could
be estimated at some distance ahead, such that some sort of feed forward in
the control system could be implemented, it would be easier to compensate
for it.

• Roll/pitch dynamics
Neither the roll or pitch angle nor their respective angular velocities can be
measured accurately. The fast varying pitch and roll dynamics are due to local
road imperfections. The roads are assumed to be made even enough to neglect
roll/pitch dynamics.

• Longitudinal dynamics
The change in longitudinal velocity on freeways is usually small, such that
it can be considered to have no or little impact on lateral and rotational
dynamics. The control of the longitudinal velocity will be performed by the
built in cruise controller.

• Tire nonlinearities
Tire dynamics is difficult to model and including them leads to a more complex
controller which is computationally heavier. The controller is however only
designed to work on freeways, where the lateral velocity and acceleration is
low, and little or no longitudinal dynamics. Therefore, the tires will operate
in the linear region.

• All sensor data is filtered and will not be processed any further
As the current road sensing system is under development, and is already sent
through a number of filters, further filtering might decrease its quality. Thus,
it was decided that the sensor data should not be filtered any further.

• Lateral gradient of the road
All roads are made with a lateral gradient in order to decrease the lateral
acceleration when taking a curve. A lateral gradient leads to better curve
taking. Since the roll angle is not measured, and the lateral gradient is not
included in the mathematical model, the lateral gradient will be neglected.

• Low curvature
The curvature of the road induces errors in the modeling when the model is
sampled and discretized. However, it will be shown that the curvature is low
enough such that this error can be neglected.
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1. Introduction

• Linear coupling between steering wheel angle and tire angles
The ratio between the steering wheel angle and the tire angles is not linear
over the entire range of the steering wheel. For small angle it is however fair
to assume that they are. Another reason why this is neglected is that there
is no information available about the relationship between them for the used
test vehicle.

• Steering wheel dynamics
The steering wheel actuator is assumed to behave as a first order linear time
invariant system.

1.3 A few words about road geometry

In the previous section there are a number of limitations and assumptions that are
listed. There is one of them which defines and binds the problem, namely the one
which states that assumes a low curvature for the roads.
Below is a table showing maximum allowed curvature for Swedish roads. Driving in
a certain curvature with the intended velocity, this results in a lateral acceleration
according to ay = κv2

x, where κ is the curvature, vx is the velocity along the road
tangent and ay is the lateral acceleration, which is perpendicular to the road tangent.

Velocity [km/h] Radius of curvature [m] Max lateral acceleration [m/s2]
120 1200 0.93
110 900 1.04
100 700 1.10
80 400 1.23
60 250 1.98
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2
Modeling

This chapters derive and define a mathematical model that describes the system
dynamics. The model is then linearized around the operating points, and then
discretized for an arbitrary sampling time.

2.1 Mathematical Model Formulation

A vehicle dynamics model have to be selected so that the controllers can have
knowledge about the system and make correct estimations of future states. The
mathematical model is desired to be detailed enough to describe the dynamics of
the real vehicle. On the other hand will a high detailed model involve more state
variables, more model parameters and also more complex calculations for the con-
troller to preform. There is a trade of between the accuracy of a detailed model and
the small computation effort for a less detailed model.
The lateral dynamics of a vehicle is highly non-linear and is affected of both the
longitudinal and the vertical motion. The non-linearty of the lateral dynamics is
much affected of the dynamics of the tires, which is connected to the slip between
tire and ground. The lateral dynamics is also involving trigonometrical functions
which also contributes to the non-linear behavior, [1].
A bicycle model is a quite simple model since it neglects lateral load distribution
and hence neglects the roll dynamics in cornering. A bicycle model does only need
two states variables, lateral velocity (vy) and yaw rate (ωz) in order to describe
the lateral motion as described in [9]. The number of needed state variables are
affecting the computational effort of calculating the optimal steering angle and the
simplicity of the bicycle model is highly valued. The accuracy of the bicycle model
is considered to be good enough to let a controller use it in order to estimate the
future motion.
The bicycle model is still highly non-linear even though it simplifies the lateral
dynamics. To handle this, further simplifications and assumptions can be made
when constructing the mathematical model as stated below:

• Since the lane centering algorithm is to be developed for high speed motor-
ways then the radius of the curvature will be much larger than the length
of the vehicle. Therefore can forces be approximated to be either lateral or
longitudinal directed in the vehicle on-board coordinate system.

9



2. Modeling

• High longitudinal velocity makes it possible to assume that the yaw rotation
of the vehicle will be around the center of gravity.

• If the longitudinal velocity is assumed to be held constant for the entire pre-
diction horizon then the longitudinal acceleration will be small and can be
neglected. This induce that the bicycle model can be expressed with only two
states, vy and ωz as described above.

2.1.1 Equilibrium equations

The mathematical model for the bicycle model can be developed by constructing
the equilibrium equations from the figure 2.1. The figure shows all forces, angles,
velocities and lengths that are needed to generate the complete mathematical model.
The black and white circle shows the center of gravity (COG), the front is located
to the right in the figure. The figure have two different coordinate systems, one is
expressing the vehicle frame and is located in the COG, the other one is posed in
the front wheel center and is sub-scripted with a w.

Figure 2.1: The figure shows the forces (red arrows), velocities (green and blue
arrows), angles and angular velocities (curved arrows) working on the system. Note
that angles are drawn large for clear visualization but are assumed to be small.

According to the notation in figure 2.1, equilibrium equations for the bicycle model
can be derived as:

max = Ffxw cos δf − Ffyw sin δf + Frx, (2.1)

may = Ffxw sin δf + Ffyw cos δf + Fry, (2.2)

10



2. Modeling

Izzω̇z = (Ffxw sin δf + Ffyw sin δf ) lf − Frylr, (2.3)

where the mass of the vehicle is denoted m and the yaw inertia is noted as Izz.
The accelerations in either direction (x and y), can be expressed as a relation between
velocity derivative and the yaw rate of the vehicle as:

ax = v̇x − ωzvy, (2.4)

ay = v̇y + ωzvx. (2.5)

2.1.2 Vertical forces

Cornering induces the vehicle to roll which imply that the load distribution changes
between right and left side of the vehicle. In the same manner as longitudinal accel-
eration and deceleration induces the vehicle to pitch and change the load distribution
between front and rear axle.
Since the bicycle model is neglecting the roll dynamics and that the longitudinal
velocity is assumed to be constant in the prediction horizon, the vertical forces will
be constant and the load distribution between front and rear axles will be directly
proportional to the distance between the axles and the COG as:

Ffz = mglr
L

, (2.6)

Frz = mglf
L

. (2.7)

2.1.3 Lateral forces

The lateral forces, Fry and Fry, on the vehicle can be formulated as a combination
between the lateral side slip angle, (αr and αf ), of the vehicle and a parameter
denoted as a tire cornering stiffness (Cr and Cf ) as:

Fry = −Crαr, (2.8)

Ffyw = −Cfαf . (2.9)

Where the tire cornering stiffness is the derivative of the lateral force with respect
to the slip angle and describes the dynamics of a tire for specific slip angle, [9]. In
other words is the tire cornering stiffness varying for different slip angles and for
different tires.
The slip angle can be expresses as a ratio between the lateral and longitudinal
velocity of the wheels as:

11



2. Modeling

αf = arctan
(
vfyw
vfxw

)
= arctan

(
(vy + lfωz) cos δf − vx sin δf
(vy + lfωz) sin δf + vx cos δf

)
, (2.10)

αr = arctan
(
vy − lrωz

vx

)
. (2.11)

The true tire cornering stiffness have a non-linear characteristic which is affected by
many parameters like for example vertical load, steering angle, longitudinal velocity,
tire friction. For small slip angles is the non-linearity small enough to be negligible
but increases when side slip grows, [11]. There exist many different tire modeling
approaches, some are based on pure mathematics where as other approaches are
more or less empirical. The mathematical modeling is restricted to steady state
condition where as the empirical modeling uses exponential, parabolic or arctangent
functions with more or less success to adapt the tire characteristic, [15]. Since the
slip angles are assumed to be small, the front respectively rear cornering stiffness be
expressed with a less advanced empirical model. The front cornering stiffness and
rear cornering stiffness can be expressed as:

Cf = c0Ffz + c1F
2
fz, (2.12)

Cr = c0Frz + c1F
2
rz, (2.13)

with use of the model presented in [5].
Since the turning angle and the slip angles both are assumed to be small can the
trigonometrical functions be approximated as cos β ≈ 1, sin β ≈ β and arctan a ≈ a.
The equilibrium equations (2.1) to (2.3) and the slip angle equations, (2.10) and
(2.10), can be rewritten as follows:

max ≈ Ffxw − Ffywδf + Frx, (2.14)

may ≈ Ffxwδf + Ffyw + Fry, (2.15)

Izzω̇z ≈ (Ffxwδf + Ffywδf ) lf − Frylr, (2.16)

αf ≈
vy + lfωz − vxδf

(vy + lfωz)δf + vx
, (2.17)

αr ≈
vy − lrωz

vx
. (2.18)

Since the longitudinal velocity is expected to be constant during the entire prediction
horizon, the longitudinal acceleration can be assumed to zero, v̇x ≈ 0. Further, the
longitudinal tire forces are therefore assumed to be small and can be neglected from
the equations of motion. The longitudinal motion (2.1) can be rewritten as:

Ffwx + Frx = −mωzvy − Cf
vy + lfωz − vxδf

(vy + lfωz)δf + vx
δf ≈ 0. (2.19)
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2. Modeling

By combining equations (2.8) to (2.9) and (2.15) to (2.18). The lateral dynamics
can finally be expressed as:

v̇y = −Cf
m

vy + lfωz − vxδf
(vy + lfωz)δf + vx

− Cr
m

vy − lrωz
vx

− ωzvx, (2.20)

ω̇z = −Cf
Izz

vy + lfωz − vxδf
(vy + lfωz)δf + vx

δf lf + Cr
Izz

vy − lrωz
vx

lr. (2.21)

