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Abstract

The vision of highly automated vehicle systems has for the last two decades enticed
researchers in both academia and industry. The work in this thesis focuses on the path
planning subset of the field, which addresses the problem of how a vehicle should navi-
gate through an obstacle filled environment. The purpose is to study and evaluate the
state of the art of path planning approaches and propose a solution that is feasible under
the resource constraints present in today’s passenger vehicles and that satisfies demands
on robustness and passenger comfort. Due to the complexity of the general path plan-
ning problem, the scope is limited to operation on highways and country roads, including
entries and exits through turns.A modular solution is presented where the planning is
reduced to selection among a discrete set of simple trajectories. The selection is based on
a filtered compound cost function that capture various performance aspects, e.g. prox-
imity to other vehicles and comfort. For both highway and turning manoeuvres, the
simple trajectories are found by solving a constrained optimal control problem subjected
to simplified representation of the vehicle dynamics. It is shown that the trajectories for
the highway case takes the form of a polynomial when a particle model is used to approx-
imate dynamics together with a specific cost functional. For the turning case however,
it is shown that the corresponding constrained optimal control problem is of numerical
nature and the reformulation to a non linear program by assuming a parametrized form
of the control is detailed. The importance of the initial guess to the numerical solver
is demonstrated and a novel way of generating these algorithmic starting points using
function fitting via Feed Forward Neural Networks (FFNN) is presented. The benefit of
using the highly accurate FFNN based initial guess is demonstrated, and its superiority
over other methods presented in the literature is shown. Results from extensive simu-
lations are presented which demonstrates that the proposed system is capable to solve
planning through complex traffic scenarios. The model simplifications made are justified
by a comparison between the dynamics of the simple model and a non linear bicycle
model, where the latter is forced to follow the path of the former. The resulting Dif-
ferential Algebraic Equations are solved through Dymola and used to determine under
what conditions the simplification is valid. The thesis is concluded with a discussion on
the results touching on both the benefits and disadvantages of using a modular approach
to the path planning problem.
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1

Introduction

T
oday’s ground vehicular systems are moving more and more towards autonomy.
Advanced driver assistance systems (ADAS) have excited immense interest in
academia and within the automotive industry. Recent advancement in sensory
systems and continuous reduction of computational costs have led to a signifi-

cant escalation in number of such functions available today. Functions such as adaptive
cruise control, lane keeping aid, parking assist, traffic jam assist and collision avoid-
ance systems are features in vehicles already in production. At the same time concept
of intelligent transport systems (ITS) is rapidly gaining popularity. Standardization of
vehicle to vehicle and vehicle to infrastructure communication protocols is paving the
way for the next generation of ITS solutions. Achieving higher levels of safety, improved
comfort, lower fuel consumption and decreased road congestions are the incentives that
fuel the research in this area.

On a research level, several projects focused on autonomous vehicles have existed with
perhaps the most prominent being the Defense Advanced Research Projects Agency
(DARPA) challenges. On an industrial level on the other hand, such examples are
scarce. However, with the technical prerequisites becoming available and as the general
public becomes more receptive, the vision of highly autonomous vehicles gets closer
to realization. Considerable effort is being directed towards autonomously navigating
vehicles in different urban environments. This calls for enhanced sensor systems and
environment representation, decision making and path planning solutions as well as
control algorithms.
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CHAPTER 1. INTRODUCTION

1.1 Purpose

The question of how to generate an optimal trajectory for an autonomous vehicle to
follow is one of the challenges in this area. Focusing on the path planning problem,
the presented work aims to study and evaluate the state of the art of path planning
approaches and propose feasible solutions considering the current capacity of the vehicles.
The proposed solution shall fulfil the following criteria:

• Feasibility of implementation given the processing power available in
passenger vehicles

To emphasize the importance of having a computationally cheap solution, it can
be noted that in the electronic architecture of a vehicle in production today, al-
lotted memory to a comparable function is typically in the kilobyte range while
the designated processor operating in sub-gigahertz frequencies is shared with a
multitude of other functions. This is a major difference between an industrially
feasible solution compared to those used in research experiments (see figure 1.1).

• Robustness and guaranteeing kinematic feasibility

The path planner shall only generate paths which are traversable by the vehicle.
In other words, kinematic constraints of the vehicle should be taken into account.

• Ease of integration with the currently available sensors typically seen in
passenger vehicles

Radars and cameras which are normally present in today’s passenger vehicles pro-
vide information about the surrounding objects and road references. The path
planner shall not require any extra sources of information than the aforementioned.

• Account for passenger comfort

Passenger comfort is considered one of the prime objectives of the path planning
system in the automotive context. From a marketing point of view, failing to
satisfy the customer’s comfort criterion will render such a function undesirable.

The first phase of this work comprises a literature study for the purpose of assessing the
potential of the available solutions given the demanded criteria. With this knowledge
acquired, the next phase consists of development of a modular solution for driving in a
structured environment, specifically for highway driving and turning. Next a series of
simulations evaluate the performance of the proposed solutions.

2



CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: 1.1(a) University of Carnegie Mellon’s entry to the DARPA Urban Challenge.
1.1(b) Volvo V40 with a sample electronic control unit. Such unit typically hosts several
functions running on sub-gigahertz processor and with allotted memory in the kilobyte range.

1.2 Scope

This project assumes the presence of a sensing and perception layer which provides a
representation of the environment throughout the planning horizon. In other words,
object tracking and obstacle detection are not in the scope of this work. Likewise,
development of a path following controller to follow the generated trajectory is not
considered. However, being conducted in cooperation with Volvo Car Corporation, this
work gives special attention to the software architecture and the currently available
hardware and software modules specific to this company. The solution is intended for
normal non-emergency driving conditions on highways and rural roads including entering
and exiting scenarios. In other words, evasive manoeuvres and off-road driving are not
considered.

Per request from Volvo Cars the longitudinal velocity of the vehicle is not to be included
in the planning and is therefore neglected in this subsystem. Instead, the well tested
Adaptive Cruise Control (ACC) module already in production is to be used. This con-
troller adjusts longitudinal velocity by means of feedback from the absolute velocity of
the host as well as from the distance and relative velocity with respect to a target vehicle.
The behaviour of the ACC can therefore be said to operate in two modes: one where the
host strives to maintain some set speed, the other where it instead adapts its speed to
that of a preceding target whilst keeping some dynamically varying reference distance.
As a result, the degrees of freedom available are restricted to the lateral direction and
will basically result in reference trajectories for a steering controller.

Beside this uncertainty, the restriction of the planners authority stemming from the use
of the built in ACC already limits the scope over which planning can be made, and
greatly reduces the planning ability. The following merging scenario not uncommon on

3



CHAPTER 1. INTRODUCTION

highways, can be considered an illustrative example of the latter. Without claiming to
cover all possible situations, this implies that a restriction in the planning dimensions
yields suboptimal results.

Example: The host vehicle (H) is approaching a slower moving vehicle (T) from be-
hind. In the adjacent lane yet another vehicle (A) is travelling approximately at the
same speed as the host alongside it, as illustrated in Figure 1.2. Almost regardless of
what criterion that now is chosen for performance evaluation, a multitude of options
arises. For example, the host can accelerate over some distance and then change lane,
trajectory 1 in the figure. Alternatively it can pre-emptively slow down and thereafter
change lane, trajectory 2 in the figure. Removing speed and longitudinal positioning
however, the ACC essentially leaves one option open, namely to approach (T) at the
present speed, slow down relatively close to achieve the set distance, await the passing
of (A), then change lane. Needless to say, this might be far from the optimal way of
performing such a manoeuvre.

Figure 1.2: Obstructed Lane Change/Merging scenario. Here vH ≈ vA and vH > vT . The
lighter shaped vehicles represent positions after some time has passed. Note that the image
is meant to be schematic and that the distances not are to be interpreted as physical.

1.3 Organization of the Report

The next chapter of this report provides some background information, introduces the
path planning problem in its general form and formulates the problem in the automotive
context. Chapter 3 elaborates the development of a modular solution for (i) highway
driving and (ii) turning. For the first scenario, derivation of an optimal path for max-
imizing comfort and satisfying given constraints are explained along with a model for
representing moving obstacles. The next part proposes a solution for optimal trajectory
generation under kinematic constraints for a turning scenario. Evaluation of the result-
ing trajectories along with simulation results and performance analysis of the proposed
methods are presented in Chapter 4.
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2

Background

This chapter first introduces the path planning problem in its most general case and gives
a short overview of common approaches taken as well as some history of the field. The
general path planning problem is formulated first as an optimal control problem and then
the computer science take on the problem is explained. After this, the path planning
problem in an automotive context is described, highlighting the important differences
with respect to the general problem. The chapter then concludes with some remarks
on the commonly used planning methods and their favourability in comparison with the
proposed method in this work.

2.1 Theoretical Preliminaries and Definitions

Definition 1 A path is in this context defined as a sequence of interconnected nodes in
a graph representation of R2

Definition 2 A trajectory is a continuous curve connecting two points in Rn

The two terms Trajectory and Path are defined in different ways by many authors while
some use them interchangeably. The distinction made in this thesis is that a trajectory
always is a continuous curve in some space, possibly the state space of some system,
while a path can be a discrete sequence. Since a physical system only can execute, or
follow, continuous paths the latter commonly takes the form of a discrete sequence of
trajectories.

5



CHAPTER 2. BACKGROUND

Definition 3 Configuration space or C-space of a robot refers to a set of all possible
positions and orientations of the robot.

Definition 4 A nonholonimic mechanical system is a system under velocity constraints,
the derivatives of which do not integrate to the position constraints. Such constraints are
referred to as nonholonomic constraints.

In mobile robotics for instance, nonholonomicity is typically signified by the rolling
without slipping property. Parallel parking of a car, as depicted in figure 2.1 exemplifies
the effect of nonholonimic constraints.

Figure 2.1: parallel parking of a car

In mathematical terms, a kinematic equality constraint can be defined as

F (q,q̇,t) = 0

q ∈ A
q̇ ∈ B

(2.1)

with q being a configuration in the configuration space A of a robot and B the tangent
space of A at q. The equality constraint2.1 is nonholonomic if it cannot be integrated
into the form F (q,t) = 0. Assumption of linearity of F with respect to q̇ will lead to
the above-mentioned rolling without slipping property in a car. On the other hand, a
nonholonomic kinematic inequality constraint of the form F (q,q̇,t) ≤ 0 corresponds to
e.g. bounds on the steering angle of a car [1].

2.2 General Path Planning Problem

The path planning, or motion planning problem, has long been seen as one of the funda-
mental problems in robotics. Originally arising from the need for robots to find collision
free paths between two locations in an obstacle cluttered environment, it has expanded
and continues to attract interest from both research and academia. Even though the
path planning problem is different for manipulators and mobile units much of the re-
search done can be applied to both fields. This introduction will however have a slight
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CHAPTER 2. BACKGROUND

focus on the mobile case since it gives some background to the automotive problem pre-
sented in the next section.Upon finding references to classes of algorithms the reader is
encouraged to look for the details as given in Appendix A

2.2.1 General Problem Formulation

For all applications, the general path planning problem can formally be described as
follows:

Problem 1 ”Given an arena, or environment A, containing obstacles O find a path p
in A \O such that p connects the points a,b ∈ A \O minimizing the measure M”.

Here, A defines the boundaries of the problem, i.e. the total search space. The path
endpoints a and b are in the free part of A defined by A \ O. M can be any number
of measures, including functions of dynamic states of the agent that is to traverse the
path or the effort demanded, but is commonly directly related to properties of the path
itself, e.g. length, curvature etc. The graphical representation of the problem is given in
Figure 2.2.

Figure 2.2: Visualization of the definition given in Problem 1. The white area is the free
parts of the arena whereas the gray represents the parts that are not traversable.

2.2.2 Control Theoretic Approach

By examining Problem 2.2 from a control theoretic perspective, one can see the nature
of the problem resembles that of an optimal control problem. In this class of problems,
the objective is to find the control, and subsequently controlled trajectories, taking a
dynamical system from one state to another, respecting constraints imposed both on the

7



CHAPTER 2. BACKGROUND

control action and the states themselves. In the robotics perspective, the latter can then
be formulated such that both workspace obstacles restricting the pose and performance
measures restricting speeds, accelerations etc. are included, thereby presenting a frame-
work in which the path planning problem can be approached. In the most general case
the optimal control formulation of the path planning problem can then be stated as

min
u(t)

∫ tf

0
L(x(t),u(t))dt+ φ(x(tf),u(tf))

s.t. ẋ(t) = f(x(t),u(t))

x(0) = x0

ψ(x(tf )) = 0

x(t) ∈ X
u(t) ∈ U

(2.2)

Here, x(t) ∈ Rn is the states of the system, u(t) ∈ Rm is the control signals, tf is the
possibly free final time, x0 is the start state, ψ(x(tf )) the conditions related to the final
state, f(x(t),u(t)) : Rm+n 7→ Rn the system dynamics. L(x(t),u(t)) : Rm+n 7→ R is the
path cost to go while φ(tf ) is the final cost.

2.2.3 Computer Science Approach

Much of the work in path planning was done primarily within the fields of Artificial
Intelligence and Computer Science which have put their mark on the approaches that
have become prominent. Even though there are important exceptions, especially some
put forward in the last decade, kinematics and dynamics are largely ignored [2]. Looking
back at Problem 2.2, this means that the dynamics of the system are neglected. The
solution to the original path planning problem is then usually found approximately by
iterative search schemes, similar to other problem solving techniques within the field.
The most common approach is to first discretize the obstacle free part of A (c.f Problem
1), either by decomposing it into cells or to skeletonize it into nodes with connecting
edges. A schematic illustration is given in figure 2.3

Relationships between the discrete elements are then defined, so that for each node or cell
there exists a set of neighbouring elements. For each of these a cost of transition is derived
from the quantity that is to be minimized over the complete path, representing the partial
cost of moving from the first element to one of its neighbours. The discretization and
connections are defined such that no nodes or connections passes through any obstacle,
thereby letting all transitions on the discretized space map to collision free trajectories
in the original workspace. Having done this, the problem can then be thought of as a
bidirectional graph or tree originating in the start point, were the discrete elements are
nodes and the connections to the neighbours are the edges. Following the principles of

8
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Figure 2.3: Schematic demonstration of common dsicretization schemes. Left: The orig-
inal search space Center: Search space decomposed into cells Right: Search space skele-
tonized

dynamic programming the solution is then taken as the path in the graph having the
lowest total cost from the start node to the endpoint, found by some graph searching
algorithm or general dynamic programming scheme. The focus of the research within
this approach has therefore to a large extent been to improve or reform the techniques
used for discretization and to increase the efficiency of the search algorithms themselves.
Some details on the present state-of-the art are given in Appendix A.

As mentioned earlier, computer science approaches typically ignore the involved kinemat-
ics and dynamics. This gives limited or no guarantees on the feasibility of the solution
and no possibility to keep certain dynamic quantities within any pre described bounds.
Further, most methods proposed use little or no a-priori knowledge of the solution and
do not assume a specific structure of the problem, focusing instead on versatility and the
ability to function well in a multitude of environments. Even though it is advantageous
in many applications, notably free robot navigation in complex environment, this usually
necessitates an exploration of a large part of the space of possible solutions, in general
leading to high computational loads.

2.2.4 Combining Computer Science and Optimal Control Approaches

As noted by among others Lavalle [2] recent developments have spurred an increased
interest in both the AI and control communities for the approach taken by the other,
and a common ground have been established. During the last fifteen years, a number
of methods based on skeletonization and search have been introduced, where the con-
nections between the nodes in principle are found by solving smaller restricted optimal
control problems. By this, guarantees and limitations regarding system dynamics can
be stated together with some measure of algorithmic completeness and bounds on sub-
optimality [4],[5],[6]. There are of course other approaches bridging the gap between the
fields, but the one mentioned presents a good example of hybridization between the two
originally different approaches.
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CHAPTER 2. BACKGROUND

There are presently a large number of applications, both using optimal control related
algorithms, search based ones, combinations of both or others still. Since the number of
mobile robots has exploded and now is more numerous than their stationary counterparts
the field has increasingly become more important. This is especially true since they, as in
the application related to the central topic of this thesis, takes a larger part of everyday
life. Examples of areas where some of these algorithms have been used are shown in
figure 2.4.

Figure 2.4: Users of Path Planners: Left: NASA Rover Curiosity, Center: Home utility
robots, Right: US Military UAV MQ-9 Reaper

2.3 Automotive Path Planning

The interest in automation of personal vehicles has been growing successively the last
20 years. In industry the primary focus has been on functions for active safety and
driver support such as Adaptive Cruise Control (ACC) amd Lane Keeping Aid (LKA),
all sharing a relatively low level of autonomy, never keeping the driver completely out of
the loop. Recent developments have however sought to increase the level of autonomy
and have initially led to the introduction of semi or fully autonomous functions, most
recently for parallel parking. There is a desire in industry to advance this field further
as it is believed that increased autonomy, and finally complete autonomy, will take on
an important role in the commercial road vehicles of the near future. Evidence of this
effort can be seen in projects with industrial participation like SARTRE and GCDC.
In contrast, the technological frontier seen in more academic projects lies far ahead of
that present in industry, and has demonstrated fully autonomous behaviour on several
platforms over the last decade. Notable applications include those of the participating
teams in the DARPA Grand Challenge (DGC)(2005) and DARPA Urban Challenge
(DUC) (2007) and lately the Google Car, performing fully autonomous operation both
in enclosed areas and on public roads. In terms of path generation these applications
commonly incorporate algorithms with a focus on actual planning, i.e. in line with the
example above, they adapt to a situation well before it is reached to achieve some global
optimality property. This differs significantly from common industrial practice, e.g. that
found in automatic emergency manoeuvres. In general, these act on a problem when it
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is encountered and are thereby is more reactive in nature whereby they commonly fail to
achieve the same measure of optimality. The efforts made both in industry and academia
towards full autonomy have clearly shown the need for an adaptation of the existing path
planning algorithms to an automotive context, and have placed the problem as one of
the important fields of study together with Decision Making, Sensing and Control.

2.3.1 Differences to path planning in robotics

Automotive path planning encompasses considerations regarding the involved human
factors such as passenger comfort and safety measures. Accounting for these considera-
tions is what differentiates the automotive path planning from similar problems in the
field of robotics. These human factors, like in other driver support systems, play an
important role in user acceptance and subsequently commercial success or failure of the
end product.

These considerations raise the need for explicit handling of the dynamics of the con-
trolled vehicle. In terms of safety, there is a need to guarantee that a computed path
is collision-free and kinematically feasible within some imposed restrictions. Demands
on ride comfort, in terms of vehicle dynamics is expressed as explicit limitations on
development of certain states.

The optimal control formulation of the path planning problem presented in Section
2.2.2, we can show that the above mentioned human factors can be integrated into this
formulation. Comfort and safety requirements can be fulfilled by identifying the involved
system states and defining the desired constraints on those states. More specifically, in
Problem 2.2, X may contain constraints on states x such as acceleration, velocity, etc.
to fulfill some safety criteria, as well as guaranteeing a collision-free path. Requirements
on passenger comfort can be integrated into the cost function to be minimized.

As a remark on the issue of passenger comfort, it is commonly believed that high levels
of jerk (time derivative of acceleration) and acceleration are the prime contributors to
ride discomfort, see for example [7] and [8]. Both quantities can be directly perceived by
the user, as opposed to velocity or position, and is believed to impact the perception of
vehicle movements and therefore the experienced ride quality. Despite the importance of
these effects thorough experimental studies are scarce and numerics for limiting values
are few.

2.3.2 Scenarios for autonomous drive

Much of the research done on systems for autonomous drive divides the scenarios into
three main categories; Off-road Operation, Operation in Zones and Operation in struc-
tured environments, differentiated by how much can be assumed about the environment
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[10],[11],[12], see Figure 2.5 for a schematic example. Operation in Zones typically en-

Figure 2.5: Schematic Illustration of the different autonomous driving scenarios.Left: Off-
road driving. No assumptions can be made regarding the structure of the scenario, thereby
increasing the problem complexity. Center: Zone driving. End of trajectory contains
demands on all states, including vehicle heading. Assumptions are made on the geometry of
obstacles, and the flatness of the ground which simplifies the problem. Right: Structured
Driving. End of trajectory concerns only certain states, e.g. lateral position from road center,
velocity and acceleration. Directional information implicitly given by the scenario structure.

compasses parking lot scenarios, driving among pedestrians and other low speed sit-
uations. As these can differ significantly and many manoeuvres needed can demand
operation at the kinematic performance limits of the vehicle, e.g. regular parking with
maximum steering angle, several research works have proposed exhaustive search schemes
incorporating detailed models of the vehicle kinematics, commonly using both AI related
algorithms and optimal control solvers [13]. Unlike this category, planners for Operation
in structured environments, e.g. road bound operation at higher speeds, rarely need
to come close the kinematic limits of the vehicle, except for the case when emergency
manoeuvre are performed. The road itself and the direction of travel offer structure that
limit the set of desirable paths and thereby the space in which to search for optimal ones.
Indeed, this structure has frequently been used in various research projects, for example
[14],[15], often leading to significantly simpler algorithms than for its zone navigation
counterpart. Yet another difference is the differences in path endpoints. Where the zone
navigation often demands precise positioning and an explicit goal state this is rarely the
case for structured driving on roads. Instead the lane in which the vehicle travels and
the offset to a lane center are usually only considered because the heading and position
along the road are less relevant. Due to its similarities with ”regular” robotics path
planning (no specific environment structure, lower speeds etc.) and its small relevance
to this thesis, the Off-road Operation category will not be described further.
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2.4 Choosing a Feasible Approach

At the initial stage of this work, in the quest for selecting a path planning approach to
satisfy all the criteria as described in 1, a selection of commonly used methods were eval-
uated. A summery of these approaches can be found in Appendix A. It can be noted that
the majority of the summarized approaches fail to fully satisfy the criteria described in
the Section 1.1. Optimal control based solutions tend to have high computational loads
even on dedicated processors. Graph-search methods cannot guarantee a kinematically
feasible path on their own. Algorithms based on randomized sampling have the capa-
bility of using advanced kinodynamic motion models and generate paths for complex
manoeuvres, but they prove to have high demands on computational resources. Limited
or no possibility to include kinematics in the geometry based approaches make them less
of a favourable solution, and the problem of local minima in the potential field approach
does not satisfy the robustness criterion. In the state-lattice method, both generation
and storing large number of trajectories are beyond the intended processor and memory
capacity for this work.

Except for the computational burden, shortcomings of these algorithms can be addressed
by using a more general hybrid solution comprising of a selection of these methods. The
most note-worthy of real-world implementations of the more general solutions to the
path-planning problem for mobile robots can be those used in the DARPA challenges.
The participants normally utilize hybrid solutions combining a selection of the discussed
classes of algorithms to form a general and adaptable solution. These solutions are
typically closely coupled with an elaborate perception module hosting a magnitude of
advanced sensory equipment. On the computational side, the real-time platforms are
typically tailored to suit the high demands of the implemented algorithms.

From the perspective of today’s automotive industry, integration of such perception
systems are far from realization due to high costs and factors such as design and customer
appeal considering placement of sensors. Most importantly, the computational costs are
not justifiable in a mass-produced vehicle. Moreover, approval tests and procedures for
experimental validation of a general path planning solution for automotive applications
will be costly and complex. Hence, the risk of a compromise in safety may increase. Due
to their highly integrated nature, maintainability and scalability of such a solution will
also be challenging in an industrial setting.

The current driver support systems mainly consist of a number of specific modules op-
timized for a particular application. Adaptive cruise control, lane keeping aid, assisted
parking, and prototypes in vehicle platooning are such functions. In the context of path
planning, these functions follow the approach of path planning for structured environ-
ments as described in Appendix A.7. This modular design provides the possibility of
effective verification and is easier to maintain and scale.

With this in mind, the proposed method as described in the next chapter takes on a
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modular approach. Feasibility of integration into a vehicle in production today has been
of particular importance in this work. The provided solutions aim to have no significant
demand on the sensory perception modules, nor on the designated processors already
present in the vehicle.
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3

Proposed Planning System

This chapter contains a detailed description of a path planning system for automotive
applications. Drawing from the results of the previous chapter comprehensive algorithms
capable of handling a multitude of environments and situations have been deemed in-
appropriate since they, in general, are too complex for on-line implementation in the
currently available vehicles. Instead, the proposed planning system is situation specific,
with different algorithms for different scenarios, which reduces overall complexity and
thereby allows rapid computation. The focus of the planner is operation on highways
and country roads and is subdivided into two main categories: Highway Operations, e.g.
lane changes, overtakes and small lateral movements within a lane and Turning, e.g.
leaving a country road by means of a right or left turn. The main idea is to approximate
the original Optimal Control formulation from Problem 2.2 by a selection from a set of
tentative trajectories. A framework is presented for the rating and selection between
the plausible alternatives. The trajectories for highway manoeuvres are shown to have a
very simple analytic form under certain simplifications while the counterparts for turning
are retrieved through the solution of a non-linear optimization problem. The latter is
troubled with numerous local minima and a novel method for initiation of the optimiza-
tion algorithm based on Feed Forward Neural Networks is presented, which mitigates
the issue.

