
DF

Efficient modelling techniques
for virtual commissioning
Signal communication in robot cell using SIMIT templates

Bachelor’s thesis in Mechatronics

GUSTAV GUSTAFSSON
MARTIN GUSTAVSSON

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Bachelor’s thesis 2019:06

Efficient modelling techniques for virtual
commissioning

Signal communication in robot cell using SIMIT templates

GUSTAV GUSTAFSSON
MARTIN GUSTAVSSON

DF

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2019

Efficient modelling techniques for virtual commissioning
Signal communication in robot cell using SIMIT templates
GUSTAV GUSTAFSSON, MARTIN GUSTAVSSON

© GUSTAV GUSTAFSSON, MARTIN GUSTAVSSON, 2019.

Supervisor: ATLE ZVANTESSON, ÅF
Examiner: PETTER FALKMAN, Department of Electrical Engineering

Bachelor’s Thesis 2019:06
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Digital twin of a robot cell in virtual reality.

Typeset in LATEX, template by David Frisk
Gothenburg, Sweden 2019

iv

Efficient modelling techniques for virtual commissioning
Signal communication in robot cell using SIMIT templates
GUSTAV GUSTAFSSON, MARTIN GUSTAVSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The development of virtual commissioning, a method for virtually simulating an as-
sembly line or robot cell, has taken a big leap forward within the last couple of years.
This because of the need for debugging Programmable Logic Controller (PLC) code
and decreasing ramp-up time for planned robot cells. Due to continuous increase
in computer performance, virtual commissioning (VC) has become a reliable and
secure tool for verification of signal communication, robot movement and collision
detection in a virtual environment. This Bachelor’s Thesis has overhauled the signal
communication between a robot arm and its surrounding virtual machines in an al-
ready created VC cell, and found a method for creating standardized communication
templates from a program sequence list made by ÅF. By finding similarities in the
communication in the digital twins (digital representations of physical machines),
states or conditions have been found. The signals from the robot are used for setting
these conditions and therefor executing the program of the cell in a correct order.
Collecting tag names from a signal list and implementing them in the created state
templates by checking condition order in the sequence list, machines could be created
in an efficient and structured way. The method included auto-generated templates
from a bulk engineering file, where signals were stated in a structured way for each
kind of template needed for creating a specific machine, surrounding the robot in
the cell. With Microsoft Excel, the bulk engineering file could be filled out entirely
by creating code in the Visual Basic for Applications (VBA) editor. This VBA code
template could be used for creating machines if a sequence and signal list of correct
type were handed. The project recommendation for further work are to develop the
code in VBA so that it can work with different types of sequence and signal lists.
Also to expand the template library for machines that differs in signal type and
structure.

Keywords: Virtual Commissioning, Auto-generated templates, SIMIT, State Ma-
chine, Bulk Engineering

v

Acknowledgements

First and foremost, we want to thank our supervisor Atle Zvantesson at ÅF that
has been of great help throughout the project. He has continuously advised us
regarding programming structure and functionality that he earlier has developed.
Without his inputs and knowledge regarding the software used for programming the
machines, the thesis would not have been accomplished. Bassam Massouh, who did
his Master Thesis for the same virtual commissioning cell, was also of great support
when software related issues was encountered.

We would also like to thank our examiner Petter Falkman and our supervisor Ludvig
Ekström at Chalmers University of Technology. They both emphasized the impor-
tance of good pre-work with the project proposal and the planning report which
came in useful. It lead to both greater understanding of the project and the value
of time scheduling a project.

Last but not least we want to thank Andreas Buhlin at ÅF for letting us work with
this thesis and the acceptance of scaling down a master thesis to a bachelor’s.

All peers mentioned above is the reason for this thesis to have been made possible.
We sincerely and deeply appreciate the assistance. Thank you.

Gothenburg, June 2019

Gustav Gustafsson and Martin Gustavsson

vii

Contents

List of Figures xi

List of Tables xiii

Abbreviations xv

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Research questions . 2
1.4 Scope . 2

2 Theory 3
2.1 PLC . 3
2.2 Digital twin . 3
2.3 Virtual commissioning . 3
2.4 Software for creating digital twins when virtual commissioning 4

2.4.1 TIA portal . 4
2.4.2 PLC sim advanced . 4
2.4.3 SIMIT . 5
2.4.4 Robot studio . 5

2.5 SIMIT templates . 5
2.6 Discrete-event simulation model . 5
2.7 Visual Basic for Applications (VBA) 6

3 Methods & Implementations 7
3.1 Identify problems when creating communication in SIMIT 8
3.2 Literature review . 9
3.3 Creation of templates in SIMIT . 10

3.3.1 The State machine template 11
3.3.2 The Flip flop template . 13
3.3.3 The bytes to double word template 14
3.3.4 The double word to bytes template 15
3.3.5 The byte to bits template . 16
3.3.6 The bits to byte template . 17
3.3.7 The Compare template . 18

3.4 Bulk engineering file . 19

ix

Contents

3.4.1 Creating state machine template in bulk engineering chart . . 19
3.4.2 Creating flip flop template in bulk engineering chart 20
3.4.3 Creating compare template in bulk engineering chart 20
3.4.4 Creating byte to internal Bool template in bulk engineering

chart . 21
3.4.5 Creating internal Bool to byte template in bulk engineering

chart . 21
3.4.6 Creating byte to double word template in bulk engineering chart 22
3.4.7 Creating double word to byte template in bulk engineering chart 22

3.5 Import signal list for machine types to bulk chart 23
3.6 Dividing the sequence list into states for machine communication . . 23
3.7 Auto-generating code . 25
3.8 VBA Excel for creating templates in bulk engineering chart 25

3.8.1 Exporting signals list to the bulk engineering chart using VBA 25
3.8.2 Create states from the sequence list to the bulk engineering

chart using VBA . 26

4 Results 27
4.1 Function Block Diagram templates 27
4.2 Bulk engineering template . 27
4.3 VBA Auto-generating . 28

5 Discussion 29

6 Conclusion & Future work 31

Bibliography 33

A Appendix 1 I
A.1 VBA code . I

x

List of Figures

2.1 Visualization of how the programs communicate with each other . . . 4

3.1 Part of a sequence list (left) and part of a signal list (right) for a
machine in the cell . 7

3.2 Depiction of how different states are dependent on different amounts
of conditions . 8

3.3 State machine template in SIMIT . 11
3.4 Flipflop template in SIMIT . 13
3.5 Byte to double word template . 14
3.6 Double word to bytes template . 15
3.7 Byte to bits template . 16
3.8 Bits to byte template . 17
3.9 Compare template . 18
3.10 Bulk engineering file . 19
3.11 Example of a State machine bulk engineer file with "AND" condition 20
3.12 Another State machine example but with "NOT AND" condition . . . 20
3.13 Example of a FlipFlop bulk engineer file 20
3.14 Example of a Compare bulk engineer file 21
3.15 Example of a Byte to internal bool bulk engineer file 21
3.16 Example of a bool to byte bulk engineer file 21
3.17 Example of a byte to double word bulk engineer file 22
3.18 Example of a double word to byte bulk engineer file 22
3.19 Signal list for a machine . 23
3.20 Example of a sequence list for a machine 24

xi

List of Figures

xii

List of Tables

3.1 Signals in State machine template . 11
3.2 Signals in State machine template . 13
3.3 Signals in Byte to double word template 14
3.4 Signals in double word to byte template 15
3.5 Signals in byte to bit template . 16
3.6 Signals in bits to byte template . 17
3.7 Signals in Compare template . 18

xiii

List of Tables

xiv

Abbreviations

BOOL Boolean (variable type)
Byte A group of 8 binary digits (variable type)
DES Discrete Event Simulation
I/O-list Input/Output-list
PLC Programmable Logic Controller
SIM Advanced Simulation Advanced
SIMIT Simulation platform for Virtual Commissioning
TIA Totally Integrated Automation
var Variable
VBA Visual Basic for Applications
VC Virtual Commissioning
VR Virtual Reality
.xls-file Excel spreadsheet-file
ÅF Ångpanneföreningen

xv

List of Tables

xvi

1
Introduction

The opening chapter, Background, presents an introduction to the project. This
is followed by the Purpose section which will explain why there is a need for an
efficient method when creating communication in between digital twins and robot.
The introduction will also provide aims and scope for the project.