2.1.4 State variable extension

In addition to lateral velocity and yaw rate, the vehicle need to have state variables
that can be compared with a reference trajectory. The reference trajectory, which is
described in chapter 3.1 is needed to convert from the current lane marker measure-
ment to a set of reference states that the vehicle is desired to achieve in the future.
The key is to express states that can be computed from the mathematical model’s
state variables and the lane marker estimation so that a set of predicted states can
be compared to set of reference states.
For this, lateral position py and yaw angle ψz are a good choice since it can be easily
computed from the mathematical model state variables as well as the lane marker
estimation.
The yaw angle ψz can be derived by integrating the yaw rate ωz as:

ψ̇z = ωz. (2.22)

The lateral offset on the other hand cannot be derived by simply integrating the
lateral velocity vy. Because the lateral offset of all predictions should always ex-
pressed from the vehicle’s current state on-board coordinate system and not from
the predicted on-board coordinate system. The lateral offset can be expressed as:

ṗy = vy cosψz − vx sinψz. (2.23)

2.2 Linearization

The motion equations are non-linear and needs to be linearized in order to use a
linear control frame work. The model can be linearized around a operating point
by using first order Taylor expansion. The linearized model is only valid for small
deviation from the operation point.
If the operation values are defined as x0 for the state variables and u0 for the input
signal, (δf ), then the non-linear function can be expressed as:

ẋ0 = f(x0, u0). (2.24)

The resulting Taylor series expansion can therefore be expressed as:
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2. Modeling

ẋ(t) ≈ f(x0, u0) + ∂f(x, u)
∂x

∣∣∣∣∣x=x0
u=u0

(x(t)− x0) + ∂f(x, u)
∂u

∣∣∣∣∣x=x0
u=u0

(u(t)− u0) . (2.25)

Where the current state vector is denoted x(t) and the current input signal u(t)
acting on the mathematical model.
The equilibrium point for the lateral dynamics is when the vehicle is traveling for-
ward with no lateral motion. If the lateral dynamics is linearized around equilibrium
then the operation points x0 = (0 . . . 0) and u0 = 0. Then the model matrix A and
input vector B can be formulated as:

A = ∂f(x, u)
∂x

∣∣∣∣∣x=x0
u=u0

, (2.26)

B = ∂f(x, u)
∂u

∣∣∣∣∣x=x0
u=u0

. (2.27)

Since the linearization is done in a steady state which imply that the actual deriva-
tive:

ẋ0 = f(x0, u0) = 0. (2.28)

The linear model can therefore be described by the following state space represen-
tation:

ẋ(t) = Ax(t) +Bu(t). (2.29)

The model matrix and the input vector can be seen in Appendix C.1 where the
input u(t) is the steering angle on the front wheel.

2.3 Power steering interface extension

The input to the current mathematical model is the steering angle of the front
wheel but the controller is connected to the input of the power steering interface.
The power steering interface Electric Power Assisted Steering, (EPAS) which is
described latter in chapter 4.2 have dynamics between the requested steering angle
and the actual steering angle. This means that the mathematical model have to be
extended with the dynamics of the power steering interface.
Given the current mathematical model in Laplace domain, the extended mathemat-
ical model can be formulated as:

sx(s) = Ax(s) +Bδf (s), (2.30)
= Ax(s) +BGEPAS(s)δEPAS(s). (2.31)

14
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where GEPAS(s) denotes the dynamics of the power steering system and δEPAS(s)
represent the requested steering angle which the controller can be connected to.
The new mathematical model is desired to be expressed on the standard state space
form:

ẋ(t) = Ax(t) +BδEPAS(t), (2.32)

and (2.31) must hence be reformulated so that GEPAS is integrated in the new model
matrices.
The power steering interface of the real test vehicle can be estimated to a first order
filter with time constant 0.4 s as can be seen in chapter 6.1.1. Therefore the EPAS
dynamics can be formulated as:

δ̇f (t) = − 1
0.4δf (t) + 1

0.4δEPAS(t). (2.33)

By extending the state vector as

xe(t) =
(
x(t)
δf (t)

)
, (2.34)

an approach to achieve the desired state space representation is to augment the
model as:

ẋe(t) =
(
A B
0 − 1

0.4

)
xe(t) +

(
0
1

0.4

)
δEPAS(t),

x(t) =
(
I 0

)
xe(t).

(2.35)

This approach requires the mathematical model to be extended with an extra state
variable and therefore was another approach investigated. By first expressing (2.29)
as a transfer function in Laplace domain and then multiply with GEPAS(s) gives a
transfer function of the complete dynamics. Which can be converted to state space
representation by use of the StateSpaceModel function in Mathematica, [16]. This
gives a automatic generated state space model which can be expressed as:

ẋm(t) = Amxm(t) +BmδEPAS(t),
x(t) = Cmxm(t).

(2.36)

where xm denotes a auto generated state vector. The Cm matrix makes it possible
to convert between the automatic generated state space vector xm and the previous
selected state vector x. This approach also resulted in a state vector with five states
but will be used in the MPC controller whereas the FHLQC controller will make
use of the first approach. The model matrices can be seen in Appendix C.2.
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2.4 Discretization

The two methods of control that will be described later in assumes that the model is
expressed in discrete time. Usually, the sampling time is constant between different
samples.
The lateral reference for the road ahead is a function of the longitudinal distance.
It is desired to sample the lateral reference at equidistant points along this reference
function. As such, the predicted path will be sampled in space, and not in time.
However, since the longitudinal velocity is assumed to be constant, the relation
between the sampling time and sampling distance is linear and can be expressed as:

h = ds

vx
, (2.37)

where h is the sampling time, ds is the sampling distance and vx is the longitudinal
velocity.

2.4.1 Forward Euler

Forward Euler is a simple method that implies that the future state is calculated
with a predefined discretization time h from the current state. If the current state
and input signal are assumed to be constant during the the discretization step. The
forward Euler can be formulated as shown in the two following equations:

ẋ(k) ≈ x(k + 1)− x(k)
h

= Ax(k) +Bu(k), (2.38)

x(k + 1) = (I + hA)︸ ︷︷ ︸
Ad

x(k) + hB︸︷︷︸
Bd

u(k), (2.39)

where the discretized model matrix is denoted Ad and the discretized input vector
is denoted Bd.
Forward Euler discretization have a drawback, the discretization time is affecting the
stability of the discretized model. This can easily be seen in the following example
when the control input is zero for all future states. If x(k) is the current state then
the next state is given by:

x(k + 1) = (I + hA)x(k) (2.40)

and the next state after that is given by:

x(k + 2) = (I + hA)x(k + 1),
= (I + hA) (I + hA)x(k),
= (I + hA)2 x(k).

(2.41)
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This means that if |I + hA| > 1, future states will diverge to infinity when time
increases and hence must the eigenvalues of the discrete time model be inside or on
the border of the unit circle to guarantee stability, [7]. Therefore can the stability
criterion be checked with the formulation:

|1 + hλmax| ≤ 1 (2.42)

where λmax represent the eigenvalue with greatest magnitude of the continuous time
model.

2.4.2 Exact discretization

While the forward Euler is fast and easy to implement, it introduces some dis-
cretization error due to the finite difference approximation. To perform an exact
discretization, one has to study the solution of a linear time invariant (LTI) system.
The general LTI system has the form:

ẋ(t) = Ax(t) +Bu(t). (2.43)

The continuous time solution of this is:

x(t) = eAtx(t0) +
t∫

t0

eA(t−τ)Bu(τ)dτ, (2.44)

where x(t0) is the initial condition. Since we wish to study the system in discrete
time, i.e. in fixed time intervals, we look at x(t) between x(kT ) and x(kT + T ),
where T is the sampling time and k ∈ Z. It is assumed that x(kT ) is known at time
instance kT .

x(kT + T ) = eATx(kT ) +
kT+T∫
kT

eA(kT+T−τ)Bu(τ)dτ. (2.45)

If the control inputs are assumed to be constant between every sampling instance,
the control signals can be moved outside of the integral, and the integral can be
computed:

x(kT + T ) = eATx(kT ) + A−1(eAT − I)Bu(kT ). (2.46)

If we define that xd(k) = x(kT ), k ∈ Z, we can therefore define our discrete matrices
as:

Ad = eAT ,

Bd = A−1(eAT − I)B,
(2.47)
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and finally write it on standard discrete state space form:

xd(k + 1) = Adxd(k) +Bdud(k). (2.48)

2.4.3 The consequences of curvature

As mentioned in the beginning of section 2.4, the road is sampled in space at points
equidistantly spaced from each other, along an axis parallel to the vehicle heading.
The sampling is done in a global coordinate system, located at the COG during
the initial time instance, and not in the curved coordinate system which follows the
road reference. Due to the fact that the car changes heading, the distance change
∆Y along the global Y axis is not constant, and is therefore different over all time
instances. Therefore, a sampling error is induced. This is illustrated in figure 2.2.
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Figure 2.2: An excessivly high curvature to illustrate the induced errors.
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Figure 2.3: The errors in X and Y plotted over increasing distance away from the
vehicle.

In Figure 2.3 the distance error in both the X and Y direction is observed for
sampled points along the road. The error increases exponentially with increased
distance from the car. The figure does however show that with increasing radius of
curvature of the road, these errors decrease. This justifies the fact that the road can
be sampled in this way, without introducing any substantial errors that propagate
through the rest of the modeling.
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3
Control design

The control design follows the modeling of the system. This chapter will briefly
describe how the reference trajectory is defined. Later on, a general formulation
of Model Predictive Control will be presented, and then go into the actual method
and implementation. After this the Finite Horizon Linear Quadratic Controller will
be presented, which has the same basic principle but the finds control signal in a
different way.