3.1 System Overview

The path planning problem as presented in Problem 2.2 and the common approaches
taken to solve it was discussed in the previous chapter. It was demonstrated that most
algorithms were coupled with different, but severe drawbacks ranging from complexity
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issues to the inability to account for system dynamics. Drawing from these experiences,
the system proposed in this Chapter aims to tackle the inherent difficulties by utilizing
the restrictions of the project to form a specialized approximation to original problem,
which for convenience is restated below

min
u(t)

J =

∫ tf

0
L(x(t),u(t))dt+ φ(x(tf ),u(tf ))

s.t. ẋ(t) = f(x(t),u(t))

x(0) = x0

ψ(x(tf )) = 0

x(t) ∈ X(t)

u(t) ∈ U

(3.1)

In this formulation, the allowed state space set X(t) is intended to be read as covering
all the important aspects, e.g. obstacle avoidance and limitations on acceleration and
velocity. Note that the time varying of nature of nature of X is written out explicitly,
emphasizing the need for adaptation to dynamically moving obstacles and other envi-
ronmental changes. The final time tf is considered fixed and the problem is solved over a
finite horizon. It is again stressed that the problem statement given in Equations 2.2 and
3.1 merely are symbolical in nature and only intended to capture the conceptual width
of the problem. As noted in the previous chapter, a wide variety of general approaches
has been proposed to approximate the solution to Equation 3.1, all coupled with severe
drawbacks when commercial automotive applications are intended. Striving to achieve
a solution suitable for implementation on the hardware platforms available today that
still includes a model of vehicle dynamics with constraints it is evident that a number
of simplifications has to be made.

Approximating the continuous optimization problem presented in Equation 3.1 with a
discrete counterpart the method proposed in this thesis is similar in spirit to the work
presented in [16],[12] and [17]. Conceptually, the method also share ideas with the
State Lattice methods discussed in Appendix A.6. At each time instant, i.e. sample, a
set of simple trajectories derived from the constrained vehicle dynamics from Equation
3.1 are generated from the current position to a number of tentative targets. These
trajectories represent possible ways in which the host vehicle can change its position and
ways in which this is performed (i.e. its corresponding state evolution) over the course of
some short time period into the future. Simultaneously the commonly highly dynamic
environment is simulated, i.e. the behaviour of other road participants is predicted,
based on the currently available information. Following this, the predicted environment
is used to decide if the tentative trajectories of the host vehicle are feasible (i.e. does
not lead to a collision, stays on the road etc.). Those that fulfils these requirements are
then attributed a score after their fitness in terms of some selection criterion. At this
point, each trajectory with a score is thus feasible in terms of the constraints provided
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in Equation 3.1. By designing the score after the objective J in the same equation, an
approximation to the problem is found by selecting the best of these feasible trajectories.

The following section further details how the method approximates the problem pre-
sented in Equation 3.1 and describes its operation through an illustrative example. For
clarity, the restrictions of the project to road bound operation is again emphasized with
the additional constraint that the proposed system only handles manoeuvres on larger
roads and turns.

3.1.1 Conceptual Main Steps

Consider the problem of overtaking a slower moving vehicle on a highway and the gen-
eration of the optimal trajectory using the solution to Equation 3.1. The time horizon is
assumed to be long enough to allow planning of the complete manoeuvre, i.e. initiating,
performing and finishing the overtake, without violating any of the constraints. Fur-
ther, the objective J is assumed to be carefully designed to capture the different aspects
presented in 1.1 and a high quality dynamical model f(x(t),u(t)) is assumed. By this
the optimal trajectory is the safest, and most comfortable one that can be found. A
schematic representation of the scenario is given in Figure 3.1.

Figure 3.1: Visualization of the overtake scenario. The blue field represent the physical
space allowed by the state constraints x(t) ∈ X from Equation 3.1. The white areas similarly
corresponds to disallowed regions. The black curve is intended to show the optimal trajectory
according to some objective J .

The first restriction is made by shortening the horizon to the extent of the available
sensors. The current vision-radar combination gives readings up to 150 meters, which
for highway speeds between 70 and 90 km/h is covered in roughly 7.5 to 6 s. The
highly dynamical environment reduces the benefit of planning beyond this range and
essentially makes all calculations involving predictions of other road participants over
longer horizons inaccurate. Note however, the implication that very few manoeuvres,
e.g. lane changes, overtakes etc. will be able to complete within the allotted time
window, and that the planner therefore almost always will be partial in nature. The
effect of the restriction on the studied example is shown in Figure 3.2, where the set of
feasible solutions is reduced and the planning of a complete overtake therefore no longer
is possible.
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Figure 3.2: Visualization of a reduction in the planning horizon. Using the descriptions
from Figure 3.1, the allowed set now fails to encompass the physical space necessary to
complete the manoeuvre.

The first step of the algorithm is to generate a set of simpler trajectories that satisfies
the constraints in Equation 3.1. Formally, these are retrieved as the solution to

min
u(t)

M =

∫ tf

0
L̂(x(t),u(t))dt

s.t. ẋ(t) = f̂(x(t),u(t))

x(0) = x0

x(tf ) = xf

x(t) ∈ X̂
u(t) ∈ U

(3.2)

The main point here is to save computation by replacing the dynamics f with a simplified
counterpart f̂ , remove the explicit treatment of moving obstacles, i.e. replace X(t) with
X̂ and explicitly specify the endpoint, i.e. letting x(tf ) = xf as opposed to ψ(x(tf )) = 0.

Note the different objective M formed over the trajectory through L̂. The idea is to
retain a subset of the original objective J , or more precisely a subset of the properties
introduced in 1.1, using a formulation that allows rapid computation. Specific details
are refrain from at this point, as they will be detailed for the highway manoeuvre and
turning scenarios in 3.2 and 3.3 respectively.

Using this, a set of trajectory endpoints xf are defined inside the feasible set of solutions
of the original problem in Equation 3.1, and trajectories leading to them are computed.
These are now considered tentative solutions to the original problem stated in Equation
3.1, with different quality in their respective approximation of the original solution. A
schematic visualization of this step is given in Figure 3.3, where a number of feasible
alternative trajectories are drawn.
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Figure 3.3: Illustration of the generation of feasible trajectories. The blue and white
fields are defined according to the caption in Figure 3.1 and the black curves represent the
tentative trajectories.

Following the endpoint definitions and subsequent trajectory calculations, the goal is
to find the trajectory in the calculated set that gives the best approximation to the
solution of Equation 3.1. Using the original objective J and calculating its value over
each trajectory, a score can subsequently be assigned to each alternative. Since the
original problem in Equation 3.1 is formulated as a minimization, the best approximation
is taken as the lowest scoring alternative.

It is stressed that it is in the score attribution that the dynamics of the environment
enters the algorithm. Being removed previously in Equation 3.2, moving obstacles are
modelled and predicted over the time horizon tf and the score J computed from the
predicted interactions with the host as it executes each trajectory. Consider as an exam-
ple the proximity to another vehicle, moving at a different speed, which will change in
value as the movement of it and the host is simulated. In the special case of a predicted
collision, the trajectory is removed completely from the process and discarded.

The scoring and selection process is visualized schematically in Figure 3.4, where the
score is represented by the colouring of the tentative trajectories.

Figure 3.4: Illustration of the score attribution and subsequent selection. The score values
are represented with a simple red-to-green color scheme, where red hues correspond to high
values of J , i.e. undesirable, and green hues to low values. The trajectory with the lowest
value is drawn thicker in bright green. As in previous figures, the blue field represents the
feasible, or allowed set

After selection, the best trajectory is executed until the next sample, when the entire
process is repeated. The planning is thus done in a receding horizon fashion, much
similar to Model Predictive Control. The progression of the algorithm for the overtake
example is visualized in Figure 3.5.
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Figure 3.5: Traversed trajectory after several consecutive replanning and execution iter-
ations. The planned and executed trajectories are marked with alternating black and gray
solid lines, where each color segment symbolises the result of one iteration. The circular
symbols shows where replanning occurs.

Note that the same reasoning is applied to trajectories with endpoints that deviates from
the direction of the road, as in exit or entry turns from and to roads and parking lots.
A schematic demonstration is given in Figure 3.6.

Figure 3.6: Tentative trajectories generated for turning scenarios. Colourings and other
markings according to the previous figures.

3.1.2 Algorithm Description

The proposed system can be broken down in to several different modules tasked with
subsets of the procedure introduced in the previous section. Naturally, the implemen-
tation of the system needs to consider certain practical details due to which additional
functionality is included. A graphical overview of the complete algorithm is given in Fig-
ure 3.7, where the information flow and internal ordering of the different subsystems is
presented. The remainder of this section serves as an introduction to these components.
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Figure 3.7: Information flow chart for the algorithm presented in the Thesis. Details
regarding the purpose of the different blocks are given in 3.1.2.1 and 3.1.2.2.

3.1.2.1 Trajectory Generation

To efficiently utilize as much environmental structure as possible, two different methods
for calculating trajectories are used for the Highway Manoeuvre and Turning Scenarios
respectively. The two subsystems will be detailed in 3.2 and 3.3 where motivations and
mathematical descriptions are provided.

Definition of Endpoints This component is responsible for providing the targets,
or endpoints, of the tentative trajectories, after a predefined rule. Needing only the
environment structure as an input, the output is a set of endpoints xf that are fed to
the trajectory calculation. A description of a endpoint generation rule for the Highway
Manoeuvre use-case will be given in 3.2.2, where the relative position is retained between
the algorithms iterations.

Trajectory Calculation Using the given endpoints a set of trajectories are computed
as the solution to a simplified problem, as exemplified through Equation 3.2 in the above
example. Consequently, all explicit handling of other road participants are removed and
the road considered obstacle free. The output from this component is a collection of
points along each trajectory, i.e. a discretized representation of the calculated result.
Descriptions on the derivation and calculation of the methods used are given in 3.2 and
3.3 for the Highway Manoeuvre and Turning scenarios respectively.
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3.1.2.2 Trajectory Selection

The selection of the generated trajectories essentially serves two purposes. The first is
to ensure that all constraints of Equation 3.1 are respected, specifically those relating to
the interaction with other vehicles present in X(t). The second is to approximate the
minimization in the same equation by providing an approximation of the objective J
over each calculated trajectory. As indicated in Figure 3.7, this is done in several steps
that are introduced briefly below.

Prediction The selection procedure starts with a simulations of the surrounding vehi-
cles based on currently available sensor information together with the host as it traverses
each trajectory. It is again stressed that the interaction with obstacles (if present) are
used through a model of the ACC to determine the longitudinal dynamics of the host
vehicle. The predicted velocity, acceleration and jerk of the latter as well as a measure of
proximity to other road participants are stored at each point along the tentative paths
given from the Trajectory Calculation module. A detailed description will be given in
3.4.3.

Feasibility Control To ensure that safety is maintained, the trajectories that are
predicted to render the host vehicle too close to an obstacle or outside the road are
marked as infeasible and removed from the process. This posterior control is introduced
to partly compensate for the removal of the Trajectory Generation module.

Score Attribution Using the predicted point values of the states and proximity mea-
sure a score is formed that approximates the objective J in Equation 3.1 for each re-
maining trajectory. A note here is that the original problem by convention was formed
as a minimization, but that the maximization of the inverse of J have been used in the
practical implementation. Further details around the construction and calculation of the
score will be presented in 3.4.1.

Filtering For practical reasons the raw value of the score are unsuitable to use directly
due to which a low pass filter is applied. This implies that previous scores affects the
filtered value of a trajectory as it is recomputed and evaluated at the next iteration. A
description of the filter used and motivations to its usage will be presented in 3.4.2.

Selection During the selection step, the trajectory with the currently highest filtered
score is retained and passed on for execution. All other trajectories are discarded.
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3.2 Trajectory Generation for Highway Manoeuvres

As noted in section 2.3 high levels of lateral jerk is the prime contributor to passenger
discomfort. Because of this any trajectory generator for use in commercial automotive
applications need to assert limits on the jerk levels, and ideally find solutions that min-
imizes the quantity over the entire trajectory. Versatile and accurate approaches have
been proposed by several authors, where an optimal control problem is solved on-line,
when the trajectory is needed, using a kinematic vehicle model and a cost functional that
could be designed to include lateral jerk [18]. Other authors highlight the possibility to
do similar calculations off-line and retrieve the trajectories from lookup tables during
on-line operation [5]. Although accurate, both approaches suffer from complexity issues
and is hard to realize on the hardware platforms that are expected to be available on
commercial vehicles in the near future. The former is troubled with high time complexity
due to its use of numerical optimal control solvers, while the memory storage require-
ments might limit the latter. A well known idea proposed by several researchers, e.g.
[16][14][19], is to simplify the same problem by decoupling the longitudinal and lateral
motions of the vehicle. The evolution of corresponding trajectories can then be com-
puted separately, turning a hard differentially constrained optimization problem to two
simpler ones. This of course means disregarding the non-holonomic constraints. In the
formulation presented here, it amounts to approximating the vehicle dynamics with that
of a holonomic point mass. It is evident that this indeed is a highly inaccurate model
in the general situation, but it has been successfully implemented at higher speeds [17].
This model simplification is further examined in 4.1.3 where conditions under which the
approximation is valid are detailed. Regarding their computational weight, the simpli-
fied formulation of the problem is very attractive as it, in many cases, have a closed form
solution which effectively changes the on-line part of the trajectory generation to a low
number of calls to very simple functions.

3.2.1 Derivation of optimal trajectory

To generate these trajectories the lateral position of a particle is described as the triple
integration of the jerk, j. Being a common comfort measure found in the literature, the
latter is also included in the cost functional according to

J =

∫ tf

0

1

2
j2(t)dt

for some final time tf , with the intention of optimizing ride quality over the trajectory.
Other comfort measures and thereby cost functionals, are indeed plausible, but findings
in psychophysiological research indicates that the minimization of jerk indeed is the best
alternative. A further discussion and motivation of the choice can be found in Appendix
B.1.
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Considering the (lateral) jerk as the control signal u(t), the relevant, unrestricted optimal
control problem then becomes:

min
u(t)

∫ tf

0

1

2
u2(t)dt

s.t. ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = u(t)

x1(0) = x10, x2(0) = x20, x3(0) = x30

x1(tf ) = x1f , x2(tf ) = x2f , x3(tf ) = x3f

(3.3)

Here, x1, x2 and x3 is the position, velocity and acceleration respectively, x10,x20,x30
and x1f ,x2f ,x3f their values at the initial (set to 0) and final times tf . Forming the
Hamiltonian as

H =
1

2
u2(t) + λ1x2(t) + λ2x3(t) + λ3u(t),

where λi are the costate variables evolving according to

λ̇1 = −∂H
∂x1

= 0

λ̇2 = −∂H
∂x2

= −λ1

λ̇3 = −∂H
∂x3

= −λ2

giving solutions on the forms
λ1 = C1

λ2 = −C1t+ C2

λ3 =
1

2
C1t

2 − C2t+ C3.

The first order optimality conditions then gives the optimal control as

∂H

∂u
= u+ λ3 = 0 → u∗ = −λ3

The corresponding expressions for the states can then be reached by integration of the
system dynamics

x3(t) = −1

6
C1t

3 +
1

2
C2t

2 − C3t+ C4 (3.4)

x2(t) = − 1

24
C1t

4 +
1

6
C2t

3 − 1

2
C3t

2 + C4t+ C5 (3.5)
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x1(t) = − 1

120
C1t

5 +
1

24
C2t

4 − 1

6
C3t

3 +
1

2
C4t

2 + C5t+ C6 (3.6)

where the integration constants C1,C2,C3,C4,C5, C6 are found through the boundary
conditions according to

C6 = x10 (3.7)

C5 = x20 (3.8)

C4 = x30 (3.9)

C3 = −
(9x30 − 3x3f )t2f + (36x20 + 24x2f )tf + 60x10 − 60x1f

t3f
(3.10)

C2 =
(36x30 − 24x3f )t2f + (192x20 + 168x2f )tf + 360x10 − 360x1f

t4f
(3.11)

C1 = −
(60x30 − 60x3f )t2f + (360x20 + 360x2f )tf + 720x10 − 720x1f

t5f
(3.12)

The jerk minimizing solution to the trajectory generation problem is thus a quintic
polynomial in t, with coefficients depending solely on the boundary conditions and the
final time. Similar results have been found in earlier research, c.f [7] and [8]. An example
on how the states would develop for a typical set of boundary conditions associated with
a lane change is shown in figure 3.8. Note that the independent variable is time and not
longitudinal position, making the results scalable w.r.t. the latter. Thus, the trajectory
in a spatial coordinate system (s,l) is

s =

∫ tmax

0
Vlon(t)dt (3.13)

l = − 1

120
C1t

5 +
1

24
C2t

4 − 1

6
C3t

3 +
1

2
C4t

2 + C5t+ C6 (3.14)

Here, the coordinates are named according to common practice in road bound path
planning, where the longitudinal coordinate, s is taken along the road and named station
while the lateral, l is taken to be perpendicular to the latter and named latitude.

However, there are other important aspects besides the lateral jerk that needs to be ac-
counted for. Ideally any trajectory generator should be able to guarantee that the states
are kept within certain levels, most importantly this regards acceleration and position.
Unfortunately, there are some difficulties associated with this that reduces the efficiency
of the overall approach. When imposed, the inclusion of constraints in general implies
that the optimal control problem lacks analytical solution. As an alternative, a numer-
ical method to guarantee bounded acceleration has therefore been implemented that
posteriorly modifies the unrestricted solution. In short, the used algorithm iteratively
adjusts the final time tf until the maximum acceleration in Equation 3.4 are confined
to lie within some limited bound, i.e. |x3(t)| ≤ amax ∀t and some amax > 0. Further
motivation and detailed descriptions of this procedure is found in Appendix B.2
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Figure 3.8: State Evolution for a typical lane change manoeuvre. Computed with x10 =
0, x20 = 0, x30 = 0, x1f = 4, x2f = 0, x3f and tf = 6

3.2.2 Definition of Trajectory Endpoints

Lateral Direction The selection system presented in 3.4 functions on a set of tra-
jectories generated from the current position to different endpoints (xf ,yf ). From 3.2
it is seen that yt can, and need to be, specified explicitly, as it constitutes one of the
boundary conditions in the trajectory generation. One of the design choices is thereby
where in the lateral coordinates these are placed. Due to common practice in highway
driving and safety, the lane centres on the current road are always taken as possible
targets. Similarly to what is proposed in [14], additional targets at equally spaced dis-
tances from all lane centres are added, allowing the vehicle to perform swerves around
partially obscuring obstacles. The latter is useful when larger vehicles are passed and
an increased safety margin is desired. The lateral endpoints including both centre and
swerve positions is exemplified in Figure 3.9. The remaining boundary conditions needed
for the trajectory generator in 3.2, i.e. those on speed and acceleration are set to be
stationary at all endpoints. Initial conditions are taken to be the currently retrieved
state estimates given from sensor readings.

Figure 3.9: Visualization of trajectory with center (bold) and swerve (thin) endpoints in
the lateral direction.
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Longitudinal Direction The usage of the built in ACC makes the endpoint placement
in the longitudinal direction more complicated, as the trajectory in this direction is given
through simulation using the already computed lateral motion. The only possibility
for controlling the longitudinal motion is therefore through the boundary conditions of
the lateral, i.e through tf and yf . In principle, iterative schemes where tf is adjusted
to achieve a certain xf are plausible for most road scenarios, but in general comes
with serious disadvantages. Firstly, an extensive need for simulation arises whereby the
computational expense might grow significantly. Secondly, the maximum acceleration
during a manoeuvre can no longer be guaranteed to remain within specified bounds,
as it will increase with decreasing tf . Besides, it has been noted for example [20] that
targets in the longitudinal direction lacks any real significance during regular highway
operations, and is meaningful solely in preparation for exits or turns. For these reasons,
explicit definitions of xf are avoided and the position is retrieved implicitly by demanding
that alat ≤ amax. In detail the procedure is summarized as:

1. Specify the boundary conditions of the lateral trajectory, i.e. the values of y(0),
y(tf ),
vlat(0), vlat(tf ), alat(0), alat(tf ).

2. Use Algorithm 5 from Appendix B to retrieve the final time tf so that |alat(t)| ≤
amax ∀t ∈ (0,tf )

3. Simulate the Obstacles and vehicle with ACC using the models presented in 3.4.3
starting from the current state, i.e. (x,y) position, velocity and acceleration, as it
traverses the computed lateral trajectory

4. Return the simulated x(tf ) as xf .

In practice some additional details are included. Firstly, there is limited gain in planning
beyond sensor (e.g. radar, camera) range as the simulations rapidly loses validity over
the prediction horizon. Due to this, any trajectories where xf lies beyond this point are
truncated. It should be noted that this affects the significance of the comparative mea-
sure Terminal Longitudinal Velocity as the terminal velocity of all trajectories thereby
are restricted. Secondly, as some lateral movements can be very small, and therefore
lead to short prediction horizons, a limit is imposed so that

tf =

tAf , if tAf > tlimf

tlimf , otherwise

where tAf denotes the final time resulting from execution of Algorithm 5 in Appendix
B.2. Similar to the previous point, this is motivated by the need to restrict the range of
values used in the Terminal Longitudinal Velocity comparison.
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3.2.3 Adaptation to road geometry

The trajectories generated with the method described above are essentially one dimen-
sional, i.e. they only describe the lateral motion with respect to a fixed coordinate
system, decoupling the longitudinal motion. This means that the trajectories needs the
presence of a reference line along the direction of the road to make any sense. Due to this
there is no possibility for this approach to handle more unstructured scenarios like the
zone operation mentioned in 2.3.2. For on-line planning the sensory system of the vehicle
consequently must provide the planner with information about the road geometry up to
some distance ahead of the current position, including curvature. Following the work
done in [17] and [14] the proposed planner executes the paths in a moving coordinate
system known as the Frenet frame. Here, the vectors spanning R2 are formed from the
tangent and normal of the curve describing the road geometry, giving the possibility to
form the position in some fixed coordinate system as

x = r(s) + d(s)n(s)

where x(s) is the position in some fixed (x,y)-coordinate system, s the arclength from
some start position, r(s) the vector following the reference curve, n(s) the normal vector
of said curve and d(s) the planned lateral distance, see Figure 3.10 for further details.

Figure 3.10: Relationship between dynamic and static coordinate systems.

In this way, a path planned in the (s,l) coordinate system is easily ”wrapped” around
any given reference curve by equating the arclength with the station coordinate, and the
normal distance d(s) to the latitude coordinate. A schematic view of this is presented
in Figure 3.11

A final issue to note is that the point mass model of the vehicle dynamics fails for obvious
reasons to describe the orientation of the vehicle. In accordance with the work done by
Werling et. al. [17] this is however neglected with the motivation that given sufficiently
high speeds, the deviation between the vehicle and road direction will remain small, even
during manoeuvres, if only regular road bound operation is considered. Note that the
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Figure 3.11: Left: Planned trajectory in the (s,l) coordinate system. Right: Planned
trajectory wrapped around a reference curve.

reference curve, i.e. the representation of the road must be parametrized by arclength
for this to work naturally

3.3 Trajectory Generation for Turning Manoeuvres

Contrary to regular road bound operation there is significantly less structure to be
used in the planning of turns, making it in nature more similar to the complex Zone
Operation mentioned in 2.3.2. Luckily however, the planing horizon is usually short,
spanning only from the start point of a turn to its corresponding end which means that
complex manoeuvres such as those performed while parking can be avoided. Further the
longitudinal velocity is normally either held constant or varies slowly, which provides
additional relaxation. Where the road bound scenarios essentially admitted separate
solutions for longitudinal and lateral motion, the general turning scenario permits no
such simplification. The inability to access reliable existing motion references similar to
the lane markings or road edges on a normal road instead forces any algorithm tasked
with the problem to find a solution including at least the two spatial coordinates and
direction, making the problem three dimensional (or higher) as opposed to the one
dimensional formulation in 3.2, sufficient in the highway case. This fact alone implies
a significantly increased problem complexity and natural difficulty to synthesise simple
analytic solutions. This section presents the means by which these three dimensional
trajectories can be generated efficiently using parametric optimal control and numerical
techniques.

