
L1I
L1D

L2

Core

L3 (LLC)

MCU

MEE

L1I L1D

L2

Core

L0DMEE

Deep Integration of a Memory
Encryption Engine in Modern Processor
Designs

Master’s thesis in Embedded Electronic System Design

IVAR SÖRQVIST

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

Deep Integration of a Memory
Encryption Engine in Modern Processor Designs

IVAR SÖRQVIST

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Deep integration of a memory encryption engine in modern processor designs

IVAR SÖRQVIST

© IVAR SÖRQVIST, 2021.

Supervisor: Per Stenström, Dep. of Comp. Sc. and Eng.
Examiner: Per Larsson-Edefors, Dep. of Comp. Sc. and Eng.

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

iv

Deep integration of a memory encryption engine in modern processor designs

IVAR SÖRQVIST
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Keeping execution of data secure from potential attackers is a major concern today,
especially in cloud computing. Intel SGX is one example of such a trusted execution
environment, utilising isolation of data on-chip memory and encryption off-chip.
However, numerous publications have been published exploiting its vulnerabilities
with different types of side-channel, Spectre and Meltdown attacks. In this thesis,
we propose a relocation of the encryption stage deeper into a processor’s memory
hierarchy which could be a potential solution for a more secure system. We introduce
two systems: first moving the encryption stage to before the shared last-level cache,
second encrypting before the first level data cache with an added dedicated cache
for cryptography. For the second different placements of prefetching are investigated
further. Through simulations using the gem5 simulator, we show that these systems
suffer minor performance losses compared to using no encryption at all.

Keywords: Master, thesis, processor, cryptography, encryption, engine, MEE, sim-
ulation, gem5, TEE.

v

Acknowledgements
I would like to express my deepest appreciation to Per Stenström that have super-
vised me in my work. Your invaluable expertise, advice and belief in my abilities
have been fundamental pillars in writing this thesis.

Ivar Sörqvist, Gothenburg, June 2021

vii

Contents

List of Figures xi

1 Introduction 1

2 Background 3
2.1 General Purpose Processor . 3

2.1.1 The Core . 4
2.1.2 The Memory Hierarchy . 5

2.2 Trusted Execution Environments (TEE) 6
2.2.1 Intel Software Guard eXtension (SGX) 7
2.2.2 AMD Secure Encrypted Virtualization (SEV) 8
2.2.3 Arm TrustZone . 8

2.3 Memory Encryption Engine (MEE) 9
2.4 Attacks . 10

3 Proposed Systems 13

4 Experimental Methodology 15
4.1 Simulated system . 15
4.2 The gem5 Simulator . 16
4.3 Benchmark Applications . 16

5 Results 19
5.1 Naive Systems . 19

5.1.1 Running Less Tests . 20
5.1.2 Placing the MEE Before the LLC 21
5.1.3 Placing the MEE Before the L1D 22

5.2 Hiding Encryption Overhead With a Dedicated L0D Cache 23
5.2.1 Increasing Performance With Prefetching 23

6 Concluding Discussion 27
6.1 Discussion . 27
6.2 Conclusion . 29

Bibliography 31

A Appendix 1 I

ix

Contents

A.1 Analysing simulations dependency on simulated instructions I
A.2 Compiling and Running Benchmarks II
A.3 Full Configuration of Base System . III

x

List of Figures

2.1 Sketch of a GPP. 4
2.2 Sketch of a pipeline. 5

3.1 The two proposed systems. 13

5.1 Naive systems. 19
5.2 MPKI for LLC, base system. 21
5.3 MEE before LLC. 22
5.4 MEE before L1D. 23
5.5 Adding a dedicated L0D cache for sensitive threads. 24
5.6 1 KiB L0D, with prefetching at different stages. 25
5.7 16 KiB L0D, with prefetching at different stages. 26

A.1 CPI for different number of simulated instructions. I

xi

List of Figures

xii

1
Introduction

With constantly increasing connectivity, more data are processed and communicated
now than ever before. Amidst this trend, security concerns cannot be neglected
since being able to keep your data safe and secret from potential attackers is a
high priority among vendors. To achieve this, not only is it needed to encrypt our
data when communicating with external sources. It is also a good idea to protect
the data from malicious software with access to our hardware. In modern General
Purpose Processors (GPP), a common approach is to separate secure processes from
all others. One way to do this is with the use of Virtual Machines (VM) which there
has been considerable research exploiting its weaknesses [1, 2, 3, 4]. A VM can
not be fully secure, among others due to its submissive relationship to the system’s
hypervisor. Another way of keeping executing data secure is with the use of so-called
Trusted Execution Environments (TEE), offering greater security and performance
compared to VMs, which is made possible by relying more on customised hardware
[5, 6, 7]. An example of this is Intel’s Soft Guard eXtension (SGX), enabling secure
enclaves for a thread to operate within and where all privileged software around is
assumed to be malicious [8, 9]. By separating the secure process into a one-way
transparent enclave the secure process can access resources from other processes
up to the same privileged level, while processes located outside the enclave cannot
access resources residing in it. Similar approaches to a TEE are available from
AMD, named Secure Encrypted Virtualisation (SEV) and Arm, named TrustZone
[10, 11]. In SGX and SEV, data belonging to the secure process is encrypted in the
processor’s main memory. It is kept encrypted using a Memory Encryption Engine
(MEE) placed in the Memory Control Unit (MCU), which is then located between
main memory and the Last Level Cache (LLC) and can be decrypted back to LLC
when needed [12, 9, 10].

Even though these TEE’s are offering a great deal of security, they have multiple
times been proven vulnerable and that an attacker can access sensitive informa-
tion [13, 14, 15]. Notably, Intel’s SGX has had more attacks published than the
others. However similar attacks seem applicable to AMD’s and Arm’s versions as
well. Different cache-based attacks such as the CacheZoom, using Prime+Probe
attack techniques, extracting encryption keys by accurately measuring cache access
times when the encryption is done within an SGX enclave [16, 17, 18, 19]. An-
other interesting attack is the Foreshadow attack, based on the same speculative
behaviour as the Spectre and Meltdown attacks, it can leak enclave secrets in plain

1

1. Introduction

text [20, 21, 22]. Some attacks have even shown to be successful in placing malicious
code within the enclave itself [23].

Henceforth, the security level offered in today’s TEEs can be questioned. One
possible solution to increase the security offered could be to integrate the MEE
deeper into the on-chip memory of the GPP. We will focus on the performance of
such systems and only lightly discuss if this would solve today’s security issues.
With that said, this thesis aims to:

• Investigate performance difference of systems with encrypted data integrated
deeply into the on-chip cache memory. Compare this to systems representing
today’s TEEs and no encrypted data at all.

• Examine the system’s sensitivity of different encryption/decryption overheads
of the MEE.

• Explore the possibility of adding a dedicated cache, only accessible by a single
thread, for encrypted data.

• Apply performance-enhancing techniques, such as prefetching.

To quantify the aim of this thesis, models representing the different systems are
simulated using the gem5 detailed architecture [24]. This model uses the x86-64
architecture and is inspired by Intel’s Skylake server architecture [25]. Moreover,
the simulations are done using the SPEC cpu2006 benchmarks measuring times of
10 million instructions with warmed up caches [26].

From the simulations conducted it could be seen that moving the MEE down to
before the LLC gave only minor performance losses. Moving it even further down to
before the Level 1 Data (L1D) cache gave large performance loss but this could be
decreased drastically with adding a dedicated Level 0 Data (L0D) cache and even
more by using prefetching.

This thesis first goes through valuable background concerning modern computer
architecture, TEE, MEE and some attacks targeting discussed TEEs. The pro-
posed systems and how these were simulated is then laid out. Lastly, results from
simulations and a discussion are provided.

2

2
Background

In this chapter, we describe the necessary background and theory for the thesis.
Starting with a description of a GPP, then moving on to a description of TEE,
MEE and finally a description of attacks that these TEEs have recently faced.

2.1 General Purpose Processor
When talking about microprocessors today, most people refer to the GPP which em-
brace nearly all Instruction Set Architectures (ISA) [27]. These GPPs are powering
everything from our personal computers, smartphones to servers and supercomput-
ers. What makes them general, is the design that lets them handle multiple different
tasks. To define on a low granularity level what the GPP can do, the ISA is used.
With it, the programmer can see in detail what the GPP is hardwired to do, with
instructions such as WRITE, READ, ADD, and COMPARE etc. usually referred
to as assembler instructions. By combining these low-level instructions, more com-
plex tasks can be performed and build up more high-level programs such as C, Java
and Python. With that said, exactly how the GPP works at a component level are
confidential, restricted by the companies and what is publicly available are usually
more general white papers describing functionalities.

Historically there have been two different ISA design philosophies dominating, Com-
plex Instruction Set Computing (CISC) and Reduced Instruction Set Computing
(RISC). Companies such as Intel and AMD are designing CISC computers based
on the x86-64 ISA and Arm different RISC ISAs, to name the largest vendors on
the market [27]. Traditionally, x86-64 processors could be found on more high-end
desktop and server chips, while Arm on lower-end embedded systems with stricter
power constraints, such as cell phones. Nonetheless, with Apple’s latest Arm-based
M1 chips and a server market increasingly buying more Arm-based chips, even the
difference in targeted markets is shrinking [28, 29]. Another ISA getting attention
lately is the open-source RISC-V developed at Berkeley [30].

The architecture of a GPP can roughly be divided into processing units, so-called
cores and memory units. The memory units take care of the data streams on-chip,
off-chip, between them both, temporal storage on-chip and more and long term
memory storage off-chip. To utilise the large external memory, its long latency is
hidden by creating a memory hierarchy, where smaller faster memories called caches

3

2. Background

are located on the chip, see Fig. 2.1. The memory flow between on-chip and off-chip
memory is controlled by a MCU, while other Input/Output (I/O) are taken care of
with dedicated I/O-circuitry.