3.1 Reference Trajectory

The reference trajectory is expressed in a two dimensional space domain with the
coordinate system placed in the COG. Positive values on x-axle is placed in front
of the COG where as positive values on y-axle is placed on the right side of COG.
The reference points can be seen as a local coordinate systems that needs to be
expressed in the vehicle on-board coordinate system. To do so, the longitudinal
distance, lateral distance and yaw angle is parameters that have to be calculated
from the lane marker estimation. The number of reference points is the same as the
number of predictions for the controller and the idea is that each prediction should
match the reference points.

3.1.1 Longitudinal sampling of the road

Since the lateral position of the center line is a function in terms of the longitudinal
position, the first step in the reference mapping is to establish the longitudinal
positions of the reference points. The longitudinal distance between each reference
point is set to always be evenly distributed but not necessary the same for all
longitudinal velocities. The longitudinal spacing between reference points can be
done with two different strategies.

Fixed distance between the each sample: Since the longitudinal distance is
fixed, the discretization time step have to vary according to different velocities.
Small longitudinal velocities results in a high discretization time steps and the other
way around. The drawback with this strategy is that the discretization stability
criterion (2.42) might limit the distance to be unnecessary short for high velocities.
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Fixed discretization time between each sample: In this way the distance be-
tween each sample will be the varying factor. A small longitudinal velocity results in
a short distance between each sample. This strategy is beneficial since the prediction
horizon distance have to be longer for higher longitudinal velocities.
Since the latter (fixed discretization time) is more beneficial, this strategy will be
used in the controllers and the longitudinal reference vector can be expressed as:

d(k + 1 : N) =
(
vxh vx2h . . . vxNh

)
. (3.1)

3.1.2 Lateral and yaw reference

The estimation of the lane center is given as a third degree polynomial:

rpy(k + i) = a0 + a1d(k + i) + a2d(k + i)2 + a3d(k + i)3,

i = 1, 2, . . . , N,
(3.2)

and represents the lateral offset reference of the longitudinal sampling of the road.
The yaw angle can be calculated from the tangents of the center line polynomial at
the reference points. Since the derivative of a function is the slope at every point,
i.e. dy

dx
, taking the arctan of the derivative gives the angle at each point. By first

calculating the derivative of the center line polynomial, the angle at each reference
point is calculated by:

rψz(k + i) = arctan
(
a1 + 2a2d(k + i) + 3a3d(k + i)2

)
,

i = 1, 2, . . . , N.
(3.3)

3.1.3 Curvature Feed Forward

The curvature (κ) of the reference trajectory can also be used for estimating the
needed steering angle. For any arbitrary continuous function f , the curvature at
some point d can be calculated by:

κ(d) = f ′′(d)(
1 + (f ′(d))2

)3/2 , (3.4)

where f ′(·) and f ′′(·) are the first and second order derivative respectively. The
reference function rpy(·) will in this case be a third degree polynomial, such that the
curvature changes along the longitudinal axis. The curvature for the entire distance
ahead is therefore approximated as an average of the curvature at Nκ points:

κa = 1
Nκ

Nκ∑
i=1

κ(di), (3.5)
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where di are some points along the longitudinal axis placed equidistantly apart.
In [9], the author states that the required steering angle, δfrec , can be formulated as:

δfrec = CfCrL
2 + (Crlr − Cf lf )mv2

x

CfCrL+ (Crlf + Crlr)Ffxw
ωz
vx
, (3.6)

and by assuming that the following approximations are valid:

ay ≈ ωzvx, (3.7)
ωz
vx
≈ κa, (3.8)

Ffxw ≈ 0. (3.9)

The required steering angle approximation can therefore be expressed as:

δfreq ≈ Lκa + Crlr − Cf lf
CfCrL

mv2
xκa, (3.10)

according to the author of [9].
The steering angle feed forward is approximated to be the same for the entire control
horizon. This can be written as:

ru(k + 0 : M − 1) =
(
dfreq dfreq . . . dfreq

)
, (3.11)

where ru is the feed forward approximation of the required steering angle δfreq .

3.2 Model Predictive Control

Model Predictive Control (MPC) is a control scheme developed in the 1970s in the
chemical processing industry. By using a discrete and linear model to predict future
states of the system, an optimization problem is solved where future states and
control signals are optimization variables. The objective function is defined as the
sum of the weighted square the state error for all prediction time instances. There
are also linear constraints on the optimization variables which says that they must
obey the state dynamics, and that the control signals and/or states must not exceed
certain values. Due to the cost function being quadratic and the constraints being
linear, MPC is a linearly constrained quadratic programming problem.
Due to the predictive nature of MPC, it can also take a changing future reference into
account. Two parameters that defines the MPC problem is the prediction horizon
N and the control horizon M . The prediction horizon decides how many samples
into the future the problem shall be defined for. The control horizon decides how
many of the future control moves that are used as optimization variables. In order to
save computational load, the control horizon is often chosen to be shorter than the
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prediction horizon. Thus the last control signal u(k+M−1) lasts for the rest of the
prediction horizon. The number of optimization variables is equal to N · n+M ·m,
where n is the system order and m is the number of control inputs.
The cost function for N future states and M future control signals can generally be
defined as:

J =
N∑
j=1

n∑
i=1

ωi (xi(k + j)− ri(k + j))2 +
M−1∑
l=0

ωu (u(k + l)− ru(k + l))2 , (3.12)

where ri(k+ j) is the reference for each state (i = 1, 2, . . . , n) at each corresponding
time instant (j = 1, 2, . . . , N) and ωi is the weight for each state variable in the left
most summation. In the right most summation denotes ru(k + l) feed forward of a
approximate input at the corresponding time instant (l = 1, 2, . . . ,M − 1) and ωu
the weight on the input signal.
The discrete time state space:

x(k + 1) = Ax(k) +Bu(k) (3.13)

of the system represent a set of equality constrains between the future states, the
current state and the control input. These equality constraints in combination with
the previously stated cost function makes it possible to express the minimization
problem as shown in (3.14). It also possible to add inequality constraints such as
lower bounds, ulb, respectively upper bounds, uub, on the input signal and deviation
limits between time instances on the input signal ∆umax for example.

min
x,u

J =
N∑
j=1

n∑
i=1

ωi (xi(k + j)− ri(k + j))2 +
M−1∑
j=0

ωu (u(k + j)− ru)2

subject to
x(k + 1 + i) = Ax(k + i) +Bu(k + i), i = 0, 1, . . . ,M − 1

x(k + 1 + i) = Ax(k + i) +Bu(k +M − 1), i = M,M + 1, . . . , N − 1
u(k : k +M − 1) ≤ ulb

u(k : k +M − 1) ≥ uub

|u(k + 1 : k +M − 1)− u(k : k +M − 2)| ≤ ∆umax
(3.14)

Now that the optimization problem has been defined, it needs to be reformulated to
a more suitable form. The algorithms that solves quadratic programming problems,
usually referred to as solvers, need the cost function and constraints to be defined
on matrix form, often refereed to as standard form, where matrices describe the
problem. For the predicted states x(k + 1 : N) and the future control signals
u(k + 0 : M − 1), the optimization vector is defined as:
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z =



x(k + 1)
x(k + 2)

...
x(k +N)
u(k)

u(k + 1)
...

u(k +M − 1)


. (3.15)

The optimization problem, (3.14), can now be described as:

min
x

1
2z

THz + zTf

subject to Aeqz = beq

Ainz ≥ bin

(3.16)

where H, f , Aeq, beq, Ain and bin are constant matrices appropriately designed
such that they uphold the cost function and the constraints. Using this quadratic
formulation, the minimization problem can be solved using quadratic programming
solver, which there are a number of fast and powerful implementations of.

3.2.1 MPC Implementation

The MPC controller can be visualised as shown in the figure 3.1. Given the inputs,
the MPC block implements five main tasks in order to calculate the new steering
angle. These tasks are:

• Calculate the reference trajectory; ri(k + j).

• Calculate approximate steering angle feed forward; ru(k + l).

• Calculate the mathematical model matrices; Am, Bm and Cm.

• Construct the optimization matrices; H, f , Aeq, beq, Ain and bin.

• Solve the minimization problem and return the new steering angle; u(k).

The MPC make use of both references for the each state ri(k+ j) where i ∈ (py, ψz)
and a approximate steering angle feed forward ru(k + l). Calculating these are the
first task that the MPC controller performs, naturally because these have to be
calculated in order to construct the H matrix and f vector, (3.14).
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Figure 3.1: The cyan colored block represent the MPC implementation. The
controller make use of seven input signals in order to compute a new steering angle.
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Figure 3.2: A graphical visualization of the MPC strategy.
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Figure 3.2 shows the inputs to the MPC. Given a state x(k), the vehicle can take
any trajectory in the grey area, given a certain combination of inputs. Given the
reference rpy(k + 1 : k + N), rψz(k + 1 : k + N) and ru(k + 1 : k + N), the MPC
calculates the best combination of control signals to follow the reference as good as
possible.
In this particular case, each point ri(k + j), i (∈ py, ψz) and ru(k + j) are given as
a function of the longitudinal distance ahead as:

ri(k + j) = fi(d(k + j)),
ru(k + j) = fu(d(k + j)),

(3.17)

where d(k+ j) is the longitudinal displacement in meters from the center of gravity
and fi(·) respectively fu(·) are functions that describes the road ahead for each state
and control signal.
The MPC controller uses the Mathematica generated state space representation
described in (2.36). Therefore does the MPC controller have to use the output
matrix (Cm) in order to convert from the Mathematica generated states to the
states (vy, ωz, py, ψz). The rows of the output matrix corresponds to the selected
states and the mapping between can be expressed as:


xvy
xωz
xpy
xψz

 =


Cvy
Cωz
Cpy
Cψz


︸ ︷︷ ︸

Cm

xm. (3.18)

Naturally the Cm matrix have to be inserted in the cost function defined in (3.12)
and the state cost can be reformulated as:

∑
i

ωi (Cixm(k + j)− ri(k + j))2, (3.19)

i ∈ (vy, ωz, py, ψz), j = 1, 2, . . . , N.