3.3.1 Derivation of Optimal Trajectory

The method chosen is based on the work done by McNaughton [21] and that by Kelly
and Nagy [3] but includes some simplifications and developments. Modelling the vehicle
as a ”Soap Box Car” the equations of motion can with the notation of Figure 3.12 be
formulated as
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Figure 3.12: Simplified model of vehicle kinematics

ẋ(t) = v(t)cos(ϕ(t))

ẏ(t) = v(t)sin(ϕ(t))

ϕ̇(t) = v(t)κ(t)

(3.15)

Noting that the three equations in 3.15 are linear in the longitudinal velocity and defining
an arc length parameter s, it is possible to divide them all with v(t) = ds/dt and re-
parametrize according to

dx
ds = cos(ϕ(s))
dy
ds = sin(ϕ(s))
dϕ
ds = κ(s)

(3.16)

Giving the equations for the states (x,y,ϕ) at some final length sf as

x(s) = x0 +
∫ s
0 cos(ϕ(ŝ))dŝ

y(s) = y0 +
∫ s
0 sin(ϕ(ŝ))dŝ

ϕ(s) = ϕ0 +
∫ s
0 κ(ŝ)dŝ

(3.17)

Due to the couplings between the spatial coordinates and the heading this system can
in the general case not be solved in closed form, which necessitates use of numerical
techniques. For the purpose of trajectory generation a control function κ(s) is now
sought after taking the system from an initial state (x0,y0,ϕ0,κ0) to a destination state
(x1,y1,ϕ1,κ1), possibly while optimizing some measure L(x(s),y(s),ϕ(s),κ(s)) over the
in-between trajectory. Formally this can then be written using Equations 3.17 and 3.16
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as

min
κ(s),sf

∫ sf

0
L(x(s),y(s),ϕ(s),κ(s))ds

s.t.
dx

ds
= cos(ϕ(s))

dy

ds
= sin(ϕ(s))

dϕ

ds
= κ(s)

x(0) = x0, x(sf ) = x1

y(0) = y0, y(sf ) = y1

ϕ(0) = ϕ0 ϕ(sf ) = ϕ1

κ(0) = κ0 κ(sf ) = κ1

(3.18)

The general problem, as presented above, is however not directly solvable, since its is
searched for directly in the space of all possible functions κ(s). A common remedy for
problems of this type is to assume some parametrized form of the control function and
perform the search in the corresponding parameter space. Kelly and Nagy [3] notes
that a certain form, by them named polynomial spirals, is especially suited for the
task of solving problems of the type presented in Equation 3.18. They show that their
proposition has the representative power to cover most situation arising in a limited
horizon path planning context. Specifically, these functions are polynomials in arclength
of arbitrary order giving a curvature function for Equation 3.16 on the form

κ(s) = a+ bs+ cs2 + ds3 + es4 + . . .

Following this approach, the prescribed form limits the search space to that of the
polynomial coefficients and the terminal arclength sf , reducing the infinite dimensional
optimization problem to a finite n + 1-dimensional one, where n is the order of the
polynomial. Collecting the polynomial parameters in the vector p = [a,b,c,...] Equation
3.18 can be restated as

min
p,sf

∫ sf

0
L(p,s)ds

s.t.
dx

ds
= f(p,s)

x(p,0) = x0, x(p,sf ) = x1

y(p,0) = y0, y(p,sf ) = y1

ϕ(p,0) = ϕ0 ϕ(p,sf ) = ϕ1

κ(p,0) = κ0 κ(p, sf ) = κ1

(3.19)

Here, the system dynamics as stated in Equation 3.16 has been collected in dx/ds =
f(p,s) with the state layout x = [x,y,ϕ]. Though simplified, the problem presented in
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Equation 3.19 is still problematic. However, by placing the coordinate system at the
desired startpoint and aligning the abscissa with the initial heading, further reduction
is possible and the problem can be written

min
p,sf

∫ sf

0
L(p)ds

s.t.
dx

ds
= f(p,s)

x(q) = x1 − x0, y(q) = y1 − y0
κ(p,0) = κ0 κ(p,sf ) = κ1

ϕ(q) = ϕ1 − ϕ0

(3.20)

Furthermore, as the control function is available in explicit form the integration of the
system dynamics, i.e. Equation 3.17, is decoupled whereby they can be substituted into
the cost and boundary conditions and the problem rewritten

min
p,sf

∫ sf

0
L̂(p,s)ds

s.t.

∫ sf

0
cos(ϕ(p,s))ds− x1 + x0 = 0∫ sf

0
sin(ϕ(p,s))ds− y1 + y0 = 0

κ(p,0)− κ0 = 0

κ(p,sf )− κ1 = 0

ϕ(p,sf )− ϕ1 + ϕ0 = 0

(3.21)

As an additional consequence of the assumed control function form, the boundary con-
ditions on curvature κ(s) and heading ϕ(s) are linear in the polynomial coefficients,
i.e.

κ(p,0) = a = κ0

κ(p,sf ) = a+ bsf + cs2f + ds3f + . . . = κ1

ϕ(p,sf ) = asf +
1

2
bs2f +

1

3
cs3f +

1

4
ds4f + . . . = ϕ1 − ϕ0

(3.22)

By solving these equations for the coefficients a,b,c and substituting the result back into
Equation 3.21 allows a removal of the constraints on heading and curvature from the
problem. Further, the problem dimensionality is reduced as the coefficients a,b and c
now is completely dependent on the remaining parameters sf ,d,e,f,... and the boundary
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conditions κ0, κ1 and ϕ1. Letting p̂ = [d, e, . . .] and with

g1(p̂,sf ) =

∫ sf

0
cos(ϕ(p̂,sf ,s))ds− x1 + x0

g2(p̂,sf ) =

∫ sf

0
sin(ϕ(p̂,sf ,s))ds− y1 + y0

(3.23)

the final, reduced, problem can then be written

min
p̂,sf

J(p̂,sf ) =

∫ sf

0
L̂(p̂,sf ,s)ds

s.t. g1(p̂,sf ) = 0

g2(p̂,sf ) = 0

(3.24)

3.3.2 Numerical Considerations

It is stressed that the integrals in g1(p̂,sf ) and g2(p̂,sf ) cannot be solved analytically
since they are of the generalized Fresnel type. Consequently, numerical integration is
required. The method of choice for this particular problem is the Composite Simpson
Quadrature rule due to its lightweight and performance on relatively smooth integrands.
No detailed description on how this method operates is given here, but the interested
reader finds a short description in Appendix D.4. As a general consequence, solutions to
the optimization problem can only be found through a numerical optimization algorithm.

A final note is that the problem presented in Equation 3.24 in general is numerically
ill behaved, as its decision variables (independent polynomial coefficients, d,e, . . . and
terminal arclength sf ) typically differs several orders of magnitude in size. Consider as
an example the variables d and sf , which in the normal cases is in the order of 10−6 and
102 respectively. Given that higher order terms, i.e. e,f . . ., will be even smaller it is
quite clear that numerical issues potentially can arise. Following [3] and [21] a variable
scaling is therefore performed to bring all decision variables closer in order and thereby
improve the convergence and stability properties of the problem. Having essentially no
impact on how the solution is obtained, the details of the scaling procedure is omitted
here but can be found in Appendix D.3.

3.3.3 Finding a feasible solution

For the task of finding a solution simply satisfying the constraint equations, the objective
in Equation 3.24 is ignored and the problem is reduced to a system of two non linear
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equations, i.e.
g1(p̂,sf ) = 0

g2(p̂,sf ) = 0
(3.25)

where g1(p̂,sf ) and g2(p̂,sf ) are defined according to Equation 3.23. Noting that this
requires two independent parameters to be uniquely solvable and emphasizing that sf
is included as a decision variable, the necessary control function takes to the form of a
fourth order polynomial, i.e.

κ(s) = a+ bs+ cs2 + ds3 (3.26)

where then a,b and c are dependent on d and sf through the linear system in Equation
3.22. Consequently, p̂ = d. By making the substitutions, the assumed control function
can be written as

κ(d,sf ,s) = κ0 +

(
12(ϕ1 − ϕ0)− 4(2κ0 + κ1)sf + ds4f

2s2f

)
s

− 3

(
4(ϕ1 − ϕ0)− 2(κ0 + κ1)sf + ds4f

2s3f

)
s2 + ds3

(3.27)

It should be noted here that this parametrisation differs from what is presented in [21]
and [3], where the same problem (unnecessarily) is solved for three equations and three
variables. The results is essentially the same however, with the attractive difference that
the formulation presented here admits both easy visualisation and reduced computation.

Defining the squared residual of the two expressions in Equation 3.25 as

r(d,sf ) =
1

2

(
g1(d,sf )2 + g2(d,sf )2

)
(3.28)

the non-linear system can be reformulated to the equivalent minimization problem

min
(d ,sf )

r(d,sf ) (3.29)

Here, all (d,sf ) such that r(d,sf ) = 0 also constitutes solutions to Equation 3.24. To
solve this problem in an online setting, the Levenberg-Marquardt (LM) Algorithm, as
presented in [22], is implemented, motivated mainly by its frequent use in multidimen-
sional root finding. Further details regarding the LM Algorithm will not be given here,
but a description including a step-by-step presentation of the implementation is given in
Appendix D.1.

In principle, solutions to Equation 3.29 exists that allows reversed motion, corresponding
to sf < 0. Assuming that all turns are made in the forward direction these are highly
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undesirable due to which the problem is augmented by adding the requirement sf ≥√
(x1 − x0)2 + (y1 − y0)2. That is, it is required that the total length is greater than the

euclidean distance to the target. Formally, the constraint inclusion is included according
to

min
(d ,sf )

r(d,sf )

s.t. sf ≥
√

(x1 − x0)2 + (y1 − y0)2
(3.30)

To handle the introduced inequality, the standard LM-algorithm is augmented with a
projection component, where the current iterate is projected back on the feasible set
if it is placed outside by the step in the previous iteration. Descriptions around the
implementation is presented in Appendix D.2.

It is stressed that the optimization problem in Equation 3.29 is dependent on the bound-
ary conditions x0,x1,y0,y1,θ0,θ1,κ0 and κ1 through Equations 3.23 and 3.27. Conse-
quently, different boundary conditions gives different solutions in d and sf as the opti-
mization landscape is changed. A visualization of the dependence is given in Figure 3.13
where the squared residual is drawn for two different sets of boundary conditions. Note
especially the placement of the large basin as it shifts from left to right.

(a) (b)

Figure 3.13: Exemplification of optimization landscapes of Equation 3.29. Dark blue
and red colors shows low and high values of r(d,sf ) respectively, with in between hues
representing intermediate numbers. Note that the numerical values of d and sf are scaled
according to the method described in Appendix D.3. (a) Shows the landscape for x0 = y0 =
θ0 = κ0 = κ1 = 0, θ1 = 120◦, x1 = 15 and y1 = 10, while (b) shows x0 = y0 = θ0 = κ1 =
0, θ1 = 0◦,κ0 = 0.2, x1 = 5 and y1 = 5
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3.3.3.1 Generating the Initial Guess

The Levenberg-Marquardt algorithm is like most other efficient optimization algorithms
local in nature. In problems like Equation 3.29 it is therefore not only important to
initialize the solver close to a minima, but to the right minima, to ensure desired results.
For sake of clarity it is emphasized that all minima where r(d,sf ) = 0 corresponds
to parameter combinations for which the spatial boundary conditions are fulfilled, i.e.
where the vehicle reaches its desired pose, and represents different ways of achieving
this. Figure 3.14 gives examples of paths resulting from two different minima. For both
paths shown r(d,sf ) = 0 and the boundary conditions are satisfied exactly.

36



CHAPTER 3. PROPOSED PLANNING SYSTEM

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

5

6

Global X Coordinate [m]

G
lo

ba
l Y

 C
oo

rd
in

at
e 

[m
]

(a)

0 2 4 6 8
−1

0

1

2

3

4

5

6

7

8

Global X Coordinate [m]

G
lo

ba
l Y

 C
oo

rd
in

at
e 

[m
]

(b)

(c) (d)

Figure 3.14: Illustration of paths resulting from different Minima of Equation 3.29 using
the boundary conditions κ1 = κ0 = x0 = y0 = ϕ0 = 0, ϕ1 = 90◦, x1 = y1 = 5.(a) A shows
the path from the correct minima. The position of this minima in the r(d,sf ) landscape is
marked with a red dot in (b). Similarly, the trajectory resulting from another minima is
given in (b) and its corresponding position in the r(d,sf ) landscape is shown in (d). Note
that both satisfies the boundary conditions.

Kelly and Nagy [3], even though utilizing a slightly different formulation than that
presented above, proposes a simple heuristic for generating the starting point of the
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numerical optimization. In their work, the equivalents of the free parameter d are set to
0 and the scaled final arc length is defined as a function of the boundary condition ϕ1

and initialized to
sfs = ϕ2

1/5 + 1 (3.31)

The authors derives this from solutions over a wide envelope, i.e. range, of boundary
conditions with some exhaustive search method, followed by ”eyeballing”. From this sim-
ple relationship they claim extremely good performance results in terms of computation,
with execution times well under one millisecond on a, by today’s standard, slow desktop
computer. Even though the simplicity indeed is appealing it has been found that the
quality of initial guesses produced this way affects the performance severely, and that
their results hardly is reproducible. This applies even when more robust algorithms, like
those included in MATLAB’s optimization package are used together with precise nu-
merical integration. For a wide scope of initial conditions the algorithm fails to converge,
for others it either converges to the wrong minima or requires an unacceptable amount
of iterations. As an alternative, the usage of lookup tables is mentioned in [3], where
the sought after minima could be found and stored off-line for a number of boundary
conditions and the initial guess for in-between values retrieved online through some sort
of interpolation. Although not tested, the risk of exploding storage requirements might
present a problem for implementation on industrial real time computers, in particular if
more than the two parameters (d,sf ) are used and a high resolution is required.

To remedy the accuracy problems and to prevent increased resource consumption an
alternative approach is taken, intended to capture the lightweight of the simple heuristic
and the performance of a finely grained lookup table. The main idea is to find a function
from the boundary condition to the vicinity of the correct minima, by which the iterations
needed by the optimization algorithm decreases and its robustness increases. Rewriting
the system in Equation 3.25 as functions of both the parameters q = [d sf ] and boundary
conditions b = [ κ0, κ1, x0, x1, y0, y1, ϕ0, ϕ1], all minima, i.e. paths between initial
and terminal pose, satisfies

g(b,q) = [g1(b,q), g2(b,q)] = 0 (3.32)

Letting F (b) = q be the implicit, multivalued function1 defined by the constraint sat-
isfaction, i.e. F (b) = q | g(b,q) = 0, that maps a set of boundary conditions b to all
minimizing q of that particular configuration. By this each branch F x(b) of F (b) is is
such that F x(b) : R8 7→ R2. Letting F ∗(b) be the principal branch of F (b), and defining
it as the map from the boundary conditions to the correct minimum, which is taken as
the one with smallest sf out of all solutions where sf ≥

√
(x1 − x0)2 + (y1 − y0)2. A

schematic illustration of the definitions of F ∗(b) and F (b) is given in Figure 3.15

1The term multivalued function is somewhat of a abuse of notation since it by definition does not
satisfy the uniqueness criteria of a proper function. By convention, the term is used to denote functions
that maps one input to several outputs, c.f. the square root of x
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(a) (b)

Figure 3.15: Illustration of the definitions of F (b) (a) and F ∗(b) (b). The gray areas rep-
resent the sets of boundary conditions and corresponding minima, the red dots the undesired
minima and the green dot the desired minimum

For obvious reasons F ∗(b) cannot be specified analytically, but would if available be
the solution to Equation 3.25. Knowing this, an approximation of F ∗(b) within some
tolerance would form a perfect replacement for the presented simple heuristic.

The Universal Approximation Theorem (UAT) states that there exists constants n, bi, wij , αi
where i = 1...n and j = 1...m, such that all functions G ∈ C1 on the hypercube [0,1]m

can be approximated by a structure on the following form

Ĝ(x1,...,xm) =
n∑
i=1

αig

bi +
m∑
j=1

wijxj

 (3.33)

so that
|G(x1,...,xm)− Ĝ(x1,...,xm)| < ε (3.34)

for all ε > 0, given that the function g(x) is bounded, non-constant and monotonically
increasing. For sake of clarity it should be noted that it is trivial to find an affine mapping
from any bounded part of the domain of G to [0,1]m, and that use of such transformations
implies that the theorem then holds only for some subset of that domain. Further details
or proofs regarding this results are not given here but can be found in for example [23].

Single layer Feed Forward Neural Networks (FFNN) with sigmoidal activation functions
is a framework which has been shown to realize this, and is therefore well suited to
approximate F ∗, given an adequate number of neurons and trained with, i.e. has had
the parameters bi, wij and αi adjusted, a large enough and a sufficiently rich data set.
The process is essentially that of fitting a non linear function to the given data. As
with other techniques, extrapolations too far outside the original data set suffers the
risk of being inaccurate and the FFNN will therefore, at best, only be able to provide
adequate approximations over some subset of F ∗’s domain. Fortunately, this is enough
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since the interesting cases, i.e. different versions of normal turning, restricts the envelope
of boundary conditions considered greatly.

The training data is generated by solving g(b,q) = 0 for the correct minima over this
envelope and used to adapt the approximation F̂ ∗ if convergence to the correct minima
occurs. The boundary conditions b used are considered inputs in the adaptation process
and the outputs in (d,sf ) targets, schematically illustrated in Figure 3.16.

Figure 3.16: Schematic illustration of the adaptation (training) of the approximate func-
tion F̂ ∗. The Solver block contains a robust, off-line optimization procedure.

The UAT is an existence theorem and does not state anything on how the parameters of
the approximation are to be retrieved. Based on adaptation using a finite data set, the
FFNN will therefore be trained on a collection of nearby elements in the subset where
the approximation is sought after. Although evaluations of the retrieved approximation
outside the dataset used for adaptation can be coupled with poor performance, the
benefit of using FFNN, or any other fitting technique for that matter, is its ability to
generalize somewhat on the data given. This means that the approximation will, within
some tolerance level, hold in a vicinity of the training data, allowing the resulting function
to perform adequately for input data different than that with which it was trained. In
essence, this makes it possible to capture the behaviour of the unknown function over
a certain range by adapting the approximation with a finite collection of input-output
pairs, as visualized schematically in Figure 3.17
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(a) (b)

Figure 3.17: Schematic illustration of the generalization process. (a) The unknown func-
tion is evaluated at a number of points which with the retrieved results form the basis for
training F̂ ∗ .(b) The resulting approximation holds within some accuracy for a wider set of
inputs.

Based on this, the main idea is the following: An initial data set for training of the
network is generated using the successful results of some robust optimization method
with highly accurate numerical integration for a given envelope of initial conditions.
For this first data set the simple heuristic proposed in [3] is used to provide the initial
guess, and convergence will in general occur if this places it in the basin of attraction
of the correct minima. When a certain number of points successfully have been added
to the dataset, it is used to train a FFNN. With the ability to generalize, the resulting
approximation of F ∗ now gives outputs that ends up in the attractive region to a larger
extent of than the simple heuristic. After this, the process is iterated repeatedly with
the previously trained Neural Network as provider of initial guesses. Given that the
network is able to generalize somewhat in each iteration, the subset of the domain where
the network approximates F ∗ good enough will increase with each step thus leading to
a higher success rate of the optimization procedure in the next iteration, as illustrated
in Figure 3.18
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(a) (b) (c) (d)

Figure 3.18: Illustration of the performance of the iterated fitting proposed. The set
boundary condition envelope, A is shown as a black bordered white circle. Its subset that
sing the currently avaliable starting point provider leads to correct convergence is shown in
dark grey, whereas the improvement that is visible in the next iteration is represented by
the light gray regions. In (a) the result of a poorly chosen starting point is visualized that
is augmented after the first iteration (b). As the procedure is repeated in (c) and (d) the
performance is improved due to better and better initial guesses

All of this is of course time consuming and therefore done off-line. The result however,
is a lightweight function that within specified bounds, i.e. those of the envelope used
in training, returns a highly accurate initial guess giving the lightweight optimization
procedure described in 3.3.3 the possibility to safely reach its target in a very low number
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of iterations. The procedure of generating this function is detailed in Algorithm 1.

Data: Envelope of boundary conditions E, number of boundary condition
combinations to use nB

Result: Function fI(B approximating the mapping between the boundary
condition B and the correct minima qm

fI(B)← @(B) SimpleHeuristic(B) ;
while Success rate r < rlim do

SB ← GenerateSetOfBoundaryConditions(E,nB) ;
Inputs← ∅ ;
Targets← ∅;
nsucceeded ← 0;
foreach B ∈ SB do

q0 ← fI(B);
qm ← RobustOptimization(q0,B);
if optimization succeeded and correct minima is found then

Inputs← AddBoundaryConditionToInputs(B,Inputs);
Targets← AddMinimaToTargets(qm, Targets);
nsucceeded ← nsucceeded + 1

end

end
Net(B)← @(B) TrainNetwork(Inputs,Targets);
fI(B)← Net(B) ;
r ← GetSuccessRate(nsucceeded,nB);

end
return fI(B)

Algorithm 1: Algorithm for generating the Neural Network function that provides
initial guesses to the optimization problem in Equation 3.30. Note that the func-
tions specified with a leading @ are function handles, and the assignments are to
be read as those valid for such. The method GenerateSetOfBoundaryCondi-
tions(E,nB) generates a set of nB selected from the envelope E while AddBound-
aryConditionToInputs(B,Inputs) and AddMinimaToTargets(qm, Targets)
simply adds a element to the collections Inputs and Targets respectively. The net-
works are built and trained in TrainNetwork(Inputs,Targets) using MATLAB’s
Neural Network toolbox which includes pre- and post processing of the inputs and
outputs respectively.

The structure used is a singled layered perceptron network with hypertangent and linear
activation functions in the hidden and output layers respectively. The necessary parame-
ters, weights biases etc., are easily retrieved from the resulting MATLAB neural network
object for standalone implementation when the algorithm has completed. Given that
space here is limited a detailed exact descriptions of Neural Networks will not be given,
the reader is instead referred to any text book covering the topic, for instance [23].
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3.3.4 Introducing Optimality

Since the solution method presented in the previous section only admits solutions to the
basic problem of finding a path between two points in a three dimensional configuration
space it cannot give any statements on its optimality, regardless on how it is metered.
With the proposed parametrization the solutions to the system in Equation 3.25 are a
collection of intersection points between two dimensional curves, whereby any internal
ranking by necessity is discrete. Drawing from the experiences gained in 3.3.3.1 it can be
assumed that most of these correspond to unnatural and undesired motions, essentially
leaving one feasible option. To render the merely resulting trajectories optimal in some
sense, more freedom in the assumed control function is needed. Where the feasible case
contained two independent variables for determination of the polynomial coefficients in
Equation 3.26, the introduction of additional coefficients neatly accomplishes this feat.
Using the three independent variable case to exemplify, the control function is then
defined as

κ(s) = a+ bs+ cs2 + ds3 + es4 (3.35)

As in Equation 3.27 the boundary conditions linear in the coefficients are included using
Equation 3.22 which gives that the independent parameters are (d,e,sf ). The problem
now obviously lacks a unique solution, as it is comprised of two equations with three
independents. The two relations in Equation 3.25, which in the two variable case could
be interpreted as curves on the plane and their intersections as points, can now be viewed
as surfaces in (d,e,sf ) and their intersection as three dimensional curve segments. Due
to this, an infinite number of combinations along the intersection curves now satisfies the
spatial boundary conditions, and a specific selection can be based on a given optimality
criteria. In higher dimensions, i.e. using more free parameters, analogue reasoning
extends the concept to hyper surfaces.