L3 (LLC)

MCU

L1I L1D

L2

Core

L1I L1D

L2

Core

MEE

I/O

Main Memory (DRAM)

Flash
and/or

Disc Storage

Figure 2.1: Sketch of a GPP.

Fig. 2.1 is illustrating a GPP, such as the Skylake architecture from Intel [25]. The
on-chip memory is divided into three levels of cache, namely Level 1, Level 2 and
Level 3 (L1, L2, L3). There exist multiple processing units, referred to as cores,
possessing the execution logic. The two lower-level caches (L1, L2) are exclusive to
one core and can only be utilised by it. The L1 cache can be split into two caches, one
for instructions (L1I) and one for data (L1D). Lastly, the Last Level Cache (LLC),
L3 in the case of Skylake, brings the cores together, enabling communication and
sharing of data between them.

2.1.1 The Core
As mentioned, the cores of a GPP are where the processing of data is done. This is
made possible with different functional units such as adders, shifters, comparators
etc., each with specialised circuitry for its task. Today, most GPPs are multi-core
and some consumer market products for server specialised applications are even
getting closer to having hundreds of cores on the same chip [31]. Moreover, they
are generally highly pipelined, superscalar, speculative, multi-threaded and executes
instructions in an out-of-order fashion [32]. Examples of this are processors based
on the Intel Skylake and Arm Cortex-M7 architectures [25, 33]. By pipelining a
computer it is possible to increase the clock frequency of a core, which is done by
dividing the stages an instruction has to go through, to about equal delay. A classic
RISC pipeline is usually said to consist of: (1) Instruction fetch, (2) Instruction
decode and fetching registers, (3) Execute, (4) Accessing memories and (5) Write
back to registers, see Fig. 2.2

Today, the pipeline stages of more high-end superscalar GPP consist of more than
the traditional five stages. But, all of these stages can roughly be categorised into
the previously mentioned stages. Intel’s Skylake architecture has between 14-19

4

2. Background

L1I L1D

Registers

(1) (2) (3) (4) (5)

Fetch Decode Execute Access
Memory

Write Back
To Reg.

Figure 2.2: Sketch of a pipeline.

stages [25], Arm’s Neoverse V1 platform 11+ stages [34], while for an example Arm’s
Cortex-M7 architecture has a lower number of 6 stages [33]. By being superscalar, a
core can process multiple instructions at the same time, typically two, four or eight.
Moreover, the core will fetch future instructions and data. By making a speculative
guess on which path a branch is going, instructions in that path can be executed
even before the branch is resolved. This is called that the processor is executing
speculatively. If the branch is not taken, the processor will have to be flushed,
stalling it. These speculatively fetched instructions will start executing instantly
and stop first if the guess was incorrect. Through multi-threading a processor,
multiple different processes or threads can be run on the same core, in a manner
that looks to the user as parallel, effectively resulting in more programmable cores
than physical. The threads can then be switched between when the running one has
stalled, from a cache miss, branch misprediction, data dependency or when executed
for a predetermined number of cycles. Intel and AMD call this hyperthreading and
it is usually duplicate the effective number of cores a programmer can use. These
threads in the hyperthreaded core, therefore, share the same resources such as lower-
level caches. But registers residing in the core, are generally not shared and when a
thread switch occurs, they will be offloaded. Lastly, the instructions in the core are
executed in an out-of-order fashion, meaning that the core does not have to execute
the program’s instructions in a strict order. They will later be rearranged in the
correct order in a reorder buffer, placed last in the pipeline. This was introduced
in the 90s by Intel together with their Pentium pro processor and is basic practice
today [35, 27].

2.1.2 The Memory Hierarchy
Ideally, a programmer would have access to unlimited sized, instantly fast memory
(1 clock cycle). However, such a system is not possible to design because of chip
size, wire delays, cost etc. But, by implementing gradually increased sized caches
(with latency penalties per size increment) and other tricks such as prefetching, it
is possible to make it behave close to an ideal memory. The different memories are
structured in a pyramid-like hierarchy: (1) the smallest fastest CPU registers on

5

2. Background

top, (2) a very small, very fast L1 cache, (3) a small fast L2 cache, (4) a not as fast
larger L3 cache, (5) a slow large main memory located outside the processing chip
and finally, (6) a very slow disk or a bit faster flash storage, this can be seen inverted
in Fig. 2.1 [36]. These stages naturally differ with the architecture and application
used. A phone does not use disk storage, but a faster smaller flash storage and
might have fewer cache levels. Commercial desktop computers usually have fast
flash storage such as a solid-state drive combined with or without disk storage for
long term storage. Typical values for the different levels in a server computer are
visualised in Tab. 2.1.

Table 2.1: Typical values for different cache and memories in a computer [27].

CPU L1 L2 L3 Main
registers Memory

Size 1000 B 64 kB 256 kB 2-4MB 4-16GB
Latency 0.3 ps 1 ns 3-10 ns 10-20 ns 50-100 ns

The configurations of cache and memory are almost uniquely made for each proces-
sor. In this thesis, we base our model on the Skylake architecture from Intel [25].
Such a GPP has a split L1 of 32 KiB each, a 1 MiB L2 and 1.375 MiB/Core L3 cache.
L1 and L2 are private to each core while L3 is shared among cores placed in the
same socket, with up to 20 cores per socket.

To further hide memory latencies, multiple techniques such as reading/writing mul-
tiple data at the same time, prefetching data before it is needed, write and miss
status handling register can be applied [36]. For this thesis we look more into the
placement of prefetching, something that is included in most high-end commercial
processors today [37]. Prefetching is a way to read data into a cache before it is
needed and can be divided into two categories: software and hardware prefetching.
Hardware prefetching may require extra storage usually in form of tables, keep-
ing track of memory access patterns. Software prefetching use special instructions
placed in the source code and can be set up by the compiler or the programmer.
Prefetching can be located at different levels of the cache or memory hierarchy.
One prefetcher commonly used today is the Stride prefetcher, which is based on the
stream prefetcher. It uses first in first out stream buffers, where each stream buffer
keeps track of sequentially prefetched cache lines and can so forth make qualitative
guesses on what is coming next.

2.2 Trusted Execution Environments (TEE)
Numerous applications require that the GPP can ensure secure execution, separate
and protected from other processes executed on the same GPP. An example of when
this could be needed is cloud computing, where a client does not want other programs
with malicious intention to monitor, copy or alternate the execution of their program.
The most secure solution today is provided by using the so-called TEE. There are

6

2. Background

multiple variants of TEEs available, some being Intel Management Engine, AMD
Platform Security Processor, System Management Mode, Arm TrustZone, Intel SGX
and AMD SEV [1, 38].

Another way to create isolation is to use VMs which can run everything from a
separate process to a fully operational Operating System (OS) [1]. To manage these
different VMs that share the same firmware and hardware, a hypervisor is typically
used. The hypervisor has control of the software, firmware and hardware and dis-
tributes which VM can use at a certain point of time. However, an obvious flaw with
such a system from a security standpoint, is that the hypervisor needs to be fully
trusted. Since if it would be mounted with malicious intentions, it could exploit its
privileged level to spy or mount attacks on the different VMs operating under it [11].
Another concern is that isolation is restricted to the processor implementing them.
Other units controlling the bus such as Direct Memory Access (DMA) controllers or
a Graphical Processing Unit (GPU) could potentially bypass this isolation. Accord-
ing to [11] so is virtualisation also ignoring security threats coming from hardware
attacks, targeting debug and test the infrastructure of the chip.

By using hardware-assisted TEEs, the intention is not to only offer greater security
but also higher-performing systems. The TEE will generally keep an area of the
GPP restricted to some process, where this process can access other processes area
but not the reversed. We provide in the following sections a deeper explanation
of how TEEs from three of the largest GPP designers function, namely SGX from
Intel, AMD SEV and Arm TrustZone.

2.2.1 Intel Software Guard eXtension (SGX)
Intel’s SGX is one of the most extensively used TEEs today. It was first introduced
for client platforms with the Xeon E3 processor and got extended for server use
[39]. With SGX, Intel is trying to enable secure remote computing [9]. It works by
creating exclusive memory regions called enclaves, a region that the CPU will protect
from all accesses coming from outside this region [9]. This enclave has therefore a
restricted memory region for its use, which is a subset of the main memory. On-chip
it holds the enclave’s data and code in 4 KiB pages also restricted to its use only.
By using a software attestation scheme, a remote party can authenticate that the
software is running as intended, inside the enclave. Since the SGX is only trusting
the GPP’s internal components, a central part of the SGX is the use of an MEE to
keep the enclave encrypted with 128-bit key Advanced Encryption Standard (AES)
in the off-chip memory [12]. A deeper explanation of the MEE is outlined in Section
2.3. Not only does SGX require the enclave to be encrypted in GPP’s external
components, but the main memory also needs to be both replay protected and
tamper-resistant. By keeping the memory space of the enclave exclusive it should
be protected from internal attacks. However, as Costan et al. mention in [9], the
MEE does not protect addresses of the cached enclave pages in the main memory.
Therefore with carefully crafted malicious software, pressure could be put on the
LLC and tap its content from observed memory accesses. There have also been
multiple attacks targeting the SGX that will be discussed later in Section 2.4.

7

2. Background

2.2.2 AMD Secure Encrypted Virtualization (SEV)
The SEV provided by AMD is also designed for secure cloud computing [10]. It
works by encrypting VMs in main memory and according to Kaplan et al. [10] so
can this not only protect from physical threats but also other VM’s working on the
same hardware, even the hypervisor. The main memory encryption is done with
dedicated hardware in the MCU, using a 128-bit AES key randomly created at boot
time, the same as SGX. When encryption is enabled, an extra bit will be added to
the physical address called the C-bit keeping track if a page is encrypted or not.
The SEV can be configured to occupy VM machines spanning over one or multiple
cores.