By expanding (3.19) and further separating the quadratic and linear parts of each
state variable cost to:

∑
i

xm(k + j)T ωiCT
i Ci︸ ︷︷ ︸
qi

xm(k + j),

∑
i

−2ωiri(k + j)Ci︸ ︷︷ ︸
li(j)

xm(k + j),
(3.20)

i ∈ (vy, ωz, py, ψz), j = 1, 2, . . . , N.
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Then the quadratic term, qi, for each state variable can be put in matrix form as:

qx =


qvy 0 . . . 0
0 qωy

. . . ...
... . . . qpy 0
0 . . . 0 qψz

 (3.21)

and the corresponding linear term, li(j), can be put in vector form as:

lx(j) =
(
lvy(j) lωz(j) lpy(j) lψz(j)

)
. (3.22)

Similarly the input cost from (3.12) can also be separated in quadratic and linear
parts as:

qu = wu,

lu(l) = −2wuru(k + l),
(3.23)

l = 0, 1, . . . ,M − 1.

The H matrix can then be constructed by putting together the quadratic parts of
the cost functions. By thereafter multiplying H by 2, the H matrix is expressed in
the desired standard form:

H = 2



qx 0 . . . . . . . . . 0
0 . . . . . . ...
... . . . qx 0 . . . 0
0 . . . 0 qu

. . . ...
... . . . . . . 0
0 . . . . . . . . . 0 qu


. (3.24)

The linear parts of the cost functions lx(j) and lu(l) can be put into the f vector in
the same way:

f =
(
lx(1), . . . , lx(N), lu(0) . . . lu(M − 1)

)
. (3.25)

In order to construct the equality constraint matrix Aeq and the corresponding beq
vector. The model matrix Am have to be calculated for the current velocity vx
whereas the input vector Bm is constant.
The state space representation is in continuous time and have to be discretized, as
mentioned earlier. This is done with forward Euler method and the discrete state
space can be represented as:

Ad = In + hAm

Bd = hBm

(3.26)
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The equality constraint can then be expressed as follows, with the discretized state
space representation:



−In 0 . . . . . . . . . 0 Bd 0 . . . 0
Ad −In 0 . . . . . . . . . 0 Bd

. . . ...
0 . . . . . . . . . 0
... . . . Ad −In 0 . . . . . . . . . 0 Bd
... . . . . . . . . . ...
0 . . . . . . 0 Ad −In 0 . . . 0 Bd


z =



−Adxm(k)
0
...
...
...
0


(3.27)

Where n represent the number of states and h the discretization time.
The inequality constraint matrix (Ain) is constant and can be calculated offline but
not the input vector (bin) since it involves the current steering angle as can be seen
in the following equation:



0 . . . 0 I 0 . . . 0
0 . . . 0 −I I

. . . ...
... ... . . . . . . . . . 0
0 . . . 0 . . . 0 −I I
0 . . . 0 −I 0 . . . 0
0 . . . 0 I −I . . . ...
... ... . . . . . . . . . 0
0 . . . 0 . . . 0 I −I
0 . . . 0 I 0 . . . 0
... . . . . . . . . . ...
... . . . . . . 0
0 . . . 0 . . . . . . 0 I
0 . . . 0 −I 0 . . . 0
... . . . . . . . . . ...
... . . . . . . 0
0 . . . 0 . . . . . . 0 −I



z ≥



u̇minTMPC + δf (k)
u̇minh

...
u̇minh

u̇maxTMPC − δf (k)
u̇maxh

...
u̇maxh
umin
...
...

umin
umax
...
...

umax



(3.28)

where the deviation constraint is reformulated to a rate constraint times a sampling
time as ∆umax = u̇maxh. The lower and upper bound can be formulated as umin
respectively umax.

3.2.2 Tuning the MPC

All state variables and the input signal must have a weight wi > 0 because the
quadratic optimization matrix H is required to be positive definite for some solvers,
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[14]. For lateral position, yaw angle and the input signal, the weighting determines
the importance of minimizing the deviation from the reference. Whereas for lateral
velocity and yaw rate the weights penalize deviation from zero.
The control and prediction horizon affects the performance of the MPC. By increas-
ing the horizons the optimization problem becomes larger and more computational
demanding to solve.
The control and prediction horizons also affects the behavior of the controller. When
the control horizon tend to be smaller than the prediction horizon, the controller is
forced to regulate faster and harder. A small control horizon makes the vehicle turn
earlier into a corner than a controller with long control horizon. On a straight road,
a short control horizon increases steady state oscillations on the steering wheel angle.
In order to trade of between these facts the control M and prediction N horizon
have been selected as:

N = 10,
M = 4.

(3.29)

The steering angle and the steering angle rate constraints are important since these
limits the controller to not violate the linear mathematical model and making un-
reasonable steering angle request. Similar to [2], the constraints presented in the
following table have been used:

umax = 30◦,
umin = −30◦,
u̇max = 20◦/s,
u̇min = −20◦/s.

(3.30)

The discretization time in combination with the number of predictions is determining
the distance between each prediction point and hence the longitudinal prediction
range in meters ahead of the vehicle. The discretization time have been fixed to:

h = 0.09 s. (3.31)

which make the prediction range varying according to the longitudinal velocity of
the vehicle.

3.3 Finite Horizon Linear Quadratic Controller

Another approach to controlling the system with model prediction is to remove
all constraints and instead punish certain signals with higher costs. This is called
a Finite Horizon Linear Quadratic Controller (FHLQC). Over a finite prediction
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horizon, a cost function is defined as the sum of the weighted square errors. This
problem is much more computationally efficient, since the control signal is calculated
by a single matrix multiplication. The computational time is therefore deterministic.
A few words on quadratic optimization on matrix form. A quadratic objective
function without constraints is be defined as:

min
x

J = uTHu + uT f , (3.32)

where u is the optimization vector, and H and f are constant matrices that define
the problem. The optimal solution of this function, i.e. the the lowest cost, is given
by setting its derivative with respect to u equal to zero. Taking the derivative:

∂J

∂u
= uT (HT + H) + f = 0. (3.33)

The optimal solution is therefore given by:

u∗ = −(HT + H)−1f . (3.34)

Now to define the control problem in quadratic form. For a discrete state space
system:

x(k + 1) = Ax(k) +Bu(k), (3.35)

any future state x(k + K) can be calculated with the initial state and the control
signals up to this time instance:

x(k +K) = AKx(k) +
K−1∑
i=0

AK−1−iBu(k + i). (3.36)

We define e(k+n) = x(k+n)− r(k+n) to preserve space in calculations performed
later on. Putting up the same cost function as for the MPC:

J =
N∑
n=1

e(k + n)TQe(k + n). (3.37)

Substituting x(k + n) with Anx(k) +
n−1∑
i=0

An−1−iBu(k + i) give:

e(k + n) = Anx(k)︸ ︷︷ ︸
αn

+
n−1∑
i=0

An−1−iBu(k + i)︸ ︷︷ ︸
βn

− r(k + n)︸ ︷︷ ︸
rn

. (3.38)

The cost function then becomes:
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L =
N∑
n=1

(αn + βn − rn)T Q (αn + βn − rn) . (3.39)

Only the terms with a βn-factor, which contain u(k+ i), will remain after the partial
differentiation. Therefore, any term without a βn-factor will grouped into a constant
term cn.

L =
N∑
n=1

(
αTnQβn + βTnQαn − rTnQβn − βTnQrn + βTnQβn + cn

)
. (3.40)

Utilizing the fact that all off diagonal elements of Q are zero, the transposed terms
can be added together.

L =
N∑
n=1

(
2αTnQβn − 2rTnQβn + βTnQβn + cn

)
. (3.41)

The terms with one βn-factor are the first degree terms, and the βTnQβn-term is the
second order term. In equation (3.32), the f vector is multiplied with the first order
term, and the H matrix is a factor in the second order term. Therefore, the factors
multiplied with u(k + i) will construct the fu vector, while factors which multiply
with u(k + i)u(k + j) will construct the Hu matrix.

The fu vector:

fu : 2
N∑
n=1

(Anx(k))TQ
n−1∑
i=0

An−1−iBu(k + i)−
(
n−1∑
i=0

An−1−iBu(k + i)
)T

Qr(k + n)
 .

(3.42)

The fu vector will be constructed by iterating n from 1 to N . For each i = 0 :
n − 1, the corresponding element fu(i) will be the sum of all the terms that are
(Anx(k))TQAn−1−iB − (An−1−iB)TQr(k + n).

The Hu matrix:

Hu :
N∑
n=1

(
n−1∑
i=0

An−1−iBu(k + i)
)T

Q
n−1∑
j=0

An−1−jBu(k + j). (3.43)

In this particular problem, the control signal dimension is 1× 1, which allows us to
move the control signal factors without compromising the matrix multiplications.
Moving the control signal factors and rewriting the summations give:

Hu :
N∑
n=1

n−1∑
i=0

n−1∑
j=0

BT (An−1−i)TQAn−1−jBu(k + j)u(k + i). (3.44)
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The Hu matrix will be constructed by iterating n from 1 to N . For each i = 0 : n−1
and j = 0 : n − 1, the corresponding element Hu(i, j) will be the sum of all the
terms BT (An−1−i)TQAn−1−jB.
The cost function is a quadratic function, so if we can identify the corresponding H
matrix and f vector, and setting u = [u(k) u(k + 1) u(k + 2) ... u(k +N)]T , we can
get the optimal control vector u∗ from:

u∗ = (HT
u + Hu)−1fu. (3.45)

3.3.1 Implementation of the FHLQC

The FHLQC uses the linear model derived in section 2, in which there are four states:
lateral velocity, yaw rate, lateral offset and angular offset. It also includes the EPAS
dynamics as a fifth state, such that the controller will take this into account. Instead
of multiplying the transfer function for the vehicle with the transfer function for the
steering wheel, the steering wheel angle is included as a fifth state in the state space
vector, as described in section 2.3.
The Hu matrix only depends on vx, which affects the discretization, and Q, which
affects the weighting. The fu vector has to be calculated for each new sampling
instance, since it depends on the current state and future reference.
Each control signal u(k + n), where n = 0, 1 , ..., N − 1, is calculated by the vector
multiplication of the n:th row of (HT

u +Hu)−1 with fu. If the controller can be tuned
in the test phase, with ideal parameters for all velocities, the controller could be
implemented with look up tables for each input signal to the controller. The control
signal is a linear combination of the states and the sampled reference points, where
each state and sampled reference is weighted with its own coefficient.

u(k) = vy(k)hvy(vx) + ωz(k)hωz(vx) + py(k)hpy(vx) + ψz(k)hψz(vx) +
δ(k)hδ(vx) + r(k + 1)hr(k+1)(vx) + . . . + r(k +N)hr(k+N)(vx).