3.3.4.1 Solution including a cost Functional

Considering the problem stated in Equation 3.24 with g(p̂,sf ) = [g1(p̂,sf ), g2(p̂,sf )],
and defining its Hamiltonian as

H(p̂,sf ) = J(p̂,sf ) + µ>g(p̂,sf ) (3.36)

By letting q = [p̂, sf ]The first order optimality conditions, i.e. Karush-Kuhn-Tucker
(KKT) conditions, then states that

∂H

∂q
=

∂J(q)

∂q
+ µ>

∂g

∂q
= 0 (3.37)

∂H

∂µ
= g(q) = 0 (3.38)

must be fulfilled at any extreme point of the constrained problem [22]. The µ here denotes
the Lagrange multipliers, and µ ≥ 0 has to hold at an optimal point. As demonstrated by

44



CHAPTER 3. PROPOSED PLANNING SYSTEM

Kelly and Nagy [3] the decision variables q and multipliers µ can be solved for directly
through 3.37 and 3.38 using using the same multidimensional root finding techniques
introduced in 3.3.3. As noted in Appendix D.1, the underlying Levenberg Marquardt
Algorithm is based on repeated linearisation around the current iterate, in this case
momentary values of q and µ. The linearization of the KKT conditions in Equations
3.37 and 3.38 around (q,µ) is expressed as

∂H

∂q

∣∣∣∣
q+∆q,µ+∆µ

≈∂H
∂q

∣∣∣∣
q,µ

+
∂2H

∂q2

∣∣∣∣
q,µ

∆q + ∆µ>
∂2H

∂µ∂q

∣∣∣∣
q,µ

=
∂H

∂q

∣∣∣∣
q,µ

+
∂2H

∂q2

∣∣∣∣
q,µ

∆q + ∆µ>
∂g

∂q

∣∣∣∣
q

= 0

(3.39)

∂H

∂µ

∣∣∣∣
q+∆q,µ+∆µ

≈∂H
∂µ

∣∣∣∣
q,µ

+
∂2H

∂µ∂q

∣∣∣∣
q,µ

∆q + ∆µ>
∂2H

∂µ2

∣∣∣∣
q,µ

=g(q) +
∂g

∂q

∣∣∣∣
q

∆q = 0

(3.40)

with the Hamiltonian Hessian according to

∂2H

∂q2

∣∣∣∣
q,µ

=
∂2J

∂q2

∣∣∣∣
q

+ µ1
∂2g1
∂q2

∣∣∣∣
q

+ µ2
∂2g2
∂q2

∣∣∣∣
q

(3.41)

Transposing Equation 3.39 allows a compound matrix equation to be defined, capturing
both relationships 

∂2H
∂q2

∣∣∣∣
q,µ

(
∂g
∂q

∣∣∣∣
q

)>
∂g
∂q

∣∣∣∣
q

0


[
∆q

∆µ

]
=

−∂H
∂q

∣∣∣∣
q,µ

−g(q)

 (3.42)

Denoting the left hand side matrix A and its right hand counterpart B, the Levenberg
Marquardt Algorithm is applied based on[

∆q

∆µ

]
=
(
A>A+ λI

)−1
B (3.43)

λ > 0 is an algorithmic parameter that is further explained in Appendix D.1. It should
be noted here that a procedure like the one presented here is analogous to performing
a sequential quadratic program on the equality constrained minimization of the squared
residual r(q).
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3.3.4.2 Initial Guess

In essence Algorithm 6 of Appendix D.1 is applied as it is, with the main difference to
the merely feasible case being the method with which the initial guesses are generated.
Although a similar neural network based approach is possible, it is by necessity bound
to specific cost functions J(q) and thereby somewhat inflexible, due to which it has
been avoided. In further accordance with [3], the initial values of the introduced free
parameters are instead set to zero and the (d,sf ) are initiated as the solution to the
basic problem as calculated for the same boundary conditions. Using these values, the
multipliers µ at the zero’th iterate are found approximately by a least squares solution
of Equation 3.37, that is, as

µ = −
(
∂g

∂q

)† ∂J(q)

∂q
(3.44)

where † denotes the left pseudo inverse, i.e. M † = (M>M)−1M>. Geometrically the pro-
cedure then starts from a feasible point in the (d,sf ,0,0,...) cross section of (d,sf ,e,f,...)
space from which it moves out in vicinity of the hypersurface formed by the intersec-
tion of g1(q) = 0 and g2(q) = 0. As such, its necessarily prone to converge to the
closest minima, meaning that others indeed might exist. It is however unlikely that the
global minima is found from starting points other than the one found through the basic
solution, since the general shape is preserved between the basic and optimized case. Re-
examination of Figure 3.14(b) illustrates the ”knots” that appear at all other solutions
to the basic problem, which regardless of the choice of J(q) is highly undesirable. By
this, convergence to nearby minima will at least guarantee that the retrieved trajectory
is better than that given from the basic case, although it cannot state any guarantees
on global optimality.

3.3.4.3 Lateral Acceleration in the Cost Functional

Even though a multitude of of cost measures are plausible, only one is examined due to
the limited space in this thesis. Following the simple model presented in Equation 3.16,
the lateral acceleration is formed as

alat = v2lonκ

where vlon is the longitudinal velocity. Holding this constant over the trajectory, a
measure can then be formed as

J =

∫ sf

0
a2lat(s)ds = v4lon

∫ sf

0
κ2(s)ds (3.45)

by which the longitudinal velocity can be dropped completely. Trajectories minimizing
this measure should as a consequence be performed somewhat more nicely, with less
curvature.

46



CHAPTER 3. PROPOSED PLANNING SYSTEM

It should be noted that this choice is somewhat arbitrary and is only meant to demon-
strate the usage of cost functionals. In particular, costs that does not demand use of
numerical integration are highly desirable. Firstly, overall complexity is reduced, sec-
ondly J and its relevant derivatives then has an analytical form. In the parametrization
used here, this equates to solely using the heading and its derivatives either standalone
or combined, without involvement of the position states.

3.4 Trajectory Selection

In this section, the subsystem responsible for selection between the generated trajectories
is detailed. Firstly, the environment is predicted, described in 3.4.3, secondly each
tentative trajectory is evaluated using the prediction and associated with a score, and
lastly the best trajectory is selected and passed on for execution.

The problem in Equation 3.1 which the planner is intended to approximate, is originally
posed as a minimization. However, the selection is for implementation reasons reformu-
lated as the maximisation of an objective, i.e. score. Given the adequate invertation of
J , the reformulated problem is of course equivalent to a minimization approximation of
Equation 3.1. The notion of cost is somewhat misleading in the maximization context,
is therefore replaced with the more suiting term utility. Consequently, Each trajectory
is at each time instant associated with a utility value, where the highest scoring is se-
lected and executed. Figure 3.19 exemplifies the development of these values over several
algorithm iterations for a generic overtake scenario.
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Figure 3.19: Development of the utility functions of each tentative trajectory as a function
of time during a simulated overtake scenario. The right hand side legend shows the lateral
position of the trajectory endpoints, which is kept constant over time. Trajectory switches
occurs when the utility of a particular trajectory has grown enough to exceed that of the
trajectory that is currently active. For clarity, these instances are marked with dashed lines
and red dots.

3.4.1 Score Attribution

The score value attributed to each trajectory is as stated intended to approximate the
objective J in Equation 3.1. For this purpose, it needs to be constructed so that it
both captures the desired behaviour of the vehicle (c.f. the requirements stated in 1.1)
and enables identification of the best trajectory in the generated set. Following ideas
presented in [16] and [14] the approximate utility Ĵ is taken to be a weighted sum of
parts. Letting l be the number of trajectories to be evaluated, Tm(t) a representation
of trajectory m, where 1,2, . . . ,m, . . . ,l calculated with the information available at time
instance t. Further, using E(t) a representation of the predicted environment and with
n the number of partial utility values, the summation is done according to

Ĵm(t) =

n∑
i=0

fi(Tm(t),E(t))γi (3.46)

Here, the γi’s are positive tunable weights and the fi(Tm(t),E(t))’s functions that each
captures one dimension of the desired behaviour, i.e. its utility. For example, with
0,1, . . . ,j, . . . ,n, fj(Tm(t),E(t)) could be a measure of the proximity to other vehicles,
fj+1 a measure of ride quality, fj+2 the representation of some traffic rule etc. For clarity,
it is stressed that Tm and E are to be read as symbolic representations of the function fi’s
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dependence on the trajectory evaluated and the prediction of the environment. Using
this formulation, changing the weights γi allows a designer to affect the relative impact
of any one behavioural dimension, and thereby the composition and ”preference” of the
resulting Ĵm.

Implementation Considerations To ease tuning, and restrict the numerical range
of Ĵ , the contributing functions are designed so that fj(T,E) ∈ [−1,1]. A positive value
for a fj thus means that some advantageous property is achieved along the dimension
while a negative implies adverse impact. The functions used in the implementation of
the selection system are briefly listed in Table 3.1. However, due to the restricted space
available in this thesis, the construction of the different functions fj are not detailed here.
The interested reader can instead find both motivations and mathematical descriptions
of the functions in Appendix C.

Name Function Description

Jerk fjerk Penalises aggressive manoeuvres.

Maximal Acceleration facc Penalises high peak acceleration.

Deviation from desired lane flane Penalises trajectory endpoints in
non desired lanes.

Deviation from lane center fcenter Penalises trajectory endpoints with
lateral offset to the closes lane cen-
ter.

Terminal longitudinal velocity fvel Premier trajectories with endpoint
velocities close to the ACC set
speed.

Proximity to obstacles fprox Penalises trajectories that at some
point comes close to any obstacle.

Stationarity fstat Premiers completion of commenced
trajectories.

Table 3.1: List of components for the utility function used in the selection process.

3.4.2 Filtering

Although attractive in its simplicity the direct usage of the weighted sum introduced in
Equation 3.46 is coupled with problems. Consider a trajectory index m that at time t
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holds the highest utility value Ĵm(t) among all calculated trajectories. Rapid changes
in utility between two samples, i.e. between Ĵm(t) and Ĵm(t + ∆t), could give that
some other trajectory index k is given the highest utility value and consequently that
its execution is commenced. A problem occurs when, for some reason, the evaluation
at the following sample, i.e. at t+ 2∆t, again gives trajectory m the highest score, and
it consequently is selected and executed. In the worst case, a rapid switching back and
forth between two, often similar trajectories over extended periods of time can occur,
severely reducing the quality and predictability of the planning system. Unfortunately,
some components of the utility value, i.e. the functions listed in Table 3.1 might include
discontinuities having this effect (consider the logical on/off nature of the ACC target
selection). Naturally, the presence of noise would severely worsen the situation, as sensor
readings forms the base of the utility value components. An exemplification of the
phenomenon is given in Figure 3.20 where a simple highway overtake scenario is simulated
with selection based purely on Equation 3.46.
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Figure 3.20: Illustration of the rapid switching between trajectories in a highway overtake
scenario (a) Shows the development of the utility value as introduced in Equation 3.46 over
time for a set of nine trajectories, differentiated visually by color. The currently active one
is taken as that with the highest value. (b) The index of the trajectory currently being
executed is shown. Stationary periods implies that one trajectory is allowed to execute for
an extended period of time. The rapid switching can be seen clearly between times 8-6 s
and 15-17 s, where the system commences and aborts the execution of trajectories 14 and
11 repeatedly.

Similar consideration to exist in other fields where selection based on noisy or discon-
tinuous data is necessary, notably in behaviour selection for mobile robots. To mitigate
the issue, a special low pass filter is commonly introduced. Based on work done in this
context by Wahde [24], the filtered utility gm(t) for the trajectory indexed m is set up
as

ġm(t)τ + gm(t) = tanh(αĴm(t)) (3.47)
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and discretized using Euler integration according to

gm(k + 1) = gm(k) +
(

tanh(αĴm(k))− gm(k)
) ∆t

τ
(3.48)

Here, k denotes the discrete time index while ∆t is the system sampling time. The
hypertangent is introduced to restrict the numerical range of the filtered value so that it
always remains in the interval (−1,1), provided it is initiated inside it. This is done to
reduce the risk of windup like situations. The integration constant τ > 0 will here govern
the sensitivity, or responsiveness of the utility dynamics, where lower values lead to a
more ”nervous” system with rapid reaction to environmental changes. As it is lowered,
the behaviour will more and more tend to a saturated version of Equation 3.46. The
parameter α > 0 affects the range of the input Ĵm(k) over which input variations are
made visible, i.e. where the hyper tangent squashing function does not saturate. Here,
lower values lead to a wider interval, higher to a more narrow. Consequently this also
influences the output range of the utility function it self, however as each trajectory
shares the same parameters it does not affect the relative measure dramatically. A more
thorough discussion with examples and recommendations on appropriate values will be
made in 4.1. Following the same selection principle where the trajectory correspond-
ing to the highest filtered utility value is selected and executed, Figure 3.21 gives an
exemplification of the effect of the filtering.
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Figure 3.21: Demonstration of the filter introduction detailed in this section. The scenario
is the same simple overtake shown in Figure 3.20. However, Equation 3.48 is now used for
selection rather than Equation 3.46. (a) Shows the development of the filtered utility value
while (b) again visualises the index of the executed trajectory. As seen in (a), the initial
values are set to zero for all trajectories.

In addition to reducing the rapid switching, the filter introduces memory to the selection
process, which in many cases are advantageous. As an example, consider travelling with
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an offset to a desired lane, e.g. in the oncoming lane on a country road. Is indeed
acceptable to do this for shorter periods of time during overtakes, but highly undesirable
to remain longer than necessary. The differential form in Equation 3.47 captures this by
effectively allowing the negative and positive influences to ”spool up” over time.

For a comparison on how the differentially formulated selection functions perform in
comparison to the linear, memoryless Equation 3.46 compare Figures 3.20 and 3.21.
Note here that no particular tuning is done regarding the parameters and the behaviour
therefore might differ from that suitable for implementation.

3.4.3 Prediction

As mentioned in the previous sections, a prediction of the obstacle motion over some
horizon is needed to efficiently evaluate and select among the generated trajectories
giving that the longitudinal position and velocity of the host cannot be retrieved directly.
Instead, this has to be the result of simulation based on models of the vehicle and ACC.
The latter generally includes more than one mode of operation differentiating between
unhindered, set speed adaptation and adaptation to some nearby obstacle. A model of
the ACC must therefore by necessity also include modelling of the sensory system on
which it depends as well as its target selection. The latter implies that any trajectory of
the host must be based on those of the predicted obstacles. In real life, the relationship is
of course bi directional as the action taken by any vehicle will affect the decision making
by other road occupants. Due to this, accurate models need not only include hardware
dynamics but additionally also cover driver behaviour. Even though attempts to tackle
some of these problems using various probabilistic techniques indeed has been made [16],
the models rapidly grows in complexity as the richness and cross coupling between the
involved agents is increased. Due to the human involvement, even the best of models
cannot state any guarantees or bounds and are by nature highly approximate. For this
reason a fairly simple model is used in conjunction with the planning system presented in
this thesis. Dependencies are considered one directional, i.e. the actions of the host does
not affect the prediction of the obstacles. Further, a vehicle is assumed to stay at the
same lateral position, i.e. lane, over the entire horizon. Remaining for each obstacle is
thus the prediction of longitudinal position, for which a constant velocity particle model
is used. Formally, the prediction of obstacle i, i = 1,...,|O| is then taken as

xi(τ) = xi(0) + voi(0)τ (3.49)

yi(τ) = yi(0) (3.50)

The notation here is where applicable retained from previous sections and τ ∈ (0,τf )
denotes the prediction time. Arguments set to 0 are meant to be read as the initial value
of the prediction, i.e. the measured values at the current sample.
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The lateral motion of the host vehicle during planned highway manoeuvres is as pre-
sented in 3.2 given by a quintic polynomial p(τ) and its derivatives. For the longitudinal
position, a double integrator is used. By this, the host trajectory is in continuous time
given by

ẋh(τ) = vtj (τ) (3.51)

v̇tj = alon(E,τ) (3.52)

yh(τ) = p(τ) (3.53)

The longitudinal acceleration alon(E,τ) is considered to be the output of the ACC mod-
ule. The latter is due to its hybrid nature modelled as a conditioned state feedback
controller, that is

a(E,τ) =

kx(∆xi −∆xi(∆vi)) + kv∆vi if obstacle i is a target and vi < vs

ks(vs − vtj (τ)), if no target is present or host is leaving lane

(3.54)
where kx, and kv are the feedback gains of the relative distance and velocity to obstacle
i respectively. Similarly, ks is the set speed deviation gain, used when no obstacles are
present. Further, since actuation is limited, the simulated ACC output is saturated so
that

alon(E,τ) = sat(a(E,τ)), sat(x) ∈ (amin, amax)

Target selection and sensor modelling are similarly kept very simple. An obstacle is
considered a target only if it is within some distance R in front of the host and in the
same lane. Should more than one satisfy these criteria, the closest one is selected. It
should be noted that even though the approach presented here is simple, there is in
principle no limit on how detailed the used models could be. Given sufficiently fast
computers, a framework like that presented here could easily be extended with, say, a
bicycle model of vehicle dynamics, prediction of lateral motion etc.
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Results

This chapter contains the main results of the thesis. Simulations from implementations
of the subsystems introduced in Chapter 3 are presented. For highway driving this com-
prises full road scenarios including lane changes, overtakes (double lane change), planned
avoidance and more complex traffic scenarios. Examples are included where the system
is given a high level of autonomy and the general performance and the selection process
are discussed thoroughly for each case. The demand on real time operation using limited
computational resources highlighted in Chapter 1 is addressed and the subsystems per-
formance characteristics are discussed and evaluated. Due to the simplifications made in
modelling, a section on model validation for the highway trajectories is included where
the simple trajectories are compared with those of a detailed model. The trajectories for
turning is examined separately focusing on robustness and computational performance of
the described algorithm. Results from extensive simulations are used to support claims
on robustness. The gains of using an off-line fitted function to generate the optimization
starting point versus the simpler heuristics prosed in literature is treated as well as its
impact on solver choice. Further, arguments are put forward as to why this variation
of the method is superior to the formulations given in the original papers. The optimal
control extension to the problem introduced in 3.3.4 is evaluated for one cost functional,
affecting the resulting trajectories.

4.1 Highway Scenarios

To validate the path planning performance of the Highway system, simulations have been
made for a number of traffic scenarios. In line with the primary goals stated in 1 these
have been centred around lane changes, overtakes, planned avoidance and combinations
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thereof. Due to the intrinsic time dependence of the motion of a vehicle the action taken
by the planner is hard to visualize on static plots, for which reason the simulation results
are given as a sequence of vehicle following snapshots. Given that space is limited, four
scenarios are included to demonstrate different aspect of the system behaviour. Although
limited, the results are easily extendible to the general highway case. The simulation
environment has been written in MATLAB specifically for this purpose.

In all shown scenarios, the arena is a three lane, uni directional road where the coordinate
system is positioned so that the road bound reference coordinate (x, station) follows the
center of the middle lane. The lateral coordinate (y, latitude) is taken negative below
and positive above this line. The width of each lane is set to 6 m whereby the lane totals
at 18. Further, the road is set to be straight during the course of the simulation. In all
shown figures,the tentative trajectories are drawn at each time step and colour-coded
according to a linear relative scale, where green is those considered attractive, e.g. with
higher momentary values of corresponding selection functions, and conversely, red those
deemed unattractive. The presently active one ( i.e. the one coloured bright green)
is at all instances drawn thicker. Other road participants are drawn together with a
level curve representing their respective maximal proximity value, defined according to
Equation C.4. That is, at all instances the area within these encompassing the obstacle
are by the planner considered to be beyond the specified proximity limit. The sensor
horizon is fixed to 120m during the simulations and is used as the farther limit of the
snapshots.

4.1.1 Simulations

As demonstrated in 3.2.2 the inability explicitly plan longitudinal endpoints arising from
usage of the ACC is handled by using different levels of maximum lateral acceleration.
Due to this there will for each specified limit exist a family of trajectories leading to
all lateral endpoints effectively replacing the provision of their longitudinal counterpart.
However, it has been found that a single maximum lateral acceleration is sufficient for
most scenarios in the highly autonomous case, the exception being situations where
the host vehicle gets ”trapped” in the sense that it lacks the means to plan aggres-
sively enough to pass an obstacle. As a consequence, the cost contributions regarding
MaximumLateralAcceleration and Jerk introduced in 3.4.1 diminishes in importance
as they in principle affects the selection functions in the same direction as the Deviation
from desired lane cost, i.e. discourages lateral movement. With the two contributions
removed, the selection function reduces to

ġ(t)τ+g(t) = tanh (α (γproximityfproximity + γlaneflane + γcenterfcenter + γvelfvel + γstatfstat))
(4.1)

where the arguments of fx() has been omitted for brevity. The weights and other relevant
parameter values that are shared throughout the scenarios are specified in Tables 4.1
and 4.2 and held constant over the simulations.
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Table 4.1: Various simulation parameters

Parameter Value In Equation

D 10m

k 0.2s/m

c 0.5

β 5

alonmax 1.5m/s

alonmin 3.5m/s

alatmax 1.5m/s

tlimf 4s

kv 0.5

ks 0.5

kx 0.1

th 3s

Table 4.2: Parameters for the selection
functions

Parameter Value Equation

τ 1

α 1/3

γproximity 2

γlane 2

γcenter 0.5

γvel 5

γstat 4

desired lane rightmost

4.1.1.1 Overtake

The host vehicle is approaching a slower moving vehicle from behind and is thereby
forced to either reduce speed or overtake. No other road occupants are present and
the obscuring vehicle is travelling at a constant speed of 65 km/h throughout the entire
scenario. The host vehicle set speed is 90 km/h and it is initiated at 85 km/h at x = 0,,
y = −6 whereas the single obstacle starts at x = 140 and y = −6. Sequential snapshots
are shown in the panels of Figures 4.3 and 4.4. The corresponding state and selection
functions are shown in Figures 4.1 and 4.2 respectively.

Examining the latter, from t = 6 and onwards one clearly sees the influence of the ob-
stacle as the host vehicle approaches (c.f. 4.3(a)). Although all trajectories are affected,
they are so to different degrees, whereby the rate of reduction for the corresponding selec-
tion function differs. Simultaneously the effects of the longitudinal velocity contribution
fvel increases the disparity, ultimately leading to a change in active trajectory. Note
the effect of the Stationarity contribution as the trajectory switches are made at time
instances t ≈ 6 and t ≈ 17, the former seen in panel 4.4(b), decreasing the possibility
for chatter. Following the trajectories ending up in the rightmost lane (red hues), the
effects of higher proximity score resulting from the overtake can be seen in the reduction
between times t ≈ 10 and t ≈ 17. Roughly at t = 12 the proximity limit is reached
(i.e. fprox = −∞) for two trajectories as the predicted positions of the host and obstacle
violates the measure, resulting in a rapid decrease. Indication to this can be seen in the
red colouring of the corresponding trajectories in panel 4.4(a). Having passed the ob-
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Figure 4.1: Evolution of Longitudinal and lateral velocities, lateral acceleration and the
index of the active trajectory during the Overtake scenario. The imposed acceleration limit
is shown in dashed red and the ACC set speed in dashed blue
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Figure 4.2: Selection functions for Overtake manoeuvre. Each curve corresponds to the
filtered utility value of a trajectory. The corresponding lateral position of the trajectory
endpoint is given in the legend, e.g. ”Lane 1 Left” corresponds to a trajectory that ends
in the first (rightmost) lane, offseted from the lane center to the left. The currently active
trajectory is taken as that which has the highest utility.

stacle, all trajectories get decreased punishment for proximity and thereby grows. Note
especially the rapid increase of the left center trajectory as flane pulls it up, ultimately
resulting in a trajectory switch, c.f. panel 4.4(b).

57



CHAPTER 4. RESULTS

(a)

(b)

Figure 4.3: First part of Overtake. The host approaches the obscuring vehicle and selects
a collision free trajectory around it. The calculated trajectories are drawn and colour-coded
so that green hues shows attractive trajectories attractive, e.g. those with higher momentary
values of corresponding selection functions, and conversely, red unattractive. The hues are
set so that the trajectory among the currently calculated one with lowest utility are shown
in pure red, the one with highest pure green and those in between according to a linear scale
between the two extremes. The presently active one ( i.e. the one coloured bright green) is
drawn thicker. The dashed red elliptic shape around the obstacle visualizes the proximity
limit as described in Appendix C

(a)

(b)

Figure 4.4: Second part of Overtake: The host passes the obscuring Vehicle and returns
to its preferred lane. Colour coding according to the caption of Figure 4.3
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4.1.1.2 Planned Avoidance

Similarly to the Overtake scenario, the host vehicle approaches the obstacle from behind.
In this example however, the obscuring vehicle is stationary and positioned at the side
of the road, only partially occupying the lane. The same initial values as in the previous
scenario is used for the host, whereas the obstacle is initiated at x = 250,y = −8.
Snapshots of the performed scenario is given in Figures 4.7 and 4.8 with corresponding
costs and state developments shown in Figures 4.5 and 4.6 respectively. Note especially
how the distance measure behaves for a stationary object, where the high relative velocity
extends the forbidden zone backwards to increase safety margins. Further, the forward
section of the zone is reduced accordingly, allowing an earlier, safe return to the desired
lane than seen in the overtake scenario. A necessary note here is that the obstacle
initially lies outside the range of the sensors but still affects the selection. This could for
obvious reasons not occur in an actual scenario.
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Figure 4.5: Evolution of Longitudinal and lateral velocities, lateral acceleration and the
index of the active trajectory during the Planned Avoidance scenario. The imposed
acceleration limit is shown in dashed red and the ACC set speed in dashed blue

It should again be noted how the proximity to the obstacle drives down the selection
score of one trajectory, roughly after 5 seconds, as visualized in 4.7(b)
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Figure 4.6: Selection functions for Planned Avoidance. Colour coding and naming as
described in the caption of 4.2.

(a)

(b)

Figure 4.7: First part of Planned Avoidance: The host approach the obstacles and chooses
a trajectory around it. Colour coding according to the caption of Figure 4.3
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(a)

(b)

Figure 4.8: Second part of Planned Avoidance: The host passes the stationary obstacle.
Colour coding according to the caption of Figure 4.3

4.1.1.3 Complex Scenario I

To validate performance over a longer period of time a more comprehensive scenario has
been simulated, essentially comprised of two separate problems. In the first part, the
host is presented with an obstacle configuration requiring lane changes over two lanes,
in the second it needs to overtake a slower moving in a situation where a faster one
is approaching from behind in the overtake lane. As in previous situations the vehicle
starts at an obstacle free position in the rightmost lane with a speed of 85 km/h. The
scenario snapshots are given in Figures 4.11, 4.12 and 4.13, with corresponding state and
cost evolution shown in Figures 4.9 and 4.10

Upon detection of the first obstacle in the left most lane the vehicle commences a lane
change to avoid it. However, at this point the obscuring vehicle in the middle lane are
beyond the sensor horizon due to which it is not regarded as a target by the ACC.
The selection therefore favours a two step manoeuvre to pass both vehicles opposed
to a smooth double lane change as both options essentially have the same positive cost
contribution from Terminal Longitudinal Velocity. The corresponding two switches occur
roughly at t = 5 and t = 12 respectively. Essentially the host performs one lane change
in the middle of which it detects the second obscuring vehicle., c.f. panel 4.11(b). The
penalty for changing trajectory during a manoeuvre, i.e. the Stationarity cost, prevents
it from switching until the already commenced is finished. This behaviour can be seen
in topmost blue line in between 8 and 12 seconds in Figure 4.10. Having passed both
vehicles, the reduction in proximity and pull towards desired lane allows the host to take
the smoother two-lane change path back. During the second part of the scenario the
host
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Figure 4.9: Evolution of Longitudinal and lateral velocities, lateral acceleration and the
index of the active trajectory during the Complex I scenario. The imposed acceleration
limit is shown in dashed red and the ACC set speed in dashed blue
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Figure 4.10: Selection functions for the Complex I scenario. Colour coding and naming
as described in the caption of 4.2.