Traditionally a hypervisor and its VM works as a ring-based security model. The
hypervisor is more privileged and can therefore access all resources in the VM but
not the other way around. But in SEV the different levels will be isolated and the
hypervisor can only communicate with the VM in controlled, restricted commu-
nication paths. As mentioned, security outside the chip is done with encryption,
on-chip it is done by using tags for isolation between VMs. The VM can choose
to only encrypt a subset of pages which can make another subset open used for
communications with hypervisor and other VMs.

To provide confidentiality for the owner of the guest VM, such as a customer in
a cloud computing system, the guest owner will first provide a guest image to the
SEV firmware. A launch of the guest is then done and measurements of this are
sent back to the guest owner. If the guest owner deemed the measurement correct
then it can provide extra resources needed for computation. The measurements are
an authentication of the platform that it has an AMD SEV done with a specific
identity key and an attestation that the guest was launched with SEV enabled.

2.2.3 Arm TrustZone
Arm’s version of TEE differs a bit from Intel’s and AMD’s. Rather than providing
one complete solution, they are providing a range of different components that the
chip designer then can choose from [11]. Security is provided by dividing up exe-
cution into two worlds, one named secure and the other normal. Components used
in the secure world are not accessible by the normal world. There are architectural
extensions that allow the same core to execute code from both worlds, switching
between the two in a time-sliced fashion. In an Arm-based GPP where TrustZone
is enabled, it will always start in the secure world before running any normal world
sequences. This is to guard the system against system boot attacks and such it can
authenticate that the secure world is secure.

TrustZone works by partitioning software and hardware resources to be in either
a secure or normal world [11]. Memory units like caches and main memories can
consist of data from both worlds, but with extra tags, the controllers such as the L2
cache controller and DMA controller have separate channels for data belonging to
the secure or normal world. Compared to SGX and SEV so is the data not encrypted
in the main memory, but only strictly isolated. Processor cores each consist of two

8

2. Background

virtual cores, one for secure execution and one for non-secure. To keep track of when
a unit is operating in the secure or normal world an added bit is put to the buss and
cache memories tag’s address. The so-called non-secure bit is added as a control
signal to the read and writes busses such that the different units can keep track if a
master’s access to a slave is eligible, if not, an error on the bus will be raised.

Important to note, as a comparison between TrustZone, SGX and SEV, is that
Arm is an Intellectual Property (IP) provider, offering an extensive set of IP blocks
capable of using TrustZone. Different systems use different setups of these IP blocks.
When labelling a system with Arm TrustZone no consideration is taken into which
units or how many actually can make use of TrustZone and therefore cannot be
assumed to act similarly under the same threat model [9].

2.3 Memory Encryption Engine (MEE)
As described in the previous section, some TEEs are leaving the main memory un-
trusted. They, therefore, need to make use of some encryption mechanism to keep
data and instructions in the main memory encrypted from potential threats. To
not lose performance and keep the security high this is usually made possible with
autonomous hardware-accelerated MEE [9, 12, 10]. The MEE is located inside the
MCU and by keeping track of when the MCU refers to a protected area in the main
memory (such as SGX enclave, or C-bit in AMD’s physical address) read/write re-
quests can be routed through the MEE to encrypt/decrypt the data accordingly. In
[12] Gueron describes the technologies that the MEE design of SGX for Intel’s Sky-
lake architecture was based on. He there mentions that it “is based on the following
pillars: an integrity tree, the cryptographic primitives that realise the encryption,
the Message Authentication Code (MAC), and the anti-replay mechanism” [12, p. 2].

The integrity tree is used for fast verification of the data’s integrity and is a common
method for keeping track of a large amount of data with limited storage. The type
used is the classical Merkle Tree, a tree-like hash structure where each node keeps
a hash of its two children and the lowest nodes keep the protected data. However,
instead of hashes, MAC tags are used. The root of the tree will be stored internally
of the chip while the rest in the main memory. The integrity tree can henceforth be
used to ensure the integrity of a memory block and that it has not been tampered
with since the last access. This checkup of the integrity tree will add on latency for
encryption/decryption proportional to the size of the tree.

When using an MEE, an encryption standard needs to be implemented. In the
aforementioned MEE, AES with a key length of 128-bits is used [12]. The AES is
a standard established by the U.S National Institute of Standards and Technology
in 2001. It requires 10, 12 or 14 rounds for encryption with 128, 192 or 256 bit
key length respectively [40]. In the Skylake architecture, in the fastest scenario,
the MEE needs to do 15 cycles for one write, 5 AES operations and 10 polynomial
multiplications [12]. This is done with dedicated hardware in the MEE, separated
from the core’s logic. This MEE has a throughput of 1 AES block per cycle and a
32 GiB/s limited to a maximum clock speed of 32 GHz.

9

2. Background

2.4 Attacks
While the TEEs promise secure and trusted execution environments there have been
numerous publications exploiting them. Since most published attacks are towards
Intel’s SGX, we focus on some of these to understand their concept. Even if they
focus on SGX they bring up interesting weaknesses that could affect AMD and
Arm TEE based systems as well. In [13] Nilsson et al. divide the known published
SGX attacks into the following categories: controlled channel attacks, cache-attacks,
branch prediction attacks, speculative execution attacks, rogue data cache loads,
microarchitectural data sampling and software-based fault injection attacks.

Most of these attacks fall under the category of some type of side-channel attack,
which is a way of exploiting observable side effects that is a result of computing.
There have been multiple attacks where physical side effects such as acoustic noise
[41], power consumption [42] or electromagnetic radiation [43] have been observed to
extract secrets such as cryptography keys. Note that these are not attacks targeting
TEE, but logic chips in general. These types of attacks have also been proven to
work on more sophisticated hardware’s such as personal computers [44]. Since GPP
often compute code from unknown origin, such as cloud computing or as a general
PC user, downloading software from the internet, these systems therefore also face
threats of software-based attacks.

Another use of side channels is the cache-based timing attacks where the cache-
hierarchy system is used to observe memory access patterns. Usually from a mali-
cious process running in parallel with the secure environment, such as the same core
in hyperthreading or a parallel core. There exist many different types of these such
as the Prime+Probe [45] and Flush+Reload [46] attacks. SGX has been proven
to be vulnerable to similar cache-timing attacks based on the same concepts, one
example being the CacheZoom attack based on Prime+Probe [16, 18, 19].

To get an understanding of how the cache-based timing attack works we describe
the Flush+Reload technique [46]. As an optimising technique, different processes
can share the same pages if those consist of the same data to save physical memory
space. If we then create a spy process that has an equal page as the victim, then
the GPP could keep these two virtually different pages as the same physical one
in the cache, to save memory space. If the spy then tracks accesses of its page,
sensitive data from the victim could leak. More specifically, this is done by flushing
a specific cache-line, effectively removing the content from the cache (it will still be
in a higher level memory such as a higher cache or off-chip memory). Then let the
victim operate for a while, to finally as the spy trying to access the same cache-line.
By measuring the time this access takes it is possible to know if it was a cache hit
or miss. If hit, then we can conclude that the victim process has used this cache
line specifically because it would have to bring the cache-line from a higher level
memory. To get the spy to share the page with the victim Yarom et al. [46] located
first the victim’s executable files and then mapped them into the virtual space of the
spy, tricking the GPP into the sharing page optimising effect. This assumes though,
that the spy has access to the same program code as the victim.

10

2. Background

By making use of the control that an untrusted OS can have over a platform (such as
an OS in cloud computing) other side-channel attacks could be launched. One such
attack is the one performed by Xu et al. [47], by observing page faults patterns of a
program running outside a TEE, they could then extract information when the same
program ran inside a TEE. They showed it possible, among others, to extract parts
of JPEG pictures in a JPEG compression program. Another such attack exploiting
the OS privilege level is the SGX-Step attack, single-stepping through an enclave’s
instructions [48]. It does this by configuring timer interrupts using Intel’s advanced
programmable interrupt controller and track table entries from user space.

In 2018 both the Spectre [21] and Meltdown [22] attacks that both exploit the spec-
ulative, out-of-order execution of a modern GPP made headlines. More specific,
the processor speculatively execute instructions before a branch earlier in the in-
struction flow has been determined. Both of these attacks makes it possible to trick
the GPP to prefetch data and execute some instructions that should not have been
done in a linear execution flow. Following this, different techniques can be used to
extract sensitive information, one of which using cache side-channel attacks such as
the Flush+Reload previously described. Moreover, both of these attacks have been
built upon by other attacks targeting SGX, with Spectre-like attacks such as the
SGXPectre [49] and the SpectreRSB [50].

The most famous Meltdown lookalike targeting SGX might be the Foreshadow at-
tack [20]. Different from the previously described attacks, Foreshadow does neither
require any knowledge of the enclaves source code nor to exploit any vulnerabili-
ties from software. Moreover, it does not require any cache-based side-channel, as
exploited in the other attacks. The Meltdown attack shows susceptibility in Intel’s
speculative out-of-order GPP. When a process makes access to a memory location
it has no read right to, a fault will be issued and taken care of by an exception
handler. But while this fault is being taken care of there will be a gap of time where
consequent instructions can be issued. By loading an oracle memory location (pre-
determined by the attacker) based on the value from the restricted data just read,
the secret data can then be obtained by measuring the time it takes to reload the
memory slot of the oracle. By exploiting this fundamental of the Meltdown attack
and adding tricks to step through the secret data that resides inside the enclave’s
L1 cache. Then the full data memory inside a secure enclave can be extracted.

This thesis proposes a deeper integration of the MEE which has the potential of
making these types of attacks obsolete. More of this will be discussed later in the
Section 6.1.