(3.46)

In (3.46), each state and sampled reference is weighted with a weight that depends
on the longitudinal velocity. As such, the FHLQC is computationally light.
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4
Real world test system

The real world tests system consists of a number of different components working
together. A vision system senses and estimates the lane markings relative to the
car. These estimations are then transmitted over CAN to a computer system, which
reads the data via CAN. The computer system also receives data about the car state
such as yaw rate, longitudinal/lateral velocity and current steering wheel angle. All
of this data is fed to a control algorithm, which calculates the desired steering wheel
angle. This desired steering angle is sent over the CAN bus as a request to the
steering servo.

Figure 4.1: This is the output from the camera and the vision algorithm. The lane
estimations are shown with dashed green lines in the image.

4.1 Test vehicle setup

The car used for testing is a Volvo V40, manufactured 2012. It has a camera mounted
behind the windshield and a radar mounted in the grille. These systems are devel-
oped and manufactured by Delphi. The car is also equipped with other sensors such
as gyroscope, speedometer and accelerometer that are used in the control algorithm.
All the relevant signals are available over the CAN network.

4.2 Steering

The car has an electric power assisted steering (EPAS) system which is available via
CAN. With a certain CAN signal, the steering wheel angle, and thus the wheel angle,
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can be controlled via the CAN bus. The EPAS system has an internal controller
which uses torque from a servo motor, connected to the steering wheel, to achieve the
requested steering wheel angle. The steering servo can achieve torque high enough
to maneuver the car at low speed, which is used for automated parking. At speeds
over 10 km/h, the high torque capabilities are disabled internally in the EPAS node.
At 65 km/h the EPAS is again enabled, but only with torque low enough to be
countered by the driver by simply holding the steering wheel. As such, the driver
can intervene if he or she feels uncomfortable with the requested steering wheel
angle. The steering wheel behaves like a rate constrained first order system. For
low angular velocities of the steering wheel, the dynamics is linear. The absolute
rate is however limited.

4.3 Camera sensor

A camera sensor is used for lane marker detection and estimation. It uses specialized
hardware that runs the algorithms efficiently enough to be executed in real time.
The vision algorithms detects and estimates which pixels that belongs to the lane
markings. These pixels are then used to fit polynomials that can represent the lane
markings.

4.4 Control system hardware

The control system is run on a standard laptop PC with a 2.9 GHz Intel i7 processor
and 8 GB of RAM. Using a Vector CANcaseXL unit, the control system software
receives information about the car state, and sends angle requests to the steering
wheel controller.

4.5 Control system software

The control system software is written in C++ and built using Microsoft Visual
Studio. Using API from Vector Informatik, the application can communicate with
a CANcaseXL unit, which reads signals from the vehicle and the camera, and sends
out steering wheel angle requests to the EPAS controller. The entire application is
spread over several threads; the CAN receive thread, the control system thread and
the GUI thread. The CAN receive thread runs every 2 ms in order to capture all
the data.

4.6 Lane marker estimation

The camera senses the left and right lane in the form of a third degree polynomial.
There is also a range associated with the polynomial, which represents how far the
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lane is estimated, in the longitudinal direction of the vehicle. The polynomial has
the following form:

f(x) = a0 + a1x+ a2x
2 + a3x

3, x ∈ [0, xmax]. (4.1)

The first coefficient, a0, determines the lateral position of the lanes relative to the
car. The second coefficient, a1, determines the relative angle between the car heading
and the lanes. The third and fourth coefficient, a2 and a3, represent the curvature of
the road. xmax is the range of the current estimate; beyond this point the algorithm
is not certain of the line characteristics. The center offset is simply the average
between the right and the left coefficients:

ac0 = (ar0 + al0)/2. (4.2)

The rest of the coefficients are the same, only the lateral offset is estimated individ-
ually.

Figure 4.2: This is the output from the camera and the vision algorithm. The lane
estimations are shown with dashed green lines in the image.

In figure 4.2 it can be seen how the vision algorithm estimates the lane markers.
When the vision algorithm makes estimates of the lane markers, they are done in
the perspective of the camera, i.e. projected from road plane onto the image sensor
plane. Mounting parameters such as the linear and angular offset relative to the
vehicle coordinate system are known to the camera. Thus, assuming that the road
below is relatively flat, the detected lines can then be unskewed and transformed to
the vehicle coordinate system.
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5
Simulation

Simulations have a lot of benefits for rapid development that is not possible or harder
to achieve in real world tests. For example can simulations run faster than real time,
specific test scenarios can be constructed easily and measurements can be ideal.

Therefore have simulation been mainly used for validating the mathematical model
and developing controllers instead of committing real world tests. Since the simula-
tions is a way to substitute real world test is the accuracy of the simulated dynamics
important so that the simulation is as realistic as possible.

5.1 Simulation platform

IPG Automotive is the provider of the simulation software CarMaker, in which a lot
of time have been spent on adapting the dynamics of real vehicles. The nonlinear
dynamics of the wheels and the slip are included, as well as vertical dynamics from
the dampers. One big advantage with CarMaker is that it can be used together
with Matlab/Simulink such that the vehicle dynamics are simulated in CarMaker,
and control system calculations are done in Simulink. This makes it possible to run
the controller in closed loop with the simulated vehicle.

5.1.1 Test track

The test tracks in CarMaker can either be constructed manually by adding straight
and curved roads, or extracted from real data from Google Maps. This allows for
simulations that accurately represent scenarios that the real vehicle will be tested
in.

For the simulation, a segment of the E6 motor way in Gothenburg have been selected
to be implemented in CarMaker. This road segment have both tight corners with
high curvature and a longer corner with smaller curvature and is one of the most
changeling scenarios in a close radius of Gothenburg. The road segment can be seen
in figure 5.1 and will further be referred as R1.
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(a) Satellite image from Google Maps. (b) Bird’s eye view of the road segment
implemented in CarMaker.

Figure 5.1: This figure shows that the real world road segment can be inserted
from Google Maps into Carmaker.

5.1.2 Implementation

There are several options for vehicle sensors in CarMaker. Many of the states are
available directly through blocks, such as yaw rate, global position, velocity. The
simulation implementation is partly done in Simulink as can be seen in figure 5.2.
The five bigger blocks represent the main task of the simulation and the arrows also
show the work flow of the simulation.

In order to mimic the real test system, a line sensor was added. The line sensor is
described as a perfect vision sensor, which detects the road marking ahead of the
vehicle. The measurements are then given in the form of a number of global x-
and y-coordinates, which represents points on the lane marker. The points are then
translated to the origin, and then rotated to the same orientation as the vehicle.
With this translation and rotation, the points are now in the vehicle coordinate
frame.

Since the output from the vision algorithm in the actual system gives the lane
estimation as a third degree polynomial, the points from the line sensors are fitted
into such a polynomial as well in the Lane marking decoder block, even though it is
the actual points that are used in the controller algorithm.
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The lane marker polynomials are then fed to the reference generator which calculates
the center line polynomial among other parameters that can be used as references
for the controller. The MPC controller uses the curvature as input signal where as
the FHLQC does not use it. This means that the reference generator block can be
constructed according to what references the controllers uses. The idea is that the
input to the reference generator is the same for both the simulation and the real
test vehicle.

The controller algorithm is then fed with the reference trajectory parameters and
the current steering wheel angle, yaw rate, longitudinal and lateral velocity. The
output of the controller is the new steering angle that is fed forward as a requested
steering wheel angle to the EPAS system.

Figure 5.2: This figure shows the Simulink implementation of the different parts.
The cyan colored blocks shows the reference generator and the controller. These are
the same for both simulation and real test. The green colored blocks is specific for
the simulation implementation and the orange colored blocks represent the input
signals to the controller.

5.1.3 Test vehicle

The vehicle in the simulation is desired to be the same as the real test vehicle so that
the mathematical model and controllers can be used in both without any or only
just small modifications. CarMaker have several example vehicles to chose among
but unfortunately this thesis, no Volvo V40.

The example vehicle in CarMaker which is most similar to the Volvo V40 is a Ford
Focus manufactured 1998. Since this vehicle have approximately the same size and
weight as the Volvo V40, the dynamics are assumed to be similar between these two
vehicles.
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Figure 5.3: This figure shows the simulation environment. The lane marker esti-
mations are shown as a red and green lines. The steering wheel in the upper left
corner shows the current steering wheel angle and the test track, R1, can be seen in
the upper right corner.