1.1 Background

Virtual commissioning uses a virtual model of an existing or planned robot cell or
production line connected directly to the control system to enable virtual testing
and verification at an early stage in development. As for the existing robot cell,
VC can enable improvements in efficiency by safe verification of signal communica-
tion in an virtual environment before implementing changes in the current program
code[8]. Virtual commissioning also helps to shorten start-up and ramp-up time
when commissioning[4]. The demand for Virtual Commissioning in the production
industry is increasing hence to the economic advantages it can bring[6].

Machine vendors and competing platform providers are in a race to provide tools
and software support for Virtual Commissioning. However Virtual Commissioning
is still in an early stage, therefore there is a need to develop methods to match the
demands. The vision is to be able to test Programmable logic controller (PLC) and
Robot behaviour of an automated cell in a virtual environment without requiring any
changes to the program code to make it compatible with the simulation model. There
is hence a need to create digital twins (, which are virtual and digital representations
of physical machines,) for all machines and equipment in the robot cell that interacts
with the PLC and Robot.

Stress test the PLC and robot program in a virtual environment is made possible by
the signal interface of all virtual objects in the robot cell. They should be created,
as exact as possible when virtually commissioning a digital twin. For example, in
how a honing machine and a welding tool communicates with the robot. However,
efficiency in the making of signal interface for virtual objects is low due to time con-
suming programming. Similarities between how the objects are affected by the robot
signals has been found and the aim of this thesis was to make the communication
settings as efficient as possible.

1

1. Introduction

1.2 Purpose
The need for efficient methods when creating digital twins in a virtual environment
is the purpose of this thesis. When the demand of implementing new machines
to an already working robot cell, efficiency is of great importance. The task of
programming each individual machine is time consuming and by finding a method
that solves this issue is of economical interest for both the customer and vendor
providing the service. The method is also allowing the distributor with little insight
in the machine structure, to use the tools developed for this thesis to create a
requested machine.

1.3 Research questions
In what way can a modelling technique be created for signal communication in
SIMIT, which is both easy to use and that saves the developer time to create the
digital twin in a more efficient way?

In order to achieve a method worth implementing and using, the following problems
was considered when developing the technique.

• Identifying the bottlenecks when creating digital twins.
• Identifying the problems of making previous digital twins.
• Look for possible shortcuts in the software used for creating the machine logic.
• Creating standardized templates to simplify the programming.
• Systemize the creation of connections between digital twins.

1.4 Scope
Digital twins are virtual objects programmed to behave in the same way as their
physical equal. In this case, they have already been created by ÅF and was studied
in order to find efficient ways of modelling digital twin communication. The PLC
code, sequence list and signal interface list given and made by ÅF was first studied
and the techniques that was found useful was applied in the making of new machines.

This thesis is limited to the usage of Siemens softwares such as PLC Sim Advanced,
TIA-portal and SIMIT. The simulation and rendering software Robotstudio is a
product of ABB but has not been included in the modeling technique hence to
the developed method is only affecting the emulated connections in between digital
twins in the virtual cell. The main work of the thesis covers the functions in SIMIT
and the usage of importing from .xls-files.

The number of machines created was not the focus for this thesis. Finding an
efficient technique that would thereby make it possible of creating machines in a
time-saving way was of interest for this thesis.

2

2
Theory

The theoretical framework is to present the topics used for developing the templates
and code in order to make an efficient modelling technique for virtual machines.
This chapter will work as support to understand the modelling technique and how
it was applied to the virtual commissioning cell.

2.1 PLC

Programmable Logic Controller (PLC) is a controller device equipped with a mi-
croprocessor that is used for programming a machine, robot or automation process.
The PLC executes the program after reading input signals from the process. The
logic then decides what outputs that are to be set true to the process. The signals
that is sent to or meant to be sent from the PLC are called inputs and outputs. To
get an overview of all signals that can be processed by the PLC, an I/O-list is used.
The list supports information about size, number order and tag name of the signals.
[5]

2.2 Digital twin

The copy of a physical machine or robot in a virtual environment is called a digital
twin. The twins are made to emulate the behaviour of the machines and robot in
the way they respond to signals and physical movement, this by adding the I/O
interface for the physical machines to the twins. They are also supposed to have the
same visual effects as their equal model by using 3D-animation softwares.[3]

2.3 Virtual commissioning

Virtual Commissioning is a method for testing a virtual copy of a robot cell by
simulating the working process for the setup. The commissioning is built up by
digital twins that are designed and programmed to replicate the behavior of the
planned or existing physical robot cell.[12]
The digital twins is then connected to the PLC or by a softPLC in order to validate
the exact signal communication and response of a real model.

3

2. Theory

2.4 Software for creating digital twins when vir-
tual commissioning

The modelling technique presented in this thesis was programmed and structured
by tools and software introduced in this chapter. This chapter will present how they
are connected and why they have been relevant for the creation of the modelling
technique.

There are four programs that need to work together to create and simulate the
digital twin:

• TIA Portal
• PLC Sim advanced
• SIMIT
• Robot Studio

Figure 2.1: Visualization of how the programs communicate with each other

2.4.1 TIA portal
The TIA portal is an advanced engineering framework for implementing automation
solutions. The software is used for configuration, programming, testing and diagno-
sis of the controllers in the Siemens product catalogue. PLC code is integrated with
the software in order to use the functions for VC in the robot cell.[11]

2.4.2 PLC sim advanced
The simulation software PLC SIM Advanced is used for testing PLC code without
the actual hardware. PLC SIM Advanced is a so called softPLC, a software that
emulates the logic of a PLC hardware. PLC SIM advanced is connected to the

4

2. Theory

TIA-portal which holds the PLC code for the PLC in order to stress test the code
in the software, to prevent the usage of stress testing physical models.[9]

2.4.3 SIMIT
In order to create the logic for the communication between the machines and robot
the simulation platform SIMIT was used for this project. The templates created in
SIMIT were developed to emulate the communication between robot and machines.
By mimicking the machine communication, the virtual commissioning was able to
complete the connections between digital twins.[10] SIMIT also communicates with
Robot studio in order to visualize the process in VR.