Note again the influence of proximity on the cost evolution: The passing to the left of the
first two obstacles significantly reduces the utility of choosing trajectories to the right,
seen in the decrease of red and green lines between the times 10 and 20. Similarly, when
the host it self is passed by the now faster moving obstacle, the trajectories momentarily
leading to left motions (green and blue hues) are decreased accordingly, c.f. Figure 4.10
between t = 30 and t = 40. Consider also the proximity isoline of the passing obstacle
in panel 4.13(a) and note that the negative relative velocity extends it forward whereby
unsafe actions are avoided.
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(a)

(b)

Figure 4.11: First Part Of Complex I: The host vehicle approaches the obscuring vehicles
and initiates a lane change. Colour coding according to the caption of Figure 4.3

(a)

(b)

Figure 4.12: Second Part of Complex I: The host vehicle performs an additional lane
change to position it self in the leftmost lane and thereafter returns to the desired rightmost
one. Colour coding according to the caption of Figure 4.3
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(a)

(b)

(c)

Figure 4.13: Third Part of Complex I: The previously passed vehicle increases speed and
prevents an overtake. The host vehicle detects this and adapts its paths accordingly. Colour
coding according to the caption of Figure 4.3

4.1.1.4 Complex Scenario II

To further investigate system behaviour in (artificially) extreme situations simulations
a additional complex scenario has been performed. The purpose is to visualize some of
the issues that naturally arises when planner like that described herein are used. Similar
to previous examples, the host vehicle starts in the desired right lane and encounters a
slower moving vehicle hindering its progress forcing it to perform a lane change. However,
in this scenario the second and third lanes are blocked by other vehicles some distance
ahead of the first and moving at the same speed. By this, the host is forced to take
additional action. Additionally, a fourth obstacle is introduced in the rightmost lane
at an additional distance in front of the first, effectively yielding a moving, ”Chicane”
like situation. Snapshots of the progress are provided in Figure 4.16, 4.17 and 4.18 with
correspnding state and cost development shown in Figures 4.14 and 4.15.

Observations regarding the selection based on proximity can as in previous cases be
made. What is interesting here however is the action taken at t ≈, where a lane change
is performed to a offset position relative to the desired lane center. The scenario structure
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Figure 4.14: Evolution of Longitudinal and lateral velocities, lateral acceleration and the
index of the active trajectory during the Complex II scenario. The imposed acceleration
limit is shown in dashed red and the ACC set speed in dashed blue
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Figure 4.15: Selection functions for the Complex II scenario. Colour coding and naming
as described in the caption of 4.2.

essentially forces this choice, as no other ways of passing between the high proximity
zones exist given the set environmental parameters. However, since the relative cost
increases with lane center offset, c.f. Figure C.1, the Stationarity contribution intended
to allow completion of initiated motion is soon outweighed, resulting in a premature
trajectory switch. The occurrence of situations similar to this, have been found to be
symptomatic for planners based ranking and selection among a set of discrete choices.
As the individual trajectories have endpoint continuity up to the second derivative, i.e.
acceleration, the effects are clearly visible in its behaviour as shown in Figure 4.14. The
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actual discontinuity it hereby found in the corresponding jerk .

(a)

(b)

Figure 4.16: First Part Of Complex II: The host vehicle approaches the obscuring vehicles
and initiates a lane change. Colour coding according to the caption of Figure 4.3

(a)

(b)

Figure 4.17: Second Part of Complex II: The host vehicle performs an additional lane
change to position it self in the leftmost lane and thereafter returns to the desired rightmost
one. Colour coding according to the caption of Figure 4.3
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(a)

(b)

(c)

Figure 4.18: Third Part of Complex II: The host vehicle manoeuvres past the remaining
obstacle and returns to the rightmost lane. Colour coding according to the caption of Figure
4.3

4.1.2 Computational Performance

As mentioned in Chapter 1 the primary constraint regarding the choice and implemen-
tation of a automotive path planner relates to computational complexity. Owing to the
limited performance of present day real time platforms, the boundaries are strict even in
the most forgiving case where the planner has allocated all resources, and significantly
worsens as other tasks are introduced to claim processing time and memory allocation.
Due to this, an elementary evaluation of the execution times of the highway planner is
presented. Specifically, the change in execution times as governing parameters are varied
is of interest. Even though influences from several parameters might be considered, the
number of trajectories and obstacles are believed to carry the largest influence, owing
primarily to the need to check every trajectory against every obstacle during both tra-
jectory generation (due to the ACC simulation) and selection (due to proximity control).

The evaluation has been performed by logging execution times over range of parameter
values, i.e. simulation set-ups, after which results are used to retrieve approximate
statistic quantities. As in previous examples, the road is formed by three lanes of 6
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m width. Obstacles are initiated regularly with a spacing of 80 m in the longitudinal
direction while the lateral position is alternated between the rightmost and center lane,
forcing the host to perform a number of consecutive lane changes. The number of
trajectories are varied by alternating the number of lateral target points with lane center
offset. By this each parameter increment adds 6 (two per lane) trajectories. Approximate
density plots are shown in Figures 4.19 and 4.20 for variations in number of obstacles
and trajectories respectively. In both cases the non varied quantity is held constant at its
lowest value. Additionally, the development of the execution time mean with parameter
variation is presented in Figure 4.21. The first and second panels displays the result as
one parameter is varied and the other held constant and the rightmost panel, whereas
the other shows the surface resulting in simultaneous variation of both. All simulations
have been performed on a standard laptop (Dual Core Mobile i7(2667) @1.8Ghz using
4GB RAM) running Windows 7 HE and Matlab 2011b, without any use of parallelism.
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Figure 4.19: Approximate distribution of execution times for the highway planner. Com-
parison made on a straight road using nine trajectories. The obstacles are configured so that
the host to perform zig-zag manoeuvres as it traverses the road.
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Figure 4.20: Approximate distribution of execution times for the highway planner. Com-
parison made on a straight road with no obstacles present. The number of trajectories are
increased in numbers of six by modifying the number of lateral endpoints with a lane center
offset
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Figure 4.21: Development of mean execution time as a function of parameter variation.
Note that the contour lines in the rightmost panel are interpolated between the integer
values provided

It should be noted that the numerics presented herein in no way should be interpreted as
absolute performance specifications, but rather as qualitative measures giving indications
on how the parameters influences the needed runtime. Firstly; Matlab, beeing a high
level interpreted language, runs significantly slower for any given application than an
equivalent written in, say, C. Secondly; possible code optimization and other performance
enhancing measures increases the disparity. Finally; as the program is executed on a
general operating system its performance deteriorates further due to resource sharing
with other processes running in the background.

4.1.3 Validation of Trajectories

The basic trajectories used in the Highway planner is as shown derived from very sim-
plistic models of vehicle behavior. Even though similar ideas have been presented by
several authors, e.g. in [17],[7] or [15], and been widely used in the path planning context,
very limited effort have been spent examining model fidelity. Despite this, the matter
is of great importance, primarily since it can affect the actual feasibility of planned tra-
jectories, i.e. in the worst case render them in followable. Generally, any measure of
optimality achieved in the derivation of the trajectories is also likely to be lost if the
model is in poor agreement with the actual vehicle. Additionally, and directly related to
the method examined via Algorithm 5, any constraints imposed on the simplified model
suffer the risk of violation.

Due to this, the evolution of the vehicle dynamics as predicted by the simplistic model
need to be compared with those of the actual vehicle. Lacking an appropriate test set-up,
this is not done directly but inferred from comparisons of the simplified results to those
of a detailed model. Provided that states remain in the high fidelity state spaces regions
of the latter this can be said to be accurate enough.
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Since the trajectories presented in 3.2 and 3.3 are based on Optimal Control formulations,
a natural idea is to solve the same problem subjected to more complex dynamics. That is,
the particle dynamics in Equation 3.3 should be replaced with, say, Equation E.4 and the
solution used as a basis for comparison. However, there are difficulties in this relating to
minimization of a third derivative. Commonly, the more detailed models are non-linear
and expressed as first or second order differential equations that when differentiated one
or two times both tend to be more non-linear and include first and second derivatives
of the input. Combined, these formulations present problems severe enough to prevent
commercial optimal control solvers like TomLAB/PROPT and BOCOP to find accurate
solutions.

For these reasons, the chosen validation method instead makes the comparison between
the behaviour of the simplified model and that of a more advanced one as it is forced
to follow the physical (x,y,ϕ) trajectory of the former. Formally, the evolution of the
advanced model will then follow

ẋ = f(x,u) (4.2)

xx(t) = g1(t,x) (4.3)

xy(t) = g2(t,x) (4.4)

xϕ(t) = g3(t,x) (4.5)

x(0) = x0 (4.6)

where gi(t,x) describes the planned trajectory and xx, xy, xϕ the center of gravity po-
sition and direction states respectively. The restriction of the system to the predefined
trajectory introduces equalities and thereby transforms the differential equation of the
more advanced model to a Differential Algebraic Equation (DAE). Several solvers exists
that handles DAE’s but for reasons of availability the comparative calculations presented
below has been done with the Modelica software DYMOLA.

Comparative Measures The result of any model comparison should give some infor-
mation in what range of certain parameters, or more generally under what conditions,
the model is qualitatively ”good” or ”bad”. Refraining from a precise definition at this
point and assuming that a specific set of parameters yields feasible trajectories (with
respect to the simple model), the ranges are sought after where the result can be trans-
ferred to the actual vehicle. This can then be inferred though the comparison with the
more advanced model, provided the states are confined to the high fidelity regions in the
state space of the latter, e.g. small enough slip angles for linear tyre characteristics or
high enough speeds.

In accordance with the focus on comfort limits, as mentioned in 2.3 the evolution of the
lateral jerk and acceleration are of interest. However as the latter is the derivative of
the former, their respective discrepancies will qualitatively be of the same character and
it is therefore deemed sufficient to focus the study on acceleration. Two measures are
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used to capture different aspect of the modelfidellity. Firstly, a regular RMS value is
taken over the arclength of the simple trajectory, intended to capture the general model
fidelity. Formally, the RMS is defined as

ERMS =

√
1

sf

∫ sf

0
(aA(s)− aS(s))2ds (4.7)

where aA(s) and aS(s) are the lateral acceleration at position s for the advanced and
simplified model respectively. In practice however, a discrete version is used.

The second method of verification is intended to capture the simple models ability to
provide usefull bounds on the actual state evolution of the vehicle. Motivated by the
direct usage of maximum lateral acceleration in Algorithm 5 the measure is therefore
taken as

Emax = max
s

(|aS(s)|)−max
s

(|aA(s)|) (4.8)

By this, underestimates in terms of maximal lateral acceleration will yield Emax < 0
whereas overestimates that Emax > 0.

Validation Setup The equalities enforcing the physical trajectory of the simplified
model are derived from Equation 3.13 and implemented as

τ = x/Vlon (4.9)

y = a+ bτ + cτ2 + dτ3 + eτ4 + fτ5 (4.10)

aSlat = 2c+ 6dτ + 12eτ2 + 20fτ3 (4.11)

Here, (x,y) are the global position of the vehicle model while the polynomial coefficients
a,b,c,d,e,f are those presented in Equation 3.7 and aSlat the lateral acceleration of the
particle model as taken from Equation 3.4. Note that τ in this case not denotes time, but
should be regarded as a trajectory parameter. The latter arises as the polynomial trajec-
tory essentially is one dimensional and the adaptation to two dimensions, i.e. Equation
3.13, only will be valid in its original form for holonomic systems. In other words, the
longitudinal velocity can no longer be said to be purely in the x direction, as the advance
vehicle model includes orientation. The enforcement is schematically described in Figure
4.22.

The fidelity measures ERMS and Emax can now be considered function of the scenario
parameters, i.e. boundary conditions and final time of the simple model trajectory.
Using a standard lane change trajectory, c.f. Figure 3.8, assuming stationary trajectory
endpoints (e.g. zero lateral velocity and acceleration) and fixing the lateral target, the
final time is left to be varied. However, as the longitudinal velocity of the vehicle is
disregarded in the simplified model but highly relevant in an actual vehicle the parameter
variations are not taken over the final time directly. Instead, each test case is defined
by the longitudinal velocity and distance over which it is made. Since tf = xmax/vlon
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Figure 4.22: Schematic visualization of the trajectory edforcement in the DAE formulation

this gives the rule on how the trajectory is defined. Considering xmax and vlon as the
defining values, the test case character varies from aggressive (low xmax, high vlon) to
nice (high xmax, low vlon) lane change manoeuvres over some envelope xa ≤ xmax ≤
xb, va ≤ vlon ≤ vb.

Simulations Initiated at (x,y) = (0,0) and using the fixed lateral target offset of
ymax, roughly 4300 simulations have been done on the parameter grid 30 m ≤ xmax ≤
100 m, 30 km/h ≤ vlon ≤ 90 km/hb, regularly spaced with 1 m and 1 km/h in the
distance and velocity dimensions respectively. The non linear bicycle model used is for
each case initialized at rest in all states save the longitudinal velocity, which is set to the
current vlon value. Further, no driving force is applied and rolling resistance is neglected
as it is believed to have a marginal impact on the considered states. Other parameter
values used are retrieved from [9] and summarized in Table 4.3.

Parameter Value Description

m 2000 kg mass

J 3000 kg m2 Yaw inertia

lr 1.5 m Distance to rear wheel from Cog.

lf 1.3 Distance to front wheel from Cog.

Cf 0.95lr/(lf + lr)80000 Front tyre stiffness

Cr 1.05lf/(lf + lr)80000 Rear tyre stiffness

Table 4.3: Parameter values used when implementing the nonlinear model described in
Appendix E in Dymola.

Primary results are given in Figure 4.23 as the contours of Emax and ERMS . An alter-
native visualization of the results are given in Figure 4.24. Here the manoeuvre distance
is kept constant while the longitudinal velocity is varied from low to high. To enable
easy comparison the resulting acceleration profiles are normalized according to
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Figure 4.23: Map of ERMS (a) and Emax (b) over a range of scenario conditions

τN =
t

τf
(4.12)

aSN (τN ) =
xS(τNτf )

max
τ

(aS(τ))
(4.13)

aAN (τN ) =
xA(τNτf )

max
τ

(aS(τ))
(4.14)

so that aSN , a
N
N ,τN ∈ (0,1) and all simple model trajectories (references) coincide.

As the advanced model used itself is a simplification of the vehicle dynamics, the va-
lidity of the comparison is highly dependent on its accuracy and care must be taken
when analysing the results. Even though a number of considerations can be made, the
primary limiting component in the model to vehicle fidelity for the advance case used is
taken as the tyre modelling. In richer vehicle models, the inherent non-linearity of tyre
characteristics is represented with more realistic descriptions, including saturations in
the slip angle to tyre force relationship [25]. The model used for comparison neglects this
and utilizes a linear tyre model due to which the simulated vehicle will be able to per-
form more aggressive manoeuvres than would be possible in an actual vehicle. For these
reasons, the results given in Figure 4.25 are trimmed using an isoline of the following
relationship, when taken as a function of xmax and vlon:

αmax = max

(
max

s∈(0,sf )
(α1(s)), max

s∈(0,sf )
(α1(s))

)
(4.15)
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Figure 4.24: Differences between acceleration of simplified and advanced model for a lane
change manoeuvre with a lateral displacement of 5 m over 50 m. The speed at which the
manoeuvre is performed is varied from 30 km/h (green) to 90 km/h (blue) in steps of 5
km/h. The simplified model reference is shown in dashed red.

where α1, α2 denote the front and rear slip angles according to Figure E.2. That is, all
sections of Figure 4.23 with corresponding αmax > αlim are considered in poor agreement
with the vehicle and is therefore discarded. From [9], αlim = 5 is set as an appropriate
limit.

4.2 Trajectories for Turning

Similar to the highway case the trajectory generator for three dimensional turning ma-
noeuvres are validated through simulations. No implementation has been made into the
general selection system whereby obstacle avoidance and other external criteria are omit-
ted. Due to the implicit, numerical nature of both the actual algorithm and the initial
guess generator as well as the complex form assumed by both (e.g. generalized Fresnel
integrals, numerical integration and neural networks) no formal statements can be given
regarding the general behaviour. Instead, results are derived from massive simulations
and statistical measures, from which both qualitative and quantitative statements can
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Figure 4.25: The resulting error contours of ERMS and Emax restricted by the 5 degree
slip angle limit. The white portion thereby constitutes the region where the advance model
fidelity is deemed to be lacking.

be made regarding robustness and performance.

4.2.1 Feasible Paths

The evaluations are made by simulating the trajectory generation process repeatedly with
boundary conditions drawn randomly from a uniform distribution over the envelope

(x1,y1) :

(√
x21 + y21 ≥ Rmin ∧ −αx1 ≤ y1 ≤ αx1 ∧ −ymax ≤ y1 ≤ ymax ∧ 0 ≤ x1 ≤ xmax

)

ϕ1 :

0 ≤ ϕ1 ≤ ϕmax if y > 0

−ϕmax ≤ ϕ1 ≤ 0 otherwise

κ1 : κ1 ∈ (−κmax, κmax)

as visualized in Figure 4.26. The numerical parameters used are Rmin = 5m, ymax =
15m, xmax = 30m, ϕmax = 110◦ and κmax = 0.21/m. The envelope are intended
to cover standard turning manoeuvres occurring in normal operations, due to which
terminal angles above 90◦ and down to 0◦ have been included. The conditionings and
other non standard measures taken is included to exclude unnecessary cases which never
would arise during normal operation, e.g. a repositioning to x = 10 y = 5 with terminal
heading ϕ1 = −90◦ or x1 = 0, y1 = 1 with ϕ1 = 100◦. Specifically, the conditioning on
the sign of y1 prevents turns to the left (y1 > 0) to have terminal headings pointing to the
right and vice versa. The terminal curvature κ1 are similarly to the lateral acceleration
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(a) Spatial (b) Heading

Figure 4.26: Schematic illustration of the evaluation envelope. (a) Gives the shape of the
locations of the spatial endpoints. (b) Is intended to visualize the allowed angular endpoints
for left(red) and right (green) turns.

in the highway simulations set to zero for all cases, as lateral stationarity is assumed
to be desired at the endpoint. Note however that this in no sense affects the general
workings of the algorithm and that it is very simple to add.

It is emphasized that the statistics presented for the simulations only covers the retrieval
of the governing parameters (d,sf ) and not the computation of the trajectory that is
plotted. The latter constitutes numerical integration of x(s) and y(s) from Equation
3.17. This is by all means not unimportant, but can generally be implemented for very
rapid execution by usage of the Composite Simpson Quadrature for arbitrary many
points in (0,sf ). In general, the systems retrieves the trajectories for the desired use
case with ease, with typical results exemplified in Figure 4.27.

4.2.1.1 Generation of the Initial Guess Function

This section contains information on how the neural network that provides the initial
guess for the numerical solution of Equation 3.29 is constructed. Details are given on
how the training data is generated, what network topology is used, and the quality of
the fitted function.

The data set used for training the neural network is drawn from an envelope of initial
conditions similar to that presented in the previous section, albeit with different limiting
values. To increase the coverage on the set, the envelope is made wider by letting
Rmin = 3m, ymax = 25m, xmax = 50m, ϕmax = 110◦ and κmax = 0.3. α is set to
”infinity”, i.e. the linear limitation is removed, allowing all y1 ∈ (−ymax,ymax). From
the uniform distribution on this envelope 10000 boundary conditions are drawn and
solved for the correct minima at each iteration of Algorithm 1. The solutions are found
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Figure 4.27: Example on system behaviour for trajectories generated over 10 ≤ y1 ≤
15, 20 ≤ x1 ≤ 30, 100 ≤ ϕ1 ≤ 90, −0.05 ≤ κ0 ≤ 0.05. The Plotted trajectories are formed
from x(s) and y(s) in Equation 3.17 by Composite Simpson Quadratures

using Matlabs built in multidimensional rootfinding tool fsolve which runs a robust
implementation of the Levenberg Marquardt Algorithm. The numerical integration is
handled via Matlabs built in, adaptive interval length Composite Simpson Quadrature
function quad, which continuously changes and recalculates the integral until a desired
error bound is reached.

The neural network function is constructed using the Neural Network toolbox in Matlab,
where easy to handle tools exist for function fitting. The input and target data are both
brought into the interval (−1,1) using min-max scaling, i.e. given some set of data D all
entries are reshaped according to

xs =
2

xmax − xmin
(x− xmin)− 1

before usage. Here, xs ∈ (−1,1) denotes the scaled variable, x the original and xmax, xmin
the extreme values over the used data set. The weights and biases are adapted using the
Levenberg Marquardt backpropagation algorithm, which essentially is an adaptation of
what is described in 3.3 to the backpropagation context. Further, the training is done
using holdout validation, where 15% of the original data set is randomly selected and
set aside for validation purposes, and another 15 % for testing. In short, the training
proceeds by adapting the network parameters based on the training data whereby its
performance is increased. The process continues until the validation set performance
stops increasing, by which the risk of fitting the function too tightly to the training data
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is reduced. Further descriptions on backpropagation, holdout validation and other neu-
ral network specific details are refrained from here, for more information see for example
[23]. By using the Matlab tool, the network topology is restricted to one hidden layer
with hypertangent activation functions, and an output layer with linear, i.e. unsatu-
rated, counterparts. For this application, a function using 30 hidden units have shown
good performance and is therefore used. The training starting point, or the initial val-
ues of the network parameters, are set randomly whereby some repetitions generally are
needed before the performance is acceptable.

Using this set up, Algorithm 1 needs three iterations before a success ratio r > 95% is
reached. The fraction for which failure to converge to the correct minima occurs lies in
general in the ”fringe” of the envelope consisting of aggressive bends with large angles
towards target positions close to the origin. Even though full coverage is desirable, it is
not pursued since the intended use case of the function lies well within its safe region.
The actual function to be used is retrieved as the network trained on the data set given
from the last iteration, and is implemented as a stand alone m-file which the optimization
procedure calls upon entry. As a measure of performance, the residual error ε of the
network is formed as

ε = 〈||pNN − pF ∗ ||〉

where pNN , pF ∗ denotes the fitted and original outputs respectively. Note here that the
angular brackets denotes the average value over the set used, i.e. training or validation.
The development of this measure over the training process in the last iteration is shown
in Figure 4.28, where the values over the training, validation and test sets are presented.
Note that one Epoch is one pass over the training set consisting of roughly 7000 input-
target pairs.

It should be noted that the same approach initially was applied for the case where both
boundary conditions on curvature was set to zero for which significantly better results
was achieved using only 15 hidden units.

4.2.1.2 Robustness of the algorithm in the merely feasible case

To assert the quality of the neural network based function for generation of initial guesses,
1000 runs have been made with boundary conditions randomly drawn from the envelope
presented in 4.2.1, thereby including both ”nice” and relatively hard manoeuvres. Fur-
ther, the number of function evaluations for the numerical integration given in Equation
D.13 is set to 20. Lower numbers are indeed possible for nicer manoeuvres, i.e. where
no sharp turns and thereby smoother integrands are present, but the parameter is kept
at a higher value to promote accuracy also for more extreme cases. The results are used
to form approximations of the statistical properties of the function and its fidelity with
respect to the actual mapping from boundary conditions to the correct minima. By this,
the performance is calculated and presented as the approximate density function in the
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Figure 4.28: Development of the training process in the third iteration of Algorithm 1.
The residual error for the training, validation and test sets are shown in blue, green and red
respectively. The network used is the one giving the lowest validation set error, marked in
the figure with a circle

quality measure, taken as the signed deviation from the retrieved minima in the two
scaled parameters sfs and ds. The results are presented in Figures 4.29 and 4.30. In
both cases the performance on the same set of boundary conditions using the heuristic
based initial guess proposed by Kelly and Nagy [3] for comparison.
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Figure 4.29: Parametric distances between initial guess and minima in the d dimension

It is highlighted that no failures to converge to the correct minima was registered for the
neural network based implementation, whereas a number of occurrences where found for
the heuristic based one. In general, the fitted function manages to place the starting point
extremely close to the desired minima, removing all possibilities of erroneous convergence
or divergence. An exemplification of this for three different boundary conditions is given
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Figure 4.30: Parametric distances between initial guess and minima in the sf dimension

in Figure 4.31
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Figure 4.31: Example of quality differences between initial guesses. The green star shows
the location of the desired minima, the red star initial point retrieved from the neural
network and the purple that given from the proposed heuristic. The problem shown is the
basic constraint satisfaction case (i.e. no optimality measure introduced) x1 = 10, y1 =
15, κ1 = κ0 = 0. The terminal heading ϕ1 is set to 90 and 0 for (a) and (b) respectively

4.2.2 Using Curvature as a Cost Function

To demonstrate the effects of introducing a measure of optimality to the problem, the so-
lution is sought after using the cost function from Equation 3.45. The problem is studied
for three different settings of free parameters, all scaled following the method in D.3 and
the effects both on computational performance and trajectory appearance is sought. For
numerical stability reasons the lightweight solver written specifically for the constraint
satisfaction case have been avoided. Instead the native MATLAB implementation of the
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Levenberg-Marwuardt algorithm through the function fsolve is utilized. All numerical
integrations are performed with the adaptive step size version of Simpsons Composite
Quadrature Rule using the built in function quad. With this, easier convergence and
more accurate results are achieved. The algorithm starting point, i.e. the initial guess,
is taken as the result from the basic case and the introduced free parameters are set to
zero. With this, the Lagrange multipliers are initiated using Equation 3.44. Given that
the formulation is based solely on first order optimality conditions, no assertions on the
characteristics of the extreme point found can be made due to which the development
of the cost is examined. For the one, two and three degrees of freedom (DOF) cases,
this is shown in Figure 4.32. Note especially how the one DOF case converges to a local
maximum in the cost. Even though the number of needed iterations varies between
solutions for different boundary conditions the discrepancy towards the basic case is in
general large, c.f. Figure 4.34(b). Furthermore, each introduced DOF generally induces
a larger number of iterations needed to converge, and thereby consumed time.
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Figure 4.32: Development of the cost J =
∫ sf
0
κ2(s)ds for solutions in one, two and three

degrees of freedom for a simple left turn.