11

2. Background

12

3
Proposed Systems

In this thesis, we take a broader look into integrating the MEE deeper into the
processor’s memory hierarchy and how this affects its performance. We see two
systems that could potentially increase security in the system compared to today’s
TEEs (both visible in Fig. 3.1): Both of these systems prove to have small perfor-
mance losses

• In the first system, the MEE is placed before the LLC. Here it could be chosen
to only encrypt data, instructions or both.

• In the second system, the MEE is placed before the L1D cache. To hide the
overhead of the MEE this system is also suggested to be fitted with a smaller
dedicated encryption cache devoted to the secure environment, we refer to it
as L0D. This cache can reduce perceived delays for the core and could be fitted
with prefetching techniques to start decryption before data is needed in the
core.

L1I
L1D

L2

Core

L3 (LLC)

MCU

MEE

L1I L1D

L2

Core

L0DMEE

Figure 3.1: The two proposed systems.

13

3. Proposed Systems

These systems will offer different levels of security depending on additional design
features and how security is defined. With no multithreading in the cores, encrypted
data in the LLC could be sufficient. But if the core has multithreading, then either
all threads running on the same core would have to be assumed to be non-malicious
to each other. To not having to do this conjecture, the addition of an L0D crypto-
graphic cache and keeping it restricted only to the secure threads could do it.

14

4
Experimental Methodology

This chapter goes through the experimental base system that was configured in the
gem5 simulator to simulate the proposed systems. As binary for the gem5, the
SPEC cpu2006 benchmarks were chosen and a brief discussion about these is also
provided.

4.1 Simulated system
A base system representing a modern single core computer, inspired by Intel’s Sky-
lake architecture, was defined according to Tab. 4.1, representing the system in
Fig. 2.1 [25, 51]. Other configured and tested systems were all based on this system
but deviated from it by architectural reorganisations, extensions, and/or alternated
parameters.

CPU 1 core, x86-64, 3.2 GHz, OOO, 1 ROB with 224 entries,
8 fetch/decode/rename/IEW width, 14 stage pipeline

L1 64 KiB, 8-way set-associative split I/D,
data=4, tag=2, response=4 cycles latency
10 MSHR x2, 8 write buffers x2

L2 1 MiB, 16-way set-associative, exclusive,
data=14, tag=4, response=14 cycles latency
stride-prefetching
20 MSHR, 16 write buffers

L3 2 MiB, 16-way set-associative, inclusive,
data=50, tag=8, response=50 cycles latency
40 MSHR, 32 write buffers

MCU/ 55 ns, 12.8 GB/s bandwidth,
Main memory including delay both for MCU and DRAM
MEE Encypt/Decrypt 15 cycles latency, no limiting bandwidth

Table 4.1: System simulated in gem5.

15

4. Experimental Methodology

4.2 The gem5 Simulator
The open-source gem5 simulator was chosen for this thesis [24]. It is a merge between
the M5 and GEMS simulators, providing simulation with the most common ISAs
and a good range of different CPU models. The simulator can operate different types
of CPUs in either System-call Emulation (SE) mode or Full-System (FS) mode. The
SE mode is avoiding the need to emulate a full OS compared to the FS mode that
operates this by separating user- and kernel-level instructions and modelling all of
the OS’s devices. As only one executable file (one benchmark) at the time will be
executed it was chosen to run gem5 in SE mode.

Moreover, the gem5 simulator offers two different memory system models. First
being named Classic, which gives an easily configurable, fast modelled system and
was the one chosen for this thesis. The second one is named Ruby and can simulate
more accurate caches. It is of great use for those wanting to simulate things such as
cache coherence protocols.

Gem5 provides multiple different CPU models and the O3CPU (Out-Of-Order) was
chosen. The model will simulate “dependencies between instructions, functional
units, memory accesses, and pipeline stage” [24, p. 5]. The pipeline consists of the
stages: Fetch, Decode, Rename, Issue/Execute/Writeback and Commit. By setting
how many cycles it will take for an instruction to move from one stage to the next
we can specify the length of our pipeline. The O3CPU model does what Binkert et
al. call “execute-in-execute”, meaning that instructions will only really be executed
first when dependencies have been sorted out [24].

Exact parameter values set for the base system, including those given in Tab. 4.1,
can be found in Appendix A.3.

4.3 Benchmark Applications
To compare the different systems the SPEC cpu2006 benchmark suite was chosen
[26]. This suite consists of 30 benchmarks, which can be divided into integer or
floating point. The benchmarks used were:

400.pelbench 401.bzip2 403.gcc 416.gamess
429.mcf 433.milc 435.gromacs 436.cactusADM
444.namd 445.gobmk 450.soplex 437.leslie3d
453.povray 454.caclculix 456.hmmer 458.sjeng
459.GemsFDTD 462.libquantum 464.h264ref 465.tonot
470.lbm 471.omnetpp 473.astar 482.sphinx3
998.specrand 999.specrand

The benchmarks: 447.deaII, 481.wrf, 483.xalancbmk, could not be used due to failure
in compilation or error during the run. How these benchmarks were compiled and
how they were chosen is described in Appendix A.2. They were all run with the

16

4. Experimental Methodology

provided reference input and arguments for each benchmark were set according to
[52].

All benchmarks were used for the first run simulating the most basic systems. By
extracting data of cache misses from the base system Misses Per Kilo Instructions
(MPKI) could be calculated which can be used as a measurement to rule out bench-
marks that have more cache misses. The benchmarks chosen from this criteria
were: 401.bzip2, 410.bwaves, 436.cactusADM, 437.leslie3d, 445.gobmk, 458.sjeng
and 470.lbm. More of this are discussed in Section 5.1.1.

Each application was simulated for 10 million instructions with a 10 million instruc-
tion warm up. Warming up the caches by executing a part of the program before
taking measurements gives values closer to the expected average of the program [53].
If measurements had been started from the beginning of a program, a larger portion
of the measured time would be caused by stalled processor due to cache misses. To
achieve the 10 million instruction warm-up two simulations ran for each test. One
with 20 million and a second with 10 million instructions. The simulated time for
10 million instructions with warmed up caches was then calculated as the delta be-
tween the two. The simulation time for each benchmark is presented normalised to
the base system without any encryption, i.e. a normal GPP without any encryption
stage.

In this thesis we simulated the six following systems:

1. Base system with no encryption used to normalised data to.

2. MEE placed before off-chip main memory encrypting data and instructions,
representing Today’s TEEs.

3. MEE placed before LLC encrypting both data and instructions.

4. MEE placed before L2 encrypting only data.

5. MEE placed before L1D.

6. MEE placed before L1D but with an added L0D. This was investigated further
with prefetching.

System 1-5 is referred to as naive systems since they naively place the MEE at
different places in the memory hierarchy. System 3 is the first proposed system and
system 3 the second proposed system, discussed in Section 3.

17

4. Experimental Methodology

18

5
Results

This chapter provides results from the simulations and a discussion around those.

5.1 Naive Systems
As today’s TEEs have their encryption stage, their MEE located inside the MCU,
between the LLC and main memory, an interesting analysis to be made is how
performance is affected by moving this encryption stage to other locations in the
memory hierarchy. Since these systems are simply a matter of moving the MEE
without any more consideration, we refer to them as “naive systems”. The results
for placing the MEE before the main memory, LLC, L2 (only encrypting data), and
L1D can be seen in Fig. 5.1.

0

1

2

3

4

5

6

401.bzip2

403.gcc

410.bwaves

429.mcf

433.milc

435.gromacs

436.cactusADM

437.leslie3d

444.namd

445.gobmk

450.soplex

453.povray

456.hmmer

458.sjeng

459.GemsFDTD

462.libquantum

464.h264ref

470.lbm

471.omnetpp

473.astar

482.sphinx3

998.specrandi

999.specrandf

N
or
m
.
sim

.
tim

e

Main Memory
LLC

Data in L2
L1D

Figure 5.1: Naive systems.

The graph is illustrating four systems (system 1, 2, 3 and 4 introduced in Section
4.3), all based on the base system in Tab. 4.1. The first, most left one system
(purple bar) corresponds to the modern TEEs such as SGX and SEV that have
their MEE located before the main memory. The second system (green bar), is with

19

5. Results

the MEE stage moved to before the LLC instead. The third system (blue bar), is
with the MEE placed between the L1D and L2, resulting in only keeping the data
(but no instructions) of the system encrypted. The last system (orange bar), is if the
MEE is located directly between the core and L1D, encrypting again only data. All
of the systems are normalised to the base system without any encryption giving a
y-axis of how many times slower it was compared to the base system for this specific
benchmark.

As one can suspect, naively adding an overhead, effectively increasing the time it
takes to read and write decreases the performance of the system. Interestingly
though is that the effect is not that great for the L2 and LLC systems, while it is
significantly more for most of the benchmarks with an encryption stage before the
L1D cache. This suggests that from a performance perspective the MEE could be
naively more deeply integrated until before the L2 cache. However, simply starting
encrypting data in the L1D cache could have a serious impact on the performance of
the system. Therefore further additions to such as system would have to be made.

5.1.1 Running Less Tests
Because the simulated MEE just adds an overhead between two memory stages,
the most interesting benchmarks are those with more memory accesses. With more
memory accesses, the total execution time of a constant set of instructions should
be more sensitive to an added overhead between two memory stages. This, since if
there is no data or instruction available at the GPP’s execution unit because it is
taking time reading it from memory, then it will have to stall, consequently reducing
the total performance of the GPP. If the memory write action takes longer then the
processor could have to discard a memory read access since the data written on that
specific location is not up to date. This could take effect in that either the core
would have to do another read request or the first read request would have to wait
until the data is up to date and ready to read, effectively increasing total execution
time.

To distinguish these benchmarks, the Misses Per Kilo Instructions (MPKI) can be
used for comparison. Results for such a test of memory accesses in LLC can be seen
in Fig. 5.2.