2.4.4 Robot studio
To visually emulate the behavior of a real robot cell, robot studio is used to behave
as the physical robot in its form and movement. The PLC logic is controlled in
TIA portal and SIMIT controls the communication between PLC and robot studio.
Robot studio works as the virtual illustration of the robot cell in movement and
physical shape. The developer is able to use the software to analyze the movement
and see if there are optimization possibilities to be made in the robot movement as
well as to detect machine collisions in the cell.[7]

2.5 SIMIT templates
When using virtual commissioning, the connections in between the digital twins
and PLC can be time consuming to create. In order to make the connections more
structured and standardized, SIMIT templates has been created for this project.
When making a connection for signals, they have to pass through function blocks
that emulates the behaviour of the real signals of the machines and robot. SIMIT
templates are using function block diagram programming that is a graphical lan-
guage for presenting the function between input and output signals. In SIMIT,
these so called function blocks is named components and is the core elements of the
templates created for this thesis. [10]

2.6 Discrete-event simulation model
The structure meant to be implemented for the machines had to include several
conditions that affects one another through templates. To simplify the structure
the machine executes the program by processing different states in a certain order.
It works as if one state is executed, then the program should continue with the next
one. The behaviour could be seen as a Discrete Event Simulation (DES), were a
condition has to be met in order to continue the sequence. [2]

5

2. Theory

In our case, the conditions that were to be fulfilled often included two signals or
more to continue the program sequence. This was taken in consideration when the
creation of state templates were made. The aim was to create state templates that
were standardized and could be added to a template library were they could be
stored for future creation of machine communication.

2.7 Visual Basic for Applications (VBA)
Visual Basic for Applications (VBA) is an implementation of the programming lan-
guage Visual Basic created by Microsoft for Excel. The feature is useful for automat-
ing repetitive tasks or for customizing existing applications, included in Excel, to
meet a user’s personal needs[13]. The code can either be created in response to
the user input which is translated into Basic code, specified for each control. The
developer can also write code manually in the Visual Basic code editor which has
been made for this project.

6

3
Methods & Implementations

The modeling method created is meant to be used by taking a sequence list of how
the machines interacts in the robot cell and a signal interface list that provides the
correct tag names for the signals sent to and from the machine. These two lists
(figure 3.1) will enable generating code by finding conditions, states, in the sequence
list and implement them using the correct tag names from the signal list. Templates
was created for the cause of similarities found in the sequence of the machines. These
templates are used to eliminate the repetition of the programming. To fill in the
signals of the templates a so called bulk engineering file was created in Microsoft
Excel (figure 3.10). This bulk engineering file is then imported to SIMIT which
builds the program for the machine using the templates in the order the programmer
has typed in signals in the bulk engineer file.

Figure 3.1: Part of a sequence list (left) and part of a signal list (right) for a
machine in the cell

In total seven templates was created:
• The State Machine template (3.3)
• The Flip Flop template (3.4)
• The Bytes to double word template (3.5)
• The Double word to byte template (3.6)
• The Bytes to bits template (3.7)
• The Bits to byte template (3.8)
• The Compare template (3.9)

7

3. Methods & Implementations

3.1 Identify problems when creating communica-
tion in SIMIT

The issues that often occur when implementing new machines had to be found by
trying to create a machine from the beginning in order to understand the process.
Hence to our little experience in creation of virtual machines an old model could be
studied, supplied by ÅF.

One of the parts that slowed down the process of creating connections for the signals
was the interface of the software. The dragging of wires in between the function
blocks in SIMIT was not efficient in comparison of an auto-generated type of con-
nection wiring that would be made possible by importing data from an excel file.

Figure 3.2: Depiction of how different
states are dependent on different amounts
of conditions

The other problem found was the incon-
sistency in the creation of connections
in SIMIT. The communication between
robot and machine was in some cases
consistent by a small extent, except for
the number of inputs for the conditions.
One state could be dependent by one
signals being set and another by two for
example (figure 3.2). The creation of
state templates had to rely on this vari-
ation in order to make an efficient and
flexible method.

By studying the sequence list for a ma-
chine, a state order could be found by
looking for conditions when the machine
sent signals to the robot. This could
then be implemented as a standardized state-template. The state-templates cre-
ated from the sequential communication table (sequence list), had to ensure that
not two states could be active all at once. The machine was not allowed to start
doing things out of order and sending signals to the robot making it able to move,
when it needed to wait for the machine to do something else first. For this problem
a template was created which could take account of an active state and disable oth-
ers from being activated at the same time. The most efficient way of making this
possible was to create set and reset signals for the state levels. They then had to be
connected to a template that took enabling and disabling of a state in consideration.

When auto-generating templates and the connections for signal communication,
naming tags became an issue. The tag naming of the signals were in some cases
named similar or the same to one another, despite the signals belonged to different
machines. The problem occurred when a new machine was implemented and the tag
names for already created machines in SIMIT provided the exact same name. This
led to failure when compiling the connections. To solve this, a standardization when

8

3. Methods & Implementations

naming tags was to be implemented. Firstly by naming the signals with the machine
type it was used for, in the beginning of its tag name. This enabled sorting of similar
signal names between machines and the standard could easily be implemented in
the creation of VBA code for Excel. Secondly to separate the states by adding an
order number to the end of the tag names allowed to control the activation of states.

To summarize identified problems when creating machine communication:

• Time spent on understanding the machines and the communication in between
digital twins in the robot cell.

• The software interface, where a large amount of signals had to be connected
by hand led to great inefficiency.

• An inconsistency when creating machines which led to difficulties when de-
bugging signal communication in between machines.

• When implementing states and dividing the machine communication into con-
ditions, the modelling technique had to ensure that there were no possibility
whatsoever to activate several states at once.

• The naming of signals could lead to repetition and over-writing of already
existing signal tag names.

How to solve the identified problems:

• Create a bulk engineering file to easy understand and structure the machine
states and signals included.

• By using the function of importing .xls-files (Excel format), eliminate the
problem of (by hand) dragging the connections in between signals in SIMIT.

• The problem of inconsistency in the creation of machine programming was
reduced hence to the creation of standardized templates. These templates
also solved the problem of having to connect signals by hand in SIMIT.

• To solve the problem of having the SIMIT program only run the states one
at a time was solved by adding a flip flop template with flags that enabled a
state or disabled it by either set or reset the flip flop that handled the executed
state signal.

• A standard when naming the tags depending on machine type dealt with the
problem of repetitive naming in between signal tags for the machines.

3.2 Literature review
The identified problems in the creation of signal connections in SIMIT, made it
possible to search for previous studies written in the field of virtual commissioning
and the creation of virtual machines.

As mentioned in the section for identifying problems when creating communication,
states for machines are commonly used and one of the well-known methods are
Discrete Event Simulation (DES). [2]

9

3. Methods & Implementations

A method for recommissioning and virtual commissioning a changeable manufactur-
ing system was found. Mortensen (ST Mortensen et. al. 2019) stated a method to be
used when reusing virtual commissioning models. He firstly suggested to recognize
reconfiguration complexity. Thereafter identify needed elementary reconfiguration
ability when VC. For the last step he suggested to perform the actions indicated for
the class VC in the table stated in the report. The table consists of four elementary
abilities that can be performed. Rearranging, scaling, adding/removing or exchang-
ing process modules. For VC , the suggestion was to modify interface of standard
virtual devices. Standardizing virtual devices was shown to be a key element for
reusing VC.[4]

Because of the many platform providers in the field it is hard to implement a method
due to differences in software functionalities, for example the .xls-file import used
for the method presented in this thesis. Therefor, as mentioned in the scope, the
method could only be executed by Siemens software and no literature could be found
on other efficient methods for creating communication in SIMIT .

Virtual commissioning has been around for awhile and has shown to be valuable
for companies because of the time aspects. According to Reinhart [6] it was shown
that virtual commissioning may lower the commissioning time with 75%. Mainly
because the physical commissioning time usually is used to debug software.

Our mission with the project was to find an efficient modelling technique for virtual
commissioning and by that we found a method for creating template libraries for
code[1] that we were about to apply for the thesis. However we did not happen
to find any use of code language templates more than the function blocks used for
the templates. The only thing comparable with the code library would be the VBA
coding in Microsoft Excel.