The corresponding trajectories are shown in Figure 4.33 together with their correspond-
ing curvature functions κ(s). It should be noted here that the boundary conditions for
which the results are obtained, x1 = 15, x2 = 10, κ1 = 0, κ0 = 0 and ϕ1 = 90◦ belongs to
a subset of the envelope presented in 4.2.1 that actually yielded convergence and that
a failure to converge was observed for the more extreme cases . The general robust
performance seen in the basic case was not present when the free parameters were intro-
duced. Further, the similarity between the optimized trajectories seen in Figure 4.33 are
a good representation of the results found. With each degree of freedom n introduced,
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the difference to the result from using n− 1 decreases.
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Figure 4.33: Example of resulting trajectory when the measure presented in Equation 3.45
is used. Following the color coding presented in Figure 4.32, the basic case is blue and the
red, magenta and green ones represent the one, two and three degrees of freedom trajectories
respectively.

4.2.3 Performance

To examine the time performance of the basic trajectory generator repeated runs over the
described envelope is again performed. The intention is to determine the gains in using a
lightweight implementation of the solution algorithm and an accurate initial guess. The
effects of solver choice and initial guess generation are isolated by solving each boundary
condition using: 1) Both accurate initial guess and lightweight solver, 2) Lightweight
solver and heuristic based initial guess and 3) Robust solver with adaptive integration
and accurate initial guess, and compare the results. The ”robust optimization” is here
taken as the Matlab implementation of the Levenberg-Marquardt algorithm through the
function fsolve coupled with the Adaptive Simpson Quadrature in the function quad. The
results in terms of time consumption and needed iterations are summarized in Figure
4.34 where 5000 boundary conditions randomly selected from the presented envelope have
been used. Note that the time results for the robust solver has been removed in 4.34(a)
for visualization reasons. The average time required for this combination lies around 0.3
s and would necessitate a large plot to visualize the difference between the other two
cases. An additional remark regarding the Matlab implementation is that it only uses
the actual function, i.e Equation 3.25, and no explicit statements on the jacobian and
gradients. These are instead approximated using finite differences resulting in a much
higher number of function evaluations and thereby longer execution times.
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Figure 4.34: Time consumption and needed number of iterations for 5000 randomly chosen
boundary conditions within the envelope described.
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5

Discussion

This chapter contains discussions and analysis of the results presented above. For the
highway planner, the scenarios and trajectory selection are treated in the general while
the findings regarding computational demands and model fidelity are examined in de-
tail. For practical reasons discussions around the four specific scenarios are placed in
conjunction with their respective plots in Chapter 4. Further, some issues and problems
as well as the means by which they can be mitigated are also included as well as some
notes on parameter settings. The section on turning are analysed in terms of its perfor-
mance and computational benefit, where specific treatment is given the introduction of
cost functional and how these affect the resource requirements.

5.1 Selection system and trajectories for Highway

The general results from 4.1 implies that the proposed system indeed has the potential to
handle relatively complex scenarios on structured roads in a safe manner. At its core, the
selection process introduced in 3.4 works rather good, and shows a consistent behaviour
when exposed to various environment challenges in simulation. The cost development in
all scenarios shows that the use of differentially formed, or filtered, linear combinations
of costs a plausible tool for trajectory selection in path planning.

Discontinuities resulting from trajectory switching Some issues exist however,
specifically for more complex scenarios where the trajectory selection for some reason
is forced to abort a commenced manoeuvre in favour of another. Discontinuities are as
previously noted then introduced in the lateral jerk with large effects on the smoothness
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of the corresponding acceleration. At this point it is not clear how these effects will
be perceived by a person in the vehicle for which qualitative experimental results are
required.

The difficulties to extrapolate the results to an actual implementation is increased further
since the characteristics of the assumed path following controller executing the trajectory
and its interaction with the vehicle dynamics is unknown. If ideal tracking is assumed,
the non linear bicycle model as stated in Equation E.4 indicates relation between lateral
jerk and the steering angle rate δ̇, angular- and lateral accelerations ω̇z, v̇x. Following the
results from Appendix B.1, the two latter quantities are likely to influence the perceive
ride quality adversely. Moreover, more or less discontinuous changes in δ̇ are likely to
be perceived as strange and therefore risk damaging the passenger trust in the system.
It should of course be noted that all physical system more or less exhibit low pass
behaviour, and that discontinuities in the strict sense are impossible. The proposed
system easily admits a minor modification that mitigates this issue. As the trajectory
generated in essence is a polynomial in time, the order to which it is endpoint continuous
is determined solely by its order. One could therefore augment Equation 3.3 to achieve
essentially continuity in arbitrarily high derivatives of position. By this, a jerk continuous
trajectory is simply a sextic (6th order) polynomial, with coefficients determined by
the boundary conditions. However, it should be noted here that the jerk minimizing
property derived in 3.2 no longer holds if this solution is utilized. The sextic polynomial
can instead be shown to minimize snap, or fourth derivative of position. Unfortunately,
this can potentially worsen the experienced ride quality, as is discussed in Appendix
B.1. A second alternative is to reformulate the problem as the minimisation of the
integral of squared jerk subjected to endpoint constraints of sufficiently high order. This
option has not been studied in detail, but although its solution lacks the simplicity of the
polynomial, it has an analytical form and could therefore be integrated into the planning
framework.

Getting stuck at ”local extrema” A second issue relating to the selection system is
the choice of comparison dimensions and their respective parameters. The different cost
measures used might be insufficient to guarantee adequate performance in all situations.
The set-up used with parameters according to Table 4.2, had for some more complex
scenarios than those presented problems when it after a lane change ended up too close
behind a preceding vehicle. Since high proximity values constantly were punished hard
and the ACC model managed the velocity, the host vehicle effectively got stuck behind
the obscuring vehicle, lacking manoeuvring capabilities. In effect, this corresponds to
reaching a local extrema of the overall objective. Similarly, the punishment against rapid
switching sometimes forced the vehicle to remain longer than necessary at non center
latitudes. However, the selection process is easily augmented or modified to account
for other measures of quality and a careful designer could with ease tune the system to
desired performance characteristics.
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Time Performance With the Matlab code diagnostics tool it is as expected seen that
roughly 70% of the execution time is spent in the simulation of longitudinal trajecto-
ries, i.e prediction of the environment and corresponding ACC model reaction. Large
benefits could therefore be made in leaner implementation of this particular component.
Examining the development of the mean execution in both cases implies a linear average
time complexity when coupling effects are neglected, c.f. Figure 4.21. Even as the latter
is included, almost linear behaviour is observed. Though linear, the increment of tra-
jectories is considerably more expensive in terms of computation than that of obstacles.
Fortunately, the need for more than three trajectories per lane was found unnecessary,
whereby the largest cost can be avoided. Further, in the presented simulations all defined
obstacles, both in and out of sensor range, are checked in the prediction step. As a result,
parts of the consumed time lies in the treatment of obstacles that does not affect the
behaviour of the simulated vehicle. Consequently, a leaner implementation where only
”seen” obstacles are treated would lower the rate of change in average time consump-
tion. The increased variance observed in Figure 4.19 is likely related to the modelling
of the ACC target selection, where the frequent switching induced by the particular
scenario injects disparity. Combined, these properties should indicate good scalability
possibilities, specifically if the system is designed to use a low number of trajectories.
It should further be noted that the program written is relatively large and Matlab for
these purposes is a rather clumsy tool, an actual implementation where care has been
taken performance would probably be orders of magnitude faster. In spite of this, the
performance is by all means good and could very likely be used on target hardware.

Model Validation The results of the extensive DYMOLA simulations from 4.1.3
shows a clear correlation between the ”aggressiveness” of a motion and the error rel-
ative the simple model, where the extreme cases in the high velocity-low distance region
of the error renders the absolute highest. For all intents, the manoeuvres chosen should
therefore be as nice as possible if the particle model predictions are to be trusted. When
examining the state evolution over the extreme cases it is found that the vehicle essen-
tially broadsides through the trajectory in manner incompatible with regular driving
further strengthening this.

Further, the comparison seems to be valid over the normal manoeuvring range when
considering the slip angle limit. Additional limits are easily introduced, but lie outside
the scope of this thesis and will therefore not be discussed. It should be noted that a
designer easily can specify a limit on one of the quality measures, whereby the acceptable
region is defined by the area restricted by its corresponding isoline and the slip angle
limit. However, as a thorough investigation on what quality level the planner needs
constitutes a large body of work in itself, discussions on the precise numerical values
are avoided. However, the sign of the error in the measure Emax is important for the
proposed planner. As implied by Equation 4.8 Emax < 0 corresponds to underestimates
of the actual acceleration. Interestingly, not one of the 4300 cases tested results gave this
result. Even though no formal guarantees can be stated due to the empirical nature of
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the evaluation, the result together with the apparent smoothness of Emax indicates that
aA ≤ aS for all possible parameter combinations. By this, the limitations imposed on
the simple model by Algorithm 5 in Appendix refap:highway can also be said to apply,
albeit conservatively, to the actual vehicle.

5.2 Trajectories for Turning

Opposed to the more general planning system discussed in the previous section, the
trajectory generator for the three dimensional (x,y,ϕ) setup presented in this thesis has
merely been examined on its execution characteristics and ability to generate accurate
trajectories. It is however emphasized that there in principle is no problem to integrate
the described trajectories in to the selection system. The repeated simulations performed
indicates that given a sufficiently well fitted function as provider of initial guesses, the
algorithm safely delivers a correct (convergent to the right minima) result over the entire
relevant parameter envelope. Further, the benefits of the scaling procedure mentioned
in D.3 are also evident as no numerical issues arise. In the general situation, i.e. during
normal turns, the applied polynomial curvature expression is smooth enough to render
extremely cheap calculations of the integrals involved, needing no more than roughly 10
Simpson Quadrature intervals a piece.

Initial Guess Generation The initial guess is essentially a good solution in itself,
and in most regions of the tested boundary condition envelope the numerical procedure
simply refines its appearance, making very small adjustments. Similarly, the dimensional
reduction achieved by reformulating the problem to the two sf ,d through inclusion of
boundary conditions on curvature and direction forces the last two to always be satisfied.
That is, regardless of other parameters, the endpoint curvatures κ1,κ0 and headings
ϕ0 = 0, ϕ1 will always be correct as visualized in Figure 5.1. Combined, these two steps
gives that the algorithm simply moves the endpoint of an already correctly directed and
nearly correctly shaped trajectory towards the goal until the set tolerance is reached.
The process is exemplified in Figure 5.1 where the error is set in the scaled coordinates to
εS = 10−8. The problem scale d is roughly 14 m due to which the actual error measure
is ε = εSd ≈ 1.4 · 10−7m. It should be noted that this extreme sub micrometer precision
is merely for visualization purposes since the algorithm mostly completes in very few
iterations, hardly suitable for illustration.

For some inputs to the neural network function, i.e. boundary conditions of Equation
3.29, notably those where κ0 ≈ 0 and the end position and heading are set such that
no large bends are forced on the trajectory, the initial guess is good enough to achieve
a reasonable tolerance directly or within one iteration. As these manoeuvres comprises
most normal situations the generation algorithm is essentially instant for normal cases.
This is also shown in the time results of the repeated simulations, where the the neu-
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Figure 5.1: Visualization of algorithm convergence. Initial guesses as given from the fitted
neural network are coloured blue, steps in iteration red and optimal trajectory green. In
both plots κ1 = κ0 = 0, while (a) has x1 = y1 = 10 with ϕ1 = 100◦ and (b) x1 = y1 = 10
with ϕ1 = −130◦

ral network function clearly outperforms the simple heuristic proposed in the literature.
The nature of using an interpreted language and the general Matlab overhead signifi-
cantly pushes up the average time spent, ending up around 0.5 millisecond. However,
implemented directly in C with explicit memory handling and code optimization this
method would essentially be free computationally. As a sidenote, it is therefore evident
that the performance of the trajectory generator present herein vastly outperforms the
equivalent presented in [3] on which it is based. The problem formulation presented
in this paper, i.e. Equation 3.24, has been used by a number o authors, e.g. [12] and
[5], as the trajectory generation choice in state lattice planners, and it is evident that
the gains of using a accurate initial guess go beyond the simple turning manoeuvres
presented here. Especially since the graph building, or trajectory generating phase in
these planners commonly is the most time consuming component and generally involves
hundreds or thousands of function calls.

Use of cost a Functional The use of cost functional present an attractive way of on-
line tuning the trajectory preference. However, the results where these are introduced
are unfortunately not as attractive. In essence similar to the basic case, the non-linear
problem is troubled with divergence, frequent convergence to wrong minima or even
local maxima, or numerical issues (e.g. ”flat” residual regions) where search directions
become small. Even when correct convergence occurs, it usually requires an unacceptable
amount of iterations and its consumed time, being in the order of seconds, makes it far
from suitable for real time implementation. As mentioned in the previous section, the
initial guesses are however constructed naively by setting the additionally introduced
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free parameters to zero. When examining the results of successful runs, one finds that
this commonly is far from the desired value. In principle it should therefore be possible
to utilize the same neural network based procedure as for the basic case and thereby
retrieve significantly better results. In principle, the training set could be generated with
a global optimization algorithm, e.g. a Genetic or Swarm based one, since the optimality
criterion introduces the presence of a global minima. Although the high dependence on
good initial guesses by far is the most important adverse aspect, another exists in the
increased usage of numerical integration and algebraic operations which essentially grows
with the cube of the free parameters. As the positive effects, or impacts on the resulting
trajectory, also seem to lessen with each introduced degree of freedom, c.f. Figure 4.32,
it seems unwise to use more than two free parameters.

As a note on the representative power of the assumed polynomial form of the control
function, it is far from evident that it is sufficient when optimality is introduced. Exam-
ination of Figure 4.33, specifically the appearance of the curvature functions indicates
that the polynomial representation might be to stiff and thereby yield unnatural be-
haviour. Considering curvature proportional to lateral acceleration and thereby steering
angle, it is evident that the trajectory is far from what would have been taken by a
skilled human driver.
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6

Conclusions

In the presented work, the problem of path planning was studied and adaptation of
state of the art approaches to automotive applications were investigated. Further analy-
sis revealed that, given the constraint set for this particular work, commonly used path
planning techniques cannot be directly applied. Hence, design procedure had to par-
tially stray from the norms. Following a modular approach, separate solutions tailored
for highway driving and turning were developed. Performance and satisfaction of the
demanded criteria was confirmed via simulations.

As it was shown, decoupling decision making, path planning and control in this context
leads to unnecessary limitations. Requiring an external controller, in the form of ACC
for regulating longitudinal velocity, as well as presence of a decision making module in
the described form, reduces the path planning problem into that of short-term trajectory
generation. Of course, in this specified framework and for the intended applications in
this work, such a design promises to be effective.

Simulation results detailed in Chapter 4 demonstrated the viability of the proposed
solution for the intended purposes. Mainly, analysis results of the time complexity affirms
that this solutions addresses the concerns on computational resources. Moreover, the
motion models used, especially for the highway manoeuvres, prove to be credible for
the range of intended operations. This satisfies the important criterion of kinematic
feasibility.

As discussed in Section 2.4, the modular approach adopted in this work is known to
favourably fit into the development process in practice for automotive functions of com-
parable nature. Such functionalities need to pass through extensive stages of experimen-
tal validation to be deemed suitable for production. A modular design facilitates ease of
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these verification steps and in turn a more agile development loop.

However, being a relatively add-hoc design, the provided solution has limited flexibility
and scalability to a larger range of use-cases. for a more versatile path planner acting on
longer planning horizons, the constraints present in this framework need to be softened.
Mainly, allotting more computational resources to a planner with more authority in the
form of e.g. decision making and velocity profile generation will lead to a more versatile
solution able to handle a variety of future functionalities, e.g. driving in unstructured
environments and low-speed settings with complicated manoeuvres such as parking lots.
This approach will presumably be more cost-effective in long term.

Future Work

As a continuation of the work presented here in, experimental validation is proposed for
further examination of model fidelity, applying both to the particle model used for high-
ways and the soap box representation in turning. The problems highlighted in Moreover,
efforts should be made to ensure a smooth switching between the separate modes of op-
eration, which have been left out of the work presented herein. Additionally, the closed
loop performance of the highway system needs to be further evaluated, specifically in the
presence of measurement noise and non ideal tracking. The benefits of increased model
detail in the prediction step should also be studied with inclusion of lateral obstacles
movements and models of driver behaviour. Concerning the manoeuvres for turning, a
similar DAE validation is recommended as a first step, followed by actual vehicle testing.
Further, the possibility to apply the same input parametrization and solution procedure
to a more accurate model, e.g. a linear bicycle representation, and its effect on the rep-
resentative power of the generated trajectories examined. If possible, the results could
potentially enhance the usefulness of the method. In the general context of autonomous
drive, large efforts need to be put into examining different measures of comfort and
how various phenomena is perceived by the passengers. The lack of research done on
this topic is surprising, and the field seems largely to be open. Specifically, numerical
statistics should be of interest on which the enforced bounds could be based. Possible
other results from such research could be updated or augmented optimization criteria for
generation of the actual trajectories as well as enhancements to other highly influential
components. In the context of this thesis, tuning of the proximity measure or selection
method introduced in 3.4 exemplifies the latter.
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A

Method Survey

This chapter contains a survey of the most important approaches taken in both industrial
and academic attempts to attack the automotive path planning problem. The different
classes of algorithms are described together with their gains ans shortcomings as noted
in the literature. Important aspects such as computational load, ease of tuning and
implementation, the ability to explicitly include feasibility guarantees and limits on the
resulting trajectory and algorithmic completeness are treated.

A.1 Optimal Control

The general form of the path planning problem, formulated as an optimal control problem
as presented in 2.2.2 has been the topic of extensive research. This problem was initially
investigated in 1957 in the work of Dubins [26] where it was shown that in an obstacle-
free, two dimensional euclidean space, an optimal minimum-length path with constraints
on curvature and with boundary conditions can be realized by a series of bang-bang
controls between a limited selection of forward motions, namely straight, full turn to the
right and full turn to the left. The model with such motion capabilities is referred to as
Dubins’ car. This observation was later extended to Reed-Shepp’s car [27] which is also
capable of reversed motion.

In the presence of changing obstacles and considering non-linear dynamics, the above-
mentioned optimal control problem proves to be challenging. Current solutions which
approximate the original formulation are computationally demanding even on today’s
processors. As an example of a practical implementation, the work in [28] can be con-
sidered. Their solution generates optimal trajectories both in presence of linear and
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non-linear constraints in form of boundary polynomials and obstacle ellipsoid, respec-
tively. Moreover, differential constraints on vehicle steering angle and steering angle rate
are incorporated. In their solution, samples of the flat variables and their derivatives
are used as independent variables in a non-linear programming algorithm.

A.2 Search Based Discrete Methods

Application of graph search methods in the area of path planning for mobile robots has
been extensively studied. The basic thought behind this approach is to represent the
search space by a graph where the edges are assigned a cost for travelling between two
vertices. Each vertex corresponds to either a location in the spatial plain or a state of the
discretized state-space. The former, however, typically proves to be insufficient since the
nonholonomicity and the dynamics of the mobile robot are overlooked and therefore can
result in an untraversable path. Discretizing an extended state-space of the robot whilst
accounting for the differential constraints provide kinematic feasibility of the path while
sacrificing the execution speed of the graph search methods. What follows introduces
some of the most common graph search methods used in path planning for mobile robots.

A.2.1 A∗ Algorithm

The A∗ search method [29][30] was first introduced in 1968 as a modified version of
the classic Dijkstra’s algorithm [31]. A∗ improves Dijkstra’s algorithm by including a
heuristic which guides the search direction and by doing so decreases the number of
necessary computations.

The cost function for this search method can be described as

f(n) = g(n) + h(n) (A.1)

where g(n) is the sum of the costs from the initial node up to the current node and the
heuristic function h(n) represents the future cost from the current node to the goal. h(n)
never overestimates this cost and in other words is an admissible heuristic. For instance,
assuming a search in the 2-dimensional spatial plain, let [xgoal ygoal] be the position of
the goal state ngoal. Now, for a node n with coordinates at [x y], h(n) can simply be
defined as

√
(xgoal − x)2 + (ygoal − y)2 which disregards the obstacles and hence is an

underestimate of the actual cost, distance to ngoal in presence of obstacles. With such
underestimating heuristic, A∗ guarantees optimality, i.e. finding the path with the least
cost-to-go. Choosing a suitable heuristic is of significant importance in this graph search
method. A large difference between the underestimated heuristic cost and the actual
cost can degenerate the time complexity of A∗ to that of an exponential time algorithm
[32].
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Algorithm 2 demonstrates A∗ in further detail. The algorithm receives nodes n ∈ N
where N is a set of all the possible robot positions and returns the path TraversedPath
from the initial position nstart to the designated goal ngoal. Function EdgeCost(ni,nj)
represents the cost of a single edge between the two adjacent nodes ni nj . h[ni] is
the above-mentioned heuristic cost from ni to the goal position ngoal. g[ni] and f [ni]
represent the costs at the node ni as described above. The algorithm starts by assigning
an infinite cost g to all the nodes except for the initial cost g [nstart] , which holds a
value of 0. nstart is then copied to a priority queue OpenSet ⊂ N which is an ordered
set where the element n with the highest priority is the one with the assigned cost f [n].
As the algorithm progresses, the highest priority element in OpenSet is removed from
the set and the costs for the neighbouring nodes nneighbour are evaluated. If the sum
of the current cost at node ncurrent and EdgeCost(ncurrrent,nneighbour) is less than the
current cost of a neighbouring node, the corresponding cost for that node f [nneighbour] is
set to this new value, and the affected node nneighbour is placed in OpenSet. This process
repeats until ngoal is reached or OpenSet is empty, which means that the goal cannot
be reached. Note that the returned value TraversedPath [ncurrent] is in fact a set of
nodes building up the path from nstart to ngoal. This implies that at every iteration, the
predecessor of each node should be saved in order to be able to recover the final path.
For the sake of simplicity, this is not explicitly handled in Algorithm 2.

The dynamic programming nature of the A∗ method promises efficient implementation
of the algorithm and hence a relatively fast execution. However, in the context of path
planning for mobile robots and in the case of employing A∗ only in the spatial domain,
disregarding the nonholonomic constraints renders the resulting crude path far from
desirable. Therefore, in practice the resulting path is typically used as a heuristic in more
sophisticated hybrid methods or is fed to some smoothing stage to guarantee satisfying
the differential constraints.

Some practical examples of utilization of A∗ in path planning for mobile robots can be
seen in [13] and [32]. In [13], an A∗ variant, the so-called Hybrid-State A∗ is applied to the
discretized 3-dimensional kinematic state-space of the vehicle. The search is guided by a
combination of heuristics to take into account both the obstacles in the search space and
the nonholonomic constraints of the vehicle. The resulting path which is guaranteed to
be drivable is then used in a gradient decent algorithm to locally improve the trajectory.
Similarly, [32] employs A∗ on a descretized state-space of the vehicle while a heuristic
based on rotation-translation-rotaion (RTR) [33] accounts for kinematic constraints and
another heuristic built upon a Voronoi diagram (see A.4.1) incorporates the obstacles
in the search.