In this plot, only data from the base system with no encryption were considered.
MPKI are represented on the y-axis and benchmark name on the x-axis. A higher
MPKI is to be interpreted as a system with longer processor stalls caused by misses
in the LLC. Therefore will the total simulation time be more sensitive to the added
read time to main memory, making it more sensitive if this would increase. In
the case of this thesis, the benchmark with more memory accessing activity should
be the ones affected by an added latency from an encryption stage. Therefore
these benchmarks were distinguished and for the rest of the simulations, only the
benchmarks: 401.bzip2, 410.bwaves, 436.cactusADM, 437.leslie3d, 458.sjeng and
470.lbm were used. This decision was based on the results from Fig. 5.2 and the
criteria to have an MPKI above 10. The choice of an MPKI of 10 was based on the

20

5. Results

0
20
40
60
80
100
120
140
160

401.bzip2

403.gcc

410.bwaves

429.mcf

433.milc

435.gromacs

436.cactusADM

437.leslie3d

444.namd

445.gobmk

450.soplex

453.povray

456.hmmer

458.sjeng

459.GemsFDTD

462.libquantum

464.h264ref

470.lbm

471.omnetpp

473.astar

482.sphinx3

998.specrandi

999.specrandf

M
PK

IM
iss

es
Pe

r
K

In
s. Base System

Figure 5.2: MPKI for LLC, base system.

following arguing: a miss in the LLC leads to a total memory read time in order
of 102 processor cycles (sum up L1, L2, L3 and main memory access times in Tab.
4.1. An MPKI of 10 indicates therefore that for 1000 cycles where the processor
could operate without stalling, it would have to stall for about another 1000 cycles,
waiting for a read in main memory corresponding to an execution time where half
was spent on waiting for data and half executing it.

5.1.2 Placing the MEE Before the LLC
In a three-level cache system where the two upper-level caches (L2 and L1) are
restricted to one core and if this core is running either a single thread or all threads
could be assumed to exist inside the same secure environment, then an interesting
case would be to move down the encryption stage to before the LLC. Hence keeping
data and instructions encrypted inside the shared LLC and therefore restricting
plain text knowledge of the secure thread or threads executing on that core. In Fig.
5.3 data are presented with simulations using different encryption and decryption
delays for such a system. It shows five different systems, all with the MEE placed
between L2 and LLC. From left to right the encryption/decryption delay is set to
10, 15, 20, 25 and 30 cycles. A system of 10 cycles could represent a system with
128 bit AES that one of each 10 rounds needed for the transforming is done each
cycle and no other specific hardware is needed that adds extra cycles. As outlined in
Section 2.3 so will the MEE in Intel’s Skylake in best case take 15 cycles for 128-bit
AES, which is represented in the green bar. Moreover, this was an ideal case and
when the integrity tree takes up more time to go through it the cycle count will be
higher, increasing the number of total cycles. Also, the more complex 192-bit and
256-bit AES keys take more rounds to transform, 12 respectively 14, adding more
cycles if they would be implemented instead. Therefore, simulations for MEE with
20, 25 and 30 cycles MEE were also simulated. All the systems are in Fig. 5.3

21

5. Results

normalised to the base system with no encryption.

0

0.2

0.4

0.6

0.8

1

1.2

401.bzip2

410.bwaves

436.cactusADM

437.leslie3d

445.gobmk

458.sjeng

470.lbm

N
or
m
.
sim

.
tim

e

10 15 20 25 30

Figure 5.3: MEE before LLC.

From Fig. 5.3 an expected increase performance toll can be observed from increas-
ing the encryption/decryption latencies. What can be noted is that it is low, not
going over a 10 % of the non-encrypted base system for a 30 cycles delay. As can
be seen in the same Fig. 5.3, benchmarks 437.leslie3d and 458.sjeng produces un-
expected results for simulations with 25 cycles encryption/decryption latency. This
behaviour is hard to explain, but a qualitative guess is that it could depend on some
timing anomalies were, for a dynamically executed processor, cache misses do not
necessarily result in a slower system [54].

5.1.3 Placing the MEE Before the L1D
Another interesting system to look closer into is one with an encryption stage be-
fore the L1D cache. If such a system restricts the encryption key used to one thread
running on the core, then all other threads running on that same core would not
be able to interpret its data in L1D. Results from simulations running with dif-
ferent encryption and decryption latencies can be seen in Fig. 5.4. Same as the
previous Fig. 5.3, Fig. 5.4 shows five different systems, 10, 15, 25 and 30 cycles
encryption/decryption, all with the MME stage moved to between the core and L1D
cache. The data are normalised to the base system with no encryption.

Just as in Fig. 5.3, the results in Fig. 5.4 are showing a decrease in performance
of systems with added latency to memory reads and writes. However, adding the
same overhead to the memory stage before L1D has a significant toll on the system
performance compared to placing it before the LLC.

22

5. Results

0

1

2

3

4

5

6

7

401.bzip2

410.bwaves

436.cactusADM

437.leslie3d

445.gobmk

458.sjeng

470.lbm

N
or
m
.
sim

.
tim

e
10 15 20 25 30

Figure 5.4: MEE before L1D.

5.2 Hiding Encryption Overhead With a Dedi-
cated L0D Cache

As seen in Fig. 5.4, adding an encryption stage before the L1D have a significant
negative impact on the system’s performance. To decrease or hide this performance
loss, one possibility is to add a smaller cache before the encryption stage (when
placed before the L1D cache) and dedicate it to only the secure thread or threads.
This is the already discussed L0D cache whose placement can be seen in Fig. 3.1.

First, we start by analysing how the size of an L0D could impact the system’s
performance. In Fig. 5.5 results from simulations with five different sizes of L0D
can be observed, all with an encryption/decryption delay of 15 cycles. The sizes
chosen for simulation were 16, 8, 4, 2 and 1 KiB. An L0D sized 16 KiB is half the
size of the 32 KiB L1D and it was judged that a larger cache would probably not
be an attractive option. In Fig. 5.5, the left-most system, with a purple bar is the
naive system with no L0D and the MEE placed between core and L1D, added for
reference. The same system can be viewed in previous Fig. 5.1 and Fig. 5.4.

From the results, it is possible to see that for most benchmark, even a small L0D
cache of 1 KiB could be sufficient to reduce the performance loss caused by an
encryption stage. Only the 410.bwaves benchmark shows a clear dependency on the
size of the L0D cache. As a 1 KiB cache was judged to be a considerable small cache
already, no smaller cache sizes were investigated.

5.2.1 Increasing Performance With Prefetching
In all systems until this point, a Stride prefetcher has been located at the L2 cache,
for the full system see Tab. 4.1. A compelling question is if the overhead of encryp-

23

5. Results

0
0.5
1

1.5
2

2.5
3

3.5
4

401.bzip2

410.bwaves

436.cactusADM

437.leslie3d

445.gobmk

458.sjeng

470.lbm

N
or
m
.
sim

.
tim

e
No L0D, Crypt L1D
16 KiB
8 KiB

4 KiB
2 KiB
1 KiB

Figure 5.5: Adding a dedicated L0D cache for sensitive threads.

tion could be reduced even further from what an added L0D cache already gives.
We therefore experimented by moving the existing stride prefetcher from L2 to L0D
and another system with both a stride prefetcher at L2 and L0D. Results from those
systems can be seen in Fig. 5.6 where a 1 KiB L0D was used. These systems are
the orange and yellow bars respectively. In the same figure, one system with no
prefetching at all (blue bar), one with no prefetching and an encryption/decryption
delay set to zero (green bar) and lastly the naive system with no L0D and the MEE
placed between core and L1D (purple bar) were all added. All systems have an
encryption/decryption delay of 15 cycles, except the green bar that is set to zero, as
mentioned earlier. Moreover, all results are normalised to the base system with no
encryption nor L0D cache. In Fig. 5.6 the benchmark 410.bwaves are absent since
the simulation could not finish due to errors in the simulator.

As can be observed from the graph, disabling prefetching completely will decrease the
performance of the system (blue bar). No difference between having one prefetcher
only (orange bar), located in L0D can be seen compared to the previously mentioned
system for benchmarks 436.cactusADM and 458.sjeng. However, for most bench-
marks, a significant improvement can be seen where even for some benchmarks,
namely 445.gobmk and 470.lbm the system has a better performance than for the
base system with no encryption, no L0D and a stride prefetcher at L2. This can
be seen through the value of those systems being less than 1. By adding another
prefetcher at L2 (yellow bar), which also the base system have, all benchmarks
except 436.cactusADM show an even further performance gain.

Moreover, by comparing the system with encryption/decryption delay set to zero
(green bar), with the same system but a 15 cycles delay (blue bar) it can be observed

24

5. Results

0

1

2

3

4

5

6

401.bzip2

436.cactusADM

437.leslie3d

445.gobmk

458.sjeng

470.lbm

N
or
m
.
sim

.
tim

e
Naive, L1D encr.
No enc., no pref.
No pref.

L0D pref.=stride
L2=L0D pref.=stride

Figure 5.6: 1 KiB L0D, with prefetching at different stages.

that the two systems simulated compare to each other as expected. By adding an
encryption delay the system’s performance will decrease, however, not significantly
since it is using an L0D cache that reduces the performance loss, which we could
already see in the previous Fig. 5.5. Comparing the Fig. 5.5 with Fig. 5.6 it is
also possible to detect that moving the prefetcher located in L2 to L0D does not
necessarily increase performance. Benchmarks 401.bzip2 and 458.sjeng show even
a decrease in performance, rather drastically in the latter, suggesting that for those
benchmarks having the prefetcher in L2 instead is preferable. Nonetheless, bench-
marks 445.gobmk and 470.lbm challenge this by giving an increase in performance
by moving the prefetcher, while the not already mentioned benchmarks 436.cactu-
sADM and 437.leslie3d shows no difference. This suggests that if only one prefetcher
is to be included in the system, then a consideration of what type of load the GPP
would be exposed to should be weighed into the decision of where to put it. Lastly,
if there is a possibility to add a prefetcher to both locations this should be the most
attractive option.