3.3 Creation of templates in SIMIT

In order to use the signals for the states, most of them had to be converted before
they could be implemented in the program. The templates created had to include
the parts were signals could be converted from both Byte to bits and vice versa.
The most commonly used signal types was the setpoint for the creation of conversion
templates, so that the signals could be used for the state machine template.

The sequence of the machine found in the sequence list had to be divided into states
where a template were to be standardized and created with the respect to these
states. The state machine template consists of one flag that informs that the state
is to be set active. In order to apply such a function, another template for disable
other states from being active had to be created. For this purpose, a flip flop had
to be created for every implemented state in order to keep track of what state to be
set or not.

10

3. Methods & Implementations

3.3.1 The State machine template
The State Machine template (figure 3.3) is the most important template and it
makes sure that the machine does everything it is supposed to do and in the correct
order. The template keeps the signal b0 active until our conditions b1-b7 are fulfilled
at which point the signal W0 tells the next state that it can start and also resets
the signal b0.

The conditions in this template is based on different states taken from the sequence
list and how they often tend to change conditions in the machine communication,
as shown in figure 3.2.

Figure 3.3: State machine template in SIMIT

Tag
name: Usage: Name examples:

W0 State finished MACHINENAME_state2_finished
B0 Previous state done MACHINENAME_state1_finished

b0 What the machine
should do in the state MACHINENAME_set_Load_Workpice

b1-b7

Conditions that the
machine needs before
it can move on to the
next state

MACHINENAME_robot_outside_machine

var
How many conditions
needs to be true before
the state is done

X1 AND X2 AND X3

Table 3.1: Signals in State machine template

For the B0 tag, a signal that indicates that the previous state has been executed
is meant to be connected to this template input. If there are several states for the
machine created, the B0 input is a way to let the program know that the previous
state has been executed and therefore the following one can proceed.

11

3. Methods & Implementations

The signal connected to b0 is the signal activated in this state. For example if the
machine is to set the “Load workpiece” signal to TRUE, then this signal is put here.
When the B0 signal tells the state that the previous state is done, the b0 signal is
activated. The inverted W0 signal to the left in figure 3.3 holds the b0 signal set
TRUE until the conditions of b1-b7 is activated. This then activates the W0 signal
which sets the b0 signal to FALSE. Signals b1-b7 are conditions of when the robot
has sent back the signals that the state demands in order to move to the next state.
The state will, when conditions are met, set the W0 signal which deactivates the
current state and also tells the next state that it is ready to start. This means that
the W0 signal needs to be the same as the B0 signal for the next state. For example
if we are in state2 then our W0 = "state2 done", then in state3 we should have B0
= "state2 done". This pattern is then repeated until the program is done at which
point it returns to the first state and awaits to start again once called upon.

Since different states might have different numbers of conditions, as shown in figure
3.2, a max of 6 signals can be used as condition in this template (b1-b7). The
amount of signals that is to be used in a state, is placed in the block with the X1-X8
inputs to the right in figure 3.3. As it says at the top of the block the output "OUT"
of the block is determined by the "var". Since X1 is connected to our b0 signal which
is the active state signal, X1 must always be in the "var" statement. Then if one
condition occurs, "X1 AND X2" is written and if two conditions occurs, "X1 AND
X2 AND X3" is written, and so on all the way up to the maximum om 6 conditions.

12

3. Methods & Implementations

3.3.2 The Flip flop template
To be able to set and reset signals using other signals, a flip flop template had to
be created. Because the handshake sequence between the machine and robot in the
cell is sometime dependent on setting a signal and sometime resetting a signal, the
signal had to be set even after the state was done in order to be able to reset it at
a later time to trigger the handshake. For example in figure 3.20, the signal "load
work piece" is to be set in the beginning of the sequence and then reset nearing the
end of the sequence. In order for it to be kept TRUE even after the sequence has left
the state that sets the signal, the flip flop template is used to ensure that the signal
stay true. Then in the state were it needs to be reset, the reset signal connected to
the flip flop is used. The flip flop template consists of the reset signal (b1) resets
the output (W0) and the set signal (b0) that sets the output.

Figure 3.4: Flipflop template in SIMIT

Tag
name: Usage: Name examples:

W0 Output signal MACHINENAME_loadworkpiece

b0 The set signal for the
output MACHINENAME_set_loadworkpiece

b1 The reset signal for
the output MACHINENAME_reset_loadworkLoadpice

Table 3.2: Signals in State machine template

13

3. Methods & Implementations

3.3.3 The bytes to double word template
Some of the signals were sent from the robot as bytes but were needed in word-
format so we made a template to fix that. The bytes sent from the robot is used in
the sections SOURCE B0-B3 and then transferred to a double word to used for the
state machine.

Figure 3.5: Byte to double word template

Tag
name: Usage: Name examples:

W0 Output signal MACHINENAME_articlenumber

SOURCE The source of the sig-
nal MACHINENAME_

B0-B3 The address of the
bytes MACHINENAME_HW_input

Table 3.3: Signals in Byte to double word template

14

3. Methods & Implementations

3.3.4 The double word to bytes template
For sending the word signal back to the robot, the double word to byte template
had to be created since to convert back the signal to it’s original byte-format. The
signals sent from the state machine template is converted through the template to
the sections GOAL B0-B3, signals that are to be sent to the machine.

Figure 3.6: Double word to bytes template

Tag
name: Usage: Name examples:

W0 input signal MACHINENAME_articlenumber

GOAL The goal destination
of the signal MACHINENAME_

B0-B3 The address of the
bytes MACHINENAME_HW_input

Table 3.4: Signals in double word to byte template

15

3. Methods & Implementations

3.3.5 The byte to bits template
The robot sends most of the signals for our state machine as bytes, and since the
individual bits from those bytes was needed to be able to use the signals properly
in the state machine, a conversion of these bytes was made. These templates takes
a byte sent from the robot and divides it into bits to be used in logical operations
in our state machine.

Figure 3.7: Byte to bits template

Tag
name: Usage: Name examples:

B0 input signal MACHINENAME_HW_something
SOURCE The source of the signal MACHINENAME_something
b0-b7 The internal bit signals MACHINENAME_loadworkpiece

Table 3.5: Signals in byte to bit template

16

3. Methods & Implementations

3.3.6 The bits to byte template
Just as the word to byte template mentioned before, converting bits back to bytes
was also needed. The internal BOOL signals (bits) are converted to byte in this
template so that they can be sent to the robot.

Figure 3.8: Bits to byte template

Tag
name: Usage: Name examples:

B0 output signal MACHINENAME_HW_

GOAL The goal destination of the
signal MACHINENAME_

b0-b7 The internal bit signals MACHINENAME_loadworkpiece

Table 3.6: Signals in bits to byte template

17

3. Methods & Implementations

3.3.7 The Compare template
In order to see if the word signal coming from the robot had been changed, a compare
template that could send a bool signal was needed. This template takes two signals,
b0 and b1, and then it compares them and if the comparison is correct it sends a
TRUE signal W0. Which type of comparison is going to be made is decided by the
“VAR”, e.g ‘<’, ‘>’ or ‘=’.

Figure 3.9: Compare template

Tag
name: Usage: Name examples:

b0 singal to compare MACHINENAME_articlenumber
b1 signal to compare "any number"
Var What type of comparison <

Table 3.7: Signals in Compare template

18

3. Methods & Implementations

3.4 Bulk engineering file

To be able to auto-generate templates for machine communication, structuring the
creation of templates by typing each template per row in the bulk file with correct
signals had to be implemented in order to keep track of templates and signals.
The Bulk engineering file was an efficient way for structuring and auto-generating
templates. The file consists of standardized columns in which indicates where to
place signal connections to the templates in SIMIT.