5.2 Model Parameter Estimation & Development

The parameters of the mathematical model needs to be correct for both simulation
and vehicle implementation. Many of the vehicle parameters can be found by reading
about the Ford Focus model in CarMaker. For example, the position of COG, the
weight, the length between wheel axis and COG and the body inertia which can be
found in 5.1.

m 1174 kg
L 2.680 m
lf 1.0430 m
lr 1.6370 m
Izz 1720 kg ·m2

δratio 15.5

Table 5.1: Mathematical Model parameters

Carmaker is using a more advanced approach for modeling tire dynamic and there-
fore can the cornering stiffness parameters c0 and c1 not be directly determined
from the Ford Focus data sheet. Therefore must these parameters be estimated
instead. This was done by formulating an optimization problem where the cost
function is to minimize the error between the state variables of the mathematical
model output and the CarMaker model output when controlled by the same steering
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angle sequence. The variables to optimize are the cornering parameters which are
constrained to be constant for the entire optimization.
The optimization was preformed for different longitudinal velocities and as can be
seen in Table 5.2. The values are changing for different velocities even though the
same steering angle sequence was used in all test. However, the variation is small
and the cornering stiffness parameters can be approximated to be constant. The
MPC implements that the parameters varying as estimated but the FHLQC on the
other hand uses constant values.

c0 38.016 39.724 40.432 40.312 39.753 39.113
c1 -0.0074 -0.0075 -0.0075 -0.0072 -0.0069 -0.0066
vx 70 km/h 80 km/h 90 km/h 100 km/h 110 km/h 120 km/h

Table 5.2: Estimated tire cornering stiffness parameters. The parameters are
depending on the longitudinal velocity of the vehicle.
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6
Results

This chapter gathers results from all previous chapters in a chronological order.
First the mathematical model performance and discetization stability analysis will
be presented from the Modeling Chapter. Followed by results from simulation and
real world tests of the two controller algorithms.

6.1 Model validation

In order to ensure the accuracy of the linear model, when comparing it to the
nonlinear model in CarMaker, model validation is used. The systems are tested open
loop, such that a comparison can be made between the outputs from the different
models given the same input. Two types of inputs are tested; a discontinuous step
with a certain amplitude, and a zero mean Gaussian noise with a certain variance.
The longitudinal velocity was set to 100 km/h during the tests. Both CarMaker and
the linear model use the same input from the steering wheel, so studying that signal
when comparing the two models is not of interest.
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Figure 6.1: These figures show the response for four of the different states when
the input signal is a discontinuous step with and amplitude of 0.1 rad.
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Figure 6.2: In this set of figures the input is random Gaussian noise with a variance
of 0.01 rad and a sampling time of 0.01 s.
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The figures show that the linear model has the same characteristics as the model
that CarMaker uses. In the step responses, the difference between how the models
give substantially different results showthat there are unmodeled dynamics as well
as uncertainty in the model parameters.
Figure 6.1 shows that there is a difference in steady state gain between the linear
model and CarMaker. The bumps in the lateral velocity and the yaw rate, after the
transient, shows that there is some dynamics that the linear model does not fully
capture. Over time however, the lateral position and the angle does not differ more
than a few meters and a few degrees respectively.
When the input signal is random noise with more high frequency content, shown in
Figure 6.2, the correlation between the different models is better. The lateral posi-
tion error and the angle error is significantly smaller compared to the step response,
despite the fact that this test lasted about 75 s, whereas the step response lasted
about 17 s. The lateral velocity and the angular velocity can also be seen to show
the same characteristics.
There are more figures showing different step amplitude and another noise variance
for the input in Appendix B.2.

6.1.1 Dynamics of the EPAS system

The closed loop steering system has been observed to behave approximately as a
first order system with a time constant of about 0.4 s as can be seen in Figure 6.3.
This shows that there exist dynamics between the requested steering wheel angle
and the actual steering wheel angle which neither the mathematical model or the
simulation adapts without modifications.
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Figure 6.3: As can be seen in the figure, the requested steering angle in red deviates
from the actual steering angle in blue. The filtered steering wheel angle in yellow is
fitting the actual steering angle better than the requested steering angle.

6.2 Discretization Stability

The discretization step directly affecting the stability of the discrete time model as
described in 2.4 and the stability criterion is limiting the discretization step to be
lower than a upper bound which is determined by the eigenvalues of the continues
time model. Since the discretization step is affecting the distance that the vehicle
travels between each sample, a small discretization step will require more samples
to get the same range in meters than a greater discretiztion step. The prediction
horizon of the MPC needs to have a long enough look a head range and therefore is
the discretization step also affecting the number of prediction samples that is needed
which affects the computation time of the optimization.
Since the model dynamics is depending on the longitudinal velocity will the eigen-
values and hence the stability of the discretization change for different longitudinal
velocities. This can be seen in the Figure 6.4.
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Figure 6.4: The eigenvalues depends on the longitudinal velocity and the dis-
cretization step. All eigenvalues fulfill |1 + hλ| < 1 and the discretization is stable
for velocities of interest.

Another aspect to take into account when selecting discretizaton step is that larger
step sizes increases the truncation error between the true state and the approximated
discretized state, [6]. Much due to the truncation error, the discretization time
h = 0.09 have been used for the MPC controller.

6.3 Test track in simulation

The two controllers were tested on test trackR1 for three different velocities; 70 km/h,
100 km/h and 120 km/h. The only test case shown here is that for 120 km/h, since
the other test cases had similar results. The results for the other velocities are
shown in appendix. The figures show the performance of the built in controller from
CarMaker, the MPC and the FHLQC.
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Figure 6.5: These plots show four different performance factors when the longitu-
dinal velocity is 120 km/h

In Figure 6.5, the lateral offset, velocity and acceleration, as well as yaw rate are
shown in comparison for the two different controllers and CarMaker driver. For
the velocity, acceleration and yaw rate, only minor differences can be distinguished.
The only noticeable detail that can be said anything about is that the FHLQC
has a peek velocity, acceleration and yaw rate that is larger than the MPC and the
CarMaker controller. It is in the sub figure showing the lateral velocity where things
differs. Both the MPC and the FHLQC are tuned such that they have minimal
oscillations on straight roads. This tuning also affects the behaviour when the road
is turning. The FHLQC can be seen to deviate from the lane center more than
the other controllers. This is difficult to see, but in right turning curves it keeps to
the left and in left turning curves it keeps to the right. The MPC and CarMaker
controller on the other hand, cut corners and deviate from the lane center less than
the FHLQC.
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Figure 6.6: The steering wheel angle for when the longitudinal velocity is 120 km/h.
The lower plot is a zoomed in version of the first one, to better visualize the steady
state oscillations.

Figure 6.6 shows the steering wheel angle for the same simulations as in Figure 6.5.
During the first part of the track, it is difficult to see any particular differences to
draw conclusions from. When the car is driving on the straight road however, after
80 s, the steady state oscillations are visible. The CarMaker controller has a larger
peak to peak angle and a higher frequency in the oscillations. The MPC and the
FHLQC however, have smaller peak to peak amplitude and lower frequency in their
oscillations. The values of peak to peak amplitude and frequency can be seen in
Table 6.1.

Controller Peak to peak amplitude (degrees) Frequency (Hz)

MPC 0.4106 0.1471
FHLQC 0.3319 0.2632
CarMaker 1.791 0.5263

Table 6.1: Steady state steering wheel oscillations.

6.4 Real world tests

These tests were carried out on highways when driving at 100 km/h. Due to time
limitations, the different controllers and the human driver were not driven on the
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same road segment. These results can therefore only give a general indication of the
performance. The roads segments are however considered to be similar enough to
draw some conclusions from.
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Figure 6.7: The lateral offset is post processed to remove high frequency noise
from the sensors readings.

Figure 6.7 shows a comparison lateral offset over time for the FHLQ, the MPC and
the human driver. The two controllers show similar behaviour in terms of oscillation
frequency and amplitude.
In Figure 6.8a, it can be seen that the controllers are better than the real driver
on staying in the center of the road since the lateral offset distribution is more flat
for the human driver. The FHLQC have the most narrow distribution which is the
reason to why the peak of density function is higher for the FHLQC in Figure 6.8b.
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(a) This figure shows histograms of the
lateral offsets for the controllers and
human driver. As can be seen the hu-
man driver have a wider and flatter
distribution than the controllers. It
can also be seen that the MPC have
the larger tails than the FHLQC.
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Figure 6.8: This figures shows the lateral offset between vehicle center and road
center for the controllers and the human driver in terms of distributions.

6.5 Execution time tests

An interesting factor to test is the execution time of the different controllers. The
MPC had an average execution time of 10 ms when run on the project laptop,
described in Section 4.4. The prediction horizon was set to 10 and the control
horizon was set to 6. The FHLQC had an execution time of about 50µs, with
a prediction and control horizon of 20. Another test was also carried out to test
the MPC performance on an embedded system. The embedded system used a 32
bit ARM processor from the STM32 family, with a hardware floating point unit
running at a clock frequency of 168 MHz. This test did not run the actual MPC
routines on the embedded system, but did instead a crude test to examine the
performance. Instead of running the MPC routines, the test performed the same
number of floating point operations as the MPC routines would have done, to give
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an indication of the time consumption. Running only the floating point operations,
one sampling instance was completed in 130 ms. The aimed for sampling time of
the MPC as of now is 10 ms. The FHLQC was not tested on the embedded system,
due to lack of time.
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Conclusion

Results from the simulation shows that the mathematical model is good enough to
be used to predict the future states. Both the MPC and FHLQC use this strat-
egy for calculating the controller output. The controllers show promising results
in simulation with quite similar performance. In comparison, the MPC seems to
have lower frequency of the steady state oscillation when the reference trajectory is
straight and deviates less from the center line. The MPC also cuts corners better,
which is a desirable behaviour.
A clear disadvantage for the MPC is that it is computationally heavy, and it is
therefore probably not feasible to implement the controller in existing automotive
hardware systems, where the performance is significantly lower than on a PC. The
execution time of the FHLQC is however not considered to be computationally
demanding, relative to the size of its task. From the test results, it is clear that the
MPC is not capable of running in real time on an embedded system.
The FHLQC does not model feed forward for the steering wheel angle or lateral
velocity, or look up tables for model parameters. Since its performance is equal to
that of the MPC, such detailed modeling might be unnecessary.
A clear performance issue was the oscillations that were present when the real world
tests were performed. This occurs due to the inaccuracy and poor resolution of the
EPAS controller. It is clear that a better accuracy is needed to achieve oscillation
free lateral control.
Regarding what type of controller is best suited for this type of problem is still
difficult to answer. Both the controllers achieve similar performance, with the MPC
being much more computationally demanding. If further control design and testing
would be performed, the MPC could probably outperform the FHLQC. From the
results in this report however, the conclusion to draw is that the FHLQC is probably
better than the MPC due to its similar performance in controlling the vehicle, while
still not demanding any substantial computational power.
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8
Discussion

8.1 Test system

Unfortunately, there were a lot of issues and problems with the tests system which
impeded the development of the controllers. The test vehicle was also used as a
software checkout platform for another project at Delphi. These tests had higher
priority than the thesis, which limited the ability to carry out testing of the con-
trollers. If more time in the test vehicle would have been available, more testing
could have been performed, which would ensure a high quality controller.