Another simulation regarding prefetching was conducted. Still with the same sys-
tems as in Fig. 5.6, but with a 16 KiB L0D cache instead of the previous 1 KiB. The
results can be seen in Fig. 5.7. For this run, neither 410.bwaves nor 438.leslie3d
could complete due to errors and are therefore not included.

The results in Fig. 5.7 are more or less identical to those in Fig. 5.6. If one looks
back at the results from Fig. 5.5 can it be observed that most of the benchmarks
did not show any significant performance differences between the different sizes of
L0D, something that could explain this similarity. The same discussion made for
the results in Fig. 5.6 could therefore be done to these results.

25

5. Results

0

1

2

3

4

5

6

401.bzip2

437.leslie3d

445.gobmk

458.sjeng

470.lbm

N
or
m
.
Si
m
.
T
im

e

Naive, L1D encr.
No enc., no pref.
No pref.

L0D pref.=stride
L2=L0D pref.=stride

Figure 5.7: 16 KiB L0D, with prefetching at different stages.

26

6
Concluding Discussion

6.1 Discussion
Having access to secure systems is something that is today highly regarded which
will probably increase in both the near future and beyond that. Different types
of architectural secure systems, with different level of actual protection, are offered
today. One could divide those into a top and bottom tier, where the TEE with
their dedicated hardware for encryption and isolation are placed at the top one and
VMs in the bottom tier because of their natural submissive relationship with the
untrusted hypervisor. However since even the top tier, secure environments cannot
offer total security (outlined in Section 2.4) this thesis fills a void, investigating if
it is possible to make these environments even more secure without suffering major
performance losses.

We have in this thesis introduced two systems that could potentially offer greater
secure environments than today’s tier one TEEs. The first being a system where the
MEE is located before the LLC that is assumed to be shared among multiple cores.
By locating the MEE here, all sensitive data and instructions could be encrypted
in the LLC and therefore not be read in plain text by other cores. Since the data
are encrypted, isolation in the LLC should not be necessary either, as the data
is not possible to be comprehended by other cores due to encryption with a key
specific belonging to that core. Such a system could solve some attacks such as
the Flush+Reload and similar side-channel attacks outlined in Section 2.4, since it
exploits a page sharing optimisation in the LLC, where to virtual pages share the
same physical page. But if the page of the secure process would be encrypted in
LLC, then even if the data is the same but decrypted, physical sharing would not be
possible. However, if multiple threads would run on the same core, then they would
either have to be assumed to all reside in the same secure environment, or isolation
between them would still be necessary for the L2 and L1 caches. The results from the
simulations done propose that such a system would not necessarily suffer significant
performance losses, as can be seen in Fig. 5.3. But to be noted, the simulations
assume that there is no bandwidth limiting the MEE and this parameter should be
investigated further.

The second proposed system is to move the MEE even deeper and place it between
the core and L1D, only encrypting data and no instructions. Naively moving the

27

6. Concluding Discussion

MEE to this location could lead to major performance losses as seen in Fig. 5.1
and Fig. 5.4. One way to reduce this performance loss could be the introduction
of a dedicated L0D cache. This would assumably take up a vital area on the chip
and therefore a vital point of the analysis was to not only see if it could reduce the
performance loss, but also do this with a considerable small-sized L0D. As seen in
Fig. 5.5 so were a size of 1 KiB enough in most cases to reduce the performance loss
significantly. To reduce it even further, adding more prefetching could be favourable.
Such a system should make it impossible for other untrusted threads executing
concurrently on the same core to read plain text data. Isolation between threads in
such a system should not be needed, following the same argument as for the first
system. That same system could even have the potential to battle the Foreshadow
attack, introduced in Section 2.4. Even if the attacker could exploit the speculative
execution of the processor to read restricted data, (as the Meltdown attack that
Foreshadow is based) it would not be able to interpret it since only the secure
thread has the right to decrypt the data. However, if only the data would be
encrypted, potentially the non-encrypted instructions could be targeted. Moreover,
if they would be able to read in plain text a replicating attack could be mounted
following the exact instruction flow and branch decisions to then try to extract secret
information of the secret environment. One possibility to solve this could be to also
keep the instructions encrypted in the L1I and if needed for performance losses, add
an L0I cache. The same MEE, (if bandwidth allows it) could then be used for both
instruction and data encryption/decryption even in such a system. This has not
been investigated in this thesis but would be an interesting deeper study.

Because straightening out if the proposed systems can solve all the exploited weak-
nesses of modern TEEs are not in the scope of this thesis, we will not discuss the
matter further and leave it open. As we have shown in this thesis, integrating the
encryption stage of a GPP does not have to mean a significant performance loss.
However, if architectural additions are needed for hiding overhead of the MEE, then
other factors such as area and power dissipation could be major turning points why
not implement such a system. How much area the MEE takes up should be a direct
effect of how much bandwidth it is needed to provide and what type of encryption,
such as 128, 192 or 256-bit AES. Instinctively, placing it deeper down, where more
data is being communicated between memory hierarchy levels a higher bandwidth
MEE might be needed. The second system where it is placed before the L1D cache
could be needed to have one MEE per core. This does not have to be the case for the
first proposed system. One could design a processor where all cores using the same
LLC also uses the same MEE, but with a different encryption key. This could have
a positive impact on the total area needed. With that said, the MEE’s bandwidth
impact on performance, the two systems extra occupied area and power dissipated
are subjects of interest to investigate further into.

Moreover, with the second system, we investigated the role of hardware prefetching
and how it could be used for hiding encryption overheads. There is also a possibility
of using software-based prefetching to assist or replace the hardware prefetching.
By adding software prefetch instructions in proper time before a read instruction of

28

6. Concluding Discussion

encrypted data, performance loss could be limited even further and could work as a
supplement or replacement of the hardware prefetching investigated in this thesis.

6.2 Conclusion
To conclude this thesis, we have reviewed how modern secure execution environments
work and how they are a target of numerous successful attacks. Most of these work
by isolation on-chip and encryption off-chip. We proposed and showed two systems
that could potentially solve their vulnerabilities. The first of these systems has its
encryption stage moved to before the LLC, the second with it placed before the L1D
cache and with an added dedicated cache to the secure environment. They showed
from simulations to have minor performance losses compared to a system with no
encryption or one with encryption before the main memory, representing a modern
system such as Intel SGX or AMD SEV. The second system could also be further
improved with hardware prefetching, fetching data to the dedicated cache.

29

6. Concluding Discussion

30

Bibliography

[1] S. Mofrad, F. Zhang, S. Lu, and W. Shi, “A comparison study of intel sgx and
amd memory encryption technology,” in Proc. 7th Int. Workshop on Hardware
and Architectural Support for Secur. and Privacy, New York, NY, USA, 2018.
[Online]. Available: https://doi.org/10.1145/3214292.3214301

[2] D. Perez-Botero, J. Szefer, and R. B. Lee, “Characterizing hypervisor
vulnerabilities in cloud computing servers,” in Proc. 2013 Int. Workshop Secur.
Cloud Comput., New York, NY, USA, 2013, p. 3–10. [Online]. Available:
https://doi.org/10.1145/2484402.2484406

[3] S. Bugiel, S. Nürnberger, T. Pöppelmann, A.-R. Sadeghi, and T. Schneider,
“Amazonia: When elasticity snaps back,” in Proc. 18th ACM Conf. Comput.
and Commun. Secur., New York, NY, USA, 2011, p. 389–400. [Online].
Available: https://doi.org/10.1145/2046707.2046753

[4] J. S. Reuben, “A survey on virtual machine security.” Citeseer, 2007.
[Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.626.4718&rep=rep1&type=pdf

[5] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: An execution infrastructure for tcb minimization,” in Proc. 3rd ACM
SIGOPS/EuroSys Eur. Conf. Comput. Syst. 2008, New York, NY, USA, 2008,
p. 315–328. [Online]. Available: https://doi.org/10.1145/1352592.1352625

[6] P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling, and I. Ver-
bauwhede, “Hardware-based trusted computing architectures for isolation and
attestation,” IEEE Trans. Comput., vol. 67, no. 3, pp. 361–374, 2018, doi:
10.1109/TC.2017.2647955.

[7] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in 25th USENIX Secur. Symp.
(USENIX Secur. 16), Austin, TX, Aug. 2016, pp. 857–874. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/costan

31

https://doi.org/10.1145/3214292.3214301
https://doi.org/10.1145/2484402.2484406
https://doi.org/10.1145/2046707.2046753
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.626.4718&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.626.4718&rep=rep1&type=pdf
https://doi.org/10.1145/1352592.1352625
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan

Bibliography

[8] F. McKeen et al., “Innovative instructions and software model for isolated
execution,” in Proc. 2nd Int. Workshop Hardware and Architectural Support
for Secur. and Privacy, New York, NY, USA, 2013. [Online]. Available:
https://doi.org/10.1145/2487726.2488368

[9] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptol. ePrint Arch.,
2016. [Online]. Available: https://eprint.iacr.org/2016/086.pdf

[10] D. Kaplan, J. Powell, and T. Woller, “Amd memory encryption,” AMD,
White Paper, 2016. [Online]. Available: http://developer.amd.com/wordpress/
media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

[11] “Arm security technology building a secure system using trustzone technology,”
Arm Limited, Cambridge, England, White Paper, April 2009. [Online].
Available: https://developer.arm.com/documentation/PRD29-GENC-009492/
c

[12] S. Gueron, “A memory encryption engine suitable for general purpose
processors.” IACR Cryptol. ePrint Arch., vol. 2016, 2016. [Online]. Available:
https://eprint.iacr.org/2016/204.pdf