Figure 3.10: Bulk engineering file

The first column indicates in what hierarchy or machine to place the signals in
SIMIT. It is then followed by what type of template that is to be implemented.
Furthermore, in the following column, the chart that the program will be put is
presented. The templates that has been created for the ÅF machines are the state
machine template, the flip flop template and the conversion templates. Next section
will explain the bulk engineering in more detail by explaining how to create all types
of templates and where to insert what signals.

3.4.1 Creating state machine template in bulk engineering
chart

When setting up the State machine template using the bulk engineering chart, the
starting point was to check the sequence list to divide it into “states”. The idea is
that the signal b0 is the signal for what action the state should do, for instance; set
signal “Load Work piece”. Then check the robot to machine-side of the sequence list
to see what the robot are supposed to do before moving on to the next action for the
machine, these are called conditions and they are written in b1-b7. If there is only
one condition then it is written in the b1 column and then in the “Var” column the
operator writes: “X1 AND X2”. If the condition the machine is waiting for is a reset
signal, the operator writes: “AND NOT” instead of AND in the “Var” column. At
B0 the operator writes: “previous state done” so that the current state know that it
should be activated. This signal just needs to be activated for a short time and then
the state will stay active until all the conditions for the state have been fulfilled.
Once the state is done the signal W0 is set which means that this signal should be
“current state done”, which then is connected to the next state but then in the B0
column, which is “previous state done” but for the next state.

19

3. Methods & Implementations

Figure 3.11: Example of a State machine bulk engineer file with "AND" condition

Figure 3.12: Another State machine example but with "NOT AND" condition

3.4.2 Creating flip flop template in bulk engineering chart

The Flip flop template has only three signals: the output signal (W0), the set signal
(b0) and the reset signal (b1). The signal W0 is designed to be set and reset at
different states from the state machine. To make sure that the set signal doesn’t
reset once we leave the state, the flip flop is used. If the state want to set a signal
the operator use “set_the signal that wants to be set” and vice versa “reset_the
signal that wants to be reset”.

Figure 3.13: Example of a FlipFlop bulk engineer file

3.4.3 Creating compare template in bulk engineering chart

In the compare template there are two signals that is in someway are being compared
with each other. The b0 and b1 signal are the signals that are to be compared and if
the comparison is correct then the signal W0 will be true. The VAR will determine
what type of comparison will be done, so here the operator can type for example
“<” (b0 less the b1), “>” (b0 greater than b1), “<>” (b0 not equal to b1) or “=”
(b0 equal to b1) etc.

20

3. Methods & Implementations

Figure 3.14: Example of a Compare bulk engineer file

3.4.4 Creating byte to internal Bool template in bulk engi-
neering chart

The byte signals coming from the Robot to the machine needs to be converted into
individual bits to use in the programming. In this template the byte is divided into
8 bool signals that is later used in the different templates. B0 is used for the byte
signal and then b0-b7 is used for the bits.

Figure 3.15: Example of a Byte to internal bool bulk engineer file

3.4.5 Creating internal Bool to byte template in bulk engi-
neering chart

This template is basically the same as the Byte to Bool but instead take the indi-
vidual bit signals, coming from the machine that needs to be sent to the robot, and
stitch them together as the complete byte. b7-b0 is again used for the bits and then
W0 is used for the byte signal going through to the robot.

Figure 3.16: Example of a bool to byte bulk engineer file

21

3. Methods & Implementations

3.4.6 Creating byte to double word template in bulk engi-
neering chart

In this template the byte signals coming from the robot are converted into a double
word signal. B0-B4 is used for the byte signals that need to be converted and W0
is the double word output.

Figure 3.17: Example of a byte to double word bulk engineer file

3.4.7 Creating double word to byte template in bulk engi-
neering chart

The double word signal needs to be converted back to byte before it can be sent
back to the robot. B0-B4 are once again used for the bytes and the W0 signal is
used for the double word.

Figure 3.18: Example of a double word to byte bulk engineer file

22

3. Methods & Implementations

3.5 Import signal list for machine types to bulk
chart

When importing the signals for the machine, the operator checks the signal list
(figure 3.19) that is provided and then see which type of signals it has and which of
those are needed. If the operator for example have some byte signals but needs the
individual bits for the logic in the machine, use the byte to bits template to convert
the signal so that they can be used. Then fill out the bulk engineering excel file
with the appropriate templates and signal names.

Figure 3.19: Signal list for a machine

3.6 Dividing the sequence list into states for ma-
chine communication

Most cells use so called "handshake" communication between the robot and the
machines. This means that the robot does something and sends a signal to the
machine telling it what it did and the machine then responds in the same way by
first doing something and sending a signal back to the robot telling it what it did
and then it continues like that back and forth. This is where the State machine
template comes in to play and we divide our handshakes into states.

The best way to divide the sequence list into states is to first look at the machine-
to-cell side of the sequence list. Use figure 3.20 as an example and in this list "set"
means that the a signal is set to TRUE and "reset" means that it is set to FALSE.
The machine starts of by setting the signal for load workpiece true. This is what’s
called the active state signal, in other words what the machine is doing in State1.
After that on the cell-to-machine side of the sequence list there is the signal that
the robot should respond with to the load work piece signal from the machine. This
becomes the condition for State1, which means that the state is waiting for the
conditions signals to be correct before it can move on to the next state. Once the

23

3. Methods & Implementations

robot have responded with the proper signals it can move on to State2. Back to
the machine-to-cell side of the sequence list and in state2 the machine is setting the
"article_number_machine_setup" signal. After that, on the cell-to-machine side of
the sequence list, the machine don’t need any response from the robot to move on to
the next state, which just means that it don’t have any conditions in state2 to move
on to state3. In state3 the "Machine ready for robot entrance" is the active state
signal and in state3 the machine is instead waiting for the "article number" signal to
be reset from the robot. State4 then resets the "article_number_machine_setup"
signal that is set to true in state2, but now there are three different conditions that
needs to be fulfilled before the move to state5.

This procedure is then repeated until the sequence list is done. In some cases the
condition can be an integer in which case the usage of the compare template is
needed to convert the signal to a bool. For example if the article number is suppose
to be zero, is a condition the compare template check when the article number is
zero and then sends the bool back as a condition to the state machine template.

Figure 3.20: Example of a sequence list for a machine

24

3. Methods & Implementations

3.7 Auto-generating code
For the auto-generating part, it all comes down to what file you have to start with.
If the developer are handed or has created the signal list and the sequence list that
follows the same structure explained in the previous section. One could use the bulk
engineering manual to type in signals by hand, but to auto-generate this step, VBA
code could be used to transfer the idea of exporting signals and sequence list to
the bulk engineering file. This step will be explained in the chapter VBA Excel for
creating bulk engineering file .

Signals list → (VBA) → Bulk engineering file
Sequence list → (VBA) → Bulk engineering file

3.8 VBA Excel for creating templates in bulk en-
gineering chart

For the auto-generating of signal communication, the way to structure it was to
create standardized templates. Signals and states were then to be structured in the
bulk engineering excel file in order to then export it and be implemented in SIMIT.
Structuring the states by finding out what signals caused the conditions for the
machine to be set and keep on with the program was made possible by the signal
and sequence list. They were studied and from them the order of sorting the states,
and where to connect and convert used signals was made.