A.2.2 D∗ Algorithm

In a real-world scenario, a mobile robot typically has limited knowledge about the ob-
stacles on the path leading to the goal. This knowledge is incrementally improved as the
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Data: all nodes n ∈ N , start node nstart, goal node ngoal
Result: TraversedPath path from nstart to ngoal
OpenSet← nstart ;
TraversedPath← ∅ ;
forall the n ∈ N do

g [n]←∞
end
g [nstart]← 0 ;
f [nstart]← g [nstart] + h(nstart) ;
OpenSet← nstart ;
while OpenSet 6= ∅ do

remove ncurrent from OpenSet ;
ncurrent ← arg min

n∈OpenSet
f [n] ;

if ncurrent = ngoal then
return TraveresedPath [ncurrent] ;

end
foreach nneighbour ∈ NeighboursOf(ncurrent) do

if g [nneighbour] < g [ncurrent] + EdgeCost(ncurrent,nneighbour) and
nneighbour ∈ OpenSet then

TraversedPath [nneighbour]← ncurrent ;
g [nneighbour]← g [ncurrent] + EdgeCost(ncurrent,nneighbour) ;
f [nneighbour]← g [nneighbour] + h(nneighbour) ;
OpenSet← nneighbour ;

end

end

end
return NoPathFound ;

Algorithm 2: pseudo-code demonstrating the A∗ algorithm

robot discovers new obstacles in the arena. It is therefore of importance that the com-
puted path to the goal is updated as new information about the environment is received,
in other terms, a replanning step is necessary as the graph to be searched through is
altered. The previously introduced A∗ algorithm provides no solution for the replanning
problem other than re-initiating the graph search from scratch. D∗Lite [34], Focused
D∗Lite [35] and D∗Lite [36] have been the suggested incremental algorithms that ex-
tend A∗ with replanning capability. These algorithms use very similar approaches, but
D∗Lite has gained more popularity due to its simplicity and improved performance [36]
[37]. This introduction mainly focuses on D∗Lite however the fundamental idea generally
applies to rest of the approaches.

D∗Lite starts the search in a backwards manner, i.e. from the goal state towards the start
state. After the initial optimal path is found, in the event of changes in the graph, the
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states affected by the change will have their costs updated. The backwards approach in
D∗Lite makes it possible to re-use parts of the path as the robot moves and the nstart is
changed. In a forward search, with every movement of the robot, the costs for the entire
states would have to be updated.

D∗ and D∗Lite perform efficiently when the changes in the graph occur in an area close
the current position of the robot. On the other hand, if these variations take place
further away, in some cases the A∗ can in fact out-perform these alternatives. Moreover,
in completely unknown areas, the backward search used in D∗ and D∗Lite prove to be
less efficient than a forward search approach. More detailed information about D∗Lite
and an evaluation of its performance can be found in [36] and [37].

A.2.3 Any-time Algorithms

Where the planning problem gets more complicated, the introduced algorithms might
fail to produce a solution in the limited allotted execution time. Any-time algorithms
refer to algorithms which generate a fast and normally sub-optimal solution and further
improve that solution the more time they are given. There have been several proposed
methods that incorporate this concept with the aforementioned algorithms. One of the
most prevalent of these algorithms is the extension of D∗Lite called Any-time D∗Lite
[38]. This approach was used in [12] to perform a graph search through a state-lattice
(see A.6). The efficiency of Any-time D∗Lite can be further improved by using the
modifications in D∗Lite [37].

A.3 Randomized Sampling Based Methods

Sampling based algorithms are a class of algorithms mainly characterized by the property
that they do not require explicit information about the obstacles in the configuration
space a priori. Instead they check the feasibility of trajectories generated to connect a
set of randomly sampled configurations. Hence, the solution will be guaranteed to be
collision-free. These algorithms are not complete in the sense described in A.2. However,
they are probabilistically complete, i.e. the probability of finding a solution if one exists,
converges to one as the number of samples approaches infinity [6].

A.3.1 Probabilistic Road Maps

The idea of motion planning by means of randomly sampling the state-space first emerged
in 1996 in a frame-work known as probabilistic roadmap (PRM) [39]. PRM is a multiple-
query algorithm in the sense that it pre-computes a graph of obstacle-free trajectories
which is then used to return the least costly path between the queried start and final
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configurations. This approach has proven effective in a structured setting with static
obstacles, e.g. off-line planning of industrial manipulators functioning in an static envi-
ronment.

A.3.2 Rapidly-exploring Random Trees (RRT)

Another member of this class of algorithms, geared towards systems under kinodynamic
constraints and operating in dynamically changing environments is known as Rapidly-
exploring random trees or RRT, which was introduced in 2001 [40]. Being an incremental
algorithm, in contrast to PRM, RRT does not require pre-computing a graph with a
certain number of samples. Instead, it returns a solution when a valid path consisting of
the required number of trajectories is computed. This algorithm has also the any-time
property i.e. it can return an initial solution which is improved given more time. RRT
is summarized in algorithm 3. After initializing the RRT graph, function Sample takes
a random sample xrandom from the configuration space. Function GetClosestVertex
then finds the closest vertex xclosest to the newly sampled configuration. Afterwards
NewEdge constructs an edge between xclosest and xrandom. If this edge is collision-free,
the RRT graph is updated with the new vertex and edge.

Data: initial state xstart and goal state xgoal
Result: G = (V,E)
while xgoal not reached do

G← (xstart,∅) ;
xrandom ← Sample() ;
xclosest ← GetClosestVertex(V ,xrandom) ;
edge← NewEdge(xclosest,xrandom) ;
if IsCollisionFree(edge) then

V ← V ∪ xrandom ;
E ← E ∪ edge ;

end

end
return G← (V,E) ;

Algorithm 3: RRT algorithm [6]. See text for function descriptions.

A.3.3 RRT∗

RRT∗ is the asymptotically optimal extension of RRT. Asymptotic optimality means
that the solution will converge to an optimal one if the number of samples approaches
infinity. The complexity of RRT∗ is however still closely comparable to that of RRT [6].

Algorithm 4 summarizes the steps in RRT∗. The algorithm shares the same initializing
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and sampling of RRT. However, after acquiring the random sample xrandom, a set of
nearby vertices Xnear is found by function GetCloseVertices. Then some temporary
edges are created between the random sample and the vertices in xnear ∈ Xnear. The cost
of the edges that are collision-free is calculated by EdgeCost and added to the path cost
up until the corresponding xnear returned by PathCost. The xnear that has the lowest
sum of these tow costs is then added to the RRT∗ graph along with xrandom and the edge
connecting the two which we refer to as edgenew. Next, the possible changes occurred
in the previous step must be propagated throughout the rest of the graph. In order to
achieve this, first the vertices contained in Xnear/xrandom are connected to the xrandom
(which is now newly connected to the rest of the graph via edgenew ) by temporary edges
edge and checked for being collision-free. If the path cost until an xnearis larger than
the cost until xrandom plus the edge cost of the corresponding edge, then the last edge
leading to that xnear is removed from the graph. This step ensures that the less costly
paths to the first-degree vertices via the newly added xrandom replace the existing paths.
In 4, this step is denoted by the function PropagateGraphChanges.

Data: initial state xstart and goal state xgoal
Result: G = (V,E)
while xgoal not reached do

G← (xstart,∅) ;
xrandom ← Sample() ;
Xnear ← GetCloseVertices(xrandom) ;
xmin ←

arg min
xnear∈Xnear|IsCollisionFree(edge←NewEdge(xnear,xrandom))

{PathCost(xnear) +

EdgeCost(edge)} ;
G← (V ∪ xrandom, E ∪NewEdge(xmin,xrandom) ;
G← PropagateGraphChanges(G) ;

end
return G ;

Algorithm 4: RRT ∗ algorithm [6]. See text for function descriptions.

A.4 Geometric Methods

A.4.1 Voronoi Diagram

The Voronoi diagram was first introduced in 1908 by Georgy Voronoi. Such a diagram
demonstrates the distances between sets of points in a multi-dimensional space. In the
area of path planning for mobile robots, a two dimensional space is used. The diagram is
formed by connecting lines equidistant to the closest pair of points in the given set (see
figure A.1(a)). In a path planning problem, the polygonal obstacles are represented by a
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set of points which are known a priori. This set is used to construct a Voronoi diagram
which is then pruned to remove the edges colliding with the obstacles or leading to
dead-ends. The resulting graph is then searched to find the shortest path to the goal. A
variety of graph search methods, e.g. those mentioned in A.2, can be used in this step.
Figure A.1(b) displays a pruned Voronoi diagram built in an arena and the resulting
path.

(a) (b)

Figure A.1: Generalized Voronoi diagram for a series of points A.1(a) and application
of the diagram in a path planning problem A.1(b). Image taken from [41]. Green lines
represent the Voronoi diagram after pruning and the blue line is the path found after the
search step.

Being a purely geometric method, Voronoi diagram disregards the kinodynamics of the
robot and therefore cannot provide a feasible solution to a path planning problem on
its own. The result is therefore normally incorporated in multi-step solutions. As seen
in [32], a Voronoi diagram is used as part of the heuristic for an A∗ graph search.
Additionally [13] uses a Voronoi diagram to construct a field around the obstacles.

A.5 Potential Fields

The idea of obstacle avoidance and path planning using potential fields was initially
introduced in 1986 [42]. In this method, the agent (the robot) is modelled as a particle
affected by attracting and repulsive potentials. Obstacles can be represented as repelling
fields Urepulsive while the goal can be an attracting potential Uattracting. The force ~F,
acting on the particle will be:

~F = −~∇(Urepulsive + Uattracting)

In other terms, an obstacle-free path to the goal can be found by moving the particle in
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the direction of ~F i.e. descending along the gradient of the sum of the potentials. Figure
A.2 illustrates this concept.

Figure A.2: a potential field consisting of three obstacles and and a goal at (1,-2). Image
taken from [43]

As an example, the potentials Urepulsive and Uattracting can be defined as the following
[42]:

Uattracting =
k|x−xg |2

2

Urepulsive =

1
2η(1ρ −

1
ρ0

)2, if ρ ≤ ρ0

0, if ρ > ρ0

where x is the current position of the robot and xg the attraction point, i.e. the goal. The
current shortest distance between the robot and the obstacle is denoted by ρ, while ρ0
represents the minimum influencing distance of the potential field. k and η are constants.
Other formulations of the potentials tailored to specific path planning problems have
been suggested in the literature. For instance, [20] proposes a set of repulsive functions
to account for lane markings, road barriers and other vehicles in a highway setting. The
fields corresponding to the other vehicles change size based on the relative speed to
assure a safe distance.

Being an inherently gradient based method, solutions built solely on potential fields
run the risk of entrapment in local minima. This is the major issue in this approach
and therefore, in the context of path planning for automotive applications, this method
is typically used in conjunction with other methods. Another possible problem is in
the more complex obstacle configurations where narrow passages may be assigned high
potential values which makes precise manoeuvres difficult. An example of addressing this
issue can be seen in [13] where, based on the geometry of the obstacle, a variable-size
potential is used.
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A.6 State Lattice

State-lattice was initially proposed in 2005 [44] as a solution to the path planning prob-
lem. In this approach, the state-space is discretized and a set of trajectories are calculated
which connect each of the discrete states to a set of its reachable neighbours, thus form-
ing a lattice. The result is a regular and repeatable directed graph where each vertex is
a reachable state and each edge is a feasible trajectory which accounts for the motion
constraints of the mobile robot. Figure A.3 displays a simple state-lattice.

Figure A.3: a simple state-lattice. Image taken from [21]

The trajectories (graph edges) are typically calculated using relatively high-fidelity kine-
matic models in order to satisfy differential constraints. The regularly sampled state-
space makes it possible to either pre-compute and save the connecting trajectories or
generate them on-line by means of solving simpler optimal control problems. A proposed
method suitable for on-line generation of trajectories can be found in [3]. This approach
will be investigated in detail later on in the report (see 3.3).

Given the state-lattice, the solution for the desired navigation can be found on-line via a
graph search step which satisfies the spatial constraints, i.e. an obstacle-free path. Being
a directed graph, a variety of search methods such as the ones summarized in A.2 can
be used.

An implementation of a lattice-based approach can be seen in [5] where the path planner
was tested in a planetary rover. Another example is found in [12] where this method is
applied in the DARPA Urban Challenge.

A.7 Highway Specific Methods

The approaches summarized so far mainly consider unstructured environments and try to
tackle the path planning problem in its rather general form. However, more efficient and
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to some extent add-hoc approaches can be formed in a structured setting with a priori
knowledge of the characteristics of the environment as well as the expected manoeuvres.

In particular, autonomous driving in a high-way setting has been appealing to both re-
searchers and the industry. Intelligent Vehicle Highway Systems (IVHS) has been the
topic of extensive research and a variety of algorithms have been proposed for applica-
tions such as lane following, lane change, overtake and platooning. Suited for automotive
applications, passenger comfort criteria such as disturbances caused by lateral and lon-
gitudinal accelerations play an important role in the design of such solutions. This is
mostly overlooked in the methods developed for mobile robots intended for non-passenger
applications.
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Trajectories for Highway
Manoeuvres

This appendix includes a motivation for the cost functional choice in 3.2. It is shown
why minimizing jerk over a trajectory should give the best result in terms of passen-
ger comfort. Details on how constraints on acceleration are included in the trajectory
generation for highway manoeuvres are also given. For this purpose, an algorithm for
iterative adjustment of the trajectory is presented.

B.1 A remark on jerk-minimized trajectories

As mentioned earlier in this report, the proposed method for the highway overtake case is
based on generation of a series of jerk-minimized trajectories. The literature on the topic
of trajectory planning, often regard minimizing the third time derivative of displacement
as a suitable approach for increasing comfort and smoothness.

As demonstrated in [45] and [46], a trajectory x(t) will connect a start point to an end
point smoothly if it minimizes the following cost function:

J =

∫ tf

0

...
x (t)2dt (B.1)

Minimizing B.1 implies minimizing changes in force. The question might arise that why
in particular minimizing the third time derivative of position results into better behaving
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trajectories than when higher or lower order time derivatives are minimized. In [47], the
authors study the behaviour of x(t) when minimizing the following cost functional:

J =

∫ tf

0
(dnx(t)/dtn)2dt (B.2)

As the derivation order n increases, the maximum speed over the trajectory x(t) will
also increase. Figure B.1 displays x(t) and the speed along the trajectory when B.2
is minimized for n ∈ {2,3,4,5,6}. The 4th, 5th and 6th time derivatives of x(t) i.e.
n ∈ {4,5,6} are normally referred to as snap, crackle and pop respectively. These results
were obtained numerically by formulating the corresponding optimal control problem
using the cost function B.2 subject to the differnetial constraints and boundry conditions
in B.3. The problems were solved using BOCOP — an open-source optimal control
solver, for tf = 4 seconds and xtf = 4 meters.[

ẋ(t) ẋ(1)(t) · · · ẋ(n−1)(t) ẋ(n)(t)

]
=

[
x(1)(t) x(2)(t) · · · x(n)(t) u(t)

]
[
x(0) x(1)(0) · · · x(n)(0)

]
= 0

x(tf ) = xtf[
x(1)(tf ) · · · x(n)(tf )

]
= 0

(B.3)
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Figure B.1: x(t) (left) and its first derivative (right) when the cost function B.2 is mini-
mized for different values of n subject to constraints in B.3

If r denotes the ratio between the maximum speed along x(t) to the speed averaged along
the trajectory [47] [48], table B.1 shows the values for r obtained for the corresponding
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Table B.1: Values calculated for r when n ∈ {2,3,4,5,6}

derivation order n ratio r

2 1.5000

3 1.8750

4 2.1875

5 2.4609

6 2.7070

cases of acceleration-, jerk-, snap-, crackle- and pop-minimized trajectories displayed in
figure B.1.

Through experiments [45], it has been concluded that the ratio r for a so called reaching
movement performed by human beings has an approximated value of 1.8. As shown
earlier, r is closest to this value when n = 3 in other words when jerk is minimized.
These observations have been of particular interest in the area of brain and cognitive
science, computational neurobiology and rehabilitation [49].

The effect of jerk on perception of motion has been proven both neurophysiologically
[50] and psychophysically [51] [52] [53]. With this said, criteria for passenger comfort
under normal driving conditions in ground vehicles have rarely been a topic of investiga-
tion. Generally, the changes of motion felt by the passengers determines their comfort
[54]. Jerk as a comfort criteria has been studied in [55] while [56] finds jerk as the most
important comfort criterion. Constant speed does not impose any forces on passengers,
acceleration on the other hand is felt. Constant acceleration can be tolerated by passen-
gers by means of bracing themselves, however, variations in acceleration (jerk) is said to
be the main reason of discomfort due to causing loss of balance [56].

B.2 Inclusion of state constraints

Consider a variation of problem 3.3 where symmetric restrictions on acceleration are
made
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min
u(t)

∫ tf

0

1

2
u2(t)dt

s.t. ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = u(t)

|x3(t)| ≤ amax
x1(0) = x10, x2(0) = x20, x3(0) = x30

x1(tf ) = x1f , x2(tf ) = x2f , x3(tf ) = x3f

Due to the hard endpoint constraints x1f ,x2f , x3f it is evident that there are no general
solution the problem, since feasible ones might not exist. Instead, the qualitative proper-
ties of the solution are conditioned on the current configurations of boundary conditions
and final times. Assuming feasibility, the problem has either the same solution as the
unrestricted problem or one where the lateral acceleration is saturated for periods of
time. The principal behaviour of the system for a situation where this occurs is shown
in Figure B.2, where the results are numerical and retrieved through the solver BOCOP
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Figure B.2: maps with limits

Even though a closed form solution can be found for problems of this type, there is an
important relationship between maximum acceleration and jerk making it less desirable.
As noted in [57] trajectories with low levels of maximum acceleration will always be
coupled to higher levels of maximum jerk for any same boundary conditions. Specifically,
the levels of jerk subjected to the system and the time during which it is saturated in
x3(t) is strongly related. Periods of saturation, especially longer ones, necessitates higher
levels of jerk during the transitions to and from the maximum acceleration levels. Letting
ur and uu denote the jerk levels of the restricted and unrestricted problem respectively,
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one can see even without mathematical rigour that given the same boundary conditions
and final time the following must hold

max
t
|(uu(t)|) ≤ max

t
(|ur(t)|) (B.4)

Specifically max(ur(t) → ∞ as the system approaches its feasibility limits, resulting
in a system behaviout similar to that of Bang-Bang-control. Due to this a different
approach has been taken focusing more on reducing the overall jerk levels than pushing
the optimality limits of the system and thereby getting shorter periods of higher jerk.

The main idea is to restrict the acceleration extrema to lie in a certain interval which
bounds are set to be the maximum allowed acceleration, i.e.

max
t∈(0,tf )

(|x3(t)|) ∈ [0, amax]

so that
x3(t) ∈ [−amax, amax]

These maxima obviously occurs at the roots of ẋ3. By substituting these into Equation
3.4 and equating it to the specified bound on acceleration one gets a relation between
the extrema and boundary conditions of the system. Considering the final time tf as
variable and solving for it, one retrieves the final time for which the trajectory given by
the specified boundary conditions has its maxima exactly at the limiting value.

Formally,by differentiating 3.4 so that

ẋ3(t) = −1

2
C1t

2 + C2t− C3

and setting ẋ3(t) = 0 the time at which the extrema occur is found as

tmax =
C2

C1
±

√(
C2

C1

)2

− 2C3

C1
(B.5)

The specific root of interest, at which the highest value in magnitude is achieved, is deter-
mined by C1,C2 and C3, i.e, by the boundary conditions. Now, setting the acceleration
at the time tmax to the prescribed maximum value one gets

amax = −1

6
C1t

3
max +

1

2
C2t

2
max − C3tmax + C4 (B.6)

After substituting B.5 and 3.7-3.12 one gets a 13:th order polynomial in the final time
tf , i.e. an equation that lacks analytic solution. However, in the special case where the
particle moves from one stationary point to another, i.e. x20 = x30 = x2f = x3f = 0 it
can be shown that

tMf =

√
10√

3

1

amax
|(x1f − x10)| (B.7)
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Where tMf then is the final time for which the maximum acceleration of the trajectory
is equal to that of the bound amax. Now, since this situation only will be of interest
at the time instance where a manoeuvre is commenced, and not be applicable for any
in-between replanning situation. The solution of Equation B.6 must therefore be found
numerically for all non stationary boundary conditions. Algorithm 5 based on interval
halving has been implemented that solves this. Assuming that the maxima of the sought
trajectory at the given non stationary boundary conditions together with the nominal
final time yields maximal accelerations that in magnitude are greater than the specified
bound, the actual final time for which the bounds are respected is found through the
algorithm by iterative adjustment of the nominal final time.

An example of the progress for a typical replanning situation,i.e., planning when an old
trajectory already is traversed, with non stationary boundary conditions is shown in
Figure B.3, where the procedure is visualized.
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Figure B.3: Proceedings of Algorithm 5 when with the boundary conditions x10 = 0,x20 =
−5, x30 = −1.9, x1f = 7, x2f = 0 and x3f = 0. amax is set to 2 and and visualized as dotted
horizontal lines. The nominal curve, computed with stationary boundary conditions are
shown as the dashed curve. The value at the iterations are shown as colored lines, where
greener hues are later iterates and red earlier.

Very few iterations are normally needed and the execution time is negligible. The pro-
cedure GetMaximumAcceleration(t) returns the acceleration largest in value within
the range (0,t). Note that this assumes that initial and final conditions on accelera-
tion are within the specified bounds. GetNominalTime(B,amax) simply returns the
value of Equation B.7. By using this procedure, all generated trajectories can there-
fore be guaranteed to have accelerations within specified border while at the same time
minimizing the cost measure defined in Equation 3.3.
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Data: Boundary Conditions B,Acceleration Bound amax
Result: final time tf
tnomf ← GetNominalTime(B,amax);

anom ← GetMaximumAcceleration(tnomf );

if |anom| < amax then
return tnomf

else
flow ← |anom| − amax;

tlowf ← tnomf ;

end
P ← 2;
while fhigh > 0 do

thighf ← tlowf P ;

ahigh ← GetMaximumAcceleration(thighf );

fhigh ← |ahigh| − amax;
P ← P + 1;

end
k ← 0;
while k < kmax do

k ← k + 1;

tmidf ← (thighf +tlowf )

2 ;

amid ← GetMaximumAcceleration(tmidf );

fmid ← |amid| − amax;
if |fmid| < ε or (thigh − tlow)/2 < ε then

return tmidf

else
if sign(fmid) = (flow) then

flow ← fmid;

tlowf ← tmidf ;

else
fhigh ← fmid;

thighf ← tmidf ;

end

end

end

return tmidf

Algorithm 5: Bisection Algorithm for finding final time tf
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Cost Components

This Appendix details the different cost components introduced in 3.4.1 and used in the
trajectory selection. The reader should note that the costs presented only are proposed
alternatives and that many others could be considered.

Jerk Following the reasoning in 2.3 which will be discussed further in 3.2 the squared
integral of lateral jerk has been selected as a measure of comfort. Formally, if the unscaled
cost of one trajectory tj is given as

Jj =

∫
tj

j2latds

where the integral is taken over the spanned trajectory. The output of the associated
cost function is then formed as

fjerk(T,tj ,) = − Jj
max
i

(Ji)

where the minus sign is included since high jerk levels are a negative property. The
intention with this definition is to give a inclination towards those trajectories exhibiting
low overall jerk levels.

Maximal Acceleration To get at preference for trajectories with low maximal lateral
acceleration the following cost is defined for each trajectory tj

Aj = max
tj

(|alat|)
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where the max operator is taken over the entire trajectory. The normalized output is
then formed according to

facc(T,tj) = − Aj
max
i

(Ai)

The minus sign is again included due to the adverse effects of the described property

Deviation from desired Lane Since it in most cases exist one lane is more desireable
to be positioned in a certain lane, e.g. the rightmost lane during normal operation, left
lane in preparation for a left turn etc., a cost is introduced to ”pull” the host towards
it. Letting y be the lateral position of the current trajectory endpoint, yd the lateral
position of the desired lane center and WR the total road width, the measure is formed
as

flane(tj ,E) = −|y − yd|
WR

Deviation from Lane Center In many cases it is necessary to traverse the road in
other lanes than desired one, e.g. during overtaking. It is however in that case motivated
by safety, comfort and traffic regulations to be positioned close to the current lane center.
A punishment from deviating from the closest lane center is therefore added. In a road
bound coordinate system with its horizontal axis along the centreline, the measure is
taken as

fcenter =
cos
(

2π 2y−WL(N−1)
2WL

)
− 1

2

visualized in Figure C.1. Here, WL,N are the width of a lane and number of lanes
respectively, while y is the lateral coordinate.

Terminal Longitudinal Velocity To premier higher velocities and thereby faster
road traversal a speed dependent component is introduced. Since the longitudinal control
is outside the reach of the planner, lateral motions letting the ACC works in its set speed
adapting mode will thereby score higher. Denoting the terminal velocity of trajectory j
vf,j and the ACC set speed vS , the measure is formed as

fvel =
vf,j
vs

(C.1)

Note that this is the only positive contribution presented in this section. Without it,
or some other cost with similar impact, the planner will eventually ”get stuck” laterally
as the vehicle rather will slow down and stay in- rather than manoeuvre away from the
desired lane once it is reached. Equation C.1 will therefore ”pull” the vehicle around
obstacles along faster trajectories such are available.
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Figure C.1: Cost of lane center deviation. The blue line is fcenter while the thinner black
lines marks the lane centres.