[13] A. Nilsson, P. N. Bideh, and J. Brorsson, “A survey of published
attacks on intel sgx,” arXiv preprint, 2020. [Online]. Available: https:
//arxiv.org/abs/2006.13598

[14] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel, “Severed: Subverting
amd’s virtual machine encryption,” in Proc. 11th Eur. Workshop Syst. Secur.,
New York, NY, USA, 2018. [Online]. Available: https://doi.org/10.1145/
3193111.3193112

[15] A. M. Azab et al., “Hypervision across worlds: Real-time kernel protection
from the arm trustzone secure world,” in Proc. 2014 ACM SIGSAC Conf.
Comput. and Commun. Secur., New York, NY, USA, 2014, p. 90–102. [Online].
Available: https://doi.org/10.1145/2660267.2660350

[16] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How sgx amplifies
the power of cache attacks,” W. Fischer and N. Homma, Eds., Cham, 2017,
pp. 69–90. [Online]. Available: https://doi.org/10.1007/978-3-319-66787-4_4

[17] D. J. Bernstein, “Cache-timing attacks on AES,” 2005. [Online]. Avail-
able: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.4749&
rep=rep1&type=pdf

[18] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on intel
sgx,” in Proc. 10th Eur. Workshop Syst. Secur., New York, NY, USA, 2017.
[Online]. Available: https://doi.org/10.1145/3065913.3065915

32

https://doi.org/10.1145/2487726.2488368
https://eprint.iacr.org/2016/086.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.arm.com/documentation/PRD29-GENC-009492/c
https://developer.arm.com/documentation/PRD29-GENC-009492/c
https://eprint.iacr.org/2016/204.pdf
https://arxiv.org/abs/2006.13598
https://arxiv.org/abs/2006.13598
https://doi.org/10.1145/3193111.3193112
https://doi.org/10.1145/3193111.3193112
https://doi.org/10.1145/2660267.2660350
https://doi.org/10.1007/978-3-319-66787-4_4
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.4749&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.4749&rep=rep1&type=pdf
https://doi.org/10.1145/3065913.3065915

Bibliography

[19] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using sgx to conceal cache attacks,” in Int.
Conf. Detection of Intrusions and Malware, and Vulnerability Assessment,
M. Polychronakis and M. Meier, Eds., Cham, 2017, pp. 3–24. [Online].
Available: https://doi.org/10.1007/978-3-319-60876-1_1

[20] J. V. Bulck et al., “Foreshadow: Extracting the keys to the intel SGX
kingdom with transient out-of-order execution,” in 27th USENIX Secur.
Symp. (USENIX Secur. 18). Baltimore, MD: USENIX Association, Aug.
2018, p. 991–1008. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/bulck

[21] P. Kocher et al., “Spectre attacks: Exploiting speculative exe-
cution,” in 2019 IEEE Symp. Secur. and Privacy (SP), 2019,
pp. 1–19, doi: 10.1109/SP.2019.00002. [Online]. Available: https:
//ieeexplore.ieee.org/document/8835233

[22] M. Lipp et al., “Meltdown: Reading kernel memory from user space,”
in 27th USENIX Secur. Symp.m (USENIX Secur. 18). Baltimore,
MD: USENIX Association, Aug. 2018, pp. 973–990. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

[23] M. Schwarz, S. Weiser, and D. Gruss, “Practical enclave malware
with intel sgx,” in Int. Conf. Detection of Intrusions and Malware,
and Vulnerability Assessment, R. Perdisci, C. Maurice, G. Giacinto,
and M. Almgren, Eds., Cham, 2019, pp. 177–196. [Online]. Available:
https://doi.org/10.1007/978-3-030-22038-9_9

[24] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, p. 1–7, Aug. 2011. [Online]. Available: https:
//doi.org/10.1145/2024716.2024718

[25] “Skylake (server) - microarchitectures - intel,” Mar. 2020. [Online]. Available:
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

[26] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH Comput.
Archit. News, vol. 34, no. 4, p. 1–17, Sep. 2006. [Online]. Available:
https://doi.org/10.1145/1186736.1186737

[27] J. L. Hennessy and D. A. Patterson, “Fundamentals of quantitative design and
analysis,” in Computer Architecture: A Quantitative Approach, T. Green and
N. McFadden, Eds. 5th ed., Waltham, MA, USA: Elsevier, 2012, ch. 1, pp.
2–71.

[28] “Apple unleashes m1,” Nov. 10 2020. [Online]. Available: https://www.apple.
com/newsroom/2020/11/apple-unleashes-m1/

33

https://doi.org/10.1007/978-3-319-60876-1_1
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://ieeexplore.ieee.org/document/8835233
https://ieeexplore.ieee.org/document/8835233
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1007/978-3-030-22038-9_9
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://doi.org/10.1145/1186736.1186737
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/

Bibliography

[29] T. P. Morgan, “Amping up the arm server roadmap,” Dec. 13
2019. [Online]. Available: https://www.nextplatform.com/2019/12/13/
amping-up-the-arm-server-roadmap/

[30] K. Asanović and D. A. Patterson, “Instruction sets should be free: The
case for risc-v,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146, Aug 2014. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html

[31] AMD, “Amd epyc™ 7002 series processors: A new standard for the modern
data center,” Apr. 2020. [Online]. Available: https://www.amd.com/system/
files/documents/AMD-EPYC-7002-Series-Datasheet.pdf

[32] J. L. Hennessy and D. A. Patterson, “Instruction-level parallelism and its ex-
ploitation,” in Computer Architecture: A Quantitative Approach, T. Green and
N. McFadden, Eds. 5th ed., Waltham, MA, USA: Elsevier, 2012, ch. 3, pp.
148–261.

[33] ARM, “Arm cortex-m7 processor datasheet,” 2020. [Online]. Available:
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7

[34] A. Matta, “Arm neoverse v1 platform: Unleashing a new
performance tier for arm-based computing,” Arm Commu-
nity, Apr. 17 2021. [Online]. Available: https://community.
arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/
neoverse-v1-platform-a-new-performance-tier-for-arm?_ga=2.149537279.
856418819.1620289544-65415261.1613143471

[35] M. Kerner and N. Padgett, “A history of modern 64-bit computing,”
Feb. 2007. [Online]. Available: https://courses.cs.washington.edu/courses/
csep590a/06au/projects/history-64-bit.pdf

[36] J. L. Hennessy and D. A. Patterson, “Memory hierarchy design,” in Com-
puter Architecture: A Quantitative Approach, T. Green and N. McFadden, Eds.
Waltham, MA, USA: Elsevier, 2012, ch. 2, pp. 72–147.

[37] S. Mittal, “A survey of recent prefetching techniques for processor caches,”
ACM Comput. Surv., vol. 49, no. 2, Aug. 2016. [Online]. Available:
https://doi.org/10.1145/2907071

[38] F. Zhang and H. Zhang, “Sok: A study of using hardware-assisted isolated
execution environments for security,” in Proc. Hardware and Arch. Support
for Sec. and Privacy 2016, New York, NY, USA, 2016. [Online]. Available:
https://doi.org/10.1145/2948618.2948621

[39] S. Johnson, R. Makaram, A. Santoni, and V. Scarlata, “Supporting intel
sgx on multi-socket platforms,” Intel Corporation. [Online]. Available:
https://www.intel.com/content/www/us/en/architecture-and-technology/
software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html

34

https://www.nextplatform.com/2019/12/13/amping-up-the-arm-server-roadmap/
https://www.nextplatform.com/2019/12/13/amping-up-the-arm-server-roadmap/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
https://www.amd.com/system/files/documents/AMD-EPYC-7002-Series-Datasheet.pdf
https://www.amd.com/system/files/documents/AMD-EPYC-7002-Series-Datasheet.pdf
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/neoverse-v1-platform-a-new-performance-tier-for-arm?_ga=2.149537279.856418819.1620289544-65415261.1613143471
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/neoverse-v1-platform-a-new-performance-tier-for-arm?_ga=2.149537279.856418819.1620289544-65415261.1613143471
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/neoverse-v1-platform-a-new-performance-tier-for-arm?_ga=2.149537279.856418819.1620289544-65415261.1613143471
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/neoverse-v1-platform-a-new-performance-tier-for-arm?_ga=2.149537279.856418819.1620289544-65415261.1613143471
https://courses.cs.washington.edu/courses/csep590a/06au/projects/history-64-bit.pdf
https://courses.cs.washington.edu/courses/csep590a/06au/projects/history-64-bit.pdf
https://doi.org/10.1145/2907071
https://doi.org/10.1145/2948618.2948621
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html

Bibliography

[40] Advanced Encryption Standard, FIPS PUB 197, Nov. 26 2001. [Online].
Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

[41] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware,” J. of
Cryptogr. Eng., vol. 8, no. 1, pp. 1–27, 2018. [Online]. Available:
https://doi.org/10.1007/s13389-016-0141-6

[42] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential power
analysis,” J. Cryptogr. Eng., vol. 1, no. 1, pp. 5–27, 2011. [Online]. Available:
https://doi.org/10.1007/s13389-011-0006-y

[43] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (ema): Measures
and counter-measures for smart cards,” in Int. Conf. Res. in Smart Cards, 2001,
pp. 200–210. [Online]. Available: https://doi.org/10.1007/3-540-45418-7_17

[44] D. Genkin, L. Pachmanov, I. Pipman, A. Shamir, and E. Tromer, “Physical
key extraction attacks on pcs,” Commun. ACM, vol. 59, no. 6, pp. 70–79, 2016,
doi: 10.1145/2851486.