The goal of auto-generating complete machines from the lists mentioned before, came
from the idea of making an efficient modelling technique. To be able to import signals
and states automatically to the bulk engineering file from the lists, code had to be
used. Microsoft’s Excel supports its own event-based programming implementation
Visual Basic for Applications (VBA). By studying scripts used for find and replace
names, characters and symbols it was made possible to sort out signals and name
them in a standardized way.

3.8.1 Exporting signals list to the bulk engineering chart
using VBA

For the signal list, exporting and converting signals was made so that they supported
the naming standard and that they got connected to the right conversion type in
the bulk engineering file. The code used for this implementation is presented in the
Appendix on the rows 28-66.

As explained in the section "Import signal list for machine types to bulk chart", the
code uses the same strategy as the operator would have. It copies the names of the
signals from the signals list in the machine communication file. If the signal is of
a certain type, the code ads the correct conversion template name in the template
column in the bulk engineering file.

25

3. Methods & Implementations

3.8.2 Create states from the sequence list to the bulk engi-
neering chart using VBA

The sequence list were used for creating states and the flip flop templates taken in
account and kept track of what states that were to be activated. The templates
that has been created in SIMIT for this purpose, the state machine and the flip
flops, contained both as mentioned in the chapter "Creating state machine template
in bulk engineering file", a variety of signals and created states. When a condition
was met in the sequence list, a new state had to be created in order for another
condition to be met.

The code created the flip flops by identify all of the signals that activated the states
conditions. Which in the sequence list was all of the signals in the first column, the
column that presented the signals that was sent from the machine to the cell. The
VBA code is presented in the Appendix on the rows 67-141.

26

4
Results

This chapter presents the results in this thesis.

4.1 Function Block Diagram templates
The templates could be applied in SIMIT and the signal templates emulated the
program sequence of the robot cell as before. Our goal was to build a library with
the most useful templates that we could think of using the machines from a previous
robot cell. The idea is that this library can be further developed once new machines
are needed to be built that can’t take advantage of any of the already existing
templates. In that case a new one is created to serve the purpose of it’s machine
and is then added to the library. In some cases the template might end up only
being used for that particular machine and never used again, but this is still more
effective than having to redo the same thing over again in SIMIT, sience it is very
time consuming to program in SIMIT by hand.

This means that if a new machine is going to be programmed in SIMIT for a cell,
the operator just checks the library to find the needed templates to complete the
build for that machine, and if the machine can’t be finished using only the templates
in the library, a template is created for the function that operator needs and adds it
to the library. The goal is that you should do as little work programming in SIMIT
as possible and just pick out the parts you need from the library, never having to
even program anything in SIMIT, you just fill out the Bulk engineering files and let
SIMIT do the rest.

4.2 Bulk engineering template
The bulk engineering file could create templates in SIMIT according to the descrip-
tion explained in chapter bulk engineering file. The templates emulated the signal
communication correctly after the auto-generating from bulk file to SIMIT. This was
tested by adding buttons in SIMIT that simulated activation of robot-to-machine
signals to find out if the sequence of the cell was emulated in the same way as for
the sequence list. SIMIT also placed the templates in the order of how the bulk file
was filled out.

If the demand for creating more machines, one can simply follow the requested
machine’s sequence list that explains of how the signals triggers the sequence and

27

4. Results

fill out correct templates with associated signals in the bulk engineering file for
that machine. The new bulk file will then auto-generate the requested templates in
SIMIT.

4.3 VBA Auto-generating
The result of auto-generating the bulk file could be made based on the code described
in the chapter “VBA Excel for creating templates in the bulk engineering chart”.
The part auto-generated was the export of signals in the signals list to the conversion
templates in the bulk file and the signals sent to the robot, used in the flip flop.
Hence to limited time, the other templates such as the state template have to be
filled out manually in the bulk file.

28

5
Discussion

The topics of the results, which are the templates, bulk engineering file and VBA
code are the basis of the method developed for this thesis and will therefor be
discussed.

The result showed that the method for implementing a more efficient method for
signal communication in a VC cell were accomplished to some extent. The template
library is consisted of usable templates when it comes to a VC cell using communi-
cation in between robot and machines. Still it has to be included more templates
in order to work with other machines. Functions that was included in the machine
we created the method for may differ to other machines, but the main components
for creating a state based communication in a VC cell has been accomplished. The
library created is a way of collecting templates in a structured way where everything
can be reusable in other machines. Due to the lack of time, other machines was not
tried to be created but the signal and sequence list for these machines were created
and structured in a similar way to the one machine the method was based on, which
leads us of thinking that the method created can be used for other machines as well.

The bulk file was an important tool for creating an efficient method. It eliminated
one of the most time-consuming tasks of the creation of machines, which certainly
was the connecting of signals to the templates in SIMIT. The method of using the
.xls-file import in SIMIT was an efficient way of creating machines and the bulk
file is an organized tool for debugging connections and signals for the templates if
compiling errors occur. The naming of the templates has improvements to be made
in order to understand what their purpose is for the machine. The ambitions of
the templates are that an operator can read about the templates functionalities in
notations, in either a manual for the library or creating comments in the bulk file.

If the method is used for a real case then the most efficient way of creating machines
would be to demand the customer to deliver a signal and sequence list in order to
understand the communication and what signals triggering the conditions for the
machine. But most importantly to be able to auto-generate the whole process of
creating machine communication. If the customer is using the structure of the lists
handed by ÅF, then the VBA code could simply extract the signal list and place
them in the correct order in the bulk file. All the operator has to do then is to use
the sequence list and type in the right signals for the state machine template by
hand. This, due to lack of time, was not made in VBA but can be implemented in
code by following the typing sequence found in the method section of this paper.

29

5. Discussion

Due to limited knowledge in VBA code this was the topic spent most time trou-
bleshooting at. The code could be created by searching the web for functions possible
in VBA and use them where we found the use for them. Microsoft Excel was a pow-
erful tool and the ambition was to auto-generate the whole process. If more time
was given and more functions were gained when collecting code for VBA, then the
whole process would have been automated for the creation of signal communication
in SIMIT. Other code languages could be of use for such a task but as a consequence
of our limited time, VBA was a moderate language to learn and it was an integrated
development environment for Excel. The VBA code could also be improved by com-
menting essential parts of the code where the operator could custom code for lists
created in a different way from the lists handed by ÅF.

30

6
Conclusion & Future work

The beginning of the report presented one research question followed by five prob-
lems in which the project was set to answer. Here follows a conclusion for these five
and how future work for this project can be developed.

• Identifying the bottlenecks when creating digital twins.
• Identifying the problems of making previous digital twins.
• Look for possible shortcuts in the software used for creating the machine logic.
• Creating standardized templates to simplify the programming.
• Systemize the creation of connections between digital twins.

The chapter of identifying problems when creating communication in SIMIT explains
of the software interface, where the dragging wire-application being an inefficient
way for creating connections between components. This was solved due to the xls-
file import feature in SIMIT. The bulk engineering file made in Microsoft Excel
was used for this cause. Both to eliminate the repetitive tasks and to structure
templates, easier for debugging connections when templates being created in SIMIT.
The research of identify previous problems when creating digital twins, looking for
shortcuts in software and creating standardized templates have all been answered.
Important to state is that future work can be made such as finding ways of expanding
the template library that handles the communication in SIMIT by simply finding
new machines. Machines that differs in behaviour from previous ones will probably
have to include new templates, that then can be included in the library.