8.1.1 EPAS system

During the initial phase of the project, the interface to control the steering wheel
angle over CAN was not fully understood. If the steering interface would have been
functional at the start of the project, a lot more time could have been spent trying
to deal with issues related to the control algorithms.
The existing EPAS system is only designated for LKA, where the demands on ac-
curacy and resolution of the steering wheel angle are low. It was also observed that
the EPAS has a dead zone close to zero degrees. When driving, the steering wheel is
naturally forced back to zero degrees due to torque that comes from the wheels. It
is when the servo motor changes from one rotational direction to another that the
dead zone is present. The angular accuracy close to zero degrees is therefore low.
It would be desirable to fully measure and model the EPAS system with field tests,
such that it can be included in the modeling and simulation.

8.1.2 Lane marker estimation

Unfortunately, a lot of time during real world testing was disturbed by poor per-
formance of the test system. During the beginning of the project, the lane markers
detection algorithm was not tuned, which led to the estimations being off. The
estimations were inaccurate and contained a lot of noise. Once they were properly
tuned, the control algorithms could be fully tested. This was however during the
last week before the presentation, so there was not a lot of time available to fine tune
the controllers. The gathered results were considered good enough to include in the
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report and presentation. No scientific validation or tests were performed to actually
ensure that the oscillations were in fact only due to the EPAS system. The lane
marker estimations were however inspected visually. From this visual inspection,
the estimations were concluded to be sufficiently accurate such that their noise and
inaccuracy doesn’t have any major impact on the controller performance.

8.1.3 Model parameters

The real vehicle tests and the simulations show that the mathematical model struc-
ture works for lateral control. But the testing also showed that the model parameters
are not the same for the two cases and the tuning from the simulation did not work
well in the real test. Despite this fact the parameters were not estimated for the
test vehicle due to lack of time and access to a test track. Instead the controller
were tuned to get a similar behavior in the test vehicle as in the simulation and the
performance in the test vehicle would probably be better if the model parameters
were estimated for the test vehicle.

8.2 Future work

One important thing to deal with if the project would proceed is to add something
that takes the steering wheel dynamics into account. As stated before, the steering
wheel controller is limited in its accuracy and precision, especially close to zero
degrees. If this could be included in the modeling and control design, it might be
possible to eliminate the oscillations.
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A
Appendix 1

A.1 Matlab code for FHLQ controller

function iH = generateiH(A, B, Q)

% Inputs:
% A: Discrete transition matrix
% B: Discrete input matrix
% Q: Weight matrix
%
% Output:
% iH: Controller matrix

H = zeros(N, N);

for k = 1:N
for i = 0:n-1

for j = 0:n-1

H(i+1, j+1) = H(i+1, j+1) + ...
B'*A^(n-1-i)'*Q*A^(n-1-j)*B;

end
end

end

iH = inv(H + H');

end

I



A. Appendix 1

function u = FHLQ(Rc, Lc, vy, wz, Q, d, iH, stwhlAng)

% Inputs:
% Rc, Lc: Right and left lane coefficients
% vy: Lateral velocity
% wz: Yaw rate
% Q: Weight matrix
% d: Longitudinal distance points
% iH: Controller matrix
% stwhlAng: Current steering wheel angle
%
% Output:
% u: Latest control signal

N = 20; % Prediction horizon. This needs to be fixed at compile time

Cc = (Lc + Rc)/2; % The center coefficients

theta = (Lc(3) + Rc(3))/2; % Angle relative to lane at COG

x0 = [-vy; wz; 0; -theta; stwhlAng]; % Current state

R = zeros(5, N); % Reference matrix

fC = polyval(Cc, d);

phi = Cc(3) + 2*Cc(2)*d + 3*Cc(1)*d.^2;

R(3, :) = fC(2:N+1);
R(4, :) = phi(2:N+1);

f = zeros(N, 1);

for n = 1:N
for i = 0:(n-1)

f(i+1) = f(i+1) + x0'*(A^n)'*Q*A^(n-1-i)*B ...
+ (A^(n-1-i)*B)'*Q*A^n*x0 ...
- R(:, n)'*Q*A^(n-1-i)*B ...
- (A^(n-1-i)*B)'*Q*R(:, n);

end

end

u = -iH(1, :)*f; % Current control signal calculated
% by the first row of iH multiplied with f

end
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A.2 Matlab code for Model Predictive Control

function [xv,y_r,phi_r,delta_r,td,status, uk] = MPC(C_coeffs,C_range,vx,...
vy,wz,stwAng,stwRate,curv,c1,c0,dx,Nn,param, coeffs)

%#codegen

status = zeros(1,1,'double');

% Vehicle Parameters
% ------------------
m = param.m; % Mass of vehicle
g = param.g; % gravity
lf = param.lf; % Length between CoG and front axle
lr = param.lr; % Length between CoG and rear axle
L = lf + lr; % Length between rear and front axle
J = param.J; % Inertia around the z-axis
steer_ratio = param.steering_ratio; % ratio between steering wheel and
% front wheel

% Optimization & Modeling Coefficients
% -------------------------
w1 = coeffs.w1; % weigth on lateral displacement (py)
w2 = coeffs.w2; % weight on angular offset from reference (phi)
w3 = coeffs.w3; % weight on angular velocity (wz)
w4 = coeffs.w4; % weigth on lateral veolcity (vy)
w5 = coeffs.w5; % weigth on steering whell angle (delta)
w6 = coeffs.w6; % weight on fifth state

Nu = 4; % Number of control steps (control horizon)
nx = 5; % number of state variables
delta_rate = coeffs.delta_rate; % steering wheel ang. rate limit (rad/s)
delta_max = coeffs.delta_max; % steering wheel angle limit (rad)
tFilt = coeffs.tFilt; % Filter time constant
tMPC = coeffs.tMPC;

% Calculate the approximate needed steering angle for feed forward
if abs(curv) > 0.00001

Cf2 = c0*(m*g*lr/L) + c1*(m*g*lr/L)^2;
Cr2 = c0*(m*g*lf/L) + c1*(m*g*lf/L)^2;

R = 1/curv;

Ku = (Cr2*lr-Cf2*lf)/(Cf2*Cr2*L);
req_steer = L/R + Ku*m*vx^2/R;

else
req_steer = 0;

end

III
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% Reference Mapping in Space Domain
% ---------------------------------

x_ref = linspace(dx,Nn,10);
N = length(x_ref); % prediction horizon in steps

y_ref = polyval(C_coeffs,x_ref); % Lateral samples space domain

xdiff = [ dx, diff(x_ref)]; % difference between each x-sample
ydiff = [ y_ref(1), diff(y_ref)]; % differnce between each y-sample

% Approximative yaw angle at the samples
phi_ref = zeros(1,N);
for i=1:N-1

phi_ref(i) = - atan2(ydiff(i+1),xdiff(i+1));
end
phi_ref(N) = phi_ref(N-1);

% C_der = [3*C_coeffs(1), 2*C_coeffs(2), C_coeffs(3)];
% tangent = polyval(C_der,x_ref);
% phi_ref = -atan(tangent);

tdiff = xdiff/vx;

if vx > 0

% The cofficients of the C matrx have to be calculated
C13 = (g*lf*lr*m*(4*c0^2*g*L^2*lr*(lf + lr) + ...

c1*g*lr*m*(c1*g^2*lf*lr*(lf + lr)*m - 2*L^2*vx^2) + 2*c0*L*...
(c1*g^2*lr*(lf + lr)^2*m - 2*L^2*vx^2)))/(4*J*L^4*tFilt*vx);

C14 = (g*lr*(2*c0*L + c1*g*lr*m))/(2*L^2*tFilt);

C23 = (g^2*lf*lr*(lf + lr)*m*(2*c0*L + c1*g*lf*m)*(2*c0*L + ...
c1*g*lr*m))/(4*J*L^4*tFilt*vx);

C24 = (g*lf*lr*m*(2*c0*L + c1*g*lr*m))/(2*J*L^2*tFilt);

C31 = -((g^2*lf*lr*(lf + lr)* ...
m*(2*c0*L + c1*g*lf*m)*(2*c0*L + c1*g*lr*m))/(4*J*L^4*tFilt));

C32 = (g*lf*lr*m*(4*c0^2*g*L^2*lr*(lf + lr) + ...
c1*g*lr*m*(c1*g^2*lf*lr*(lf + lr)*m - 4*L^2*vx^2) + 2*c0*L*...
(c1*g^2*lr*(lf + lr)^2*m - 4*L^2*vx^2)))/(4*J*L^4*tFilt*vx);

C33 = (g*lr*(2*c0*L + c1*g*lr*m))/(2*L^2*tFilt);

C42 = (g^2*lf*lr*(lf + lr)*m*(2*c0*L + c1*g*lf*m)*...
(2*c0*L + c1*g*lr*m))/(4*J*L^4*tFilt*vx);

C43 = (g*lf*lr*m*(2*c0*L + c1*g*lr*m))/(2*J*L^2*tFilt);

% The C matrix can then be expressed as:
C = [0 0 C13 C14 0;

0 0 C23 C24 0;

IV



A. Appendix 1

C31 C32 C33 0 0;
0 C42 C43 0 0];

% C(3,:); % selction matrix for lateral displacement
H_py = kron(eye(N),2*w1*C(3,:)'*C(3,:));
f_py = -2*w1*kron(y_ref,C(3,:));

% C(4,:); % selection matrix for anlgular displacement
H_phi = kron(eye(N),2*w2*C(4,:)'*C(4,:));
f_phi = -2*w2*kron(phi_ref,C(4,:));

% C(2,:); selection matrix for angular velocity
H_w = kron(eye(N), 2*w3*C(2,:)'*C(2,:));

% Cs_vy = C(1,:); % selection matrix for lateral velociy
H_vy = kron(eye(N),2*w4*C(1,:)'*C(1,:));

% Cs_5 = [0, 0, 0, 0, 1]; the fifth mathematica state
H_5 = kron(eye(N),2*w6*[0, 0, 0, 0, 1]'*[0, 0, 0, 0, 1]);

H_d = kron(eye(Nu),2*w5);
f_d = -2*w5*kron(ones(1,Nu),req_steer);

% H Matrix and f vector
% --------------

% min 1/2*x'*H*x + f*x

% min (ref_y(p+1) - t_y(p+1))^2, (ref_y(p+2) - t_y(p+2))^2
% min 2*w1*x'*Q_py*x - 2*w1*ysp*Cs_py*x

H = blkdiag((H_py + H_phi + H_w + H_vy + H_5), H_d);
f = [(f_py + f_phi), f_d];

% Equality Constraints
% --------------------

% Note: This A matrix is countinues time
A43 = -((g^2*lf*lr*m*(4*c0^2*L^2*(lf + lr)^2 + 2*c0*c1*g*L* ...