[45] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures:
The case of AES,” in Topics in Cryptology – CT-RSA 2006, D. Pointcheval,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1–20. [Online].
Available: https://doi.org/10.1007/11605805_1

[46] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low
noise, l3 cache side-channel attack,” in 23rd USENIX Secur. Symp.
(USENIX Secur. 14), San Diego, CA, USA, Aug. 2014, pp. 719–732.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/yarom

[47] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deterministic
side channels for untrusted operating systems,” in 2015 IEEE Symp. Secur.
and Privacy, 2015, pp. 640–656, doi: 10.1109/SP.2015.45. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163052

[48] J. Van Bulck, F. Piessens, and R. Strackx, “Sgx-step: A practical attack
framework for precise enclave execution control,” in Proc. 2nd Workshop Syst.
Softw. for Trusted Exec., New York, NY, USA, 2017. [Online]. Available:
https://doi.org/10.1145/3152701.3152706

[49] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai,
“Sgxpectre: Stealing intel secrets from sgx enclaves via speculative
execution,” in 2019 IEEE Eur. Symp. Secur. and Privacy (EuroS P),
2019, pp. 142–157, doi: 10.1109/EuroSP.2019.00020. [Online]. Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8806740

35

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/11605805_1
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163052
https://doi.org/10.1145/3152701.3152706
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8806740

Bibliography

[50] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh, “Spectre
returns! speculation attacks using the return stack buffer,” in 12th USENIX
Workshop Offensive Technol. (WOOT 18), Baltimore, MD, USA, Aug. 2018.
[Online]. Available: https://www.usenix.org/conference/woot18/presentation/
koruyeh

[51] “Skylake processors,” High-End Computing Capability, May 13 2021. [Online].
Available: https://www.nas.nasa.gov/hecc/support/kb/skylake-processors_
550.html

[52] K. Hoste, “SPEC CPU2006 command lines,” Sept. 19 2012. [Online].
Available: http://www.cs.ucy.ac.cy/courses/EPL605/Fall2014Files/SPEC%
20CPU2006%20command%20lines.pdf

[53] Y. Luo, L. John, and L. Eeckhout, “Self-monitored adaptive cache warm-up
for microprocessor simulation,” in 16th Symp. Comp. Arch. and High Perf.
Comput., 2004, pp. 10–17.

[54] T. Lundqvist and P. Stenstrom, “Timing anomalies in dynamically sched-
uled microprocessors,” in Proc. 20th IEEE Real-Time Sys. Symp. (Cat.
No.99CB37054), 1999, pp. 12–21, doi: 10.1109/REAL.1999.818824.

36

https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.nas.nasa.gov/hecc/support/kb/skylake-processors_550.html
https://www.nas.nasa.gov/hecc/support/kb/skylake-processors_550.html
http://www.cs.ucy.ac.cy/courses/EPL605/Fall2014Files/SPEC%20CPU2006%20command%20lines.pdf
http://www.cs.ucy.ac.cy/courses/EPL605/Fall2014Files/SPEC%20CPU2006%20command%20lines.pdf

A
Appendix 1

A.1 Analysing simulations dependency on simu-
lated instructions

0

0.2

0.4

0.6

0.8

1

1.2

429.mcf

462.libquantum

Av
er
.
C
y.

Pe
r
In
s.

5000000 10000000 20000000 40000000

Figure A.1: CPI for different number of simulated instructions.

Fig. A.1 shows an analysis of how the number of simulated instructions is affecting
the Clocks Per Instruction (CPI) parameter. It can be seen that it is steadily
decreasing but flattening out with higher instruction counts which are expected.
The big difference between 5000000 and 40000000 instructions shows the importance
of running a warm-up of the cache to lower the impact of filling up caches at the
beginning of executing a new program.

I

A. Appendix 1

A.2 Compiling and Running Benchmarks
The benchmarks were compiled on a x86-64 Ubuntu 18.04 system with the compiling
flags:
COPTIMIZE =
CXXOPTIMIZE = −std=c++98 −O2
FOPTIMIZE = −O2

For the compilers GCC, G++ and GNU Fortran, the version used were Ubuntu
7.5.0-3ubuntu11̃8.04.

As long as a benchmark did not give compile error, run error on desktop or error
running on gem5 it was assumed to be working. The benchmark was tried running
for about 10 seconds on the desktop before aborted, and for minimum 50 000 000
instructions on the gem5 simulator, using the atomic CPU. Comments for each
benchmark can be found in Tab. A.1.

II

A. Appendix 1

Benchmark Working
400.perlbench No output desktop/gem5.
401.bzip2 Output desktop/gem5, gem5 gives just the few first lines.

output after a while, changing from input.source to
chicken.jpg will give more output.

403.gcc No output desktop/gem5.
410.bwaves Same output desktop/gem5.
416.gamess Same output desktop/gem5.
429.mcf Same output desktop/gem5.
433.milc Same output desktop/gem5.
435.gromacs No output desktop/gem5.
436.cactusADM Same output desktop/gem5.
437.leslie3d No output desktop/gem5.
444.namd Output for desktop but no produced for gem5.

Ran for 108 instructions with no error.
445.gobmk Output on desktop, about 42 000 000 instructions

finish simulation, but still no output on gem5.
447.deaII Error compiling
450.soplex Same output desktop/gem5. After 22 000 000

instructions, warnings with remapping to new vaddr.
453.povray Same output desktop/gem5.
454.caclulix Output on desktop, gem5 gives same intro text but

then no more.
456.hmmer Same output desktop/gem5.
458.sjeng Same output desktop/gem5.
459.GemsFDTD Same output desktop/gem5.
462.libquantum Same output desktop/gem5.
464.h264ref Same output desktop/gem5.
465.tonot No output desktop/gem5.
470.lbm Same output desktop/gem5.
471.omnetpp Output on desktop, gem5 gives same intro text but

then no more.
473.astar Same output desktop/gem5.
481.wrf Error running on desktop
482.sphinx3 Same output desktop/gem5.
483.xalancbmk Error compiling.
998.specrand Same output desktop/gem5.
999.specrand Same output desktop/gem5.

Table A.1: Benchmark simulation comments.

A.3 Full Configuration of Base System

III

A. Appendix 1

CPU 7 stage pipline simulated for minimum 14 cycles (14 stages)
Fetch fetchToDecodeDelay=2, fetchWidth=8, fetchBufferSize=64,

fetchQueueSize=32
Decode decodeToRenameDelay=2, decodeWidth=8, decodeToFetchDelay=1
Rename renameToIEWDelay=4, renameWidth=8, renameToFetchDelay=1,

renameToDecodeDelay=1
IEW issueToExecuteDelay=2, iewToCommitDelay=2, issueWidth=8,

dispatchWidth=8, wbWidth=8
iewToFetchDelay=1, iewToDecodeDelay=1, iewToRenameDelay=1

Functional 6 IntALU, 2 IntMultDiv, 4 FP_ALU, 2 FP_MultDiv
units 4 SIMD_UNIT, 1 PredALU, 4 RdWrPortm 1 IprPort
Commit CommitToFetchDelay=1, commitToDecodeDelay=1,

commitToRenameDelay=1, commitToIEWDelay=1,
commitWidth=8, squashWidth=8,

ROB numRobs=1, numROBEntries=224, renameToROBDelay = 1,
Registers numPhysIntRegs=256, numPhysFloatRegs=256,

numPhysCCRegs=numPhysIntRegs*5,
numPhysVecRegs=256, numPhysVecPredRegs=32

SMT smtNumFetchingThreads=1, smtFetchPolixt=SingleThread,
smtLSQPolicy=Partitioned, smtLSQThreshold=100,
smtIQPolicy=Partitioned, smtIQThreshold=100,
smtROBPolicy=Partitioned, smtROBThreshold=100,

Queues LQEntries=32, SQEntries=32, LSQDepCheckShift=4,
LSQCheckLoads=True, numIQEntries=64,

Others trapLatency=13, fetchTrapLatency=1,
backComSize=5, forwardComSize=5,
store_set_clear_period=250000,
LFSTSize=1024, SSITSize=1024

Table A.2: CPU setup for base system simulated.

IV

A. Appendix 1

Non-unique values
warmup_percentage=0, max_miss_count=0, demand_mshr_reserve=1,
tgts_per_mshr=12, tags=BaseSetAssoc(),
tags=BaseSetAssoc(), replacement_policy=LRURP(),
sequential_access=False, writeback_clean=False
L3 shared, size is set per core
size=2 MiB, assoc=11, mostly_inclusive, tag_latency=8,
data_latency=50, response_latency=50, mshrs=40,
write_buffers=32, prefetcher=NULL, prefetch_on_access=False
L2 private per core
size=1 MiB, assoc=16, mostly_inclusive, tag_latency=4,
data_latency=14, response_latency=14, mshrs=20,
write_buffers=16, prefetcher=StridePrefetcher(), prefetch_on_access=True
L1 split in half between I/D
size=64 KiB, assoc=8, mostly_inclusive, tag_latency=2,
data_latency=4, response_latency=4, mshrs=10,
write_buffers=8 prefetcher=NULL, prefetch_on_access=False
System DRAM (Main Memory)
latency 55 ns = 205 cycles at 3.2 GHz,
bandwidth = 12.8 GB/s

Table A.3: Memory setup for base system simulated.

V

	List of Figures
	Introduction
	Background
	General Purpose Processor
	The Core
	The Memory Hierarchy

	Trusted Execution Environments (TEE)
	Intel Software Guard eXtension (SGX)
	AMD Secure Encrypted Virtualization (SEV)
	Arm TrustZone

	Memory Encryption Engine (MEE)
	Attacks

	Proposed Systems
	Experimental Methodology
	Simulated system
	The gem5 Simulator
	Benchmark Applications

	Results
	Naive Systems
	Running Less Tests
	Placing the MEE Before the LLC
	Placing the MEE Before the L1D

	Hiding Encryption Overhead With a Dedicated L0D Cache
	Increasing Performance With Prefetching

	Concluding Discussion
	Discussion
	Conclusion

	Bibliography
	Appendix 1
	Analysing simulations dependency on simulated instructions
	Compiling and Running Benchmarks
	Full Configuration of Base System