For the systemizing of connections and identify bottlenecks when creating digital
twins can both be developed for future work due to time limits for this project.
This thesis evaluated improvements in signal communication in SIMIT and some of
the bottlenecks occurred when creating digital twins, was mostly found when con-
necting all softwares for testing the virtual commissioning cell. PLC SIM Advanced
and Robot studio was software not used for developing the method of creating stan-
dardized templates, but used for virtually test that PLC and the virtual environment
worked as for the previously developed program. Future work could include methods
in how to connect software in a more efficient way.

The VBA code implemented for creating machines from the machine lists to the
bulk file has improvements to be made. The code can be more compromised and
well structured. The code also lacks the ability to adapt to different type of machine
lists. The one code implemented for the machine used for this thesis will possibly

31

6. Conclusion & Future work

not be working for other machine list. This hence to the VBA code being more of
a code template, where the developer can type in the size of the field the code is to
look for signals in, rather than adaptative code. Future work can be made in making
code suitable for different kind of lists to enable this step to also be auto-generated.
Also to write code generating the fill out of the remaining state template is work left
to be done. This will enable a complete auto-generation of machine communication
from a sequence and signal list to connected templates.

Auto-generating repetitive steps thus to more efficient methods are evolved is always
of great interest in the field of virtual commissioning.

32

Bibliography

[1] Yuli Hua Andreas Lu and Yuli Hua. “Software maintenance for Discrete-Event
Simulation Models”. In: (2018). url: http://studentarbeten.chalmers.
se/publication/255393-software-maintenance-for-discrete-event-
simulation-models.

[2] Jerry Banks. “Discrete Event Simulation”. In: Encyclopedia of Information
Systems (Jan. 2003), pp. 663–671. doi: 10.1016/B0-12-227240-4/00045-9.
url: https://www.sciencedirect.com/science/article/pii/B0122272404000459.

[3] Digital Twin | Siemens. url: https://www.plm.automation.siemens.com/
global/en/our-story/glossary/digital-twin/24465.

[4] “Operational Classification and Method for Reconfiguration & Recom-
missioning of Changeable Manufacturing Systems on System Level”. In: Pro-
cedia Manufacturing 28 (Jan. 2019), pp. 90–95. issn: 2351-9789. doi: 10.
1016/J.PROMFG.2018.12.015. url: https://www-sciencedirect-com.
proxy.lib.chalmers.se/science/article/pii/S235197891831357X.

[5] Programmable Logic Controller Introduction to Industrial Control Sys-tems
and Operations. Tech. rep.

[6] Gunther Reinhart et al. “Economic application of virtual commissioning to
mechatronic production systems”. In: Production Engineering 1.4 (Jan. 2007),
pp. 371–379. issn: 0944-6524. doi: 10 . 1007 / s11740 - 007 - 0066 - 0. url:
https://www.plm.automation.siemens.com/global/en/our- story/
glossary/digital-twin/24465%20https://support.industry.siemens.
com/cs/ww/en/view/77362399%20https://community.plm.automation.
siemens.com/t5/Tecnomatix-News/Virtual-Commissioning-A-practical-
guide/ba-p.

[7] RobotStudio - ABB Robotics. url: https : / / new . abb . com / products /
robotics/robotstudio.

[8] Siemens Integrates Virtual Planning with Physical Production to Maximize
Manufacturing Productivity. url: https://www.plm.automation.siemens.
com/global/en/our-story/newsroom/siemens-press-release/43428.

[9] “SIMATIC S7 PLCSIM Advanced - TIA Portal - Siemens”. In: (). url: https:
//w3.siemens.com/mcms/automation-software/en/tia-portal-software/
step7 - tia - portal / simatic - step7 - options / s7 - plcsim - advanced /
pages/default.aspx.

[10] SIMIT Simulation V9.0 Getting Started. Tech. rep. url: https://support.
industry.siemens.com/cs/ww/en/view/77362399.

[11] Totally Integrated Automation Portal One integrated engineering framework
for all automation tasks. siemens.com/tia-portal TIA Portal-the new version.

33

http://studentarbeten.chalmers.se/publication/255393-software-maintenance-for-discrete-event-simulation-models
http://studentarbeten.chalmers.se/publication/255393-software-maintenance-for-discrete-event-simulation-models
http://studentarbeten.chalmers.se/publication/255393-software-maintenance-for-discrete-event-simulation-models
http://dx.doi.org/10.1016/B0-12-227240-4/00045-9
https://www.sciencedirect.com/science/article/pii/B0122272404000459
https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465
https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465
http://dx.doi.org/10.1016/J.PROMFG.2018.12.015
http://dx.doi.org/10.1016/J.PROMFG.2018.12.015
https://www-sciencedirect-com.proxy.lib.chalmers.se/science/article/pii/S235197891831357X
https://www-sciencedirect-com.proxy.lib.chalmers.se/science/article/pii/S235197891831357X
http://dx.doi.org/10.1007/s11740-007-0066-0
https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465%20https://support.industry.siemens.com/cs/ww/en/view/77362399%20https://community.plm.automation.siemens.com/t5/Tecnomatix-News/Virtual-Commissioning-A-practical-guide/ba-p
https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465%20https://support.industry.siemens.com/cs/ww/en/view/77362399%20https://community.plm.automation.siemens.com/t5/Tecnomatix-News/Virtual-Commissioning-A-practical-guide/ba-p
https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465%20https://support.industry.siemens.com/cs/ww/en/view/77362399%20https://community.plm.automation.siemens.com/t5/Tecnomatix-News/Virtual-Commissioning-A-practical-guide/ba-p
https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465%20https://support.industry.siemens.com/cs/ww/en/view/77362399%20https://community.plm.automation.siemens.com/t5/Tecnomatix-News/Virtual-Commissioning-A-practical-guide/ba-p
https://www.plm.automation.siemens.com/global/en/our-story/glossary/digital-twin/24465%20https://support.industry.siemens.com/cs/ww/en/view/77362399%20https://community.plm.automation.siemens.com/t5/Tecnomatix-News/Virtual-Commissioning-A-practical-guide/ba-p
https://new.abb.com/products/robotics/robotstudio
https://new.abb.com/products/robotics/robotstudio
https://www.plm.automation.siemens.com/global/en/our-story/newsroom/siemens-press-release/43428
https://www.plm.automation.siemens.com/global/en/our-story/newsroom/siemens-press-release/43428
https://w3.siemens.com/mcms/automation-software/en/tia-portal-software/step7-tia-portal/simatic-step7-options/s7-plcsim-advanced/pages/default.aspx
https://w3.siemens.com/mcms/automation-software/en/tia-portal-software/step7-tia-portal/simatic-step7-options/s7-plcsim-advanced/pages/default.aspx
https://w3.siemens.com/mcms/automation-software/en/tia-portal-software/step7-tia-portal/simatic-step7-options/s7-plcsim-advanced/pages/default.aspx
https://w3.siemens.com/mcms/automation-software/en/tia-portal-software/step7-tia-portal/simatic-step7-options/s7-plcsim-advanced/pages/default.aspx
https://support.industry.siemens.com/cs/ww/en/view/77362399
https://support.industry.siemens.com/cs/ww/en/view/77362399

Bibliography

Tech. rep. url: https://www.automation.siemens.com/salesmaterial-
as/brochure/en/brochure_tia_portal_en.pdf.

[12] Virtual Commissioning. url: https://www.plm.automation.siemens.com/
global/en/products/tecnomatix/virtual-commissioning.html.

[13] Visual Basic | Encyclopedia.com. url: https://www.encyclopedia.com/
science - and - technology / computers - and - electrical - engineering /
computers-and-computing/visual-basic.