(lf + lr)^3*m + c1*m*(c1*g^2*lf*lr*(lf + lr)^2*m + 2*L^2* ...
(lf - lr)*vx^2)))/(4*J*L^4*tFilt*vx^2));

A44 = -(g*(4*c0^2*g*L^2*lf*lr*(lf + lr)^2*m*tFilt + 2*c0*L* ...
(lf + lr)*(c1*g^2*lf*lr*(lf + lr)^2*m^2*tFilt + 2*L^2* ...
(J + lf*lr*m)*vx) + c1*g*m*(c1*g^2*lf^2*lr^2*(lf + lr)^2* ...
m^2*tFilt + 2*L^2*vx*(J*(lf^2 + lr^2) + lf*lr*m*(2*lf*lr + ...
lf*tFilt*vx - lr*tFilt*vx)))))/(4*J*L^4*tFilt*vx^2);

A45 = -((2*c0*g*L*(lf + lr)*(J + lf*lr*m)*tFilt + c1*g^2*m*(J*(lf^2 ...
+ lr^2)+ 2*lf^2*lr^2*m)*tFilt + 2*J*L^2*vx)/(2*J*L^2*tFilt*vx));

A = [0 1 0 0 0;
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0 0 1 0 0;
0 0 0 1 0;
0 0 0 0 1;
0 0 A43 A44 A45];

B = [0 0 0 0 1]';

% Calcukate map the current state to mathematica states
states = [vy wz 0 0]';
xk = C\states;

% System Matrices discrete time - Forward Euler
% (x(k+1) - x(k)/h = Ax(k) + Bu(k) => (I + hA)x(k) + hBu(k)
% -----------------------------

% Note 2: The system matrices are discretized
Ha = [zeros(nx,nx*N); eye(nx*(N-1)) + kron(diag(tdiff(2:end)), ...

A), zeros(nx*N-nx,nx)];

Hi = eye(nx*N);
Hb = [kron(diag(tdiff(1:Nu)),B);...

zeros(nx*(N-Nu),Nu-1), kron(tdiff(Nu+1:N)',B)];

Aeq = [Ha-Hi, Hb];
beq = [-(eye(nx)+tdiff(1)*A)*xk; zeros(N*nx-nx,1)];

% NOTE: USE THIS FOR mpcqpsolver => Ain*x >= bin

Ain = [kron([1; -1],[zeros(Nu,nx*N), eye(Nu) - ...
[zeros(1,Nu); eye(Nu-1), zeros(Nu-1,1)]]); % 1) & 2)
kron([1; -1], [zeros(Nu,nx*N), eye(Nu)])]; % 5) & 6)

bin = [(-delta_rate*tMPC+stwAng+stwRate*tFilt)/steer_ratio; ...
-delta_rate/steer_ratio.*tdiff(1:Nu-1)'; % 1)
(-delta_rate*tMPC-stwAng-stwRate*tFilt)/steer_ratio; ...
-delta_rate/steer_ratio.*tdiff(1:Nu-1)'; % 2)
-ones(2*Nu,1)*delta_max/steer_ratio]; % 5) & 6)

% 1) u(k+1) - u(k) >= - delta_rate*tdiff
% 2) u(k+1) - u(k) <= delta_rate*tdiff (rad)
% 3) y(k) - y_ref(k) < lane_width/2 - car_width/2
% 4) y(k) - y_ref(k) > -(lane_width/2 - car_width/2)
% 5) u(k) > -delta_max
% 6) u(k) < delta_max

% Configuration mpcqpsolver
% -------------------------

opt = mpcqpsolverOptions('double');
[L,~] = chol(H,'lower');
Linv = inv(L);
iA0 = false(size(bin));
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[x,status] = mpcqpsolver(Linv,f',Ain,bin,Aeq,beq,iA0,opt);
uk = x(nx*N+1)*steer_ratio;

else
uk = 0;
x = zeros(N*(nx+1),1);

end
xv = [x; zeros((nx+2)*N-length(x),1)];
y_r = [y_ref, zeros(1,N-length(y_ref))]';
phi_r = [phi_ref, zeros(1,N-length(phi_ref))]';
delta_r = req_steer;
td = [tdiff, zeros(1,N-length(tdiff))]';
end
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B.1 Simulation results
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Figure B.1: This figure shows the requested steering wheel angle of the two con-
trollers and CarMaker driver when driving on R1 followed by a straight road. The
longitudinal velocity is 70 km/h during the entire test.
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Figure B.2: This figure shows the controller performances in comparison to the
CarMaker driver when driving on R1 in 70 km/h.
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Figure B.3: This figure shows the requested steering wheel angle of the controllers
and CarMaker driver when driving on R1 followed by a straight road. The longitu-
dinal velocity is 100 km/h during this test.
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Figure B.4: This figure is connected to the previous and shows the performance
of the controllers and CarMaker driver.

B.2 Model validation
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Figure B.5: In this set of figures is the steering angle request is a step signal with
amplitude 0.01 rad. The linear model does not match the CarMaker model results
very well.
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Figure B.6: In this set of figures are the steering wheel angle request a step signal
with amplitude 1 rad. The nonlinear nature of the CarMaker model have a major
impact on the lateral velocity and the angular velocity.
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Figure B.7: In this set of figures is the steering wheel angle request random noise
with a variance of 1 rad. As can be seen, the CarMaker model have greater peak
values than the linear model.
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C.1 Mathematical model

If the state vector is formulated as

x =


vy
ωz
py
ψz

 .

Then the continues time model matrix can be formulated as

A =


−g(2c0L(lf+lr)+c1g(l2f+l2r)m)

2L2vx

c1g2lf (lf−lr)lrm−2L2v2
x

2L2vx
0 0

c1g2lf (lf−lr)lrm2

2JL2vx
−glf lrm(c0L(lf+lr)+c1glf lrm)

JL2vx
0 0

1 0 0 −vx
0 1 0 0


and the corresponding input vector as

B =


glr(2c0L+c1glrm)

2L2
glf lrm(2c0L+c1glrm)

2JL2

0
0


.
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C.2 Mathematica generated model

With the following expressions

A43 = −((g2lf lrm(4c2
0L

2(lf + lr)2 + 2c0c1gL(lf + lr)3m

+ c1m(c1g
2lf lr(lf + lr)2m+ 2L2(lf − lr)v2

x)))/(4JL4Tv2
x))

A44 = −((g(4c2
0gL

2lf lr(lf + lr)2mT + 2c0L(lf + lr)(c1g
2lf lr(lf + lr)2m2T

+ 2L2(J + lf lrm)vx) + c1gm(c1g
2l2f l

2
r(lf + lr)2m2T

+ 2L2vx(J(l2f + l2r) + lf lrm(2lf lr + lfTvx − lrTvx)))))/(4JL4Tv2
x))

A45 = −((2c0gL(lf + lr)(J + lf lrm)T + c1g
2m(J(l2f + l2r)

+ 2l2f l2rm)T + 2JL2vx)/(2JL2Tvx))

the Mathematica generated model matrix can be expressed as

Am =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 A43 A44 A45


and the corresponding input vector is given as

Bm =


0
0
0
0
1

 .
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The coefficients of the Mathematica generated output matrix can be formulated as

C13 = (glf lrm(4c2
0gL

2lr(lf + lr) + c1glrm(c1g
2lf lr(lf + lr)m− 2L2v2

x)
+ 2c0L(c1g

2lr(lf + lr)2m− 2L2v2
x)))/(4JL4Tvx)

C14 = (glr(2c0L+ c1glrm))/(2L2T )

C23 = (g2lf lr(lf + lr)m(2c0L+ c1glfm)(2c0L+ c1glrm))/(4JL4Tvx)

C24 = (glflrm(2c0L+ c1glrm))/(2JL2T )

C31 = −((g2lf lr(lf + lr)m(2c0L+ c1glfm)(2c0L+ c1glrm))/(4JL4T ))

C32 = (glf lrm(4c2
0gL

2lr(lf + lr) + c1glrm(c1g
2lf lr(lf + lr)m− 4L2v2

x)
+ 2c0L(c1g

2lr(lf + lr)2m− 4L2v2
x)))/(4JL4Tvx)

C33 = (glr(2c0L+ c1glrm))/(2L2T )

C42 = (g2lf lr(lf + lr)m(2c0L+ c1glfm)(2c0L+ c1glrm))/(4JL4Tvx)

C43 = (glf lrm(2c0L+ c1glrm))/(2JL2T )

and the complete output matrix can be written as

Cm =


0 0 C13 C14 0
0 0 C23 C24 0
C31 C32 C33 0 0
0 C42 C43 0 0

 .
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