Proximity to Obstacles Heavily related to safety, the most important criteria against
which all trajectories must be validated is that of the proximity to nearby obstacles.
Since the trajectories extend forwards in time, this measure must be computed using
the prediction of obstacle and host vehicle motion over some horizon τf . Refraining
from a precise definition of how it is obtained, the set of predicted obstacle trajectories
is denoted O, containing individual elements ol, l = 1,...,|O|. The distance to other
road occupants considered dangerous or uncomfortable is highly asymmetric in the road
coordinates (x,y) due to which the standard euclidean norm is ill suited as a basis for
the desired measure. Compare for example the smaller distance at which it is perceived
as safe to pass a vehicle with the headway distance used during normal highway driving.
The asymmetries essentially raises the need for two distance measures; one for lateral
displacement and one for longitudinal. Capturing both demands, a dynamically varying
weighted norm is therefore defined according to

g(tj ,ol,τ) =

√
∆x2(τ)

σ2x(vol(τ),vtj (τ))
+

∆y2(τ)

σ2y

where vtj and vol are the longitudinal velocities along the trajectories of the host and
obstacle respectively and ∆y(τ) = tjy(τ) − oly(τ), ∆x(τ) = tjx(τ) − olx(τ). The vari-
ables tjx(τ),olx(τ),tjy(τ) and oly(τ) are here meant to be read as the (x,y) coordinates at
time τ . Geometrically, g(tj ,ol,τ) is an elliptic function with minor and major axes deter-
mined by σx(vol(τ),vtj (τ)) and σy, where the former is time (or rather speed) dependent.
Although somewhat an abuse of notation, the arguments tj and ol should thereby be
interpreted as multidimensional collections containing descriptions of the relevant pre-
dicted states of the host and current obstacle respectively. To allow a bounded numerical
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range and functional values increasing with proximity, g(tj ,ol,τ) ∈ R is restricted to the
unit interval by

ĝ(tj ,ol,τ) =
1

1 + g(tj ,ol,τ)
(C.2)

While keeping the elliptic shape, this function reaches it’s maximum ĝ(tj ,ol,τ) = 1 if the
host and obstacle trajectories intersect in (x,y,τ), and decays towards 0 as they move
apart. However, ĝ(tj ,ol,τ) lacks physical meaning rendering it unintuitive and therefore
complicated to specify limits and evolution properties of the measure. Letting c ∈ (0,1)
be the limiting value of ĝ(tj ,ol,τ), i.e. the value at which a proximity limit is violated,
and defining ∆xlim and ∆ylim as the distances in the purely longitudinal (x) and purely
lateral (y) dimension at which this is achieved, one gets with Equation C.2 that

ĝ(tj ,ol,τ) =
1

1 + g(tj ,ol,τ)
= c →

√
∆x2lim

σ2x(vol(τ),vtj (τ))
+

∆y2lim
σ2y

= 1/c− 1

Letting the longitudinal distance ∆x = 0, σy can then be found as

∆ylim
σy

= 1/c− 1 → σy =
∆ylim

1/c− 1

Similarly, setting ∆y = 0 gives σx as

σx(vol(τ),vtj (τ)) =
∆xlim(vol(τ),vtj (τ))

1/c− 1

In this way all values ĝ(tj ,ol,τ) > c will correspond to relative, asymmetric distances
below the specified limit, i.e. with a proximity deemed to be to high. The choice of c
can in principle be set arbitrary as long as c ∈ (0,1). However, by changing c one affects
the growth rate, i.e. derivative of ĝ and thereby the characteristics of the measure in the
allowed region. As seen demonstrated in Figure C.2 it tends to be more linear in the
vicinity of the limiting distance as c→ 1 and contrary heavily non-linear as c→ 0

Besides the previously treated asymmetries in (x,y), an additional one exist in the lon-
gitudinal direction. Depending on the relative speed between the host and obstacle, the
proximity measure can be differentiated for ∆x > 0 and ∆x < 0. Consider for example
a case where the host is overtaking a slower moving obstacle. Clearly, the limiting dis-
tance needed in the beginning of the manoeuvre when the host is behind the obstacle
is greater than that when it returns to the lane in front of it. A remedy for this is to
further augment the function used, and introduce different fall-off rates σx for the front
and rear end of the obstacle. One intuitive way to realize this is to introduce logical
conditioning, i.e. if-then-else branching, selecting between cases. However, to ensure
continuity and promote simplicity a smooth blending is preferred and can be set up as

p(tj ,ol,τ) = S(∆x(τ))ĝ1(tj ,ol,τ) + S(−∆x(τ)))ĝ2(tj ,ol,τ) (C.3)
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Figure C.2: Behaviour of ĝ(tj ,ol,τ) close to some limiting distance. The red hues corre-
spond to small values of c and green to higher. Note that ĝ(tj ,ol,τ) here is normalized with
c for easier comparison.

if S(x) is a bounded function such that S(x) → d as x → ∞, S(x) → 0 as x → −∞
and S(x) + S(−x) = d, ∀x, given some d ∈ R. The functions ĝ1(tj ,ol,τ) and ĝ2(tj ,ol,τ)
are defined as in Equation C.2 but differentiated by replacement of σx with σx1 and σx2
respectively. The requirements on S(x) are met by the (logistic) sigmoid function

S(x) =
1

1 + e−βt

since

S(x) + S(−x) =
1

1 + e−βt
+

1

1 + eβt
=

2 + e−βx + eβx

(1 + e−βx) (1 + eβx)
=

2 + e−βx + eβx

2 + e−βx + eβx
= 1

and
1

1 + e−βt
→ 1 as x→∞, 1

1 + e−βt
→ 0 as x→ −∞

Here, β determines the ”slope” of the nearly linear region. The principal behaviour of
the blending is shown in Figure C.3

The necessary distance limits ∆ylim and ∆xlim and thereby σx1, σx2, σy are by nature
tuning parameters and deeper examination on suitable choices are outside the scope of
this thesis. Some values can however be derived from road geometry and simple dynamic
relationships. For instance, a simple choice for the lateral dimension is

∆ylim = σy(1/c− 1) = WL/2

where WL is the lane width. Further, involving speed dependence, two basic measures
can be used to determine the limiting distance in the longitudinal direction. Firstly, the
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from combining the two elliptic functions as defined
in Equation C.3

Figure C.3: Principal behaviour of the blending functions and the resulting proximity
measure. Numerical details are found in the figure headers.

relative velocity between host and obstacle together with some specified headway time
τh can be used to form

∆xIlim = (vol(τ)− vtj (τ))τh

Secondly, a dependence on the absolute speed of the host vehicle can be included as

∆xIIlim = D + vtjk

for some constants k and D. The latter effectively forms the minimum distance allowed.
The limiting measures are then taken as

σx1 =
max(∆xIlim + ∆xIIlim,∆x

II
lim)

1/c− 1

σx2 =
max(−∆xIlim + ∆xIIlim,∆x

II
lim)

1/c− 1

The behaviour of the function using these rules can be seen in Figure C.4

120



APPENDIX C. COST COMPONENTS

(a) vol − vtj < 0

(b) vol − vtj = 0

(c) vol − vtj > 0

Figure C.4: Visualization of the proximity measure at some time τ . The red lines indicate
the contour line p(tj ,ol,τ) = c and the blue lines some other levels curves of the function.
With the notation used above the following values were used: β = 5, c = 0.5, k = 0.1, D =
5, WL = 4

Finally, the proximity cost is taken as the maximal proximity over the prediction of the
currently evaluated trajectory, considering all obstacles and normalized with the highest
allowed functional value c. Formally, taking τf as the current prediction horizon and
letting

M(tj ,O) = max
ol∈O

(
max

τ∈(0,τf )
(p(tj ,ol,τ))

)
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the measure is defined according to

fprox =

−
M(tj ,O)

c , if M(tj ,O) > c

−∞, otherwise
(C.4)

where the second statement will indicate that the current trajectory should be discarded
for violating set proximity limits. By this fprox ∈ (−1,0) aligning it with the other costs
defined above. In practice, the cost is evaluated on a discrete set of points along the
trajectory and the maximum is approximated by the highest values at these.

Stationarity As mentioned above and detailed in 3.4, discrete systems with ill de-
signed selection procedures might in some cases produce the chattering phenomenon.
Even though a filtered measure indeed reduces the risk, it is by no means guaranteed to
vanish. To increase safety margins and thereby further increase robustness, a contribu-
tion is introduced intended to premier fulfilment of initiated movements. That is, once
a motion has commenced, a penalty is placed on switching. With alat(t) as the current
lateral acceleration of the vehicle, the measure is defined according to

fstat =

− |alat|amax
when |alat| > ε

0 if |alat| < ε or trajectory is already active

Here, amax is a global limitation set by the planner on all generated trajectories and ε > 0
the limit determining when the cost is activated. Assuming that no external steering
commands are given so that the alat(t) < amax ∀t ∈ (0,tf ) the measure is restricted to
fstat ∈ [−1,0]. Figure C.5 shows the effects of this during a typical lane change scenario.
The costs of the trajectories not selected are clearly lowered after switching takes place,
creating the desired margin.
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(a) Evolution with Stationarity Cost
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(b) Evolution without Stationarity Cost

Figure C.5: Principal effects of the stationarity cost. Parameters used here was τ = 1, α =
1/3. Active cost contributions: Proximity, Deviation From Lane Center, Deviation from
desired lane and Terminal Longitudinal velocity with corresponding weights 2,1,1,4. The
weight for the stationarity cost was set to 4 in (a)
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D

Trajectories for Turning

This Appendix provide details relevant to the numerical trajectory generator presented
in 3.3. The Levenberg Marquardt Algorithm is intrdouced and explained together with a
detailed, step-by-step description of the algorithm that has been implemented. Further,
a procedure with which the decision variables of the problem are scaled to augment nu-
merical stability is detailed. A short description is also given on the Composite Simpson
Quadrature, which is utilized for numerical integration.

D.1 Levenberg Marquardt Algorithm

Selected for the implementation of Equation 3.25 is the Levenberg-Marquardt algorithm
as presented in [22], due to its frequent use in multidimensional root finding problems.
In essence, it constitutes a smooth mix between first and second order methods (e.g.
gradient descent and newtons method) applied to the squared residual. As the algo-
rithm progresses its characteristics vary between the two extremes as a function of the
behaviour of the objective near the current decision variable values. In essence, it takes
small steps where the function is changing rapidly and large ones . Formally, this is
performed by a linearisation of the function to be solved around the decision variables
at the current iterate q = [d, sf ] followed by equation of the linear approximation to
zero, i.e.

g(q + ∆q) ≈ g(q) +
∂g

∂q

∣∣∣∣
q

∆q = 0 ⇒ ∂g

∂q

∣∣∣∣
q

∆q = −g(q)

Where g(q) = [g1(q), g2(q)] after Equation 3.25. With the jacobian

124



APPENDIX D. TRAJECTORIES FOR TURNING

J =
∂g

∂q

∣∣∣∣
q

(D.1)

both sides are multiplied with J>

J>J∆q = −J>g(q) = −∇r(q) (D.2)

where r(s,d) = 1
2 ||g(d,sf )||2 is the squared residual of the system of equations. To intro-

duce diagonal dominance and thereby ensure invertability, Equation D.2 is augmented
to

(
J>J + λI

)
∆q = −J>g(q) = −∇g(q) (D.3)

and the increment is thereby given as

∆q = −
(

J>J + λI
)−1
∇g(q) (D.4)

The parameter λ > 0 now governs both the direction and size of the increment. Large
λ essentially turns the direction into that of gradient descent and reduces the step size.
Conversely, λ→ 0 yields a large step in the direction of the approximate newtons method.

The product J>J can be seen as an approximation of the Hessian of the squared residual
as it is used in Newtons Method.

γ =
∆fQ
∆fA

where ∆fQ,∆fA denotes the reduction in the quadratic model and actual function re-
spectively. An adjustment rule is thereafter conditioned on the value of γ, usually to
lower λ if γ > b and increase if γ < a for some 0 < a < b. Following this the computed
step is only accepted if γ ∈ (a,b), i.e. the computed result for bad choices of λ are
discarded and the values of the decision values kept to the next iteration. This means
that if the objective is badly conditioned in the vicinity of the current iterate, several
function evaluations are needed to adjust λ before actual progress can be made. To
reduce the number of function evaluations, a simpler approach is utilized based on the
presentation in [22]. Disregarding model fidelity, λ is reduced and a step taken if it leads
to a reduction in the residual, otherwise the previous values are kept and λ increased.
Consequently, λ is never ”fine tuned” to the best possible value by which the needed
number of function evaluation decreases. It should be noted that this choice comes with
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a cost, as the method renders the convergence more sensitive to ill conditioned functional
regions, thereby shrinking its basin of attraction.

Data: Boundary Conditions B, Initial damping λ0
Result:
p0 ←− GetInitialEstimate(B);
k ←− 0;
while 1 do

J ←− GetJacobian(p,B);
r ←− GetResidual(p,B);
g←− GetFunctionValues(p,B);

H ←− J>J ;

∇r ←− J>g;
while 1 do

k ←− k + 1;

d←− (H + λkI2)
−1∇r ;

if CheckCompletionConditions(k,∇r,r̂,λk) then
return pk

end
p̂←− pk − d;
p̂←− Project(p̂);
r̂ ←− GetResidual(p̂,B);
if r̂ < r then

λk+1 ←− λkα;
pk+1 ←− p̂;
Break Inner While Loop;

else
λk+1 ←− λkβ;

end

end

end

Algorithm 6: The Levenberg Marquardt method as implemented for the trajec-
tory generation in this thesis. The values of α < 1, β > 1 governs the rate of change
for the damping parameter. The method CheckCompletionConditions can be
set to check for various termination criteria, e.g. maximum number of iterations,
achieved accuracy, size of the gradient etc. The Project method is described
below in Appendix D.2.
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D.2 Projection Method

In essence the Projection Method allows unrestricted steps in the chosen search direction,
but projects any decision variables ending up outside the feasible set back on it [22]. The
procedure is schematically visualized in Figure D.1.

Figure D.1: Schematic illustration of the projection method for handling of inequality
constraints. The thicker line represent the boundary of the feasible set (white). The curved
lines are contour lines of the objective, solid arrows the search direction at each iterate,
dashed arrows the direction of projection

Due to the simple nature of the constraint, the rule is implemented for Equation 3.30 as

sf =

sf , if sf ≥
√

(x1 − x0)2 + (y1 − y0)2√
(x1 − x0)2 + (y1 − y0)2, otherwise

which is applied on all tentative search directions before they are accepted.

D.3 Scaling of Decision Variables

As noted in both [3] and [21] the system is numerically ill posed as the decision variables
commonly differs several orders of magnitude in size. For example, while the final length
sf commonly is in the order of 101− 102, the parameter d (or the equivalent in the work
done by others) typically ranges between 10−7 − 10−6. Due to this, numerical stability
and faster convergence is gained if the variables are rescaled [22]

Integrating Equation 3.26 one gets

ϕ(s) = as+
1

2
bs2 +

1

3
cs3 +

1

4
ds4 (D.5)

A scaled equivalent can then be defined as

ϕs(ss) = asss +
1

2
bss

2
s +

1

3
css

3
s +

1

4
dss

4
s (D.6)
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where the subscript s differentiating the scaled counterparts of the polynomial coefficients
and arclength. If done appropriately the problem as a whole can then be scaled by
simultaneously transforming the spatial boundary conditions so that

g1s(ds,sf ) =

∫ sfs

0
cos(ϕs(ds,sfs,ss))dss − x1s = 0 (D.7)

g2s(ds,sf ) =

∫ sfs

0
sin(ϕs(ds,sfs,ss))dss − y1s = 0 (D.8)

All being measures of distance, the spatial boundary conditions x1,y1 and arclength
parameter s can for some number N be rescaled as

ss =
s

N
, x1s =

x1
N
, y1s =

y1
N
, κ0s = κ0N, κ1N (D.9)

If the scaling of the polynomial coefficients then is done according to

as = aN bs = bN2 cs = cN3 ds = dN4 (D.10)

it is easy to see that

ϕs(ss) = ϕs

( s
N

)
= as

s

N
+

1

2
bs
s2

N2
+

1

3
cs
s3

N3
+

1

4
ds
s4

N4

= aN
s

N
+

1

2
bN2 s

2

N2
+

1

3
cN3 s

3

N3
+

1

4
dN4 s

4

N4

= as+
1

2
bs2 +

1

3
cs3 +

1

4
ds4 = ϕ(s)

That is, given scaling according to D.9 and D.10 the solution to the original problem
can be found as the inversely transformed solution to D.7 and D.8. In practice, the
boundary conditions on the spatial coordinates and curvature are transformed upon
entry of Algorithm [Algorithm Reference], all other steps performed equally. When the
algorithm finishes, it suffices to re transform according to

ds =
d

N4
, sfs =

sf
N
, κ0s = κ0N, κ1N (D.11)

since the relationship defined in Equation 3.27 holds for the scaled variables, and there-
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fore

as = κ0s = κ0N = aN

bs =

(
12ϕ1 − 4(2κ0s + κ1s)sfs + dss

4
fs

2s2fs

)

=

12ϕ1 − 4(2κ0N + κ1N)
sf
N + dN4 s

4
f

N4

2s2f

N2

=

(
12ϕ1 − 4(2κ0 + κ1)sf + ds4f

2s2f

)
N2 = bN2

cs = −3

(
4ϕ1 − 2(κ0s + κ1s)sfs + dss

4
fs

2s3fs

)

= −3

4ϕ1 − 2(κ0N + κ1N)
sf
N + dN4 s

4
f

N4

2s3f

N3

= −3

(
4ϕ1 − 2(κ0 + κ1)sf + ds4f

2s3f

)
N3 = cN3,

thereby achieving the desired overall transformation. Even though any number N can
be chosen as a basis of this transformation, a convenient choice is the euclidean distance
between the spatial end points. In doing this choice, one always puts the target on the
unit circle, thereby guaranteeing that the scaled final length must be such that sfs ≥ 1.
This is of practical use in determining if an encountered minima is the desired one, and
is used for this purpose in Algorithm 1 presented in the next section. In total, the
transformation brings sf (or really sfs) to lie in the range (1,2) while ds normally is
found within (−50,50).

D.4 Numerical Integration

The integrals containing sines and cosines of the heading polynomial, e.g. 3.25, is of the
Generalized Fresnel type and lacks analytical solutions due to which numerical methods
are needed. Even though a large number of numerical integration techniques can be
applied to the problem, Simpson’s Composite Quadrature rule is chosen due its numerical
efficiency when the integrand fullfills certain criteria. The rule is an extension of the
more commonly known Simpson Quadrature, where the integrand is replaced with a
inteprolating Lagrange polynomial of second order, sharing endpoints with the original
function. Denoting the original integrand f(x) and the polynomial p(x), the approximate
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integral over the range (a,b) is formed as∫ b

a
f(x)dx ≈

∫ b

a
p(x)dx =

b− a
6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
(D.12)

Intended to handle more general classes of functions, the extended version applies the
same polynomial approximation over subsections o the integration interval, whereby its
accuracy is improved. A schematic representation showing the differences is given in
Figure D.2

(a) (b)

Figure D.2: Illustration of the replacement of the integrand with quadratic polynomi-
als p(x) in Simpsons Quadrature rule (a) and Simpson’s Composite Quadrature rule (b).
The red line represents the original integrand f(x) and the blue lines the approximating
polynomial

The approximation over the range (a,b) are then given as the sum of the polynomial
snippets covering each subinterval. It has been shown that the result can be expressed
as ∫ b

a
f(x)dx ≈ δ

3

f(a) + 2

n/2−1∑
j=1

f(a+ 2jδ) + 4

n/2∑
j=1

f(a+ δ(2j − 1)) + f(b)

 (D.13)

where n is the number of subintervals. Even though there are modification to this rule
for variable segment length, allowing the computational effort spent to be focused on
ill behaved, i.e. highly oscillatory or non-smooth, parts of the function f(x), these are
avoided for sake of simplicity and the uniform subinterval length rule δ = (b − a)/n is
employed. The error ε in this approximation has been shown to be bounded by

|ε| ≤ (b− a)5

180n4
max
x̂∈(a,b)

(
d4f

dx4

∣∣∣∣
x=x̂

)
(D.14)

That is, the error decreases with for smoother functions, increased number of intervals
n and smaller integration ranges. Given a sufficiently smooth function, the number
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of integrand evaluations needed can therefore be kept very low. For details, see any
textbook on numerical methods in Calculus, e.g. [58].

The actual expression for the necessary integrals are not given here but are easily derived
using standard techniques.

131



E

Vehicle Modelling

The dynamical vehicle model of choice in this work is a single-track bicycle model dis-
played in figure E.1. This section aims to mathematically model the lateral transient
dynamics of the vehicle. In the following equations, (X,Y ) and (x,y) denote the lon-
gitudinal and lateral positions in the inertial (global) and the vehicle-fixed (moving)
coordinate systems respectively. Subscripts w and v denote the wheel-fixed and the
vehicle-fixed axis while front and rear wheels are represented by subscripts f and r.

The following holds for the motion of the bicycle in the inertial frame:

Ẋ = vx cosψ − vy sinψ

Ẏ = vx sinψ + vy cosψ

ψ̇ = ωz

(E.1)

Where ψ represents the yaw angle and ωz the yaw rate. Assuming linear cornering
behaviour yields the following equations for the lateral forces acting on the front and
rear wheels:

Fyr = −Cr vyrvxr

Fyfw = −Cf
vyfw
vxfw

(E.2)

Where Cf and Cr represent the cornering stiffness of the front and rear wheels respec-
tively. In the vehicle-fixed frame, the velocities vyr, vxr, vyfw and vxfw are found to
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(a) velocities and accelerations

(b) forces

Figure E.1: Accelerations and velocities E.1(a) and forces E.1(b) in the single-track model

be:

vyr = vy − bωz
vxr = vx

vyfw = (vy + aωz) cos(δ)− vx sin(δ)

vxfw = (vy + aωz) sin(δ)− vx cos(δ)

(E.3)
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With δ being the steering angle of the front wheel and a and b the distance between the
center of gravity and the front and rear axles respectively.

With the knowledge that ay = v̇y + ωzvx, using Newton’s second law, the following
dynamics can be derived:

v̇x = 1
m [Fxfw cos(δ)− Fyfw sin(δ) + Fxr] + vyωz

v̇y = 1
m [Fxfw sin(δ) + Fyfw cos(δ) + Fyr] + vxωz

ω̇z = a
Iz

[Fxfw sin(δ) + Fyfw cos(δ)] + b
Iz
Fyr

(E.4)

Where m and Iz respectively represent the vehicle’s mass and the moment of inertia
around the z axis. The front and rear axle forces are denoted by Fxfw and Fxr respec-
tively. For the case of a font-wheel-drive vehicle and under normal driving conditions,
Fxfw, and Fxr are recognized as the driving force and the rear axle rolling resistance.
These parameters shall be set to opposing values of proper magnitude with regard to the
desired propulsion. It can be noted that, under the assumption of v̇x = 0, i.e. constant
longitudinal velocity, vx in E.4 will turn into a parameter and the state vector will reduce
to [ vy ωz ]T .

By assuming constant vx, and small side and tyre slip angles, the model shown in figure
E.4 can be simplified to a fully linear model visually represented in figure E.2. For this

Figure E.2: simplified single-track vehicle model

model the following holds:

m(v̇y + vxωz) = Fr + Ff

Iω̇z = aFf − bFr
(E.5)
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Moreover, the tyre slip angles α1 and α2 can be formulated as:

α1 = δ − 1
vx

(vy − bωz)
α2 = − 1

vx
(vy − bωz)

(E.6)

Considering linear cornering behaviour yields the following equations for the lateral tyre
forces:

Ff = Cfα1

Fr = Crα2

(E.7)

Now, replacing E.7 and E.6 in E.5 gives:

mv̇y = − vy
vx

(Cf + Cr)−mvx − ωz
vx

(aCf − bCr) + Cfδ

Izω̇z = −ωz
vx

(a2Cf + b2Cr)− vy
vx

(aCf + bCr) + aCfδ
(E.8)

In state-space form, the linear model can be presented as:

v̇y
ω̇z

 =


−Cf+Cr

mvx
−vx −

aCf−bCr

mvx

−aCf−bCr

Ivx
−a2Cf+b

2Cr

Ivx


vy
ωz

+


Cf

m

aCf

Iz

 δ (E.9)

The above model is linear and has the longitudinal speed vx as a parameter which is
assumed to be constant.

As it will be seen further on, the lateral dynamics of the vehicle are of particular inter-
est. Specifically, the lateral acceleration and its variations will be used as criteria for
validation of some proposed solutions. It is important to distinguish between the two
lateral accelerations v̇y and ay. The former is the derivative of the variable vy in the
vehicle-fixed coordinate system while the latter is the lateral acceleration in the inertial
coordinate system and can be calculated as ay = v̇y+vxωz. In other words, ay comprises
contributions from both the centripetal acceleration vxωz and the time derivative of vy.
ay can hence be considered as an output of the models E.4 and E.9. In the remainder of
this work, the term lateral acceleration of the vehicle refers to ay as described above.
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