34

https://www.automation.siemens.com/salesmaterial-as/brochure/en/brochure_tia_portal_en.pdf
https://www.automation.siemens.com/salesmaterial-as/brochure/en/brochure_tia_portal_en.pdf
https://www.plm.automation.siemens.com/global/en/products/tecnomatix/virtual-commissioning.html
https://www.plm.automation.siemens.com/global/en/products/tecnomatix/virtual-commissioning.html
https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/visual-basic
https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/visual-basic
https://www.encyclopedia.com/science-and-technology/computers-and-electrical-engineering/computers-and-computing/visual-basic

A
Appendix 1

A.1 VBA code

1

2 Sub Pas t eS igna l s ()
3

4 Dim x As Long
5 Dim y As Long
6 Dim Row As Long
7

8

9 Dim CopyWS As Worksheet
10 Dim TargetWS As Worksheet
11 Dim CopyWS2 As Worksheet
12

13

14 Set CopyWS = Workbooks (" Honing_test . x l sx ") . Sheets (
15 " S i gna l Suggest ion from AF")
16

17 Set TargetWS = Workbooks ("BULKISEN_ver_1 . x l sx ") . Sheets
18 (" Bulk eng inee r ")
19

20 Set CopyWS2 = Workbooks (" Honing_test . x l sx ") . Sheets
21 (" Sequence Sugges t i ons from AF ")
22

23

24 ’The row number to s t a r t from
25

26 x = 8
27

28 ’___
29 ’ Loop below cop i e s and pas t e s boolean s i g n a l s
30 ’ from the s i g n a l sugge s t i on l i s t
31

32 For adr = 2 To 6
33

34 I f CopyWS. Ce l l s (x , 2) = "BOOL" Then

I

A. Appendix 1

35 TargetWS . Ce l l s (adr , 2) = " SourceByte_2_InternalBOOL "
36 For y = 10 To 17
37 CopyWS. Ce l l s (x , 3) .Copy
38 TargetWS . Ce l l s (adr , y) . Pas t eSpec i a l
39 TargetWS . Ce l l s (adr , y) . Value
40 = "Honing_ " & TargetWS . Ce l l s (adr , y) . Value
41

42 x = x + 1
43 Next y
44

45 ’___
46 ’ Loop below cop i e s and pas t e s array s i g n a l s
47 ’ from the s i g n a l sugge s t i on l i s t
48

49

50 ElseIf CopyWS. Ce l l s (x , 2) = " Array o f CHAR [0 . . 1 7] " Then
51

52 TargetWS . Ce l l s (adr , 2) = " SourceDINT_2_internalINT "
53

54 y = 10
55 CopyWS. Ce l l s (x , 3) .Copy
56 TargetWS . Ce l l s (adr , y) . Pas t eSpec i a l
57

58 TargetWS . Ce l l s (adr , y) . Value = "Honing_ " &
59 TargetWS . Ce l l s (adr , y) . Value
60

61 End I f
62

63

64 y = 10
65 x = x + 1
66 Next adr
67 ’___
68 ’ Loop f o r c r e a t i n g f l i p f l o p s , ads s e t and r e s e t v a r i a b l e s
69

70 Row = adr
71

72 For x = 4 To 28
73

74 y = 10
75

76 I f CopyWS2 . Ce l l s (x , 1) = " Set " Then
77

78 TargetWS . Ce l l s (Row, 2) = " Fl ipFlop "
79 CopyWS2 . Ce l l s (x , 2) .Copy
80 TargetWS . Ce l l s (Row, y) . Pas t eSpec i a l

II

A. Appendix 1

81 TargetWS . Ce l l s (Row, y) . Value
82 = "Honing_Set_ " & TargetWS . Ce l l s (Row, y) . Value
83

84 y = y + 1
85 TargetWS . Ce l l s (Row, y) . Pas t eSpec i a l
86 TargetWS . Ce l l s (Row, y) . Value
87 = "Honing_Reset_ " & TargetWS . Ce l l s (Row, y) . Value
88

89 y = y + 7
90 TargetWS . Ce l l s (Row, y) . Pas t eSpec i a l
91 TargetWS . Ce l l s (Row, y) . Value
92 = "Honing_ " & TargetWS . Ce l l s (Row, y) . Value
93 Row = Row + 1
94

95 End I f
96

97 Next x
98 ’___
99 ’ State Machine Loop

100 x = 4
101 y = 2
102 Col = 11
103 I f CopyWS2 . Ce l l s (x , y) = " " Then
104

105 y = y + 2
106 CopyWS2 . Ce l l s (x , y) .Copy
107 TargetWS . Ce l l s (Row, Col) . Pas t eSpec i a l
108 TargetWS . Ce l l s (Row, Col) . Value = "Honing_ " &
109 TargetWS . Ce l l s (Row, Col) . Value
110

111 x = x + 1
112 Col = Col + 1
113

114 Do While CopyWS2 . Ce l l s (x , y) <> " "
115

116 CopyWS2 . Ce l l s (x , y) .Copy
117 TargetWS . Ce l l s (Row, Col) . Pas t eSpec i a l
118 TargetWS . Ce l l s (Row, Col) . Value = "Honing_ " &
119 TargetWS . Ce l l s (Row, Col) . Value
120 Col = Col + 1
121 x = x + 1
122 Loop
123

124 y = y − 2
125 Else
126 CopyWS2 . Ce l l s (x , y) .Copy

III

A. Appendix 1

127 TargetWS . Ce l l s (Row, 10) . Pas t eSpec i a l
128 TargetWS . Ce l l s (Row, 10) . Value = "Honing_ " &
129 TargetWS . Ce l l s (Row, 10) . Value
130 x = x + 1
131

132

133 ’___
134 ’ Replaces a l l spaces with under score s
135

136 Workbooks ("BULKISEN_ver_1 . x l sx ") . Sheets (" Bulk eng inee r ")
137 . Columns ("A: S ") . Replace _
138 What:= " " , Replacement := "_" , _
139 SearchOrder :=xlByColumns , MatchCase:=True
140

141 End Sub

IV

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Background
	Purpose
	Research questions
	Scope

	Theory
	PLC
	Digital twin
	Virtual commissioning
	Software for creating digital twins when virtual commissioning
	TIA portal
	PLC sim advanced
	SIMIT
	Robot studio

	SIMIT templates
	Discrete-event simulation model
	Visual Basic for Applications (VBA)

	Methods & Implementations
	Identify problems when creating communication in SIMIT
	Literature review
	Creation of templates in SIMIT
	The State machine template
	The Flip flop template
	The bytes to double word template
	The double word to bytes template
	The byte to bits template
	The bits to byte template
	The Compare template

	Bulk engineering file
	Creating state machine template in bulk engineering chart
	Creating flip flop template in bulk engineering chart
	Creating compare template in bulk engineering chart
	Creating byte to internal Bool template in bulk engineering chart
	Creating internal Bool to byte template in bulk engineering chart
	Creating byte to double word template in bulk engineering chart
	Creating double word to byte template in bulk engineering chart

	Import signal list for machine types to bulk chart
	Dividing the sequence list into states for machine communication
	Auto-generating code
	VBA Excel for creating templates in bulk engineering chart
	Exporting signals list to the bulk engineering chart using VBA
	Create states from the sequence list to the bulk engineering chart using VBA

	Results
	Function Block Diagram templates
	Bulk engineering template
	VBA Auto-generating

	Discussion
	Conclusion & Future work
	Bibliography
	Appendix 1
	VBA code

